Science.gov

Sample records for 3-dimensional printing modeling

  1. Using 3-dimensional printing to create presurgical models for endodontic surgery.

    PubMed

    Bahcall, James K

    2014-09-01

    Advances in endodontic surgery--from both a technological and procedural perspective-have been significant over the last 18 years. Although these technologies and procedural enhancements have significantly improved endodontic surgical treatment outcomes, there is still an ongoing challenge of overcoming the limitations of interpreting preoperative 2-dimensional (2-D) radiographic representation of a 3-dimensional (3-D) in vivo surgical field. Cone-beam Computed Tomography (CBCT) has helped to address this issue by providing a 3-D enhancement of the 2-D radiograph. The next logical step to further improve a presurgical case 3-D assessment is to create a surgical model from the CBCT scan. The purpose of this article is to introduce 3-D printing of CBCT scans for creating presurgical models for endodontic surgery. PMID:25197746

  2. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  3. Application of 3-Dimensional Printing Technology to Construct an Eye Model for Fundus Viewing Study

    PubMed Central

    Li, Xinhua; Gao, Zhishan; Yuan, Dongqing; Liu, Qinghuai

    2014-01-01

    Objective To construct a life-sized eye model using the three-dimensional (3D) printing technology for fundus viewing study of the viewing system. Methods We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs). Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD) software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D) printing. Together with the main printed structure, polymethyl methacrylate(PMMA) aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy. Results In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value. Conclusions The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus

  4. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.

    PubMed

    Fuller, Sam M; Butz, Daniel R; Vevang, Curt B; Makhlouf, Mansour V

    2014-09-01

    Three-dimensional printing is being rapidly incorporated in the medical field to produce external prosthetics for improved cosmesis and fabricated molds to aid in presurgical planning. Biomedically engineered products from 3-dimensional printers are also utilized as implantable devices for knee arthroplasty, airway orthoses, and other surgical procedures. Although at first expensive and conceptually difficult to construct, 3-dimensional printing is now becoming more affordable and widely accessible. In hand surgery, like many other specialties, new or customized instruments would be desirable; however, the overall production cost restricts their development. We are presenting our step-by-step experience in creating a bone reduction clamp for finger fractures using 3-dimensional printing technology. Using free, downloadable software, a 3-dimensional model of a bone reduction clamp for hand fractures was created based on the senior author's (M.V.M.) specific design, previous experience, and preferences for fracture fixation. Once deemed satisfactory, the computer files were sent to a 3-dimensional printing company for the production of the prototypes. Multiple plastic prototypes were made and adjusted, affording a fast, low-cost working model of the proposed clamp. Once a workable design was obtained, a printing company produced the surgical clamp prototype directly from the 3-dimensional model represented in the computer files. This prototype was used in the operating room, meeting the expectations of the surgeon. Three-dimensional printing is affordable and offers the benefits of reducing production time and nurturing innovations in hand surgery. This article presents a step-by-step description of our design process using online software programs and 3-dimensional printing services. As medical technology advances, it is important that hand surgeons remain aware of available resources, are knowledgeable about how the process works, and are able to take advantage of

  5. 3-Dimensional Topographic Models for the Classroom

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  6. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  7. Monolithically integrated Helmholtz coils by 3-dimensional printing

    SciTech Connect

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  8. Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels.

    PubMed

    Nikitichev, Daniil I; Barburas, Anamaria; McPherson, Kirstie; Mari, Jean-Martial; West, Simeon J; Desjardins, Adrien E

    2016-06-01

    Ultrasound phantoms are invaluable as training tools for vascular access procedures. We developed ultrasound phantoms with wall-less vessels using 3-dimensional printed chambers. Agar was used as a soft tissue-mimicking material, and the wall-less vessels were created with rods that were retracted after the agar was set. The chambers had integrated luer connectors to allow for fluid injections with clinical syringes. Several variations on this design are presented, which include branched and stenotic vessels. The results show that 3-dimensional printing can be well suited to the construction of wall-less ultrasound phantoms, with designs that can be readily customized and shared electronically. PMID:27162278

  9. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. PMID:27137437

  10. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability

    PubMed Central

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad

    2015-01-01

    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  11. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold.

    PubMed

    Tomita, Koichi; Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-03-01

    Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  12. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    PubMed Central

    Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-01-01

    Summary: Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  13. Computer-Aided Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds For Craniofacial Soft Tissue Reconstruction

    PubMed Central

    Zopf, David A.; Mitsak, Anna G.; Flanagan, Colleen L.; Wheeler, Matthew; Green, Glenn E.; Hollister, Scott J.

    2016-01-01

    Objectives To determine the potential of integrated image-based Computer Aided Design (CAD) and 3D printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Study Design Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Setting Multidisciplinary effort encompassing two academic institutions. Subjects and Methods DICOM CT images are segmented and utilized in image-based computer aided design to create porous, anatomic structures. Bioresorbable, polycaprolactone scaffolds with spherical and random porous architecture are produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months duration. Results Auricular and nasal constructs with several microporous architectures were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in excellent appearance and complete soft tissue ingrowth. Histologic analysis of in vitro scaffolds demonstrated native appearing cartilaginous growth respecting the boundaries of the scaffold. Conclusions Integrated image-based computer-aided design (CAD) and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. PMID:25281749

  14. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology.

    PubMed

    Shirakawa, Takashi; Koyama, Yasushi; Mizoguchi, Hiroki; Yoshitatsu, Masao

    2016-05-01

    We present a case of a double-chambered right ventricle in adulthood, in which we tried a detailed morphological assessment and preoperative simulation using 3-dimensional (3D) heart models for improved surgical planning. Polygonal object data for the heart were constructed from computed tomography images of this patient, and transferred to a desktop 3D printer to print out models in actual size. Medical staff completed all of the work processes. Because the 3D heart models were examined by hand, observed from various viewpoints and measured by callipers with ease, we were able to create an image of the complete form of the heart. The anatomical structure of an anomalous bundle was clearly observed, and surgical approaches to the lesion were simulated accurately. During surgery, we used an incision on the pulmonary infundibulum and resected three muscular components of the stenosis. The similarity between the models and the actual heart was excellent. As a result, the operation for this rare defect was performed safely and successfully. We concluded that the custom-made model was useful for morphological analysis and preoperative simulation. PMID:26860990

  15. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius.

    PubMed

    Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia

    2016-03-01

    The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture. PMID:26787406

  16. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  17. Casting of 3-dimensional footwear prints in snow with foam blocks.

    PubMed

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. PMID:27124876

  18. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report.

    PubMed

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor. PMID:26810827

  19. Simultaneous Bimaxillary Surgery and Mandibular Reconstruction With a 3-Dimensional Printed Titanium Implant Fabricated by Electron Beam Melting: A Preliminary Mechanical Testing of the Printed Mandible.

    PubMed

    Lee, Ui-Lyong; Kwon, Jae-Sung; Woo, Su-Heon; Choi, Young-Jun

    2016-07-01

    A woman presented with a long history of mandibular defects posterior to the left lower first premolar caused by inadequate reconstruction after removal of a tumor on the left side of the mandible. In the frontal view, extreme facial asymmetry was apparent. The dental midline of the mandible was deviated 10 mm to the left compared with the dental midline of the maxilla, and all maxillary teeth were inclined to the left owing to dental compensation. There was an 8-mm maxillary occlusal cant relative to the maxillary first molar. Bimaxillary surgery using computer-assisted designed and computer-assisted manufactured devices without an intermediate occlusal splint was performed to align the maxilla and mandible at the correct position, and reconstructive surgery for the mandible using a 3-dimensional printed titanium mandible was concurrently performed. In particular, during the virtual mandible design, 2 abutments that enabled the prosthetic restoration were included in the mandible using a computer-assisted design program. This report describes the successful functional and esthetic reconstruction of the mandible using electron beam melting technology, an alternative technique for reconstruction of mandibles that did not undergo radiation therapy. PMID:27060494

  20. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  1. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    PubMed

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    BACKGROUND The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. MATERIAL AND METHODS Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. RESULTS The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm CONCLUSIONS Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  2. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    PubMed Central

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  3. Creating 3-dimensional Models of the Photosphere using the SIR Code

    NASA Astrophysics Data System (ADS)

    Thonhofer, S.; Utz, D.; Jurčák, J.; Pauritsch, J.; Hanslmeier, A.; Lemmerer, B.

    A high-resolution 3-dimensional model of the photospheric magnetic field is essential for the investigation of magnetic features such as sunspots, pores or smaller elements like single flux tubes seen as magnetic bright points. The SIR code is an advanced inversion code that retrieves physical quantities, e.g. magnetic field, from Stokes profiles. Based on this code, we developed a program for automated inversion of Hinode SOT/SP data and for storing these results in 3-dimensional data cubes in the form of fits files. We obtained models of the temperature, magnetic field strength, magnetic field angles and LOS-velocity in a region of the quiet sun. We will give a first discussion of those parameters in regards of small scale magnetic fields and what we can obtain and learn in the future.

  4. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.; Wannamaker, P.E.

    1980-11-01

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  5. [Rapid 3-Dimensional Models of Cerebral Aneurysm for Emergency Surgical Clipping].

    PubMed

    Konno, Takehiko; Mashiko, Toshihiro; Oguma, Hirofumi; Kaneko, Naoki; Otani, Keisuke; Watanabe, Eiju

    2016-08-01

    We developed a method for manufacturing solid models of cerebral aneurysms, with a shorter printing time than that involved in conventional methods, using a compact 3D printer with acrylonitrile-butadiene-styrene(ABS)resin. We further investigated the application and utility of this printing system in emergency clipping surgery. A total of 16 patients diagnosed with acute subarachnoid hemorrhage resulting from cerebral aneurysm rupture were enrolled in the present study. Emergency clipping was performed on the day of hospitalization. Digital Imaging and Communication in Medicine(DICOM)data obtained from computed tomography angiography(CTA)scans were edited and converted to stereolithography(STL)file formats, followed by the production of 3D models of the cerebral aneurysm by using the 3D printer. The mean time from hospitalization to the commencement of surgery was 242 min, whereas the mean time required for manufacturing the 3D model was 67 min. The average cost of each 3D model was 194 Japanese Yen. The time required for manufacturing the 3D models shortened to approximately 1 hour with increasing experience of producing 3D models. Favorable impressions for the use of the 3D models in clipping were reported by almost all neurosurgeons included in this study. Although 3D printing is often considered to involve huge costs and long manufacturing time, the method used in the present study requires shorter time and lower costs than conventional methods for manufacturing 3D cerebral aneurysm models, thus making it suitable for use in emergency clipping. PMID:27506842

  6. Investigation of Asymmetries in Inductively Coupled Plasma Etching Reactors Using a 3-Dimensional Hybrid Model

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.; Grapperhaus, Michael J.

    1996-10-01

    Inductively Coupled Plasma (ICP) reactors have the potential for scaling to large area substrates while maintaining azimuthal symmetry or side-to-side uniformity across the wafer. Asymmetric etch properties in these devices have been attributed to transmission line properties of the coil, internal structures (such as wafer clamps) and non-uniform gas injection or pumping. To investigate the origins of asymmetric etch properties, a 3-dimensional hybrid model has been developed. The hybrid model contains electromagnetic, electric circuit, electron energy equation, and fluid modules. Continuity and momentum equations are solved in the fluid module along with Poisson's equation. We will discuss results for ion and radical flux uniformity to the substrate while varying the transmission line characteristics of the coil, symmetry of gas inlets/pumping, and internal structures. Comparisons will be made to expermental measurements of etch rates. ^*Work supported by SRC, NSF, ARPA/AFOSR and LAM Research.

  7. The Investigation of Accuracy of 3 Dimensional Models Generated From Point Clouds with Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Gumus, Kutalmis; Erkaya, Halil

    2013-04-01

    In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of

  8. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  9. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  10. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  11. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model. PMID:27572745

  12. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  13. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  14. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  15. An Explicit 3-Dimensional Model for Reactive Transport of Nitrogen in Tile Drained Fields

    NASA Astrophysics Data System (ADS)

    Hill, D. J.; Valocchi, A. J.; Hudson, R. J.

    2001-12-01

    Recently, there has been increased interest in nitrate contamination of groundwater in the Midwest because of its link to surface water eutrophication, especially in the Gulf of Mexico. The vast majority of this nitrate is the product of biologically mediated transformation of fertilizers containing ammonia in the vadose zone of agricultural fields. For this reason, it is imperative that mathematical models, which can serve as useful tools to evaluate both the impact of agricultural fertilizer applications and nutrient-reducing management practices, are able to specifically address transport in the vadose zone. The development of a 3-dimensional explicit numerical model to simulate the movement and transformation of nitrogen species through the subsurface on the scale of an individual farm plot will be presented. At this scale, nitrogen fate and transport is controlled by a complex coupling among hydrologic, agricultural and biogeochemical processes. The nitrogen model is a component of a larger modeling effort that focuses upon conditions typical of those found in agricultural fields in Illinois. These conditions include non-uniform, multi-dimensional, transient flow in both saturated and unsaturated zones, geometrically complex networks of tile drains, coupled surface-subsurface-tile flow, and dynamic levels of dissolved oxygen in the soil profile. The advection-dispersion-reaction equation is solved using an operator-splitting approach, which is a flexible and straightforward strategy. Advection is modeled using a total variation diminishing scheme, dispersion is modeled using an alternating direction explicit method, and reactions are modeled using rate law equations. The model's stability and accuracy will be discussed, and test problems will be presented.

  16. 3-dimensional bioprinting for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828

  17. Basement membrane proteins promote progression of intraepithelial neoplasia in 3-dimensional models of human stratified epithelium.

    PubMed

    Andriani, Frank; Garfield, Jackie; Fusenig, Norbert E; Garlick, Jonathan A

    2004-01-20

    We have developed novel 3-dimensional in vitro and in vivo tissue models that mimic premalignant disease of human stratified epithelium in order to analyze the stromal contribution of extracellular matrix and basement membrane proteins to the progression of intraepithelial neoplasia. Three-dimensional, organotypic cultures were grown either on a de-epidermalized human dermis with pre-existing basement membrane components on its surface (AlloDerm), on a Type I collagen gel that lacked basement membrane proteins or on polycarbonate membranes coated with purified extracellular matrix proteins. When tumor cells (HaCaT-II4) were mixed with normal keratinocytes (4:1/normals:HaCaT-II4), tumor cells selectively attached, persisted and proliferated at the dermal-epidermal interface in vitro and generated dysplastic tissues when transplanted to nude mice only when grown in the presence of the AlloDerm substrate. This stromal interface was permissive for tumor cell attachment due to the rapid assembly of structured basement membrane. When tumor cells were mixed with normal keratinocytes and grown on polycarbonate membranes coated with individual extracellular matrix or basement membrane components, selective attachment and significant intraepithelial expansion occurred only on laminin 1 and Type IV collagen-coated membranes. This preferential adhesion of tumor cells restricted the synthesis of laminin 5 to basal cells where it was deposited in a polarized distribution. Western blot analysis revealed that tumor cell attachment was not due to differences in the synthesis or processing of laminin 5. Thus, intraepithelial progression towards premalignant disease is dependent on the selective adhesion of cells with malignant potential to basement membrane proteins that provide a permissive template for their persistence and expansion. PMID:14648700

  18. Contributions of the Musculus Uvulae to Velopharyngeal Closure Quantified With a 3-Dimensional Multimuscle Computational Model.

    PubMed

    Inouye, Joshua M; Lin, Kant Y; Perry, Jamie L; Blemker, Silvia S

    2016-02-01

    The convexity of the dorsal surface of the velum is critical for normal velopharyngeal (VP) function and is largely attributed to the levator veli palatini (LVP) and musculus uvulae (MU). Studies have correlated a concave or flat nasal velar surface to symptoms of VP dysfunction including hypernasality and nasal air emission. In the context of surgical repair of cleft palates, the MU has been given relatively little attention in the literature compared with the larger LVP. A greater understanding of the mechanics of the MU will provide insight into understanding the influence of a dysmorphic MU, as seen in cleft palate, as it relates to VP function. The purpose of this study was to quantify the contributions of the MU to VP closure in a computational model. We created a novel 3-dimensional (3D) finite element model of the VP mechanism from magnetic resonance imaging data collected from an individual with healthy noncleft VP anatomy. The model components included the velum, posterior pharyngeal wall (PPW), LVP, and MU. Simulations were based on the muscle and soft tissue mechanical properties from the literature. We found that, similar to previous hypotheses, the MU acts as (i) a space-occupying structure and (ii) a velar extensor. As a space-occupying structure, the MU helps to nearly triple the midline VP contact length. As a velar extensor, the MU acting alone without the LVP decreases the VP distance 62%. Furthermore, activation of the MU decreases the LVP activation required for closure almost 3-fold, from 20% (without MU) to 8% (with MU). Our study suggests that any possible salvaging and anatomical reconstruction of viable MU tissue in a cleft patient may improve VP closure due to its mechanical function. In the absence or dysfunction of MU tissue, implantation of autologous or engineered tissues at the velar midline, as a possible substitute for the MU, may produce a geometric convexity more favorable to VP closure. In the future, more complex models will

  19. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity

  20. 3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Yang, T.

    2013-12-01

    In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney

  1. Manufacturing models of fetal malformations built from 3-dimensional ultrasound, magnetic resonance imaging, and computed tomography scan data.

