Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki
2014-01-01
Objective(s): The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123I solution (20.1 kBq/mL) in the gray matter region and with K2HPO4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. Results: The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. Conclusion: By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity.
[Cerebral aneurysms: their 3-dimensional imaging with spiral CT].
Rieger, J; Hosten, N; Lemke, A J; Langer, R; Lanksch, W R; Felix, R
1994-03-01
In this study, the possibility of non-invasive, three-dimensional demonstration of aneurysms of the basal cerebral arteries by means of spiral CT was investigated. The first step was to obtain exact definition of optimal examination parameters. Angio CTs at appropriate levels were performed on 10 subjects and time/density curves of the arterial and venous phases obtained in order to optimise the beginning of the arterial spiral CT series. The second step in this investigation was to examine 7 patients; in 6 of these basal aneurysms had been demonstrated by DSA. By means of multiplanar three-dimensional reconstruction from the data of the spiral CT it was possible to demonstrate 7 aneurysms with a diameter between 5 and 18 mm. Their position and relationship to the bony skull was also shown. PMID:8136472
DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold.
Tomita, Koichi; Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko
2015-03-01
Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927
DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold
Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko
2015-01-01
Summary: Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927
Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan
2016-08-01
Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. PMID:27137437
Jun, Heungman; Hwang, Sung Ho; Lim, Sungyoon; Kim, Myung Gyu
2016-01-01
Purpose To analyze the risk factors for postoperative lymphocele, for predicting and preventing complications. Methods We evaluated 92 kidney transplant recipients with multidetector CT (MDCT) at 1-month posttransplantation. From admission and 1-month postoperative records, data including diabetes, dialysis type, immunosuppressant use, steroid pulse therapy, and transplantation side were collected. Lymphocele volume was measured with 3-dimensional reconstructed, nonenhanced MDCT at one month postoperatively. The correlations between risk factors and lymphocele volume and between risk factors and symptomatic lymphocele (SyL) were analyzed. The cutoff was calculated by using the receiver operating characteristic (ROC) curve for SyL volume. Results Among 92 recipients, the mean volume was 44.53 ± 176.43 cm3 and 12 had SyL. Univariable analysis between risk factors and lymphocele volume indicated that donor age, retransplantation, and inferiorly located lymphocele were statistically significant. The ROC curve for SyL showed that 33.20 cm3 was the cutoff, with 83.3% sensitivity and 93.7% specificity. On univariable analysis between risk factors and SyL, steroid pulse, inferiorly located lymphocele, and >33.20 cm3 were statistically significant. Multivariable analysis indicated that steroid pulse, >33.20 cm3, and serum creatinine level at one month were significant factors. Conclusion Risk factors including donor age, retransplantation, steroid pulse therapy, and inferiorly located lymphocele are important predictors of large lymphoceles or SyL. In high-risk recipients, careful monitoring of renal function and early image surveillance such as CT or ultrasound are recommended. If the asymptomatic lymphocele is >33.20 cm3 or located inferiorly, early interventions can be considered while carefully observing the changes in symptoms. PMID:27617254
Ni, Qihong; Wang, Haolu; Liang, Xiaowen; Zhang, Yunhe; Chen, Wei; Wang, Jian
2016-06-01
The combination of hilar cholangiocarcinoma and anatomic variation constitutes a rare and complicated condition. Precise understanding of 3-dimensional position of tumor in the intrahepatic structure in such cases is important for operation planning and navigation. We report a case of a 61-year woman presenting with hilar cholangiocarcinoma. Anatomic variation and tumor location were well depicted on preoperative multidetector computed tomography (MDCT) combined with 3-dimensional reconstruction as the right posterior segmental duct drained to left hepatic duct. The common hepatic duct, biliary confluence, right anterior segmental duct, and right anterior branch of portal vein were involved by the tumor (Bismuth IIIa). After carefully operation planning, we successfully performed a radical parenchyma-sparing anatomical surgery of hilar cholangiocarcinoma: Liver segmentectomy (segments 5 and 8) and caudate lobectomy. MDCTcombined with 3-dimensional reconstruction is a reliable non-invasive modality for preoperative evaluation of hilar cholangiocarcinoma. PMID:27376205
Zopf, David A.; Mitsak, Anna G.; Flanagan, Colleen L.; Wheeler, Matthew; Green, Glenn E.; Hollister, Scott J.
2016-01-01
Objectives To determine the potential of integrated image-based Computer Aided Design (CAD) and 3D printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Study Design Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Setting Multidisciplinary effort encompassing two academic institutions. Subjects and Methods DICOM CT images are segmented and utilized in image-based computer aided design to create porous, anatomic structures. Bioresorbable, polycaprolactone scaffolds with spherical and random porous architecture are produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months duration. Results Auricular and nasal constructs with several microporous architectures were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in excellent appearance and complete soft tissue ingrowth. Histologic analysis of in vitro scaffolds demonstrated native appearing cartilaginous growth respecting the boundaries of the scaffold. Conclusions Integrated image-based computer-aided design (CAD) and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. PMID:25281749
Regularized CT reconstruction on unstructured grid
NASA Astrophysics Data System (ADS)
Chen, Yun; Lu, Yao; Ma, Xiangyuan; Xu, Yuesheng
2016-04-01
Computed tomography (CT) is an ill-posed problem. Reconstruction on unstructured grid reduces the computational cost and alleviates the ill-posedness by decreasing the dimension of the solution space. However, there was no systematic study on edge-preserving regularization methods for CT reconstruction on unstructured grid. In this work, we propose a novel regularization method for CT reconstruction on unstructured grid, such as triangular or tetrahedral meshes generated from the initial images reconstructed via analysis reconstruction method (e.g., filtered back-projection). The proposed regularization method is modeled as a three-term optimization problem, containing a weighted least square fidelity term motivated by the simultaneous algebraic reconstruction technique (SART). The related cost function contains two non-differentiable terms, which bring difficulty to the development of the fast solver. A fixed-point proximity algorithm with SART is developed for solving the related optimization problem, and accelerating the convergence. Finally, we compare the regularized CT reconstruction method to SART with different regularization methods. Numerical experiments demonstrated that the proposed regularization method on unstructured grid is effective to suppress noise and preserve edge features.
Reconstruction of 3-Dimensional Histology Volume and its Application to Study Mouse Mammary Glands
Shojaii, Rushin; Bacopulos, Stephanie; Yang, Wenyi; Karavardanyan, Tigran; Spyropoulos, Demetri; Raouf, Afshin; Martel, Anne; Seth, Arun
2014-01-01
Histology volume reconstruction facilitates the study of 3D shape and volume change of an organ at the level of macrostructures made up of cells. It can also be used to investigate and validate novel techniques and algorithms in volumetric medical imaging and therapies. Creating 3D high-resolution atlases of different organs1,2,3 is another application of histology volume reconstruction. This provides a resource for investigating tissue structures and the spatial relationship between various cellular features. We present an image registration approach for histology volume reconstruction, which uses a set of optical blockface images. The reconstructed histology volume represents a reliable shape of the processed specimen with no propagated post-processing registration error. The Hematoxylin and Eosin (H&E) stained sections of two mouse mammary glands were registered to their corresponding blockface images using boundary points extracted from the edges of the specimen in histology and blockface images. The accuracy of the registration was visually evaluated. The alignment of the macrostructures of the mammary glands was also visually assessed at high resolution. This study delineates the different steps of this image registration pipeline, ranging from excision of the mammary gland through to 3D histology volume reconstruction. While 2D histology images reveal the structural differences between pairs of sections, 3D histology volume provides the ability to visualize the differences in shape and volume of the mammary glands. PMID:25145969
Resolution-enhancing hybrid, spectral CT reconstruction
NASA Astrophysics Data System (ADS)
Clark, D. P.; Badea, C. T.
2016-04-01
Spectral x-ray imaging based on photon-counting x-ray detectors (PCXD) is an area of growing interest. By measuring the energy of x-ray photons, a spectral CT system can better differentiate elements using a single scan. However, the spatial resolution achievable with most PCXDs limits their application, particularly in preclinical CT imaging. Consequently, our group is developing a hybrid micro-CT scanner based on a high-resolution, energy-integrating (EID) detector and a lower-resolution, PCXD. To complement this system, we propose and demonstrate a hybrid, spectral CT reconstruction algorithm which robustly combines the spectral contrast of the PCXD with the spatial resolution of the EID. Specifically, the high-resolution, spectrally resolved data (X) is recovered as the sum of two matrices: one with low column rank (XL) determined from the EID data and one with intensity gradient sparse columns (XS) corresponding to the upsampled spectral contrast obtained from the PCXD data. We test the proposed algorithm in a feasibility study focused on molecular imaging of atherosclerotic plaque using activatable iodine and gold nanoparticles. The results show accurate estimation of material concentrations at increased spatial resolution for a voxel size ratio between the PCXD and the EID of 500 μm3:100 μm3. Specifically, regularized, iterative reconstruction of the MOBY mouse phantom around the K-edges of iodine (33.2 keV) and gold (80.7 keV) reduces the reconstruction error by more than a factor of three relative to least-squares, algebraic reconstruction. Likewise, the material decomposition accuracy into iodine, gold, calcium, and water improves by more than a factor of two.
Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow?
deKemp, Robert A; Yoshinaga, Keiichiro; Beanlands, Rob S B
2007-01-01
Quantification of myocardial blood flow (MBF) and flow reserve has been used extensively with positron emission tomography (PET) to investigate the functional significance of coronary artery disease. Increasingly, flow quantification is being applied to investigations of microvascular dysfunction in early atherosclerosis and in nonatherosclerotic microvascular disease associated with primary and secondary cardiomyopathies. Fully three-dimensional (3D) acquisition is becoming the standard imaging mode on new equipment, bringing with it certain challenges for cardiac PET, but also the potential for MBF to be measured simultaneously with routine electrocardiography (ECG)-gated perfusion imaging. Existing 3D versus 2D comparative studies support the use of 3D cardiac PET for flow quantification, and these protocols can be translated to PET-CT, which offers a virtually noise-free attenuation correction. This technology combines the strengths of cardiac CT for evaluation of anatomy with cardiac PET for quantification of the hemodynamic impact on the myocardium. High throughput clinical imaging protocols are needed to evaluate the incremental diagnostic and prognostic value of this technology. PMID:17556173
Accelerated Compressed Sensing Based CT Image Reconstruction
Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.
2015-01-01
In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200
Collection and handling of ultrathin serial sections for 3-dimensional reconstruction.
Wali, N; Jagadeesh, J M
1989-11-01
Serial sectioning for 3-D reconstruction requires a highly skilled and experienced individual to collect ribbons of ultrathin sections on formvar-coated grids, and to handle the grids after section collection. A simple method is described for placing ribbons in an orderly serial fashion on formvar-coated grids, by a microtomist with average experience. Prior to sectioning, a wax ledge is prepared on the sloping edge of a glass knife in order to support a formvar-coated grid held in a horizontal slot cut in the wax. After a ribbon is formed, the water in the trough is slowly withdrawn to allow the ribbon to settle on the grid. The grids are then placed in an easy-to-make plastic chamber so that the formvar does not get ruptured during drying. The chamber can also be used for staining and storage of grids thereafter. Approximately 4000 sections from mudpuppy retinal cells have been successfully collected using this method. Computer 3-D reconstruction of the individual cells has been done. PMID:2586150
Mixed Confidence Estimation for Iterative CT Reconstruction.
Perlmutter, David S; Kim, Soo Mee; Kinahan, Paul E; Alessio, Adam M
2016-09-01
Dynamic (4D) CT imaging is used in a variety of applications, but the two major drawbacks of the technique are its increased radiation dose and longer reconstruction time. Here we present a statistical analysis of our previously proposed Mixed Confidence Estimation (MCE) method that addresses both these issues. This method, where framed iterative reconstruction is only performed on the dynamic regions of each frame while static regions are fixed across frames to a composite image, was proposed to reduce computation time. In this work, we generalize the previous method to describe any application where a portion of the image is known with higher confidence (static, composite, lower-frequency content, etc.) and a portion of the image is known with lower confidence (dynamic, targeted, etc). We show that by splitting the image space into higher and lower confidence components, MCE can lower the estimator variance in both regions compared to conventional reconstruction. We present a theoretical argument for this reduction in estimator variance and verify this argument with proof-of-principle simulations. We also propose a fast approximation of the variance of images reconstructed with MCE and confirm that this approximation is accurate compared to analytic calculations of and multi-realization image variance. This MCE method requires less computation time and provides reduced image variance for imaging scenarios where portions of the image are known with more certainty than others allowing for potentially reduced radiation dose and/or improved dynamic imaging. PMID:27008663
Fast iterative reconstructions for animal CT
NASA Astrophysics Data System (ADS)
Huang, H.-M.; Hsiao, I.-T.; Jan, M.-L.
2009-06-01
For iterative x-ray computed tomography (CT) reconstruction, the convex algorithm combined with ordered subset (OSC) [1] is a relatively fast algorithm and has shown its potential for low-dose situations. But it needs one forward projection and two backprojections per iteration. Unlike convex algorithm, the gradient algorithm only requires one forward projection and one backprojection per iteration. Here, we applied ordered subsets of projection data to a modified gradient algorithm. In order to further reduce computation time, the new algorithm, the ordered subset gradient (OSG) algorithm, can be adjusted with a step size. We also implemented another OS-type algorithm called OSTR. The OSG algorithm is compared with OSC algorithm and OSTR algorithm using three-dimensional simulated helical cone-beam CT data. The performance is evaluated in terms of log-likelihood, contrast recovery, and bias-variance studies. Results show that images of OSG has compatible visual image quality to those of OSC and OSTR, but in the resolution and bias-variance studies, OSG seems to reach stable values with faster speed. In particular, OSTR has better recovery in a smoother region, but both OSG and OSC have better recovery in the high-frequency regions. Moreover, in terms of log likelihood with respect to computation time, OSG has faster convergence rate than that of OSC and similar to that of OSTR. We conclude that OSG has potential to provide comparable image quality and is more computationally efficient, and thus could be suitable for low-dose, helical cone-beam CT image reconstruction.
Nakaguchi, Yuji; Ono, Takeshi; Onitsuka, Ryota; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai
2016-01-01
COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital. PMID:27179708
NASA Technical Reports Server (NTRS)
Flachskampf, F. A.; Chandra, S.; Gaddipatti, A.; Levine, R. A.; Weyman, A. E.; Ameling, W.; Hanrath, P.; Thomas, J. D.
2000-01-01
The shape and dynamics of the mitral annulus of 10 patients without heart disease (controls), 3 patients with dilated cardiomyopathy, and 5 patients with hypertrophic obstructive cardiomyopathy and normal systolic function were analyzed by transesophageal echocardiography and 3-dimensional reconstruction. Mitral annular orifice area, apico-basal motion of the annulus, and nonplanarity were calculated over time. Annular area was largest in end diastole and smallest in end systole. Mean areas were 11.8 +/- 2.5 cm(2) (controls), 15.2 +/- 4.2 cm(2) (dilated cardiomyopathy), and 10.2 +/- 2.4 cm(2) (hypertrophic cardiomyopathy) (P = not significant). After correction for body surface, annuli from patients with normal left ventricular function were smaller than annuli from patients with dilated cardiomyopathy (5.9 +/- 1.2 cm(2)/m(2) vs 7.7 +/- 1.0 cm(2)/m(2); P <.02). The change in area during the cardiac cycle showed significant differences: 23.8% +/- 5.1% (controls), 13.2% +/- 2.3% (dilated cardiomyopathy), and 32.4% +/- 7.6% (hypertrophic cardiomyopathy) (P <.001). Apico-basal motion was highest in controls, followed by those with hypertrophic obstructive and dilated cardiomyopathy (1.0 +/- 0.3 cm, 0.8 +/- 0.2 cm, 0.3 +/- 0.2 cm, respectively; P <.01). Visual inspection and Fourier analysis showed a consistent pattern of anteroseptal and posterolateral elevations of the annulus toward the left atrium. In conclusion, although area changes and apico-basal motion of the mitral annulus strongly depend on left ventricular systolic function, nonplanarity is a structural feature preserved throughout the cardiac cycle in all three groups.
Cardiac cone-beam CT volume reconstruction using ART
Nielsen, T.; Manzke, R.; Proksa, R.; Grass, M.
2005-04-01
Modern computed tomography systems allow volume imaging of the heart. Up to now, approximately two-dimensional (2D) and 3D algorithms based on filtered backprojection are used for the reconstruction. These algorithms become more sensitive to artifacts when the cone angle of the x-ray beam increases as it is the current trend of computed tomography (CT) technology. In this paper, we investigate the potential of iterative reconstruction based on the algebraic reconstruction technique (ART) for helical cardiac cone-beam CT. Iterative reconstruction has the advantages that it takes the cone angle into account exactly and that it can be combined with retrospective cardiac gating fairly easily. We introduce a modified ART algorithm for cardiac CT reconstruction. We apply it to clinical cardiac data from a 16-slice CT scanner and compare the images to those obtained with a current analytical reconstruction method. In a second part, we investigate the potential of iterative reconstruction for a large area detector with 256 slices. For the clinical cases, iterative reconstruction produces excellent images of diagnostic quality. For the large area detector, iterative reconstruction produces images superior to analytical reconstruction in terms of cone-beam artifacts.
Research on THz CT system and image reconstruction algorithm
NASA Astrophysics Data System (ADS)
Li, Ming-liang; Wang, Cong; Cheng, Hong
2009-07-01
Terahertz Computed Tomography takes the advantages of not only high resolution in space and density without image overlap but also the capability of being directly used in digital processing and spectral analysis, which determine it to be a good choice in parameter detection for process control. But Diffraction and scattering of THz wave will obfuscate or distort the reconstructed image. In order to find the most effective reconstruction method to build THz CT model. Because of the expensive cost, a fan-shaped THz CT industrial detection system scanning model, which consists of 8 emitters and 32 receivers, is established based on studying infrared CT technology. The model contains control and interface, data collecting and image reconstruction sub-system. It analyzes all the sub-function modules then reconstructs images with algebraic reconstruction algorithm. The experimental result proves it to be an effective, efficient algorithm with high resolution and even better than back-projection method.
Arinilhaq,; Widita, Rena
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.
Reconstruction algorithm improving the spatial resolution of Micro-CT
NASA Astrophysics Data System (ADS)
Fu, Jian; Wei, Dongbo; Li, Bing; Zhang, Lei
2008-03-01
X-ray Micro computed tomography (Micro-CT) enables nondestructive visualization of the internal structure of objects with high-resolution images and plays an important role for industrial nondestructive testing, material evaluation and medical researches. Because the micro focus is much smaller than the ordinary focus, the geometry un-sharpness of Micro-CT projection is several decuples less than that of ordinary CT systems. So the scan conditions with high geometry magnification can be adopted to acquire the projection data with high sampling frequency. Based on this feature, a new filter back projection reconstruction algorithm is researched to improve the spatial resolution of Micro-CT. This algorithm permits the reconstruction center at any point on the line connecting the focus and the rotation center. It can reconstruct CT images with different geometry magnification by adjusting the position of the reconstruction center. So it can make the best of the above feature to improve the spatial resolution of Micro-CT. The computer simulation and the CT experiment of a special spatial resolution phantom are executed to check the validity of this method. The results demonstrate the effect of the new algorithm. Analysis shows that the spatial resolution can be improved 50%.
Limited-view Neutron CT Reconstruction with Sample Boundary
NASA Astrophysics Data System (ADS)
Wang, Hu; Zou, Yubin; Lu, Yuanrong; Guo, Zhiyu
Reconstruction of limited-view CT is an ill-posed inversion problem. In order to suppress the artefacts and improve the image quality, it has been proved to be a good method toincorporatesome aprioriinformation of the sample(refers to as constraint in this paper) to the iterative process. In this paper, sample boundary is considered as a constraint and SART algorithm is chosen to test the performance of the constraint. Reconstructions from different number of projections of the famous Shepp-Logan head phantom with different levels of noise were simulated; projection data of a spark plug was acquired on the cold neutron CT platform of China Advanced Research Reactor (CARR) and the spark plug was reconstructed as well. Both the simulation and experimental results show that SART algorithm with sample boundary constraint leads to remarkable improvement of image quality and convergence speed for limited-view CT reconstruction when the noise level of projection data is less than 5%.
Constrained TV-minimization image reconstruction for industrial CT system
NASA Astrophysics Data System (ADS)
Chen, Buxin; Yang, Min; Zhang, Zheng; Bian, Junguo; Han, Xiao; Sidky, Emil; Pan, Xiaochuan
2014-02-01
In this work, we investigate the applicability of the constrained total-variation (TV)-minimization reconstruction method to industrial CT system. In general, industrial CT systems have the same principles of imaging process with clinical CT systems, but different imaging objectives and evaluation metrics. Optimization-based image reconstruction methods have been actively developed to meet practical challenges and extensively tested for clinical CT systems. However, the utility of optimization-based reconstruction methods is task-specific and not necessarily transferrable among different tasks. In this work, we adopt constrained TV-minimization programs together with adaptive-steepest-descent-projection-ontoconvex-sets (ASD-POCS) algorithm for reconstructing images from data of a concrete sample collected using a laboratory industrial CT system developed for non-destructive evaluation. Our results, compared to those reconstructed from FBPbased algorithm, suggest that the constrained TV-minimization program combined with ASD-POCS algorithm can yield images with comparable or improved visual quality and achieve equivalent or better imaging objectives over the currently used FBP-based algorithm under dense sampling data condition.
Lung deformation estimation and four-dimensional CT lung reconstruction.
Xu, Sheng; Taylor, Russell H; Fichtinger, Gabor; Cleary, Kevin
2005-01-01
Four-dimensional (4D) computed tomography (CT) image acquisition is a useful technique in radiation treatment planning and interventional radiology in that it can account for respiratory motion of lungs. Current 4D lung reconstruction techniques have limitations in either spatial or temporal resolution. In addition, most of these techniques rely on auxiliary surrogates to relate the time of CT scan to the patient's respiratory phase. In this paper, we propose a novel 4D CT lung reconstruction and deformation estimation algorithm. Our algorithm is purely image based. The algorithm can reconstruct high quality 4D images even if the original images are acquired under irregular respiratory motion. The algorithm is validated using synthetic 4D lung data. Experimental results from a swine study data are also presented. PMID:16685974
CEnPiT: Helical cardiac CT reconstruction
Bontus, Claas; Koken, Peter; Koehler, Thomas; Grass, Michael
2006-08-15
Computer tomography (CT) scanners with an increasing number of detector rows offer the potential of shorter scanning times. Nevertheless, the reconstruction problem becomes more challenging, since cone beam artifacts are likely to enter. Here, we consider helical cardiac CT. We analyze how a relationship can be established between exact reconstruction algorithms and the demand to perform a cardiac gating. Utilizing the redundancies requires the consideration of all kinds of Radon planes. For the reconstruction algorithm proposed here, we separate the data into two parts. The first part contains contributions of Radon planes, which are measured with a large number of redundancies. The second part contains the remaining contributions. As it turns out, the second part contributes rather to the low-frequency contents of trans-axial slices. Therefore, we propose to perform a gated back-projection only for the first part, while the second part is back-projected in an ungated way. Data from the complete source trajectory are employed in the reconstruction process in contrary to conventional helical cardiac reconstruction methods. Moreover, all different types of Radon planes are taken into account in the reconstruction, though an ECG-dependent cardiac gating is applied. The reconstruction results, which we present for clinical and simulated data, demonstrate the high potential of CEnPiT for helical cardiac CT with large cone angle systems.
Beam hardening correction for sparse-view CT reconstruction
NASA Astrophysics Data System (ADS)
Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing
2015-03-01
Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.
Expectation maximization reconstruction for circular orbit cone-beam CT
NASA Astrophysics Data System (ADS)
Dong, Baoyu
2008-03-01
Cone-beam computed tomography (CBCT) is a technique for imaging cross-sections of an object using a series of X-ray measurements taken from different angles around the object. It has been widely applied in diagnostic medicine and industrial non-destructive testing. Traditional CT reconstructions are limited by many kinds of artifacts, and they give dissatisfactory image. To reduce image noise and artifacts, we propose a statistical iterative approach for cone-beam CT reconstruction. First the theory of maximum likelihood estimation is extended to X-ray scan, and an expectation-maximization (EM) formula is deduced for direct reconstruction of circular orbit cone-beam CT. Then the EM formula is implemented in cone-beam geometry for artifact reduction. EM algorithm is a feasible iterative method, which is based on the statistical properties of Poisson distribution. It can provide good quality reconstructions after a few iterations for cone-beam CT. In the end, experimental results with computer simulated data and real CT data are presented to verify our method is effective.
Quantitative image quality evaluation for cardiac CT reconstructions
NASA Astrophysics Data System (ADS)
Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.
2016-03-01
Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.
CCG-LCONE CT Reconstruction Code User and Programmer's Guide
Jackson, J A
2006-09-27
This document describes a Computed Tomography (CT) reconstruction code called CCG-LCONE. CCG-LCONE is used to reconstruction objects from projections acquired on a cone beam radiographic system. This document will describe in brief the theory behind parts of the code, as well as detail the structure of the code, so it will function as both a ''User's Guide and a Programmer's Guide''. The Introduction will describe CT in general and cone beam systems in particular. It will explain why CCG-LCONE was developed and give an overview of the design and function. This report discusses the various parts of the system, both theory and code structure.
Iterative reconstruction methods in X-ray CT.
Beister, Marcel; Kolditz, Daniel; Kalender, Willi A
2012-04-01
Iterative reconstruction (IR) methods have recently re-emerged in transmission x-ray computed tomography (CT). They were successfully used in the early years of CT, but given up when the amount of measured data increased because of the higher computational demands of IR compared to analytical methods. The availability of large computational capacities in normal workstations and the ongoing efforts towards lower doses in CT have changed the situation; IR has become a hot topic for all major vendors of clinical CT systems in the past 5 years. This review strives to provide information on IR methods and aims at interested physicists and physicians already active in the field of CT. We give an overview on the terminology used and an introduction to the most important algorithmic concepts including references for further reading. As a practical example, details on a model-based iterative reconstruction algorithm implemented on a modern graphics adapter (GPU) are presented, followed by application examples for several dedicated CT scanners in order to demonstrate the performance and potential of iterative reconstruction methods. Finally, some general thoughts regarding the advantages and disadvantages of IR methods as well as open points for research in this field are discussed. PMID:22316498
ANL CT Reconstruction Algorithm for Utilizing Digital X-ray
Energy Science and Technology Software Center (ESTSC)
2004-05-01
Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms when using a massively parallelized computer architecture such as a Beowuif cluster by parallelizing the X-ray CT reconstruction routine. The algorithm uses the concept of generation of an image from carefully obtained multiple 1-D or 2-D X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection.
Iterative reconstruction techniques for industrial CT: application and performance
Arrowood, Lloyd; Gregor, Jens; Bingham, Philip R
2008-01-01
BWXT Y-12, Oak Ridge National Laboratory, and the University of Tennessee have been working toward improved high-resolution X-ray computed tomography for non-destructive testing of manufactured objects. The emphasis of this work has been on iterative reconstruction, calibration, and performance testing. Algebraic reconstruction algorithms for CT have been developed that are more robust in handling incomplete and noisy data and permit high-resolution volumetric imaging on metallic part assemblies. A key source of artifacts in reconstructed CT images for industrial components is poor image statistics due to areas of high attenuation. This loss of information in the captured projections not only affects reconstruction of those areas, but also the surrounding regions. To overcome numerical instabilities arising from the ill-posed nature of inverse problems, standard regularization techniques can be applied as can Bayesian reconstruction techniques using prior data such as CAD information to improve image quality. To accelerate the reconstruction of certain regions of interest and reduce memory requirements, subvolume reconstruction has been implemented and tested. A computational framework has been implemented that facilitates the use of sophisticated iterative algorithms for reconstruction of three-dimensional images from high-resolution X-ray cone-beam projection data. The code supports parallel computing at two levels: message passing is used to farm the computation out across a network of computers while threads allow all processors available on any one computer to be used.
CT reconstruction via denoising approximate message passing
NASA Astrophysics Data System (ADS)
Perelli, Alessandro; Lexa, Michael A.; Can, Ali; Davies, Mike E.
2016-05-01
In this paper, we adapt and apply a compressed sensing based reconstruction algorithm to the problem of computed tomography reconstruction for luggage inspection. Specifically, we propose a variant of the denoising generalized approximate message passing (D-GAMP) algorithm and compare its performance to the performance of traditional filtered back projection and to a penalized weighted least squares (PWLS) based reconstruction method. D-GAMP is an iterative algorithm that at each iteration estimates the conditional probability of the image given the measurements and employs a non-linear "denoising" function which implicitly imposes an image prior. Results on real baggage show that D-GAMP is well-suited to limited-view acquisitions.
CT projection estimation and applications to fast and local reconstruction
NASA Astrophysics Data System (ADS)
Besson, Guy M.
1999-05-01
In this paper, a straightforward method of estimating the CT projections is applied to simplified pre-processing, simplified reconstruction filtering, and to low-dose and local CT image reconstruction. The method relies on the projection- to-projection data redundancy that is shown to exist in CT. In the pre-processing application, the output of a few, angularly sparse fully pre-processed projections, is utilized in a linearization model to estimate directly the output of pre- processing for all the other projections. In the reconstruction filtering application, and with projection i and k being fully filtered, intermediate projection j low frequency components are estimated by a linear combination of projections i and k. That estimate is then subtracted from projection j, and the resulting high-frequency components are then filtered without zeropadding. By linearity the same combination of fully filtered projections i and k is added back to projection j. A factor two simplification is obtained, that can be leveraged for reconstruction speed or cost reduction. The local reconstruction application builds on the filtering method, by showing that truncated data is sufficient for calculating a filtered projection high-frequencies, while a very simple projection completion model is shown to be effective in estimating the low frequencies. Image quality comparisons are described.
Filtered backprojection proton CT reconstruction along most likely paths
Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel
2013-03-15
Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.
CT after reconstructive repair of the sternum and chest wall.
Maddern, I R; Goodman, L R; Almassi, G H; Haasler, G B; McManus, R P; Olinger, G N
1993-03-01
Acute mediastinitis and sternal infection after sternotomy are potentially devastating complications, but considerable advances in treatment have been made during the past decade. Sternectomy followed by reconstruction with use of either an omental transposition or a muscle flap has markedly decreased mortality and morbidity. After extensive rib resection, various reconstructive repairs, including the use of polytetrafluoroethylene mesh, have proved successful. The authors retrospectively reviewed 27 postoperative computed tomographic (CT) scans obtained in 19 patients. Twelve of these patients had sternal wounds repaired with either omental or muscle flap procedures. Seven patients had chest wall reconstructions with polytetrafluoroethylene patches, muscle transpositions, or both. The authors found no cases of unexpected or unexplained fluid collections on CT scans obtained beyond the 1st month. Any persistent or recurrent collection is suggestive of infection. If clinical and imaging findings are at odds, imaging-directed needle aspiration can help determine whether a fluid collection is infected and in need of further treatment. PMID:8430171
Accuracy of quantitative reconstructions in SPECT/CT imaging
NASA Astrophysics Data System (ADS)
Shcherbinin, S.; Celler, A.; Belhocine, T.; van der Werf, R.; Driedger, A.
2008-09-01
The goal of this study was to determine the quantitative accuracy of our OSEM-APDI reconstruction method based on SPECT/CT imaging for Tc-99m, In-111, I-123, and I-131 isotopes. Phantom studies were performed on a SPECT/low-dose multislice CT system (Infinia-Hawkeye-4 slice, GE Healthcare) using clinical acquisition protocols. Two radioactive sources were centrally and peripherally placed inside an anthropometric Thorax phantom filled with non-radioactive water. Corrections for attenuation, scatter, collimator blurring and collimator septal penetration were applied and their contribution to the overall accuracy of the reconstruction was evaluated. Reconstruction with the most comprehensive set of corrections resulted in activity estimation with error levels of 3-5% for all the isotopes.
Lee, Ui-Lyong; Kwon, Jae-Sung; Woo, Su-Heon; Choi, Young-Jun
2016-07-01
A woman presented with a long history of mandibular defects posterior to the left lower first premolar caused by inadequate reconstruction after removal of a tumor on the left side of the mandible. In the frontal view, extreme facial asymmetry was apparent. The dental midline of the mandible was deviated 10 mm to the left compared with the dental midline of the maxilla, and all maxillary teeth were inclined to the left owing to dental compensation. There was an 8-mm maxillary occlusal cant relative to the maxillary first molar. Bimaxillary surgery using computer-assisted designed and computer-assisted manufactured devices without an intermediate occlusal splint was performed to align the maxilla and mandible at the correct position, and reconstructive surgery for the mandible using a 3-dimensional printed titanium mandible was concurrently performed. In particular, during the virtual mandible design, 2 abutments that enabled the prosthetic restoration were included in the mandible using a computer-assisted design program. This report describes the successful functional and esthetic reconstruction of the mandible using electron beam melting technology, an alternative technique for reconstruction of mandibles that did not undergo radiation therapy. PMID:27060494
Spectrotemporal CT data acquisition and reconstruction at low dose
Clark, Darin P.; Badea, Cristian T.; Lee, Chang-Lung; Kirsch, David G.
2015-11-15
Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction
Efficient iterative image reconstruction algorithm for dedicated breast CT
NASA Astrophysics Data System (ADS)
Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan
2016-03-01
Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.
CT angiography in complex upper extremity reconstruction.
Bogdan, M A; Klein, M B; Rubin, G D; McAdams, T R; Chang, J
2004-10-01
Computed tomography angiography is a new technique that provides high-resolution, three-dimensional vascular imaging as well as excellent bone and soft tissue spatial relationships. The purpose of this study was to examine the use of computed tomography angiography in planning upper extremity reconstruction. Seventeen computed tomography angiograms were obtained in 14 patients over a 20-month period. All studies were obtained on an outpatient basis with contrast administered through a peripheral vein. All the studies demonstrated the pertinent anatomy and the intraoperative findings were as demonstrated in all cases. Information from two studies significantly altered pre-operative planning. The average charge for computed tomography angiography was 1,140 dollars, compared to 3,900 dollars for traditional angiography. PMID:15336751
Fast reconstruction of low dose proton CT by sinogram interpolation
NASA Astrophysics Data System (ADS)
Hansen, David C.; Sangild Sørensen, Thomas; Rit, Simon
2016-08-01
Proton computed tomography (CT) has been demonstrated as a promising image modality in particle therapy planning. It can reduce errors in particle range calculations and consequently improve dose calculations. Obtaining a high imaging resolution has traditionally required computationally expensive iterative reconstruction techniques to account for the multiple scattering of the protons. Recently, techniques for direct reconstruction have been developed, but these require a higher imaging dose than the iterative methods. No previous work has compared the image quality of the direct and the iterative methods. In this article, we extend the methodology for direct reconstruction to be applicable for low imaging doses and compare the obtained results with three state-of-the-art iterative algorithms. We find that the direct method yields comparable resolution and image quality to the iterative methods, even at 1 mSv dose levels, while yielding a twentyfold speedup in reconstruction time over previously published iterative algorithms.
Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis
Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.
2015-01-01
Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are
Joint regularization for spectro-temporal CT reconstruction
NASA Astrophysics Data System (ADS)
Clark, D. P.; Badea, C. T.
2016-03-01
X-ray CT is widely used, both clinically and preclinically, for fast, high-resolution, anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. In previous work, we proposed and demonstrated a projection acquisition and reconstruction strategy for 5D CT (3D + dual-energy + time) which recovered spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. The approach relied on the approximate separability of the temporal and spectral reconstruction sub-problems, which enabled substantial projection undersampling and effective regularization. Here, we extend this previous work to more general, nonseparable 5D CT reconstruction cases (3D + muti-energy + time) with applicability to K-edge imaging of exogenous contrast agents. We apply the newly proposed algorithm in phantom simulations using a realistic system and noise model for a photon counting x-ray detector with six energy thresholds. The MOBY mouse phantom used contains realistic concentrations of iodine, gold, and calcium in water. Relative to weighted least-squares reconstruction, the proposed 5D reconstruction algorithm improved reconstruction and material decomposition accuracy by 3-18 times. Furthermore, by exploiting joint, low rank image structure between time points and energies, ~80 HU of contrast associated with the Kedge of gold and ~35 HU of contrast associated with the blood pool and myocardium were recovered from more than 400 HU of noise.
Investigation of statistical iterative reconstruction for dedicated breast CT
NASA Astrophysics Data System (ADS)
Makeev, Andrey; Das, Mini; Glick, Stephen J.
2012-03-01
Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. In this study, statistical iterative reconstruction with a penalized likelihood objective function and a Huber prior are investigated for use with breast CT. This prior has two free parameters, the penalty weight and the edgepreservation threshold, that need to be evaluated to determine those values that give optimal performance. Computer simulations with breast-like phantoms were used to study these parameters using various figuresof- merit that relate to performance in detecting microcalcifications. Results suggested that a narrow range of Huber prior parameters give optimal performance. Furthermore, iterative reconstruction provided improved performance measures as compared to conventional filtered back-projection.
Adaptive phase-coded reconstruction for cardiac CT
NASA Astrophysics Data System (ADS)
Hsieh, Jiang; Mayo, John; Acharya, Kishor; Pan, Tin-Su
2000-04-01
Cardiac imaging with conventional computed tomography (CT) has gained significant attention in recent years. New hardware development enables a CT scanner to rotate at a faster speed so that less cardiac motion is present in acquired projection data. Many new tomographic reconstruction techniques have also been developed to reduce the artifacts induced by the cardiac motion. Most of the algorithms make use of the projection data collected over several cardiac cycles to formulate a single projection data set. Because the data set is formed with samples collected roughly in the same phase of a cardiac cycle, the temporal resolution of the newly formed data set is significantly improved compared with projections collected continuously. In this paper, we present an adaptive phase- coded reconstruction scheme (APR) for cardiac CT. Unlike the previously proposed schemes where the projection sector size is identical, APR determines each sector size based on the tomographic reconstruction algorithm. The newly proposed scheme ensures that the temporal resolution of each sector is substantially equal. In addition, the scan speed is selected based on the measured EKG signal of the patient.
