Science.gov

Sample records for 3-methyladenine dna glycosylase

  1. A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus

    PubMed Central

    Zhu, Xiaofeng; Yan, Xuan; Carter, Lester G.; Liu, Huanting; Graham, Shirley; Coote, Peter J.; Naismith, James

    2012-01-01

    The removal of chemically damaged DNA bases such as 3-methyladenine (3-­MeA) is an essential process in all living organisms and is catalyzed by the enzyme 3-MeA DNA glycosylase I. A key question is how the enzyme selectively recognizes the alkylated 3-MeA over the much more abundant adenine. The crystal structures of native and Y16F-mutant 3-MeA DNA glycosylase I from Staphylococcus aureus in complex with 3-MeA are reported to 1.8 and 2.2 Å resolution, respectively. Isothermal titration calorimetry shows that protonation of 3-MeA decreases its binding affinity, confirming previous fluorescence studies that show that charge–charge recognition is not critical for the selection of 3-MeA over adenine. It is hypothesized that the hydrogen-bonding pattern of Glu38 and Tyr16 of 3-MeA DNA glycosylase I with a particular tautomer unique to 3-MeA contributes to recognition and selection. PMID:22684054

  2. Two DNA glycosylases in Esherichia coli which release primarily 3-methyladenine

    SciTech Connect

    Thomas, L.; Yang, C.; Goldthwait, D.A.

    1982-01-01

    Two enzymes have been partially purified from Escherichia coli and designated 3-methyladenine DNA glycosylases I and II. The apparent molecular weight of glycosylase I is 20,000, and that of II is 27,000. Glycosylase I releases 3-methyladenine (3-MeA) while II releases 3-MeA, 3-methylguanine (3-MeG), 7-methylguanine (7-MeG), and 7-methyladenine (7-MeA). The rate of release of 3-MeA by glycosylase II is 30 times that of 7-MeG. Glycosylase I is missing in mutants tag 1 and tag 2. In crude extracts, the 3-MeA activity of II is approximately 10% of the total 3-MeA activity. A 50% inactivation at 48/sup 0/C required 5 min for I and 65 min for II. The 3-MeA and 7-MeG activities of the glycosylase II preparation could not be separated by isoelectric focusing, by chromatography of DEAE, Sephadex G-100, phosphocellulose, DNA-cellulose, or carboxymethylcellulose, or by heating at 50/sup 0/C.

  3. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing.

    PubMed Central

    Engelward, B P; Dreslin, A; Christensen, J; Huszar, D; Kurahara, C; Samson, L

    1996-01-01

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions prevents alkylation-induced cell death because unrepaired 3MeA blocks DNA replication. Whether this lesion is cytotoxic to mammalian cells has been difficult to establish in the absence of 3MeA repair-deficient cell lines. We previously isolated and characterized a mouse 3MeA DNA glycosylase cDNA (Aag) that provides resistance to killing by alkylating agents in E. coli. To determine the in vivo role of Aag, we cloned a large fragment of the Aag gene and used it to create Aag-deficient mouse cells by targeted homologous recombination. Aag null cells have no detectable Aag transcripts or 3MeA DNA glycosylase activity. The loss of Aag renders cells significantly more sensitive to methyl methanesulfonate-induced chromosome damage, and to cell killing induced by two methylating agents, one of which produces almost exclusively 3MeAs. Aag null embryonic stem cells become sensitive to two cancer chemotherapeutic alkylating agents, namely 1,3-bis(2-chloroethyl)-1-nitrosourea and mitomycin C, indicating that Aag status is an important determinant of cellular resistance to these agents. We conclude that this mammalian 3MeA DNA glycosylase plays a pivotal role in preventing alkylation-induced chromosome damage and cytotoxicity. Images PMID:8631315

  4. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.

    PubMed

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-03-01

    Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily. PMID:16468998

  5. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD

    PubMed Central

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-01-01

    Summary Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily. PMID:16468998

  6. 3-methyladenine-DNA-glycosylase and O6-alkyl guanine-DNA-alkyltransferase activities and sensitivity to alkylating agents in human cancer cell lines.

    PubMed Central

    Damia, G.; Imperatori, L.; Citti, L.; Mariani, L.; D'Incalci, M.