    PubMed

    Werner, Heron; Rolo, Liliam Cristine; Araujo Júnior, Edward; Dos Santos, Jorge Roberto Lopes

    2014-03-01

    Technological innovations accompanying advances in medicine have given rise to the possibility of obtaining better-defined fetal images that assist in medical diagnosis and contribute toward genetic counseling offered to parents during the prenatal period. In this article, we show our innovative experience of diagnosing fetal malformations through correlating 3-dimensional ultrasonography, magnetic resonance imaging, and computed tomography, which are accurate techniques for fetal assessment, with a fetal image reconstruction technique to create physical fetal models. PMID:24901782

  2. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines

    PubMed Central

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC. PMID:26046692

  3. The 3-dimensional, 4-channel model of human visual sensitivity to grayscale scrambles.

    PubMed

    Silva, Andrew E; Chubb, Charles

    2014-08-01

    Previous research supports the claim that human vision has three dimensions of sensitivity to grayscale scrambles (textures composed of randomly scrambled mixtures of different grayscales). However, the preattentive mechanisms (called here "field-capture channels") that confer this sensitivity remain obscure. The current experiments sought to characterize the specific field-capture channels that confer this sensitivity using a task in which the participant is required to detect the location of a small patch of one type of grayscale scramble in an extended background of another type. Analysis of the results supports the existence of four field-capture channels: (1) the (previously characterized) "blackshot" channel, sharply tuned to the blackest grayscales; (2) a (previously unknown) "gray-tuned" field-capture channel whose sensitivity is zero for black rising sharply to maximum sensitivity for grayscales slightly darker than mid-gray then decreasing to half-height for brighter grayscales; (3) an "up-ramped" channel whose sensitivity is zero for black, increases linearly with increasing grayscale reaching a maximum near white; (4) a (complementary) "down-ramped" channel whose sensitivity is maximal for black, decreases linearly reaching a minimum near white. The sensitivity functions of field-capture channels (3) and (4) are linearly dependent; thus, these four field-capture channels collectively confer sensitivity to a 3-dimensional space of histogram variations. PMID:24932891

  4. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer.

    PubMed

    Schmidt, Marianne; Scholz, Claus-Juergen; Polednik, Christine; Roller, Jeanette

    2016-04-01

    In the present study a panel of 12 head and neck cancer (HNSCC) cell lines were tested for spheroid formation. Since the size and morphology of spheroids is dependent on both cell adhesion and proliferation in the 3-dimensional (3D) context, morphology of HNSCC spheroids was related to expression of E-cadherin and the proliferation marker Ki67. In HNSCC cell lines the formation of tight regular spheroids was dependent on distinct E-cadherin expression levels in monolayer cultures, usually resulting in upregulation following aggregation into 3D structures. Cell lines expressing only low levels of E-cadherin in monolayers produced only loose cell clusters, frequently decreasing E-cadherin expression further upon aggregation. In these cell lines no epidermal growth factor receptor (EGFR) upregulation occurred and proliferation generally decreased in spheroids/aggregates independent of E-cadherin expression. In a second approach a global gene expression analysis of the larynx carcinoma cell line HLaC78 monolayer and the corresponding spheroids was performed. A global upregulation of gene expression in HLaC78 spheroids was related to genes involved in cell adhesion, cell junctions and cytochrome P450-mediated metabolism of xenobiotics. Downregulation was associated with genes controlling cell cycle, DNA-replication and DNA mismatch repair. Analyzing the expression of selected genes of each functional group in monolayer and spheroid cultures of all 12 cell lines revealed evidence for common gene expression shifts in genes controlling cell junctions, cell adhesion, cell cycle and DNA replication as well as genes involved in the cytochrome P450-mediated metabolism of xenobiotics. PMID:26797047

  5. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging.

    PubMed

    Goodall, Nicola; Kisiswa, Lilian; Prashar, Ankush; Faulkner, Stuart; Tokarczuk, Paweł; Singh, Krish; Erichsen, Jonathan T; Guggenheim, Jez; Halfter, Willi; Wride, Michael A

    2009-10-01

    Magnetic resonance imaging (MRI) is a powerful tool for generating 3-dimensional structural and functional image data. MRI has already proven valuable in creating atlases of mouse and quail development. Here, we have exploited high resolution MRI to determine the parameters necessary to acquire images of the chick embryo eye. Using a 9.4 Tesla (400 MHz) high field ultra-shielded and refrigerated magnet (Bruker), MRI was carried out on paraformaldehyde-fixed chick embryos or heads at E4, E6, E8, and E10. Image data were processed using established and custom packages (MRICro, ImageJ, ParaVision, Bruker and mri3dX). Voxel dimensions ranged from 62.5 microm to 117.2 microm. We subsequently used the images obtained from the MRI data in order to make precise measurements of chick embryo eye surface area, volume and axial length from E4 to E10. MRI was validated for accurate sizing of ocular tissue features by direct comparison with previously published literature. Furthermore, we demonstrate the utility of high resolution MRI for making accurate measurements of morphological changes due to experimental manipulation of chick eye development, thereby facilitating a better understanding of the effects on chick embryo eye development and growth of such manipulations. Chondroitin sulphate or heparin were microinjected into the vitreous cavity of the right eyes of each of 3 embryos at E5. At E10, embryos were fixed and various eye parameters (volume, surface area, axial length and equatorial diameter) were determined using MRI and normalised with respect to the un-injected left eyes. Statistically significant alterations in eye volume (p < 0.05; increases with chondroitin sulphate and decreases with heparin) and changes in vitreous homogeneity were observed in embryos following microinjection of glycosaminoglycans. Furthermore, in the heparin-injected eyes, significant disturbances at the vitreo-retinal boundary were observed as well as retinal folding and detachment

  6. Comparison of 1-, 2-, and 3-dimensional modeling of the TFTR for nuclear radiation transport analysis

    SciTech Connect

    Ku, L.P.; Kolibal, J.G.; Liew, S.L.

    1985-09-01

    The computational models of the TFTR constructed for the radiation transport analysis for the Q approx. 1 demonstration are summarized and reviewed. These models can be characterized by the dimensionality required to describe the geometry, and by the numerical methods of solving the transport equation. Results obtained with these models in the test cell are compared and discussed.

  7. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  8. Development of a liquid jet model for implementation in a 3-dimensional Eularian analysis tool

    NASA Astrophysics Data System (ADS)

    Buschman, Francis X., III

    The ability to model the thermal behavior of a nuclear reactor is of utmost importance to the reactor designer. Condensation is an important phenomenon when modeling a reactor system's response to a Loss Of Coolant Accident (LOCA). Condensation is even more important with the use of passive safety systems which rely on condensation heat transfer for long term cooling. The increasing use of condensation heat transfer, including condensation on jets of water, in safety systems puts added pressure to correctly model this phenomenon with thermal-hydraulic system and sub-channel analysis codes. In this work, a stand alone module with which to simulate condensation on a liquid jet was developed and then implemented within a reactor vessel analysis code to improve that code's handling of jet condensation. It is shown that the developed liquid jet model vastly improves the ability of COBRA-TF to model condensation on turbulent liquid jets. The stand alone jet model and the coupled liquid jet COBRA-TF have been compared to experimental data. Jet condensation heat transfer experiments by Celata et al. with a variety of jet diameters, velocities, and subcooling were utilized to evaluate the models. A sensitivity study on the effects of noncondensables on jet condensation was also carried out using the stand alone jet model.

  9. Visualization of the 3-dimensional flow around a model with the aid of a laser knife

    NASA Technical Reports Server (NTRS)

    Borovoy, V. Y.; Ivanov, V. V.; Orlov, A. A.; Kharchenko, V. N.

    1984-01-01

    A method for visualizing the three-dimensional flow around models of various shapes in a wind tunnel at a Mach number of 5 is described. A laser provides a planar light flux such that any plane through the model can be selectively illuminated. The shape of shock waves and separation regions is then determined by the intensity of light scattered by soot particles in the flow.

  10. High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feiz Zarrin Ghalam, Ali

    Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the

  11. Remanent magnetization and 3-dimensional density model of the Kentucky anomaly region

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.; Myers, D. M.

    1984-01-01

    A three-dimensional model of the Kentucky body was developed to fit surface gravity and long wavelength aeromagnetic data. Magnetization and density parameters for the model are much like those of Mayhew et al (1982). The magnetic anomaly due to the model at satellite altitude is shown to be much too small by itself to account for the anomaly measured by Magsat. It is demonstrated that the source region for the satellite anomaly is considerably more extensive than the Kentucky body sensu stricto. The extended source region is modeled first using prismatic model sources and then using dipole array sources. Magnetization directions for the source region found by inversion of various combinations of scalar and vector data are found to be close to the main field direction, implying the lack of a strong remanent component. It is shown by simulation that in a case (such as this) where the geometry of the source is known, if a strong remanent component is present its direction is readily detectable, but by scalar data as readily as vector data.

  12. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Griffioen, J.; van der Grift, B.; Maas, D.; van den Brink, C.; Zaadnoordijk, J. W.

    2003-04-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated Pleistocene deposits. The land use is nature and agriculture. Annual mass-balances were determined using a wide range of historic data. The modelling approach for the unsaturated zone was either simple box models (Cl, NO_3 and SO_4) or 1-D transport modelling using HYDRUS (Cd). The modelling approach for the saturated zone used a multiple solute version of MT3D, where denitrification associated with pyrite oxidation and sorption of Cd were included. The solute transport calculations were performed for the period 1950--2030. The results obtained for the year 2000 were used as input concentration for the period 2000--2030. A comparison between the calculated and the measured concentrations of groundwater abstracted for Cl, NO_3 and SO_4 yields the following. First, the input at the surface is rather well estimated. Second, the redox reactivity of the first two aquifers is negligible around the winning, which is confirmed by respiration experiments using anaerobically sampled aquifer sediments. The reactivity of the third aquifer, which is a marine deposit and lies at least 30 meters below surface, is considerable. The discrepancies between modelled and measured output are explained by lack of knowledge about the subsurface reactivity and/or wrong estimates of surface loading and leaching from the unsaturated zone. The patterns for other hydrogeochemical variables such as Ca, HCO_3 may further constrain this lack of knowledge. The results for Cd indicate that Cd becomes strongly retarded, despite the low reactivity of the sandy sediments. The winning is rather insensitive to Cd contamination (but the surface water drainage network is not). Two major uncertainties for input of Cd

  13. Surgical treatment for congenital kyphosis correction using both spinal navigation and a 3-dimensional model.

    PubMed

    Sugimoto, Yoshihisa; Tanaka, Masato; Nakahara, Ryuichi; Misawa, Haruo; Kunisada, Toshiyuki; Ozaki, Toshifumi

    2012-01-01

    An 11 year-old girl had 66 degrees of kyphosis in the thoracolumbar junction. For the purpose of planning for kyphosis correction, we created a 3-D, full-scale model of the spine and consulted spinal navigation. Three-dimensional models are generally used as tactile guides to verify the surgical approach and portray the anatomic relations specific to a given patient. We performed posterior fusion from Th10 to L3, and vertebral column resection of Th12 and L1. Screw entry points, directions, lengths and diameters were determined by reference to navigation. Both tools were useful in the bone resection. We could easily detect the posterior element to be resected using the 3D model. During the anterior bony resection, navigation helped us to check the disc level and anterior wall of the vertebrae, which were otherwise difficult to detect due to their depth in the surgical field. Thus, the combination of navigation and 3D models helped us to safely perform surgery for a patient with complex spinal deformity. PMID:23254585

  14. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    DOE PAGESBeta

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less

  15. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    SciTech Connect

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  16. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    PubMed Central

    2015-01-01

    Summary This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments. PMID:26734515

  17. Observations and Modeling of 3-Dimensional Cloud and Aerosol Fields from the Multiangle SpectroPolarimetric Imager (MSPI)

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Martonchik, J. V.; Davis, A. B.

    2011-12-01

    Knowledge of the detailed 3-dimensional structure of clouds and atmospheric aerosols is vital for correctly modeling their radiative effects and interpreting optical remote sensing measurements of scattered sunlight. We will describe a set of new observations made by the Multiangle SpectroPolarimetric Imager (MSPI) from the ground and from the NASA ER-2 aircraft. MSPI is being developed and tested at JPL as a payload for the preliminary Aerosol-Cloud-Ecosystems (PACE) satellite mission, which is expected to fly near the end of the decade. MSPI builds upon experience gained from the Multi-angle Imaging SpectroRadiometer (MISR) currently orbiting on NASA's Terra satellite. Ground-MSPI and Air-MSPI are two prototype cameras operating in the ultraviolet (UV) to the visible/near-infrared (VNIR) range mounted on gimbals that acquire imagery in a pushbroom fashion, including polarization in selected spectral bands with demonstrated high polarimetric accuracy (0.5% uncertainty in degree of linear polarization). The spatial resolution of Ground-MSPI is 1 m for objects at a distance of 3 km. From the operational altitude of the ER-2, Air-MSPI has a ground resolution of approximately 10 m at nadir. This resolution, coupled with good calibration and high polarimetric performance means that MSPI can be used to derive radiatively important parameters of aerosols and clouds using intensity and polarization information together. As part of the effort for developing retrieval algorithms for the instrument, we have employed an extremely flexible 3-dimensional vector radiative transfer code. We will show example imagery from both MSPI cameras and describe how these scenes are modeled using this code. We will also discuss some of the important unknowns and limitations of this observational approach.

  18. An approximate single fluid 3-dimensional magnetohydrodynamic equilibrium model with toroidal flow

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Hirshman, S. P.; Chapman, I. T.; Brunetti, D.; Faustin, J. M.; Graves, J. P.; Pfefferlé, D.; Raghunathan, M.; Sauter, O.; Tran, T. M.; Aiba, N.

    2014-09-01

    An approximate model for a single fluid three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with significant 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions measured in the experiment. The model invoked fails to predict any significant screening by toroidal plasma rotation of resonant magnetic perturbations in MAST free boundary computations.

  19. 3-DIMENSIONAL Geological Mapping and Modeling Activities at the Geological Survey of Norway

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Bang-Kittilsen, A.; Haase, C.; Henderson, I. H. C.; Høgaas, F.; Iversen, S.; Seither, A.

    2015-10-01

    Geology and all geological structures are three-dimensional in space. Geology can be easily shown as four-dimensional when time is considered. Therefore GIS, databases, and 3D visualization software are common tools used by geoscientists to view, analyse, create models, interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. The interest in 3D mapping and modelling has been reflected by the increase of number of groups and researches dealing with 3D in geology within NGU. This paper highlights 3D geological modelling techniques and the usage of these tools in bedrock, geophysics, urban and groundwater studies at NGU, same as visualisation of 3D online. The examples show use of a wide range of data, methods, software and an increased focus on interpretation and communication of geology in 3D. The goal is to gradually expand the geospatial data infrastructure to include 3D data at the same level as 2D.

  20. Evaluation of 3-Dimensional Superimposition Techniques on Various Skeletal Structures of the Head Using Surface Models

    PubMed Central

    Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    Objectives To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Methods Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. Results There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.790.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Conclusions Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In

  1. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    PubMed Central

    2011-01-01

    Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost

  2. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  3. Relating electrophotographic printing model and ISO13660 standard attributes

    NASA Astrophysics Data System (ADS)

    Barney Smith, Elisa H.

    2010-01-01

    A mathematical model of the electrophotographic printing process has been developed. This model can be used for analysis. From this a print simulation process has been developed to simulate the effects of the model components on toner particle placement. A wide variety of simulated prints are produced from the model's three main inputs, laser spread, charge to toner proportionality factor and toner particle size. While the exact placement of toner particles is a random process, the total effect is not. The effect of each model parameter on the ISO 13660 print quality attributes line width, fill, raggedness and blurriness is described.

  4. Effect of Heat-Inactivated Clostridium sporogenes and Its Conditioned Media on 3-Dimensional Colorectal Cancer Cell Models.

    PubMed

    Bhave, Madhura Satish; Hassanbhai, Ammar Mansoor; Anand, Padmaja; Luo, Kathy Qian; Teoh, Swee Hin

    2015-01-01

    Traditional cancer treatments, such as chemotherapy and radiation therapy continue to have limited efficacy due to tumor hypoxia. While bacterial cancer therapy has the potential to overcome this problem, it comes with the risk of toxicity and infection. To circumvent these issues, this paper investigates the anti-tumor effects of non-viable bacterial derivatives of Clostridium sporogenes. These non-viable derivatives are heat-inactivated C. sporogenes bacteria (IB) and the secreted bacterial proteins in culture media, known as conditioned media (CM). In this project, the effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on a 2-Dimensional (2D) and 3-Dimensional (3D) platform. IB significantly inhibited cell proliferation of CT26 to 6.3% of the control in 72 hours for the 2D monolayer culture. In the 3D spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the 2D and 3D models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the 3D model was less inhibitory than that of CM. Thus, the inhibitive effect of inactivated C. sporogenes and its conditioned media on colorectal cancer cells is established. PMID:26507312

  5. Effect of Heat-Inactivated Clostridium sporogenes and Its Conditioned Media on 3-Dimensional Colorectal Cancer Cell Models

    PubMed Central

    Bhave, Madhura Satish; Hassanbhai, Ammar Mansoor; Anand, Padmaja; Luo, Kathy Qian; Teoh, Swee Hin

    2015-01-01

    Traditional cancer treatments, such as chemotherapy and radiation therapy continue to have limited efficacy due to tumor hypoxia. While bacterial cancer therapy has the potential to overcome this problem, it comes with the risk of toxicity and infection. To circumvent these issues, this paper investigates the anti-tumor effects of non-viable bacterial derivatives of Clostridium sporogenes. These non-viable derivatives are heat-inactivated C. sporogenes bacteria (IB) and the secreted bacterial proteins in culture media, known as conditioned media (CM). In this project, the effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on a 2-Dimensional (2D) and 3-Dimensional (3D) platform. IB significantly inhibited cell proliferation of CT26 to 6.3% of the control in 72 hours for the 2D monolayer culture. In the 3D spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the 2D and 3D models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the 3D model was less inhibitory than that of CM. Thus, the inhibitive effect of inactivated C. sporogenes and its conditioned media on colorectal cancer cells is established. PMID:26507312

  6. 3-dimensional Modeling of Electromagnetic and Physical Sources of Aziumuthal Nonuniformities in Inductively Coupled Plasmas for Deposition

    NASA Astrophysics Data System (ADS)

    Lu, Junqing; Keiter, Eric R.; Kushner, Mark J.