Nonlocal means-based regularizations for statistical CT reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Hao; Ma, Jianhua; Liu, Yan; Han, Hao; Li, Lihong; Wang, Jing; Liang, Zhengrong
2014-03-01
Statistical iterative reconstruction (SIR) methods have shown remarkable gains over the conventional filtered backprojection (FBP) method in improving image quality for low-dose computed tomography (CT). They reconstruct the CT images by maximizing/minimizing a cost function in a statistical sense, where the cost function usually consists of two terms: the data-fidelity term modeling the statistics of measured data, and the regularization term reflecting a prior information. The regularization term in SIR plays a critical role for successful image reconstruction, and an established family of regularizations is based on the Markov random field (MRF) model. Inspired by the success of nonlocal means (NLM) algorithm in image processing applications, we proposed, in this work, a family of generic and edgepreserving NLM-based regularizations for SIR. We evaluated one of them where the potential function takes the quadratic-form. Experimental results with both digital and physical phantoms clearly demonstrated that SIR with the proposed regularization can achieve more significant gains than SIR with the widely-used Gaussian MRF regularization and the conventional FBP method, in terms of image noise reduction and resolution preservation.
Motion compensated reconstructions of calcified coronary plaques in cardiac CT
NASA Astrophysics Data System (ADS)
King, Martin; Pan, Xiaochuan; Giger, Maryellen; Suzuki, Kenji
2007-03-01
In order to obtain motion-compensated reconstructions of calcified coronary plaques in cardiac CT, the dynamic trajectory of the plaque must be known rather accurately. The purpose of this study is to evaluate whether the dynamic trajectories of a plaque extracted from reconstructions provided by a previously developed tracking algorithm can be used for obtaining motion-compensated reconstructions of this plaque. A single projection dataset of the modified FORBILD phantom containing a calcified plaque undergoing continuous periodic motion was acquired with a gantry rotation time of 0.4 s and a heart rate of 90 bpm. Three sets of phase-correlated 4D ROI images centered on the calcified plaque (labeled G1, G2, and G3) were obtained from this dataset by varying the numbers of data segments used for cardiac gating (N = 1, 2, 3) during the reconstruction steps of the tracking algorithm. Dynamic trajectories from each of these datasets were calculated from edge-based segmentations of these datasets. When compared to the true trajectory (labeled T), root-mean-square (RMS) values of position for trajectories G1, G2, and G3 were 1.473 mm, 1.166 mm, and 0.736 mm, respectively. Trajectories G1, G2, G3, and T then were used to obtain motion-compensated reconstructions MC1, MC2, MC3, and MCT, respectively, at 6.25 ms time intervals over 2 cardiac cycles. The areas (number of pixels) of the plaque then were measured at all time intervals for each set of reconstructions. When compared against areas obtained for MCT, RMS values of areas for reconstructions MC1, MC2, and MC3 were 26.888, 12.384, and 4.837, respectively. On visual inspection, MC3 also exhibited the least motion artifacts at most time intervals.
Blockwise conjugate gradient methods for image reconstruction in volumetric CT.
Qiu, W; Titley-Peloquin, D; Soleimani, M
2012-11-01
Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. PMID:22325240
Zhang, Jidong; Hatakeyama, Jun; Eto, Ko; Abe, Shin-Ichi
2014-09-01
Male gonad development is initiated by the aggregation of pre-Sertoli cells (SCs), which surround germ cells to form cords. Several attempts to reconstruct testes from dissociated testicular cells have been made; however, only very limited morphogenesis beyond seminiferous cord formation has been achieved. Therefore, we aimed to reconstruct seminiferous tubules using a 3-dimensional (D) re-aggregate culture of testicular cells, which were dissociated from 6-dpp neonatal mice, inside a collagen matrix. We performed a short-term culture (for 3 days) and a long-term culture (up to 3 wks). The addition of KnockOut Serum Replacement (KSR) promoted (1) the enlargement of SC re-aggregates; (2) the attachment of peritubular myoid (PTM) cells around the SC re-aggregates; (3) the sorting of germ cells inside, and Leydig cells outside, seminiferous cord-like structures; (4) the alignment of SC polarity inside a seminiferous cord-like structure relative to the basement membrane; (5) the differentiation of SCs (the expression of the androgen receptor); (6) the formation of a blood-testis-barrier between the SCs; (7) SC elongation and lumen formation; and (8) the proliferation of SCs and spermatogonia, as well as the differentiation of spermatogonia into primary spermatocytes. Eventually, KSR promoted the formation of seminiferous tubule-like structures, which accompanied germ cell differentiation. However, these morphogenetic events did not occur in the absence of KSR. This in vitro system presents an excellent model with which to identify the possible factors that induce these events and to analyze the mechanisms that underlie cellular interactions during testicular morphogenesis and germ cell differentiation. PMID:24717811
A CT reconstruction algorithm based on non-aliasing Contourlet transform and compressive sensing.
Deng, Lu-zhen; Feng, Peng; Chen, Mian-yi; He, Peng; Vo, Quang-sang; Wei, Biao
2014-01-01
Compressive sensing (CS) theory has great potential for reconstructing CT images from sparse-views projection data. Currently, total variation (TV-) based CT reconstruction method is a hot research point in medical CT field, which uses the gradient operator as the sparse representation approach during the iteration process. However, the images reconstructed by this method often suffer the smoothing problem; to improve the quality of reconstructed images, this paper proposed a hybrid reconstruction method combining TV and non-aliasing Contourlet transform (NACT) and using the Split-Bregman method to solve the optimization problem. Finally, the simulation results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection using less iteration numbers, which is more effective in suppressing noise and artefacts than algebraic reconstruction technique (ART) and TV-based reconstruction method. PMID:25101142
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.
Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan
2015-11-01
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed. PMID:26259219
A biological phantom for evaluation of CT image reconstruction algorithms
NASA Astrophysics Data System (ADS)
Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.
2014-03-01
In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.
Investigation of statistical iterative reconstruction for dedicated breast CT
Makeev, Andrey; Glick, Stephen J.
2013-08-15
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved
Test of 3D CT reconstructions by EM + TV algorithm from undersampled data
Evseev, Ivan; Ahmann, Francielle; Silva, Hamilton P. da
2013-05-06
Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry with alternative virtual phantoms. As in the original report, the 3D CT images of 128 Multiplication-Sign 128 Multiplication-Sign 128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.
CT reconstruction techniques for improved accuracy of lung CT airway measurement
Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.
2014-11-01
Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD
Incomplete-data CT image reconstructions in industrial applications
NASA Astrophysics Data System (ADS)
Tam, K. C.; Eberhard, J. W.; Mitchell, K. W.
1990-06-01
In industrial X-ray computerized tomography (CT), the objects to be inspected are usually very attenuating to X-rays, and their shape may not permit complete scannings at all view angles; incomplete-data imaging situations usually result. Image reconstruction from incomplete data can be achieved through an iterative transform algorithm, which utilizes the a priori information on the object to compensate for the missing data. The results of validating the iterative transform algorithm on experimental data from a cross section of a high-pressure turbine blade made of Ni-based superalloy are reported. From the data set, two kinds of incomplete data situations are simulated: incomplete projection and limited-angle scanning. The results indicate that substantial improvements, both visually and in wall thickness measurements, were brought about in all cases through the use of the iterative transform algorithm.
CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization
Chen, Zijia; Zhou, Linghong
2015-01-01
Radiation dose reduction without losing CT image quality has been an increasing concern. Reducing the number of X-ray projections to reconstruct CT images, which is also called sparse-projection reconstruction, can potentially avoid excessive dose delivered to patients in CT examination. To overcome the disadvantages of total variation (TV) minimization method, in this work we introduce a novel adaptive TpV regularization into sparse-projection image reconstruction and use FISTA technique to accelerate iterative convergence. The numerical experiments demonstrate that the proposed method suppresses noise and artifacts more efficiently, and preserves structure information better than other existing reconstruction methods. PMID:26089962
Moignier, Alexandra; Girinsky, Théodore; Paul, Jean-François; and others
2014-05-01
Purpose: In left-side breast radiation therapy (RT), doses to the left main (LM) and left anterior descending (LAD) coronary arteries are usually assessed after delineation by prior anatomic knowledge on the treatment planning computed tomography (CT) scan. In this study, dose sensitivity due to interindividual coronary topology variation was assessed, and hot spots were located. Methods and Materials: Twenty-two detailed heart models, created from heart computed tomography angiographies, were fitted into a single representative female thorax. Two breast RT protocols were then simulated into a treatment planning system: the first protocol comprised tangential and tumoral bed beams (TGs{sub T}B) at 50 + 16 Gy, the second protocol added internal mammary chain beams at 50 Gy to TGs{sub T}B (TGs{sub T}B{sub I}MC). For the heart, the LAD, and the LM, several dose indicators were calculated: dose-volume histograms, mean dose (D{sub mean}), minimal dose received by the most irradiated 2% of the volume (D{sub 2%}), and 3-dimensional (3D) dose maps. Variations of these indicators with anatomies were studied. Results: For the LM, the intermodel dispersion of D{sub mean} and D{sub 2%} was 10% and 11%, respectively, with TGs{sub T}B and 40% and 80%, respectively, with TGs{sub T}B{sub I}MC. For the LAD, these dispersions were 19% (D{sub mean}) and 49% (D{sub 2%}) with TGs{sub T}B and 35% (D{sub mean}) and 76% (D{sub 2%}) with TGs{sub T}B{sub I}MC. The 3D dose maps revealed that the internal mammary chain beams induced hot spots between 20 and 30 Gy on the LM and the proximal LAD for some coronary topologies. Without IMC beams, hot spots between 5 and 26 Gy are located on the middle and distal LAD. Conclusions: Coronary dose distributions with hot spot location and dose level can change significantly depending on coronary topology, as highlighted by 3D coronary dose maps. In clinical practice, coronary imaging may be required for a relevant coronary dose assessment
Task-based optimization of image reconstruction in breast CT
NASA Astrophysics Data System (ADS)
Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan
2014-03-01
We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.
A feature refinement approach for statistical interior CT reconstruction
NASA Astrophysics Data System (ADS)
Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong
2016-07-01
Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)—minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.
A feature refinement approach for statistical interior CT reconstruction.
Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong
2016-07-21
Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)-minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements. PMID:27362527
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction
NASA Astrophysics Data System (ADS)
Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2015-03-01
Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.
A limited-angle CT reconstruction method based on anisotropic TV minimization
NASA Astrophysics Data System (ADS)
Chen, Zhiqiang; Jin, Xin; Li, Liang; Wang, Ge
2013-04-01
This paper presents a compressed sensing (CS)-inspired reconstruction method for limited-angle computed tomography (CT). Currently, CS-inspired CT reconstructions are often performed by minimizing the total variation (TV) of a CT image subject to data consistency. A key to obtaining high image quality is to optimize the balance between TV-based smoothing and data fidelity. In the case of the limited-angle CT problem, the strength of data consistency is angularly varying. For example, given a parallel beam of x-rays, information extracted in the Fourier domain is mostly orthogonal to the direction of x-rays, while little is probed otherwise. However, the TV minimization process is isotropic, suggesting that it is unfit for limited-angle CT. Here we introduce an anisotropic TV minimization method to address this challenge. The advantage of our approach is demonstrated in numerical simulation with both phantom and real CT images, relative to the TV-based reconstruction.
SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography
Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G
2014-06-01
Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose.
NASA Astrophysics Data System (ADS)
Abir, Muhammad Imran Khan
The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.
Texture-preserving Bayesian image reconstruction for low-dose CT
NASA Astrophysics Data System (ADS)
Zhang, Hao; Han, Hao; Hu, Yifan; Liu, Yan; Ma, Jianhua; Li, Lihong; Moore, William; Liang, Zhengrong
2016-03-01
Markov random field (MRF) model has been widely used in Bayesian image reconstruction to reconstruct piecewise smooth images in the presence of noise, such as in low-dose X-ray computed tomography (LdCT). While it can preserve edge sharpness via edge-preserving potential function, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it compromises clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodule or colon polyp. This study aims to shift the edge preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of lung, bone, fat, muscle, etc. from previous full-dose CT scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of proposed reconstruction framework, experiments using clinical patient scans (with lung nodule or colon polyp) were conducted. The experimental outcomes showed noticeable gain by the a priori knowledge for LdCT image reconstruction with the well-known Haralick texture measures. Thus, it is conjectured that texture-preserving LdCT reconstruction has advantages over edge-preserving regional smoothing paradigm for texture-specific clinical applications.
Brady, Samuel L.; Shulkin, Barry L.
2015-02-15
Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.
2014-01-01
Introduction Neurofibromatosis type 1 (NF-1) may involve the spine as various abnormalities including bony dysplasia, scoliosis, and nerve sheath tumors. Surgery may be performed for stabilization of the spine. We have seen an increase in requests for multidetector CT (MDCT) imaging with the (three-dimensional) 3D-volume rendered (VR) images in patients evaluated at our institution. We, therefore, investigated how MDCT could be best utilized in this patient population. Methods Seventy-three patients with NF-1 were identified in whom MDCT imaging was performed for diagnostic, pre-operative, or post-operative evaluation of spinal abnormalities. True axial source images and two dimensional (2D) orthogonal reconstructed MDCT images, as well as the VR images, were compared with plain radiographs and MRI. In addition, the MDCT study was compared to the VR images. These studies were reviewed to compare assessment of A) bony abnormalities such as remodeling from dural ectasia, dysplasia, and fusion, B) abnormal spinal curvature, C) nerve sheath tumors, and D) surgical instrumentation. Results When compared to plain radiographs, the MDCT and VR images were rated as helpful for evaluating the abnormalities of the spine in 19 of 24 patients for a total of 30 findings. This included the following categories A) (n = 6), B) (n = 5), C) (n = 7), and D) (n = 12). Compared to MR, the MDCT and VR study was helpful in evaluating the findings of NF-1 in 24 of 36 patients for a total of 40 findings. This included the following categories A) (n = 12), B) (n = 10), C) (n = 3), and D) (n = 15). When the VR images were compared to the orthogonal MDCT, the VR images was rated as helpful in 41 of 73 patients for a total of 60 findings, including the following categories: A) (n = 11), B) (n = 24), C) (n = 0), and D) (n = 25). Conclusion MDCT has distinct advantages over plain radiographs and MR imaging, and the VR images over MDCT in the
NASA Astrophysics Data System (ADS)
Liang, Zhiting; Guan, Yong; Liu, Gang; Bian, Rui; Zhang, Xiaobo; Xiong, Ying; Tian, Yangchao
2013-09-01
Nano-CT has been considered as an important technique applied in analyzing inter-structures of nanomaterials and biological cell. However, maximum rotation angle of the sample stage is limited by sample space; meanwhile, the scan time is exorbitantly large to get enough projections in some cases. Therefore, it is difficult to acquire nano-CT images with high quality by using conventional Fourier reconstruction methods based on limited-angle or few-view projections. In this paper, we utilized the total variation (TV) iterative reconstruction to carry out numerical image and nano-CT image reconstruction with limited-angle and few-view data. The results indicated that better quality images had been achieved.
Lee, Chae Young; Song, Hankyeol; Park, Chan Woo; Chung, Yong Hyun; Park, Justin C.
2016-01-01
The purposes of this study were to optimize a proton computed tomography system (pCT) for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT) 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy. PMID:27243822
Lee, Chae Young; Song, Hankyeol; Park, Chan Woo; Chung, Yong Hyun; Kim, Jin Sung; Park, Justin C
2016-01-01
The purposes of this study were to optimize a proton computed tomography system (pCT) for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT) 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy. PMID:27243822
Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory
NASA Astrophysics Data System (ADS)
Hu, Zhanli; Zou, Jing; Gui, Jianbao; Zheng, Hairong; Xia, Dan
2013-04-01
Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination.
Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)
NASA Astrophysics Data System (ADS)
McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian
2006-03-01
To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the
CoBRA: Cone beam Computed Tomography (CT) reconstruction code in Interactive Data Language (IDL)
Sheats, M.J.; Stupin, D.M.
1997-10-01
In support of stockpile stewardship and other important missions, Los Alamos is continually looking for fast and effective ways of inspecting and evaluating industrial parts. Thus, Los Alamos is continually striving to improve our radiography and computed tomography (CT) capabilities. Cormack and Hounsfield received the Nobel Prize in 1979 for their pioneering work in computed tomography that led to the development of medical scanners. Copley et al. provides a good history of the development of industrial CT systems. The early systems collect data via a single detector or linear detector array. While CT offers greatly increased spatial resolutions over radiography, CT inspections with a linear array are slow and costly. To improve the viability of CT for NDT applications, Feldkamp, Davis, and Kress reported a cone beam reconstruction technique that speeds up the CT process by using image data rather than data collected by a linear array. Because it potentially offers processing speeds up to 10 times faster than CT systems that use a linear array, we are building a cone beam CT for use with our 20 MV x-ray source and Los Alamos Neutron Science Center (LANSCE) neutron sources. Our software, called CoBRA, is a portable cone beam reconstruction code for CT applications that efficiently and rapidly reconstructs large data sets. CoBRA applications include both x-ray and neutron inspections using x-ray phosphor screens coupled to either a CCD camera or flat-panel amorphous silicon arrays. Photographs of two amorphous silicon arrays.
Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image
Guo, Jingyu; Qi, Hongliang; Xu, Yuan; Chen, Zijia; Li, Shulong; Zhou, Linghong
2016-01-01
Limited-angle computed tomography (CT) has great impact in some clinical applications. Existing iterative reconstruction algorithms could not reconstruct high-quality images, leading to severe artifacts nearby edges. Optimal selection of initial image would influence the iterative reconstruction performance but has not been studied deeply yet. In this work, we proposed to generate optimized initial image followed by total variation (TV) based iterative reconstruction considering the feature of image symmetry. The simulated data and real data reconstruction results indicate that the proposed method effectively removes the artifacts nearby edges. PMID:27066107
Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T
2011-09-22
This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].
Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T
2011-09-22
This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].
Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT
Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves
2015-11-15
Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can
Didier, Ryne A.; Vajtai, Petra L.
2014-01-01
Background Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. Objective This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction versus a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDIvol). Materials and methods Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital’s established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDIvol. Reduced CTDIvol was achieved primarily by reductions in effective tube current-time product (mAseff) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDIvol, size specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Results Between groups A and B, mean CTDIvol was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Conclusion Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDIvol and SSDE by nearly half as compared to the hospital’s traditional weight-based protocols. PMID:24996812
NASA Astrophysics Data System (ADS)
Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno
2015-09-01
For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose
Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno
2015-10-01
For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels
Reduction of ring artefacts in high resolution micro-CT reconstructions.
Sijbers, Jan; Postnov, Andrei
2004-07-21
High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed micro-CT images. PMID:15357205
NOTE: Reduction of ring artefacts in high resolution micro-CT reconstructions
NASA Astrophysics Data System (ADS)
Sijbers, Jan; Postnov, Andrei
2004-07-01
High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed mgr-CT images.
Directional information of the simultaneously active x-ray sources and fast CT reconstruction
NASA Astrophysics Data System (ADS)
Saha, Sajib; Tahtali, Murat; Lambert, Andrew; Pickering, Mark
2015-03-01
This paper focuses on minimizing the time requirement for CT capture through an innovative simultaneous X-ray capture method. The concept was presented in previous publications with synthetically sampled data from a synthetic phantom. This paper puts emphasis on real data reconstruction where a physical 3D phantom consisting of simple geometric shapes was used for the experiment. For a successful reconstruction of the physical phantom, precise calibration of the setup is ensured in this work. Targeting better reconstruction from minimal number of iterations, the sparsity prior CT reconstruction algorithm proposed by Saha et al. [11]was adapted to work in conjunction with the simultaneous X-ray capture modality. Along with critical evaluations of the experimental findings, this paper focuses on optimal parameter settings to achieve a given reconstruction resolution.
Image reconstruction for PET/CT scanners: past achievements and future challenges
Tong, Shan; Alessio, Adam M; Kinahan, Paul E
2011-01-01
PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831
Investigation of iterative image reconstruction in low-dose breast CT
NASA Astrophysics Data System (ADS)
Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan
2014-06-01
There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.
Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.
Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A
2015-08-01
Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. PMID:26037323
Low-dose CT reconstruction via edge-preserving total variation regularization.
Tian, Zhen; Jia, Xun; Yuan, Kehong; Pan, Tinsu; Jiang, Steve B
2011-09-21
High radiation dose in computed tomography (CT) scans increases the lifetime risk of cancer and has become a major clinical concern. Recently, iterative reconstruction algorithms with total variation (TV) regularization have been developed to reconstruct CT images from highly undersampled data acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, the low-contrast structures tend to be smoothed out by the TV regularization, posing a great challenge for the TV method. To solve this problem, in this work we develop an iterative CT reconstruction algorithm with edge-preserving TV (EPTV) regularization to reconstruct CT images from highly undersampled data obtained at low mAs levels. The CT image is reconstructed by minimizing energy consisting of an EPTV norm and a data fidelity term posed by the x-ray projections. The EPTV term is proposed to preferentially perform smoothing only on the non-edge part of the image in order to better preserve the edges, which is realized by introducing a penalty weight to the original TV norm. During the reconstruction process, the pixels at the edges would be gradually identified and given low penalty weight. Our iterative algorithm is implemented on graphics processing unit to improve its speed. We test our reconstruction algorithm on a digital NURBS-based cardiac-troso phantom, a physical chest phantom and a Catphan phantom. Reconstruction results from a conventional filtered backprojection (FBP) algorithm and a TV regularization method without edge-preserving penalty are also presented for comparison purposes. The experimental results illustrate that both the TV-based algorithm and our EPTV algorithm outperform the conventional FBP algorithm in suppressing the streaking artifacts and image noise under a low-dose context. Our edge-preserving algorithm is superior to the TV-based algorithm in that it can preserve more information of low-contrast structures and therefore maintain acceptable spatial resolution
Chun, Se Young; Fessler, Jeffrey A.; Dewaraja, Yuni K.
2013-01-01
Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose-response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation-maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved −2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs
NASA Astrophysics Data System (ADS)
Chun, Se Young; Fessler, Jeffrey A.; Dewaraja, Yuni K.
2013-09-01
Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose-response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation-maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved -2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs
Adaptive region of interest method for analytical micro-CT reconstruction.
Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin
2011-01-01
The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587
NASA Astrophysics Data System (ADS)
Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.
2014-03-01
We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.
Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT
NASA Astrophysics Data System (ADS)
Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.; Schirra, Carsten O.
2014-05-01
The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and investigate sparsity-regularized penalized weighted least squares-based image reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge sinogram data. To exploit the inherent sparseness of typical K-edge images, we investigate use of a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a wavelet sparsifying transform. Computer-simulation and experimental phantom studies are conducted to quantitatively demonstrate the effectiveness of the proposed reconstruction algorithms.
CT angiographic evaluation of perforators in the lower limb and their reconstructive implication
Bhattacharya, Visweswar; Agrawal, Neeraj K.; Chaudhary, Gurab R.; Arvind, Srivastava; Bhattacharya, Siddharth
2012-01-01
Background: The perforator flaps evolved on the knowledge of the vascular tree from the main vascular trunk up to the subdermal plexus. Therefore, we thought that it's necessary to map the whole vascular arcade by CT angiography. The aim of this study is to evaluate the perforators and the whole vascular tree of the lower limb by peripheral CT angiography with 3D reconstruction and intraoperative evaluation. This study helps in designing flaps of different constituents based on the selected perforators. Materials and Methods: Twenty patients having lower limb defects were selected. CT angiography was done using a non-ionic iodinated contrast media injected through the antecubital vein. The lower limbs were imaged using volume rendering CT scan machine. Three dimensional reconstructions were made. The whole arterial tree, along with the perforators, were mapped. Findings of the audio-Doppler were correlated with the CT angiographic observations. Further these evaluations were confirmed by intraoperative findings. Results: The three dimensional CT angiographic reconstruction with bone and soft tissue provided advanced knowledge of this vascular network. It delineated the main vessel, the perforators, their caliber, distance from fixed bony landmarks and course up to the subdermal plexus. These findings were confirmed during dissection of the proposed flap. The perforators were mainly musculocutaneous in the proximal leg and septocutaneous distally. Conclusions: The vascular details visualized by this technique made advancement over the existing methods namely color Doppler, audio Doppler, two dimensional angiography etc. It improved the understanding of perforator flaps and their successful clinical application. PMID:23450763
FFT and cone-beam CT reconstruction on graphics hardware
NASA Astrophysics Data System (ADS)
Després, Philippe; Sun, Mingshan; Hasegawa, Bruce H.; Prevrhal, Sven
2007-03-01
Graphics processing units (GPUs) are increasingly used for general purpose calculations. Their pipelined architecture can be exploited to accelerate various parallelizable algorithms. Medical imaging applications are inherently well suited to benefit from the development of GPU-based computational platforms. We evaluate in this work the potential of GPUs to improve the execution speed of two common medical imaging tasks, namely Fourier transforms and tomographic reconstructions. A two-dimensional fast Fourier transform (FFT) algorithm was GPU-implemented and compared, in terms of execution speed, to two popular CPU-based FFT routines. Similarly, the Feldkamp, David and Kress (FDK) algorithm for cone-beam tomographic reconstruction was implemented on the GPU and its performance compared to a CPU version. Different reconstruction strategies were employed to assess the performance of various GPU memory layouts. For the specific hardware used, GPU implementations of the FFT were up to 20 times faster than their CPU counterparts, but slower than highly optimized CPU versions of the algorithm. Tomographic reconstructions were faster on the GPU by a factor up to 30, allowing 256 3 voxel reconstructions of 256 projections in about 20 seconds. Overall, GPUs are an attractive alternative to other imaging-dedicated computing hardware like application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) in terms of cost, simplicity and versatility. With the development of simpler language extensions and programming interfaces, GPUs are likely to become essential tools in medical imaging.
Quantitative SPECT reconstruction using CT-derived corrections
NASA Astrophysics Data System (ADS)
Willowson, Kathy; Bailey, Dale L.; Baldock, Clive
2008-06-01
A method for achieving quantitative single-photon emission computed tomography (SPECT) based upon corrections derived from x-ray computed tomography (CT) data is presented. A CT-derived attenuation map is used to perform transmission-dependent scatter correction (TDSC) in conjunction with non-uniform attenuation correction. The original CT data are also utilized to correct for partial volume effects in small volumes of interest. The accuracy of the quantitative technique has been evaluated with phantom experiments and clinical lung ventilation/perfusion SPECT/CT studies. A comparison of calculated values with the known total activities and concentrations in a mixed-material cylindrical phantom, and in liver and cardiac inserts within an anthropomorphic torso phantom, produced accurate results. The total activity in corrected ventilation-subtracted perfusion images was compared to the calibrated injected dose of [99mTc]-MAA (macro-aggregated albumin). The average difference over 12 studies between the known and calculated activities was found to be -1%, with a range of ±7%.
Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc
2014-06-15
factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.
Multienergy CT acquisition and reconstruction with a stepped tube potential scan
Shen, Le; Xing, Yuxiang
2015-01-15
Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT can be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed Seg
CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis
NASA Astrophysics Data System (ADS)
Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook
2014-03-01
The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.
Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction
NASA Astrophysics Data System (ADS)
De Francesco, Silvia; Ferreira da Silva, Augusto M.
2004-05-01
Related to the demand for fast and efficient tomographic reconstruction methods, the interest for Direct Fourier (DF) methods, which have a reduced computational complexity, has been growing. In this paper we present a new NUFFT-based DF reconstruction method which can be directly applied to fan-beam CT data sets avoiding the interpolation in Radon space as well as the interpolation in Fourier space. The performance of the new algorithm, in ideal and noisy conditions, is compared to those of other well known reconstruction methods, revealing an excellent behavior, specially in noisy conditions.
Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni
2016-01-01
Background Iterative reconstruction methods have attracted attention for reducing radiation doses in computed tomography (CT). Purpose To investigate the detectability of pancreatic calcification using dose-reduced CT reconstructed with model-based iterative construction (MBIR) and adaptive statistical iterative reconstruction (ASIR). Material and Methods This prospective study approved by Institutional Review Board included 85 patients (57 men, 28 women; mean age, 69.9 years; mean body weight, 61.2 kg). Unenhanced CT was performed three times with different radiation doses (reference-dose CT [RDCT], low-dose CT [LDCT], ultralow-dose CT [ULDCT]). From RDCT, LDCT, and ULDCT, images were reconstructed with filtered-back projection (R-FBP, used for establishing reference standard), ASIR (L-ASIR), and MBIR and ASIR (UL-MBIR and UL-ASIR), respectively. A lesion (pancreatic calcification) detection test was performed by two blinded radiologists with a five-point certainty level scale. Results Dose-length products of RDCT, LDCT, and ULDCT were 410, 97, and 36 mGy-cm, respectively. Nine patients had pancreatic calcification. The sensitivity for detecting pancreatic calcification with UL-MBIR was high (0.67–0.89) compared to L-ASIR or UL-ASIR (0.11–0.44), and a significant difference was seen between UL-MBIR and UL-ASIR for one reader (P = 0.014). The area under the receiver-operating characteristic curve for UL-MBIR (0.818–0.860) was comparable to that for L-ASIR (0.696–0.844). The specificity was lower with UL-MBIR (0.79–0.92) than with L-ASIR or UL-ASIR (0.96–0.99), and a significant difference was seen for one reader (P < 0.01). Conclusion In UL-MBIR, pancreatic calcification can be detected with high sensitivity, however, we should pay attention to the slightly lower specificity. PMID:27110389
A preliminary investigation of 3D preconditioned conjugate gradient reconstruction for cone-beam CT
NASA Astrophysics Data System (ADS)
Fu, Lin; De Man, Bruno; Zeng, Kai; Benson, Thomas M.; Yu, Zhou; Cao, Guangzhi; Thibault, Jean-Baptiste
2012-03-01
Model-based iterative reconstruction (MBIR) methods based on maximum a posteriori (MAP) estimation have been recently introduced to multi-slice CT scanners. The model-based approach has shown promising image quality improvement with reduced radiation dose compared to conventional FBP methods, but the associated high computation cost limits its widespread use in clinical environments. Among the various choices of numerical algorithms to optimize the MAP cost function, simultaneous update methods such as the conjugate gradient (CG) method have a relatively high level of parallelism to take full advantage of a new generation of many-core computing hardware. With proper preconditioning techniques, fast convergence speeds of CG algorithms have been demonstrated in 3D emission and 2D transmission reconstruction. However, 3D transmission reconstruction using preconditioned conjugate gradient (PCG) has not been reported. Additional challenges in applying PCG in 3D CT reconstruction include the large size of clinical CT data, shift-variant and incomplete sampling, and complex regularization schemes to meet the diagnostic standard of image quality. In this paper, we present a ramp-filter based PCG algorithm for 3D CT MBIR. Convergence speeds of algorithms with and without using the preconditioner are compared.
Zhang Junan; Yin Fangfang
2007-09-15
We studied a recently proposed aggregated CT reconstruction technique which combines the complementary advantages of kilovoltage (kV) and megavoltage (MV) x-ray imaging. Various phantoms were imaged to study the effects of beam orientations and geometry of the imaging object on image quality of reconstructed CT. It was shown that the quality of aggregated CT was correlated with both kV and MV beam orientations and the degree of this correlation depended upon the geometry of the imaging object. The results indicated that the optimal orientations were those when kV beams pass through the thinner portion and MV beams pass through the thicker portion of the imaging object. A special preprocessing procedure was also developed to perform contrast conversions between kV and MV information prior to image reconstruction. The performance of two reconstruction methods, one filtered backprojection method and one iterative method, were compared. The effects of projection number, beam truncation, and contrast conversion on the CT image quality were investigated.
A method for investigating system matrix properties in optimization-based CT reconstruction
NASA Astrophysics Data System (ADS)
Rose, Sean D.; Sidky, Emil Y.; Pan, Xiaochuan
2016-04-01
Optimization-based iterative reconstruction methods have shown much promise for a variety of applications in X-ray computed tomography (CT). In these reconstruction methods, the X-ray measurement is modeled as a linear mapping from a finite-dimensional image space to a finite dimensional data-space. This mapping is dependent on a number of factors including the basis functions used for image representation1 and the method by which the matrix representing this mapping is generated.2 Understanding the properties of this linear mapping and how it depends on our choice of parameters is fundamental to optimization-based reconstruction. In this work, we confine our attention to a pixel basis and propose a method to investigate the effect of pixel size in optimization-based reconstruction. The proposed method provides insight into the tradeoff between higher resolution image representation and matrix conditioning. We demonstrate this method for a particular breast CT system geometry. We find that the images obtained from accurate solution of a least squares reconstruction optimization problem have high sensitivity to pixel size within certain regimes. We propose two methods by which this sensitivity can be reduced and demonstrate their efficacy. Our results indicate that the choice of pixel size in optimization-based reconstruction can have great impact on the quality of the reconstructed image, and that understanding the properties of the linear mapping modeling the X-ray measurement can help guide us with this choice.
Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction.
Nien, Hung; Fessler, Jeffrey A
2016-04-01
Statistical image reconstruction (SIR) methods are studied extensively for X-ray computed tomography (CT) due to the potential of acquiring CT scans with reduced X-ray dose while maintaining image quality. However, the longer reconstruction time of SIR methods hinders their use in X-ray CT in practice. To accelerate statistical methods, many optimization techniques have been investigated. Over-relaxation is a common technique to speed up convergence of iterative algorithms. For instance, using a relaxation parameter that is close to two in alternating direction method of multipliers (ADMM) has been shown to speed up convergence significantly. This paper proposes a relaxed linearized augmented Lagrangian (AL) method that shows theoretical faster convergence rate with over-relaxation and applies the proposed relaxed linearized AL method to X-ray CT image reconstruction problems. Experimental results with both simulated and real CT scan data show that the proposed relaxed algorithm (with ordered-subsets [OS] acceleration) is about twice as fast as the existing unrelaxed fast algorithms, with negligible computation and memory overhead. PMID:26685227
Two-dimensional reconstruction algorithm of an inverse-geometry volumetric CT system
NASA Astrophysics Data System (ADS)
Baek, Jongduk; Pelc, Norbert J.
2007-03-01
An inverse-geometry volumetric CT (IGCT) system uses a large source array opposite a smaller detector array. Conventional 2D IGCT reconstruction is performed by using gridding. We describe a 2D IGCT reconstruction algorithm without gridding. The IGCT raw data can be viewed as being composed of many fan beams, each with a detector at its focus. Each projection is undersampled but the missing samples are provided by other views. In order to get high spatial resolution, zeros are inserted between acquired projection samples in each fan beam, and reconstruction is performed using a direct fan beam reconstruction algorithm. Initial IGCT reconstruction results showed ringing artifacts caused by fact that the rho samples in the ensemble of views are not equally spaced. We present a new method for correcting the errors that reduces the artifacts to below one Hounsfield Unit
Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction
NASA Astrophysics Data System (ADS)
Wu, Haibo; Maier, Andreas; Fahrig, Rebecca; Hornegger, Joachim
2012-03-01
Four dimensional computed tomography (4D-CT) is very important for treatment planning in thorax or abdomen area, e.g. for guiding radiation therapy planning. The respiratory motion makes the reconstruction problem illposed. Recently, compressed sensing theory was introduced. It uses sparsity as a prior to solve the problem and improves image quality considerably. However, the images at each phase are reconstructed individually. The correlations between neighboring phases are not considered in the reconstruction process. In this paper, we propose the spatial-temporal total variation regularization (STTVR) method which not only employs the sparsity in the spatial domain but also in the temporal domain. The algorithm is validated with XCAT thorax phantom. The Euclidean norm of the reconstructed image and ground truth is calculated for evaluation. The results indicate that our method improves the reconstruction quality by more than 50% compared to standard ART.
Filtered back-projection reconstruction for attenuation proton CT along most likely paths.
Quiñones, C T; Létang, J M; Rit, S
2016-05-01
This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West-Sherwood effect. PMID:27032330
Filtered back-projection reconstruction for attenuation proton CT along most likely paths
NASA Astrophysics Data System (ADS)
Quiñones, C. T.; Létang, J. M.; Rit, S.
2016-05-01
This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West–Sherwood effect.
Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing
2015-01-01
Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF’s neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications. PMID:26561284
Software architecture for multi-bed FDK-based reconstruction in X-ray CT scanners.
Abella, M; Vaquero, J J; Sisniega, A; Pascau, J; Udías, A; García, V; Vidal, I; Desco, M
2012-08-01
Most small-animal X-ray computed tomography (CT) scanners are based on cone-beam geometry with a flat-panel detector orbiting in a circular trajectory. Image reconstruction in these systems is usually performed by approximate methods based on the algorithm proposed by Feldkamp et al. (FDK). Besides the implementation of the reconstruction algorithm itself, in order to design a real system it is necessary to take into account numerous issues so as to obtain the best quality images from the acquired data. This work presents a comprehensive, novel software architecture for small-animal CT scanners based on cone-beam geometry with circular scanning trajectory. The proposed architecture covers all the steps from the system calibration to the volume reconstruction and conversion into Hounsfield units. It includes an efficient implementation of an FDK-based reconstruction algorithm that takes advantage of system symmetries and allows for parallel reconstruction using a multiprocessor computer. Strategies for calibration and artifact correction are discussed to justify the strategies adopted. New procedures for multi-bed misalignment, beam-hardening, and Housfield units calibration are proposed. Experiments with phantoms and real data showed the suitability of the proposed software architecture for an X-ray small animal CT based on cone-beam geometry. PMID:21908068
Low-dose X-ray CT reconstruction via dictionary learning.
Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge
2012-09-01
Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666
Low-Dose X-ray CT Reconstruction via Dictionary Learning
Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge
2013-01-01
Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666
Rank-sparsity constrained, spectro-temporal reconstruction for retrospectively gated, dynamic CT
NASA Astrophysics Data System (ADS)
Clark, D. P.; Lee, C. L.; Kirsch, D. G.; Badea, C. T.
2015-03-01
Relative to prospective projection gating, retrospective projection gating for dynamic CT applications allows fast imaging times, minimizing the potential for physiological and anatomic variability. Preclinically, fast imaging is attractive due to the rapid clearance of low molecular weight contrast agents and the rapid heart rate of rodents. Clinically, retrospective gating is relevant for intraoperative C-arm CT. More generally, retrospective sampling provides an opportunity for significant reduction in x-ray dose within the framework of compressive sensing theory and sparsity-constrained iterative reconstruction. Even so, CT reconstruction from projections with random temporal sampling is a very poorly conditioned inverse problem, requiring high fidelity regularization to minimize variability in the reconstructed results. Here, we introduce a highly novel data acquisition and regularization strategy for spectro-temporal (5D) CT reconstruction from retrospectively gated projections. We show that by taking advantage of the rank-sparse structure and separability of the temporal and spectral reconstruction sub-problems, being able to solve each sub-problem independently effectively guarantees that we can solve both problems together. In this paper, we show 4D simulation results (2D + 2 energies + time) using the proposed technique and compare them with two competing techniques— spatio-temporal total variation minimization and prior image constrained compressed sensing. We also show in vivo, 5D (3D + 2 energies + time) myocardial injury data acquired in a mouse, reconstructing 20 data sets (10 phases, 2 energies) and performing material decomposition from data acquired over a single rotation (360°, dose: ~60 mGy).
Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR)
Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan
2013-11-15
Purpose: Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables.Methods: Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision.Results: Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A.Conclusions: The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of
Lin, Yuan Samei, Ehsan
2014-02-15
Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced
Low-dose CT statistical iterative reconstruction via modified MRF regularization.
Shangguan, Hong; Zhang, Quan; Liu, Yi; Cui, Xueying; Bai, Yunjiao; Gui, Zhiguo
2016-01-01
It is desirable to reduce the excessive radiation exposure to patients in repeated medical CT applications. One of the most effective ways is to reduce the X-ray tube current (mAs) or tube voltage (kVp). However, it is difficult to achieve accurate reconstruction from the noisy measurements. Compared with the conventional filtered back-projection (FBP) algorithm leading to the excessive noise in the reconstructed images, the approaches using statistical iterative reconstruction (SIR) with low mAs show greater image quality. To eliminate the undesired artifacts and improve reconstruction quality, we proposed, in this work, an improved SIR algorithm for low-dose CT reconstruction, constrained by a modified Markov random field (MRF) regularization. Specifically, the edge-preserving total generalized variation (TGV), which is a generalization of total variation (TV) and can measure image characteristics up to a certain degree of differentiation, was introduced to modify the MRF regularization. In addition, a modified alternating iterative algorithm was utilized to optimize the cost function. Experimental results demonstrated that images reconstructed by the proposed method could not only generate high accuracy and resolution properties, but also ensure a higher peak signal-to-noise ratio (PSNR) in comparison with those using existing methods. PMID:26542474
NASA Astrophysics Data System (ADS)
Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.
2013-03-01
Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.
A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography
Stevendaal, U. van; Berg, J. von; Lorenz, C.; Grass, M.
2008-07-15
Since coronary heart disease is one of the main causes of death all over the world, cardiac computed tomography (CT) imaging is an application of very high interest in order to verify indications timely. Due to the cardiac motion, electrocardiogram (ECG) gating has to be implemented into the reconstruction of the measured projection data. However, the temporal and spatial resolution is limited due to the mechanical movement of the gantry and due to the fact that a finite angular span of projections has to be acquired for the reconstruction of each voxel. In this article, a motion-compensated reconstruction method for cardiac CT is described, which can be used to increase the signal-to-noise ratio or to suppress motion blurring. Alternatively, it can be translated into an improvement of the temporal and spatial resolution. It can be applied to the entire heart in common and to high contrast objects moving with the heart in particular, such as calcified plaques or devices like stents. The method is based on three subsequent steps: As a first step, the projection data acquired in low pitch helical acquisition mode together with the ECG are reconstructed at multiple phase points. As a second step, the motion-vector field is calculated from the reconstructed images in relation to the image in a reference phase. Finally, a motion-compensated reconstruction is carried out for the reference phase using those projections, which cover the cardiac phases for which the motion-vector field has been determined.
Phase-selective image reconstruction of the lungs in small animals using micro-CT
NASA Astrophysics Data System (ADS)
Johnston, S. M.; Perez, B. A.; Kirsch, D. G.; Badea, C. T.
2010-04-01
Gating in small animal imaging can compensate for artifacts due to physiological motion. This paper presents a strategy for sampling and image reconstruction in the rodent lung using micro-CT. The approach involves rapid sampling of freebreathing mice without any additional hardware to detect respiratory motion. The projection images are analyzed postacquisition to derive a respiratory signal, which is used to provide weighting factors for each projection that favor a selected phase of the respiration (e.g. end-inspiration or end-expiration) for the reconstruction. Since the sampling cycle and the respiratory cycle are uncorrelated, the sets of projections corresponding to any of the selected respiratory phases do not have a regular angular distribution. This drastically affects the image quality of reconstructions based on simple filtered backprojection. To address this problem, we use an iterative reconstruction algorithm that combines the Simultaneous Algebraic Reconstruction Technique with Total Variation minimization (SART-TV). At each SART-TV iteration, backprojection is performed with a set of weighting factors that favor the desired respiratory phase. To reduce reconstruction time, the algorithm is implemented on a graphics processing unit. The performance of the proposed approach was investigated in simulations and in vivo scans of mice with primary lung cancers imaged with our in-house developed dual tube/detector micro-CT system. We note that if the ECG signal is acquired during sampling, the same approach could be used for phase-selective cardiac imaging.
Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; White, Stuart C.
1992-05-01
This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.
NASA Astrophysics Data System (ADS)
Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.
2010-04-01
Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.
3D reconstruction based on CT image and its application
NASA Astrophysics Data System (ADS)
Zhang, Jianxun; Zhang, Mingmin
2004-03-01
Reconstitute the 3-D model of the liver and its internal piping system and simulation of the liver surgical operation can increase the accurate and security of the liver surgical operation, attain a purpose for the biggest limit decrease surgical operation wound, shortening surgical operation time, increasing surgical operation succeeding rate, reducing medical treatment expenses and promoting patient recovering from illness. This text expatiated technology and method that the author constitutes 3-D the model of the liver and its internal piping system and simulation of the liver surgical operation according to the images of CT. The direct volume rendering method establishes 3D the model of the liver. Under the environment of OPENGL adopt method of space point rendering to display liver's internal piping system and simulation of the liver surgical operation. Finally, we adopt the wavelet transform method compressed the medical image data.
Endoscopic-CT: learning-based photometric reconstruction for endoscopic sinus surgery
NASA Astrophysics Data System (ADS)
Reiter, A.; Leonard, S.; Sinha, A.; Ishii, M.; Taylor, R. H.; Hager, G. D.
2016-03-01
In this work we present a method for dense reconstruction of anatomical structures using white light endoscopic imagery based on a learning process that estimates a mapping between light reflectance and surface geometry. Our method is unique in that few unrealistic assumptions are considered (i.e., we do not assume a Lambertian reflectance model nor do we assume a point light source) and we learn a model on a per-patient basis, thus increasing the accuracy and extensibility to different endoscopic sequences. The proposed method assumes accurate video-CT registration through a combination of Structure-from-Motion (SfM) and Trimmed-ICP, and then uses the registered 3D structure and motion to generate training data with which to learn a multivariate regression of observed pixel values to known 3D surface geometry. We demonstrate with a non-linear regression technique using a neural network towards estimating depth images and surface normal maps, resulting in high-resolution spatial 3D reconstructions to an average error of 0.53mm (on the low side, when anatomy matches the CT precisely) to 1.12mm (on the high side, when the presence of liquids causes scene geometry that is not present in the CT for evaluation). Our results are exhibited on patient data and validated with associated CT scans. In total, we processed 206 total endoscopic images from patient data, where each image yields approximately 1 million reconstructed 3D points per image.
Yin, Zhye De Man, Bruno; Yao, Yangyang; Wu, Mingye; Montillo, Albert; Edic, Peter M.; Kalra, Mannudeep
2015-05-15
Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.
Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.
2016-03-01
The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
A multi-resolution approach to retrospectively-gated cardiac micro-CT reconstruction
NASA Astrophysics Data System (ADS)
Clark, D. P.; Johnson, G. A.; Badea, C. T.
2014-03-01
In preclinical research, micro-CT is commonly used to provide anatomical information; however, there is significant interest in using this technology to obtain functional information in cardiac studies. The fastest acquisition in 4D cardiac micro-CT imaging is achieved via retrospective gating, resulting in irregular angular projections after binning the projections into phases of the cardiac cycle. Under these conditions, analytical reconstruction algorithms, such as filtered back projection, suffer from streaking artifacts. Here, we propose a novel, multi-resolution, iterative reconstruction algorithm inspired by robust principal component analysis which prevents the introduction of streaking artifacts, while attempting to recover the highest temporal resolution supported by the projection data. The algorithm achieves these results through a unique combination of the split Bregman method and joint bilateral filtration. We illustrate the algorithm's performance using a contrast-enhanced, 2D slice through the MOBY mouse phantom and realistic projection acquisition and reconstruction parameters. Our results indicate that the algorithm is robust to under sampling levels of only 34 projections per cardiac phase and, therefore, has high potential in reducing both acquisition times and radiation dose. Another potential advantage of the multi-resolution scheme is the natural division of the reconstruction problem into a large number of independent sub-problems which can be solved in parallel. In future work, we will investigate the performance of this algorithm with retrospectively-gated, cardiac micro-CT data.
Pixel-based reconstruction (PBR) promising simultaneous techniques for CT reconstructions
Fager, R.S. . Office of the Associate Provost for Research); Peddanarappagari, K.V.; Kumar, G.N. . Dept. of Electrical Engineering)
1993-03-01
The authors present some new algorithms belonging to a class of algorithms, pixel-based reconstruction (PBR), similar to SIRT' (simultaneous iterative reconstruction techniques) methods for reconstruction of objects from their fan beam projections in x-ray transmission tomography. The general logic of these algorithms is discussed, and, as a corollary, two new ideas are presented, which gave promising results in the simulation studies. It was found in the simulation studies, contrary to previous results with parallel beam projections, that these iterative algebraic algorithms don't diverge when a more logical technique of obtaining the pseudo-projections is used. These simulations were carried out under conditions where the number of object pixels exceeded (double) the number of detector pixel readings, i.e., the equations were highly under-determined; however, the reconstructions were quite satisfactory. The effect of the number of projections on the reconstruction and the convergence to the exact solution is shown. For comparison, the reconstructions obtained by convolution back-projection are also given.
GPU-accelerated regularized iterative reconstruction for few-view cone beam CT
Matenine, Dmitri; Goussard, Yves
2015-04-15
Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.
Evaluation of a 4D cone-beam CT reconstruction approach using a simulation framework.
Hartl, Alexander; Yaniv, Ziv
2009-01-01
Current image-guided navigation systems for thoracic abdominal interventions utilize three dimensional (3D) images acquired at breath-hold. As a result they can only provide guidance at a specific point in the respiratory cycle. The intervention is thus performed in a gated manner, with the physician advancing only when the patient is at the same respiratory cycle in which the 3D image was acquired. To enable a more continuous workflow we propose to use 4D image data. We describe an approach to constructing a set of 4D images from a diagnostic CT acquired at breath-hold and a set of intraoperative cone-beam CT (CBCT) projection images acquired while the patient is freely breathing. Our approach is based on an initial reconstruction of a gated 4D CBCT data set. The 3D CBCT images for each respiratory phase are then non-rigidly registered to the diagnostic CT data. Finally the diagnostic CT is deformed based on the registration results, providing a 4D data set with sufficient quality for navigation purposes. In this work we evaluate the proposed reconstruction approach using a simulation framework. A 3D CBCT dataset of an anthropomorphic phantom is deformed using internal motion data acquired from an animal model to create a ground truth 4D CBCT image. Simulated projection images are then created from the 4D image and the known CBCT scan parameters. Finally, the original 3D CBCT and the simulated X-ray images are used as input to our reconstruction method. The resulting 4D data set is then compared to the known ground truth by normalized cross correlation(NCC). We show that the deformed diagnostic CTs are of better quality than the gated reconstructions with a mean NCC value of 0.94 versus a mean 0.81 for the reconstructions. PMID:19964143
Reconstruction of the sternum and chest wall with methyl methacrylate: CT and MRI appearance.
Gayer, G; Yellin, A; Apter, S; Rozenman, Y
1998-01-01
The aim of our study was to define the appearance of methyl methacrylate grafts replacing resected sternum and ribs on CT and MRI and how the sternal graft may mimic an abnormally sclerotic sternum on CT images. We reviewed the CT scans of nine patients who had undergone chest wall resection (eight with malignant and one with benign disease) and reconstruction with a composite of methyl methacrylate and Marlex mesh graft. One of them had an MRI study as well. The size, shape and CT attenuation were assessed on mediastinal and bone window settings. The sternal graft was seen on mediastinal and even better on bone windows as an abnormally wide, irregularly shaped structure, somewhat denser than the normal sternum. The chest wall prosthesis replacing resected ribs was seen as a continuous dense structure and of similar attenuation as that of the sternal graft. On MRI the prosthesis appeared as a well-defined structure with no signal. Reconstruction of the chest wall with methyl methacrylate appears on CT as a diffusely dense sclerotic bone lesion not unlike a malignant lesion. The possibility of a graft has to be included in the differential diagnosis in these cases. PMID:9477274
In-line phase contrast micro-CT reconstruction for biomedical specimens.
Fu, Jian; Tan, Renbo
2014-01-01
X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology. PMID:24211924
Pan, Xiaochuan; Sidky, Emil Y; Vannier, Michael
2010-01-01
Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues. PMID:20376330
Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition
NASA Astrophysics Data System (ADS)
Bruder, H.; Raupach, R.; Sunnegardh, J.; Allmendinger, T.; Klotz, E.; Stierstorfer, K.; Flohr, T.
2015-11-01
In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high. In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution. It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover
Bruder, H; Raupach, R; Sunnegardh, J; Allmendinger, T; Klotz, E; Stierstorfer, K; Flohr, T
2015-11-01
In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high.In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR 'source' image data, while maintaining their resolution.It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover spatial
Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi
2016-01-01
Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. PMID:26832374
PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.
Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel
2010-09-01
The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and
NASA Astrophysics Data System (ADS)
Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno
2016-05-01
In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.
NASA Astrophysics Data System (ADS)
Noo, F.; Hahn, K.; Guo, Z.
2016-03-01
Iterative reconstruction methods have become an important research topic in X-ray computed tomography (CT), due to their ability to yield improvements in image quality in comparison with the classical filtered bacprojection method. There are many ways to design an effective iterative reconstruction method. Moreover, for each design, there may be a large number of parameters that can be adjusted. Thus, early assessment of image quality, before clinical deployment, plays a large role in identifying and refining solutions. Currently, there are few publications reporting on early, task-based assessment of image quality achieved with iterative reconstruction methods. We report here on such an assessment, and we illustrate at the same time the importance of the grayscale used for image display when conducting this type of assessment. Our results further support observations made by others that the edge preserving penalty term used in iterative reconstruction is a key ingredient to improving image quality in terms of detection task. Our results also provide a clear demonstration of an implication made in one of our previous publications, namely that the grayscale window plays an important role in image quality comparisons involving iterative CT reconstruction methods.
Cardiac-state-driven CT image reconstruction algorithm for cardiac imaging
NASA Astrophysics Data System (ADS)
Cesmeli, Erdogan; Edic, Peter M.; Iatrou, Maria; Hsieh, Jiang; Gupta, Rajiv; Pfoh, Armin H.
2002-05-01
Multi-slice CT scanners use EKG gating to predict the cardiac phase during slice reconstruction from projection data. Cardiac phase is generally defined with respect to the RR interval. The implicit assumption made is that the duration of events in a RR interval scales linearly when the heart rate changes. Using a more detailed EKG analysis, we evaluate the impact of relaxing this assumption on image quality. We developed a reconstruction algorithm that analyzes the associated EKG waveform to extract the natural cardiac states. A wavelet transform was used to decompose each RR-interval into P, QRS, and T waves. Subsequently, cardiac phase was defined with respect to these waves instead of a percentage or time delay from the beginning or the end of RR intervals. The projection data was then tagged with the cardiac phase and processed using temporal weights that are function of their cardiac phases. Finally, the tagged projection data were combined from multiple cardiac cycles using a multi-sector algorithm to reconstruct images. The new algorithm was applied to clinical data, collected on a 4-slice (GE LightSpeed Qx/i) and 8-slice CT scanner (GE LightSpeed Plus), with heart rates of 40 to 80 bpm. The quality of reconstruction is assessed by the visualization of the major arteries, e.g. RCA, LAD, LC in the reformat 3D images. Preliminary results indicate that Cardiac State Driven reconstruction algorithm offers better image quality than their RR-based counterparts.
On proton CT reconstruction using MVCT-converted virtual proton projections
Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A.
2012-06-15
Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of {+-}0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of {+-}0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of {+-}1.1% compared with that reconstructed from theoretical projections
Suzuki, Taizo; Rashed, Essam A.
2013-01-01
New designs of future computed tomography (CT) scanners called sparse-view CT and interior CT have been considered in the CT community. Since these CTs measure only incomplete projection data, a key to put these CT scanners to practical use is a development of advanced image reconstruction methods. After 2000, there was a large progress in this research area briefly summarized as follows. In the sparse-view CT, various image reconstruction methods using the compressed sensing (CS) framework have been developed towards reconstructing clinically feasible images from a reduced number of projection data. In the interior CT, several novel theoretical results on solution uniqueness and solution stability have been obtained thanks to the discovery of a new class of reconstruction methods called differentiated backprojection (DBP). In this paper, we mainly review this progress including mathematical principles of the CS image reconstruction and the DBP image reconstruction for readers unfamiliar with this area. We also show some experimental results from our past research to demonstrate that this progress is not only theoretically elegant but also works in practical imaging situations. PMID:23833728
A multi-thread scheduling method for 3D CT image reconstruction using multi-GPU.
Zhu, Yining; Zhao, Yunsong; Zhao, Xing
2012-01-01
As a whole process, we present a concept that the complete reconstruction of CT image should include the computation part on GPUs and the data storage part on hard disks. From this point of view, we propose a Multi-Thread Scheduling (MTS) method to implement the 3D CT image reconstruction such as using FDK algorithm, to trade off the computing and storage time. In this method we use Multi-Threads to control GPUs and a separate thread to accomplish data storage, so that we make the calculation and data storage simultaneously. In addition, we use the 4-channel texture to maintain symmetrical projection data in CUDA framework, which can reduce the calculation time significantly. Numerical experiment shows that the time for the whole process with our method is almost the same as the data storage time. PMID:22635174
CT reconstruction from portal images acquired during volumetric-modulated arc therapy
NASA Astrophysics Data System (ADS)
Poludniowski, G.; Thomas, M. D. R.; Evans, P. M.; Webb, S.
2010-10-01
Volumetric-modulated arc therapy (VMAT), a form of intensity-modulated arc therapy (IMAT), has become a topic of research and clinical activity in recent years. As a form of arc therapy, portal images acquired during the treatment fraction form a (partial) Radon transform of the patient. We show that these portal images, when used in a modified global cone-beam filtered backprojection (FBP) algorithm, allow a surprisingly recognizable CT-volume to be reconstructed. The possibility of distinguishing anatomy in such VMAT-CT reconstructions suggests that this could prove to be a valuable treatment position-verification tool. Further, some potential for local-tomography techniques to improve image quality is shown.
Zhang, Haiyan; Zhang, Liyi; Sun, Yunshan; Zhang, Jingyu
2015-01-01
Reducing X-ray tube current is one of the widely used methods for decreasing the radiation dose. Unfortunately, the signal-to-noise ratio (SNR) of the projection data degrades simultaneously. To improve the quality of reconstructed images, a dictionary learning based penalized weighted least-squares (PWLS) approach is proposed for sinogram denoising. The weighted least-squares considers the statistical characteristic of noise and the penalty models the sparsity of sinogram based on dictionary learning. Then reconstruct CT image using filtered back projection (FBP) algorithm from the denoised sinogram. The proposed method is particularly suitable for the projection data with low SNR. Experimental results show that the proposed method can get high-quality CT images when the signal to noise ratio of projection data declines sharply. PMID:26409424
Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction
Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.
2013-03-15
Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest
Ehrhardt, Jan; Werner, Rene; Saering, Dennis; Frenzel, Thorsten; Lu Wei; Low, Daniel; Handels, Heinz
2007-02-15
Respiratory motion degrades anatomic position reproducibility and leads to issues affecting image acquisition, treatment planning, and radiation delivery. Four-dimensional (4D) computer tomography (CT) image acquisition can be used to measure the impact of organ motion and to explicitly account for respiratory motion during treatment planning and radiation delivery. Modern CT scanners can only scan a limited region of the body simultaneously and patients have to be scanned in segments consisting of multiple slices. A respiratory signal (spirometer signal or surface tracking) is used to reconstruct a 4D data set by sorting the CT scans according to the couch position and signal coherence with predefined respiratory phases. But artifacts can occur if there are no acquired data segments for exactly the same respiratory state for all couch positions. These artifacts are caused by device-dependent limitations of gantry rotation, image reconstruction times and by the variability of the patient's respiratory pattern. In this paper an optical flow based method for improved reconstruction of 4D CT data sets from multislice CT scans is presented. The optical flow between scans at neighboring respiratory states is estimated by a non-linear registration method. The calculated velocity field is then used to reconstruct a 4D CT data set by interpolating data at exactly the predefined respiratory phase. Our reconstruction method is compared with the usually used reconstruction based on amplitude sorting. The procedures described were applied to reconstruct 4D CT data sets for four cancer patients and a qualitative and quantitative evaluation of the optical flow based reconstruction method was performed. Evaluation results show a relevant reduction of reconstruction artifacts by our technique. The reconstructed 4D data sets were used to quantify organ displacements and to visualize the abdominothoracic organ motion.
Novel iterative reconstruction method for optimal dose usage in redundant CT - acquisitions
NASA Astrophysics Data System (ADS)
Bruder, H.; Raupach, R.; Allmendinger, T.; Kappler, S.; Sunnegardh, J.; Stierstorfer, K.; Flohr, T.
2014-03-01
In CT imaging, a variety of applications exist where reconstructions are SNR and/or resolution limited. However, if the measured data provide redundant information, composite image data with high SNR can be computed. Generally, these composite image volumes will compromise spectral information and/or spatial resolution and/or temporal resolution. This brings us to the idea of transferring the high SNR of the composite image data to low SNR (but high resolution) `source' image data. It was shown that the SNR of CT image data can be improved using iterative reconstruction [1] .We present a novel iterative reconstruction method enabling optimal dose usage of redundant CT measurements of the same body region. The generalized update equation is formulated in image space without further referring to raw data after initial reconstruction of source and composite image data. The update equation consists of a linear combination of the previous update, a correction term constrained by the source data, and a regularization prior initialized by the composite data. The efficiency of the method is demonstrated for different applications: (i) Spectral imaging: we have analysed material decomposition data from dual energy data of our photon counting prototype scanner: the material images can be significantly improved transferring the good noise statistics of the 20 keV threshold image data to each of the material images. (ii) Multi-phase liver imaging: Reconstructions of multi-phase liver data can be optimized by utilizing the noise statistics of combined data from all measured phases (iii) Helical reconstruction with optimized temporal resolution: splitting up reconstruction of redundant helical acquisition data into a short scan reconstruction with Tam window optimizes the temporal resolution The reconstruction of full helical data is then used to optimize the SNR. (iv) Cardiac imaging: the optimal phase image (`best phase') can be improved by transferring all applied over
Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET
NASA Astrophysics Data System (ADS)
Rezaei, Ahmadreza; Michel, Christian; Casey, Michael E.; Nuyts, Johan
2016-02-01
Previously, maximum-likelihood methods have been proposed to jointly estimate the activity image and the attenuation image or the attenuation sinogram from time-of-flight (TOF) positron emission tomography (PET) data. In this contribution, we propose a method that addresses the possible alignment problem of the TOF-PET emission data and the computed tomography (CT) attenuation data, by combining reconstruction and registration. The method, called MLRR, iteratively reconstructs the activity image while registering the available CT-based attenuation image, so that the pair of activity and attenuation images maximise the likelihood of the TOF emission sinogram. The algorithm is slow to converge, but some acceleration could be achieved by using Nesterov’s momentum method and by applying a multi-resolution scheme for the non-rigid displacement estimation. The latter also helps to avoid local optima, although convergence to the global optimum cannot be guaranteed. The results are evaluated on 2D and 3D simulations as well as a respiratory gated clinical scan. Our experiments indicate that the proposed method is able to correct for possible misalignment of the CT-based attenuation image, and is therefore a very promising approach to suppressing attenuation artefacts in clinical PET/CT. When applied to respiratory gated data of a patient scan, it produced deformations that are compatible with breathing motion and which reduced the well known attenuation artefact near the dome of the liver. Since the method makes use of the energy-converted CT attenuation image, the scale problem of joint reconstruction is automatically solved.
Dictionary learning based low-dose x-ray CT reconstruction using a balancing principle
NASA Astrophysics Data System (ADS)
Mou, Xuanqin; Wu, Junfeng; Bai, Ti; Xu, Qiong; Yu, Hengyong; Wang, Ge
2014-09-01
The high utility and wide applicability of x-ray imaging has led to a rapidly increased number of CT scans over the past years, and at the same time an elevated public concern on the potential risk of x-ray radiation to patients. Hence, a hot topic is how to minimize x-ray dose while maintaining the image quality. The low-dose CT strategies include modulation of x-ray flux and minimization of dataset size. However, these methods will produce noisy and insufficient projection data, which represents a great challenge to image reconstruction. Our team has been working to combine statistical iterative methods and advanced image processing techniques, especially dictionary learning, and have produced excellent preliminary results. In this paper, we report recent progress in dictionary learning based low-dose CT reconstruction, and discuss the selection of regularization parameters that are crucial for the algorithmic optimization. The key idea is to use a "balancing principle" based on a model function to choose the regularization parameters during the iterative process, and to determine a weight factor empirically for address the noise level in the projection domain. Numerical and experimental results demonstrate the merits of our proposed reconstruction approach.
Novel reconstruction algorithm for multiphasic cardiac imaging using multislice helical CT
NASA Astrophysics Data System (ADS)
Cesmeli, Erdogan; Edic, Peter M.; Iatrou, Maria; Pfoh, Armin H.
2001-06-01
Cardiac imaging is still a challenge to CT reconstruction algorithms due to the dynamic nature of the heart. We have developed a new reconstruction technique, called the Flexible Algorithm, which achieves high temporal resolution while it is robust to heart-rate variations. The Flexible Algorithm, first, retrospectively tags helical CT views with corresponding cardiac phases obtained from associated EKG. Next, it determines a set of views for each slice, a stack of which covers the entire heart. Subsequently, the algorithm selects an optimum subset of views to achieve the highest temporal resolution for the desired cardiac phase. Finally, it spatiotemporally filters the views in the selected subsets to reconstruct slices. We tested the performance of our algorithm using both a dynamic analytical phantom and clinical data. Preliminary results indicate that the Flexible Algorithm obtains improved spatiotemporal resolution for a large range of heart rates and variations than standard algorithms do. By providing improved image quality at any desired cardiac phase, and robustness to heart rate variations, the Flexible Algorithm enables cardiac applications in CT, including those that benefit from multiphase information.
Quantification of airway morphometry: the effect of CT acquisition and reconstruction parameters
NASA Astrophysics Data System (ADS)
Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Coxson, Harvey O.; Fuhrman, Carl R.; McMurray, Jessica M.; Park, Sang C.; Maitz, Glenn S.; Gur, David
2007-03-01
This study measured the accuracy of our airway quantification scheme using phantoms airway under different CT protocols. Airway remodeling is associated with several thoracic diseases (e.g., chronic bronchitis, asthma, and bronchiectasis), and, therefore, quantification of airway remodeling may have wide clinical application. Our scheme assigns pixels partial membership in the airway wall and lumen based on the pixel's HU value, which is intended to account for partial volume averaging inherent in CT image reconstruction. Twenty-four phantom airways with an outer diameter from 2.6 to 14.0 mm and wall thicknesses from 0.5 to 2.0 mm were analyzed. The absolute differences between measurements supplied by the manufacture and computed from CT images acquired at 40 mAs and reconstructed at 1.25 mm thickness using GE's "soft" and "lung" reconstruction kernels for lumen area ranged from 1.4% to 49.3% and 0.4% to 33.0%, respectively, and for wall area ranged from 0.3% to 118.0% and 2.1 to 92.9%, respectively. Accuracy typically improved as the kernel's spatial frequency increased. Airways whose wall thickness was close to the pixels dimensions were challenging to quantify. The partial membership assignment of our airway quantification accurately computed airway morphometry across a range of phantom airway sizes.
A dual formulation of a penalized maximum likelihood x-ray CT reconstruction problem
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Taguchi, Katsuyuki; Gullberg, Grant T.; Tsui, Benjamin M. W.
2009-02-01
This work studies the dual formulation of a penalized maximum likelihood reconstruction problem in x-ray CT. The primal objective function is a Poisson log-likelihood combined with a weighted cross-entropy penalty term. The dual formulation of the primal optimization problem is then derived and the optimization procedure outlined. The dual formulation better exploits the structure of the problem, which translates to faster convergence of iterative reconstruction algorithms. A gradient descent algorithm is implemented for solving the dual problem and its performance is compared with the filtered back-projection algorithm, and with the primal formulation optimized by using surrogate functions. The 3D XCAT phantom and an analytical x-ray CT simulator are used to generate noise-free and noisy CT projection data set with monochromatic and polychromatic x-ray spectrums. The reconstructed images from the dual formulation delineate the internal structures at early iterations better than the primal formulation using surrogate functions. However the body contour is slower to converge in the dual than in the primal formulation. The dual formulation demonstrate better noise-resolution tradeoff near the internal organs than the primal formulation. Since the surrogate functions in general can provide a diagonal approximation of the Hessian matrix of the objective function, further convergence speed up may be achieved by deriving the surrogate function of the dual objective function.
3D cardiac motion reconstruction from CT data and tagged MRI.
Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris
2012-01-01
In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825
3D Cardiac Motion Reconstruction from CT Data and Tagged MRI
Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris
2016-01-01
In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825
Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets
Lee, Dong H.; Chan, Sonny; Salisbury, Curt; Kim, Namkeun; Salisbury, Kenneth; Puria, Sunil; Blevins, Nikolas H.
2014-01-01
Background Middle-ear anatomy is integrally linked to both its normal function and its response to disease processes. Micro-CT imaging provides an opportunity to capture high-resolution anatomical data in a relatively quick and non-destructive manner. However, to optimally extract functionally relevant details, an intuitive means of reconstructing and interacting with these data is needed. Materials and methods A micro-CT scanner was used to obtain high-resolution scans of freshly explanted human temporal bones. An advanced volume renderer was adapted to enable real-time reconstruction, display, and manipulation of these volumetric datasets. A custom-designed user interface provided for semi-automated threshold segmentation. A 6-degrees-of-freedom navigation device was designed and fabricated to enable exploration of the 3D space in a manner intuitive to those comfortable with the use of a surgical microscope. Standard haptic devices were also incorporated to assist in navigation and exploration. Results Our visualization workstation could be adapted to allow for the effective exploration of middle-ear micro-CT datasets. Functionally significant anatomical details could be recognized and objective data could be extracted. Conclusions We have developed an intuitive, rapid, and effective means of exploring otological micro-CT datasets. This system may provide a foundation for additional work based on middle-ear anatomical data. PMID:20100558
Noise performance of statistical model based iterative reconstruction in clinical CT systems
NASA Astrophysics Data System (ADS)
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-03-01
The statistical model based iterative reconstruction (MBIR) method has been introduced to clinical CT systems. Due to the nonlinearity of this method, the noise characteristics of MBIR are expected to differ from those of filtered backprojection (FBP). This paper reports an experimental characterization of the noise performance of MBIR equipped on several state-of-the-art clinical CT scanners at our institution. The thoracic section of an anthropomorphic phantom was scanned 50 times to generate image ensembles for noise analysis. Noise power spectra (NPS) and noise standard deviation maps were assessed locally at different anatomical locations. It was found that MBIR lead to significant reduction in noise magnitude and improvement in noise spatial uniformity when compared with FBP. Meanwhile, MBIR shifted the NPS of the reconstructed CT images towards lower frequencies along both the axial and the z frequency axes. This effect was confirmed by a relaxed slice thicknesstradeoff relationship shown in our experimental data. The unique noise characteristics of MBIR imply that extra effort must be made to optimize CT scanning parameters for MBIR to maximize its potential clinical benefits.
Objective assessment of image quality and dose reduction in CT iterative reconstruction
Vaishnav, J. Y. Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.
2014-07-15
Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.
NASA Astrophysics Data System (ADS)
Cai, Ailong; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Li, Jianxin
2015-03-01
In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption.
Optimisation of reconstruction for the registration of CT liver perfusion sequences
NASA Astrophysics Data System (ADS)
Romain, B.; Letort, V.; Lucidarme, O.; d'Alché-Buc, F.; Rouet, L.
2012-02-01
Objective. CT abdominal perfusion is frequently used to evaluate tumor evolution when patients are undergoing antiangiogenic therapy. Parameters depending on longer-term dynamics of the diffusion of the contrast medium (e. g. permeability) could help assessing the treatment efficacy. To this end, dynamic image sequences are obtained while patients breath freely. Prior to any analysis, one needs to compensate the respiratory motion. The goal of our study is to optimize the CT reconstruction parameters (filter of reconstruction, thickness of image volumes) for our registration method. We also aim at proposing relevant criteria allowing to quantify the registration quality. Methods. Registration is computed in 4 steps: z-global rigid registration, local refinements with multiresolution blockmatching, regularization and warping. Two new criteria are defined to evaluate the quality of registration: one for spatial evaluation and the other for temporal evaluation. Results. The two measures decrease after registration (58% and 10% average decrease for the best reconstruction parameters for the spatial and temporal criteria respectively) which is consistent with visual inspection of the images. They are therefore used to determine the best combination of reconstruction parameters.
System matrix analysis for sparse-view iterative image reconstruction in X-ray CT.
Wang, Linyuan; Zhang, Hanming; Cai, Ailong; Li, Yongl; Yan, Bin; Li, Lei; Hu, Guoen
2015-01-01
Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, used for investigations in compressive sensing (CS) claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is non-trivial, as both the singularity of undersampled reconstruction and the sufficient view number for sparse-view reconstruction are ill-defined. In this paper, the singular value decomposition method is used to study the condition number and singularity of the system matrix and the regularized matrix. An estimation method of the empirical lower bound is proposed, which is helpful for estimating the number of projection views required for exact reconstruction. Simulation studies show that the singularity of the system matrices for different projection views is effectively reduced by regularization. Computing the condition number of a regularized matrix is necessary to provide a reference for evaluating the singularity and recovery potential of reconstruction algorithms using regularization. The empirical lower bound is helpful for estimating the projections view number with a sparse reconstruction algorithm. PMID:25567402
NASA Astrophysics Data System (ADS)
Müller, K.; Maier, A. K.; Schwemmer, C.; Lauritsch, G.; De Buck, S.; Wielandts, J.-Y.; Hornegger, J.; Fahrig, R.
2014-06-01
The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical
Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R
2014-06-21
The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical
Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method
Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.
2014-07-15
Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937
Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method
Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.
2014-01-01
Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937
Zhao, B; Tan, Y; Tsai, W; Lu, L; Schwartz, L; So, J; Goldman, J; Lu, Z
2014-06-15
Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six image series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to
Reconstruction of a cone-beam CT image via forward iterative projection matching
Brock, R. Scott; Docef, Alen; Murphy, Martin J.
2010-12-15
Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT (CBCT) image by deformably altering a prior fan-beam CT (FBCT) image such that it matches the anatomy portrayed in the CBCT projection data set. Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT projection data set is obtained and used as a target image set. A parametrized deformation model is applied to the source FBCT image, digitally reconstructed radiographs (DRRs) that emulate the CBCT projection image geometry are calculated and compared to the target CBCT projection data, and the deformation model parameters are adjusted iteratively until the DRRs optimally match the CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate representation of the patient's anatomy imaged by the CBCT system. The process is demonstrated via numerical simulation. A known deformation is applied to a prior FBCT image and used to create a synthetic set of CBCT target projections. The iterative projection matching process is then applied to reconstruct the deformation represented in the synthetic target projections; the reconstructed deformation is then compared to the known deformation. The sensitivity of the process to the number of projections and the DRR/CBCT projection mismatch is explored by systematically adding noise to and perturbing the contrast of the target projections relative to the iterated source DRRs and by reducing the number of projections. Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64 projections allows the known deformed CT image to be reconstructed to within a nRMS error of 1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than 4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deformation error is 13%. At 1% noise level, the number of projections can be reduced to 8 while maintaining
Dose reconstruction for real-time patient-specific dose estimation in CT
De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep
2015-05-15
Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-04-15
Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-01-01
Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo®, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the classical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared
Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior
NASA Astrophysics Data System (ADS)
Ritschl, Ludwig; Sawall, Stefan; Knaup, Michael; Hess, Andreas; Kachelrieß, Marc
2012-03-01
Temporal-correlated image reconstruction, also known as 4D CT image reconstruction, is a big challenge in computed tomography. The reasons for incorporating the temporal domain into the reconstruction are motions of the scanned object, which would otherwise lead to motion artifacts. The standard method for 4D CT image reconstruction is extracting single motion phases and reconstructing them separately. These reconstructions can suffer from undersampling artifacts due to the low number of used projections in each phase. There are different iterative methods which try to incorporate some a priori knowledge to compensate for these artifacts. In this paper we want to follow this strategy. The cost function we use is a higher dimensional cost function which accounts for the sparseness of the measured signal in the spatial and temporal directions. This leads to the definition of a higher dimensional total variation. The method is validated using in vivo cardiac micro-CT mouse data. Additionally, we compare the results to phase-correlated reconstructions using the FDK algorithm and a total variation constrained reconstruction, where the total variation term is only defined in the spatial domain. The reconstructed datasets show strong improvements in terms of artifact reduction and low-contrast resolution compared to other methods. Thereby the temporal resolution of the reconstructed signal is not affected.
Ho, Olivia A; Bagher, Shaghayegh; Jaskolka, Jeff; Tan, Marcus; Butler, Kate; O'Neill, Anne C; Zhong, Toni; Hofer, Stefan O
2016-05-01
Computed tomography angiography (CTA) is routinely performed prior to breast reconstruction using deep inferior epigastric perforator (DIEP) flaps to provide better surgical planning and improve preoperative decision making. These investigations occasionally result in unexpected findings in otherwise asymptomatic women. Unexpected findings on imaging in a population of women with previous breast cancer or strong breast cancer risk factors can lead to undue stress and anxiety. The aim of this study is to determine the incidence of unexpected findings in preoperative CT angiograms and to correlate these with patient and breast cancer characteristics. A retrospective chart review from May 2008 to December 2012 was performed reviewing all patients who underwent DIEP flap breast reconstruction. Radiology reports of their preoperative CT angiograms, details of unexpected findings, patients' past medical and cancer history, additional radiological investigations, outcomes, and interventions were reviewed. In total, 360 patients met the inclusion criteria for the study. Sixty-four percent of the patients who underwent CTA imaging had incidental findings. Further imaging was suggested in 48% of this group. The most common incidentalomas were hepatic (47%), bone (24%), and renal (20%). "Incidentalomas" were associated with patients' underlying comorbidities (p = 0.001) and age (p = 0.01). "Radiographically suspicious incidentalomas" were associated with the underlying comorbidities (p = 0.001). The radiologists most commonly suggested investigation methods such as ultrasound (41%), another CT (28%), bone scan (21%), and magnetic resonance imaging (MRI; 14%). No incidentalomas were found to be malignant on further recommended investigation in this study and no breast cancer reconstruction was delayed as a result of the discovery of incidentalomas or their subsequent investigations. It is important to counsel patients of the possibility of incidental findings and the
Eck, Brendan L.; Fahmi, Rachid; Miao, Jun; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Wilson, David L.