    1996-01-01

    The activities and the expression of 3-methyladenine glycosylase (3-meAde gly) and O6-alkylguanine-DNA-alkyltransferase (O6 ATase) were investigated in ten human cancer cell lines. Both 3-meAde gly and O6 ATase activities were variable among different cell lines. mRNA levels of the O6 ATase gene, appeared to be related to the content of O6 ATase in different cell lines, whereas no apparent correlation was found between mRNA of 3-meAde gly and the enzyme activity. No correlation was found between the activity of the two enzymes and the sensitivity to alkylating agents of different structures such as CC-1065, tallimustine, dimethylsulphate (DMSO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), cis-diamminedichloroplatinum (cDDP) and melphalan (L-PAM). The most striking finding of this study is that a correlation exists between the activity of O6 ATase and 3-meAde gly in the various cell lines investigated (P<0.01), suggesting a common mechanism of regulation of two DNA repair enzymes. Images Figure 2 PMID:8611396

  7. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid

    PubMed Central

    Terato, Hiroaki; Masaoka, Aya; Asagoshi, Kenjiro; Honsho, Akiko; Ohyama, Yoshihiko; Suzuki, Toshinori; Yamada, Masaki; Makino, Keisuke; Yamamoto, Kazuo; Ide, Hiroshi

    2002-01-01

    Nitrosation of guanine in DNA by nitrogen oxides such as nitric oxide (NO) and nitrous acid leads to formation of xanthine (Xan) and oxanine (Oxa), potentially cytotoxic and mutagenic lesions. In the present study, we have examined the repair capacity of DNA N-glycosylases from Escherichia coli for Xan and Oxa. The nicking assay with the defined substrates containing Xan and Oxa revealed that AlkA [in combination with endonuclease (Endo) IV] and Endo VIII recognized Xan in the tested enzymes. The activity (Vmax/Km) of AlkA for Xan was 5-fold lower than that for 7-methylguanine, and that of Endo VIII was 50-fold lower than that for thymine glycol. The activity of AlkA and Endo VIII for Xan was further substantiated by the release of [3H]Xan from the substrate. The treatment of E.coli with N-methyl-N′-nitro-N-nitrosoguanidine increased the Xan-excising activity in the cell extract from alkA+ but not alkA– strains. The alkA and nei (the Endo VIII gene) double mutant, but not the single mutants, exhibited increased sensitivity to nitrous acid relative to the wild type strain. AlkA and Endo VIII also exhibited excision activity for Oxa, but the activity was much lower than that for Xan. PMID:12434002

  8. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase

    PubMed Central

    Engelward, Bevin P.; Weeda, Geert; Wyatt, Michael D.; Broekhof, José L. M.; de Wit, Jan; Donker, Ingrid; Allan, James M.; Gold, Barry; Hoeijmakers, Jan H. J.; Samson, Leona D.

    1997-01-01

    3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glycosylase not only for the cytotoxic 3MeA DNA lesion, but also for the mutagenic 1,N6-ethenoadenine (ɛA) and hypoxanthine lesions. Aag appears to be the only 3MeA and hypoxanthine DNA glycosylase in liver, testes, kidney, and lung, and the only ɛA DNA glycosylase in liver, testes, and kidney; another ɛA DNA glycosylase may be expressed in lung. Although alkyladenine DNA glycosylase has the capacity to remove 8-oxoguanine DNA lesions, it does not appear to be the major glycosylase for 8-oxoguanine repair. Fibroblasts derived from Aag −/− mice are alkylation sensitive, indicating that Aag −/− mice may be similarly sensitive. PMID:9371804

  9. Cloning a Eukaryotic DNA Glycosylase Repair Gene by the Suppression of a DNA Repair Defect in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Derfler, Bruce; Maskati, Azmat; Samson, Leona

    1989-10-01

    If eukaryotic genes could protect bacteria with defects in DNA repair, this effect could be exploited for the isolation of eukaryotic DNA repair genes. We have thus cloned a DNA repair gene from Saccharomyces cerevisiae that directs the synthesis of a DNA glycosylase that specifically releases 3-methyladenine from alkylated DNA and in so doing protects alkylation-sensitive Escherichia coli from killing by methylating agents. The cloned yeast gene was then used to generate a mutant strain of S. cerevisiae that carries a defect in the glycosylase gene and is extremely sensitive to DNA methylation. This approach may allow the isolation of a large number of eukaryotic DNA repair genes.

  10. Actions of human DNA glycosylases on uracil-containing DNA, methylated DNA and their reconstituted chromatins.

    PubMed

    Ishiwata, K; Oikawa, A

    1979-07-26

    Extracts of human lymphoblastoid cells catalyzed complete release of uracil (Ura) from PBS1 DNA, which contains Ura instead of thymine as a normal component (Ura-DNA), and 3-methyladenine (3-MeAde) from DNA methylated with methyl methanesulfonate (Me-DNA). These two activities, Ura-DNA glycosylase and 3-MeAde-DNA glycosylase, differed in heat stability. Cell extracts released Ura more rapidly and 3-MeAde more slowly from alkali-denatured preparations of Ura- and Me-DNA, respectively, than from native DNA's. On incubation with reconstituted chromatins, prepared from Ura-DNA and Me-DNA, respectively, with calf thymus chromosomal protein by salt gradient dialysis, cell extracts released all the Ura but only about half of the 3-MeAde residues, although both these chromatins were degraded by micrococcal nuclease until about half of the nucleotides became acid soluble. The activities of Ura-DNA and 3-MeAde-DNA glycosylase of xeroderma pigmentosum cells were similar to those of normal cells. PMID:465495