    1998-10-01

    Inductively Coupled Plasmas (ICPs) are being used for a variety of deposition processes for microelectronics fabrication. Of particular concern in scaling these devices to large areas is maintaining azimuthal symmetry of the reactant fluxes. Sources of nonuniformity may be physical (e.g., gas injection and side pumping) or electromagnetic (e.g., transmission line effects in the antennas). In this paper, a 3-dimensional plasma equipment model, HPEM-3D,(M. J. Kushner, J. Appl. Phys. v.82, 5312 (1997).) is used to investigate physical and electromagentic sources of azimuthal nonuniformities in deposition tools. An ionized metal physical vapor deposition (IMPVD) system will be investigated where transmission line effects in the coils produce an asymmetric plasma density. Long mean free path transport for sputtered neutrals and tensor conducitivities have been added to HPEM-3D to address this system. Since the coil generated ion flux drifts back to the target to sputter low ionization potential metal atoms, the asymmetry is reinforced by rapid ionization of the metal atoms.

  7. A Geometric Modelling Approach to Determining the Best Sensing Coverage for 3-Dimensional Acoustic Target Tracking in Wireless Sensor Networks

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatio-temporal information of a target object. We further prove that five sensing coverage always gives the feasible position of a target object under certain conditions that are discussed in this paper. We propose three extensions to four coverage axis line method, namely, five coverage extent point method, five coverage extended axis lines method, and five coverage redundant axis lines method. Computation and time complexities of all four proposed methods are equal in the worst cases as well as on average being equal to Θ(1) each. Proposed methods and proved facts about capabilities of sensing coverage degree in this paper can be used in all other methods of acoustic target tracking like Bayesian filtering methods. PMID:22423198

  8. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California

    USGS Publications Warehouse

    Ponti, Daniel J.; Ehman, Kenneth D.; Edwards, Brian D.; Tinsley, John C., III; Hildenbrand, Thomas; Hillhouse, John W.; Hanson, Randall T.; McDougall, Kristen; Powell, Charles L.; Wan, Elmira; Land, Michael; Mahan, Shannon; Sarna-Wojcicki, Andrei M.

    2007-01-01

    A 3-dimensional computer model of the Quaternary sequence stratigraphy in the Dominguez gap region of Long Beach, California has been developed to provide a robust chronostratigraphic framework for hydrologic and tectonic studies. The model consists of 13 layers within a 16.5 by 16.1 km (10.25 by 10 mile) square area and extends downward to an altitude of -900 meters (-2952.76 feet). Ten sequences of late Pliocene to Holocene age are identified and correlated within the model. Primary data to build the model comes from five reference core holes, extensive high-resolution seismic data obtained in San Pedro Bay, and logs from several hundred water and oil wells drilled in the region. The model is best constrained in the vicinity of the Dominguez gap seawater intrusion barrier where a dense network of subsurface data exist. The resultant stratigraphic framework and geologic structure differs significantly from what has been proposed in earlier studies. An important new discovery from this approach is the recognition of ongoing tectonic deformation throughout nearly all of Quaternary time that has impacted the geometry and character of the sequences. Anticlinal folding along a NW-SE trend, probably associated with Quaternary reactivation of the Wilmington anticline, has uplifted and thinned deposits along the fold crest, which intersects the Dominguez gap seawater barrier near Pacific Coast Highway. A W-NW trending fault system that approximately parallels the fold crest has also been identified. This fault progressively displaces all but the youngest sequences down to the north and serves as the southern termination of the classic Silverado aquifer. Uplift and erosion of fining-upward paralic sequences along the crest of the young fold has removed or thinned many of the fine-grained beds that serve to protect the underlying Silverado aquifer from seawater contaminated shallow groundwater. As a result of this process, the potential exists for vertical migration of

  9. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose

  10. Use of 3-Dimensional Volumetric Modeling of Adrenal Gland Size in Patients with Primary Pigmented Nodular Adrenocortical Disease.

    PubMed

    Chrysostomou, P P; Lodish, M B; Turkbey, E B; Papadakis, G Z; Stratakis, C A

    2016-04-01

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare type of bilateral adrenal hyperplasia leading to hypercortisolemia. Adrenal nodularity is often appreciable with computed tomography (CT); however, accurate radiologic characterization of adrenal size in PPNAD has not been studied well. We used 3-dimensional (3D) volumetric analysis to characterize and compare adrenal size in PPNAD patients, with and without Cushing's syndrome (CS). Patients diagnosed with PPNAD and their family members with known mutations in PRKAR1A were screened. CT scans were used to create 3D models of each adrenal. Criteria for biochemical diagnosis of CS included loss of diurnal variation and/or elevated midnight cortisol levels, and paradoxical increase in urinary free cortisol and/or urinary 17-hydroxysteroids after dexamethasone administration. Forty-five patients with PPNAD (24 females, 27.8±17.6 years) and 8 controls (19±3 years) were evaluated. 3D volumetric modeling of adrenal glands was performed in all. Thirty-eight patients out of 45 (84.4%) had CS. Their mean adrenal volume was 8.1 cc±4.1, 7.2 cc±4.5 (p=0.643) for non-CS, and 8.0cc±1.6 for controls. Mean values were corrected for body surface area; 4.7 cc/kg/m(2)±2.2 for CS, and 3.9 cc/kg/m(2)±1.3 for non-CS (p=0.189). Adrenal volume and midnight cortisol in both groups was positively correlated, r=0.35, p=0.03. We conclude that adrenal volume measured by 3D CT in patients with PPNAD and CS was similar to those without CS, confirming empirical CT imaging-based observations. However, the association between adrenal volume and midnight cortisol levels may be used as a marker of who among patients with PPNAD may develop CS, something that routine CT cannot do. PMID:27065461

  11. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  12. Normal growth and development of the lips: a 3-dimensional study from 6 years to adulthood using a geometric model

    PubMed Central

    FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA

    2000-01-01

    A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to

  13. Verification and transfer of thermal pollution model. Volume 3: Verification of 3-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.

  14. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  15. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  16. A computational model for doctoring fluid films in gravure printing

    NASA Astrophysics Data System (ADS)

    Hariprasad, Daniel S.; Grau, Gerd; Schunk, P. Randall; Tjiptowidjojo, Kristianto

    2016-04-01

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  17. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis

    PubMed Central

    Lambros, Maria P.; DeSalvo, Michael K.; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-01-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  18. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis.

    PubMed

    Lambros, Maria P; DeSalvo, Michael K; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-12-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC-QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  19. A 3-dimensional ray-trace model for predicting the performance of flashlamp-pumped laser amplifiers

    SciTech Connect

    Jancaitis, K.S.; Haney, S.W.; Munro, D.H.; Le Touze, G.; Cabourdin, O.

    1997-02-13

    We have developed a fully three-dimensional model for the performance of flashlamp pumped laser amplifiers. The model uses a reverse ray-trace technique to calculate the pumping of the laser glass by the flashlamp radiation. We have discovered several different methods by which we can speed up the calculation of the gain profile in a amplifier. The model predicts the energy-storage performance of the Beamlet amplifiers to better than 5%. This model will be used in the optimization of the National Ignition Facility (NIF) amplifier design.

  20. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  1. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  2. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    SciTech Connect

    Bodvarsson, G.; Chen, G.; Haukwa, C.; Kwicklis, E.

    1995-12-31

    The three-dimensional site-scale numerical model o the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km{sup 2} and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them; the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Submodels are used to investigate specific hypotheses and their importance before incorporation into the three-dimensional site-scale model. The primary objectives of the three-dimensional site-scale model are to: (1) quantify moisture, gas and heat flows in the ambient conditions at Yucca Mountain, (2) help in guiding the site-characterization effort (primarily by USGS) in terms of additional data needs and to identify regions of the mountain where sufficient data have been collected, and (3) provide a reliable model of Yucca Mountain that is validated by repeated predictions of conditions in new boreboles and the ESF and has therefore the confidence of the public and scientific community. The computer code TOUGH2 developed by K. Pruess at LBL was used along with the three-dimensional site-scale model to generate these results. In this paper, we also describe the three-dimensional site-scale model emphasizing the numerical grid development, and then show some results in terms of moisture, gas and heat flow.

  3. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue.

    PubMed

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-10-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  4. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  5. New 3-dimensional CFD modeling of CO2 and H2S simultaneous stripping from water within PVDF hollow fiber membrane contactor

    NASA Astrophysics Data System (ADS)

    Bahlake, Ahmad; Farivar, Foad; Dabir, Bahram

    2016-07-01

    In this paper a 3-dimensional modeling of simultaneous stripping of carbon dioxide (CO2) and hydrogen sulfide (H2S) from water using hollow fiber membrane made of polyvinylidene fluoride is developed. The water, containing CO2 and H2S enters to the membrane as feed. At the same time, pure nitrogen flow in the shell side of a shell and tube hollow fiber as the solvent. In the previous methods of modeling hollow fiber membranes just one of the membranes was modeled and the results expand to whole shell and tube system. In this research the whole hollow fiber shell and tube module is modeled to reduce the errors. Simulation results showed that increasing the velocity of solvent flow and decreasing the velocity of the feed are leads to increase in the system yield. However the effect of the feed velocity on the process is likely more than the influence of changing the velocity of the gaseous solvent. In addition H2S stripping has higher yield in comparison with CO2 stripping. This model is compared to the previous modeling methods and shows that the new model is more accurate. Finally, the effect of feed temperature is studied using response surface method and the operating conditions of feed temperature, feed velocity, and solvent velocity is optimized according to synergistic effects. Simulation results show that, in the optimum operating conditions the removal percentage of H2S and CO2 are 27 and 21 % respectively.

  6. New 3-dimensional CFD modeling of CO2 and H2S simultaneous stripping from water within PVDF hollow fiber membrane contactor

    NASA Astrophysics Data System (ADS)

    Bahlake, Ahmad; Farivar, Foad; Dabir, Bahram

    2015-08-01

    In this paper a 3-dimensional modeling of simultaneous stripping of carbon dioxide (CO2) and hydrogen sulfide (H2S) from water using hollow fiber membrane made of polyvinylidene fluoride is developed. The water, containing CO2 and H2S enters to the membrane as feed. At the same time, pure nitrogen flow in the shell side of a shell and tube hollow fiber as the solvent. In the previous methods of modeling hollow fiber membranes just one of the membranes was modeled and the results expand to whole shell and tube system. In this research the whole hollow fiber shell and tube module is modeled to reduce the errors. Simulation results showed that increasing the velocity of solvent flow and decreasing the velocity of the feed are leads to increase in the system yield. However the effect of the feed velocity on the process is likely more than the influence of changing the velocity of the gaseous solvent. In addition H2S stripping has higher yield in comparison with CO2 stripping. This model is compared to the previous modeling methods and shows that the new model is more accurate. Finally, the effect of feed temperature is studied using response surface method and the operating conditions of feed temperature, feed velocity, and solvent velocity is optimized according to synergistic effects. Simulation results show that, in the optimum operating conditions the removal percentage of H2S and CO2 are 27 and 21 % respectively.

  7. 3-dimensional geometric modeling and parameter estimation of scoria cones of the San Francisco Volcanic Field, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Király, E.; Székely, B.; Bata, T.; Lócsi, L.; Karátson, D.

    2009-04-01

    The almost global availability of medium- and high-resolution Digital Terrain Models (DTMs) paved the way of new approaches in volcanic geomorphology. The increasing importance of understanding of surface processes that act during the degradation of volcanic edifices also mean a demand for geometric modeling of their surface, in order to derive parameters from the topography that are suitable for further analysis. Our study area, the San Francisco Volcanic Field (SFVF), is a ca. 4500 km2-large volcanic region situated around the San Francisco stratovolcano at Flagstaff, Arizona (USA) that hosts some 600 scoria and lava domes, numerous lava flows with extensive volcanic ash deposits. Because of the wide range in size and age, as well as contrasting degradation of these volcanic features, several authors have analysed them in the last decades to derive general rules of their lowering. Morphometric parameters were determined that were expected to be suitable to fulfill this requirement. In his pioneering work, Wood (1980a,b) considered 40 scoria cones, while almost two decades later Hooper and Sheridan (1998) included 237 features in their study. Their manual morphometric analyses were based on topographic maps that are time consuming, therefore their limited scope can now be extended with the availability of digital data. In the initial phase of our project more than 300 cones were analysed using the classic approach (height of the cone, width of the cone and crater, etc.). Additionally the slope histogram were analysed in order to classify the cones into different evolutionary categories. These analyses led to the selection of a few volcanoes, that entered in the next processing phase. Firstly the derivation of parameters in two-dimensional approach were carried out. Horizontal and vertical cross sections were extracted from the DTM, and the resulting planar curves were analysed via parameter estimation. The horizontal planar outlines were approached with circles

  8. Estimating neugebauer primaries for multi-channel spectral printing modeling

    NASA Astrophysics Data System (ADS)

    Slavuj, Radovan; Coppel, Ludovic G.; Olen, Melissa; Hardeberg, Jon Yngve

    2014-02-01

    Multichannel printer modeling has been an active area of research in the field of spectral printing. The most commonly used models for characterization of such systems are the spectral Neugebauer (SN) and its extensions. This work addresses issues that can arise during calibration and testing of the SN model when modelling a 7-colorant printer. Since most substrates are limited in their capacity to take in large amount of ink, it is not always possible to print all colorant combinations necessary to determine the Neugebauer primaries (NP). A common solution is to estimate the nonprintable Neugebauer primaries from the single colorant primaries using the Kubelka-Munk (KM) optical model. In this work we test whether a better estimate can be obtained using general radiative transfer theory, which better represents the angular variation of the reflectance from highly absorbing media, and takes surface scattering into account. For this purpose we use the DORT2002 model. We conclude DORT2002 does not offer significant improvements over KM in the estimation of the NPs, but a significant improvement is obtained when using a simple surface scattering model. When the estimated primaries are used as inputs to the SN model instead of measured ones, it is found the SN model performs the same or better in terms of color difference and spectral error. If the mixed measured and estimated primaries are used as inputs to the SN model, it performs better than using either measured or estimated.

  9. Catastrophic regime shifts in coral communities exposed to physical disturbances: simulation results from object-oriented 3-dimensional coral reef model.

    PubMed

    Tam, Tze-wai; Ang, Put O

    2009-07-21

    A 3-dimensional individual-based model, the ReefModel, was developed to simulate the dynamical structure of coral reef community using object-oriented techniques. Interactions among functional groups of reef organisms were simulated in the model. The behaviours of these organisms were described with simple mechanistic rules that were derived from their general behaviours (e.g. growing habits, competitive mechanisms, response to physical disturbance) observed in natural coral reef communities. The model was implemented to explore the effects of physical disturbance on the dynamical structure of a 3-coral community that was characterized with three functional coral groups: tabular coral, foliaceous coral and massive coral. Simulation results suggest that (i) the integration of physical disturbance and differential responses (disturbance sensitivity and growing habit) of corals plays an important role in structuring coral communities; (ii) diversity of coral communities can be maximal under intermediate level of acute physical disturbance; (iii) multimodality exists in the final states and dynamic regimes of individual coral group as well as coral community structure, which results from the influence of small random spatial events occurring during the interactions among the corals in the community, under acute and repeated physical disturbances. These results suggest that alternative stable states and catastrophic regime shifts may exist in a coral community under unstable physical environment. PMID:19306887

  10. Accuracy of open-source software segmentation and paper-based printed three-dimensional models.

    PubMed

    Szymor, Piotr; Kozakiewicz, Marcin; Olszewski, Raphael

    2016-02-01

    .43 ± 19.39; however, deviation in some of the generated points could not be calculated, and those points were excluded from further calculations. From 94% to 99% of the measured absolute deviations were <1 mm. The mean absolute deviation between the skull and virtual model was 0.15 ± 0.11 mm, between the virtual and printed models was 0.15 ± 0.12 mm, and between the skull and printed models was 0.24 ± 0.21 mm. Using the optical scanner and specialized inspection software for measurements of accuracy of the created parts is recommended, as it allows one not only to measure 2-dimensional distances between anatomical points but also to perform more clinically suitable comparisons of whole surfaces. However, it requires specialized software and a very accurate scanner in order to be useful. Threshold-based, manually corrected segmentation of orbital walls performed with 3D Slicer software is accurate enough to be used for creating a virtual model of the orbit. The accuracy of the paper-based Mcor Matrix 300 3D printer is comparable to those of other commonly used 3-dimensional printers and allows one to create precise anatomical models for clinical use. The method of dividing the model into smaller parts and sticking them together seems to be quite accurate, although we recommend it only for creating small, solid models with as few parts as possible to minimize shift associated with gluing. PMID:26748414

  11. Testing Mercury Porosimetry with 3D Printed Porosity Models

    NASA Astrophysics Data System (ADS)

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  12. 3D Printing of Molecular Potential Energy Surface Models

    ERIC Educational Resources Information Center

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  13. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  14. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  15. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance

    PubMed Central

    Itagaki, Michael W.