2015-10-15
Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit
Raman, Easwar Thirunellai; Rajan, David Vaithyalingam; Krishnamoorthy, Ajith; Sahanand, Santhosh
2013-01-01
Purpose The purpose of the study was to identify the femoral tunnel orientation that consistently results in a tunnel length of more than 35 mm in anterior cruciate ligament reconstruction. Materials and Methods Computed tomography (CT) scans were obtained from 30 patients who did not have any pathology in the distal femur. Virtual tunnels were marked on 3D (3-dimensional) reconstructed CT images after determining the orientation defined by sagittal inclination and axial angle. The length of a femoral tunnel in 64 different combinations of orientations (between 30° and 65° in 5° increments in two planes) was measured on 3D reconstructed images in both knees in 30 patients. Reliability of measurement was assessed with correlation coefficient for intra-observer and inter-observer measurements. A one-way analysis of variance (ANOVA) was used for statistical analysis. Results The mean femoral tunnel length varied significantly with each 10° change in orientation in both planes (p<0.05, ANOVA). A femoral tunnel of more than 35 mm in length could be obtained only with a sagittal inclination of more than 50° and axial angle of 30°-45°. When the axial angle was kept constant, the tunnel length increased with the increase in sagittal inclination. Higher sagittal inclinations consistently resulted in longer tunnels (r>0.9) and reduced the incidence of posterior cortical breakage. Conclusions A tunnel orientation with an axial angle between 30°-45° and a sagittal inclination of more than 50° can result in a tunnel length of more than 35 mm. PMID:24368999
SU-E-I-99: Estimation of Effective Charge Distribution by Dual-Energy CT Reconstruction
Sakata, D; Kida, S; Nakano, M; Masutani, Y; Nakagawa, K; Haga, A
2014-06-01
Purpose: Computed Tomography (CT) is a method to produce slice image of specific volume from the scanned x-ray projection images. The contrast of CT image is correlated with the attenuation coefficients of the x-ray in the object. The attenuation coefficient is strongly dependent on the x-ray energy and the effective charge of the material. The purpose of this presentation is to show the effective charge distribution predicted by CT images reconstructed with kilovoltage(kV) and megavoltage(MV) x-ray energy. Methods: The attenuation coefficients of x-ray can be characterized by cross section of photoionization and Compton scattering for the specific xray energy. In particular, the photoionization cross section is strongly correlated with the effective charge of the object. Hence we can calculate effective charge by solving the coupled equation between the attenuation coefficient and the theoretical cross section. For this study, we use the megavoltage (MV) and kilovoltage (kV) x-rays of Elekta Synergy as the dual source x-ray, and CT image of the Phantom Laboratory CatPhan is reconstructed by the filtered back projection (FBP) and iterative algorithm for cone-beam CT (CBCT). Results: We report attenuation coefficients of each component of the CatPhan specified by each x-ray source. Also the effective charge distribution is evaluated by the MV and kV dual x-ray sources. The predicted effective charges are comparable with the nominal ones. Conclusion: We developed the MV and kV dual-source CBCT reconstruction to yield the effective charge distribution. For more accuracy, it is critical to remove an effect of the scattering photon in the CBCT reconstruction algorithm. The finding will be fine reference of the effective charge of tissue and lead to the more realistic absorbed-dose calculation. This work was partly supported by the JSPS Core-to-Core Program(No. 23003), and this work was partly supported by JSPS KAKENHI 24234567.
Chen, Baiyu; Christianson, Olav; Wilson, Joshua M.; Samei, Ehsan
2014-07-15
Purpose: For nonlinear iterative image reconstructions (IR), the computed tomography (CT) noise and resolution properties can depend on the specific imaging conditions, such as lesion contrast and image noise level. Therefore, it is imperative to develop a reliable method to measure the noise and resolution properties under clinically relevant conditions. This study aimed to develop a robust methodology to measure the three-dimensional CT noise and resolution properties under such conditions and to provide guidelines to achieve desirable levels of accuracy and precision. Methods: The methodology was developed based on a previously reported CT image quality phantom. In this methodology, CT noise properties are measured in the uniform region of the phantom in terms of a task-based 3D noise-power spectrum (NPS{sub task}). The in-plane resolution properties are measured in terms of the task transfer function (TTF) by applying a radial edge technique to the rod inserts in the phantom. The z-direction resolution properties are measured from a supplemental phantom, also in terms of the TTF. To account for the possible nonlinearity of IR, the NPS{sub task} is measured with respect to the noise magnitude, and the TTF with respect to noise magnitude and edge contrast. To determine the accuracy and precision of the methodology, images of known noise and resolution properties were simulated. The NPS{sub task} and TTF were measured on the simulated images and compared to the truth, with criteria established to achieve NPS{sub task} and TTF measurements with <10% error. To demonstrate the utility of this methodology, measurements were performed on a commercial CT system using five dose levels, two slice thicknesses, and three reconstruction algorithms (filtered backprojection, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 5, SAFIRE5). Results: To achieve NPS{sub task} measurements with <10% error, the
Computational simulations of the influence of noise in optical CT reconstruction
NASA Astrophysics Data System (ADS)
De Deene, Yves
2015-01-01
In 3D radiation dosimetry with optical CT scanning readout, projections of transmitted light are recorded in either lines or planar. The projections are then transferred to optical density maps by use of filtered back-projection. Absolute dose maps can be derived from the optical density maps by calibration of the optical absorption coefficient to dose values. The transmission profiles will be subject to a certain level of detector noise and noise arriving from fluctuations in the light source. Different reconstruction filters in the frequency domain can be applied in the image reconstruction procedure. The noise level in the final reconstructed images is determined by the noise in the projections, the spatial resolution and the reconstruction algorithm. The reconstruction filters may also have an effect on the geometrical precision as a spatial frequency filter may also affect the spatial resolution. We here propose an easy method to assess both the noise sensitivity and the performance in terms of mapping dose distributions with various theoretical dose gradients.
3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation
Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin
2014-01-01
Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT
Wang, Jing; Gu, Xuejun
2013-10-15
Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion
A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaginga)
Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B.; Jia, Xun
2014-01-01
Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase
A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging
Yan, Hao; Folkerts, Michael; Jiang, Steve B. E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun E-mail: steve.jiang@UTSouthwestern.edu; Zhen, Xin; Li, Yongbao; Pan, Tinsu; Cervino, Laura
2014-07-15
Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase
Registration based super-resolution reconstruction for lung 4D-CT.
Wu, Xiuxiu; Xiao, Shan; Zhang, Yu
2014-01-01
Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method. PMID:25570484
Statistical reconstruction for x-ray CT systems with non-continuous detectors
NASA Astrophysics Data System (ADS)
Zbijewski, Wojciech; Defrise, Michel; Viergever, Max A.; Beekman, Freek J.
2007-01-01
We analyse the performance of statistical reconstruction (SR) methods when applied to non-continuous x-ray detectors. Robustness to projection gaps is required in x-ray CT systems with multiple detector modules or with defective detector pixels. In such situations, the advantage of statistical reconstruction is that it is able to ignore missing or faulty pixels and that it makes optimal use of the remaining line integrals. This potentially obviates the need to fill the sinogram discontinuities by interpolation or any other approximative pre-processing techniques. In this paper, we apply SR to cone beam projections of (i) a hypothetical modular detector micro-CT scanner and of (ii) a system with randomly located defective detector elements. For the modular-detector system, SR produces reconstruction volumes free of noticeable gap-induced artefacts as long as the location of detector gaps and selection of the scanning range provide complete object sampling in the central imaging plane. When applied to randomly located faulty detector elements, SR produces images free of substantial ring artefacts even for cases where defective pixels cover as much as 3% of the detector area.
Implementation and evaluation of two helical CT reconstruction algorithms in CIVA
NASA Astrophysics Data System (ADS)
Banjak, H.; Costin, M.; Vienne, C.; Kaftandjian, V.
2016-02-01
The large majority of industrial CT systems reconstruct the 3D volume by using an acquisition on a circular trajec-tory. However, when inspecting long objects which are highly anisotropic, this scanning geometry creates severe artifacts in the reconstruction. For this reason, the use of an advanced CT scanning method like helical data acquisition is an efficient way to address this aspect known as the long-object problem. Recently, several analytically exact and quasi-exact inversion formulas for helical cone-beam reconstruction have been proposed. Among them, we identified two algorithms of interest for our case. These algorithms are exact and of filtered back-projection structure. In this work we implemented the filtered-backprojection (FBP) and backprojection-filtration (BPF) algorithms of Zou and Pan (2004). For performance evaluation, we present a numerical compari-son of the two selected algorithms with the helical FDK algorithm using both complete (noiseless and noisy) and truncated data generated by CIVA (the simulation platform for non-destructive testing techniques developed at CEA).
The PRIMA collaboration: Preliminary results in FBP reconstruction of pCT data
NASA Astrophysics Data System (ADS)
Vanzi, Eleonora; Bruzzi, Mara; Bucciolini, Marta; Cirrone, G. A. Pablo; Civinini, Carlo; Cuttone, Giacomo; Lo Presti, Domenico; Pallotta, Stefania; Pugliatti, Cristina; Randazzo, Nunzio; Romano, Francesco; Scaringella, Monica; Sipala, Valeria; Stancampiano, Concetta; Talamonti, Cinzia; Zani, Margherita
2013-12-01
A first prototype of proton Computed Tomography (pCT) scanner, made of four planes and a calorimeter, has been developed by the PRIMA (PRoton IMAging) Italian collaboration and first results concerning tomographic image reconstruction of experimentally acquired data are discussed in this paper. The Filtered Back-Projection (FBP) algorithm was used to reconstruct projections of a phantom acquired with a 62 MeV proton beam. Image noise and spatial resolution were assessed for different parameters of the filter used, with and without selection strategies on proton directions. A satisfactory image quality (0.88 mm resolution and 2.5% noise) was achieved even when the backprojection line was defined using only the line connecting the impact points on the second and third planes and all the data were used, irrespective of the proton direction and residual energy. Probably due to the specific detector-phantom arrangement used in this experiment and due to the substantial reduction of the number of useful events, cuts on proton directions did not increase the image resolution significantly. The results confirm the good performances of the PRIMA scanner prototype. They also demonstrate that FBP can produce images of sufficient quality to be used for patient positioning and to initialize iterative pCT reconstruction methods.
A fast CT reconstruction scheme for a general multi-core PC.
Zeng, Kai; Bai, Erwei; Wang, Ge
2007-01-01
Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731
Acceleration of EM-Based 3D CT Reconstruction Using FPGA.
Choi, Young-Kyu; Cong, Jason
2016-06-01
Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation. PMID:26462240
Utilizing the Hotelling template as a tool for CT image reconstruction algorithm design
NASA Astrophysics Data System (ADS)
Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan
2012-02-01
Design of image reconstruction algorithms for CT can be significantly aided by useful metrics of image quality. Useful metrics, however, are difficult to develop due to the high-dimensionality of the CT imaging system, lack of spatial invariance in the imaging system, and a high degree of correlation among the image voxels. Although true task-based evaluation on realistic imaging tasks can be time-consuming, and a given task may be insensitive to the image reconstruction algorithm, task-based metrics can still prove useful in many contexts. For example, model observers that mimic performance of the imaging system on specific tasks can provide a low-dimensional measure of image quality while still accounting for many of the salient properties of the system and object being scanned. In this work, ideal observer performance is computed on a single detection task. The modeled signal for detection is taken to be very small - size on the order of a detector bin - and inspection of the accompanying Hotelling template is suggested. We hypothesize that improved detection on small signals may be sensitive to the reconstruction algorithm. Further, we hypothesize that structurally simple Hotelling templates may correlate with high human observer performance.
WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction
Yan, H; Folkerts, M; Jiang, S; Jia, X; Wang, X; Bai, T; Lu, W
2014-06-15
Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistency between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)
Reconstruction of difference in sequential CT studies using penalized likelihood estimation.
Pourmorteza, A; Dang, H; Siewerdsen, J H; Stayman, J W
2016-03-01
Characterization of anatomical change and other differences is important in sequential computed tomography (CT) imaging, where a high-fidelity patient-specific prior image is typically present, but is not used, in the reconstruction of subsequent anatomical states. Here, we introduce a penalized likelihood (PL) method called reconstruction of difference (RoD) to directly reconstruct a difference image volume using both the current projection data and the (unregistered) prior image integrated into the forward model for the measurement data. The algorithm utilizes an alternating minimization to find both the registration and reconstruction estimates. This formulation allows direct control over the image properties of the difference image, permitting regularization strategies that inhibit noise and structural differences due to inconsistencies between the prior image and the current data. Additionally, if the change is known to be local, RoD allows local acquisition and reconstruction, as opposed to traditional model-based approaches that require a full support field of view (or other modifications). We compared the performance of RoD to a standard PL algorithm, in simulation studies and using test-bench cone-beam CT data. The performances of local and global RoD approaches were similar, with local RoD providing a significant computational speedup. In comparison across a range of data with differing fidelity, the local RoD approach consistently showed lower error (with respect to a truth image) than PL in both noisy data and sparsely sampled projection scenarios. In a study of the prior image registration performance of RoD, a clinically reasonable capture ranges were demonstrated. Lastly, the registration algorithm had a broad capture range and the error for reconstruction of CT data was 35% and 20% less than filtered back-projection for RoD and PL, respectively. The RoD has potential for delivering high-quality difference images in a range of sequential clinical
Solomon, Justin; Samei, Ehsan
2014-09-15
Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was
Reconstruction of difference in sequential CT studies using penalized likelihood estimation
NASA Astrophysics Data System (ADS)
Pourmorteza, A.; Dang, H.; Siewerdsen, J. H.; Stayman, J. W.
2016-03-01
Characterization of anatomical change and other differences is important in sequential computed tomography (CT) imaging, where a high-fidelity patient-specific prior image is typically present, but is not used, in the reconstruction of subsequent anatomical states. Here, we introduce a penalized likelihood (PL) method called reconstruction of difference (RoD) to directly reconstruct a difference image volume using both the current projection data and the (unregistered) prior image integrated into the forward model for the measurement data. The algorithm utilizes an alternating minimization to find both the registration and reconstruction estimates. This formulation allows direct control over the image properties of the difference image, permitting regularization strategies that inhibit noise and structural differences due to inconsistencies between the prior image and the current data. Additionally, if the change is known to be local, RoD allows local acquisition and reconstruction, as opposed to traditional model-based approaches that require a full support field of view (or other modifications). We compared the performance of RoD to a standard PL algorithm, in simulation studies and using test-bench cone-beam CT data. The performances of local and global RoD approaches were similar, with local RoD providing a significant computational speedup. In comparison across a range of data with differing fidelity, the local RoD approach consistently showed lower error (with respect to a truth image) than PL in both noisy data and sparsely sampled projection scenarios. In a study of the prior image registration performance of RoD, a clinically reasonable capture ranges were demonstrated. Lastly, the registration algorithm had a broad capture range and the error for reconstruction of CT data was 35% and 20% less than filtered back-projection for RoD and PL, respectively. The RoD has potential for delivering high-quality difference images in a range of sequential clinical
Reconstruction of difference in sequential CT studies using penalized likelihood estimation
Pourmorteza, A; Dang, H; Siewerdsen, J H; Stayman, J W
2016-01-01
Characterization of anatomical change and other differences is important in sequential computed tomography (CT) imaging, where a high-fidelity patient-specific prior image is typically present, but is not used, in the reconstruction of subsequent anatomical states. Here, we introduce a penalized likelihood (PL) method called reconstruction of difference (RoD) to directly reconstruct a difference image volume using both the current projection data and the (unregistered) prior image integrated into the forward model for the measurement data. The algorithm utilizes an alternating minimization to find both the registration and reconstruction estimates. This formulation allows direct control over the image properties of the difference image, permitting regularization strategies that inhibit noise and structural differences due to inconsistencies between the prior image and the current data.Additionally, if the change is known to be local, RoD allows local acquisition and reconstruction, as opposed to traditional model-based approaches that require a full support field of view (or other modifications). We compared the performance of RoD to a standard PL algorithm, in simulation studies and using test-bench cone-beam CT data. The performances of local and global RoD approaches were similar, with local RoD providing a significant computational speedup. In comparison across a range of data with differing fidelity, the local RoD approach consistently showed lower error (with respect to a truth image) than PL in both noisy data and sparsely sampled projection scenarios. In a study of the prior image registration performance of RoD, a clinically reasonable capture ranges were demonstrated. Lastly, the registration algorithm had a broad capture range and the error for reconstruction of CT data was 35% and 20% less than filtered back-projection for RoD and PL, respectively. The RoD has potential for delivering high-quality difference images in a range of sequential clinical
Brady, S. L.; Yee, B. S.; Kaufman, R. A.
2012-09-15
Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more
Niu, Tianye; Zhu, Lei
2012-01-01
Purpose: Recent advances in compressed sensing (CS) enable accurate CT image reconstruction from highly undersampled and noisy projection measurements, due to the sparsifiable feature of most CT images using total variation (TV). These novel reconstruction methods have demonstrated advantages in clinical applications where radiation dose reduction is critical, such as onboard cone-beam CT (CBCT) imaging in radiation therapy. The image reconstruction using CS is formulated as either a constrained problem to minimize the TV objective within a small and fixed data fidelity error, or an unconstrained problem to minimize the data fidelity error with TV regularization. However, the conventional solutions to the above two formulations are either computationally inefficient or involved with inconsistent regularization parameter tuning, which significantly limit the clinical use of CS-based iterative reconstruction. In this paper, we propose an optimization algorithm for CS reconstruction which overcomes the above two drawbacks. Methods: The data fidelity tolerance of CS reconstruction can be well estimated based on the measured data, as most of the projection errors are from Poisson noise after effective data correction for scatter and beam-hardening effects. We therefore adopt the TV optimization framework with a data fidelity constraint. To accelerate the convergence, we first convert such a constrained optimization using a logarithmic barrier method into a form similar to that of the conventional TV regularization based reconstruction but with an automatically adjusted penalty weight. The problem is then solved efficiently by gradient projection with an adaptive Barzilai–Borwein step-size selection scheme. The proposed algorithm is referred to as accelerated barrier optimization for CS (ABOCS), and evaluated using both digital and physical phantom studies. Results: ABOCS directly estimates the data fidelity tolerance from the raw projection data. Therefore, as
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Säring, Dennis; Lu, Wei; Low, Daniel; Handels, Heinz
2006-03-01
Respiratory motion is a significant source of error in radiotherapy treatment planning. 4D-CT data sets can be useful to measure the impact of organ motion caused by breathing. But modern CT scanners can only scan a limited region of the body simultaneously and patients have to be scanned in segments consisting of multiple slices. For studying free breathing motion multislice CT scans can be collected simultaneously with digital spirometry over several breathing cycles. The 4D data set is assembled by sorting the free breathing multislice CT scans according to the couch position and the tidal volume. But artifacts can occur because there are no data segments for exactly the same tidal volume and all couch positions. We present an optical flow based method for the reconstruction of 4D-CT data sets from multislice CT scans, which are collected simultaneously with digital spirometry. The optical flow between the scans is estimated by a non-linear registration method. The calculated velocity field is used to reconstruct a 4D-CT data set by interpolating data at user-defined tidal volumes. By this technique, artifacts can be reduced significantly. The reconstructed 4D-CT data sets are used for studying inner organ motion during the respiratory cycle. The procedures described were applied to reconstruct 4D-CT data sets for four tumour patients who have been scanned during free breathing. The reconstructed 4D data sets were used to quantify organ displacements and to visualize the abdominothoracic organ motion.
Kustár, Agnes; Forró, Laszlo; Kalina, Ildiko; Fazekas, Ferenc; Honti, Szabolcs; Makra, Szabolcs; Friess, Martin
2013-11-01
In the past, improvements in craniofacial reconstructions (CFR) methodology languished due to the lack of adequate 3D databases that were sufficiently large and appropriate for 3-dimensional shape statistics. In our study, we created the "FACE-R" database from CT records and 3D surface scans of 400 clinical patients from Hungary, providing a significantly larger sample that was available before. The uniqueness of our database is linking of two data types that makes possible to investigate the bone and skin surface of the same individual, in upright position, thus eliminating many of the gravitational effects on the face during CT scanning. We performed a preliminary geometric morphometric (GMM) study using 3D data that produces a general idea of skull and face shape correlations. The vertical position of the tip of the (soft) nose for a skull and landmarks such as rhinion need to be taken into account. Likewise, the anterior nasal spine appears to exert some influence in this regard. PMID:24020394
Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M
2007-06-01
The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. PMID:17420106
Applications of the Medipix3-CT in combination with iterative reconstruction techniques
NASA Astrophysics Data System (ADS)
Fischer, F.; Procz, S.; Fauler, A.; Fiederle, M.
2016-02-01
The pixelated semiconductor detectors of the Medipix family with their photon-counting abilities offer the possibility of high quality X-ray radiography as well as computed tomography. The generated signal from each photon is amplified and shaped before it is compared to an energy threshold. For a photon with an energy above the threshold the counter is incremented by one count. Photons below the operator-defined threshold do not increment the counter and therefore do not participate in the image formation. Furthermore, compared to other detectors like scintillators, an additional conversion step is dispensed due to the direct converting nature of photon-counting detectors, leading to a higher signal-to-noise-ratio. Additionally, the photon processing capabilities of photon-counting detectors allow photons to be weighted equally and not proportional to their energy as it is the case for charge integrating devices, where high energy photons are weighted stronger than low energy photons. Compared to integrating devices, this leads to an increase in contrast for images of both high and low contrast objects, hence improve object information. The use of photon-counting detectors in combination with iterative reconstruction techniques based on OSEM (ordered subset expectation maximization) algorithms is the basis of our computed tomography scans for material analysis. Due to its ability to operate with highly undersampled data sets, iterative reconstruction offers the possibility to decrease dose in CT scans. In order to identify the limits of the data set reduction, a first series of scans was performed to test, under real conditions, the CT-image quality when a strongly reduced amount of projections is used for reconstruction. In addition, the effect of a total variation minimization tool on these undersampled data sets was evaluated. Furthermore, this paper includes a number of recent CT-results with scans performed at two different setups within our facility.
NASA Astrophysics Data System (ADS)
Fahimian, Benjamin Pooya
Tomographic imaging has had a radical impact on diverse fields ranging from the study of the small in microscopy, to the study of the large in astronomy, but perhaps most significantly, it has unequivocally revolutionized the practice of medicine. Although the applications of tomography are wide and diverse, the central problems associated with its mathematical and experimental implementation are similar. Most notably, the problem of image reconstruction from missing and noisy projection data and the problem of radiation dose imparted to biological specimens and patients are persistent and prominent problems in tomographic applications. Since by virtue of its nature, tomographic reconstruction is a mathematical problem, the development of more accurate and sophisticated reconstruction algorithms capable of solving for missing projection data and or producing accurate lower noise reconstructions, may hold promise in alleviating such problems. In this work, a method of tomographic acquisition and exact iterative Fourier-based reconstruction is developed, which in conjunction with physical constraints, advanced regularization constraints, and an oversampling method, aims to solve for the missing projection data and arrive at a less noisy solution in a manner that is concurrently and strictly consistent with the experimental data. Specifically, the proposed technique, termed Equally-Sloped Tomography (EST), is experimentally implemented and evaluated on four important transmission tomographic imaging modalities: transmission electron microtomography, synchrotron x-ray phase contrast tomography, synchrotron x-ray absorption tomography, and kilovoltage x-ray medical CT. In each modality, using a series of image quality phantoms studies, the performance of technique is quantitatively assessed and compared to existing methods. The potential for dose reduction is investigated by determining the factor by which the number of projections or the source flux can be reduced
Gang, Grace J.; Stayman, J. Webster; Zbijewski, Wojciech; Siewerdsen, Jeffrey H.
2014-08-15
Purpose: Nonstationarity is an important aspect of imaging performance in CT and cone-beam CT (CBCT), especially for systems employing iterative reconstruction. This work presents a theoretical framework for both filtered-backprojection (FBP) and penalized-likelihood (PL) reconstruction that includes explicit descriptions of nonstationary noise, spatial resolution, and task-based detectability index. Potential utility of the model was demonstrated in the optimal selection of regularization parameters in PL reconstruction. Methods: Analytical models for local modulation transfer function (MTF) and noise-power spectrum (NPS) were investigated for both FBP and PL reconstruction, including explicit dependence on the object and spatial location. For FBP, a cascaded systems analysis framework was adapted to account for nonstationarity by separately calculating fluence and system gains for each ray passing through any given voxel. For PL, the point-spread function and covariance were derived using the implicit function theorem and first-order Taylor expansion according toFessler [“Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography,” IEEE Trans. Image Process. 5(3), 493–506 (1996)]. Detectability index was calculated for a variety of simple tasks. The model for PL was used in selecting the regularization strength parameter to optimize task-based performance, with both a constant and a spatially varying regularization map. Results: Theoretical models of FBP and PL were validated in 2D simulated fan-beam data and found to yield accurate predictions of local MTF and NPS as a function of the object and the spatial location. The NPS for both FBP and PL exhibit similar anisotropic nature depending on the pathlength (and therefore, the object and spatial location within the object) traversed by each ray, with the PL NPS experiencing greater smoothing along directions with higher noise. The MTF of FBP
WE-G-18A-05: Cone-Beam CT Reconstruction with Deformed Prior Image
Zhang, H; Huang, J; Ma, J; Chen, W; Ouyang, L; Wang, J
2014-06-15
Purpose: Prior image can be incorporated into image reconstruction process to improve the quality of on-treatment cone-beam CT (CBCT) from sparseview or low-dose projections. However, the deformation between the prior image and on-treatment CBCT are not considered in current prior image based reconstructions (e.g., prior image constrained compressed sensing (PICCS)). The purpose of this work is to develop a deformed-prior-imagebased- reconstruction strategy (DPIR) to address the mismatch problem between the prior image and target image. Methods: The deformed prior image is obtained by a projection based registration approach. Specifically, the deformation vector fields (DVF) used to deform the prior image is estimated through matching the forward projection of the prior image and the measured on-treatment projection. The deformed prior image is then used as the prior image in the standard PICCS algorithm. Simulation studies on the XCAT phantom was conducted to evaluate the performance of the projection based registration procedure and the proposed DPIR strategy. Results: The deformed prior image matches the geometry of on-treatment CBCT closer as compared to the original prior image. Using the deformed prior image, the quality of the image reconstructed by DPIR from few-view projection data is greatly improved as compared to the standard PICCS algorithm. The relative image reconstruction error is reduced to 11.13% in the proposed DPIR from 17.57% in the original PICCS. Conclusion: The proposed DPIR approach can solve the mismatch problem between the prior image and target image, which overcomes the limitation of the original PICCS algorithm for CBCT reconstruction from sparse-view or low-dose projections.
Iterative reconstruction optimisations for high angle cone-beam micro-CT
NASA Astrophysics Data System (ADS)
Recur, B.; Fauconneau, M.; Kingston, A.; Myers, G.; Sheppard, A.
2014-09-01
We address several acquisition questions that have arisen for the high cone-angle helical-scanning micro-CT facility developed at the Australian National University. These challenges are generally known in medical and industrial cone-beam scanners but can be neglected in these systems. For our large datasets, with more than 20483 voxels, minimising the number of operations (or iterations) is crucial. Large cone-angles enable high signal-to-noise ratio imaging and a large helical pitch to be used. This introduces two challenges: (i) non-uniform resolution throughout the reconstruction, (ii) over-scan beyond the region-of-interest significantly increases re- quired reconstructed volume size. Challenge (i) can be addressed by using a double-helix or lower pitch helix but both solutions slow down iterations. Challenge (ii) can also be improved by using a lower pitch helix but results in more projections slowing down iterations. This may be overcome using less projections per revolution but leads to more iterations required. Here we assume a given total time for acquisition and a given reconstruction technique (SART) and seek to identify the optimal trajectory and number of projections per revolution in order to produce the best tomogram, minimise reconstruction time required, and minimise memory requirements.
Feasibility of GPU-assisted iterative image reconstruction for mobile C-arm CT
NASA Astrophysics Data System (ADS)
Pan, Yongsheng; Whitaker, Ross; Cheryauka, Arvi; Ferguson, Dave
2009-02-01
Computed tomography (CT) has been extensively studied and widely used for a variety of medical applications. The reconstruction of 3D images from a projection series is an important aspect of the modality. Reconstruction by filtered backprojection (FBP) is used by most manufacturers because of speed, ease of implementation, and relatively few parameters. Iterative reconstruction methods have a significant potential to provide superior performance with incomplete or noisy data, or with less than ideal geometries, such as cone-beam systems. However, iterative methods have a high computational cost, and regularization is usually required to reduce the effects of noise. The simultaneous algebraic reconstruction technique (SART) is studied in this paper, where the Feldkamp method (FDK) for filtered back projection is used as an initialization for iterative SART. Additionally, graphics hardware is utilized to increase the speed of SART implementation. Nvidia processors and compute unified device architecture (CUDA) form the platform for GPU computation. Total variation (TV) minimization is applied for the regularization of SART results. Preliminary results of SART on 3-D Shepp-Logan phantom using using TV regularization and GPU computation are presented in this paper. Potential improvements of the proposed framework are also discussed.
[3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].
Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu
2015-08-01
The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules. PMID:26710449
Yan, Bin; Jin, Zhao; Zhang, Hanming; Li, Lei; Cai, Ailong
2015-01-01
Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction technique that utilizes nonuniform fast Fourier transform is presented in this study along with the advanced total variation (TV) regularization for sparse-view CT. Combined with the alternating direction method, the proposed approach shows excellent efficiency and rapid convergence property. Numerical simulations and real data experiments are performed on a parallel beam CT. Experimental results validate that the proposed method has higher computational efficiency and better reconstruction quality than the conventional algorithms, such as simultaneous algebraic reconstruction technique using TV method and the alternating direction total variation minimization approach, with the same time duration. The proposed method appears to have extensive applications in X-ray CT imaging. PMID:26120355
Cho, Jang Hwan; Fessler, Jeffrey A.
2014-01-01
Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT. PMID:25361500
Gingold, E; Dave, J
2014-06-01
Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurements included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.
Dunet, Vincent; Hachulla, Anne-Lise; Grimm, Jochen; Beigelman-Aubry, Catherine
2016-01-01
Background Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. Purpose To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Material and Methods Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2–3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. Results The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. Conclusion The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique.
NASA Astrophysics Data System (ADS)
Gu, Renliang; Dogandžić, Aleksandar
2014-02-01
We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer's law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ1-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.
Gu, Renliang; Dogandžić, Aleksandar
2014-02-18
We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ{sub 1}-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.
CT reconstruction from few-views with anisotropic edge-guided total variance
NASA Astrophysics Data System (ADS)
Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Jiao, Chun; Ma, Jianhua; Lu, Hongbing
2016-06-01
To overcome the oversmoothing drawback in the edge areas when reconstructing few-view CT with total variation (TV) minimization, in this paper, we propose an anisotropic edge-guided TV minimization framework for few-view CT reconstruction. In the framework, anisotropic TV is summed with pre-weighted image gradient and then used as the object function for minimizing. It includes edge-guided TV minimization (EGTV) and edge-guided adaptive-weighted TV minimization (EGAwTV) algorithms. For EGTV algorithm, the weights of the TV discretization term are updated by anisotropic edge information detected from the image, whereas the weights for EGAwTV are determined based on edge information and local image-intensity gradients. To solve the minimization problem of the proposed algorithm, a similar TV-based minimization implementation is developed to address the raw data fidelity and other constraints. The evaluation results using both computer simulations with the Shepp-Logan phantom and experimental data from a physical phantom demonstrate that the proposed algorithms exhibit noticeable gains in the merits of spatial resolution compared with the conventional TV and other modified TV algorithms.
Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing
NASA Astrophysics Data System (ADS)
Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim
2011-03-01
Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.
Pre-reconstruction three-material decomposition in dual-energy CT
NASA Astrophysics Data System (ADS)
Yu, Lifeng; Liu, Xin; McCollough, Cynthia H.
2009-02-01
It is of clinical interest to quantify the concentration of materials in a three-component mixture with known chemical compositions, such as bone-mineral density (BMD) in a trabecular bone composed of calcium hydroxyappitite (CaHA), yellow- and red-marrow, and iron content in the liver composed of soft tissue, fat, and iron. Both pre- and postreconstruction dual-energy CT methods have been used to achieve this goal. The pre-reconstruction method is more accurate due to the elimination of beam-hardening artifacts. After obtaining the equivalent densities of the two basis materials, however, it is unclear how to accurately estimate the concentration of each material in the presence of the third material in the mixture. In this work, we present a pre-reconstruction three-material decomposition method in dualenergy CT to quantify the concentration of each material in a three-component mixture with known chemical compositions. This method employs a specific physical constraint on the equivalent densities of the two basis materials obtained from the conventional basis-material decomposition. We evaluated this method using simulation studies on two types of three-component mixtures: bone-water-fat and Iron-water-CaHA. The results demonstrated that an accurate estimation of the concentration for each material can be achieved with the proposed method.
Forward-Projection Architecture for Fast Iterative Image Reconstruction in X-ray CT.
Kim, Jung Kuk; Fessler, Jeffrey A; Zhang, Zhengya
2012-10-01
Iterative image reconstruction can dramatically improve the image quality in X-ray computed tomography (CT), but the computation involves iterative steps of 3D forward- and back-projection, which impedes routine clinical use. To accelerate forward-projection, we analyze the CT geometry to identify the intrinsic parallelism and data access sequence for a highly parallel hardware architecture. To improve the efficiency of this architecture, we propose a water-filling buffer to remove pipeline stalls, and an out-of-order sectored processing to reduce the off-chip memory access by up to three orders of magnitude. We make a floating-point to fixed-point conversion based on numerical simulations and demonstrate comparable image quality at a much lower implementation cost. As a proof of concept, a 5-stage fully pipelined, 55-way parallel separable-footprint forward-projector is prototyped on a Xilinx Virtex-5 FPGA for a throughput of 925.8 million voxel projections/s at 200 MHz clock frequency, 4.6 times higher than an optimized 16-threaded program running on an 8-core 2.8-GHz CPU. A similar architecture can be applied to back-projection for a complete iterative image reconstruction system. The proposed algorithm and architecture can also be applied to hardware platforms such as graphics processing unit and digital signal processor to achieve significant accelerations. PMID:23087589
Nien, Hung; Fessler, Jeffrey A.
2014-01-01
Augmented Lagrangian (AL) methods for solving convex optimization problems with linear constraints are attractive for imaging applications with composite cost functions due to the empirical fast convergence rate under weak conditions. However, for problems such as X-ray computed tomography (CT) image reconstruction, where the inner least-squares problem is challenging and requires iterations, AL methods can be slow. This paper focuses on solving regularized (weighted) least-squares problems using a linearized variant of AL methods that replaces the quadratic AL penalty term in the scaled augmented Lagrangian with its separable quadratic surrogate (SQS) function, leading to a simpler ordered-subsets (OS) accelerable splitting-based algorithm, OS-LALM. To further accelerate the proposed algorithm, we use a second-order recursive system analysis to design a deterministic downward continuation approach that avoids tedious parameter tuning and provides fast convergence. Experimental results show that the proposed algorithm significantly accelerates the convergence of X-ray CT image reconstruction with negligible overhead and can reduce OS artifacts when using many subsets. PMID:25248178
Construction and analysis of a head CT-scan database for craniofacial reconstruction.
Tilotta, Françoise; Richard, Frédéric; Glaunès, Joan; Berar, Maxime; Gey, Servane; Verdeille, Stéphane; Rozenholc, Yves; Gaudy, J F
2009-10-30
This paper is devoted to the construction of a complete database which is intended to improve the implementation and the evaluation of automated facial reconstruction. This growing database is currently composed of 85 head CT-scans of healthy European subjects aged 20-65 years old. It also includes the triangulated surfaces of the face and the skull of each subject. These surfaces are extracted from CT-scans using an original combination of image-processing techniques which are presented in the paper. Besides, a set of 39 referenced anatomical skull landmarks were located manually on each scan. Using the geometrical information provided by triangulated surfaces, we compute facial soft-tissue depths at each known landmark positions. We report the average thickness values at each landmark and compare our measures to those of the traditional charts of [J. Rhine, C.E. Moore, Facial Tissue Thickness of American Caucasoïds, Maxwell Museum of Anthropology, Albuquerque, New Mexico, 1982] and of several recent in vivo studies [M.H. Manhein, G.A. Listi, R.E. Barsley, et al., In vivo facial tissue depth measurements for children and adults, Journal of Forensic Sciences 45 (1) (2000) 48-60; S. De Greef, P. Claes, D. Vandermeulen, et al., Large-scale in vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction, Forensic Science International 159S (2006) S126-S146; R. Helmer, Schödelidentifizierung durch elektronische bildmischung, Kriminalistik Verlag GmbH, Heidelberg, 1984]. PMID:19665327
Forward-Projection Architecture for Fast Iterative Image Reconstruction in X-ray CT
Kim, Jung Kuk; Fessler, Jeffrey A.; Zhang, Zhengya
2012-01-01
Iterative image reconstruction can dramatically improve the image quality in X-ray computed tomography (CT), but the computation involves iterative steps of 3D forward- and back-projection, which impedes routine clinical use. To accelerate forward-projection, we analyze the CT geometry to identify the intrinsic parallelism and data access sequence for a highly parallel hardware architecture. To improve the efficiency of this architecture, we propose a water-filling buffer to remove pipeline stalls, and an out-of-order sectored processing to reduce the off-chip memory access by up to three orders of magnitude. We make a floating-point to fixed-point conversion based on numerical simulations and demonstrate comparable image quality at a much lower implementation cost. As a proof of concept, a 5-stage fully pipelined, 55-way parallel separable-footprint forward-projector is prototyped on a Xilinx Virtex-5 FPGA for a throughput of 925.8 million voxel projections/s at 200 MHz clock frequency, 4.6 times higher than an optimized 16-threaded program running on an 8-core 2.8-GHz CPU. A similar architecture can be applied to back-projection for a complete iterative image reconstruction system. The proposed algorithm and architecture can also be applied to hardware platforms such as graphics processing unit and digital signal processor to achieve significant accelerations. PMID:23087589
Xu, Jingyan; Tsui, Benjamin M W
2014-01-01
Statistical image reconstruction (SIR) is a promising approach to reducing radiation dose in clinical computerized tomography (CT) scans. Clinical CT scanners use energy-integrating detectors. The CT signal follows a compound Poisson distribution, its probability density function (PDF) does not have an analytical form hence cannot be used in an SIR method. The goal of this work is to quantify the effects of using an approximate statistical assumption in SIR methods for clinical CT applications. We apply a pseudo-Ideal Observer (pIO) to simulated CT projection data of the fanbeam geometry at different dose levels. The simulation models the polychromatic X-ray tube spectrum, the effects of the bowtie filter, and the energy-integrating detectors. The pIO uses a pseudo likelihood function (pLF) to calculate the pseudo likelihood ratio, which is the decision variable used by the pIO in a binary detection task. The pLF is an approximation to the true LF of the underlying data. The pIO has inferior performance than the IO unless the pLF coincides with the LF; this performance difference quantifies the closeness between the pseudo likelihood and the exact one. Using lesion detectability in a signal known exactly, background known exactly binary detection task as a figure-of-merit, our results show that at down to 0.1% of a reference tube current level I0, the pIO that uses a Poisson approximation, or a matched variance Gaussian approximation in either the transmission or the line integral domain, achieves 99% the performance of the IO. The constant variance Gaussian approximation has only 70%-80% of the IO performance. At tube currents lower than 0.1% I0, the performance difference is more substantial. We conclude that at current clinical dose levels, it is important to account for the mean-dependent variance in CT projection data in SIR problem formulation, the exact PDF of the CT signal is not as important. PMID:24001989
NASA Astrophysics Data System (ADS)
Gilat Schmidt, Taly; Sidky, Emil Y.