  11. DNA-N-glycosylases process novel O-glycosidic sites in DNA.

    PubMed

    Admiraal, Suzanne J; O'Brien, Patrick J

    2013-06-11

    After the hydrolysis of the N-glycosyl bond between a damaged base and C1' of a deoxyribosyl moiety of DNA, human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) bind tightly to their abasic DNA products, potentially protecting these reactive species. Here we show that both AAG and AlkA catalyze reactions between bound abasic DNA and small, primary alcohols to form novel DNA-O-glycosides. The synthesis reactions are reversible, as the DNA-O-glycosides are converted back into abasic DNA upon being incubated with AAG or AlkA in the absence of alcohol. AAG and AlkA are therefore able to hydrolyze O-glycosidic bonds in addition to N-glycosyl bonds. The newly discovered DNA-O-glycosidase activities of both enzymes compare favorably with their known DNA-N-glycosylase activities: AAG removes both methanol and 1,N(6)-ethenoadenine (εA) from DNA with single-turnover rate constants that are 2.9 × 10(5)-fold greater than the corresponding uncatalyzed rates, whereas the rate enhancement of 3.7 × 10(7) for removal of methanol from DNA by AlkA is 300-fold greater than its rate enhancement for removal of εA from DNA. Although the biological significance of the DNA-O-glycosidase reactions is not known, the evolution of new DNA repair pathways may be aided by enzymes that practice catalytic promiscuity, such as these two unrelated DNA glycosylases. PMID:23688261

  12. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases.

    PubMed

    Saparbaev, M; Laval, J

    1994-06-21

    The deamination of adenine residues in DNA generates hypoxanthine, which is mutagenic since it gives rise to an A.T to G.C transition. Hypoxanthine is removed by hypoxanthine DNA glycosylase activity present in Escherichia coli and mammalian cells. Using polydeoxyribonucleotides or double-stranded synthetic oligonucleotides that contain dIMP residues, we show that this activity in E. coli is associated with the 3-methyladenine DNA glycosylase II coded for by the alkA gene. This conclusion is based on the following facts: (i) the two enzymatic activities have the same chromatographic behavior on various supports and they have the same molecular weight, (ii) both are induced during the adaptive response, (iii) a multicopy plasmid bearing the alkA gene overproduces both activities, (iv) homogeneous preparation of AlkA has both enzymatic activities, (v) the E. coli alkA- mutant does not show any detectable hypoxanthine DNA glycosylase activity. Under the same experimental conditions, but using different substrates, the same amount of AlkA protein liberates 1 pmol of 3-methyladenine from alkylated DNA and 1.2 fmol of hypoxanthine from dIMP-containing DNA. The Km for the latter substrate is 420 x 10(-9) M as compared to 5 x 10(-9) M for alkylated DNA. Hypoxanthine is released as a free base during the reaction. Duplex oligodeoxynucleotides containing hypoxanthine positioned opposite T, G, C, and A were cleaved efficiently. ANPG protein, APDG protein, and MAG protein--the 3-methyladenine DNA glycosylases of human, rat, and yeast origin, respectively--were also able to release hypoxanthine from various DNA substrates containing dIMP residues. The mammalian enzyme is by far the most efficient hypoxanthine DNA glycosylase of all the enzymes tested. PMID:8016081

  13. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases.

    PubMed Central

    Saparbaev, M; Laval, J

    1994-01-01

    The deamination of adenine residues in DNA generates hypoxanthine, which is mutagenic since it gives rise to an A.T to G.C transition. Hypoxanthine is removed by hypoxanthine DNA glycosylase activity present in Escherichia coli and mammalian cells. Using polydeoxyribonucleotides or double-stranded synthetic oligonucleotides that contain dIMP residues, we show that this activity in E. coli is associated with the 3-methyladenine DNA glycosylase II coded for by the alkA gene. This conclusion is based on the following facts: (i) the two enzymatic activities have the same chromatographic behavior on various supports and they have the same molecular weight, (ii) both are induced during the adaptive response, (iii) a multicopy plasmid bearing the alkA gene overproduces both activities, (iv) homogeneous preparation of AlkA has both enzymatic activities, (v) the E. coli alkA- mutant does not show any detectable hypoxanthine DNA glycosylase activity. Under the same experimental conditions, but using different substrates, the same amount of AlkA protein liberates 1 pmol of 3-methyladenine from alkylated DNA and 1.2 fmol of hypoxanthine from dIMP-containing DNA. The Km for the latter substrate is 420 x 10(-9) M as compared to 5 x 10(-9) M for alkylated DNA. Hypoxanthine is released as a free base during the reaction. Duplex oligodeoxynucleotides containing hypoxanthine positioned opposite T, G, C, and A were cleaved efficiently. ANPG protein, APDG protein, and MAG protein--the 3-methyladenine DNA glycosylases of human, rat, and yeast origin, respectively--were also able to release hypoxanthine from various DNA substrates containing dIMP residues. The mammalian enzyme is by far the most efficient hypoxanthine DNA glycosylase of all the enzymes tested. Images PMID:8016081

  14. Strandwise translocation of a DNA glycosylase on undamaged DNA

    SciTech Connect

    Qi, Yan; Nam, Kwangho; Spong, Marie C.; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L.