    2015-01-01

    Three-dimensional (3D) printing applications in medicine have been limited due to high cost and technical difficulty of creating 3D printed objects. It is not known whether patient-specific, hollow, small-caliber vascular models can be manufactured with 3D printing, and used for small vessel endoluminal testing of devices. Manufacture of anatomically accurate, patient-specific, small-caliber arterial models was attempted using data from a patient’s CT scan, free open-source software, and low-cost Internet 3D printing services. Prior to endovascular treatment of a patient with multiple splenic artery aneurysms, a 3D printed model was used preoperatively to test catheter equipment and practice the procedure. A second model was used intraoperatively as a reference. Full-scale plastic models were successfully produced. Testing determined the optimal puncture site for catheter positioning. A guide catheter, base catheter, and microcatheter combination selected during testing was used intraoperatively with success, and the need for repeat angiograms to optimize image orientation was minimized. A difficult and unconventional procedure was successful in treating the aneurysms while preserving splenic function. We conclude that creation of small-caliber vascular models with 3D printing is possible. Free software and low-cost printing services make creation of these models affordable and practical. Models are useful in preoperative planning and intraoperative guidance. PMID:26027767

  16. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance.

    PubMed

    Itagaki, Michael W

    2015-01-01

    Three-dimensional (3D) printing applications in medicine have been limited due to high cost and technical difficulty of creating 3D printed objects. It is not known whether patient-specific, hollow, small-caliber vascular models can be manufactured with 3D printing, and used for small vessel endoluminal testing of devices. Manufacture of anatomically accurate, patient-specific, small-caliber arterial models was attempted using data from a patient's CT scan, free open-source software, and low-cost Internet 3D printing services. Prior to endovascular treatment of a patient with multiple splenic artery aneurysms, a 3D printed model was used preoperatively to test catheter equipment and practice the procedure. A second model was used intraoperatively as a reference. Full-scale plastic models were successfully produced. Testing determined the optimal puncture site for catheter positioning. A guide catheter, base catheter, and microcatheter combination selected during testing was used intraoperatively with success, and the need for repeat angiograms to optimize image orientation was minimized. A difficult and unconventional procedure was successful in treating the aneurysms while preserving splenic function. We conclude that creation of small-caliber vascular models with 3D printing is possible. Free software and low-cost printing services make creation of these models affordable and practical. Models are useful in preoperative planning and intraoperative guidance. PMID:26027767

  17. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  18. Characterisation of the n-colour printing process using the spot colour overprint model.

    PubMed

    Deshpande, Kiran; Green, Phil; Pointer, Michael R

    2014-12-29

    This paper is aimed at reproducing the solid spot colours using the n-colour separation. A simplified numerical method, called as the spot colour overprint (SCOP) model, was used for characterising the n-colour printing process. This model was originally developed for estimating the spot colour overprints. It was extended to be used as a generic forward characterisation model for the n-colour printing process. The inverse printer model based on the look-up table was implemented to obtain the colour separation for n-colour printing process. Finally the real-world spot colours were reproduced using 7-colour separation on lithographic offset printing process. The colours printed with 7 inks were compared against the original spot colours to evaluate the accuracy. The results show good accuracy with the mean CIEDE2000 value between the target colours and the printed colours of 2.06. The proposed method can be used successfully to reproduce the spot colours, which can potentially save significant time and cost in the printing and packaging industry. PMID:25607147

  19. Workflow modeling in the graphic arts and printing industry

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2003-12-01

    The last few years, a lot of effort has been spent on the standardization of the workflow in the graphic arts and printing industry. The main reasons for this standardization are two-fold: first of all, the need to represent all aspects of products, processes and resources in a uniform, digital framework and, secondly, the need to have different systems communicate with each other without having to implement dedicated drivers or protocols. Since many years, a number of organizations in the IT sector have been quite busy developing models and languages on the topic of workflow modeling. In addition to the more formal methods (such as, e.g., extended finite state machines, Petri Nets, Markov Chains etc.) introduced a number of decades ago, more pragmatic methods have been proposed quite recently. We hereby think in particular of the activities of the Workflow Management Coalition that resulted in an XML based Process Definition Language. Although one might be tempted to use the already established standards in the graphic environment, one should be well aware of the complexity and uniqueness of the graphic arts workflow. In this paper, we will show that it is quite hard though not impossible to model the graphic arts workflow using the already established workflow systems. After a brief summary of the graphic arts workflow requirements, we will show why the traditional models are less suitable to use. It will turn out that one of the main reasons for the incompatibility is that the graphic arts workflow is primarily resource driven; this means that the activation of processes depends on the status of different incoming resources. The fact that processes can start running with a partial availability of the input resources is a further complication that asks for additional knowledge on process level. In the second part of this paper, we will discuss in more detail the different software components that are available in any graphic enterprise. In the last part, we will

  20. Deducing ink thickness variations of fluorescent print by a spectral prediction model

    NASA Astrophysics Data System (ADS)

    Wang, Qingjuan; Zhang, Yixin; Tian, Dongwen

    2012-01-01

    In the color printing process, the thickness and uniformity of ink have a great affect on the color reproduction. The ink thickness uniformity is an important parameters of measuring the quality of printing. Based on the fluorescent additives may absorb ultraviolet light and exit blue light or visible light and by considering the expansion of the ink, optical properties of paper with fluorescent additives , the internal lateral spread of light in paper with fluorescent additives and the fluorescent Clapper-Yule spectral reflectance prediction model, we introduce two factor parameters which are the initial thickness of the inks and the factor of ink thickness variation. A model for deducing ink thickness variations of printing on the fluorescent substrate is developed by the least square method and the spectrum reflectance of prints which measures the ink thickness variations. The correctness of the conclusions are verified by experiment.

  1. Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders.

    PubMed

    Starosolski, Zbigniew A; Kan, J Herman; Rosenfeld, Scott D; Krishnamurthy, Rajesh; Annapragada, Ananth

    2014-02-01

    Three-dimensional printing called rapid prototyping, a technology that is used to create physical models based on a 3-D computer representation, is now commercially available and can be created from CT or MRI datasets. This technical innovation paper reviews the specific requirements and steps necessary to apply biomedical 3-D printing of pediatric musculoskeletal disorders. We discuss its role for the radiologist, orthopedist and patient. PMID:24202430

  2. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  3. The Accuracy of a Method for Printing Three-Dimensional Spinal Models

    PubMed Central

    Wang, Jian-Shun; Yang, Xin-Dong; Weng, Wan-Qing; Wang, Xiang-Yang; Xu, Hua-Zi; Chi, Yong-Long; Lin, Zhong-Ke

    2015-01-01

    Background To study the morphology of the human spine and new spinal fixation methods, scientists require cadaveric specimens, which are dependent on donation. However, in most countries, the number of people willing to donate their body is low. A 3D printed model could be an alternative method for morphology research, but the accuracy of the morphology of a 3D printed model has not been determined. Methods Forty-five computed tomography (CT) scans of cervical, thoracic and lumbar spines were obtained, and 44 parameters of the cervical spine, 120 parameters of the thoracic spine, and 50 parameters of the lumbar spine were measured. The CT scan data in DICOM format were imported into Mimics software v10.01 for 3D reconstruction, and the data were saved in .STL format and imported to Cura software. After a 3D digital model was formed, it was saved in Gcode format and exported to a 3D printer for printing. After the 3D printed models were obtained, the above-referenced parameters were measured again. Results Paired t-tests were used to determine the significance, set to P<0.05, of all parameter data from the radiographic images and 3D printed models. Furthermore, 88.6% of all parameters of the cervical spine, 90% of all parameters of the thoracic spine, and 94% of all parameters of the lumbar spine had Intraclass Correlation Coefficient (ICC) values >0.800. The other ICC values were <0.800 and >0.600; none were <0.600. Conclusion In this study, we provide a protocol for printing accurate 3D spinal models for surgeons and researchers. The resulting 3D printed model is inexpensive and easily obtained for spinal fixation research. PMID:25915641

  4. Spectral transmittance model for stacks of transparencies printed with halftone colors

    NASA Astrophysics Data System (ADS)

    Machizaud, Jacques; Hébert, Mathieu

    2012-01-01

    The present work investigates the transmission of light through stacks of halftone printed transparencies. We propose a spectral transmittance model describing the multiple reflections of light between the transparencies, whose individual reflectance and transmittance have themselves been obtained by a prediction model. The model for single printed transparency involves the multiple reflections of light between the interfaces as well as the orientation-dependent attenuations of light within the plastic and ink layers. A procedure enables converting the nominal ink surface coverages into effective ones by taking into account the spreading of the inks. Calibration of the model is based on printing a small number of color patches on one transparency and measuring their spectral transmittance. Regarding the stacks of transparencies, an experimental test carried out with inkjet printed samples shows good agreement between predictions and measurements for stacks of two, three and four transparencies. Stochastic halftones are used in order to avoid the apparition of moiré patterns when superposing the halftones. By inversion of the model, we are able to determine the halftone colors to print on each transparency in order to obtain by superposition one targeted color. An original application of this, called "color matching", consists in producing one color of stack from various combinations of colors on the transparencies. The prediction accuracy of the proposed model guarantees the good visual uniformity of the resulting colored area.

  5. 3-dimensional Oil Drift Simulations

    NASA Astrophysics Data System (ADS)

    Wettre, C.; Reistad, M.; Hjøllo, B.Å.

    Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.

  6. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  7. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  8. Use of a Three Dimensional Printed Cardiac Model to Assess Suitability for Biventricular Repair.

    PubMed

    Farooqi, Kanwal M; Gonzalez-Lengua, Carlos; Shenoy, Rajesh; Sanz, Javier; Nguyen, Khanh

    2016-05-01

    Three dimensional (3D) printing is rapidly gaining interest in the medical field for use in presurgical planning. We present the case of a seven-year-old boy with double outlet right ventricle who underwent a bidirectional Glenn anastomosis. We used a 3D cardiac model to assess his suitability for a biventricular repair. He underwent a left ventricle-to-aorta baffle with a right ventricle-to-pulmonary artery conduit placement. He did well postoperatively and was discharged home with no evidence of baffle obstruction and good biventricular function. A 3D printed model can provide invaluable intracardiac spatial information in these complex patients. PMID:27009890

  9. Phase diagram of quark-antiquark and diquark condensates in the 3-dimensional Gross-Neveu model with the 4-component spinor representation

    SciTech Connect

    Kohyama, Hiroaki

    2008-07-01

    We construct the phase diagram of the quark-antiquark and diquark condensates at finite temperature and density in the 2+1 dimensional (3D) two flavor massless Gross-Neveu (GN) model with the 4-component quarks. In contrast to the case of the 2-component quarks, there appears the coexisting phase of the quark-antiquark and diquark condensates. This is the crucial difference between the 2-component and 4-component quark cases in the 3D GN model. The coexisting phase is also seen in the 4D Nambu Jona-Lasinio model. Then we see that the 3D GN model with the 4-component quarks bears closer resemblance to the 4D Nambu Jona-Lasinio model.

  10. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  11. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications.

    PubMed

    Marro, Alessandro; Bandukwala, Taha; Mak, Walter

    2016-01-01

    The purpose of this article is to review recent innovations on the process and application of 3-dimensional (3D) printed objects from medical imaging data. Data for 3D printed medical models can be obtained from computed tomography, magnetic resonance imaging, and ultrasound using the Data Imaging and Communications in Medicine (DICOM) software. The data images are processed using segmentation and mesh generation tools and converted to a standard tessellation language (STL) file for printing. 3D printing technologies include stereolithography, selective laser sintering, inkjet, and fused-deposition modeling . 3D printed models have been used for preoperative planning of complex surgeries, the creation of custom prosthesis, and in the education and training of physicians. The application of medical imaging and 3D printers has been successful in providing solutions to many complex medical problems. As technology advances, its applications continue to grow in the future. PMID:26298798

  12. Utility of a 3-dimensional full-scale NaCl model for rib strut grafting for anterior fusion for cervicothoracic kyphosis

    PubMed Central

    Kobayashi, Kazuyoshi; Imagama, Shiro; Muramoto, Akio; Ito, Zenya; Ando, Kei; Yagi, Hideki; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Ishiguro, Naoki

    2015-01-01

    ABSTRACT In severe spinal deformity, pain and neurological disorder may be caused by spinal cord compression. Surgery for spinal reconstruction is desirable, but may be difficult in a case with severe deformity. Here, we show the utility of a 3D NaCl (salt) model in preoperative planning of anterior reconstruction using a rib strut in a 49-year-old male patient with cervicothoracic degenerative spondylosis. We performed surgery in two stages: a posterior approach with decompression and posterior instrumentation with a pedicle screw; followed by a second operation using an anterior approach, for which we created a 3D NaCl model including the cervicothoracic lesion, spinal deformity, and ribs for anterior reconstruction. The 3D NaCl model was easily scraped compared with a conventional plaster model and was useful for planning of resection and identification of a suitable rib for grafting in a preoperative simulation. Surgery was performed successfully with reference to the 3D NaCl model. We conclude that preoperative simulation with a 3D NaCl model contributes to performance of anterior reconstruction using a rib strut in a case of cervicothoracic deformity. PMID:26412901

  13. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing

    PubMed Central

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  14. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing.

    PubMed

    Salmi, Mika

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  15. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.

    PubMed

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G

    2016-05-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. PMID:26468636

  16. Distinction of Green Sweet Peppers by Using Various Color Space Models and Computation of 3 Dimensional Location Coordinates of Recognized Green Sweet Peppers Based on Parallel Stereovision System

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-06-01

    This paper presents the comparative study of various color space models to determine the suitable color space model for detection of green sweet peppers. The images were captured by using CCD cameras and infrared cameras and processed by using Halcon image processing software. The LED ring around the camera neck was used as an artificial lighting to enhance the feature parameters. For color images, CieLab, YIQ, YUV, HSI and HSV whereas for infrared images, grayscale color space models were selected for image processing. In case of color images, HSV color space model was found more significant with high percentage of green sweet pepper detection followed by HSI color space model as both provides information in terms of hue/lightness/chroma or hue/lightness/saturation which are often more relevant to discriminate the fruit from image at specific threshold value. The overlapped fruits or fruits covered by leaves can be detected in better way by using HSV color space model as the reflection feature from fruits had higher histogram than reflection feature from leaves. The IR 80 optical filter failed to distinguish fruits from images as filter blocks useful information on features. Computation of 3D coordinates of recognized green sweet peppers was also conducted in which Halcon image processing software provides location and orientation of the fruits accurately. The depth accuracy of Z axis was examined in which 500 to 600 mm distance between cameras and fruits was found significant to compute the depth distance precisely when distance between two cameras maintained to 100 mm.

  17. Development and Assessment of a Low-Cost 3D-printed Airway Model for Bronchoscopy Simulation Training.

    PubMed

    Byrne, Timothy; Yong, Sarah A; Steinfort, Daniel P

    2016-07-01

    We report upon the techniques used to create a plastic 3-dimensional-printed bronchoscopy trainer from an actual patient computed tomography scan. The formatting methods to create the printable file, using free open access software, are outlined. The resulting high anatomic fidelity part-task trainer is described, as well as experienced bronchoscopists' perception of its realism and utility as a training tool. A discussion of the current state of knowledge about the role of simulation in bronchoscopy training, as well as the potential contribution of this device, is presented. PMID:27070341

  18. Printing Cancer Cells into Intact Microvascular Networks: A Model for Investigating Cancer Cell Dynamics during Angiogenesis

    PubMed Central

    Phamduy, Theresa B.; Sweat, Richard S.; Azimi, Mohammad S.; Burow, Matthew E.; Murfee, Walter L.; Chrisey, Douglas B.