2015-03-01
Photon-counting detectors with pulse-height analysis have shown promise for improved spectral CT imaging. This study investigated a novel spectral CT reconstruction method that directly estimates basis-material images from the measured energy-bin data (i.e., `one-step' reconstruction). The proposed algorithm can incorporate constraints to stabilize the reconstruction and potentially reduce noise. The algorithm minimizes the error between the measured energy-bin data and the data estimated from the reconstructed basis images. A total variation (TV) constraint was also investigated for additional noise reduction. The proposed one-step algorithm was applied to simulated data of an anthropomorphic phantom with heterogeneous tissue composition. Reconstructed water, bone, and gadolinium basis images were compared for the proposed one-step algorithm and the conventional `two-step' method of decomposition followed by reconstruction. The unconstrained algorithm provided a 30% to 60% reduction in noise standard deviation compared to the two-step algorithm. The fTV =0.8 constraint provided a small reduction in noise (˜ 1%) compared to the unconstrained reconstruction. Images reconstructed with the fTV =0.5 constraint demonstrated 77% to 94% standard deviation reduction compared to the two-step reconstruction, however with increased blurring. There were no significant differences in the mean values reconstructed by the investigated algorithms. Overall, the proposed one-step spectral CT reconstruction algorithm provided three-material-decomposition basis images with reduced noise compared to the conventional two-step approach. When using a moderate TV constraint factor (fTV = 0.8), a 30%-60% reduction in noise standard deviation was achieved while preserving the edge profile for this simulated phantom.
The impact of reconstruction algorithms and time of flight information on PET/CT image quality
Suljic, Alen; Tomse, Petra; Jensterle, Luka; Skrk, Damijan
2015-01-01
Background The aim of the study was to explore the influence of various time-of-flight (TOF) and non-TOF reconstruction algorithms on positron emission tomography/computer tomography (PET/CT) image quality. Materials and methods. Measurements were performed with a triple line source phantom, consisting of capillaries with internal diameter of ∼ 1 mm and standard Jaszczak phantom. Each of the data sets was reconstructed using analytical filtered back projection (FBP) algorithm, iterative ordered subsets expectation maximization (OSEM) algorithm (4 iterations, 24 subsets) and iterative True-X algorithm incorporating a specific point spread function (PSF) correction (4 iterations, 21 subsets). Baseline OSEM (2 iterations, 8 subsets) was included for comparison. Procedures were undertaken following the National Electrical Manufacturers Association (NEMA) NU-2-2001 protocol. Results Measurement of spatial resolution in full width at half maximum (FWHM) was 5.2 mm, 4.5 mm and 2.9 mm for FBP, OSEM and True-X; and 5.1 mm, 4.5 mm and 2.9 mm for FBP+TOF, OSEM+TOF and True-X+TOF respectively. Assessment of reconstructed Jaszczak images at different concentration ratios showed that incorporation of TOF information improves cold contrast, while hot contrast only slightly, however the most prominent improvement could be seen in background variability - noise reduction. Conclusions On the basis of the results of investigation we concluded, that incorporation of TOF information in reconstruction algorithm mostly affects reduction of the background variability (levels of noise in the image), while the improvement of spatial resolution due to incorporation of TOF information is negligible. Comparison of traditional and modern reconstruction algorithms showed that analytical FBP yields comparable results in some parameter measurements, such as cold contrast and relative count error. Iterative methods show highest levels of hot contrast, when TOF and PSF corrections were applied
Impact of covariance modeling in dual-energy spectral CT image reconstruction
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Zhou; Zou, Yu
2015-03-01
Dual-energy computed tomography (DECT) is a recent advancement in CT technology, which can potentially reduce artifacts and provide accurate quantitative information for diagnosis. Recently, statistical iterative reconstruction (SIR) methods were introduced to DECT for radiation dose reduction. The statistical noise modeling of measurement data plays an important role in SIR and impacts on the image quality. Contrary to the conventional CT projection data, of which noise is independent from ray to ray, in spectral CT the basis material sinogram data has strong correlations. In order to analyze the image quality improvement by applying correlated noise model, we compare the effects of two different noise models (i.e., correlated noise model and independent model by ignoring correlations) by analyzing the bias and variance trade-off. The results indicate that in the same bias level, the correlated noise modeling results in up to 20.02% noise reduction compared to the independent noise model. In addition, their impacts to different numerical are also evaluated. The results show that using the non-diagonal covariance matrix in SIR is challenging, where some numerical algorithms such as a direct application of separable paraboloidal surrogates (SPS) cannot converge to the correct results.
Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Hsieh, Jiang
2005-04-01
The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be
Deleon, Valerie Burke; Smith, Timothy D
2014-11-01
Three-dimensional reconstructions of imaging data are an increasingly common approach for studying anatomical structure. However, certain aspects of anatomy, including microscopic structure and differentiating tissue types, continue to benefit from traditional histological analyses. We present here a detailed methodology for combining data from microCT and histological imaging to create 3D virtual reconstructions for visualization and further analyses. We used this approach to study the distribution of olfactory mucosa on ethmoturbinal I of an adult pygmy slow loris, Nycticebus pygmaeus. MicroCT imaging of the specimen was followed by processing, embedding, and sectioning for histological analysis. We identified corresponding features in the CT and histological data, and used these to reconstruct the plane of section in the CT volume. The CT volume was then digitally re-sliced, such that orthogonal sections of the CT image corresponded to histological sections. Histological images were annotated for the features of interest (in this case, the contour of soft tissue on ethmoturbinal I and the extent of olfactory mucosa), and annotations were transferred to binary masks in the CT volume. These masks were combined with density-based surface reconstructions of the skull to create an enhanced 3D virtual reconstruction, in which the bony surfaces are coded for mucosal function. We identified a series of issues that may be raised in this approach, for example, deformation related to histological processing, and we make recommendations for addressing these issues. This method provides an evidence-based approach to 3D visualization and analysis of microscopic features in an anatomic context. PMID:25312369
Task-driven image acquisition and reconstruction in cone-beam CT
NASA Astrophysics Data System (ADS)
Gang, Grace J.; Webster Stayman, J.; Ehtiati, Tina; Siewerdsen, Jeffrey H.
2015-04-01
This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d‧) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d‧ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d‧ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the
Task-driven image acquisition and reconstruction in cone-beam CT
Gang, Grace J.; Stayman, J. Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H.
2015-01-01
This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters and in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e., the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the
[Motion-compensated compressed sensing four-dimensional cone-beam CT reconstruction].
Yang, Xuan; Zhang, Hua; He, Ji; Zeng, Dong; Zhang, Xin-Yu; Bian, Zhao-Ying; Zhang, Jing; Ma, Jian-Hua
2016-06-20
Restriction by hardware caused the very low projection number at a single phase for 4-dimensional cone beam (4D-CBCT) CT imaging, and reconstruction using conventional reconstruction algorithms is thus constrained by serious streak artifacts and noises. To address this problem, we propose an approach to reconstructing 4D-CBCT images with multi-phase projections based on the assumption that the image at one phase can be viewed as the motion-compensated image at another phase. Specifically, we formulated a cost function using multi-phase projections to construct the fidelity term and the TV regularization method. For fidelity term construction, the projection data of the current phase and those at other phases were jointly used by reformulating the imaging model. The Gradient-Projection-Barzilai-Line search (GPBL) method was used to optimize the complex cost function. Physical phantom and patient data results showed that the proposed approach could effectively reduce the noise and artifacts, and the introduction of additional temporal correlation did not introduce new artifacts or motion blur. PMID:27435778
NASA Astrophysics Data System (ADS)
Khorsandi, M.; Feghhi, S. A. H.
2015-08-01
In industrial Gamma-ray CT, specifically for large-dimension plants or processes, the simplicity and portability of CT system necessitate to use individual gamma-ray detectors for imaging purposes. Considering properties of the gamma-ray source as well as characteristics of the detectors, including penetration depth, energy resolution, size, etc., the quality of reconstructed images is limited. Therefore, implementation of an appropriate reconstruction procedure is important to improve the image quality. In this paper, an accurate and applicable procedure has been proposed for image reconstruction of Gamma-ray CT of large-dimension industrial plants. Additionally, a portable configuration of tomographic system was introduced and simulated in MCNPX Monte Carlo code. The simulation results were validated through comparison with the experimental results reported in the literature. Evaluations showed that maximum difference between reconstruction error in this work and the benchmark was less than 1.3%. Additional investigation has been carried out on a typical standard phantom introduced by IAEA using the validated procedure. Image quality assessment showed that the reconstruction error was less than 1.7% using different algorithms and a good contrast higher than 76% was obtained. Our overall results are indicative of the fact that the procedures and methods introduced in this work are quite efficient for improving the image quality of gamma CT of industrial plants.
Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A
2015-01-01
Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204
Comparison of fan-beam, cone-beam, and spiral scan reconstruction in x-ray micro-CT
NASA Astrophysics Data System (ADS)
Sasov, Alexander
2001-06-01
We developed and tested reconstruction software packages for different algorithms: fan-beam, cone-beam (Feldkamp) and spiral (helical) scans. All algorithms were applied to different simulations as well as to the real datasets from the commercial micro-CT instruments. From the results of testing a number of strong and weak points at different approaches was found. Several examples from the different application areas (bone microstructure, industrial applications) show typical reconstruction artifacts with different algorithms.
Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment
Meng, Bowen; Pratx, Guillem; Xing, Lei
2011-01-01
Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the
Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne
2016-06-01
The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. PMID:26873711
Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J
2014-06-01
Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation
NASA Astrophysics Data System (ADS)
Kim, Chang-Won; Kim, Jong-Hyo
2011-03-01
Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV
First 3D reconstruction of the rhizocephalan root system using MicroCT
NASA Astrophysics Data System (ADS)
Noever, Christoph; Keiler, Jonas; Glenner, Henrik
2016-07-01
Parasitic barnacles (Cirripedia: Rhizocephala) are highly specialized parasites of crustaceans. Instead of an alimentary tract for feeding they utilize a system of roots, which infiltrates the body of their hosts to absorb nutrients. Using X-ray micro computer tomography (MicroCT) and computer-aided 3D-reconstruction, we document the spatial organization of this root system, the interna, inside the intact host and also demonstrate its use for morphological examinations of the parasites reproductive part, the externa. This is the first 3D visualization of the unique root system of the Rhizocephala in situ, showing how it is related to the inner organs of the host. We investigated the interna from different parasitic barnacles of the family Peltogastridae, which are parasitic on anomuran crustaceans. Rhizocephalan parasites of pagurid hermit crabs and lithodid crabs were analysed in this study.
Reduction in radiation dose with reconstruction technique in the brain perfusion CT
NASA Astrophysics Data System (ADS)
Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.
2011-12-01
The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.
NASA Astrophysics Data System (ADS)
Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.
2016-03-01
Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.
Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction.
Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay; Siewerdsen, Jeffrey H
2014-02-21
The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼ 40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2 × over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼ 1.7 mGy and benefits from 50% sparsity at dose below ∼ 1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. PMID:24504126
Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction
NASA Astrophysics Data System (ADS)
Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.
2014-02-01
The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.
Hayakawa, Y; Kober, C
2014-01-01
Objectives: When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Methods: Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood–expectation maximization algorithm was applied. Next, the ordered subset–expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. Results: The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset–expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. Conclusions: A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset–expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction. PMID:24754471
Alternating dual updates algorithm for X-ray CT reconstruction on the GPU
McGaffin, Madison G.; Fessler, Jeffrey A.
2015-01-01
Model-based image reconstruction (MBIR) for X-ray computed tomography (CT) offers improved image quality and potential low-dose operation, but has yet to reach ubiquity in the clinic. MBIR methods form an image by solving a large statistically motivated optimization problem, and the long time it takes to numerically solve this problem has hampered MBIR’s adoption. We present a new optimization algorithm for X-ray CT MBIR based on duality and group coordinate ascent that may converge even with approximate updates and can handle a wide range of regularizers, including total variation (TV). The algorithm iteratively updates groups of dual variables corresponding to terms in the cost function; these updates are highly parallel and map well onto the GPU. Although the algorithm stores a large number of variables, the “working size” for each of the algorithm’s steps is small and can be efficiently streamed to the GPU while other calculations are being performed. The proposed algorithm converges rapidly on both real and simulated data and shows promising parallelization over multiple devices. PMID:26878031
Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W. L.; Zhang, Yu
2015-01-01
The reconstruction of the acoustic properties of a neonate finless porpoise’s head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise’s head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier’s beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise’s melon. PMID:25856588
Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu
2015-01-01
The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon. PMID:25856588
Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge
2016-01-01
The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153
Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge
2016-01-01
The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-02-01
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496
Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction
NASA Technical Reports Server (NTRS)
Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.
2000-01-01
This paper presents a new reconstruction algorithm for both single- and dual-energy computed tomography (CT) imaging. By incorporating the polychromatic characteristics of the X-ray beam into the reconstruction process, the algorithm is capable of eliminating beam hardening artifacts. The single energy version of the algorithm assumes that each voxel in the scan field can be expressed as a mixture of two known substances, for example, a mixture of trabecular bone and marrow, or a mixture of fat and flesh. These assumptions are easily satisfied in a quantitative computed tomography (QCT) setting. We have compared our algorithm to three commonly used single-energy correction techniques. Experimental results show that our algorithm is much more robust and accurate. We have also shown that QCT measurements obtained using our algorithm are five times more accurate than that from current QCT systems (using calibration). The dual-energy mode does not require any prior knowledge of the object in the scan field, and can be used to estimate the attenuation coefficient function of unknown materials. We have tested the dual-energy setup to obtain an accurate estimate for the attenuation coefficient function of K2 HPO4 solution.
Sparse-view X-ray CT Reconstruction via Total Generalized Variation Regularization
Niu, Shanzhou; Gao, Yang; Bian, Zhaoying; Huang, Jing; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua
2014-01-01
Sparse-view CT reconstruction algorithms via total variation (TV) optimize the data iteratively on the basis of a noise- and artifact-reducing model, resulting in significant radiation dose reduction while maintaining image quality. However, the piecewise constant assumption of TV minimization often leads to the appearance of noticeable patchy artifacts in reconstructed images. To obviate this drawback, we present a penalized weighted least-squares (PWLS) scheme to retain the image quality by incorporating the new concept of total generalized variation (TGV) regularization. We refer to the proposed scheme as “PWLS-TGV” for simplicity. Specifically, TGV regularization utilizes higher order derivatives of the objective image, and the weighted least-squares term considers data-dependent variance estimation, which fully contribute to improving the image quality with sparse-view projection measurement. Subsequently, an alternating optimization algorithm was adopted to minimize the associative objective function. To evaluate the PWLS-TGV method, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present PWLS-TGV method can achieve images with several noticeable gains over the original TV-based method in terms of accuracy and resolution properties. PMID:24842150
Sparse-view x-ray CT reconstruction via total generalized variation regularization
NASA Astrophysics Data System (ADS)
Niu, Shanzhou; Gao, Yang; Bian, Zhaoying; Huang, Jing; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua
2014-06-01
Sparse-view CT reconstruction algorithms via total variation (TV) optimize the data iteratively on the basis of a noise- and artifact-reducing model, resulting in significant radiation dose reduction while maintaining image quality. However, the piecewise constant assumption of TV minimization often leads to the appearance of noticeable patchy artifacts in reconstructed images. To obviate this drawback, we present a penalized weighted least-squares (PWLS) scheme to retain the image quality by incorporating the new concept of total generalized variation (TGV) regularization. We refer to the proposed scheme as ‘PWLS-TGV’ for simplicity. Specifically, TGV regularization utilizes higher order derivatives of the objective image, and the weighted least-squares term considers data-dependent variance estimation, which fully contribute to improving the image quality with sparse-view projection measurement. Subsequently, an alternating optimization algorithm was adopted to minimize the associative objective function. To evaluate the PWLS-TGV method, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present PWLS-TGV method can achieve images with several noticeable gains over the original TV-based method in terms of accuracy and resolution properties.
Sparse-view x-ray CT reconstruction via total generalized variation regularization.
Niu, Shanzhou; Gao, Yang; Bian, Zhaoying; Huang, Jing; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua
2014-06-21
Sparse-view CT reconstruction algorithms via total variation (TV) optimize the data iteratively on the basis of a noise- and artifact-reducing model, resulting in significant radiation dose reduction while maintaining image quality. However, the piecewise constant assumption of TV minimization often leads to the appearance of noticeable patchy artifacts in reconstructed images. To obviate this drawback, we present a penalized weighted least-squares (PWLS) scheme to retain the image quality by incorporating the new concept of total generalized variation (TGV) regularization. We refer to the proposed scheme as 'PWLS-TGV' for simplicity. Specifically, TGV regularization utilizes higher order derivatives of the objective image, and the weighted least-squares term considers data-dependent variance estimation, which fully contribute to improving the image quality with sparse-view projection measurement. Subsequently, an alternating optimization algorithm was adopted to minimize the associative objective function. To evaluate the PWLS-TGV method, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present PWLS-TGV method can achieve images with several noticeable gains over the original TV-based method in terms of accuracy and resolution properties. PMID:24842150
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling
NASA Astrophysics Data System (ADS)
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-02-01
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction
Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua
2015-01-01
Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as “ALM-ANAD”. The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics. PMID:26495975
Generalized Least-Squares CT Reconstruction with Detector Blur and Correlated Noise Models.
Stayman, J Webster; Zbijewski, Wojciech; Tilley, Steven; Siewerdsen, Jeffrey
2014-03-19
The success and improved dose utilization of statistical reconstruction methods arises, in part, from their ability to incorporate sophisticated models of the physics of the measurement process and noise. Despite the great promise of statistical methods, typical measurement models ignore blurring effects, and nearly all current approaches make the presumption of independent measurements - disregarding noise correlations and a potential avenue for improved image quality. In some imaging systems, such as flat-panel-based cone-beam CT, such correlations and blurs can be a dominant factor in limiting the maximum achievable spatial resolution and noise performance. In this work, we propose a novel regularized generalized least-squares reconstruction method that includes models for both system blur and correlated noise in the projection data. We demonstrate, in simulation studies, that this approach can break through the traditional spatial resolution limits of methods that do not model these physical effects. Moreover, in comparison to other approaches that attempt deblurring without a correlation model, superior noise-resolution trade-offs can be found with the proposed approach. PMID:25328638
Desai, G S; Thabet, A; Elias, A Y A; Sahani, D V
2013-01-01
Objective To compare image quality and radiation dose of abdominal CT examinations reconstructed with three image reconstruction techniques. Methods In this Institutional Review Board-approved study, contrast-enhanced (CE) abdominopelvic CT scans from 23 patients were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR) and iterative reconstruction in image space (IRIS) and were reviewed by two blinded readers. Subjective (acceptability, sharpness, noise and artefacts) and objective (noise) measures of image quality were recorded for each image data set. Radiation doses in CT dose index (CTDI) dose–length product were also calculated for each examination type and compared. Imaging parameters were compared using the Wilcoxon signed rank test and a paired t-test. Results All 69 CECT examinations were of diagnostic quality and similar for overall acceptability (mean grade for ASiR, 3.9±0.3; p=0.2 for Readers 1 and 2; IRIS, 3.9±0.4, p=0.2; FBP, 3.8±0.9). Objective noise was considerably lower with both iterative techniques (p<0.0001 and 0.0016 for ASiR and IRIS). Recorded mean radiation dose, i.e. CTDIvol, was 24% and 10% less with ASiR (11.4±3.4 mGy; p<0.001) and IRIS (13.5±3.7 mGy; p=0.06), respectively, than with FBP: 15.0±3.5 mGy. Conclusion At the system parameters used in this study, abdominal CT scans reconstructed with ASiR and IRIS provide diagnostic images with reduced image noise and 10–24% lower radiation dose than FBP. Advances in knowledge CT images reconstructed with FBP are frequently noisy on lowering the radiation dose. Newer iterative reconstruction techniques have different approaches to produce images with less noise; ASiR and IRIS provide diagnostic abdominal CT images with reduced image noise and radiation dose compared with FBP. This has been documented in this study. PMID:23255538
Cui, Y; Gao, S-Y; Wang, Z-L; Li, X-T; Sun, Y-S; Tang, L; Zhang, X-P
2012-01-01
Objective To provide evidence for the selection of an optimal cross-sectional reconstruction mode in spectral CT imaging of the abdomen, we compared the monochromatic images with polychromatic images. Methods Three phase-enhanced CT scans of the abdomen were recorded using the spectral imaging technique on 100 patients. Images were reconstructed using two modes: polychromatic and 70 keV monochromatic. The following variables were then compared: contrast-to-noise ratio (CNR) of the liver, spleen, gallbladder, kidney and pancreas, and the noise. Paired t-tests were used to compare differences between the two sets of images. Three experienced doctors graded the quality of the images with a five-point scale. The image quality scores were compared with a non-parametric rank sum test. Results Compared with polychromatic images, the 70 keV monochromatic mode images yielded significantly greater tissue-to-fat CNR and lower noise (p<0.001 for all comparisons). The image quality of the 70 keV monochromatic mode showed significantly better results than the polychromatic mode (p<0.001). Conclusions In abdominal spectral CT imaging, 70 keV monochromatic mode reconstruction images were better than those reconstructed using the polychromatic mode. The monochromatic mode may become the routine reconstruction mode for cross-sectional images. PMID:22723512
Dodge, Cristina T; Tamm, Eric P; Cody, Dianna D; Liu, Xinming; Jensen, Corey T; Wei, Wei; Kundra, Vikas; Rong, John
2016-01-01
The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative recon-struction (ASiR), and model-based iterative reconstruction (MBIR), over a range of typical to low-dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat-equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back-projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low-contrast detectability were evaluated from noise and contrast-to-noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were con-firmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1mGy. MBIR reduced noise levels five-fold and increased CNR by a factor of five compared to FBP below 6mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high-contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR
NASA Astrophysics Data System (ADS)
Xue, Xinwei; Cheryauka, Arvi; Tubbs, David
2006-03-01
CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.
Kim, Hyungjin; Min Park, Chang; Chae, Hee-Dong; Lee, Sang Min; Goo, Jin Mo
2015-01-01
PURPOSE We aimed to identify the impact of radiation dose and iterative reconstruction (IR) on measurement of pulmonary nodules by chest computed tomography (CT). METHODS CT scans were performed on a chest phantom containing various nodules (diameters of 3, 5, 8, 10, and 12 mm; +100, −630 and −800 HU for each diameter) at 80, 100, 120 kVp and 10, 20, 50, 100 mAs (a total of 12 radiation dose settings). Each CT was reconstructed using filtered back projection, iDose4, and iterative model reconstruction (IMR). Thereafter, two radiologists measured the diameter and attenuation of the nodules. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. Influence of radiation dose and reconstruction algorithm on measurement error and objective image quality metrics was analyzed using generalized estimating equations. RESULTS The 80 kVp, 10 mAs CT scan was not feasible for the measurement of 3 mm sized simulated ground-glass nodule (GGN); otherwise, diameter measurement error was not significantly influenced by radiation dose (P > 0.05). IR did not have a significant impact on diameter measurement error for simulated solid nodules (P > 0.05). However, for simulated GGNs, IMR was associated with significantly decreased relative diameter measurement error (P < 0.001). Attenuation measurement error was not significantly influenced by either radiation dose or reconstruction algorithm (P > 0.05). Objective image quality was significantly better with IMR (P < 0.05). CONCLUSION Nodule measurements were not affected by radiation dose except for 3 mm simulated GGN on 80 kVp, 10 mAs dose setting. However, for GGNs, IMR may help reduce diameter measurement error while improving image quality. PMID:26359871
NASA Astrophysics Data System (ADS)
Stsepankou, D.; Arns, A.; Ng, S. K.; Zygmanski, P.; Hesser, J.
2012-10-01
The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system.
Stsepankou, D; Arns, A; Ng, S K; Zygmanski, P; Hesser, J
2012-10-01
The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system. PMID:22964760
Few-view cone-beam CT reconstruction with deformed prior image
Zhang, Hua; Ouyang, Luo; Wang, Jing E-mail: jing.wang@utsouthwestern.edu; Huang, Jing; Ma, Jianhua E-mail: jing.wang@utsouthwestern.edu; Chen, Wufan
2014-12-15
Purpose: Prior images can be incorporated into the image reconstruction process to improve the quality of subsequent cone-beam CT (CBCT) images from sparse-view or low-dose projections. The purpose of this work is to develop a deformed prior image-based reconstruction (DPIR) strategy to mitigate the deformation between the prior image and the target image. Methods: The deformed prior image is obtained by a projection-based registration approach. Specifically, the deformation vector fields used to deform the prior image are estimated through iteratively matching the forward projection of the deformed prior image and the measured on-treatment projections. The deformed prior image is then used as the prior image in the standard prior image constrained compressed sensing (PICCS) algorithm. A simulation study on an XCAT phantom and a clinical study on a head-and-neck cancer patient were conducted to evaluate the performance of the proposed DPIR strategy. Results: The deformed prior image matches the geometry of the on-treatment CBCT more closely as compared to the original prior image. Consequently, the performance of the DPIR strategy from few-view projections is improved in comparison to the standard PICCS algorithm, based on both visual inspection and quantitative measures. In the XCAT phantom study using 20 projections, the average root mean squared error is reduced from 14% in PICCS to 10% in DPIR, and the average universal quality index increases from 0.88 in PICCS to 0.92 in DPIR. Conclusions: The present DPIR approach provides a practical solution to the mismatch problem between the prior image and target image, which improves the performance of the original PICCS algorithm for CBCT reconstruction from few-view or low-dose projections.
Dong, Xue; Niu, Tianye; Zhu, Lei
2014-05-15
Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one
Yin Fangfang; Guan Huaiqun; Lu Wenkai
2005-09-15
The technologies with kilovoltage (kV) and megavoltage (MV) imaging in the treatment room are now available for image-guided radiation therapy to improve patient setup and target localization accuracy. However, development of strategies to efficiently and effectively implement these technologies for patient treatment remains challenging. This study proposed an aggregated technique for on-board CT reconstruction using combination of kV and MV beam projections to improve the data acquisition efficiency and image quality. These projections were acquired in the treatment room at the patient treatment position with a new kV imaging device installed on the accelerator gantry, orthogonal to the existing MV portal imaging device. The projection images for a head phantom and a contrast phantom were acquired using both the On-Board Imager{sup TM} kV imaging device and the MV portal imager mounted orthogonally on the gantry of a Varian Clinac{sup TM} 21EX linear accelerator. MV projections were converted into kV information prior to the aggregated CT reconstruction. The multilevel scheme algebraic-reconstruction technique was used to reconstruct CT images involving either full, truncated, or a combination of both full and truncated projections. An adaptive reconstruction method was also applied, based on the limited numbers of kV projections and truncated MV projections, to enhance the anatomical information around the treatment volume and to minimize the radiation dose. The effects of the total number of projections, the combination of kV and MV projections, and the beam truncation of MV projections on the details of reconstructed kV/MV CT images were also investigated.
Cardiac motion correction based on partial angle reconstructed images in x-ray CT
Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom
2015-05-15
Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of
Xu, H
2014-06-01
Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed.
NASA Astrophysics Data System (ADS)
Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong
2016-03-01
In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.
Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels
NASA Astrophysics Data System (ADS)
Comtat, Claude; Kinahan, Paul E.; Fessler, Jeffrey A.; Beyer, Thomas; Townsend, David W.; Defrise, Michel; Michel, Christian
2002-01-01
We present the results of utilizing aligned anatomical information from CT images to locally adjust image smoothness during the reconstruction of three-dimensional (3D) whole-body positron emission tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is becoming widely recognized. Potentially useful, however, is the role of whole-body PET in quantitative estimation of tracer uptake. The utility of PET in oncology is often limited by the high level of statistical noise in the images. Reduction in noise can be obtained by incorporating a priori image smoothness information from correlated anatomical information during the reconstruction of PET data. A combined PET/CT scanner allows the acquisition of accurately aligned PET and x-ray CT whole-body data. We use the Fourier rebinning algorithm (FORE) to accurately convert the 3D PET data to two-dimensional (2D) data to accelerate the image reconstruction process. The 2D datasets are reconstructed with successive over-relaxation of a penalized weighted least squares (PWLS) objective function to model the statistics of the acquisition, data corrections, and rebinning. A 3D voxel label model is presented that incorporates the anatomical information via the penalty weights of the PWLS objective function. This combination of FORE + PWLS + labels was developed as it allows for both reconstruction of 3D whole-body data sets in clinically feasible times and also the inclusion of anatomical information in such a way that convergence can be guaranteed. Since mismatches between anatomical (CT) and functional (PET) data are unavoidable in practice, the labels are 'blurred' to reflect the uncertainty associated with the anatomical information. Simulated and experimental results show the potential advantage of incorporating anatomical information by using blurred labels to calculate the penalty weights. We conclude that while the effect of this method on detection tasks is complicated and unclear
Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT
Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.
2007-05-15
We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.
Deng, Luzhen; Mi, Deling; He, Peng; Feng, Peng; Yu, Pengwei; Chen, Mianyi; Li, Zhichao; Wang, Jian; Wei, Biao
2015-01-01
For lack of directivity in Total Variation (TV) which only uses x-coordinate and y-coordinate gradient transform as its sparse representation approach during the iteration process, this paper brought in Adaptive-weighted Diagonal Total Variation (AwDTV) that uses the diagonal direction gradient to constraint reconstructed image and adds associated weights which are expressed as an exponential function and can be adaptively adjusted by the local image-intensity diagonal gradient for the purpose of preserving the edge details, then using the steepest descent method to solve the optimization problem. Finally, we did two sets of numerical simulation and the results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection, which has lower Root Mean Square Error (RMSE) and higher Universal Quality Index (UQI) than Algebraic Reconstruction Technique (ART) and TV-based reconstruction method. PMID:26405935
Read, Charlotte; Branford, Olivier A; Verjee, Liaquat S; Wood, Simon H
2015-08-01
Late presenting and recurrent sternal wound infections post-sternotomy are difficult to treat, with the clinical picture not necessarily reflecting the underlying problem. As a result of our experience, we suggest that these chronic cases should be managed using a different algorithm to acute sternal wound infection. Positron emission tomography combined with computerized tomography (PET-CT) imaging may be potentially useful in enabling accurate localization of disease sites, which guides adequate debridement prior to definitive reconstruction. It may also allow for disease surveillance and monitoring of the response to antimicrobial treatment. We present three cases which support the need for pre-operative imaging using PET-CT. PMID:25986418
Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images
Wang Jing; Robar, James; Guan Huaiqun
2012-08-15
Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.
Zheng, Z; Papenhausen, E; Mueller, K
2013-11-01
Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios. PMID:24145253
NASA Astrophysics Data System (ADS)
Zheng, Z.; Papenhausen, E.; Mueller, K.
2013-11-01
Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios.
SU-D-12A-05: Iterative Reconstruction Techniques to Enable Intrinsic Respiratory Gated CT in Mice
Sun, T; Sun, N; Tan, S; Liu, Y; Mistry, N
2014-06-01
Purpose: Longitudinal studies of lung function in mice need the ability to image different phases of ventilation in free-breathing mice using retrospective gating. However, retrospective gating often produces under-sampled and uneven angular samples, resulting in severe reconstruction artifacts when using traditional FDK based reconstruction algorithms. We wanted to demonstrate the utility of iterative reconstruction method to enable intrinsic respiratory gating in small-animal CT. Methods: Free-breathing mice were imaged using a Siemens Inveon PET/micro-CT system. Evenly distributed projection images were acquired at 360 angles. Retrospective respiratory gating was performed using an intrinsic marker based on the average intensity in a region covering the diaphragm. Projections were classified into 4 and 6 phases (finer temporal resolution) resulting in 138 and 67 projections respectively. Reconstruction was carried out using 3 Methods: conventional FDK, iterative penalized least-square (PWLS) with total variation (TV), and PWLS with edge-preserving penalty. The performance of the methods was compared using contrast-to-noise (CNR) in a region of interest (ROI). Line profile through a specific region was plotted to evaluate the preserving of edges. Results: In both the cases with 4 and 6 phases, inadequate and non-uniform angular sampling results in artifacts using conventional FDK. However, such artifacts are minimized using both the iterative methods. Using both 4 and 6 phases, the iterative techniques outperformed FDK in terms of CNR and maintaining sharp edges. This is further evidenced especially with increased artifacts using FDK for 6 phases. Conclusion: This work indicates fewer artifacts and better image details can be achieved with iterative reconstruction methods in non-uniform under-sampled reconstruction. Using iterative methods can enable free-breathing intrinsic respiratory gating in small-animal CT. Further studies are needed to compare the
A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW
NASA Astrophysics Data System (ADS)
Wang, Sheng-Hao; Zhang, Kai; Wang, Zhi-Li; Gao, Kun; Wu, Zhao; Zhu, Pei-Ping; Wu, Zi-Yu
2015-01-01
X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.
NASA Astrophysics Data System (ADS)
Do, Synho; Liang, Zhuangli; Karl, William Clem; Brady, Thomas; Pien, Homer
2008-03-01
Modern CT systems have advanced at a dramatic rate. Algebraic iterative reconstruction techniques have shown promising and desirable image characteristics, but are seldom used due to their high computational cost for complete reconstruction of large volumetric datasets. In many cases, however, interest in high resolution reconstructions is restricted to smaller regions of interest within the complete volume. In this paper we present an implementation of a simple and practical method to produce iterative reconstructions of reduced-sized ROI from 3D helical tomographic data. We use the observation that the conventional filtered back-projection reconstruction is generally of high quality throughout the entire volume to predict the contributions to ROI-related projections arising from volumes outside the ROI. These predictions are then used to pre-correct the data to produce a tomographic inversion problem of substantially reduced size and memory demands. Our work expands on those of other researchers who have observed similar potential computational gains by exploiting FBP results. We demonstrate our approach using cardiac CT cone-beam imaging, illustrating our results with both ex vivo and in vivo multi-cycle EKG-gated examples.
Alpuche Aviles, Jorge E; Pistorius, Stephen; Gordon, Richard; Elbakri, Idris A
2011-01-01
This work presents a first generation incoherent scatter CT (ISCT) hybrid (analytic-iterative) reconstruction algorithm for accurate ρ{e}imaging of objects with clinically relevant sizes. The algorithm reconstructs quantitative images of ρ{e} within a few iterations, avoiding the challenges of optimization based reconstruction algorithms while addressing the limitations of current analytical algorithms. A 4π detector is conceptualized in order to address the issue of directional dependency and is then replaced with a ring of detectors which detect a constant fraction of the scattered photons. The ISCT algorithm corrects for the attenuation of photons using a limited number of iterations and filtered back projection (FBP) for image reconstruction. This results in a hybrid reconstruction algorithm that was tested with sinograms generated by Monte Carlo (MC) and analytical (AN) simulations. Results show that the ISCT algorithm is weakly dependent on the ρ{e} initial estimate. Simulation results show that the proposed algorithm reconstruct ρ{e} images with a mean error of -1% ± 3% for the AN model and from -6% to -8% for the MC model. Finally, the algorithm is capable of reconstructing qualitatively good images even in the presence of multiple scatter. The proposed algorithm would be suitable for in-vivo medical imaging as long as practical limitations can be addressed. PMID:21422588
Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data
NASA Astrophysics Data System (ADS)
Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu
2015-08-01
Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method.
Liu, Xingli; Wang, Jingshi; Liu, Qin; Zhao, Pengfei; Hou, Yang; Ma, Yue; Guo, Qiyong
2015-01-01
Aim To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models. Materials and Methods 27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose), SD12.5, SD15, SD17.5, SD20 (Groups from B to E) to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP), and Groups from B to E were reconstructed using iterative reconstruction (IR). Objective and subjective image quality (IQ) among groups were compared to determine an optimal radiation reduction level. Results The noise and signal-to-noise ratio (SNR) in Group D had no significant statistical difference from that in Group A (P = 1.0). The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05). There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups) of Group D. The effective dose (ED) of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001). Conclusions In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%. PMID:25764485
Kofler, James M.; Yu, Lifeng; Leng, Shuai; Zhang, Yi; Li, Zhoubo; Carter, Rickey E.; McCollough, Cynthia H.
2015-01-01
Objective To compare contrast-to-noise ratio (CNR) thresholds with visual assessment of low-contrast resolution (LCR) in filtered-backprojection (FBP) and iteratively-reconstructed (IR) CT images. Methods ACR CT accreditation phantom LCR images were acquired at CTDIvol levels of 8, 12, and 16 mGy using two scanner models and reconstructed using one FBP and two IR kernels. Acquisitions were repeated 100 times. Three board-certified medical physicists blindly reviewed the LCR-section images. Pass-percentage rates (PPRs) using previous and current ACR CT accreditation criteria were compared. Results Observer PPRs for FBP images were <32%. For IR images, 5/18 settings/dose/model configurations had PPRs >32% (maximum 76.3%). For CNR evaluation of FBP images, PPRs for 15 configurations were >70%. For IR images, all PPRs were ≥96%. Conclusions The CNR threshold used by the ACR CT accreditation program yields higher PPRs than visual assessment of LCR, potentially resulting in lower quality images passing the ACR CNR criteria. PMID:25853774
Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.