    2012-05-14

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.

  15. Strandwise translocation of a DNA glycosylase on undamaged DNA.

    PubMed

    Qi, Yan; Nam, Kwangho; Spong, Marie C; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L

    2012-01-24

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA. PMID:22219368

  16. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  17. Direct visualization of a DNA glycosylase searching for damage.

    PubMed

    Chen, Liwei; Haushalter, Karl A; Lieber, Charles M; Verdine, Gregory L

    2002-03-01

    DNA glycosylases preserve the integrity of genetic information by recognizing damaged bases in the genome and catalyzing their excision. It is unknown how DNA glycosylases locate covalently modified bases hidden in the DNA helix amongst vast numbers of normal bases. Here we employ atomic-force microscopy (AFM) with carbon nanotube probes to image search intermediates of human 8-oxoguanine DNA glycosylase (hOGG1) scanning DNA. We show that hOGG1 interrogates DNA at undamaged sites by inducing drastic kinks. The sharp DNA bending angle of these non-lesion-specific search intermediates closely matches that observed in the specific complex of 8-oxoguanine-containing DNA bound to hOGG1. These findings indicate that hOGG1 actively distorts DNA while searching for damaged bases. PMID:11927259

  18. Structure of a DNA glycosylase searching for lesions.

    PubMed

    Banerjee, Anirban; Santos, Webster L; Verdine, Gregory L

    2006-02-24

    DNA glycosylases must interrogate millions of base pairs of undamaged DNA in order to locate and then excise one damaged nucleobase. The nature of this search process remains poorly understood. Here we report the use of disulfide cross-linking (DXL) technology to obtain structures of a bacterial DNA glycosylase, MutM, interrogating undamaged DNA. These structures, solved to 2.0 angstrom resolution, reveal the nature of the search process: The protein inserts a probe residue into the helical stack and severely buckles the target base pair, which remains intrahelical. MutM therefore actively interrogates the intact DNA helix while searching for damage. PMID:16497933

  19. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3'-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix-hairpin-Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  20. Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†

    PubMed Central

    Friedman, Joshua I.; Stivers, James T.

    2010-01-01

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926

  1. Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites.

    PubMed Central

    Miao, F; Bouziane, M; O'Connor, T R

    1998-01-01

    Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets. PMID:9705516

  2. DNA glycosylase enzymes induced during chemical adaptation of M. luteus.

    PubMed Central

    Riazuddin, S; Athar, A; Ahmed, Z; Lali, S M; Sohail, A

    1987-01-01

    Five peaks of DNA glycosylase activity showing a preference for MNNG alkylated DNA have been identified from extracts of adapted M. luteus. They are numerically designated as GI to GV in order of their decreasing molecular weights. The first two of these peaks have been highly purified. GI, is a constitutive heat labile protein, 35% stimulated by the presence of 50 mM NaCl, acts exclusively on 3 MeA residues in alkylated DNA, 60-70% inhibited by the presence of 2 mM free 3MeA and has been designated as 3MeA DNA glycosylase enzyme. GII, which is an inducible protein, is heat stable, 28% inhibited by the presence of 50 mM NaCl, removes 3MeA, 3MeG, 7MeA & 7MeG with different efficiency, and has been designated as 3,7 methylpurine DNA glycosylase enzyme. The rate of release of 3 methylpurines is 30 times that of 7MeG. There is no activity of either enzyme on O2-MeC, O2-MeT, O4-MeT or O6-MeG. The apparent molecular weights of GI and GII proteins are 28 Kd and 22 Kd respectively. PMID:3628000

  3. Human polymorphic variants of the NEIL1 DNA glycosylase.

    PubMed

    Roy, Laura M; Jaruga, Pawel; Wood, Thomas G; McCullough, Amanda K; Dizdaroglu, Miral; Lloyd, R Stephen