    2016-01-01

    While cancer cell invasion and metastasis is dependent on cancer cell-stroma, cancer cell-blood vessel, and cancer cell-lymphatic vessel interactions, our understanding of these interactions remain largely unknown. A need exists for physiologically-relevant models that more closely mimic the complexity of cancer cell dynamics in a real tissue environment. The objective of this study was to combine laser-based cell printing and tissue culture methods to create a novel ex vivo model in which cancer cell dynamics can be tracked during angiogenesis in an intact microvascular network. Laser direct-write (LDW) was utilized to reproducibly deposit breast cancer cells (MDA-MB-231 and MCF-7) and fibroblasts into spatially-defined patterns on cultured rat mesenteric tissues. In addition, heterogeneous patterns containing co-printed MDA-MB-231/fibroblasts or MDA-MB-231/MCF-7 cells were generated for fibroblast-directed and collective cell invasion models. Printed cells remained viable and the cells retained the ability to proliferate in serum-rich media conditions. Over a culture period of five days, time-lapse imaging confirmed fibroblast and MDA-MB-231 cell migration within the microvascular networks. Confocal microscopy indicated that printed MDA-MB-231 cells infiltrated the tissue thickness and were capable of interacting with endothelial cells. Angiogenic network growth in tissue areas containing printed cancer cells was characterized by significantly increased capillary sprouting compared to control tissue areas containing no printed cells. Our results establish an innovative ex vivo experimental platform that enables time-lapse evaluation of cancer cell dynamics during angiogenesis within a real microvascular network scenario. PMID:26190039

  19. The Spatiotemporal Stability of Dominant Frequency Sites in In-Silico Modeling of 3-Dimensional Left Atrial Mapping of Atrial Fibrillation

    PubMed Central

    Hwang, Minki; Song, Jun-Seop; Lee, Young-Seon; Joung, Boyoung; Pak, Hui-Nam

    2016-01-01

    Background We previously reported that stable rotors were observed in in-silico human atrial fibrillation (AF) models, and were well represented by dominant frequency (DF). We explored the spatiotemporal stability of DF sites in 3D-AF models imported from patient CT images of the left atrium (LA). Methods We integrated 3-D CT images of the LA obtained from ten patients with persistent AF (male 80%, 61.8 ± 13.5 years old) into an in-silico AF model. After induction, we obtained 6 seconds of AF simulation data for DF analyses in 30 second intervals (T1–T9). The LA was divided into ten sections. Spatiotemporal changes and variations in the temporal consistency of DF were evaluated at each section of the LA. The high DF area was defined as the area with the highest 10% DF. Results 1. There was no spatial consistency in the high DF distribution at each LA section during T1–T9 except in one patient (p = 0.027). 2. Coefficients of variation for the high DF area were highly different among the ten LA sections (p < 0.001), and they were significantly higher in the four pulmonary vein (PV) areas, the LA appendage, and the peri-mitral area than in the other LA sections (p < 0.001). 3. When we conducted virtual ablation of 10%, 15%, and 20% of the highest DF areas (n = 270 cases), AF was changed to atrial tachycardia (AT) or terminated at a rate of 40%, 57%, and 76%, respectively. Conclusions Spatiotemporal consistency of the DF area was observed in 10% of AF patients, and high DF areas were temporally variable. Virtual ablation of DF is moderately effective in AF termination and AF changing into AT. PMID:27459377

  20. Color prediction modeling for five-channel CMYLcLm printing

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Zitinski Elias, Paula; Gooran, Sasan

    2014-01-01

    In printing, halftoning algorithms are applied in order to reproduce a continuous-tone image by a binary printing system. The image is transformed into a bitmap composed of dots varying in size and/or frequency. Nevertheless, this causes that the sparse dots found in light shades of cyan (C) and magenta (M) appear undesirably noticeable against white substrate. The solution is to apply light cyan (Lc) and light magenta (Lm) inks in those regions. In order to predict the color of CMYLcLm prints, we make use of the fact that Lc and Lm have similar spectral characteristics as C and M respectively. The goal of this paper is to present a model to characterize a five-channel CMYLcLm printing system using a three-channel color prediction model, where we treat the ink combinations Lc+C and Lm+M as new compound inks. This characterization is based on our previous three-channel CMY color prediction model that is capable of predicting both colorimetric tri-stimulus values and spectral reflectance. The drawback of the proposed model in this paper is the requirement of large number of training samples. Strategies are proposed to reduce this number, which resulted in expected larger but acceptable color differences.

  1. EXPERIMENTAL AND MODELING STUDY OF THE PHOTOCHEMICAL REACTIVITY OF HEATSET PRINTING OILS

    EPA Science Inventory

    A series of chamber experiments and computer model simulations were carried out to assess the atmospheric ozone formation potential of the heatset printing oils Magie-47 and Magie-470 relative to that of ethane. A representative major constituent of these oils, n-Pentadecane, was...

  2. Making the Transition from Print to Electronic Serial Collections: A New Model for Academic Chemistry Libraries?

    ERIC Educational Resources Information Center

    Chrzastowski, Tina E.

    2003-01-01

    Proposes a new model for an academic chemistry library based on experiences at the University of Illinois at Urbana-Champaign in which primary access to journals is electronic and print journals are archived unbound in a remote storage facility following local access for one year. Discusses results of a feasibility study. (Author/LRW)

  3. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    ERIC Educational Resources Information Center

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  4. Wear particles derived from metal hip implants induce the generation of multinucleated giant cells in a 3-dimensional peripheral tissue-equivalent model.

    PubMed

    Dutta, Debargh K; Potnis, Pushya A; Rhodes, Kelly; Wood, Steven C

    2015-01-01

    Multinucleate giant cells (MGCs) are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE) consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs) on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1-5 micron) wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size) and in the propidium iodide (PI) uptake (DNA intercalating dye) was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP) and dendritic cell specific transmembrane protein, (DC-STAMP), which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs, which heralds

  5. Developing and evaluating printed education materials: a prescriptive model for quality.

    PubMed

    Bernier, M J

    1993-01-01

    Nurses are frequently called upon to develop and evaluate printed education materials (PEMs) in their role as patient educators. This article describes the use of the Evaluating Printed Education Materials (EPEM) model as a prescriptive guide and quality standard for developing new PEMs or critiquing existing ones. Outlined in the five phases of the model are a series of nursing, learning, and instructional design principles that are intended to increase the relevance, readability, and comprehensibility of PEMs for the patients and families who use them. The patient-centered focus of the model makes it applicable across nursing specialty areas and care settings. Examples of how the model can be used in the care of orthopaedic patients are presented. PMID:8121709

  6. 3-dimensional imaging at nanometer resolutions

    DOEpatents

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  7. Unit: Model for Matter, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    Mental and physical models are treated in the Australian Science Education Project trial unit prepared for students in a transitional stage between concrete and abstract reasoning. Students are introduced to the particle model of matter through a series of core activities, including a combination game using nuts and bolts, culminating in a "test"…

  8. Spectral model of an electro-photographic printing system

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2011-01-01

    At EI 2007 in San Jose, California detailed physical models for monochrome and color electro-photographic printers were presented. These models were based on computer simulations of toner-dot formation for a variety of halftone structures. The optical interactions between the toner-dots and the paper substrate were incorporated by means of an optical scattering function, which allowed for the calculation of optical dot-gain (and physical dot-gain) as function of the halftone structure. The color model used simple red-green-blue channels to measure the effect of the absorption and scattering properties of the cyan, magenta, yellow and black toners on the final half-tone image. The new spectral model uses the full absorption and scattering spectrum of the image toners in calculating the final color image in terms of CIE XYZ values for well-defined color and gray patches. The new spectral model will be used to show the impact of halftone structure and toner-layerorder on conventional dot-on-dot, rotated dot and error diffusion color halftone systems and how to minimize the impact of image toner scattering. The model has been expanded to use the Neugebauer equations to approximate the amount of cyan, magenta, and yellow toners required to give a "good" neutral in the rotated dot halftone and fine tuning is achieved by adjusting the development threshold level for each layer to hold a good neutral over the full tonal range. In addition to the above fine-tuning, cyan, yellow and magenta offsets are used to find an optimum use of the halftone dither patterns. Once a "good" neutral is obtained the impact on dot gain, color reproduction and optimum layer order can studied with an emphasis on how the full spectral model differs from the simpler three-channel model. The model is used to explore the different approaches required in dot-on-dot, rotated dot and error diffusion halftones to achieve good results.

  9. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  10. Adaptive global training set selection for spectral estimation of printed inks using reflectance modeling.

    PubMed

    Eckhard, Timo; Valero, Eva M; Hernández-Andrés, Javier; Schnitzlein, Markus

    2014-02-01

    The performance of learning-based spectral estimation is greatly influenced by the set of training samples selected to create the reconstruction model. Training sample selection schemes can be categorized into global and local approaches. Most of the previously proposed global training schemes aim to reduce the number of training samples, or a selection of representative samples, to maintain the generality of the training dataset. This work relates to printed ink reflectance estimation for quality assessment in in-line print inspection. We propose what we believe is a novel global training scheme that models a large population of realistic printable ink reflectances. Based on this dataset, we used a recursive top-down algorithm to reject clusters of training samples that do not enhance the performance of a linear least-square regression (pseudoinverse-based estimation) process. A set of experiments with real camera response data of a 12-channel multispectral camera system illustrate the advantages of this selection scheme over some other state-of-the-art algorithms. For our data, our method of global training sample selection outperforms other methods in terms of estimation quality and, more importantly, can quickly handle large datasets. Furthermore, we show that reflectance modeling is a reasonable, convenient tool to generate large training sets for print inspection applications. PMID:24514188

  11. Biochemical Applications Of 3-Dimensional Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Leiner, Marc J.; Wolfbeis, Otto S.

    1988-06-01

    We investigated the 3-dimensional fluorescence of complex mixtures of bioloquids such as human serum, serum ultrafiltrate, human urine, and human plasma low density lipoproteins. The total fluorescence of human serum can be divided into a few peaks. When comparing fluorescence topograms of sera, from normal and cancerous subjects, we found significant differences in tryptophan fluorescence. Although the total fluorescence of human urine can be resolved into 3-5 distinct peaks, some of them. do not result from single fluorescent urinary metabolites, but rather from. several species having similar spectral properties. Human plasma, low density lipoproteins possess a native fluorescence that changes when submitted to in-vitro autoxidation. The 3-dimensional fluorescence demonstrated the presence of 7 fluorophores in the lipid domain, and 6 fluorophores in the protein. dovain- The above results demonstrated that 3-dimensional fluorescence can resolve the spectral properties of complex ,lxtures much better than other methods. Moreover, other parameters than excitation and emission wavelength and intensity (for instance fluorescence lifetime, polarization, or quenchability) may be exploited to give a multidl,ensio,a1 matrix, that is unique for each sample. Consequently, 3-dimensio:Hhal fluorescence as such, or in combination with separation techniques is therefore considered to have the potential of becoming a useful new H.ethod in clinical chemistry and analytical biochemistry.

  12. Modeling rock specimens through 3D printing: Tentative experiments and prospects

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie

    2016-02-01

    Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

  13. Leaf Printing.

    ERIC Educational Resources Information Center

    Mitchell, Charles W.

    1985-01-01

    Using many different media, students can turn leaves into images which can be used for study, bulletin boards, collections, and identification. The simple techniques described include pastel printing, smoke prints, ink or tempura printing, bleach printing on t-shirts, ditto machine printing using carbon paper, and making cutouts. (DH)

  14. Modeling coverage-dependent ink thickness in ink-jet printing.

    PubMed

    Coppel, Ludovic G; Slavuj, Radovan; Hardeberg, Jon Yngve

    2016-02-10

    We propose a simple extension of the Murray-Davis halftone reflectance model that accounts for the change of ink dot reflectance due to ink spreading. Significant improvement of the prediction accuracy is obtained for a range of paper substrates and printer combinations compared to the classical Yule-Nielsen and Clapper-Yule models. The results show that ink dot thickness dependency is the main factor limiting the validity of the Murray-Davis model and that optical dot gain can be neglected when the model is calibrated for one specific printer, ink, and substrate combination. The proposed model provides a better understanding of the reflectance from halftone prints that contributes to the development of physical models for simpler and faster printer calibration to different substrates. PMID:26906389

  15. Characterization of relief printing

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan

    2014-03-01

    Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.

  16. Collagen-based brain microvasculature model in vitro using three-dimensional printed template

    PubMed Central

    Kim, Jeong Ah; Kim, Hong Nam; Im, Sun-Kyoung; Chung, Seok

    2015-01-01

    We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. PMID:25945141

  17. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    PubMed

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed

  18. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    NASA Astrophysics Data System (ADS)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  19. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    PubMed Central

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care. PMID:27403103

  20. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction.

    PubMed

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients' ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care. PMID:27403103

  1. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  2. A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy

    PubMed Central

    Kim, Shin-Wook; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2014-01-01

    Objective Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient’s skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. Methods We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. Results The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. Conclusions A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses. PMID:25337700

  3. Analysis of Human Innate Immune Responses to PRINT Fabricated Nanoparticles with Cross Validation Using a Humanized Mouse Model

    PubMed Central

    Robbins, GR; Roberts, RA; Guo, H; Reuter, K; Shen, T; Sempowski, GD; McKinnon, Karen P.; Su, L; DeSimone, JM; Ting, JP

    2015-01-01

    Ideal nanoparticle (NP)-based drug and vaccine delivery vectors should be free of inherent cytotoxic or immunostimulatory properties. Therefore, determining baseline immune responses to nanomaterials is of utmost importance when designing human therapeutics. We characterized the response of human immune cells to hydrogel NPs fabricated using Particle Replication in Non-wetting Templates (PRINT) technology. We found preferential NP uptake by primary CD14+ monocytes, which was significantly reduced upon PEGylation of the NP surface. Multiplex cytokine analysis of NP treated primary human peripheral blood mononuclear cells (hu-PBMC) suggests that PRINT based hydrogel NPs do not evoke significant inflammatory responses nor do they induce cytotoxicity or complement activation. We furthered these studies using an in vivo humanized mouse model and similarly found preferential NP uptake by human CD14+ monocytes without systemic inflammatory cytokine responses. These studies suggest that PRINT hydrogel particles form a desirable platform for vaccine and drug delivery as they neither induce inflammation nor toxicity. PMID:25596079

  4. Parent and Child Attitudinal Factors in a Model of Children's Print-Concept Knowledge

    ERIC Educational Resources Information Center

    Dobbs-Oates, Jennifer; Pentimonti, Jill M.; Justice, Laura M.; Kaderavek, Joan N.

    2015-01-01

    The present study investigates the role of attitudinal variables, such as children's literacy interest and parents' reading beliefs, in conjunction with home literacy activities (HLA), in predicting children's print-concept knowledge. The objective of the study is to test a theoretical model describing the relationship among these…

  5. A Two-Step Model for Assessing Relative Interest in E-Books Compared to Print

    ERIC Educational Resources Information Center

    Knowlton, Steven A.

    2016-01-01

    Librarians often wish to know whether readers in a particular discipline favor e-books or print books. Because print circulation and e-book usage statistics are not directly comparable, it can be hard to determine the relative interest of readers in the two types of books. This study demonstrates a two-step method by which librarians can assess…

  6. A Model for Managing 3D Printing Services in Academic Libraries

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Sahib, Josh

    2013-01-01

    The appearance of 3D printers in university libraries opens many opportunities for advancing outreach, teaching, and research programs. The University of Alabama (UA) Libraries recently adopted 3D printing technology and maintains an open access 3D Printing Studio. The Studio consists of a 3D printer, multiple 3D design workstations, and other…

  7. Experimental model of developing and analysis of lip prints in atypical surface: A metallic straw (bombilla)

    PubMed Central

    Fonseca, Gabriel M.; Bonfigli, Esteban; Cantín, Mario

    2014-01-01

    Background: The interaction between the offender and the victim produces visible or latent prints on objects and utensils. The study of lip prints has reportedly stayed away from the basic cinematic concept of the lip-to-surface relationship. Materials and Methods: Three regular powders were used to reveal the latent lip prints on a typical metallic straw called bombilla, and the revealed prints were photographed, preserved, and analyzed. Results: Better definition was observed in the lower lip print, and nine anatomical patterns were identified, but a higher definition of wrinkles was observed with indestructible white powder. Conclusion: Knowledge of labial dynamics, the real value of the processed surfaces, and the need for testing in field conditions are discussed. PMID:25125921

  8. An Evaluation of the Instruction Carried out with Printed Laboratory Materials Designed in Accordance with 5E Model: Reflection of Light and Image on a Plane Mirror

    ERIC Educational Resources Information Center

    Ayvaci, Hakan Sevki; Yildiz, Mehmet; Bakirci, Hasan

    2015-01-01

    This study employed a print laboratory material based on 5E model of constructivist learning approach to teach reflection of light and Image on a Plane Mirror. The effect of the instruction which conducted with the designed print laboratory material on academic achievements of prospective science and technology teachers and their attitudes towards…

  9. Three-dimensional Printing in Developing Countries.

    PubMed

    Ibrahim, Ahmed M S; Jose, Rod R; Rabie, Amr N; Gerstle, Theodore L; Lee, Bernard T; Lin, Samuel J

    2015-07-01

    The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132

  10. Three-dimensional Printing in Developing Countries

    PubMed Central

    Ibrahim, Ahmed M. S.; Jose, Rod R.; Rabie, Amr N.; Gerstle, Theodore L.; Lee, Bernard T.

    2015-01-01

    Summary: The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132

  11. Protalign: a 3-dimensional protein alignment assessment tool.

    PubMed

    Meads, D; Hansen, M D; Pang, A

    1999-01-01

    Protein fold recognition (sometimes called threading) is the prediction of a protein's 3-dimensional shape based on its similarity to a protein of known structure. Fold predictions are low resolution; that is, no effort is made to rotate the protein's component amino acid side chains into their correct spatial orientations. The goal is simply to recognize the protein family member that most closely resembles the target sequence of unknown structure and to create a sensible alignment of the target to the known structure (i.e., a structure-sequence alignment). To facilitate this type of structure prediction, we have designed a low resolution molecular graphics tool. ProtAlign introduces the ability to interact with and edit alignments directly in the 3-dimensional structure as well as in the usual 2-dimensional layout. It also contains several functions and features to help the user assess areas within the alignment. ProtAlign implements an open pipe architecture to allow other programs to access its molecular graphics capabilities. In addition, it is capable of "driving" other programs. Because amino acid side chain orientation is not relevant in fold recognition, we represent amino acid residues as abstract shapes or glyphs much like Lego (tm) blocks and we borrow techniques from comparative flow visualization using streamlines to provide clean depictions of the entire protein model. By creating a low resolution representation of protein structure, we are able to at least double the amount of information on the screen. At the same time, we create a view that is not as busy as the corresponding representations using traditional high resolution visualization methods which show detailed atomic structure. This eliminates distracting and possibly misleading visual clutter resulting from the mapping of protein alignment information onto a high resolution display of the known structure. This molecular graphics program is implemented in Open GL to facilitate porting to

  12. Comparison of fluid leakage across endotracheal tube cuffs using a three-dimensional printed model of the human trachea.