2010-04-15
Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of {approx}360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.
Li, Hua; Dolly, Steven; Chen, Hsin-Chen; Anastasio, Mark A; Low, Daniel A; Li, Harold H; Michalski, Jeff M; Thorstad, Wade L; Gay, Hiram; Mutic, Sasa
2016-01-01
CT image reconstruction is typically evaluated based on the ability to reduce the radiation dose to as-low-as-reasonably-achievable (ALARA) while maintaining acceptable image quality. However, the determination of common image quality metrics, such as noise, contrast, and contrast-to-noise ratio, is often insufficient for describing clinical radiotherapy task performance. In this study we designed and implemented a new comparative analysis method associating image quality, radiation dose, and patient size with radiotherapy task performance, with the purpose of guiding the clinical radiotherapy usage of CT reconstruction algorithms. The iDose4 iterative reconstruction algorithm was selected as the target for comparison, wherein filtered back-projection (FBP) reconstruction was regarded as the baseline. Both phantom and patient images were analyzed. A layer-adjustable anthropomorphic pelvis phantom capable of mimicking 38-58 cm lateral diameter-sized patients was imaged and reconstructed by the FBP and iDose4 algorithms with varying noise-reduction-levels, respectively. The resulting image sets were quantitatively assessed by two image quality indices, noise and contrast-to-noise ratio, and two clinical task-based indices, target CT Hounsfield number (for electron density determination) and structure contouring accuracy (for dose-volume calculations). Additionally, CT images of 34 patients reconstructed with iDose4 with six noise reduction levels were qualitatively evaluated by two radiation oncologists using a five-point scoring mechanism. For the phantom experiments, iDose4 achieved noise reduction up to 66.1% and CNR improvement up to 53.2%, compared to FBP without considering the changes of spatial resolution among images and the clinical acceptance of reconstructed images. Such improvements consistently appeared across different iDose4 noise reduction levels, exhibiting limited interlevel noise (< 5 HU) and target CT number variations (< 1 HU). The radiation
Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F.
2008-09-15
for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of 'shape differences' was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. Conclusions: We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.
Hardie, Andrew D; Nelson, Rachel M; Egbert, Robert; Rieter, William J; Tipnis, Sameer V
2015-01-01
Our primary objective in this study was to determine the preferred strength setting for the sinogram-affirmed iterative reconstruction algorithm (SAFIRE) in abdominal computed tomography (CT) imaging. Sixteen consecutive clinical CT scans of the abdomen were reconstructed by use of traditional filtered back projection (FBP) and 5 SAFIRE strengths: S1-S5. Six readers of differing experience were asked to rank the images on preference for overall diagnostic quality. The contrast-to-noise ratio was not significantly different between SAFIRE S1 and FBP, but increased with increasing SAFIRE strength. For pooled data, S2 and S3 were preferred equally but both were preferred over all other reconstructions. S5 was the least preferred, with FBP the next least preferred. This represents a marked disparity between the image quality based on quantitative parameters and qualitative preference. Care should be taken to factor in qualitative in addition to quantitative aspects of image quality when one is optimizing iterative reconstruction images. PMID:25164978
NASA Astrophysics Data System (ADS)
Park, Junhan; Lee, Changwoo; Baek, Jongduk
2015-03-01
In medical imaging systems, several factors (e.g., reconstruction algorithm, noise structures, target size, contrast, etc) affect the detection performance and need to be considered for object detection. In a cone beam CT system, FDK reconstruction produces different noise structures in axial and coronal slices, and thus we analyzed directional dependent detectability of objects using detection SNR of Channelized Hotelling observer. To calculate the detection SNR, difference-of-Gaussian channel model with 10 channels was implemented, and 20 sphere objects with different radius (i.e., 0.25 (mm) to 5 (mm) equally spaced by 0.25 (mm)), reconstructed by FDK algorithm, were used as object templates. Covariance matrix in axial and coronal direction was estimated from 3000 reconstructed noise volumes, and then the SNR ratio between axial and coronal direction was calculated. Corresponding 2D noise power spectrum was also calculated. The results show that as the object size increases, the SNR ratio decreases, especially lower than 1 when the object size is larger than 2.5 mm radius. The reason is because the axial (coronal) noise power is higher in high (low) frequency band, and therefore the detectability of a small (large) object is higher in coronal (axial) images. Our results indicate that it is more beneficial to use coronal slices in order to improve the detectability of a small object in a cone beam CT system.
Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang
2015-01-01
Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research. PMID:26756406
Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut
2016-01-01
Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications. PMID:27181695
NASA Astrophysics Data System (ADS)
Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut
2016-05-01
Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.
Li, Zhengdong; Zou, Donghua; Zhang, Jianhua; Shao, Yu; Huang, Ping; Chen, Yijiu
2015-10-01
We report a craniocerebral trauma case in which a man sustained severe skull fractures and cerebral contusions and it demanded elucidating the injury mechanism of being formed by strike or tumble. However, the initial features of skull fractures were mostly lost when the forensic pathologists involved in the case 5 months later because of injury healing and craniocerebral surgery. Therefore, we aimed to reconstruct the original skull fracture features by utilizing the digital reconstruction technologies in terms of CT (computed tomography) scanning, 3D (3-dimentional) reconstruction, and virtual surgical tools. The original fracture skull was assembled by using Mimics 13.0 based on the CT slices of postoperative head and the removed craniotomy skull flaps, which revealed fracture features of focal and overall skull deformation. Based on the assembly skull model and the contrecoup cerebral contusions, we conclude that the man suffered a tumble after being drunk and the serious craniocerebral trauma occurred. The case demonstrated that the digital reconstruction technologies can serve as effective approaches for forensic investigation in case of survived craniocerebral trauma patients without direct evidences interpreting the original trauma patterns, which could potentially be helpful in exploring the injury mechanisms. PMID:26232886
Min, Jonghwan; Pua, Rizza; Cho, Seungryong; Kim, Insoo; Han, Bumsoo
2015-11-15
Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the
Sub-milliSievert ultralow-dose CT colonography with iterative model reconstruction technique
Ourednicek, Petr; Briza, Jan; Giepmans, Walter; Jahoda, Jiri; Hruska, Lukas; Danes, Jan
2016-01-01
Purpose. The purpose of this study was to evaluate the technical and diagnostic performance of sub-milliSievert ultralow-dose (ULD) CT colonograpy (CTC) in the detection of colonic and extracolonic lesions. Materials and Methods. CTC with standard dose (SD) and ULD acquisitions of 64 matched patients, half of them with colonic findings, were reconstructed with filtered back projection (FBP), hybrid (HIR) and iterative model reconstruction techniques (IMR). Image noise in six colonic segments, in the left psoas muscle and aorta were measured. Image quality of the left adrenal gland and of the colon in the endoscopic and 2D view was rated on a five point Likert scale by two observers, who also completed the reading of CTC for colonic and extracolonic findings. Results. The mean radiation dose estimate was 4.1 ± 1.4 mSv for SD and 0.86 ± 0.17 mSv for ULD for both positions (p < 0.0001). In ULD-IMR, SD-IMR and SD-HIR, the endoluminal noise was decreased in all colonic segments compared to SD-FBP (p < 0.001). There were 27 small (6–9 mm) and 17 large (≥10 mm) colonic lesions that were classified as sessile polyps (n = 38), flat lesions (n = 3), or as a mass (n = 3). Per patient sensitivity and specificity were 0.82 and 0.93 for ULD-FBP, 0.97 and 0.97 for ULD-HIR, 0.97 and 1.0 for ULD-IMR. Per polyp sensitivity was 0.84 for ULD-FBP, 0.98 for ULD-HIR, 0.98 for ULD-IMR. Significantly less extracolonic findings were detected in ULD-FBP and ULD-HIR, but in the E4 category by C-RADS (potentially important findings), the detection was similar. Conclusion. Both HIR and IMR are suitable for sub-milliSievert ULD CTC without sacrificing diagnostic performance of the study. PMID:27069813
NASA Astrophysics Data System (ADS)
Lalone, Emily A.; Fox, Anne-Marie V.; Kedgley, Angela E.; Jenkyn, Thomas R.; King, Graham J. W.; Athwal, George S.; Johnson, James A.; Peters, Terry M.
2011-10-01
The study of joint congruency at the glenohumeral joint of the shoulder using computed tomography (CT) and three-dimensional (3D) reconstructions of joint surfaces is an area of significant clinical interest. However, ionizing radiation delivered to patients during CT examinations is much higher than other types of radiological imaging. The shoulder represents a significant challenge for this modality as it is adjacent to the thyroid gland and breast tissue. The objective of this study was to determine the optimal CT scanning techniques that would minimize radiation dose while accurately quantifying joint congruency of the shoulder. The results suggest that only one-tenth of the standard applied total current (mA) and a pitch ratio of 1.375:1 was necessary to produce joint congruency values consistent with that of the higher dose scans. Using the CT scanning techniques examined in this study, the effective dose applied to the shoulder to quantify joint congruency was reduced by 88.9% compared to standard clinical CT imaging techniques.
NASA Astrophysics Data System (ADS)
Son, Kihong; Lee, Jiseoc; Lee, Younjeong; Kim, Jin Sung; Cho, Seungryong
2014-03-01
In computed tomography (CT) imaging, radiat ion dose delivered to the patient is one of the major concerns. Many CT developers and researchers have been making efforts to reduce radiat ion dose. Spars e-view CT takes project ions at sparser view-angles and provides a viable option to reducing radiation dose. Sparse-view CT inspired by a compressive sensing (CS) theory, which acquires sparsely sampled data in projection angles to reconstruct volumetric images of the scanned object, is under active research for low-dose imaging. Also, region of interest (ROI) imaging method is one of the reasonable approaches to reducing the integral dose to the patient and the risk of overdose. In this study, we combined the two approaches together to achieve an ultra-low-dose imaging: a sparse-view imaging and the intensityweighted region-of-interest (IWROI) imaging. IWROI imaging technique is particularly interesting because it can reduce the imaging radiation dose substantially to the structures away from the imaging target, while allowing a stable solution of the reconstruction problem in comparison with the interior problem. We used a total-variation (TV) minimization algorithm that exploits the sparseness of the image derivative magnitude and can reconstruct images from sparse-view data. In this study, we implemented an imaging mode that combines a sparse-view imaging and an ROI imaging. We obtained promising results and believe that the proposed scanning approach can help reduce radiation dose to the patients while preserving good quality images for applications such as image-guided radiation therapy. We are in progress of applying the method to the real data.
SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments
Beaudry, J; Bergman, A; Cropp, R
2015-06-15
Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based on total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.
Rose, Sean; Andersen, Martin S.; Sidky, Emil Y.; Pan, Xiaochuan
2015-01-01
Purpose: The authors develop and investigate iterative image reconstruction algorithms based on data-discrepancy minimization with a total-variation (TV) constraint. The various algorithms are derived with different data-discrepancy measures reflecting the maximum likelihood (ML) principle. Simulations demonstrate the iterative algorithms and the resulting image statistical properties for low-dose CT data acquired with sparse projection view angle sampling. Of particular interest is to quantify improvement of image statistical properties by use of the ML data fidelity term. Methods: An incremental algorithm framework is developed for this purpose. The instances of the incremental algorithms are derived for solving optimization problems including a data fidelity objective function combined with a constraint on the image TV. For the data fidelity term the authors, compare application of the maximum likelihood principle, in the form of weighted least-squares (WLSQ) and Poisson-likelihood (PL), with the use of unweighted least-squares (LSQ). Results: The incremental algorithms are applied to projection data generated by a simulation modeling the breast computed tomography (bCT) imaging application. The only source of data inconsistency in the bCT projections is due to noise, and a Poisson distribution is assumed for the transmitted x-ray photon intensity. In the simulations involving the incremental algorithms an ensemble of images, reconstructed from 1000 noise realizations of the x-ray transmission data, is used to estimate the image statistical properties. The WLSQ and PL incremental algorithms are seen to reduce image variance as compared to that of LSQ without sacrificing image bias. The difference is also seen at few iterations—short of numerical convergence of the corresponding optimization problems. Conclusions: The proposed incremental algorithms prove effective and efficient for iterative image reconstruction in low-dose CT applications particularly with
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.
2015-04-01
Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.
Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization
2014-01-01
Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757
Yu, Lifeng; Fletcher, Joel G.; Shiung, Maria; Thomas, Kristen B.; Matsumoto, Jane M.; Zingula, Shannon N.; McCollough, Cynthia H.
2016-01-01
OBJECTIVE The objective of this study was to evaluate the radiation dose reduction potential of a novel image-based denoising technique in pediatric abdominopelvic and chest CT examinations and compare it with a commercial iterative reconstruction method. MATERIALS AND METHODS Data were retrospectively collected from 50 (25 abdominopelvic and 25 chest) clinically indicated pediatric CT examinations. For each examination, a validated noise-insertion tool was used to simulate half-dose data, which were reconstructed using filtered back-projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) methods. A newly developed denoising technique, adaptive nonlocal means (aNLM), was also applied. For each of the 50 patients, three pediatric radiologists evaluated four datasets: full dose plus FBP, half dose plus FBP, half dose plus SAFIRE, and half dose plus aNLM. For each examination, the order of preference for the four datasets was ranked. The organ-specific diagnosis and diagnostic confidence for five primary organs were recorded. RESULTS The mean (± SD) volume CT dose index for the full-dose scan was 5.3 ± 2.1 mGy for abdominopelvic examinations and 2.4 ± 1.1 mGy for chest examinations. For abdominopelvic examinations, there was no statistically significant difference between the half dose plus aNLM dataset and the full dose plus FBP dataset (3.6 ± 1.0 vs 3.6 ± 0.9, respectively; p = 0.52), and aNLM performed better than SAFIRE. For chest examinations, there was no statistically significant difference between the half dose plus SAFIRE and the full dose plus FBP (4.1 ± 0.6 vs 4.2 ± 0.6, respectively; p = 0.67), and SAFIRE performed better than aNLM. For all organs, there was more than 85% agreement in organ-specific diagnosis among the three half-dose configurations and the full dose plus FBP configuration. CONCLUSION Although a novel image-based denoising technique performed better than a commercial iterative reconstruction method in pediatric
Zhang, Cheng; Zhang, Tao; Zheng, Jian; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui
2015-01-01
In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time. PMID:26550024
NASA Astrophysics Data System (ADS)
Zhang, Hao; Ma, Jianhua; Wang, Jing; Liu, Yan; Han, Hao; Li, Lihong; Moore, William; Liang, Zhengrong
2015-03-01
To reduce radiation dose in X-ray computed tomography (CT) imaging, one of the common strategies is to lower the milliampere-second (mAs) setting during projection data acquisition. However, this strategy would inevitably increase the projection data noise, and the resulting image by the filtered back-projection (FBP) method may suffer from excessive noise and streak artifacts. The edge-preserving nonlocal means (NLM) filtering can help to reduce the noise-induced artifacts in the FBP reconstructed image, but it sometimes cannot completely eliminate them, especially under very low-dose circumstance when the image is severely degraded. To deal with this situation, we proposed a statistical image reconstruction scheme using a NLM-based regularization, which can suppress the noise and streak artifacts more effectively. However, we noticed that using uniform filtering parameter in the NLM-based regularization was rarely optimal for the entire image. Therefore, in this study, we further developed a novel approach for designing adaptive filtering parameters by considering local characteristics of the image, and the resulting regularization is referred to as adaptive NLM-based regularization. Experimental results with physical phantom and clinical patient data validated the superiority of using the proposed adaptive NLM-regularized statistical image reconstruction method for low-dose X-ray CT, in terms of noise/streak artifacts suppression and edge/detail/contrast/texture preservation.
Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.
2016-01-01
Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097
Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.
2014-01-01
Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc.). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration
Hayton, A; Beveridge, T; Marks, P; Wallace, A
2015-01-01
Objective: To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. Methods: We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. Results: The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose–length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p < 0.001, Wilcoxon rank-sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. Conclusion: The use of IR in CT is achieving dose savings of 20–30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. Advances in knowledge: This study examines the impact of the use of IR on patient dose in CT on a national scale. PMID:26133224
NASA Astrophysics Data System (ADS)
Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.
2015-03-01
Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.
Kupczik, Kornelius; Stark, Heiko; Mundry, Roger; Neininger, Fabian T; Heidlauf, Thomas; Röhrle, Oliver
2015-10-01
Skeletal muscle models are used to investigate motion and force generation in both biological and bioengineering research. Yet, they often lack a realistic representation of the muscle's internal architecture which is primarily composed of muscle fibre bundles, known as fascicles. Recently, it has been shown that fascicles can be resolved with micro-computed tomography (µCT) following staining of the muscle tissue with iodine potassium iodide (I2KI). Here, we present the reconstruction of the fascicular spatial arrangement and geometry of the superficial masseter muscle of a dog based on a combination of pattern recognition and streamline computation. A cadaveric head of a dog was incubated in I2KI and µCT-scanned. Following segmentation of the masseter muscle a statistical pattern recognition algorithm was applied to create a vector field of fascicle directions. Streamlines were then used to transform the vector field into a realistic muscle fascicle representation. The lengths of the reconstructed fascicles and the pennation angles in two planes (frontal and sagittal) were extracted and compared against a tracked fascicle field obtained through cadaver dissection. Both fascicle lengths and angles were found to vary substantially within the muscle confirming the complex and heterogeneous nature of skeletal muscle described by previous studies. While there were significant differences in the pennation angle between the experimentally derived and µCT-reconstructed data, there was congruence in the fascicle lengths. We conclude that the presented approach allows for embedding realistic fascicle information into finite element models of skeletal muscles to better understand the functioning of the musculoskeletal system. PMID:26141643
Son, Sung Sil; Choo, Ki Seok; Jeon, Ung Bae; Jeon, Gye Rok; Nam, Kyung Jin; Kim, Tae Un; Yeom, Jeong A; Hwang, Jae Yeon; Jeong, Dong Wook; Lim, Soo Jin
2015-06-01
To retrospectively evaluate the image quality of CT angiography (CTA) reconstructed by model-based iterative reconstruction (MBIR) and to compare this with images obtained by filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) in newborns and infants with congenital heart disease (CHD). Thirty-seven children (age 4.8 ± 3.7 months; weight 4.79 ± 0.47 kg) with suspected CHD underwent CTA on a 64detector MDCT without ECG gating (80 kVp, 40 mA using tube current modulation). Total dose length product was recorded in all patients. Images were reconstructed using FBP, ASIR, and MBIR. Objective image qualities (density, noise) were measured in the great vessels and heart chambers. The contrast-to-noise ratio (CNR) was calculated by measuring the density and noise of myocardial walls. Two radiologists evaluated images for subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery. Images were compared with respect to reconstruction method, and reconstruction times were measured. Images from all patients were diagnostic, and the effective dose was 0.22 mSv. The objective image noise of MBIR was significantly lower than those of FBP and ASIR in the great vessels and heart chambers (P < 0.05); however, with respect to attenuations in the four chambers, ascending aorta, descending aorta, and pulmonary trunk, no statistically significant difference was observed among the three methods (P > 0.05). Mean CNR values were 8.73 for FBP, 14.54 for ASIR, and 22.95 for MBIR. In addition, the subjective image noise of MBIR was significantly lower than those of the others (P < 0.01). Furthermore, while FBP had the highest score for image sharpness, ASIR had the highest score for diagnostic confidence (P < 0.05), and mean reconstruction times were 5.1 ± 2.3 s for FBP and ASIR and 15.1 ± 2.4 min for MBIR. While CTA with MBIR in newborns and infants with CHD can reduce image noise and
X-ray CT image reconstruction from few-views via total generalized p-variation minimization.
Hanming Zhang; Xiaoqi Xi; Bin Yan; Yu Han; Lei Li; Jianlin Chen; Ailong Cai
2015-08-01
Total variation (TV)-based CT image reconstruction, employing the image gradient sparsity, has shown to be experimentally capable of reducing the X-ray sampling rate and removing the unwanted artifacts, yet may cause unfavorable over-smoothing and staircase effects by the piecewise constant assumption. In this paper, we present a total generalized p-variation (TGpV) regularization model to adaptively preserve the edge information while avoiding the staircase effect. The new model is solved by splitting variables with an efficient alternating minimization scheme. With the utilization of generalized p-shrinkage mappings and partial Fourier transform, all the subproblems have closed solutions. The proposed method shows excellent properties of edge preserving as well as the smoothness features by the consideration of high order derivatives. Experimental results indicate that the proposed method could avoid the mentioned effects and reconstruct more accurately than both the TV and TGV minimization algorithms when applied to a few-view problem. PMID:26737566
Solar, P; Gahleitner, A; Bednar, A; Rodinger, S; Watzek, G
2001-03-01
The purpose of this study was to evaluate the sensitivity of conventional two-dimensional (2D) multisection images (multiplanar rendering, MPR) and registered three-dimensional (3D) shaded surface images (shaded surface display, SSD) of standard axial computed tomography (CT) data for detecting the mandibular canal (MC) in the lower jaw of 136 patients. The patients, who had different indications for mandibular CT, were examined using standard axial CT scanning. Two post-processing programs were used for 3D visualization of the data sets. The cross-sectional rendered images and the shaded surface 3D images were graded for detection of the MC, the presence of artefacts, overall quality and clinical relevance. A 3D display of the MC was achieved using the MPR technique in 100% with high image quality. The surface rendered display depicted the MC in 80%. Artefacts markedly degraded the 3D displays obtained using the surface rendering technique; thus, SSD is an inappropriate technique for imaging the entire MC without manual segmentation. MPR-CT improves the sensitivity of CT imaging in the detection of the MC with very little time needed for post-processing compared with the SSD method. This post-processing modality should, therefore, be considered for serial studies of patients undergoing dental CT. The sensitivity of the MPR method is even superior to the standard axial CT slices. PMID:11394371
Noid, G; Tai, A; Li, X
2015-06-15
Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. The CT IQ for patients with a high Body Mass Index (BMI) can suffer from increased noise due to photon starvation. The purpose of this study is to investigate and to quantify the IQ enhancement for high BMI patients through the application of IR algorithms. Methods: CT raw data collected for 6 radiotherapy (RT) patients with BMI, greater than or equal to 30 were retrospectively analyzed. All CT data were acquired using a CT scanner (Somaton Definition AS Open, Siemens) installed in a linac room (CT-on-rails) using standard imaging protocols. The CT data were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared and correlated with patient depth and BMI. The patient depth was defined as the largest distance from anterior to posterior along the bilateral symmetry axis. Results: IR techniques are demonstrated to preserve contrast and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is roughly doubled by adopting the highest SAFIRE strength. A significant correlation was observed between patient depth and IR noise reduction through Pearson’s correlation test (R = 0.9429/P = 0.0167). The mean patient depth was 30.4 cm and the average relative noise reduction for the strongest iterative reconstruction was 55%. Conclusion: The IR techniques produce a measureable enhancement to CT IQ by reducing the noise. Dramatic noise reduction is evident for the high BMI patients. The improved CT IQ enables more accurate delineation of tumors and organs at risk and more accuarte dose calculations for RT planning and delivery guidance. Supported by Siemens.
Goncharenko, V G
2015-01-01
The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks. PMID:25564886
Naumovich, S S; Naumovich, S A; Goncharenko, V G
2015-01-01
The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks. PMID:25564886
Lindström, M; Strandberg, S; Wredmark, T; Felländer-Tsai, L; Henriksson, M
2013-08-01
Computed tomography (CT) was used to explore if changes in muscle cross-sectional area and quality after anterior cruciate ligament (ACL) injury and reconstruction would be related to knee function. Fourteen females and 23 males (16-54 years) underwent clinical tests, subjective questionnaires, and CT 1 week before and 1 year after ACL surgery with semitendinosus-gracilis (STG) graft and rehabilitation. Postoperatively, knee laxity was decreased and functional knee measures and subjective patient scores improved. The most obvious remaining deficit was the quadriceps atrophy, which was significantly larger if the right leg was injured. Right-leg injury also tended to cause larger compensatory hypertrophy of the combined knee flexor and tibial internal rotator muscles (preoperatively). The quadriceps atrophy was significantly correlated with the scores and functional tests, the latter also being related to the remaining size of the gracilis muscle. Biceps femoris hypertrophy and, in males only, semimembranosus hypertrophy was observed following the ACL reconstruction. The lack of semimembranosus hypertrophy in the women could, via tibial internal rotation torque deficit, contribute to the less favorable functional and subjective outcome recorded for the women. The results indicate that the quadriceps, the combined knee flexor/tibial internal rotator muscles, side of ACL injury, and sex are important to consider in rehabilitation after STG graft. PMID:22107159
Yu, Lifeng Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H.
2015-05-15
Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.
Yu, Lifeng; Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H.
2015-01-01
Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDIvol = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF50% value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF50% value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels. PMID:25979020
Brady, S; Shulkin, B
2015-06-15
Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co
Lo, P.; Young, S.; Kim, H. J.; Brown, M. S.
2016-01-01
Purpose: To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. Methods: This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. Results: The
Xu, Jingyan; Fuld, Matthew K; Fung, George S K; Tsui, Benjamin M W
2015-04-01
Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved. PMID:25776521
SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method
Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X
2015-06-15
Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.
NASA Astrophysics Data System (ADS)
Shcherbinin, S.; Chamoiseau, S.; Celler, A.
2012-08-01
We investigated the quantitative accuracy of the model-based dual-isotope single-photon emission computed tomography (DI-SPECT) reconstructions that use Klein-Nishina expressions to estimate the scattered photon contributions to the projection data. Our objective was to examine the ability of the method to recover the absolute activities pertaining to both radiotracers: Tc-99m and I-123. We validated our method through a series of phantom experiments performed using a clinical hybrid SPECT/CT camera (Infinia Hawkeye, GE Healthcare). Different activity ratios and different attenuating media were used in these experiments to create cross-talk effects of varying severity, which can occur in clinical studies. Accurate model-based corrections for scatter and cross-talk with CT attenuation maps allowed for the recovery of the absolute activities from DI-SPECT/CT scans with errors that ranged 0-10% for both radiotracers. The unfavorable activity ratios increased the computational burden but practically did not affect the resulting accuracy. The visual analysis of parathyroid patient data demonstrated that our model-based processing improved adenoma/background contrast and enhanced localization of small or faint adenomas.
Larsson, Joel; Båth, Magnus; Ledenius, Kerstin; Thilander-Klang, Anne
2016-06-01
The purpose of this study was to investigate the effect of adaptive statistical iterative reconstruction (ASiR) on the visualisation of anatomical structures and diagnostic image quality in paediatric cerebral computed tomography (CT) examinations. Forty paediatric patients undergoing routine cerebral CT were included in the study. The raw data from CT scans were reconstructed into stacks of 5 mm thick axial images at various levels of ASiR. Three paediatric radiologists rated six questions related to the visualisation of anatomical structures and one question on diagnostic image quality, in a blinded randomised visual grading study. The evaluated anatomical structures demonstrated enhanced visibility with increasing level of ASiR, apart from the cerebrospinal fluid space around the brain. In this study, 60 % ASiR was found to be the optimal level of ASiR for paediatric cerebral CT examinations. This shows that the commonly used 30 % ASiR may not always be the optimal level. PMID:26873712
Pearl, M S; Roy, A; Limb, C J
2014-06-01
Radiologic assessment of cochlear implants can be limited because of metallic streak artifacts and the high attenuation of the temporal bones. We report on 14 patients with 18 cochlear implants (17 Med-El standard 31.5-mm arrays, 1 Med-El medium 24-mm array) who underwent flat panel CT with the use of high-resolution secondary reconstruction techniques. Flat panel CT depicted the insertion site, cochlear implant course, and all 216 individual electrode contacts. The calculated mean angular insertion depth for standard arrays was 591.9° (SD = 70.9; range, 280°). High-resolution secondary reconstructions of the initial flat panel CT dataset, by use of a manually generated field of view, Hounsfield unit kernel type, and sharp image characteristics, provided high-quality images with improved spatial resolution. Flat panel CT is a promising imaging tool for the postoperative evaluation of cochlear implant placement. PMID:24371026
SU-E-J-99: Reconstruction of Cone Beam CT Image Using Volumetric Modulated Arc Therapy Exit Beams
Jeong, K; Goddard, L; Savacool, M; Mynampati, D; Godoy Scripes, P; Tome', W; Kuo, H; Basavatia, A; Hong, L; Yaparpalvi, R; Kalnicki, S
2014-06-01
Purpose: To test the possibility of obtaining an image of the treated volume during volumetric modulated arc therapy (VMAT) with exit beams. Method: Using a Varian Clinac 21EX and MVCT detector the following three sets of detector projection data were obtained for cone beam CT reconstruction with and without a Catphan 504 phantom. 1) 72 projection images from 20 × 16 cm{sup 2} open beam with 3 MUs, 2) 72 projection images from 20 × 16 cm{sup 2} MLC closed beam with 14 MUs. 3) 137 projection images from a test RapicArc QA plan. All projection images were obtained in ‘integrated image’ mode. We used OSCaR code to reconstruct the cone beam CT images. No attempts were made to reduce scatter or artifacts. Results: With projection set 1) we obtained a good quality MV CBCT image by optimizing the reconstruction parameters. Using projection set 2) we were not able to obtain a CBCT image of the phantom, which was determined to be due to the variation of interleaf leakage with gantry angle. From projection set 3), we were able to obtain a weak but meaningful signal in the image, especially in the target area where open beam signals were dominant. This finding suggests that one might be able to acquire CBCT images with rough body shape and some details inside the irradiated target area. Conclusion: Obtaining patient images using the VMAT exit beam is challenging but possible. We were able to determine sources of image degradation such as gantry angle dependent interleaf leakage and beams with a large scatter component. We are actively working on improving image quality.
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhang, Hao; Moore, William; Bhattacharji, Priya; Liang, Zhengrong
2015-03-01
One hundred "normal-dose" computed tomography (CT) studies of the chest (i.e., 1,160 projection views, 120kVp, 100mAs) data sets were acquired from the patients who were scheduled for lung biopsy at Stony Brook University Hospital under informed consent approved by our Institutional Review Board. To mimic low-dose CT imaging scenario (i.e., sparse-view scan), sparse projection views were evenly extracted from the total 1,160 projections of each patient and the total radiation dose was reduced according to how many sparse views were selected. A standard filtered backprojection (FBP) algorithm was applied to the 1160 projections to produce reference images for comparison purpose. In the low-dose scenario, both the FBP and total variation-stokes (TVS) algorithms were applied to reconstruct the corresponding low-dose images. The reconstructed images were evaluated by an experienced thoracic radiologist against the reference images. Both the low-dose reconstructions and the reference images were displayed on a 4- megapixel monitor in soft tissue and lung windows. The images were graded by a five-point scale from 0 to 4 (0, nondiagnostic; 1, severe artifact with low confidence; 2, moderate artifact or moderate diagnostic confidences; 3, mild artifact or high confidence; 4, well depicted without artifacts). Quantitative evaluation measurements such as standard deviations for different tissue types and universal quality index were also studied and reported for the results. The evaluation concluded that the TVS can reduce the view number from 1,160 to 580 with slightly lower scores as the reference, resulting in a dose reduction to close 50%.
Volume-of-interest reconstruction from severely truncated data in dental cone-beam CT
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Kusnoto, Budi; Han, Xiao; Sidky, E. Y.; Pan, Xiaochuan
2015-03-01
As cone-beam computed tomography (CBCT) has gained popularity rapidly in dental imaging applications in the past two decades, radiation dose in CBCT imaging remains a potential, health concern to the patients. It is a common practice in dental CBCT imaging that only a small volume of interest (VOI) containing the teeth of interest is illuminated, thus substantially lowering imaging radiation dose. However, this would yield data with severe truncations along both transverse and longitudinal directions. Although images within the VOI reconstructed from truncated data can be of some practical utility, they often are compromised significantly by truncation artifacts. In this work, we investigate optimization-based reconstruction algorithms for VOI image reconstruction from CBCT data of dental patients containing severe truncations. In an attempt to further reduce imaging dose, we also investigate optimization-based image reconstruction from severely truncated data collected at projection views substantially fewer than those used in clinical dental applications. Results of our study show that appropriately designed optimization-based reconstruction can yield VOI images with reduced truncation artifacts, and that, when reconstructing from only one half, or even one quarter, of clinical data, it can also produce VOI images comparable to that of clinical images.
Noise and resolution in images reconstructed with FBP and OSC algorithms for CT
Ziegler, A.; Koehler, Th.; Proksa, R.
2007-02-15
This paper presents a comparison between an analytical and a statistical iterative reconstruction algorithm for computed transmission tomography concerning their noise and resolution performance. The reconstruction of two-dimensional images from simulated fan-beam transmission data is performed with a filtered back-projection (FBP) type reconstruction and an iterative ordered subsets convex (OSC) maximum-likelihood method. A special software phantom, which allows measuring the resolution and noise in a nonambiguous way, is used to simulate transmission tomography scans with different signal-to-noise ratios (SNR). The noise and modulation transfer function is calculated for FBP and OSC reconstruction at several positions, distributed over the field-of-view (FOV). The reconstruction with OSC using different numbers of subsets shows an inverse linear relation to the number of iterations that are necessary to reach a certain resolution and SNR, i.e., increasing the number of subsets by a factor x reduces the number of required iterations by the same factor. The OSC algorithm is able to achieve a nearly homogeneous high resolution over the whole FOV, which is not achieved with FBP. The OSC method achieves a lower level of noise compared with FBP at the same resolution. The reconstruction with OSC can save a factor of up to nine of x-ray dose compared with FBP in the investigated range of noise levels.
Teleportation of a 3-dimensional GHZ State
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan
2012-05-01
The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.
Dedes, G; Asano, Y; Parodi, K; Arbor, N; Dauvergne, D; Testa, E; Letang, J; Rit, S
2015-06-15
Purpose: The quantification of the intrinsic performances of proton computed tomography (pCT) as a modality for treatment planning in proton therapy. The performance of an ideal pCT scanner is studied as a function of various parameters. Methods: Using GATE/Geant4, we simulated an ideal pCT scanner and scans of several cylindrical phantoms with various tissue equivalent inserts of different sizes. Insert materials were selected in order to be of clinical relevance. Tomographic images were reconstructed using a filtered backprojection algorithm taking into account the scattering of protons into the phantom. To quantify the performance of the ideal pCT scanner, we study the precision and the accuracy with respect to the theoretical relative stopping power ratios (RSP) values for different beam energies, imaging doses, insert sizes and detector positions. The planning range uncertainty resulting from the reconstructed RSP is also assessed by comparison with the range of the protons in the analytically simulated phantoms. Results: The results indicate that pCT can intrinsically achieve RSP resolution below 1%, for most examined tissues at beam energies below 300 MeV and for imaging doses around 1 mGy. RSP maps accuracy of less than 0.5 % is observed for most tissue types within the studied dose range (0.2–1.5 mGy). Finally, the uncertainty in the proton range due to the accuracy of the reconstructed RSP map is well below 1%. Conclusion: This work explores the intrinsic performance of pCT as an imaging modality for proton treatment planning. The obtained results show that under ideal conditions, 3D RSP maps can be reconstructed with an accuracy better than 1%. Hence, pCT is a promising candidate for reducing the range uncertainties introduced by the use of X-ray CT alongside with a semiempirical calibration to RSP.Supported by the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP)
NASA Astrophysics Data System (ADS)
Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong
2012-03-01
Myocardial perfusion scans are an important tool in the assessment of myocardial viability following an infarction. Cardiac perfusion analysis using CT datasets is limited by the presence of so-called partial scan artifacts. These artifacts are due to variations in beam hardening and scatter between different short-scan angular ranges. In this research, another angular range dependent effect is investigated: non-uniform noise spatial distribution. Images reconstructed using filtered backprojection (FBP) are subject to this effect. Statistical image reconstruction (SIR) is proposed as a potential solution. A numerical phantom with added Poisson noise was simulated and two swines were scanned in vivo to study the effect of FBP and SIR on the spatial uniformity of the noise distribution. It was demonstrated that images reconstructed using FBP often show variations in noise on the order of 50% between different time frames. This variation is mitigated to about 10% using SIR. The noise level is also reduced by a factor of 2 in SIR images. Finally, it is demonstrated that the measurement of quantitative perfusion metrics are generally more accurate when SIR is used instead of FBP.
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya
2005-04-01
The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.
NASA Astrophysics Data System (ADS)
Hahn, Juliane; Bruder, Herbert; Allmendinger, Thomas; Stierstorfer, Karl; Flohr, Thomas; Kachelriess, Marc
2016-03-01
Until today, several software-based approaches to increase the temporal resolution in cardiac computed tomography by estimating motion vector fields (MVFs) have been developed. Thereunder, the majority are motion compensation algorithms, which estimate the MVFs employing a three-dimensional registration routine working on reconstructions of multiple cardiac phases.2, 6, 7, 12 We present an algorithm that requires nothing more than the data needed for a short scan reconstruction for motion estimation and motion-compensated reconstruction, which both are based on the reconstruction of volumes from a limited angular range.2, 3, 7, 8 Those partial angle reconstructions are centered at different time points during the short scan and have a temporal resolution of about 10ms each. The MVFs are estimated by a constrained cost function optimization routine employing a motion artifact measuring cost function. During optimization, the MVFs are applied directly by warping the partial angle reconstructions, and the motion compensation is established by simply adding the shifted images. In order to enforce smooth vector fields and keep the number of parameters low, the motion is modeled by a low degree polynomial. Furthermore, to find a good estimation of the MVFs even in phases with rapid cardiac motion, the constrained optimization is re-initialized multiple times. The algorithm is validated with the help of a simulation study and applied to patient data, where motion- compensated reconstructions are performed in various cardiac phases. We show that the image quality can be improved, also in more rapid cardiac phases due to re-initialization of the optimization routine.
Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong
2014-01-01
Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo®, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice
Li, Ke; Chen, Guang-Hong; Garrett, John; Ge, Yongshuai
2014-07-15
Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than
Direct two-dimensional reconstruction algorithm for an inverse-geometry CT system.