    2007-05-25

    In mammalian cells, the repair of DNA bases that have been damaged by reactive oxygen species is primarily initiated by a series of DNA glycosylases that include OGG1, NTH1, NEIL1, and NEIL2. To explore the functional significance of NEIL1, we recently reported that neil1 knock-out and heterozygotic mice develop the majority of symptoms of metabolic syndrome (Vartanian, V., Lowell, B., Minko, I. G., Wood, T. G., Ceci, J. D., George, S., Ballinger, S. W., Corless, C. L., McCullough, A. K., and Lloyd, R. S. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 1864-1869). To determine whether this phenotype could be causally related to human disease susceptibility, we have characterized four polymorphic variants of human NEIL1. Although three of the variants (S82C, G83D, and D252N) retained near wild type levels of nicking activity on abasic (AP) site-containing DNA, G83D did not catalyze the wild type beta,delta-elimination reaction but primarily yielded the beta-elimination product. The AP nicking activity of the C136R variant was significantly reduced. Glycosylase nicking activities were measured on both thymine glycol-containing oligonucleotides and gamma-irradiated genomic DNA using gas chromatography/mass spectrometry. Two of the polymorphic variants (S82C and D252N) showed near wild type enzyme specificity and kinetics, whereas G83D was devoid of glycosylase activity. Although insufficient quantities of C136R could be obtained to carry out gas chromatography/mass spectrometry analyses, this variant was also devoid of the ability to incise thymine glycol-containing oligonucleotide, suggesting that it may also be glycosylase-deficient. Extrapolation of these data suggests that individuals who are heterozygous for these inactive variant neil1 alleles may be at increased risk for metabolic syndrome. PMID:17389588

  4. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG

    PubMed Central

    Lau, Albert Y.; Wyatt, Michael D.; Glassner, Brian J.; Samson, Leona D.; Ellenberger, Tom

    2000-01-01

    The human 3-methyladenine DNA glycosylase [alkyladenine DNA glycosylase (AAG)] catalyzes the first step of base excision repair by cleaving damaged bases from DNA. Unlike other DNA glycosylases that are specific for a particular type of damaged base, AAG excises a chemically diverse selection of substrate bases damaged by alkylation or deamination. The 2.1-Å crystal structure of AAG complexed to DNA containing 1,N6-ethenoadenine suggests how modified bases can be distinguished from normal DNA bases in the enzyme active site. Mutational analyses of residues contacting the alkylated base in the crystal structures suggest that the shape of the damaged base, its hydrogen-bonding characteristics, and its aromaticity all contribute to the selective recognition of damage by AAG. PMID:11106395

  5. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  6. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases.

    PubMed

    Cravens, Shannen L; Schonhoft, Joseph D; Rowland, Meng M; Rodriguez, Alyssa A; Anderson, Breeana G; Stivers, James T

    2015-04-30

    Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA. PMID:25845592

  7. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases

    PubMed Central

    Cravens, Shannen L.; Schonhoft, Joseph D.; Rowland, Meng M.; Rodriguez, Alyssa A.; Anderson, Breeana G.; Stivers, James T.

    2015-01-01

    Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA. PMID:25845592

  8. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    SciTech Connect

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.

  9. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGESBeta

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  10. Glycosylases utilize ``stop and go'' motion to locate DNA damage

    NASA Astrophysics Data System (ADS)

    Nelson, Shane

    2015-03-01

    Oxidative damage to DNA results in alterations that are mutagenic or even cytotoxic. Base excision repair is a mechanism that functions to identify and correct these lesions, and is present in organisms ranging from bacteria to humans. DNA glycosylases are the first enzymes in this pathway and function to locate and remove oxidatively damaged bases, and do so utilizing only thermal energy. However, the question remains of how these enzymes locate and recognize a damaged base among millions of undamaged bases. Utilizing fluorescence video microscopy with high spatial and temporal resolution, we have observed a number of different fluorescently labeled glycosylases (including bacterial FPG, NEI, and NTH as well as mammalian MutyH and OGG). These enzymes diffuse along DNA tightropes at approximately 0.01 +/- 0.005 μm2/s with binding lifetimes ranging from one second to several minutes. Chemically induced damage to the DNA substrate causes a ~ 50% reduction in diffusion coefficients and a ~ 400% increase in binding lifetimes, while mutation of the key ``wedge residue'' - which has been shown to be responsible for damage detection - results in a 200% increase in the diffusion coefficient. Utilizing a sliding window approach to measure diffusion coefficients within individual trajectories, we observe that distributions of diffusion coefficients are bimodal, consistent with periods of diffusive motion interspersed with immobile periods. Utilizing a unique chemo-mechanical simulation approach, we demonstrate that the motion of these glycosylases can be explained as free diffusion along the helical pitch of the DNA, punctuated with two different types of pauses: 1) rapid, short-lived pauses as the enzyme rapidly probes DNA bases to interrogate for damage and, 2) less frequent, longer lived pauses that reflect the enzyme bound to and catalytically removing a damaged base. These simulations also indicate that the wedge residue is critical for interrogation and recognition of

  11. Functional Characterization of 8-Oxoguanine DNA Glycosylase of Trypanosoma cruzi

    PubMed Central

    Mendes, Isabela Cecília; de Moura, Michelle Barbi; Campos, Priscila Carneiro; Macedo, Andrea Mara; Franco, Glória Regina; Pena, Sérgio Danilo Junho; Teixeira, Santuza Maria Ribeiro; Van Houten, Bennett; Machado, Carlos Renato