    PubMed

    Kimijima, Tomohiko; Edanaga, Mitsutaka; Yamakage, Michiaki

    2016-06-01

    The objective of this study was to compare fluid leakage across endotracheal tube cuffs using a three-dimensional (3D)-printed human tracheal model that anatomically simulates the human trachea. We made two models based on computed tomography data of the neck and chest. Using a Mallinckrodt Hi-Lo™ (HL), ThinCuff(®) (TC), and Mallinckrodt TaperGuard™ (TG), we sequentially measured the amount of fluid leakage across each endotracheal tube cuff after applying saline or viscous liquid above the cuff. The TG allowed significantly less leakage than the HL and TC with both saline and the viscous liquid. Our study, using a 3D-printed tracheal model, indicated that a conical-shaped endotracheal tube cuff significantly reduces fluid leakage across the cuff compared with conventional cylindrical-shaped cuffs made of polyurethane or polyvinylchloride, contrary to the results of a previous study using a solid cylindrical structure. PMID:26816263

  13. Improving Perceptual Skills with 3-Dimensional Animations.

    ERIC Educational Resources Information Center

    Johns, Janet Faye; Brander, Julianne Marie

    1998-01-01

    Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)

  14. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  15. 3DIVS: 3-Dimensional Immersive Virtual Sculpting

    SciTech Connect

    Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Uva, A E

    2001-10-03

    Virtual Environments (VEs) have the potential to revolutionize traditional product design by enabling the transition from conventional CAD to fully digital product development. The presented prototype system targets closing the ''digital gap'' as introduced by the need for physical models such as clay models or mockups in the traditional product design and evaluation cycle. We describe a design environment that provides an intuitive human-machine interface for the creation and manipulation of three-dimensional (3D) models in a semi-immersive design space, focusing on ease of use and increased productivity for both designer and CAD engineers.

  16. 3D-printed haptic "reverse" models for preoperative planning in soft tissue reconstruction: a case report.

    PubMed

    Chae, Michael P; Lin, Frank; Spychal, Robert T; Hunter-Smith, David J; Rozen, Warren Matthew

    2015-02-01

    In reconstructive surgery, preoperative planning is essential for optimal functional and aesthetic outcome. Creating a three-dimensional (3D) model from two-dimensional (2D) imaging data by rapid prototyping has been used in industrial design for decades but has only recently been introduced for medical application. 3D printing is one such technique that is fast, convenient, and relatively affordable. In this report, we present a case in which a reproducible method for producing a 3D-printed "reverse model" representing a skin wound defect was used for flap design and harvesting. This comprised a 82-year-old man with an exposed ankle prosthesis after serial soft tissue debridements for wound infection. Soft tissue coverage and dead-space filling were planned with a composite radial forearm free flap (RFFF). Computed tomographic angiography (CTA) of the donor site (left forearm), recipient site (right ankle), and the left ankle was performed. 2D data from the CTA was 3D-reconstructed using computer software, with a 3D image of the left ankle used as a "control." A 3D model was created by superimposing the left and right ankle images, to create a "reverse image" of the defect, and printed using a 3D printer. The RFFF was thus planned and executed effectively, without complication. To our knowledge, this is the first report of a mechanism of calculating a soft tissue wound defect and producing a 3D model that may be useful for surgical planning. 3D printing and particularly "reverse" modeling may be versatile options in reconstructive planning, and have the potential for broad application. PMID:25046728

  17. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2015-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  18. Printed electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  19. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2014-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  20. 3-dimensional strain fields from tomographic measurements

    NASA Astrophysics Data System (ADS)

    Haldrup, K.; Nielsen, S. F.; Mishnaevsky, L., Jr.; Beckmann, F.; Wert, J. A.

    2006-08-01

    Understanding the distributions of strain within solid bodies undergoing plastic deformations has been of interest for many years in a wide range of disciplines, ranging from basic materials science to biology. However, the desire to investigate these strain fields has been frustrated by the inaccessibility of the interior of most samples to detailed investigation without destroying the sample in the process. To some extent, this has been remedied by the development of advanced surface measurement techniques as well as computer models based on Finite Element methods. Over the last decade, this situation has changed by the introduction of a range of tomographic methods based both on advances in computer technology and in instrumentation, advances which have opened up the interior of optically opaque samples for detailed investigations. We present a general method for assessing the strain in the interior of marker-containing specimens undergoing various types of deformation. The results are compared with Finite Element modelling.

  1. Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments

    PubMed Central

    Jow, Uei-Ming; Ghovanloo, Maysam

    2010-01-01

    Printed spiral coils (PSCs) are viable candidates for near-field wireless power transmission to the next generation of high-performance neuroprosthetic devices with extreme size constraints, which will target intraocular and intracranial spaces. Optimizing the PSC geometries to maximize the power transfer efficiency of the wireless link is imperative to reduce the size of the external energy source, heating of the tissue, and interference with other devices. Implantable devices need to be hermetically sealed in biocompatible materials and placed in a conductive environment with high permittivity (tissue), which can affect the PSC characteristics. We have constructed a detailed model that includes the effects of the surrounding environment on the PSC parasitic components and eventually on the power transfer efficiency. We have combined this model with an iterative design method that starts with a set of realistic design constraints and ends with the optimal PSC geometries. We applied our design methodology to optimize the wireless link of a 1-cm2 implantable device example, operating at 13.56 MHz. Measurement results showed that optimized PSC pairs, coated with 0.3 mm of silicone, achieved 72.2%, 51.8%, and 30.8% efficiencies at a face-to-face relative distance of 10 mm in air, saline, and muscle, respectively. The PSC, which was optimized for air, could only bear 40.8% and 21.8% efficiencies in saline and muscle, respectively, showing that by including the PSC tissue environment in the design process the result can be more than a 9% improvement in the power transfer efficiency. PMID:20948991

  2. Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments

    PubMed Central

    Jow, Uei-Ming

    2009-01-01

    Printed spiral coils (PSC) are viable candidates for near field wireless power transmission to the next generation of high performance neuroprosthetic devices with extreme size constraints, which will target intra-ocular and intracranial spaces. Optimizing the PSC geometries to maximize the power transfer efficiency of the wireless link is imperative to reduce the size of the external energy source, heating of the tissue, and interference with other devices. Implantable devices need to be hermetically sealed in biocompatible materials and placed in a conductive environment with high permittivity (tissue), which can affect the PSC characteristics. We have constructed a detailed model that includes the effects of the surrounding environment on the PSC parasitic components and eventually on the power transfer efficiency. We have combined this model with an iterative design method that starts with a set of realistic design constraints and ends with the optimal PSC geometries. We applied our design methodology to optimize the wireless link of a 1 cm2 implantable device example, operating at 13.56 MHz. Measurement results showed that optimized PSC pairs, coated with 0.3 mm of silicone, achieved 72.2%, 51.8%, and 30.8% efficiencies at a face to face relative distance of 10 mm, in air, saline, and muscle, respectively. The PSC which was optimized for air could only bear 40.8% and 21.8% efficiencies in saline and muscle, respectively, showing that including the PSC tissue environment in the design process can result in more than 9% improvement in the power transfer efficiency. PMID:19964693

  3. A rotational stereoscopic 3-dimensional movement aftereffect.

    PubMed

    Webster, W R; Panthradil, J T; Conway, D M

    1998-06-01

    A stereoscopic rotational movement aftereffect (MAE) and a stereoscopic bi-directional MAE were generated by rotation of a cyclopean random dot cylinder in depth and by movement of two cyclopean random dot planes in opposite directions, respectively. Cross-adaptational MAEs were also generated on each other, but not with stimuli lacking any disparity. Cross-adaptation MAEs were generated between stereoscopic and non-stereoscopic random dot stimuli moving in the one X/Y plane. Spontaneous reversals in direction of movement were observed with bistable stimuli lacking disparity. Two models of the middle temporal area were considered which might explain both the stereoscopic MAEs and the spontaneous reversals. PMID:9797953

  4. On the modeling of electromagnetically coupled microstrip antennas - The printed strip dipole

    NASA Astrophysics Data System (ADS)

    Katehi, P. B.; Alexopoulos, N. G.

    1984-11-01

    A generalized solution for a class of printed circuit antennas excited by a strip transmission line is presented. The strip transmission line may be embedded inside or printed on the substrate. As an example, microstrip dipoles electromagnetically coupled (parasitically excited) to embedded strip transmission line have been analyzed accurately, and design graphs are provided for a specific substrate material. These graphs permit the establishment of a design procedure which yields the microstrip dipole length, overlap, offset, and substrate thickness with the goal of a desired input match for a given substrate material. The method accounts for conductor thickness and for arbitrary substrate parameters. Comparison with experiment shows excellent agreement.

  5. On the modeling of electromagnetically coupled microstrip antennas: The printed strip dipole

    NASA Astrophysics Data System (ADS)

    Katehi, P. B.; Alexopoulos, N. G.

    1984-04-01

    A generalized solution for a class of printed circuit antennas, excited by a strip transmission line is presented. The strip transmission line may be embedded inside or printed on the substrate. As an example, microstrip dipoles electromagnetically coupled (parasitically excited) to embedded strip transmission line have been analyzed accurately and design graphs are provided for a specific substrate material. These graphs permit the establishment of a design procedure which yields the microstrip dipole length, overlap, offset, and substrate thickness with the goal of a desired input match for a given substrate material. The method accounts for conductor thickness and for arbitrary substrate parameters. Comparison with experiment shows excellent agreement.

  6. Prediction of the spectral reflectance of laser-generated color prints by combination of an optical model and learning methods.

    PubMed

    Nébouy, David; Hébert, Mathieu; Fournel, Thierry; Larina, Nina; Lesur, Jean-Luc

    2015-09-01

    Recent color printing technologies based on the principle of revealing colors on pre-functionalized achromatic supports by laser irradiation offer advanced functionalities, especially for security applications. However, for such technologies, the color prediction is challenging, compared to classic ink-transfer printing systems. The spectral properties of the coloring materials modified by the lasers are not precisely known and may strongly vary, depending on the laser settings, in a nonlinear manner. We show in this study, through the example of the color laser marking (CLM) technology, based on laser bleaching of a mixture of pigments, that the combination of an adapted optical reflectance model and learning methods to get the model's parameters enables prediction of the spectral reflectance of any printable color with rather good accuracy. Even though the pigment mixture is formulated from three colored pigments, an analysis of the dimensionality of the spectral space generated by CLM printing, thanks to a principal component analysis decomposition, shows that at least four spectral primaries are needed for accurate spectral reflectance predictions. A polynomial interpolation is then used to relate RGB laser intensities with virtual coordinates of new basis vectors. By studying the influence of the number of calibration patches on the prediction accuracy, we can conclude that a reasonable number of 130 patches are enough to achieve good accuracy in this application. PMID:26367434

  7. A Seafloor Benchmark for 3-dimensional Geodesy

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone

  8. The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty.

    PubMed

    Kim, Yoo Suk; Shin, Yoo Seob; Park, Do Yang; Choi, Jae Won; Park, Joo Kyung; Kim, Dong Ho; Kim, Chul Ho; Park, Su A

    2015-09-01

    The role of three-dimensional (3D) printing has expanded in diverse areas in medicine. As plastic surgery needs to fulfill the different demands from diverse individuals, the applications of tailored 3D printing will become indispensable. In this study, we evaluated the feasibility of using 3D-printed polycaprolactone (PCL) scaffold seeded with fibrin/chondrocytes as a new dorsal augmentation material for rhinoplasty. The construct was surgically implanted on the nasal dorsum in the subperiosteal plane of six rabbits. The implants were harvested 4 and 12 weeks after implantation and evaluated by gross morphological assessment, radiographic imaging, and histologic examination. The initial shape of the implant was unchanged in all cases, and no definite post-operative complications were seen over the 3-month period. Radiologic evaluation confirmed that implants remained in the initial location without migration or extrusion. Histologic evaluations showed that the scaffold architectures were maintained with minimal inflammatory reactions; however, expected neo-chondrogenesis was not definite in the constructs. A new PCL scaffold designed by 3D printing method seeded with fibrin/chondrocytes can be a biocompatible augmentation material in rhinoplasty in the future. PMID:25636599

  9. Molecular printing

    PubMed Central

    Braunschweig, Adam B.; Huo, Fengwei; Mirkin, Chad A.

    2014-01-01

    Molecular printing techniques, which involve the direct transfer of molecules to a substrate with submicrometre resolution, have been extensively developed over the past decade and have enabled many applications. Arrays of features on this scale have been used to direct materials assembly, in nanoelectronics, and as tools for genetic analysis and disease detection. The past decade has witnessed the maturation of molecular printing led by two synergistic technologies: dip-pen nanolithography and soft lithography. Both are characterized by material and substrate flexibility, but dip-pen nanolithography has unlimited pattern design whereas soft lithography has limited pattern flexibility but is low in cost and has high throughput. Advances in DPN tip arrays and inking methods have increased the throughput and enabled applications such as multiplexed arrays. A new approach to molecular printing, polymer-pen lithography, achieves low-cost, high-throughput and pattern flexibility. This Perspective discusses the evolution and future directions of molecular printing. PMID:21378889

  10. Printed photodetectors

    NASA Astrophysics Data System (ADS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  11. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    PubMed

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms. PMID:27215535

  12. From 2-dimensional cephalograms to 3-dimensional computed tomography scans.

    PubMed

    Halazonetis, Demetrios J

    2005-05-01

    Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045

  13. A Molecular Perspective of Inter-filament Bonding in Fused Deposition Modeling 3-D Printing

    NASA Astrophysics Data System (ADS)

    Duranty, Edward; Spradlin, Brandon; Dadmun, Mark

    2015-03-01

    Fused deposition 3D printing is an important tool for low-cost and rapid prototyping of objects with complex geometries. 3D printed materials are composed of many filaments deposited on a heated substrate, requiring the bonding of neighboring filaments during the deposition process. Filament deposition often creates voids between filaments, which requires necking between them to create a robust sample. Therefore the amount of interfacial contact and interdiffusion between filaments become important parameters that control the macroscopic physical properties of the printed prototype. Our research focuses on quantifying the interfacial adhesion between ABS filaments and its impact on structural properties. The time evolution of the temperature profile near the heated substrate demonstrates that the deposited filaments are repeatedly heated above the Tg of ABS allowing interpenetration of the polymer chains between adjacent filaments. Results of DMA experiments on samples of different geometries have been correlated to microphotography that monitors the degree of necking between filaments and the thermal history. Results indicate that interfacial contact area between filaments and increased thermal energy are crucial to their mechanical properties.

  14. Evaluating environmental strategies in a textile printing and dyeing enterprise by an agent-based simulation model

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Ding, Yongsheng; Li, Fang

    2013-05-01

    To improve the capabilities of saving energy and reducing pollutant emission of textile printing and dyeing (PD) industry, this article presents a novel agent-based simulation model for assessing the impacts of environmental strategies on a PD enterprise. Two typical PD enterprises in China are simulated with different modelling granularities: one is at a module level, while the other is at an enterprise level. The module-level simulation model depicts detailed production processes in a PD enterprise and evaluates five candidate strategies on their capabilities of improving energy usage and waste emission. The enterprise-level simulation model views a PD enterprise as an agent and assesses three tax strategies for waste discharge. The simulation results show that the proposed general model could be a valuable tool to explore potential solutions to saving energy and reducing waste emission in PD enterprises, after being calibrated to a real case.

  15. The 3-dimensional construction of the Rae craton, central Canada

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  16. A 3-Dimensional Anatomic Study of the Distal Biceps Tendon

    PubMed Central

    Walton, Christine; Li, Zhi; Pennings, Amanda; Agur, Anne; Elmaraghy, Amr

    2015-01-01

    Background Complete rupture of the distal biceps tendon from its osseous attachment is most often treated with operative intervention. Knowledge of the overall tendon morphology as well as the orientation of the collagenous fibers throughout the musculotendinous junction are key to intraoperative decision making and surgical technique in both the acute and chronic setting. Unfortunately, there is little information available in the literature. Purpose To comprehensively describe the morphology of the distal biceps tendon. Study Design Descriptive laboratory study. Methods The distal biceps terminal musculature, musculotendinous junction, and tendon were digitized in 10 cadaveric specimens and data reconstructed using 3-dimensional modeling. Results The average length, width, and thickness of the external distal biceps tendon were found to be 63.0, 6.0, and 3.0 mm, respectively. A unique expansion of the tendon fibers within the distal muscle was characterized, creating a thick collagenous network along the central component between the long and short heads. Conclusion This study documents the morphologic parameters of the native distal biceps tendon. Reconstruction may be necessary, especially in chronic distal biceps tendon ruptures, if the remaining tendon morphology is significantly compromised compared with the native distal biceps tendon. Knowledge of normal anatomical distal biceps tendon parameters may also guide the selection of a substitute graft with similar morphological characteristics. Clinical Relevance A thorough description of distal biceps tendon morphology is important to guide intraoperative decision making between primary repair and reconstruction and to better select the most appropriate graft. The detailed description of the tendinous expansion into the muscle may provide insight into better graft-weaving and suture-grasping techniques to maximize proximal graft incorporation. PMID:26665092

  17. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  18. Controlled teleportation of a 3-dimensional bipartite quantum state

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Chen, Zhong-Hua; Song, He-Shan

    2008-07-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.

  19. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer.

    PubMed

    Joosten, A; Bochud, F; Moeckli, R

    2014-08-21

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  20. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Joosten, A.; Bochud, F.; Moeckli, R.

    2014-08-01

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  1. Reconsidering Print.