Baek, Jongduk; Pelc, Norbert J
2009-02-01
An inverse-geometry computed tomography (IGCT) system uses a large source array opposite a smaller detector array. A previously described IGCT reconstruction algorithm uses gridding, but this gridding step produces blurring in the reconstructed image. In this article, the authors describe a two-dimensional (2D) IGCT reconstruction algorithm without gridding. In the transverse direction, the raw data of the IGCT system can be viewed as being composed of many fan beams. Because the spacing between source spots is larger than the spot width, each fan beam has undersampled projection data, but the missing samples are effectively provided by other undersampled fan beam views. In the proposed method, a direct fan beam reconstruction algorithm is used to process each undersampled fan beam. Initial images with this method showed ring artifacts caused by nonuniform sampling in the radial direction as compared to an ideal fan beam. A new method for correcting this effect was developed. With this correction, high quality images were obtained. The noise performance of the proposed 2D IGCT reconstruction algorithm was investigated, and it was comparable to that of the fan beam system. A MTF study showed that the proposed method achieves better resolution than the gridding method. PMID:19291978
NASA Astrophysics Data System (ADS)
Oh, Jieun; Cho, Hyosung; Je, Uikyu; Lee, Minsik; Kim, Hyojeong; Hong, Daeki; Park, Yeonok; Lee, Seonhwa; Cho, Heemoon; Choi, Sungil; Koo, Yangseo
2013-03-01
In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient data. In computed tomography (CT); for example, image reconstruction from few views would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction method based on a compressed-sensing (CS) algorithm, which exploits the sparseness of the gradient image with substantially high accuracy, for accurate, low-dose dental cone-beam CT (CBCT) reconstruction. We applied the algorithm to a commercially-available dental CBCT system (Expert7™, Vatech Co., Korea) and performed experimental works to demonstrate the algorithm for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images from several undersampled data and evaluated the reconstruction quality in terms of the universal-quality index (UQI). Experimental demonstrations of the CS-based reconstruction algorithm appear to show that it can be applied to current dental CBCT systems for reducing imaging doses and improving the image quality.
Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas
2015-01-01
Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186
Alhassen, Fares; Nguyen, Nhan; Bains, Sukhkarn; Gould, Robert G; Seo, Youngho; Bacharach, Stephen L; Song, Xiyun; Shao, Lingxiong; Gullberg, Grant T; Aparici, Carina Mari
2014-01-01
Cardiac single photon emission computed tomography (SPECT) cameras typically rotate too slowly around a patient to capture changes in the blood pool activity distribution and provide accurate kinetic parameters. A spatiotemporal iterative reconstruction method to overcome these limitations was investigated. Dynamic rest/stress 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) SPECT/CT was performed along with reference standard rest/stress dynamic positron emission tomography (PET/CT) 13N-NH3 in five patients. The SPECT data were reconstructed using conventional and spatiotemporal iterative reconstruction methods. The spatiotemporal reconstruction yielded improved image quality, defined here as a statistically significant (p<0.01) 50% contrast enhancement. We did not observe a statistically significant difference between the correlations of the conventional and spatiotemporal SPECT myocardial uptake K 1 values with PET K 1 values (r=0.25, 0.88, respectively) (p<0.17). These results indicate the clinical feasibility of quantitative, dynamic SPECT/CT using 99mTc-MIBI and warrant further investigation. Spatiotemporal reconstruction clearly provides an advantage over a conventional reconstruction in computing K 1. PMID:24380045
Iterative CT reconstruction using coordinate descent with ordered subsets of data
NASA Astrophysics Data System (ADS)
Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.
2016-04-01
Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.
GPU-based iterative cone-beam CT reconstruction using tight frame regularization
NASA Astrophysics Data System (ADS)
Jia, Xun; Dong, Bin; Lou, Yifei; Jiang, Steve B.
2011-07-01
The x-ray imaging dose from serial cone-beam computed tomography (CBCT) scans raises a clinical concern in most image-guided radiation therapy procedures. It is the goal of this paper to develop a fast graphic processing unit (GPU)-based algorithm to reconstruct high-quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight-frame (TF)-based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512 × 512 × 70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstruct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of the modulation-transfer function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.
ANL CT Image Reconstruction Algorithm for Utilizing Digital X-ray Detector Array
Energy Science and Technology Software Center (ESTSC)
2004-08-05
Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms. The algorithm uses the concept of generation of an image from carefully obtained multiple l-D or 2-0 X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection. The software is capable of processing a large file for reconstructing single images or volumetnc (3-D) images from large area high resolutionmore » digital X-ray detectors.« less
NASA Astrophysics Data System (ADS)
Otake, Yoshito; Stayman, J. W.; Zbijewski, W.; Murphy, R. J.; Kutzer, M. D.; Taylor, R. H.; Siewerdsen, J. H.; Armand, M.
2013-03-01
Purpose: Accurate assessment of the size and location of osteolytic regions is essential in minimally invasive hip revision surgery. Moreover, image-guided robotic intervention for osteolysis treatment requires precise localization of implant components. However, high density metallic implants in proximity to the hip make assessment by either 2D or 3D x-ray imaging difficult. This paper details the initial implementation and evaluation of an advanced model-based conebeam CT (CBCT) reconstruction algorithm to improve guidance and assessment of hip osteolysis treatment. Method: A model-based reconstruction approach called Known Component Reconstruction (KCR) was employed to obtain high-quality reconstruction of regions neighboring metallic implants. KCR incorporates knowledge about the implant shape and material to precisely reconstruct surrounding anatomy while simultaneously estimating implant position. A simulation study involving a phantom generated from a CBCT scan of a cadaveric hip was performed. Registration accuracy in KCR iterations was evaluated as translational and rotational error from the true registration. Improvement in image quality was evaluated using normalized cross correlation (NCC) in two regions of interest (ROIs) about the femoral and acetabular components. Result: The study showed significant improvement in image quality over conventional filtered backprojection (FBP) and penalized-likelihood (PL) reconstruction. The NCC in the two ROIs improved from 0.74 and 0.81 (FBP) to 0.98 and 0.86 (PL) and >0.99 for KCR. The registration error was 0.01 mm in translation (0.02° in rotation) for the acetabular component and 0.01 mm (0.01° rotation) for the femoral component. Conclusions: Application of KCR to imaging hip osteolysis in the presence of the implant offers a promising step toward quantitative assessment in minimally invasive image-guided osteolysis treatment. The method
Statistical iterative reconstruction algorithm for X-ray phase-contrast CT
Hahn, Dieter; Thibault, Pierre; Fehringer, Andreas; Bech, Martin; Koehler, Thomas; Pfeiffer, Franz; Noël, Peter B.
2015-01-01
Grating-based phase-contrast computed tomography (PCCT) is a promising imaging tool on the horizon for pre-clinical and clinical applications. Until now PCCT has been plagued by strong artifacts when dense materials like bones are present. In this paper, we present a new statistical iterative reconstruction algorithm which overcomes this limitation. It makes use of the fact that an X-ray interferometer provides a conventional absorption as well as a dark-field signal in addition to the phase-contrast signal. The method is based on a statistical iterative reconstruction algorithm utilizing maximum-a-posteriori principles and integrating the statistical properties of the raw data as well as information of dense objects gained from the absorption signal. Reconstruction of a pre-clinical mouse scan illustrates that artifacts caused by bones are significantly reduced and image quality is improved when employing our approach. Especially small structures, which are usually lost because of streaks, are recovered in our results. In comparison with the current state-of-the-art algorithms our approach provides significantly improved image quality with respect to quantitative and qualitative results. In summary, we expect that our new statistical iterative reconstruction method to increase the general usability of PCCT imaging for medical diagnosis apart from applications focused solely on soft tissue visualization. PMID:26067714
NASA Astrophysics Data System (ADS)
Pachon, Jan H.; Yadava, Girijesh; Pal, Debashish; Hsieh, Jiang
2012-03-01
Non-linear iterative reconstruction (IR) algorithms have shown promising improvements in image quality at reduced dose levels. However, IR images sometimes may be perceived as having different image noise texture than traditional filtered back projection (FBP) reconstruction. Standard linear-systems-based image quality evaluation metrics are limited in characterizing such textural differences and non-linear image-quality vs. dose trade-off behavior, hence limited in predicting potential impact of such texture differences in diagnostic task. In an attempt to objectively characterize and measure dose dependent image noise texture and statistical properties of IR and FBP images, we have investigated higher order moments and Haralicks Gray Level Co-occurrence Matrices (GLCM) based texture features on phantom images reconstructed by an iterative and a traditional FBP method. In this study, the first 4 central order moments, and multiple texture features from Haralick GLCM in 4 directions at 6 different ROI sizes and four dose levels were computed. For resolution, noise and texture trade-off analysis, spatial frequency domain NPS and contrastdependent MTF were also computed. Preliminary results of the study indicate that higher order moments, along with spatial domain measures of energy, contrast, correlation, homogeneity, and entropy consistently capture the textural differences between FBP and IR as dose changes. These metrics may be useful in describing the perceptual differences in randomness, coarseness, contrast, and smoothness of images reconstructed by non-linear algorithms.
Total Variation-Stokes Strategy for Sparse-View X-ray CT Image Reconstruction
Liu, Yan; Ma, Jianhua; Lu, Hongbing; Wang, Ke; Zhang, Hao; Moore, William
2014-01-01
Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and/or other constraints, a piecewise-smooth X-ray computed tomography image can be reconstructed from sparse-view projection data. However, due to the piecewise constant assumption for the TV model, the reconstructed images are frequently reported to suffer from the blocky or patchy artifacts. To eliminate this drawback, we present a total variation-stokes-projection onto convex sets (TVS-POCS) reconstruction method in this paper. The TVS model is derived by introducing isophote directions for the purpose of recovering possible missing information in the sparse-view data situation. Thus the desired consistencies along both the normal and the tangent directions are preserved in the resulting images. Compared to the previous TV-based image reconstruction algorithms, the preserved consistencies by the TVS-POCS method are expected to generate noticeable gains in terms of eliminating the patchy artifacts and preserving subtle structures. To evaluate the presented TVS-POCS method, both qualitative and quantitative studies were performed using digital phantom, physical phantom and clinical data experiments. The results reveal that the presented method can yield images with several noticeable gains, measured by the universal quality index and the full-width-at-half-maximum merit, as compared to its corresponding TV-based algorithms. In addition, the results further indicate that the TVS-POCS method approaches to the gold standard result of the filtered back-projection reconstruction in the full-view data case as theoretically expected, while most previous iterative methods may fail in the full-view case because of their artificial textures in the results. PMID:24595347
Ohkubo, Masaki; Wada, Shinichi; Kayugawa, Akihiro; Matsumoto, Toru; Murao, Kohei
2011-07-15
Purpose: While the acquisition of projection data in a computed tomography (CT) scanner is generally carried out once, the projection data is often removed from the system, making further reconstruction with a different reconstruction filter impossible. The reconstruction kernel is one of the most important parameters. To have access to all the reconstructions, either prior reconstructions with multiple kernels must be performed or the projection data must be stored. Each of these requirements would increase the burden on data archiving. This study aimed to design an effective method to achieve similar image quality using an image filtering technique in the image space, instead of a reconstruction filter in the projection space for CT imaging. The authors evaluated the clinical feasibility of the proposed method in lung cancer screening. Methods: The proposed technique is essentially the same as common image filtering, which performs processing in the spatial-frequency domain with a filter function. However, the filter function was determined based on the quantitative analysis of the point spread functions (PSFs) measured in the system. The modulation transfer functions (MTFs) were derived from the PSFs, and the ratio of the MTFs was used as the filter function. Therefore, using an image reconstructed with a kernel, an image reconstructed with a different kernel was obtained by filtering, which used the ratio of the MTFs obtained for the two kernels. The performance of the method was evaluated by using routine clinical images obtained from CT screening for lung cancer in five subjects. Results: Filtered images for all combinations of three types of reconstruction kernels (''smooth,''''standard,'' and ''sharp'' kernels) showed good agreement with original reconstructed images regarded as the gold standard. On the filtered images, abnormal shadows suspected as being lung cancers were identical to those on the reconstructed images. The standard deviations (SDs) for
Gilbert, Robert P; Guyenne, Philippe; Li, Jing
2014-02-01
In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with artificial randomly constructed bone. Even though it is known that actual bone does not have randomly distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any microstructural information, such as trabeculae width and distance between trabeculae, being gleaned from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles generated via the turning bands method. A detailed comparison is performed on various parameters such as the attenuation rate and speed of sound through the bone samples as well as the normalized broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random model provides suitable bone samples for ultrasound interrogation in the transverse direction of the trabecular network. PMID:24480174
3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice
Powell, K. A.; Wilson, D.
2013-01-01
A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves. PMID:22146851
Bauer, Christian; Eberlein, Michael; Beichel, Reinhard R.
2014-01-01
We present a graph-based framework for airway tree reconstruction from CT scans and evaluate the performance of different feature categories and their combinations on five lung cohorts. The approach consists of two main processing steps. First, potential airway branch and connection candidates are identified and represented by a graph structure with weighted nodes and edges, respectively. Second, an optimization algorithm is utilized for generating an airway detection result by selecting a subset of airway branches and connections based on graph weights derived from image features. The performance of the algorithm with different feature categories and their combinations was assessed on a set of 50 lung CT scans from five different cohorts, including normal and diseased lungs. Results show tradeoffs between feature categories/combinations in terms of correctly (true positive) and incorrectly (false positive) identified airways. Also, the performance of features in dependence of lung cohort was analyzed. Across all cohorts, a good trade-off with high true positive rate (TPR) and low false positive rate (FPR) was achieved by a combination of gray-value, local shape, and structural features. This combination enabled extracting 91.80% of reference airways (TPR) in combination with a low FPR of 1.00%. In addition, this variant was evaluated on the public EXACT’09 test set, and a comparison with other airway detection approaches is provided. One of the main advantages of the presented method is that it is robust against local disturbances/artifacts or other ambiguities that are frequently occurring in lung CT scans. PMID:25438305
Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method
Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B.
2012-09-15
Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on
TV-regularized iterative image reconstruction on a mobile C-ARM CT
NASA Astrophysics Data System (ADS)
Pan, Yongsheng; Whitaker, Ross; Cheryauka, Arvi; Ferguson, Dave
2010-04-01
3D computed tomography has been extensively studied and widely used in modern society. Although most manufacturers choose the filtered backprojection algorithm (FBP) for its accuracy and efficiency, iterative reconstruction methods have a significant potential to provide superior performance for incomplete, noisy projection data. However, iterative methods have a high computational cost, which hinders their practical use. Furthermore, regularization is usually required to reduce the effects of noise. In this paper, we analyze the use of the Simultaneous Algebraic Reconstruction Technique (SART) with total variation (TV) regularization. Additionally, graphics hardware is utilized to increase the speed of SART. NVIDIA's GPU and Compute Unified Device Architecture (CUDA) comprise the core of our computational platform. GPU implementation details, including ray-based forward projection and voxel-based backprojection are illustrated. Experimental results for high-resolution synthetic and real data are provided to demonstrate the accuracy and efficiency of the proposed framework.
Reconstruction of limited-angle dual-energy CT using mutual learning and cross-estimation (MLCE)
NASA Astrophysics Data System (ADS)
Zhang, Huayu; Xing, Yuxiang
2016-03-01
Dual-energy CT (DECT) imaging has gained a lot of attenuation because of its capability to discriminate materials. We proposes a flexible DECT scan strategy which can be realized on a system with general X-ray sources and detectors. In order to lower dose and scanning time, our DECT acquires two projections data sets on two arcs of limited-angular coverage (one for each energy) respectively. Meanwhile, a certain number of rays from two data sets form conjugate sampling pairs. Our reconstruction method for such a DECT scan mainly tackles the consequent limited-angle problem. Using the idea of artificial neural network, we excavate the connection between projections at two different energies by constructing a relationship between the linear attenuation coefficient of the high energy and that of the low one. We use this relationship to cross-estimate missing projections and reconstruct attenuation images from an augmented data set including projections at views covered by itself (projections collected in scanning) and by the other energy (projections estimated) for each energy respectively. Validated by our numerical experiment on a dental phantom with rather complex structures, our DECT is effective in recovering small structures in severe limited-angle situations. This DECT scanning strategy can much broaden DECT design in reality.
NASA Astrophysics Data System (ADS)
Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.
2016-03-01
Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.
NASA Astrophysics Data System (ADS)
Wang, Xin; Zhang, Yanqi; Zhang, Limin; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng
2016-04-01
We present a generalized strategy for direct reconstruction in pharmacokinetic diffuse fluorescence tomography (DFT) with CT-analogous scanning mode, which can accomplish one-step reconstruction of the indocyanine-green pharmacokinetic-rate images within in vivo small animals by incorporating the compartmental kinetic model into an adaptive extended Kalman filtering scheme and using an instantaneous sampling dataset. This scheme, compared with the established indirect and direct methods, eliminates the interim error of the DFT inversion and relaxes the expensive requirement of the instrument for obtaining highly time-resolved date-sets of complete 360 deg projections. The scheme is validated by two-dimensional simulations for the two-compartment model and pilot phantom experiments for the one-compartment model, suggesting that the proposed method can estimate the compartmental concentrations and the pharmacokinetic-rates simultaneously with a fair quantitative and localization accuracy, and is well suitable for cost-effective and dense-sampling instrumentation based on the highly-sensitive photon counting technique.
Wang, Xin; Zhang, Yanqi; Zhang, Limin; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng
2016-04-30
We present a generalized strategy for direct reconstruction in pharmacokinetic diffuse fluorescence tomography (DFT) with CT-analogous scanning mode, which can accomplish one-step reconstruction of the indocyanine-green pharmacokinetic-rate images within in vivo small animals by incorporating the compartmental kinetic model into an adaptive extended Kalman filtering scheme and using an instantaneous sampling dataset. This scheme, compared with the established indirect and direct methods, eliminates the interim error of the DFT inversion and relaxes the expensive requirement of the instrument for obtaining highly time-resolved date-sets of complete 360 deg projections. The scheme is validated by two-dimensional simulations for the two-compartment model and pilot phantom experiments for the one-compartment model, suggesting that the proposed method can estimate the compartmental concentrations and the pharmacokinetic-rates simultaneously with a fair quantitative and localization accuracy, and is well suitable for cost-effective and dense-sampling instrumentation based on the highly-sensitive photon counting technique. PMID:27093958
Chen, Guang-Hong; Li, Yinsheng
2015-01-01
Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. Methods: In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity
NASA Astrophysics Data System (ADS)
Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie
2014-03-01
Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.
Vadalà, Antonio; Iorio, Raffaele; De Carli, Angelo; Argento, Giuseppe; Di Sanzo, Vincenzo; Conteduca, Fabio; Ferretti, Andrea
2007-04-01
The mechanism of bone tunnel enlargement following anterior cruciate ligament (ACL) reconstruction is not yet clearly understood. Many authors hypothesized that aggressive rehabilitation protocols may be a potential factor for bone tunnel enlargement, especially in reconstructions performed with hamstrings autograft. The purpose of this study was to evaluate the effect of a brace free rehabilitation on the tunnel enlargement after ACL reconstruction using doubled semitendinosus and gracilis tendons (DGST): our hypothesis was that early post-operative knee motion increase the diameters of the tibial and femoral bone tunnels. Forty-five consecutive patients undergoing ACL reconstruction for chronic ACL deficiency were selected. All patients were operated by the same surgeon using autologous DGST and the same fixation devices. Patients with associated ligaments injuries and or severe chondral damage were excluded. The patients were randomly assigned to enter the control group (group A, standard post-operative rehabilitation) and the study group (group B, brace free accelerated rehabilitation). A CT scan was used to exactly determine the diameters of both femoral and tibial tunnels at various levels of lateral femoral condyle and proximal tibia, using a previously described method [17]. Measurements were done by an independent radiologist in a blinded fashion the day after the operation and at a mean follow-up of 10 months (range 9-11). Statistical analysis was performed using paired t-test. The mean femoral tunnel diameter increased significantly from 9.04 +/- 0.05 (post-operative) to 9.30 +/- 0.8 mm (follow-up) in group A and from 9.04 +/- 0.03 to 9.94 +/- 1.12 mm in group B. The mean tibial tunnel diameter increased significantly from 9.03 +/- 0.04 to 10.01 +/- 0.80 mm in group A and from 9.04 +/- 0.03 to 10.60 +/- 0.78 mm in group B. The increase in femoral and tunnel diameters observed in the study group was significantly higher than that observed in the control
Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Luo, Ouyang; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun
2014-01-01
With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSE) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3–6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1–3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART. PMID:25255957
NASA Astrophysics Data System (ADS)
Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Ouyang, Luo; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun
2014-10-01
With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.
NASA Astrophysics Data System (ADS)
Nam, Woo Hyun; Ahn, Il Jun; Kim, Kyeong Min; Kim, Byung Il; Ra, Jong Beom
2013-10-01
Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images.
Noid, G; Chen, G; Tai, A; Li, X
2014-06-01
Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition AS Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.
Zhou, Miao; Peng, Xin; Mao, Chi; Tian, Jia-he; Zhang, Shu-wen; Xu, Fang; Tu, Jing-jing; Liu, Sheng; Hu, Min; Yu, Guang-yan
2015-01-01
Bone tissue engineering shows good prospects for mandibular reconstruction. In recent studies, prefabricated tissue-engineered bone (PTEB) by recombinant human bone morphogenetic proteins (rhBMPs) applied in vivo has found to be an effective alternative for autologous bone grafts. However, the optimal time to transfer PTEB for mandibular reconstruction is still not elucidated. Thus, here in an animal experiment of rhesus monkey, the suitable transferring time for PTEB to reconstruct mandibular defects was evaluated by 99mTc-MDP SPECT/CT, and its value in monitoring orthotopic rhBMP-2 implants for mandibular reconstruction was also evaluated. The result of SPECT/CT showed higher 99mTc-MDP uptake, indicating osteoinductivity, in rhBMP-2 incorporated demineralized freeze-dried bone allograft (DFDBA) and coralline hydroxyapatite (CHA) implants than those without BMP stimulation. 99mTc-MDP uptake of rhBMP-2 implant peaked at 8 weeks following implantation while CT showed the density of these implants increased after 13 weeks' prefabrication. Histology confirmed that mandibular defects were repaired successfully with PTEB or orthotopically rhBMP-2 incorporated CHA implants, in accordance with SPECT/CT findings. Collectively, data shows 99mTc-MDP SPECT/CT is a sensitive and noninvasive tool to monitor osteoinductivity and bone regeneration of PTEB and orthotopic implants. The PTEB achieved peak osteoinductivity and bone density at 8 to 13 weeks following ectopic implantation, which would serve as a recommendable time frame for its transfer to mandibular reconstruction. PMID:26340447
Nam, H; Guo, M; Lee, K; Li, R; Xing, L; Gao, H
2014-06-01
Purpose: Inspired by compressive sensing, sparsity regularized iterative reconstruction method has been extensively studied. However, its utility pertinent to multislice helical 4D CT for radiotherapy with respect to imaging quality, dose, and time has not been thoroughly addressed. As the beginning of such an investigation, this work carries out the initial comparison of reconstructed imaging quality between sparsity regularized iterative method and analytic method through static phantom studies using a state-of-art 128-channel multi-slice Siemens helical CT scanner. Methods: In our iterative method, tensor framelet (TF) is chosen as the regularization method for its superior performance from total variation regularization in terms of reduced piecewise-constant artifacts and improved imaging quality that has been demonstrated in our prior work. On the other hand, X-ray transforms and its adjoints are computed on-the-fly through GPU implementation using our previous developed fast parallel algorithms with O(1) complexity per computing thread. For comparison, both FDK (approximate analytic method) and Katsevich algorithm (exact analytic method) are used for multislice helical CT image reconstruction. Results: The phantom experimental data with different imaging doses were acquired using a state-of-art 128-channel multi-slice Siemens helical CT scanner. The reconstructed image quality was compared between TF-based iterative method, FDK and Katsevich algorithm with the quantitative analysis for characterizing signal-to-noise ratio, image contrast, and spatial resolution of high-contrast and low-contrast objects. Conclusion: The experimental results suggest that our tensor framelet regularized iterative reconstruction algorithm improves the helical CT imaging quality from FDK and Katsevich algorithm for static experimental phantom studies that have been performed.
Zhou, Miao; Peng, Xin; Mao, Chi; Tian, Jia-he; Zhang, Shu-wen; Xu, Fang; Tu, Jing-jing; Liu, Sheng; Hu, Min; Yu, Guang-yan
2015-01-01
Bone tissue engineering shows good prospects for mandibular reconstruction. In recent studies, prefabricated tissue-engineered bone (PTEB) by recombinant human bone morphogenetic proteins (rhBMPs) applied in vivo has found to be an effective alternative for autologous bone grafts. However, the optimal time to transfer PTEB for mandibular reconstruction is still not elucidated. Thus, here in an animal experiment of rhesus monkey, the suitable transferring time for PTEB to reconstruct mandibular defects was evaluated by 99mTc-MDP SPECT/CT, and its value in monitoring orthotopic rhBMP-2 implants for mandibular reconstruction was also evaluated. The result of SPECT/CT showed higher 99mTc-MDP uptake, indicating osteoinductivity, in rhBMP-2 incorporated demineralized freeze-dried bone allograft (DFDBA) and coralline hydroxyapatite (CHA) implants than those without BMP stimulation. 99mTc-MDP uptake of rhBMP-2 implant peaked at 8 weeks following implantation while CT showed the density of these implants increased after 13 weeks’ prefabrication. Histology confirmed that mandibular defects were repaired successfully with PTEB or orthotopically rhBMP-2 incorporated CHA implants, in accordance with SPECT/CT findings. Collectively, data shows 99mTc-MDP SPECT/CT is a sensitive and noninvasive tool to monitor osteoinductivity and bone regeneration of PTEB and orthotopic implants. The PTEB achieved peak osteoinductivity and bone density at 8 to 13 weeks following ectopic implantation, which would serve as a recommendable time frame for its transfer to mandibular reconstruction. PMID:26340447
Beitzke, Dietrich; Nolz, Richard; Unterhumer, Sylvia; Plank, Christina; Weber, Michael; Schernthaner, Rüdiger; Schöpf, Veronika; Wolf, Florian; Loewe, Christian
2014-01-01
Objective To prospectively evaluate image quality and radiation dose using a low-dose computed tomography angiography protocol and iterative image reconstruction for high-pitch dual-source CT-angiography (DSCTA) of the supraaortic arteries. Material and Methods DSCTA was performed in 42 patients, using either 120 kVp tube voltage, 120 mAS tube current, 2.4 pitch and filtered back projection, or 100 kVp tube voltage, 100 mAs tube current, 3.2 pitch, and sinogram affirmed iterative reconstruction. Measurements of vessel attenuation, of the contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) were performed to objectively evaluate image quality. Two readers evaluated subjective image quality and image noise, using a four-point scale. Effective dose was used to compare the differences in radiation dose. Results Low-dose protocol application showed significantly higher vessel opacification (p = 0.013), and non-significantly higher CNR and SNR values. There was no difference in the subjective image quality and image noise reading between the protocols. Effective dose was significantly lower using the low-dose protocol (1.29±0.21 mSv vs. 2.92±0.72 mSv; p<0.001). Conclusion The combined use of reduced tube voltage, reduced tube current, and iterative reconstruction reduces radiation dose by 55.4% in high-pitch DSCTA of the supraaortic arteries without impairment of image quality. PMID:24919195
Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty.
Kim, Kyungsang; Ye, Jong Chul; Worstell, William; Ouyang, Jinsong; Rakvongthai, Yothin; El Fakhri, Georges; Li, Quanzheng
2015-03-01
Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost. PMID:25532170
Tang, Xiangyang; Hsieh, Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira
2006-02-21
Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 degrees) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK
NASA Astrophysics Data System (ADS)
Olsson, Marie-Louise; Norrgren, Kristina
2012-03-01
The number of CT examinations giving a relatively high patient exposure is increasing. It is therefore important to optimize the imaging conditions at these investigations. Many steps have been taken to reduce the radiation doses in CT examinations. Currently much work is related to iterative image reconstruction methods as alternative to the filtered back projection method. The aim of this work was to evaluate quality parameters in images from a CT (Philips Brilliance 64) equipped with the iterative reconstruction method iDose4 using a Catphan 600 phantom with and without body simulating ring. CT scans using abdomen protocol were taken with various tube currents and tube voltage and keeping collimation and pitch unchanged for all scans. All collected data were reconstructed with different levels of iDose4 (Level 2, 4, 6) and traditional filtered back projection. Image quality parameters were evaluated using AutoQA Lite TM (Version 2.3 2007 Iris QA, LLC). Results from the study shows that the iterative reconstruction method decreases the noise with 15-45% compared with filtered back projection depending on which level of iDose4 is used. The percentage reduction in noise level is the same with and without body simulating ring. Low contrast was improved with iDose4 and spatial resolution is only marginally affected by the method of reconstruction. However by reducing the image noise, the detectability can be improved. Our conclusion is that there is great potential to reduce the noise and thereby improve the image quality by using iterative reconstruction methods. This can also be used to lower radiation dose and maintain image quality or improve image quality.
Clinical low dose CT image reconstruction using high-order total variation techniques
NASA Astrophysics Data System (ADS)
Do, Synho; Karl, W. Clem; Kalra, Mannudeep K.; Brady, Thomas J.; Pien, Homer
2010-04-01
Total variation (TV) based iterative image reconstruction has been shown to possess desirable noise suppression and edge preservation characteristics. However, such approaches also produce "staircase effects" where intensity ramps are discretized into steps, resulting in images which appear blocky or patchy. In this paper, we present an improved regularization technique by incorporating higher-order derivatives to reduce staircase artifacts without sacrificing edge sharpness. In this preliminary investigation we demonstrate our approach using both phantom and clinical images acquired at 25% of conventional radiation dosage (i.e., 75% dose reduction).
Guo, M; Nam, H; Li, R; Xing, L; Gao, H
2014-06-15
Purpose: 4D CT is routinely performed during radiation therapy treatment planning of thoracic and abdominal cancers. Compared with the cine mode, the helical mode is advantageous in temporal resolution. However, a low pitch (∼0.1) for 4D CT imaging is often required instead of the standard pitch (∼1) for static imaging, since standard image reconstruction based on analytic method requires the low-pitch scanning in order to satisfy the data sufficient condition when reconstructing each temporal frame individually. In comparison, the flexible iterative method enables the reconstruction of all temporal frames simultaneously, so that the image similarity among frames can be utilized to possibly perform high-pitch and sparse-view helical 4D CT imaging. The purpose of this work is to investigate such an exciting possibility for faster imaging with lower dose. Methods: A key for highpitch and sparse-view helical 4D CT imaging is the simultaneous reconstruction of all temporal frames using the prior that temporal frames are continuous along the temporal direction. In this work, such a prior is regularized through the sparsity transform based on spatiotemporal tensor framelet (TF) as a multilevel and high-order extension of total variation transform. Moreover, GPU-based fast parallel computing of X-ray transform and its adjoint together with split Bregman method is utilized for solving the 4D image reconstruction problem efficiently and accurately. Results: The simulation studies based on 4D NCAT phantoms were performed with various pitches (i.e., 0.1, 0.2, 0.5, and 1) and sparse views (i.e., 400 views per rotation instead of standard >2000 views per rotation), using 3D iterative individual reconstruction method based on 3D TF and 4D iterative simultaneous reconstruction method based on 4D TF respectively. Conclusion: The proposed TF-based simultaneous 4D image reconstruction method enables high-pitch and sparse-view helical 4D CT with lower dose and faster speed.
BrachyView: multiple seed position reconstruction and comparison with CT post-implant dosimetry
NASA Astrophysics Data System (ADS)
Alnaghy, S.; Loo, K. J.; Cutajar, D. L.; Jalayer, M.; Tenconi, C.; Favoino, M.; Rietti, R.; Tartaglia, M.; Carriero, F.; Safavi-Naeini, M.; Bucci, J.; Jakubek, J.; Pospisil, S.; Zaider, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Petasecca, M.
2016-05-01
BrachyView is a novel in-body imaging system utilising high-resolution pixelated silicon detectors (Timepix) and a pinhole collimator for brachytherapy source localisation. Recent studies have investigated various options for real-time intraoperative dynamic dose treatment planning to increase the quality of implants. In a previous proof-of-concept study, the justification of the pinhole concept was shown, allowing for the next step whereby multiple active seeds are implanted into a PMMA phantom to simulate a more realistic clinical scenario. In this study, 20 seeds were implanted and imaged using a lead pinhole of 400 μ m diameter. BrachyView was able to resolve the seed positions within 1–2 mm of expected positions, which was verified by co-registering with a full clinical post-implant CT scan.
Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.
Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa
2013-12-01
The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime
3-Dimensional Topographic Models for the Classroom
NASA Technical Reports Server (NTRS)
Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.
2003-01-01
We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.
Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan
2016-04-01
Purpose To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Materials and Methods Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Results Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was
High Fidelity System Modeling for High Quality Image Reconstruction in Clinical CT
Do, Synho; Karl, William Clem; Singh, Sarabjeet; Kalra, Mannudeep; Brady, Tom; Shin, Ellie; Pien, Homer
2014-01-01
Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity terms to retain signals upon application of the regularization term with all three factors. We then compared the differences between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active detector area model also have significant impacts on the quality of images produced. Upon application of the regularization term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose imaging. PMID:25390888
Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N; Braun, Natalie N; Saba, Osama; Williamson, Eric E; Harmsen, W Scott; Mandrekar, Jayawant N; McCollough, Cynthia H
2009-12-01
The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (< or =70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664
Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.
2009-01-01
The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664
Fletcher, Joel G.; Yu, Lifeng; Li, Zhoubo; Manduca, Armando; Blezek, Daniel J.; Hough, David M.; Venkatesh, Sudhakar K.; Brickner, Gregory C.; Cernigliaro, Joseph C.; Hara, Amy K.; Fidler, Jeff L.; Lake, David S.; Shiung, Maria; Lewis, David; Leng, Shuai; Augustine, Kurt E.; Carter, Rickey E.; Holmes, David R.; McCollough, Cynthia H.
2015-01-01
Purpose To determine if lower-dose computed tomographic (CT) scans obtained with adaptive image-based noise reduction (adaptive nonlocal means [ANLM]) or iterative reconstruction (sinogram-affirmed iterative reconstruction [SAFIRE]) result in reduced observer performance in the detection of malignant hepatic nodules and masses compared with routine-dose scans obtained with filtered back projection (FBP). Materials and Methods This study was approved by the institutional review board and was compliant with HIPAA. Informed consent was obtained from patients for the retrospective use of medical records for research purposes. CT projection data from 33 abdominal and 27 liver or pancreas CT examinations were collected (median volume CT dose index, 13.8 and 24.0 mGy, respectively). Hepatic malignancy was defined by progression or regression or with histopathologic findings. Lower-dose data were created by using a validated noise insertion method (10.4 mGy for abdominal CT and 14.6 mGy for liver or pancreas CT) and images reconstructed with FBP, ANLM, and SAFIRE. Four readers evaluated routine-dose FBP images and all lower-dose images, circumscribing liver lesions and selecting diagnosis. The jack-knife free-response receiver operating characteristic figure of merit (FOM) was calculated on a per-malignant nodule or per-mass basis. Noninferiority was defined by the lower limit of the 95% confidence interval (CI) of the difference between lower-dose and routine-dose FOMs being less than −0.10. Results Twenty-nine patients had 62 malignant hepatic nodules and masses. Estimated FOM differences between lower-dose FBP and lower-dose ANLM versus routine-dose FBP were noninferior (difference: −0.041 [95% CI: −0.090, 0.009] and −0.003 [95% CI: −0.052, 0.047], respectively). In patients with dedicated liver scans, lower-dose ANLM images were noninferior (difference: +0.015 [95% CI: −0.077, 0.106]), whereas lower-dose FBP images were not (difference −0.049 [95% CI:
SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction
Lu, W; Yan, H; Gu, X; Jiang, S; Jia, X; Bai, T; Zhou, L
2014-06-01
Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Three different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)
Winklhofer, Sebastian; Jiang, Rong; Wang, Xinlian; He, Wen
2016-01-01
Objective To investigate the effect of the adaptive statistical iterative reconstructions (ASIR) on image quality in portal venography by dual energy CT (DECT) imaging. Materials and Methods DECT scans of 45 cirrhotic patients obtained in the portal venous phase were analyzed. Monochromatic images at 70keV were reconstructed with the following 4 ASIR percentages: 0%, 30%, 50%, and 70%. The image noise (IN) (standard deviation, SD) of portal vein (PV), the contrast-to-noise-ratio (CNR), and the subjective score for the sharpness of PV boundaries, and the diagnostic acceptability (DA) were obtained. The IN, CNR, and the subjective scores were compared among the four ASIR groups. Results The IN (in HU) of PV (10.05±3.14, 9.23±3.05, 8.44±2.95 and 7.83±2.90) decreased and CNR values of PV (8.04±3.32, 8.95±3.63, 9.80±4.12 and 10.74±4.73) increased with the increase in ASIR percentage (0%, 30%, 50%, and 70%, respectively), and were statistically different for the 4 ASIR groups (p<0.05). The subjective scores showed that the sharpness of portal vein boundaries (3.13±0.59, 2.82±0.44, 2.73±0.54 and 2.07±0.54) decreased with higher ASIR percentages (p<0.05). The subjective diagnostic acceptability was highest at 30% ASIR (p<0.05). Conclusions 30% ASIR addition in DECT portal venography could improve the 70 keV monochromatic image quality. PMID:27315158
NASA Astrophysics Data System (ADS)
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-01
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-21
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml(-1) iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml(-1)) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image
Prediction coefficient estimation in Markov random fields for iterative x-ray CT reconstruction
NASA Astrophysics Data System (ADS)
Wang, Jiao; Sauer, Ken; Thibault, Jean-Baptiste; Yu, Zhou; Bouman, Charles
2012-02-01
Bayesian estimation is a statistical approach for incorporating prior information through the choice of an a priori distribution for a random field. A priori image models in Bayesian image estimation are typically low-order Markov random fields (MRFs), effectively penalizing only differences among immediately neighboring voxels. This limits spectral description to a crude low-pass model. For applications where more flexibility in spectral response is desired, potential benefit exists in models which accord higher a priori probability to content in higher frequencies. Our research explores the potential of larger neighborhoods in MRFs to raise the number of degrees of freedom in spectral description. Similarly to classical filter design, the MRF coefficients may be chosen to yield a desired pass-band/stop-band characteristic shape in the a priori model of the images. In this paper, we present an alternative design method, where high-quality sample images are used to estimate the MRF coefficients by fitting them into the spatial correlation of the given ensemble. This method allows us to choose weights that increase the probability of occurrence of strong components at particular spatial frequencies. This allows direct adaptation of the MRFs for different tissue types based on sample images with different frequency content. In this paper, we consider particularly the preservation of detail in bone structure in X-ray CT. Our results show that MRF design can be used to obtain bone emphasis similar to that of conventional filtered back-projection (FBP) with a bone kernel.