    2012-01-01

    The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1−/− (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H2O2). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H2O2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER. PMID:22876325

  12. The role of 8-oxoguanine DNA glycosylase-1 in inflammation.

    PubMed

    Ba, Xueqing; Aguilera-Aguirre, Leopoldo; Rashid, Qura Tul Ain Nmi; Bacsi, Attila; Radak, Zsolt; Sur, Sanjiv; Hosoki, Koa; Hegde, Muralidhar L; Boldogh, Istvan

    2014-01-01

    Many, if not all, environmental pollutants/chemicals and infectious agents increase intracellular levels of reactive oxygen species (ROS) at the site of exposure. ROS not only function as intracellular signaling entities, but also induce damage to cellular molecules including DNA. Among the several dozen ROS-induced DNA base lesions generated in the genome, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant because of guanine's lowest redox potential among DNA bases. In mammalian cells, 8-oxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair pathway (OGG1-BER). Accumulation of 8-oxoG in DNA has traditionally been associated with mutagenesis, as well as various human diseases and aging processes, while the free 8-oxoG base in body fluids is one of the best biomarkers of ongoing pathophysiological processes. In this review, we discuss the biological significance of the 8-oxoG base and particularly the role of OGG1-BER in the activation of small GTPases and changes in gene expression, including those that regulate pro-inflammatory chemokines/cytokines and cause inflammation. PMID:25250913

  13. Immunological lesions in human uracil DNA glycosylase: association with Bloom syndrome.

    PubMed Central

    Seal, G; Brech, K; Karp, S J; Cool, B L; Sirover, M A

    1988-01-01

    Three monoclonal antibodies that react with uracil DNA glycosylase of normal human placenta were tested to determine whether one of the antibodies could be used as a negative marker for Bloom syndrome. As defined by enzyme-linked immunosorbent assay, monoclonal antibody 40.10.09, which reacts with normal human glycosylase, neither recognized nor inhibited native uracil DNA glycosylase from any of five separate Bloom syndrome cell strains. Immunoblot analyses demonstrated that the denatured glycosylase protein from all five Bloom syndrome cell strains was immunoreactive with the 40.10.09 antibody. Further, each native enzyme was immunoreactive with two other anti-human placental uracil DNA glycosylase monoclonal antibodies. In contrast, ELISA reactivity was observed with all three monoclonal antibodies in reactions of glycosylases from 5 normal human cell types and 13 abnormal human cell strains. These results experimentally verify the specificity of the aberrant reactivity of the Bloom syndrome uracil DNA glycosylase. The possibility arises that determination of the lack of immunoreactivity with antibody 40.10.09 may have value in the early diagnosis of Bloom syndrome. Images PMID:3353381

  14. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation

    PubMed Central

    Arab, Khelifa; Kienhöfer, Sabine; von Seggern, Annika; Niehrs, Christof

    2016-01-01

    DNA 5-methylcytosine is a dynamic epigenetic mark which plays important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic site processing during TET–TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG substrate turnover. In early Xenopus embryos Neil2 cooperates with Tdg to remove oxidized methylcytosines and to specify neural crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP site hand-over during oxidative DNA demethylation. PMID:26751644

  15. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.

    PubMed

    Buechner, Claudia N; Maiti, Atanu; Drohat, Alexander C; Tessmer, Ingrid

    2015-03-11

    The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases. PMID:25712093

  16. Uracil-DNA Glycosylase UNG Promotes Tet-mediated DNA Demethylation.

    PubMed

    Xue, Jian-Huang; Xu, Gui-Fang; Gu, Tian-Peng; Chen, Guo-Dong; Han, Bin-Bin; Xu, Zhi-Mei; Bjørås, Magnar; Krokan, Hans E; Xu, Guo-Liang; Du, Ya-Rui

    2016-01-01

    In mammals, active DNA demethylation involves oxidation of 5-methylcytosine (5mC) into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by Tet dioxygenases and excision of these two oxidized bases by thymine DNA glycosylase (TDG). Although TDG is essential for active demethylation in embryonic stem cells and induced pluripotent stem cells, it is hardly expressed in mouse zygotes and dispensable in pronuclear DNA demethylation. To search for other factors that might contribute to demethylation in mammalian cells, we performed a functional genomics screen based on a methylated luciferase reporter assay. UNG2, one of the glycosylases known to excise uracil residues from DNA, was found to reduce DNA methylation, thus activating transcription of a methylation-silenced reporter gene when co-transfected with Tet2 into HEK293T cells. Interestingly, UNG2 could decrease 5caC from the genomic DNA and a reporter plasmid in transfected cells, like TDG. Furthermore, deficiency in Ung partially impaired DNA demethylation in mouse zygotes. Our results suggest that UNG might be involved in Tet-mediated DNA demethylation. PMID:26620559