    ERIC Educational Resources Information Center

    Development Communication Report, 1978

    1978-01-01

    The role of print in serving the poor majority populations in the developing world is explored through discussions of (1) a rural Ghanian newspaper, the "Densu Times," (2) a popular French language magazine entitled "Famille et Developpement," published in Senegal, West Africa for change agents, (3) a series of cloth posters for classroom use in…

  2. A 3-dimensional Analysis of the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Isensee, Karl

    We present a multi-wavelength study of the nearby supernova remnant Cassiopeia A (Cas A). Easily resolvable supernova remnants such as Cas A provide a unique opportunity to test supernova explosion models. Additionally, we can observe key processes in the interstellar medium as the ejecta from the initial explosion encounter Cas A's powerful shocks. In order to accomplish these science goals, we used the Spitzer Space Telescope's Infrared Spectrograph to create a high resolution spectral map of select regions of Cas A, allowing us to make a Doppler reconstruction of its 3-dimensional structure structure. In the center of the remnant, we find relatively pristine ejecta that have not yet reached Cas A's reverse shock or interacted with the circumstellar environment. We observe O, Si, and S emission. These ejecta can form both sheet-like structures as well as filaments. Si and O, which come from different nucleosynthetic layers of the star, are observed to be coincident in some regions, and separated by >500 km s -1 in others. Observed ejecta traveling toward us are, on average, ˜800 km s -1 slower than the material traveling away from us. We compare our observations to recent supernova explosion models and find that no single model can simultaneously reproduce all the observed features. However, models of different supernova explosions can collectively produce the observed geometries and structures of the emission interior to Cas A's reverse shock. We use the results from the models to address the conditions during the supernova explosion, concentrating on asymmetries in the shock structure. We also predict that the back surface of Cassiopeia A will begin brightening in ∼30 years, and the front surface in ˜100 years. We then used similar observations from 3 regions on Cas A's reverse shock in order to create more 3-dimensional maps. In these regions, we observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the

  3. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  4. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  5. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  6. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES. PMID:17981393

  7. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    PubMed Central

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  8. The Radiological Feature of Anterior Occiput-to-Axis Screw Fixation as it Guides the Screw Trajectory on 3D Printed Models: A Feasibility Study on 3D Images and 3D Printed Models

    PubMed Central

    Wu, Ai-Min; Wang, Sheng; Weng, Wan-Qing; Shao, Zhen-Xuan; Yang, Xin-Dong; Wang, Jian-Shun; Xu, Hua-Zi; Chi, Yong-Long

    2014-01-01

    Abstract Anterior occiput-to-axis screw fixation is more suitable than a posterior approach for some patients with a history of posterior surgery. The complex osseous anatomy between the occiput and the axis causes a high risk of injury to neurological and vascular structures, and it is important to have an accurate screw trajectory to guide anterior occiput-to-axis screw fixation. Thirty computed tomography (CT) scans of upper cervical spines were obtained for three-dimensional (3D) reconstruction. Cylinders (1.75 mm radius) were drawn to simulate the trajectory of an anterior occiput-to-axis screw. The imitation screw was adjusted to 4 different angles and measured, as were the values of the maximized anteroposterior width and the left-right width of the occiput (C0) to the C1 and C1 to C2 joints. Then, the 3D models were printed, and an angle guide device was used to introduce the screws into the 3D models referring to the angles calculated from the 3D images. We found the screw angle ranged from α1 (left: 4.99 ± 4.59°; right: 4.28 ± 5.45°) to α2 (left: 20.22 ± 3.61°; right: 19.63 ± 4.94°); on the lateral view, the screw angle ranged from β1 (left: 13.13 ± 4.93°; right: 11.82 ± 5.64°) to β2 (left: 34.86 ± 6.00°; right: 35.01 ± 5.77°). No statistically significant difference was found between the data of the left and right sides. On the 3D printed models, all of the anterior occiput-to-axis screws were successfully introduced, and none of them penetrated outside of the cortex; the mean α4 was 12.00 ± 4.11 (left) and 12.25 ± 4.05 (right), and the mean β4 was 23.44 ± 4.21 (left) and 22.75 ± 4.41 (right). No significant difference was found between α4 and β4 on the 3D printed models and α3 and β3 calculated from the 3D digital images of the left and right sides. Aided with the angle guide device, we could achieve an optimal screw trajectory for anterior occiput-to-axis screw fixation on

  9. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.

    PubMed

    O'Reilly, Michael K; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P; Feeney, Robin N M; Jones, James F X

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. PMID:26109268

  10. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery.

    PubMed

    Holländer, Jenny; Genina, Natalja; Jukarainen, Harri; Khajeheian, Mohammad; Rosling, Ari; Mäkilä, Ermei; Sandler, Niklas

    2016-09-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used as a model drug to prepare drug-loaded poly(ε-caprolactone)-based filaments with 3 different drug contents, namely 5%, 15%, and 30%, by hot-melt extrusion. The filaments were further used to 3D print IUS. The results showed that the morphology and drug solid-state properties of the filaments and 3D prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between the products. Diffusion of the drug from the polymer was the predominant mechanism of drug release, whereas poly(ε-caprolactone) biodegradation had a minor effect. This study shows that 3D printing is an applicable method in the production of drug-containing IUS and can open new ways in the fabrication of controlled release implantable devices. PMID:26906174

  11. 3-Dimensional modeling of protein structures distinguishes closely related phytoplasmas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoplasmas (formerly mycoplasmalike organisms, MLOs) are cell wall-less bacteria that inhabit phloem tissue of plants and are transmitted from plant-to-plant by phloem-feeding insects. Numerous diseases affecting hundreds of plant species in many botanical families are attributed to infections by...

  12. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures.

    PubMed

    Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T

    2016-04-01

    Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733

  13. Electrohydrodynamic Printing on Flat and Uneven Surfaces

    NASA Astrophysics Data System (ADS)

    Maktabi, Sepehr; Chiarot, Paul

    2015-11-01

    In electronics manufacturing, the need for high resolution patterns can be met by generating fine droplets using materials printing techniques. Other desirable features are high print speeds, high frequency droplet generation, and large stand-off distances. In this work, an array of emission modes for a tunable electrohydrodynamic (EHD) printing method is reported. Among these, the promising microdripping mode generated droplets an order of magnitude smaller than the nozzle's inner diameter at a frequency range of 2-8 kHz. This method is applied to print organic resistors using the conductive ink poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS). They were printed on flat and uneven substrates at speeds up to 50 mm/s. They had a width from 50 to 500 um and resistance from 1 to 70 Ω/um. The effect of supply flow rate, applied voltage, stand-off distance, and target substrate material properties with respect to droplet generation frequency was investigated. Experimental results reveal that frequency increases nonlinearly with the applied voltage, which is strongly influenced by the non-Newtonian shear thinning effect of PEDOT:PSS. The topology of a 3-dimensional substrate is shown to have a significant effect on the structure and function of a printed resistor.

  14. Three-dimensional printing models improve understanding of spinal fracture--A randomized controlled study in China.

    PubMed

    Li, Zhenzhu; Li, Zefu; Xu, Ruiyu; Li, Meng; Li, Jianmin; Liu, Yongliang; Sui, Dehua; Zhang, Wensheng; Chen, Zheng

    2015-01-01

    Three-dimensional printing (3 Dp) is being increasingly used in medical education. Although the use of such lifelike models is beneficial, well-powered, randomized studies supporting this statement are scarce. Two spinal fracture simulation models were generated by 3 Dp. Altogether, 120 medical students (54.2% females) were randomized into three teaching module groups [two-dimensional computed tomography images (CT), 3D, or 3 Dp] and asked to answer 10 key anatomical and 4 evaluative questions. Students in the 3 Dp or 3D group performed significantly better than those in the CT group, although males in the 3D group scored higher than females. Students in the 3 Dp group were the first to answer all questions, and there were no sex-related differences. Pleasure, assistance, effect, and confidence were more predominant in students in the 3 Dp group than in those in the 3D and CT groups. This randomized study revealed that the 3 Dp model markedly improved the identification of complex spinal fracture anatomy by medical students and was equally appreciated and comprehended by both sexes. Therefore, the lifelike fracture model made by 3 Dp technology should be used as a means of premedical education. PMID:26099838

  15. Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays

    NASA Astrophysics Data System (ADS)

    Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea

    2012-08-01

    Following the idea of "cloaking by a surface" [A. Alù, Phys. Rev. B 80, 245115 (2009); P. Y. Chen and A. Alù, Phys. Rev. B 84, 205110 (2011)], we present a rigorous analytical model applicable to mantle cloaking of cylindrical objects using 1D and 2D sub-wavelength conformal frequency selective surface (FSS) elements. The model is based on Lorenz-Mie scattering theory which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. The FSS arrays considered in this work are composed of 1D horizontal and vertical metallic strips and 2D printed (patches, Jerusalem crosses, and cross dipoles) and slotted structures (meshes, slot-Jerusalem crosses, and slot-cross dipoles). It is shown that the analytical grid-impedance expressions derived for the planar arrays of sub-wavelength elements may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks. By properly tailoring the surface reactance of the cloak, the total scattering from the cylinder can be significantly reduced, thus rendering the object invisible over the range of frequencies of interest (i.e., at microwaves and far-infrared). The results obtained using our analytical model for mantle cloaks are validated against full-wave numerical simulations.

  16. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method. PMID:18037234

  17. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    PubMed

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc. PMID:27222318

  18. Microcontact printing.

    PubMed

    Xie, Yunyan; Jiang, Xingyu

    2011-01-01

    Microcontact printing (μCP) is a useful technique for transferring certain molecules onto surfaces with high spatial resolution using elastomeric stamps. The stamp for μCP is fabricated by replica molding from a master made by microlithography. After wetting with a type of material as an "ink," the stamp comes into contact with the substrate. The ink is selectively transferred onto parts of the substrate wherever the stamp makes direct contact, to generate patterns and structures with designated features. Self-assembled monolayers (SAMs) and μCP are useful in many different fields, e.g., in the studies of protein adsorption, cell attachment, and in the construction of sensors. PMID:20967634

  19. Scene-of-crime analysis by a 3-dimensional optical digitizer: a useful perspective for forensic science.

    PubMed

    Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Poppa, Pasquale; Porta, Davide; Maldarella, Monica; Picozzi, Massimo

    2011-09-01

    Analysis and detailed registration of the crime scene are of the utmost importance during investigations. However, this phase of activity is often affected by the risk of loss of evidence due to the limits of traditional scene of crime registration methods (ie, photos and videos). This technical note shows the utility of the application of a 3-dimensional optical digitizer on different crime scenes. This study aims in fact at verifying the importance and feasibility of contactless 3-dimensional reconstruction and modeling by optical digitization to achieve an optimal registration of the crime scene. PMID:21811148

  20. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  1. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  2. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect

    Not Available

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  3. 3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice

    PubMed Central

    Powell, K. A.; Wilson, D.

    2013-01-01

    A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves. PMID:22146851

  4. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  5. Design of 3-dimensional complex airplane configurations with specified pressure distribution via optimization

    NASA Technical Reports Server (NTRS)

    Kubrynski, Krzysztof

    1991-01-01

    A subcritical panel method applied to flow analysis and aerodynamic design of complex aircraft configurations is presented. The analysis method is based on linearized, compressible, subsonic flow equations and indirect Dirichlet boundary conditions. Quadratic dipol and linear source distribution on flat panels are applied. In the case of aerodynamic design, the geometry which minimizes differences between design and actual pressure distribution is found iteratively, using numerical optimization technique. Geometry modifications are modeled by surface transpiration concept. Constraints in respect to resulting geometry can be specified. A number of complex 3-dimensional design examples are presented. The software is adopted to personal computers, and as result an unexpected low cost of computations is obtained.

  6. Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization

    NASA Astrophysics Data System (ADS)

    Monier-Vinard, Eric; Laraqi, Najib; Dia, Cheikh-Tidiane; Nguyen, Minh-Nhat; Bissuel, Valentin

    2015-01-01

    Electronic components are continuously getting smaller and embedding more and more powered functions which exacerbate the temperature rise in component/board interconnect areas. For still air conditions, the heat spreading of the component power is mainly done through the surrounding metallic planes of its electronic board. Their design optimization is henceforth mandatory to control the temperature and to preserve component reliability. To allow the electronic designer to early analyze the limits of the power dissipation of miniaturized devices, an analytical model of a multi-layered electronic board was established with the purpose to assess the validity of conventional board modeling approach. For decades, numerous authors have been promoting a homogenous single layer model that summed up the layers of the board using effective orthotropic thermal properties. The derived compact model depends on thermal properties approximation which is commonly based on parallel conduction model given a linear rule of mixture. The work presents the thermal behavior comparison of a detailed multi-layer representation to its deducted compact model for an extensive set of variable parameters, such as heat transfer coefficients, effective thermal conductivities calculation models, number of trace layers, trace coverage or source size. The results highlight the fact that the conventional practices for PCB modeling can dramatically underestimate source temperatures when their size is getting very small.

  7. Development of an anthropomorphic shoulder phantom model that simulates bony anatomy for sonographic measurement of the acromiohumeral distance.

    PubMed

    Adusumilli, Pratik; McCreesh, Karen; Evans, Tony

    2014-11-01

    The purpose of this project was to create a sonographic phantom model of the shoulder that was accurate in bone configuration. Its main purpose was for operator training to measure the acromiohumeral distance. A computerized 3-dimensional model of the superior half of the humerus and scapula was rendered and 3-dimensionally printed. The bone model was embedded in a gelatin compound and set in a shoulder-shaped mold. The materials used had speeds of sound that were well matched to soft tissue and epiphyseal bone. The model was specifically effective in simulating the acromiohumeral distance because of its accurate bone geometry. PMID:25336490

  8. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    PubMed

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts. PMID:25294050

  9. Effect of Age of Models in Print Ads on Evaluation of Product and Sponsor.

    ERIC Educational Resources Information Center

    Rotfeld, Herbert J.; And Others

    1982-01-01

    Details a study that investigated how middle-aged housewives responded to different age portrayals for different age-oriented products in advertisements. Concludes that there was a clear interaction between age-orientation of product and age of model in an advertisement, but no pervasive "younger is better" effect. (FL)

  10. Advances in 3D-Printed Pediatric Prostheses for Upper Extremity Differences.

    PubMed

    Tanaka, Kara S; Lightdale-Miric, Nina

    2016-08-01

    ➤The prohibitive cost of cutting-edge prostheses prevents many children with a limb difference from obtaining them; however, new developments in 3-dimensional (3D) printing have the potential to increase the accessibility, customization, and procurement of such devices.➤Children with upper limb differences are ideal candidates for currently available 3D-printed devices because they quickly damage and outgrow prostheses, and the low cost of 3D printing makes repairs and upgrades substantially more affordable.➤Physicians and medical practitioners should become familiar with the possibilities of 3D-printed devices in order to determine the benefits and utility for their patients. PMID:27489324

  11. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells.

    PubMed

    Guillot, Sarah L; Mistry, Kevin S; Avery, Azure D; Richard, Jonah; Dowgiallo, Anne-Marie; Ndione, Paul F; van de Lagemaat, Jao; Reese, Matthew O; Blackburn, Jeffrey L

    2015-04-21

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells. PMID:25790468

  12. Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids

    PubMed Central

    Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika

    2015-01-01

    In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643

  13. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    PubMed

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  14. Thermal crosstalk in 3-dimensional RRAM crossbar array

    PubMed Central

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  15. Organ printing: promises and challenges.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Drake, Christopher; Markwald, Roger R

    2008-01-01

    Organ printing or biomedical application of rapid prototyping, also defined as additive layer-by-layer biomanufacturing, is an emerging transforming technology that has potential for surpassing traditional solid scaffold-based tissue engineering. Organ printing has certain advantages: it is an automated approach that offers a pathway for scalable reproducible mass production of tissue engineered products; it allows a precised simultaneous 3D positioning of several cell types; it enables creation tissue with a high level of cell density; it can solve the problem of vascularization in thick tissue constructs; finally, organ printing can be done in situ. The ultimate goal of organ-printing technology is to fabricate 3D vascularized functional living human organs suitable for clinical implantation. The main practical outcomes of organ-printing technology are industrial scalable robotic biofabrication of complex human tissues and organs, automated tissue-based in vitro assays for clinical diagnostics, drug discovery and drug toxicity, and complex in vitro models of human diseases. This article describes conceptual framework and recent developments in organ-printing technology, outlines main technological barriers and challenges, and presents potential future practical applications. PMID:18154465

  16. Short time spreading and wetting of offset printing liquids on model calcium carbonate coating structures.

    PubMed

    Koivula, Hanna; Toivakka, Martti; Gane, Patrick

    2012-03-01

    Spreading of oils and water on porous and pre-saturated model carbonate coating structures was studied with high speed video imaging. The short-time data were complemented with long time absorption and wicking experiments. The results indicate a strong dependence between surface structural features of the pigment tablets and water spreading at short times, both in non-saturated and water pre-saturated cases, while the oil spreading is mainly dependent on the liquid properties. Sodium polyacrylate dispersant on pigment surfaces is shown to contribute to water spreading and absorption. On pre-saturated structures the liquid-liquid interactions are dominant and the majority of results support spreading according to the molecular kinetic model. The evidence supports the hypothesis of S. Rousu, P. Gane, and D. Eklund, ["Influence of coating pigment chemistry and morphology on the chromatographic separation of offset ink constituents," in The Science of Papermaking Transactions of the 12th Fundamental Research Symposium, FRC The Pulp & Paper Fundamental Research Society, Oxford, UK, 2001, p. 1115] that at long times the oils absorb into the porous structure at a rate proportional to the ratio of viscosity and surface tension, provided there is no sorptive action with the binder. A combination of nanosized pores and large surface area is useful for providing sufficient absorption capability for carbonate based coatings. PMID:22196346

  17. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.