Park, Chul Hwan; Lee, Joohee; Oh, Chisuk; Han, Kyung Hwa; Kim, Tae Hoon
2015-12-01
We evaluated the feasibility of sub-millisievert (mSv) coronary CT angiography (CCTA) using low tube voltage, prospective ECG gating, and a knowledge-based iterative model reconstruction algorithm. Twenty-four non-obese healthy subjects (M:F 13:11; mean age 50.2 ± 7.8 years) were enrolled. Three sets of CT images were reconstructed using three different reconstruction methods: filtered back projection (FBP), iterative reconstruction (IR), and knowledge-based iterative model reconstruction (IMR). The scanning parameters were as follows: step-and-shoot axial scanning, 80 kVp, and 200 mAs. On the three sets of CT images, the attenuation and image noise values were measured at the aortic root. The signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were calculated at the proximal right coronary artery and the left main coronary artery. The qualitative image quality of the CCTA with IMR was assessed using a 4-point grading scale (grade 1, poor; grade 4, excellent). The mean radiation dose of the CCTA was 0.89 ± 0.09 mSv. The attenuation values with IMR were not different from those of other reconstruction methods. The image noise with IMR was significantly lower than with IR and FBP. Compared to FBP, the noise reduction rate of IMR was 69 %. The SNR and CNR of CCTA with IMR were significantly higher than with FBP or IR. On the qualitative analysis with IMR, all included segments were diagnostic (grades 2, 3, and 4), and the mean image quality score was 3.6 ± 0.6. In conclusion, CCTA with low tube voltage, prospective ECG gating, and an IMR algorithm might be a feasible method that allows for sub-millisievert radiation doses and good image quality when used with non-obese subjects. PMID:26521066
3-dimensional imaging at nanometer resolutions
Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.
2010-03-09
An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.
Wang, Xinlian; Chen, Jianghong; Hu, Zhihai; Zhao, Liqin
2015-01-01
Objective To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Materials and Methods Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. Results A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Conclusion Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan. PMID:26357499
Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc
2014-05-15
Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the
Ljungberg, Michael; Sjögreen, Katarina; Liu, Xiaowei; Frey, Eric; Dewaraja, Yuni; Strand, Sven-Erik
2009-01-01
A general method is presented for patient-specific 3-dimensional absorbed dose calculations based on quantitative SPECT activity measurements. Methods The computational scheme includes a method for registration of the CT image to the SPECT image and position-dependent compensation for attenuation, scatter, and collimator detector response performed as part of an iterative reconstruction method. A method for conversion of the measured activity distribution to a 3-dimensional absorbed dose distribution, based on the EGS4 (electron-gamma shower, version 4) Monte Carlo code, is also included. The accuracy of the activity quantification and the absorbed dose calculation is evaluated on the basis of realistic Monte Carlo–simulated SPECT data, using the SIMIND (simulation of imaging nuclear detectors) program and a voxel-based computer phantom. CT images are obtained from the computer phantom, and realistic patient movements are added relative to the SPECT image. The SPECT-based activity concentration and absorbed dose distributions are compared with the true ones. Results Correction could be made for object scatter, photon attenuation, and scatter penetration in the collimator. However, inaccuracies were imposed by the limited spatial resolution of the SPECT system, for which the collimator response correction did not fully compensate. Conclusion The presented method includes compensation for most parameters degrading the quantitative image information. The compensation methods are based on physical models and therefore are generally applicable to other radionuclides. The proposed evaluation methodology may be used as a basis for future intercomparison of different methods. PMID:12163637
Shin, Hee Jeong; Kim, Song Soo; Lee, Jae-Hwan; Park, Jae-Hyeong; Jeong, Jin-Ok; Jin, Seon Ah; Shin, Byung Seok; Shin, Kyung-Sook; Ahn, Moonsang
2016-06-01
To evaluate the feasibility of low-concentration contrast medium (CM) for vascular enhancement, image quality, and radiation dose on computed tomography aortography (CTA) using a combined low-tube-voltage and iterative reconstruction (IR) technique. Ninety subjects underwent dual-source CT (DSCT) operating in dual-source, high-pitch mode. DSCT scans were performed using both high-concentration CM (Group A, n = 50; Iomeprol 400) and low-concentration CM (Group B, n = 40; Iodixanol 270). Group A was scanned using a reference tube potential of 120 kVp and 120 reference mAs under automatic exposure control with IR. Group B was scanned using low-tube-voltage (80 or 100 kVp if body mass index ≥25 kg/m(2)) at a fixed current of 150 mAs, along with IR. Images of the two groups were compared regarding attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), iodine load, and radiation dose in various locations of the CTA. In comparison between Group A and Group B, the average mean attenuation (454.73 ± 86.66 vs. 515.96 ± 101.55 HU), SNR (25.28 ± 4.34 vs. 31.29 ± 4.58), and CNR (21.83 ± 4.20 vs. 27.55 ± 4.81) on CTA in Group B showed significantly greater values and significantly lower image noise values (18.76 ± 2.19 vs. 17.48 ± 3.34) than those in Group A (all Ps < 0.05). Homogeneous contrast enhancement from the ascending thoracic aorta to the infrarenal abdominal aorta was significantly superior in Group B (P < 0.05). Low-concentration CM and a low-tube-voltage combination technique using IR is a feasible method, showing sufficient contrast enhancement and image quality. PMID:26621755
Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C
2014-06-01
Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.
NASA Astrophysics Data System (ADS)
Thompson, John D.; Chakraborty, Dev P.; Szczepura, Katy; Vamvakas, Ioannis; Tootell, Andrew; Manning, David J.; Hogg, Peter
2015-03-01
Purpose: To investigate the dose saving potential of iterative reconstruction (IR) in a computed tomography (CT) examination of the thorax. Materials and Methods: An anthropomorphic chest phantom containing various configurations of simulated lesions (5, 8, 10 and 12mm; +100, -630 and -800 Hounsfield Units, HU) was imaged on a modern CT system over a tube current range (20, 40, 60 and 80mA). Images were reconstructed with (IR) and filtered back projection (FBP). An ATOM 701D (CIRS, Norfolk, VA) dosimetry phantom was used to measure organ dose. Effective dose was calculated. Eleven observers (15.11+/-8.75 years of experience) completed a free response study, localizing lesions in 544 single CT image slices. A modified jackknife alternative free-response receiver operating characteristic (JAFROC) analysis was completed to look for a significant effect of two factors: reconstruction method and tube current. Alpha was set at 0.05 to control the Type I error in this study. Results: For modified JAFROC analysis of reconstruction method there was no statistically significant difference in lesion detection performance between FBP and IR when figures-of-merit were averaged over tube current (F(1,10)=0.08, p = 0.789). For tube current analysis, significant differences were revealed between multiple pairs of tube current settings (F(3,10) = 16.96, p<0.001) when averaged over image reconstruction method. Conclusion: The free-response study suggests that lesion detection can be optimized at 40mA in this phantom model, a measured effective dose of 0.97mSv. In high-contrast regions the diagnostic value of IR, compared to FBP, is less clear.
Zbijewski, W.; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.
2014-01-01
Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a
Zbijewski, W. Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.
2014-02-15
Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a
NASA Astrophysics Data System (ADS)
Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong
2012-05-01
C-arm cone-beam CT could replace preoperative multi-detector CT scans in the cardiac interventional setting. However, cardiac gating results in view angle undersampling and the small size of the detector results in projection data truncation. These problems are incompatible with conventional tomographic reconstruction algorithms. In this paper, the prior image constrained compressed sensing (PICCS) reconstruction method was adapted to solve these issues. The performance of the proposed method was compared to that of FDK, FDK with extrapolated projection data (E-FDK), and total variation-based compressed sensing. A canine projection dataset acquired using a clinical C-arm imaging system supplied realistic cardiac motion and anatomy for this evaluation. Three different levels of truncation were simulated. The relative root mean squared error and the universal image quality index were used to quantify the reconstruction accuracy. Three main conclusions were reached. (1) The adapted version of the PICCS algorithm offered the highest image quality and reconstruction accuracy. (2) No meaningful variation in performance was observed when the amount of truncation was changed. (3) This study showed evidence that accurate interior tomography with an undersampled acquisition is possible for realistic objects if a prior image with minimal artifacts is available.
Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael
2012-01-01
In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252
Visualization of postoperative anterior cruciate ligament reconstruction bone tunnels
2011-01-01
Background and purpose Non-anatomic bone tunnel placement is the most common cause of a failed ACL reconstruction. Accurate and reproducible methods to visualize and document bone tunnel placement are therefore important. We evaluated the reliability of standard radiographs, CT scans, and a 3-dimensional (3D) virtual reality (VR) approach in visualizing and measuring ACL reconstruction bone tunnel placement. Methods 50 consecutive patients who underwent single-bundle ACL reconstructions were evaluated postoperatively by standard radiographs, CT scans, and 3D VR images. Tibial and femoral tunnel positions were measured by 2 observers using the traditional methods of Amis, Aglietti, Hoser, Stäubli, and the method of Benereau for the VR approach. Results The tunnel was visualized in 50–82% of the standard radiographs and in 100% of the CT scans and 3D VR images. Using the intraclass correlation coefficient (ICC), the inter- and intraobserver agreement was between 0.39 and 0.83 for the standard femoral and tibial radiographs. CT scans showed an ICC range of 0.49–0.76 for the inter- and intraobserver agreement. The agreement in 3D VR was almost perfect, with an ICC of 0.83 for the femur and 0.95 for the tibia. Interpretation CT scans and 3D VR images are more reliable in assessing postoperative bone tunnel placement following ACL reconstruction than standard radiographs. PMID:21999625
Biochemical Applications Of 3-Dimensional Fluorescence Spectrometry
NASA Astrophysics Data System (ADS)
Leiner, Marc J.; Wolfbeis, Otto S.
1988-06-01
We investigated the 3-dimensional fluorescence of complex mixtures of bioloquids such as human serum, serum ultrafiltrate, human urine, and human plasma low density lipoproteins. The total fluorescence of human serum can be divided into a few peaks. When comparing fluorescence topograms of sera, from normal and cancerous subjects, we found significant differences in tryptophan fluorescence. Although the total fluorescence of human urine can be resolved into 3-5 distinct peaks, some of them. do not result from single fluorescent urinary metabolites, but rather from. several species having similar spectral properties. Human plasma, low density lipoproteins possess a native fluorescence that changes when submitted to in-vitro autoxidation. The 3-dimensional fluorescence demonstrated the presence of 7 fluorophores in the lipid domain, and 6 fluorophores in the protein. dovain- The above results demonstrated that 3-dimensional fluorescence can resolve the spectral properties of complex ,lxtures much better than other methods. Moreover, other parameters than excitation and emission wavelength and intensity (for instance fluorescence lifetime, polarization, or quenchability) may be exploited to give a multidl,ensio,a1 matrix, that is unique for each sample. Consequently, 3-dimensio:Hhal fluorescence as such, or in combination with separation techniques is therefore considered to have the potential of becoming a useful new H.ethod in clinical chemistry and analytical biochemistry.
Veltchev, I; Fourkal, E; Doss, M; Ma, C; Meyer, J; Yu, M; Horwitz, E
2014-06-01
Purpose: In the past few years there have been numerous proposals for 3D dose reconstruction from the PET-CT imaging of patients undergoing radioembolization treatment of the liver with yttrium-90 microspheres. One of the most promising techniques uses convolution of the measured PET activity distribution with a pre-calculated Monte Carlo dose deposition kernel. The goal of the present study is to experimentally verify the accuracy of this method and to analyze the significance of various error sources. Methods: Optically stimulated luminescence detectors (OSLD) were used (NanoDot, Landauer) in this experiment. Two detectors were mounted on the central axis of a cylinder filled with water solution of yttrium-90 chloride. The total initial activity was 90mCi. The cylinder was inserted in a larger water phantom and scanned on a Siemens Biograph 16 Truepoint PET-CT scanner. Scans were performed daily over a period of 20 days to build a calibration curve for the measured absolute activity spanning 7 yttrium-90 half-lives. The OSLDs were mounted in the phantom for a predetermined period of time in order to record 2Gy dose. The measured dose was then compared to the dose reconstructed from the activity density at the location of each dosimeter. Results: Thorough error analysis of the dose reconstruction algorithm takes into account the uncertainties in the absolute PET activity, branching ratios, and nonlinearity of the calibration curve. The measured dose for 105-minute exposure on day 10 of the experiment was 219(11)cGy, while the reconstructed dose at the location of the detector was 215(47)cGy. Conclusion: We present the first experimental verification of the accuracy of the convolution algorithm for absolute dose reconstruction of yttrium-90 microspheres. The excellent agreement between the measured and calculated point doses will encourage the broad clinical adoption of the convolution-based dose reconstruction algorithm, making future quantitative dose
SU-D-17A-03: 5D Respiratory Motion Model Based Iterative Reconstruction Method for 4D Cone-Beam CT
Gao, Y; Thomas, D; Low, D; Gao, H
2014-06-01
Purpose: The purpose of this work is to develop a new iterative reconstruction method for 4D cone-beam CT (CBCT) based on a published time-independent 5D respiratory motion model. The proposed method will offer a single high-resolution image at a user-selected breathing phase and the 5D motion model parameters, which could be used to generate the breathing pattern during the CT acquisition. Methods: 5D respiratory motion model was proposed for accurately modeling the motion of lung and lung tumor tissues. 4D images are then parameterized by a reference image, measured breathing amplitude, breathing rate, two time-independent vector fields that describe the 5D model parameters, and a scalar field that describes the change in HU as a function of breathing amplitude. In contrast with the traditional method of reconstructing multiple temporal image phases to reduce respiratory artifact, 5D model based method simplify the problem into the reconstruction of a single reference image and the 5D motion model parameters. The reconstruction formulation of the reference image and scalar and vector fields is a nonlinear least-square optimization problem that consists of solving the reference image and fields alternately, in which the reference image is regularized with the total variation sparsity transform and the vector fields are solved through linearizations regularized by the H1 norm. 2D lung simulations were performed in this proof-of-concept study. Results: The breathing amplitude, its rate, and the corresponding scalar and vector fields were generated from a patient case. Compared with filtered backprojection method and sparsity regularized iterative method for the phase-by-phase reconstruction, the proposed 5D motion model based method yielded improved image quality. Conclusion: Based on 5D respiratory motion model, we have developed a new iterative reconstruction method for 4D CBCT that has the potential for improving image quality while providing needed on
NASA Astrophysics Data System (ADS)
Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster
2016-03-01
Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.
Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster
2016-01-01
Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051
Calzado, A; Geleijns, J; Joemai, R M S; Veldkamp, W J H
2014-01-01
Objective: To compare low-contrast detectability (LCDet) performance between a model [non–pre-whitening matched filter with an eye filter (NPWE)] and human observers in CT images reconstructed with filtered back projection (FBP) and iterative [adaptive iterative dose reduction three-dimensional (AIDR 3D; Toshiba Medical Systems, Zoetermeer, Netherlands)] algorithms. Methods: Images of the Catphan® phantom (Phantom Laboratories, New York, NY) were acquired with Aquilion ONE™ 320-detector row CT (Toshiba Medical Systems, Tokyo, Japan) at five tube current levels (20–500 mA range) and reconstructed with FBP and AIDR 3D. Samples containing either low-contrast objects (diameters, 2–15 mm) or background were extracted and analysed by the NPWE model and four human observers in a two-alternative forced choice detection task study. Proportion correct (PC) values were obtained for each analysed object and used to compare human and model observer performances. An efficiency factor (η) was calculated to normalize NPWE to human results. Results: Human and NPWE model PC values (normalized by the efficiency, η = 0.44) were highly correlated for the whole dose range. The Pearson's product-moment correlation coefficients (95% confidence interval) between human and NPWE were 0.984 (0.972–0.991) for AIDR 3D and 0.984 (0.971–0.991) for FBP, respectively. Bland–Altman plots based on PC results showed excellent agreement between human and NPWE [mean absolute difference 0.5 ± 0.4%; range of differences (−4.7%, 5.6%)]. Conclusion: The NPWE model observer can predict human performance in LCDet tasks in phantom CT images reconstructed with FBP and AIDR 3D algorithms at different dose levels. Advances in knowledge: Quantitative assessment of LCDet in CT can accurately be performed using software based on a model observer. PMID:24837275
McCollough, Cynthia H.; Yu, Lifeng; Kofler, James M.; Leng, Shuai; Zhang, Yi; Li, Zhoubo; Carter, Rickey E.
2015-01-01
Purpose To determine the dose reduction that could be achieved without degrading low-contrast spatial resolution (LCR) performance for two commercial iterative reconstruction (IR) techniques, each evaluated at two strengths with many repeated scans. Materials and Methods Two scanner models were used to image the American College of Radiology (ACR) CT Accreditation Phantom LCR section at volume CT dose indexes of 8, 12, and 16 mGy. Images were reconstructed by using filtered-back projection (FBP) and two manufacturers’ IR techniques, each at two strengths (moderate and strong). Data acquisition and reconstruction were repeated 100 times for each, yielding 1800 images. Three diagnostic medical physicists reviewed the LCR images in a blinded fashion and graded the visibility of four 6-mm rods with a six-point scale. Noninferiority and inferiority-superiority analyses were used to interpret the differences in LCR relative to FBP images acquired at 16 mGy. Results LCR decreased with decreasing dose for all reconstructions. Relative to FBP and full dose, 25%–50% dose reductions resulted in inferior LCR for vendors 1 and 2 for FBP and 25% dose reductions resulted in inferior and equivalent performance for vendor 1 and equivalent and superior performance for vendor 2 at moderate and strong IR settings, respectively. When dose was reduced by 50%, both IR techniques resulted in inferior LCR at both strength settings. Conclusion For radiation dose reductions of 25% or more, the ability to resolve the four 6-mm rods in the ACR CT Accreditation Phantom can be lost. PMID:25811326
Dolly, S; Chen, H; Anastasio, M; Mutic, S; Li, H
2014-06-15
Purpose: To quantitatively assess the noise power spectrum (NPS) of the new, commercially released CT iterative reconstruction technique, iDose{sup 4} from Philips, to compare it with filtered back-projection techniques (FBP), and to provide clinical practice suggestions for radiation therapy. Methods: A uniform phantom was CT imaged with 120kVp tube potential over a range of mAs (250-3333). The image sets were reconstructed using two reconstruction algorithms (FBP and iDose{sup 4} with noise reduction levels 1, 3, and 6) and three reconstruction filters (standard B, smooth A, and sharp C), after which NPS variations were analyzed and compared on region of interest (ROI) sizes (16×16 to 128×128 pixels), ROI radii (0–65 mm), reconstruction algorithms, reconstruction filters, and mAs. Results: The NPS magnitude and shape depended considerably on ROI size and location for both reconstruction algorithms. Regional noise variance became more stationary as ROI size decreased, minimizing NPS artifacts. The optimal 32×32-pixel ROI size balanced the trade-off between stationary noise and adequate sampling. NPS artifacts were greatest at the center of reconstruction space and decreased with increasing ROI distance from the center. The optimal ROI position was located near the phantom's radial midpoint (∼40mm). For sharper filters, the NPS magnitude and the maximum magnitude frequency increased. Higher dose scans yielded lower NPS magnitudes for both reconstruction algorithms and all filters. Compared to FBP, the iDose{sup 4} algorithm reduced the NPS magnitude while preferentially reducing noise at mid-range spatial frequencies, altering noise texture. This reduction was more significant with increasing iDose{sup 4} noise reduction level. Conclusion: Compared to pixel standard deviation, NPS has greater clinical potential for task-based image quality assessment, describing both the magnitude and spatial frequency characteristics of image noise. While iDose{sup 4
SU-F-18C-13: Low-Dose X-Ray CT Reconstruction Using a Hybrid First-Order Method
Liu, L; Lin, W; Jin, M
2014-06-15
Purpose: To develop a novel reconstruction method for X-ray CT that can lead to accurate reconstruction at significantly reduced dose levels combining low X-ray incident intensity and few views of projection data. Methods: The noise nature of the projection data at low X-ray incident intensity was modeled and accounted by the weighted least-squares (WLS) criterion. The total variation (TV) penalty was used to mitigate artifacts caused by few views of data. The first order primal-dual (FOPD) algorithm was used to minimize TV in image domain, which avoided the difficulty of the non-smooth objective function. The TV penalized WLS reconstruction was achieved by alternated FOPD TV minimization and projection onto convex sets (POCS) for data fidelity constraints. The proposed FOPD-POCS method was evaluated using the FORBILD jaw phantom and the real cadaver head CT data. Results: The quantitative measures, root mean square error (RMSE) and contrast-to-noise ratio (CNR), demonstrate the superior denoising capability of WLS over LS-based TV iterative reconstruction. The improvement of RMSE (WLS vs. LS) is 15%∼21% and that of CNR is 17%∼72% when the incident counts per ray are ranged from 1×10{sup 5} to 1×10{sup 3}. In addition, the TV regularization can accurately reconstruct images from about 50 views of the jaw phantom. The FOPD-POCS reconstruction reveals more structural details and suffers fewer artifacts in both the phantom and real head images. The FOPD-POCS method also shows fast convergence at low X-ray incident intensity. Conclusion: The new hybrid FOPD-POCS method, based on TV penalized WLS, yields excellent image quality when the incident X-ray intensity is low and the projection views are limited. The reconstruction is computationally efficient since the FOPD minimization of TV is applied only in the image domain. The characteristics of FOPD-POCS can be exploited to significantly reduce radiation dose of X-ray CT without compromising accuracy for diagnosis
Larsson, Joel; Båth, Magnus; Ledenius, Kerstin; Caisander, Håkan; Thilander-Klang, Anne
2016-06-01
The purpose of this study was to investigate the effect of different combinations of convolution kernel and the level of Adaptive Statistical iterative Reconstruction (ASiR™) on diagnostic image quality as well as visualisation of anatomical structures in paediatric abdominal computed tomography (CT) examinations. Thirty-five paediatric patients with abdominal pain with non-specified pathology undergoing abdominal CT were included in the study. Transaxial stacks of 5-mm-thick images were retrospectively reconstructed at various ASiR levels, in combination with three convolution kernels. Four paediatric radiologists rated the diagnostic image quality and the delineation of six anatomical structures in a blinded randomised visual grading study. Image quality at a given ASiR level was found to be dependent on the kernel, and a more edge-enhancing kernel benefitted from a higher ASiR level. An ASiR level of 70 % together with the Soft™ or Standard™ kernel was suggested to be the optimal combination for paediatric abdominal CT examinations. PMID:26922785
Hydroelectric structures studies using 3-dimensional methods
Harrell, T.R.; Jones, G.V.; Toner, C.K. )
1989-01-01
Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.
Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T
2016-01-01
Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169
Lv, Peijie; Liu, Jie; Zhang, Rui; Jia, Yan
2015-01-01
Objective To assess the lesion conspicuity and image quality in CT evaluation of small (≤ 3 cm) hepatocellular carcinomas (HCCs) using automatic tube voltage selection (ATVS) and automatic tube current modulation (ATCM) with or without iterative reconstruction. Materials and Methods One hundred and five patients with 123 HCC lesions were included. Fifty-seven patients were scanned using both ATVS and ATCM and images were reconstructed using either filtered back-projection (FBP) (group A1) or sinogram-affirmed iterative reconstruction (SAFIRE) (group A2). Forty-eight patients were imaged using only ATCM, with a fixed tube potential of 120 kVp and FBP reconstruction (group B). Quantitative parameters (image noise in Hounsfield unit and contrast-to-noise ratio of the aorta, the liver, and the hepatic tumors) and qualitative visual parameters (image noise, overall image quality, and lesion conspicuity as graded on a 5-point scale) were compared among the groups. Results Group A2 scanned with the automatically chosen 80 kVp and 100 kVp tube voltages ranked the best in lesion conspicuity and subjective and objective image quality (p values ranging from < 0.001 to 0.004) among the three groups, except for overall image quality between group A2 and group B (p = 0.022). Group A1 showed higher image noise (p = 0.005) but similar lesion conspicuity and overall image quality as compared with group B. The radiation dose in group A was 19% lower than that in group B (p = 0.022). Conclusion CT scanning with combined use of ATVS and ATCM and image reconstruction with SAFIRE algorithm provides higher lesion conspicuity and better image quality for evaluating small hepatic HCCs with radiation dose reduction. PMID:25995682
Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai
2013-01-01
Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503
Defrise, Michel; Gullberg, Grant T.
2006-04-05
We give an overview of the role of Physics in Medicine andBiology in development of tomographic reconstruction algorithms. We focuson imaging modalities involving ionizing radiation, CT, PET and SPECT,and cover a wide spectrum of reconstruction problems, starting withclassical 2D tomogra tomography in the 1970s up to 4D and 5D problemsinvolving dynamic imaging of moving organs.
Flohr, T G; Stierstorfer, K; Ulzheimer, S; Bruder, H; Primak, A N; McCollough, C H
2005-08-01
We present a theoretical overview and a performance evaluation of a novel z-sampling technique for multidetector row CT (MDCT), relying on a periodic motion of the focal spot in the longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices. The z-flying focal spot technique has been implemented in a recently introduced MDCT scanner. Using 32 x 0.6 mm collimation, this scanner acquires 64 overlapping 0.6 mm slices per rotation in its spiral (helical) mode of operation, with the goal of improved longitudinal resolution and reduction of spiral artifacts. The longitudinal sampling distance at isocenter is 0.3 mm. We discuss in detail the impact of the z-flying focal spot technique on image reconstruction. We present measurements of spiral slice sensitivity profiles (SSPs) and of longitudinal resolution, both in the isocenter and off-center. We evaluate the pitch dependence of the image noise measured in a centered 20 cm water phantom. To investigate spiral image quality we present images of an anthropomorphic thorax phantom and patient scans. The full width at half maximum (FWHM) of the spiral SSPs shows only minor variations as a function of the pitch, measured values differ by less than 0.15 mm from the nominal values 0.6, 0.75, 1, 1.5, and 2 mm. The measured FWHM of the smallest slice ranges between 0.66 and 0.68 mm at isocenter, except for pitch 0.55 (0.72 mm). In a centered z-resolution phantom, bar patterns up to 15 lp/cm can be visualized independent of the pitch, corresponding to 0.33 mm longitudinal resolution. 100 mm off-center, bar patterns up to 14 lp/cm are visible, corresponding to an object size of 0.36 mm that can be resolved in the z direction. Image noise for constant effective mAs is almost independent of the pitch. Measured values show a variation of less than 7% as a function of the pitch, which demonstrates correct utilization of the applied radiation dose at any pitch. The product of image noise and
Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot
Flohr, T.G.; Stierstorfer, K.; Ulzheimer, S.; Bruder, H.; Primak, A.N.; McCollough, C.H.
2005-08-15
We present a theoretical overview and a performance evaluation of a novel z-sampling technique for multidetector row CT (MDCT), relying on a periodic motion of the focal spot in the longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices. The z-flying focal spot technique has been implemented in a recently introduced MDCT scanner. Using 32x0.6 mm collimation, this scanner acquires 64 overlapping 0.6 mm slices per rotation in its spiral (helical) mode of operation, with the goal of improved longitudinal resolution and reduction of spiral artifacts. The longitudinal sampling distance at isocenter is 0.3 mm. We discuss in detail the impact of the z-flying focal spot technique on image reconstruction. We present measurements of spiral slice sensitivity profiles (SSPs) and of longitudinal resolution, both in the isocenter and off-center. We evaluate the pitch dependence of the image noise measured in a centered 20 cm water phantom. To investigate spiral image quality we present images of an anthropomorphic thorax phantom and patient scans. The full width at half maximum (FWHM) of the spiral SSPs shows only minor variations as a function of the pitch, measured values differ by less than 0.15 mm from the nominal values 0.6, 0.75, 1, 1.5, and 2 mm. The measured FWHM of the smallest slice ranges between 0.66 and 0.68 mm at isocenter, except for pitch 0.55 (0.72 mm). In a centered z-resolution phantom, bar patterns up to 15 lp/cm can be visualized independent of the pitch, corresponding to 0.33 mm longitudinal resolution. 100 mm off-center, bar patterns up to 14 lp/cm are visible, corresponding to an object size of 0.36 mm that can be resolved in the z direction. Image noise for constant effective mAs is almost independent of the pitch. Measured values show a variation of less than 7% as a function of the pitch, which demonstrates correct utilization of the applied radiation dose at any pitch. The product of image noise and square
Sorensen, J; Duran, C; Stingo, F; Wei, W; Rao, A; Zhang, L; Court, L; Erasmus, J; Godoy, M
2015-06-15
Purpose: To characterize the effect of virtual monochromatic reconstructions on several commonly used texture analysis features in DECT of the chest. Further, to assess the effect of monochromatic energy levels on the ability of these textural features to identify tissue types. Methods: 20 consecutive patients underwent chest CTs for evaluation of lung nodules using Siemens Somatom Definition Flash DECT. Virtual monochromatic images were constructed at 10keV intervals from 40–190keV. For each patient, an ROI delineated the lesion under investigation, and cylindrical ROI’s were placed within 5 different healthy tissues (blood, fat, muscle, lung, and liver). Several histogram- and Grey Level Cooccurrence Matrix (GLCM)-based texture features were then evaluated in each ROI at each energy level. As a means of validation, these feature values were then used in a random forest classifier to attempt to identify the tissue types present within each ROI. Their predictive accuracy at each energy level was recorded. Results: All textural features changed considerably with virtual monochromatic energy, particularly below 70keV. Most features exhibited a global minimum or maximum around 80keV, and while feature values changed with energy above this, patient ranking was generally unaffected. As expected, blood demonstrated the lowest inter-patient variability, for all features, while lung lesions (encompassing many different pathologies) exhibited the highest. The accuracy of these features in identifying tissues (76% accuracy) was highest at 80keV, but no clear relationship between energy and classification accuracy was found. Two common misclassifications (blood vs liver and muscle vs fat) accounted for the majority (24 of the 28) errors observed. Conclusion: All textural features were highly dependent on virtual monochromatic energy level, especially below 80keV, and were more stable above this energy. However, in a random forest model, these commonly used features were
NASA Astrophysics Data System (ADS)
Clayton, James; Virshup, Gary; Yang, Ming; Mohan, Radhe; Dong, Lei
2009-03-01
The use of flat panels based on amorphous silicon technology (a-Si) for digital radiography has been accepted by the medical community as having advantages over film-based systems. Radiation treatment planning employs computed tomographic (CT) data sets and projection images to delineate tumor targets and normal structures that are to be spared from radiation treatment. The accuracy of CT numbers is crucial for radiotherapy dose calculations in general but is even more important for charged particle therapy. Conventional CT scanners operating at kilovoltage X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. We demonstrate a significant improvement in metal artifact reductions and electron density measurements using an amorphous silicon a-Si imager obtained with an X-ray source that can operate at energies up to 1 MeV. The data collected with the higher energy system will be compared and contrasted to CT results obtained at standard kilovoltage energies.
NASA Astrophysics Data System (ADS)
Thiesse, Jacqueline; Reinhardt, Joseph M.; de Ryk, Jessica; Namati, Eman; Leinen, Jessica; Recheis, Wolfgang A.; Hoffman, Eric A.; McLennan, Geoffrey
2005-04-01
Mouse models are important for pulmonary research to gain insight into structure and function in normal and diseased states, thereby extending knowledge of human disease conditions. The flexibility of human disease induction into mice, due to their similar genome, along with their short gestation cycle makes mouse models highly suitable as investigative tools. Advancements in non-invasive imaging technology, with the development of micro-computed tomography (μ-CT), have aided representation of disease states in these small pulmonary system models. The generation ofμCT 3D airway reconstructions has to date provided a means to examine structural changes associated with disease. The degree of accuracy ofμCT is uncertain. Consequently, the reliability of quantitative measurements is questionable. We have developed a method of sectioning and imaging the whole mouse lung using the Large Image Microscope Array (LIMA) as the gold standard for comparison. Fixed normal mouse lungs were embedded in agarose and 250μm sections of tissue were removed while the remaining tissue block was imaged with a stereomicroscope. A complete dataset of the mouse lung was acquired in this fashion. Following planar image registration, the airways were manually segmented using an in-house built software program PASS. Amira was then used render the 3D isosurface from the segmentations. The resulting 3D model of the normal mouse airway tree developed from pathology images was then quantitatively assessed and used as the standard to compare the accuracy of structural measurements obtained from μ-CT.
NASA Astrophysics Data System (ADS)
Kim, Myeong Seong; Choi, Jiwon; Kim, Sun Young; Kweon, Dae Cheol
2014-03-01
There is a concern regarding the adverse effects of increasing radiation doses due to repeated computed tomography (CT) scans, especially in radiosensitive organs and portions thereof, such as the lenses of the eyes. Bismuth shielding with an adaptive statistical iterative reconstruction (ASIR) algorithm was recently introduced in our clinic as a method to reduce the absorbed radiation dose. This technique was applied to the lens of the eye during CT scans. The purpose of this study was to evaluate the reduction in the absorbed radiation dose and to determine the noise level when using bismuth shielding and the ASIR algorithm with the GE DC 750 HD 64-channel CT scanner for CT of the head of a humanoid phantom. With the use of bismuth shielding, the noise level was higher in the beam-hardening artifact areas than in the revealed artifact areas. However, with the use of ASIR, the noise level was lower than that with the use of bismuth alone; it was also lower in the artifact areas. The reduction in the radiation dose with the use of bismuth was greatest at the surface of the phantom to a limited depth. In conclusion, it is possible to reduce the radiation level and slightly decrease the bismuth-induced noise level by using a combination of ASIR as an algorithm process and bismuth as an in-plane hardware-type shielding method.
Dyakov, I; Stoinova, V; Groudeva, V; Vassileva, J
2015-07-01
The aim of the present study was to compare image quality and patient dose in cardiac computed tomography angiography (CTA) in terms of volume computed tomography dose index (CTDI vol), dose length product (DLP) and effective dose, when changing from filtered back projection (FBP) to adaptive iterative dose reduction (AIDR) reconstruction techniques. Further aim was to implement prospective electrocardiogram (ECG) gating for patient dose reduction. The study was performed with Aquilion ONE 320-row CT of Toshiba Medical Systems. Analysis of cardiac CT protocols was performed before and after integration of the new software. The AIDR technique showed more than 50 % reduction in CTDIvol values and 57 % in effective dose. The subjective evaluation of clinical images confirmed the adequate image quality acquired by the AIDR technique. The preliminary results indicated significant dose reduction when using prospective ECG gating by keeping the adequate diagnostic quality of clinical images. PMID:25836680
Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X
2014-06-15
Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential
Murphy, Kevin P.; Crush, Lee; O’Neill, Siobhan B.; Foody, James; Breen, Micheál; Brady, Adrian; Kelly, Paul J.; Power, Derek G.; Sweeney, Paul; Bye, Jackie; O’Connor, Owen J.; Maher, Michael M.; O’Regan, Kevin N.
2016-01-01
Purpose We examine the performance of pure model-based iterative reconstruction with reduced-dose CT in follow-up of patients with early-stage testicular cancer. Methods Sixteen patients (mean age 35.6 ± 7.4 years) with stage I or II testicular cancer underwent conventional dose (CD) and low-dose (LD) CT acquisition during CT surveillance. LD data was reconstructed with model-based iterative reconstruction (LD–MBIR). Datasets were objectively and subjectively analysed at 8 anatomical levels. Two blinded clinical reads were compared to gold-standard assessment for diagnostic accuracy. Results Mean radiation dose reduction of 67.1% was recorded. Mean dose measurements for LD–MBIR were: thorax – 66 ± 11 mGy cm (DLP), 1.0 ± 0.2 mSv (ED), 2.0 ± 0.4 mGy (SSDE); abdominopelvic – 128 ± 38 mGy cm (DLP), 1.9 ± 0.6 mSv (ED), 3.0 ± 0.6 mGy (SSDE). Objective noise and signal-to-noise ratio values were comparable between the CD and LD–MBIR images. LD–MBIR images were superior (p < 0.001) with regard to subjective noise, streak artefact, 2-plane contrast resolution, 2-plane spatial resolution and diagnostic acceptability. All patients were correctly categorised as positive, indeterminate or negative for metastatic disease by 2 readers on LD–MBIR and CD datasets. Conclusions MBIR facilitated a 67% reduction in radiation dose whilst producing images that were comparable or superior to conventional dose studies without loss of diagnostic utility. PMID:27069978
Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia
2016-03-01
The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture. PMID:26787406
Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl
2016-01-01
Purpose Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. Methods This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Results Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; p<0.001) or the circumference method (1.13 ± 0.02 versus 1.21 ± 0.02 mm, respectively; p = 0.001). The edge-enhancing kernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; p<0.001) and the circumference (1.06 ± 0.26 versus 1.13 ± 0.31 mm, respectively; p = 0.005) methods. The edge-enhancing kernel was associated with lower SNR and CNR, as well as higher background noise (all p < 0.001), in comparison to the medium-smooth kernel. Stent visual scores were higher with the edge-enhancing kernel (p<0.001). Conclusion In vivo 256-slice CT assessment of coronary stents shows that the edge-enhancing CT reconstruction kernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality
NASA Astrophysics Data System (ADS)
Solomon, Justin; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Samei, Ehsan
2015-03-01
The purpose of this work was to compare CT low-contrast detectability between two reconstruction algorithms, filtered back-projection (FBP) and advanced modeled iterative reconstruction (ADMIRE). A phantom was designed with a range of low-contrast circular inserts representing 5 contrast levels and 3 sizes. The phantom was imaged on a third-generation dual-source CT scanner (SOMATOM Definition Force, Siemens Healthcare) under various dose levels (0.74 - 5.8 mGy CTDIVol). Images were reconstructed using different settings of slice thickness (0.6 - 5 mm) and reconstruction algorithms (FBP and ADMIRE with strength of 3-5) and were assessed by eleven blinded and independent readers using a two alternative forced choice (2AFC) detection experiment. A second observer experiment was further performed in which observers scored the images based on the total number of visible object groups. Detection performance increased with increasing contrast, size, dose, with accuracy ranging from 50% (i.e., guessing) to 87% with an average inter-observer variability of ±7%. The use of ADMIRE-3 increased performance by 5.2% resulting in an estimated dose reduction potential of 56-60%. The results from the second experiment also showed increased number of visible object groups for increasing dose, slice thickness, and ADMIRE strength. The score difference between FBP and ADMIRE was 0.9, 1.3, and 2.1 for ADMIRE strengths of 3, 4, and 5, respectively, resulting in estimated dose reduction potentials between 4-80%. Overall, the data indicated potential to image at reduced doses while maintaining comparable image quality when using ADMIRE compared to FBP.
NASA Astrophysics Data System (ADS)
Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.
2014-03-01
Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise inject