  17. Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG

    PubMed Central

    Hashimoto, Hideharu

    2014-01-01

    Two mammalian DNA glycosylases, methyl-CpG binding domain protein 4 (MBD4) and thymine DNA glycosylase (TDG), are involved in active DNA demethylation via the base excision repair pathway. Both MBD4 and TDG excise the mismatch base from G:X, where X is uracil, thymine, and 5-hydroxymethyluracil (5hmU). In addition, TDG excises 5mC oxidized bases i.e. when X is 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) not 5-hydroxymethylcytosine (5hmC). A MBD4 inactive mutant and substrate crystal structure clearly explains how MBD4 glycosylase discriminates substrates: 5mC are not able to be directly excised, but a deamination process from 5mC to thymine is required. On the other hand, TDG is much more complicated; in this instance, crystal structures show that TDG recognizes G:X mismatch DNA containing DNA and G:5caC containing DNA from the minor groove of DNA, which suggested that TDG might recognize 5mC oxidized product 5caC like mismatch DNA. In mutation studies, a N157D mutation results in a more 5caC specific glycosylase, and a N191A mutation inhibits 5caC activity while that when X=5fC or T remains. Here I revisit the recent MBD4 glycos ylase domain co-crystal structures with DNA, as well as TDG glycosylase domain co-crystal structures with DNA in conjunction with its mutation studies.

  18. Structural Investigation of a Viral Ortholog of Human NEIL2/3 DNA Glycosylases

    PubMed Central

    Prakash, Aishwarya; Eckenroth, Brian E.; Averill, April M.; Imamura, Kayo; Wallace, Susan S.; Doublié, Sylvie

    2013-01-01

    Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04 Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process. PMID:24120312

  19. Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase

    PubMed Central

    Chen, Cheng-Yao; Mosbaugh, Dale W.; Bennett, Samuel E.

    2011-01-01

    To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the Kd of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The kcat of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, kcat on double-stranded DNA substrate was reduced 4–12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase. PMID:15970468

  20. Analysis of nuclear uracil-DNA glycosylase (nUDG) turnover during the cell cycle.

    PubMed

    Fischer, Jennifer A; Caradonna, Salvatore

    2011-01-01

    Uracil-DNA glycosylases (UDG/UNG) are enzymes that remove uracil from DNA and initiate base-excision repair. These enzymes play a key role in maintaining genomic integrity by reducing the mutagenic events caused by G:C to A:T transition mutations. The recent finding that a family of RNA editing enzymes (AID/APOBECs) can deaminate cytosine in DNA has raised the interest in these base-excision repair enzymes. The methodology presented here focuses on determining the regulation of the nuclear isoform of uracil-DNA glycosylase (nUDG), a 36,000 Da protein. In synchronized HeLa cells, nUDG protein levels decrease to barely detectable levels during the S phase of the cell cycle. Immunoblot analysis of immunoprecipitated or affinity-isolated nUDG reveals ubiquitin-conjugated nUDG when proteolysis is inhibited by agents that block proteasomal-dependent protein degradation. PMID:21755446

  1. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  2. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability.

    PubMed Central

    Stuart, D T; Upton, C; Higman, M A; Niles, E G; McFadden, G

    1993-01-01

    Infection of cultured mammalian cells with the Leporipoxvirus Shope fibroma virus (SFV) causes the induction of a novel uracil DNA glycosylase activity in the cytoplasms of the infected cells. The induction of this activity, early in infection, correlates with the early expression of the SFV BamHI D6R open reading frame which possesses significant protein sequence similarity to eukaryotic and prokaryotic uracil DNA glycosylases. The SFV BamHI D6R open reading frame and the homologous HindIII D4R open reading frame from the Orthopoxvirus vaccinia virus were cloned under the regulation of a phage T7 promoter and expressed in Escherichia coli as insoluble high-molecular-weight aggregates. During electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, the E. coli-expressed proteins migrate with an apparent molecular mass of 25 kDa. The insoluble protein aggregate generated by expression in E. coli was solubilized in urea and, following a subsequent refolding step, displayed the ability to excise uracil residues from double-stranded plasmid DNA substrates, with the subsequent formation of apyrimidinic sites. The viral enzyme, like all other characterized uracil DNA glycosylases, is active in the presence of high concentrations of EDTA, is substrate inhibited by uracil, and does not display any endonuclease activity. Attempts to inactivate the HindIII D4R gene of vaccinia virus by targeted insertion of a dominant xanthine-guanine phosphoribosyltransferase selection marker or direct insertion of a frame-shifted oligonucleotide were uniformly unsuccessful demonstrating that, unlike the uracil DNA glycosylase described for herpesviruses, the poxvirus enzyme is essential for virus viability. Images PMID:8474156

  3. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA.