    PubMed

    Ge, Zigang; Tian, Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo, Jin Fei; Cao, Tong

    2009-04-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. PMID:19208943

  18. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  19. Three Dimensional Printing in Orthopaedic Surgery

    PubMed Central

    Mulford, Jonathan; MacKay, N; Babazadeh, S

    2016-01-01

    Objectives: Three dimensional (3D) printing technology has many current and future applications in orthopaedics. The objectives of this article are to review published literature regarding applications of 3D technology in orthopaedic surgery with a focus on knee surgery. Methods: A narrative review of the applications of 3D printing technology in orthopaedic practice was achieved by a search of computerised databases, internet and reviewing references of identified publications. Results: There is current widespread use of 3D printing technology in orthopaedics. 3D technology can be used in education, preoperative planning and custom manufacturing. Custom manufacturing applications include surgical guides, prosthetics and implants. Many future applications exist including biological applications. 3D printed models of anatomy have assisted in the education of patients, students, trainees and surgeons. 3D printed models also assist with surgical planning of complex injuries or unusual anatomy. 3D printed surgical guides may simplify surgery, make surgery precise and reduce operative time. Computer models based on MRI or CT scans are utilised to plan surgery and placement of implants. Complex osteotomies can be performed using 3D printed surgical guides. This can be particularly useful around the knee. A 3D printed guide allows pre osteotomy drill holes for the plate fixation and provides an osteotomy guide to allow precise osteotomy. 3D printed surgical guides for knee replacement are widely available. 3D printing has allowed the emergence of custom implants. Custom implants that are patient specific have been particularly used for complex revision arthroplasty or for very difficult cases with altered anatomy. Future applications are likely to include biological 3D printing of cartilage and bone scaffolds. Conclusion: 3D printing in orthopaedic surgery has and will continue to change orthopaedic practice. Its role is to provide safe, reproducible, reliable models with

  20. 3D-printed phantom for the characterization of non-uniform rotational distortion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hohert, Geoffrey; Pahlevaninezhad, Hamid; Lee, Anthony; Lane, Pierre M.

    2016-03-01

    Endoscopic catheter-based imaging systems that employ a 2-dimensional rotary or 3-dimensional rotary-pullback scanning mechanism require constant angular velocity at the distal tip to ensure correct angular registration of the collected signal. Non-uniform rotational distortion (NURD) - often present due to a variety of mechanical issues - can result in inconsistent position and velocity profiles at the tip, limiting the accuracy of any measurements. Since artifacts like NURD are difficult to identify and characterize during tissue imaging, phantoms with well-defined patterns have been used to quantify position and/or velocity error. In this work we present a fast, versatile, and cost-effective method for making fused deposition modeling 3D printed phantoms for identifying and quantifying NURD errors along an arbitrary user-defined pullback path. Eight evenly-spaced features are present at the same orientation at all points on the path such that deviations from expected geometry can be quantified for the imaging catheter. The features are printed vertically and then folded together around the path to avoid issues with printer head resolution. This method can be adapted for probes of various diameters and for complex imaging paths with multiple bends. We demonstrate imaging using the 3D printed phantoms with a 1mm diameter rotary-pullback OCT catheter and system as a means of objectively evaluating the mechanical performance of similarly constructed probes.

  1. Video Based Sensor for Tracking 3-Dimensional Targets

    NASA Technical Reports Server (NTRS)

    Howard, R. T.; Book, Michael L.; Bryan, Thomas C.

    2000-01-01

    Video-Based Sensor for Tracking 3-Dimensional Targets The National Aeronautics and Space Administration's (NASAs) Marshall Space Flight Center (MSFC) has been developing and testing video-based sensors for automated spacecraft guidance for several years, and the next generation of video sensor will have tracking rates up to 100 Hz and will be able to track multiple reflectors and targets. The Video Guidance Sensor (VGS) developed over the past several years has performed well in testing and met the objective of being used as the terminal guidance sensor for an automated rendezvous and capture system. The first VGS was successfully tested in closed-loop 3-degree-of-freedom (3- DOF) tests in 1989 and then in 6-DOF open-loop tests in 1992 and closed-loop tests in 1993-4. Development and testing continued, and in 1995 approval was given to test the VGS in an experiment on the Space Shuttle. The VGS flew in 1997 and in 1998, performing well for both flights. During the development and testing before, during, and after the flight experiments, numerous areas for improvement were found. The VGS was developed with a sensor head and an electronics box, connected by cables. The VGS was used in conjunction with a target that had wavelength-filtered retro-reflectors in a specific pattern, The sensor head contained the laser diodes, video camera, and heaters and coolers. The electronics box contained a frame grabber, image processor, the electronics to control the components in the sensor head, the communications electronics, and the power supply. The system works by sequentially firing two different wavelengths of laser diodes at the target and processing the two images. Since the target only reflects one wavelength, it shows up well in one image and not at all in the other. Because the target's dimensions are known, the relative positions and attitudes of the target and the sensor can be computed from the spots reflected from the target. The system was designed to work from I

  2. On estimation of perceived mottling prior to printing

    NASA Astrophysics Data System (ADS)

    Sadovnikov, Albert; Lensu, Lasse; Kälviäinen, Heikki

    2008-01-01

    Print mottle is one of the most significant defects in modern offset printing influencing overall print quality. Mottling can be defined as undesired unevenness in perceived print density. Previous research in the field considered designing and improving perception models for evaluating print mottle. Mottle has traditionally been evaluated by estimating the reflectance variation in the print. In our work, we present an approach of estimating mottling effect prior to printing. Our experiments included imaging non printed media under various lighting conditions, printing the samples with sheet fed offset printing and imaging afterwards. For the preprint examinations we used a set of preprint images and for the outcome testing we used high resolution scans. For the set of papers used in experiment only uncoated mechanical speciality paper showed a good chance of print mottle prediction. Other tested paper types had a low correlation between non-printed and printed images. The achieved results allow predicting the amount of mottling on the final print using preprint area images for a certain paper type. Current experiment settings suited well for uncoated paper, but for the coated samples other settings need to be tested. The results show that the estimation can be made on the coarse scale and for better results extra parameters will be required, i.e., paper type, coating, printing process in question.

  3. Top-Down and Bottom-Up Approaches in 3D Printing Technologies for Drug Delivery Challenges.

    PubMed

    Katakam, Prakash; Dey, Baishakhi; Assaleh, Fathi H; Hwisa, Nagiat Tayeb; Adiki, Shanta Kumari; Chandu, Babu Rao; Mitra, Analava

    2015-01-01

    3-Dimensional printing (3DP) constitutes a raft of technologies, based on different physical mechanisms, that generate a 3-dimensional physical object from a digital model. Because of its rapid fabrication and precise geometry, 3DP has gained a prominent focus in biomedical and nanobiomaterials research. Despite advancements in targeted, controlled, and pulsatile drug delivery, the achievement of site-specific and disease-responsive drug release and stringent control over in vivo biodistribution, are still some of the important, challenging areas for pharmaceutical research and development and existing drug delivery techniques. Microelectronic industries are capable of generating nano-/microdrug delivery devices at high throughputs with a highly precise control over design. Successful miniaturizations of micro-pumps with multireservoir architectures for delivery of pharmaceuticals developed by micro-electromechanical systems technology were more acceptable than implantable devices. Inkjet printing technologies, which dispense a precise amount of polymer ink solutions, find applications in controlled drug delivery. Bioelectronic products have revolutionized drug delivery technologies. Designing nanoparticles by nanoimprint lithography showed a controlled drug release pattern, biodistribution, and in vivo transport. This review highlights the "top-down" and "bottom-up" approaches of the most promising 3DP technologies and their broader applications in biomedical and therapeutic drug delivery, with critical assessment of its merits, demerits, and intellectual property rights challenges. PMID:25746205

  4. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  5. Commercial printing and electronic color printing

    NASA Astrophysics Data System (ADS)

    Webb, Joseph W.

    1995-04-01

    Technologies such as Xeikon, Indigo, and the Heidelberg/Presstek GTO-DI can change both the way print buyers may purchase printed material and the way printers and trade services respond to changing demands. Our recent study surveys the graphic arts industry for their current views of these new products and provides forecasts of installations and usage with breakdowns by market segment and size of firm. The acceptance of desktop publishing and electronic prepress have not only paved the way for a totally electronic printing process, but it has broadened the base of people who develop color originals for reproduction. Electronic printing adds the ability to customize jobs on the fly. How print providers will respond to the impact of electronic color printing depends on how each firm perceives the 'threat.' Most printing companies are run by entrepreneurial individuals who have, as their highest priority, their own economic survival. Service bureaus are already looking at electronic color printing as yet another way to differentiate their businesses. The study was based on a mail survey with 682 responses from graphic arts firms, interviews with printers, suppliers, associations and industry executives, and detailed secondary research. Results of a new survey in progress in January 1995 is also presented.

  6. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233

  7. Tracking Error analysis of Concentrator Photovoltaic Module Using Total 3-Dimensional Simulator

    NASA Astrophysics Data System (ADS)

    Ota, Yasuyuki; Nishioka, Kensuke

    2011-12-01

    A 3-dimensional (3D) operating simulator for concentrator photovoltaic (CPV) module using triple-junction solar cell was developed. By connecting 3D equivalent circuit simulation for triple-junction solar cell and ray-trace simulation for optics model, the operating characteristics of CPV module were calculated. A typical flat Fresnel lens and homogenizer were adapted to the optics model. The influence of tracking error on the performance of CPV module was calculated. There was the correlation between the optical efficiency and Isc. However, Pm was not correlated with these values, and was strongly dependent on FF. We can use this total simulator for the evaluation and optimization from the light incidence to operating characteristic of CPV modules.

  8. Modelling of organic field effect transistors with inkjet printed poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) electrodes: study of the annealing effects.

    PubMed

    Grimaldi, Immacolata Angelica; Del Mauro, Anna de Girolamo; Loffredo, Fausta; Morvillo, Pasquale; Villani, Fulvia

    2013-07-01

    In the present work, the transport mechanism of organic transistors with bottom-gate/top-contact structure, manufactured by employing traditional and inkjet printing techniques, was studied. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) conductive polymer was used for realizing printed source, drain and gate electrodes. The influence of the printing parameters (substrate temperature, drop overlapping degree, drop emission frequency) on the uniformity and morphology of the PEDOT:PSS layer was investigated. Polymethyl methacrylate (PMMA) was used as organic dielectric and pentacene, deposited by thermal evaporation, was employed as p-type semiconductor. Organic field effect transistors (OFETs) were fabricated and electrically characterized before and after the thermal annealing process at 120 degrees C for 1 h in nitrogen ambient. The effect of the annealing on the performances of the OFETs was investigated by modelling the measured electrical characteristics and analyzing them in terms of mobility, characteristic temperature and energy distribution of the density of localized states (DOS). In addition, the OFET working under electrical stress in ambient conditions was observed and discussed. PMID:23901549

  9. Large Print Bibliography, 1990.

    ERIC Educational Resources Information Center

    South Dakota State Library, Pierre.

    This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…

  10. High Relief Block Printing.

    ERIC Educational Resources Information Center

    Foster, Michael

    1989-01-01

    Explains a method of block printing using styrofoam shapes to make high relief. Describes the creation of the block design as well as the actual printing process. Uses a range of paper types for printing so children can see the results of using different media. (LS)

  11. Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research

    PubMed Central

    Benet, Arnau; Plata-Bello, Julio; Abla, Adib A.; Acevedo-Bolton, Gabriel; Saloner, David; Lawton, Michael T.

    2015-01-01

    Aim. To evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training. Methods. Two 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated. Results. The 3D aneurysm models were successfully implanted to the cadaveric specimens' arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation. Conclusion. 3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research. PMID:26539542

  12. Compact organic vapor jet printing print head

    SciTech Connect

    Forrest, Stepehen R; McGraw, Gregory

    2015-01-27

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  13. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  14. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen; McGraw, Gregory

    2016-02-02

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  15. Versioning of printed products

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2004-12-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  16. Versioning of printed products

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2005-01-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  17. Method and apparatus for imaging through 3-dimensional tracking of protons

    NASA Technical Reports Server (NTRS)

    Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)

    2001-01-01

    A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.

  18. Generation and 3-Dimensional Quantitation of Arterial Lesions in Mice Using Optical Projection Tomography

    PubMed Central

    Kirkby, Nicholas S.; Low, Lucinda; Wu, Junxi; Miller, Eileen; Seckl, Jonathan R.; Walker, Brian R.; Webb, David J.; Hadoke, Patrick W. F.

    2015-01-01

    The generation and analysis of vascular lesions in appropriate animal models is a cornerstone of research into cardiovascular disease, generating important information on the pathogenesis of lesion formation and the action of novel therapies. Use of atherosclerosis-prone mice, surgical methods of lesion induction, and dietary modification has dramatically improved understanding of the mechanisms that contribute to disease development and the potential of new treatments. Classically, analysis of lesions is performed ex vivo using 2-dimensional histological techniques. This article describes application of optical projection tomography (OPT) to 3-dimensional quantitation of arterial lesions. As this technique is non-destructive, it can be used as an adjunct to standard histological and immunohistochemical analyses. Neointimal lesions were induced by wire-insertion or ligation of the mouse femoral artery whilst atherosclerotic lesions were generated by administration of an atherogenic diet to apoE-deficient mice. Lesions were examined using OPT imaging of autofluorescent emission followed by complementary histological and immunohistochemical analysis. OPT clearly distinguished lesions from the underlying vascular wall. Lesion size was calculated in 2-dimensional sections using planimetry, enabling calculation of lesion volume and maximal cross-sectional area. Data generated using OPT were consistent with measurements obtained using histology, confirming the accuracy of the technique and its potential as a complement (rather than alternative) to traditional methods of analysis. This work demonstrates the potential of OPT for imaging atherosclerotic and neointimal lesions. It provides a rapid, much needed ex vivo technique for the routine 3-dimensional quantification of vascular remodelling. PMID:26067588

  19. Mechanism of reverse-offset printing

    NASA Astrophysics Data System (ADS)

    Choi, Young-Man; Lee, Eonseok; Lee, Taik-Min

    2015-07-01

    We propose a mechanism for reverse-offset printing based on a mathematical model. In reverse-offset printing, high resolution is achieved by patterning a coated, thin ink film with an intaglio-patterned cliché. By using the relationships among the ink blanket adhesion strength, the ink cliché adhesion strength, and the ink cohesion strength, a criterion for successful patterning is derived. We found that there is a printing window in the ink blanket adhesion strength that depends on the shear strength of the ink film and the dimensions of the pattern. The printing window diminishes as the line width decreases, resulting in a minimum printable line width. The proposed mechanism was verified by printing patterns with various shapes and dimensions.

  20. Unification of color postprocessing techniques for 3-dimensional computational mechanics

    NASA Technical Reports Server (NTRS)

    Bailey, Bruce Charles

    1985-01-01

    To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.

  1. Templated Dry Printing of Conductive Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  2. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    SciTech Connect

    Ju, Sang Gyu; Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho; Shin, Dongho; Lee, Se Byeong

    2014-02-01

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  3. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.

    PubMed

    Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua

    2015-12-01

    We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic

  4. Biomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects

    PubMed Central

    Akay, Canan; Yaluğ, Suat

    2015-01-01

    Background The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). Material\\Methods A 3-dimensional finite element model of an Aramany class IV defect was created. Three different implant-retained obturator prostheses were modeled: model 1 with 1 zygomatic implant and 1 dental implant, model 2 with 1 zygomatic implant and 2 dental implants, and model 3 with 2 zygomatic implants. Locator attachments were used as a superstructure. A 150-N load was applied 3 different ways. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis are expressed in MPa. Results In all loading conditions, model 3 (when compared models 1 and 2) showed the lowest maximum principal stress value. Model 3 is the most appropirate reconstruction in Aramany class IV maxillary defects. Two zygomatic implants can reduce the stresses in model 3. The distribution of stresses on prostheses were more rational with the help of zygoma implants, which can distribute the stresses on each part of the maxilla. Conclusions Aramany class IV obturator prosthesis placement of 2 zygomatic implants in each side of the maxilla is more advantageous than placement of dental implants. In the non-defective side, increasing the number of dental implants is not as suitable as zygomatic implants. PMID:25714086

  5. Printed circuit board industry.

    PubMed

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts. PMID:16580876

  6. Engraving Print Classification

    SciTech Connect

    Hoelck, Daniel; Barbe, Joaquim

    2008-04-15

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints.

  7. 3-dimensional wells and tunnels for finite element grids

    SciTech Connect

    Cherry, T.A.; Gable, C.W.; Trease, H.

    1996-12-31

    Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free-surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.

  8. 3-dimensional wells and tunnels for finite element grids

    SciTech Connect

    Cherry, T.A.; Gable, C.W.; Trease, H.

    1996-04-01

    Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.

  9. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  10. Anisotropic viscoelastic shell modeling technique of copper patterns/photoimageable solder resist composite for warpage simulation of multi-layer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyoung; Joo, Sung-Jun; Kwak, Dong-Ok; Kim, Hak-Sung

    2015-10-01

    In this study, the warpage simulation of a multi-layer printed circuit board (PCB) was performed as a function of various copper (Cu) patterns/photoimageable solder resist (PSR) composite patterns and their anisotropic viscoelastic properties. The thermo-mechanical properties of Cu/PSR patterns were obtained from finite element analysis (virtual test) and homogenized with anisotropic composite shell models that considered the viscoelastic properties. The multi-layer PCB model was simplified based on the unit Cu/PSR patterns and the warpage simulation during the reflow process was performed by using ABAQUS combined with a user-defined subroutine. From these results, it was demonstrated that the proposed anisotropic viscoelastic composite shell simulation technique can be successfully used to predict warpage of multi-layer PCBs during the reflow process.