    PubMed

    Burmeister, Wim P; Tarbouriech, Nicolas; Fender, Pascal; Contesto-Richefeu, Céline; Peyrefitte, Christophe N; Iseni, Frédéric

    2015-07-17

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action. PMID:26045555

  4. Role of a MutY DNA Glycosylase in Combating Oxidative DNA damage in Helicobacter pylori

    PubMed Central

    Eutsey, Rory; Wang, Ge; Maier, Robert J.

    2007-01-01

    MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325 fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo. PMID:16996809

  5. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase

    PubMed Central

    Ormeño, Fernando; Barrientos, Camila; Ramirez, Santiago; Ponce, Iván; Valenzuela, Lucía; Sepúlveda, Sofía; Bitar, Mainá; Kemmerling, Ulrike; Machado, Carlos Renato; Cabrera, Gonzalo; Galanti, Norbel

    2016-01-01

    Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing. PMID:27284968

  6. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  7. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  8. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    PubMed Central

    La, Honggui; Ding, Bo; Mishra, Gyan P.; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guo-Liang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counteract transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli. PMID:21896764

  9. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily

    PubMed Central

    Sang, Pau Biak; Srinath, Thiruneelakantan; Patil, Aravind Goud; Woo, Eui-Jeon; Varshney, Umesh

    2015-01-01

    Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes. PMID:26304551

  10. 8-oxoguanine DNA glycosylase-1 driven DNA base excision repair: role in asthma pathogenesis

    PubMed Central

    Ba, Xueqing; Aguilera Aguirre, Leopoldo; Sur, Sanjiv; Boldogh, Istvan

    2015-01-01

    Purpose of review To provide both an overview and evidence of the potential etiology of oxidative DNA base damage and repair-signaling in chronic inflammation and histological changes associated with asthma. Recent findings Asthma is initiated/maintained by immunological, genetic/epigenetic and environmental factors. It is a world-wide health problem, as current therapies suppress symptoms rather than prevent/reverse the disease, largely due to gaps in understanding its molecular mechanisms. Inflammation, oxidative stress and DNA damage are inseparable phenomena, but their molecular roles in asthma pathogenesis are unclear. It was found that among oxidatively modified DNA bases, 8-oxoguanine (8-oxoG) is one of the most abundant, and its levels in DNA and body fluids are considered a biomarker of ongoing asthmatic processes. Free 8-oxoG forms a complex with 8-oxoguanine DNA glycosylase-1 (OGG1) and activates RAS-family GTPases that induce gene expression to mobilize innate and adaptive immune systems, along with genes regulating airway hyperplasia, hyper-responsiveness and lung remodeling in atopic and non-atopic asthma. Summary DNA’s integrity must be maintained to prevent mutation, so its continuous repair and downstream signaling “fuels” chronic inflammatory processes in asthma, and forms the basic mechanism whose elucidation will allow the development of new drug targets for the prevention/reversal of lung diseases. PMID:25486379

  11. MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA

    PubMed Central

    Markkanen, Enni; Dorn, Julia; Hübscher, Ulrich

    2013-01-01

    Maintenance of genetic stability is crucial for all organisms in order to avoid the onset of deleterious diseases such as cancer. One of the many proveniences of DNA base damage in mammalian cells is oxidative stress, arising from a variety of endogenous and exogenous sources, generating highly mutagenic oxidative DNA lesions. One of the best characterized oxidative DNA lesion is 7,8-dihydro-8-oxoguanine (8-oxo-G), which can give rise to base substitution mutations (also known as point mutations). This mutagenicity is due to the miscoding potential of 8-oxo-G that instructs most DNA polymerases (pols) to preferentially insert an Adenine (A) opposite 8-oxo-G instead of the appropriate Cytosine (C). If left unrepaired, such A:8-oxo-G mispairs can give rise to CG→AT transversion mutations. A:8-oxo-G mispairs are proficiently recognized by the MutY glycosylase homologue (MUTYH). MUTYH can remove the mispaired A from an A:8-oxo-G, giving way to the canonical base-excision repair (BER) that ultimately restores undamaged Guanine (G). The importance of this MUTYH-initiated pathway is illustrated by the fact that biallelic mutations in the MUTYH gene are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). In this review, we will focus on MUTYH, from its discovery to the most recent data regarding its cellular roles and interaction partners. We discuss the involvement of the MUTYH protein in the A:8-oxo-G BER pathway acting together with pol λ, the pol that can faithfully incorporate C opposite 8-oxo-G and thus bypass this lesion in a correct manner. We also outline the current knowledge about the regulation of MUTYH itself and the A:8-oxo-G repair pathway by posttranslational modifications (PTM). Finally, to achieve a clearer overview of the literature, we will briefly touch on the rather confusing MUTYH nomenclature. In short, MUTYH is a unique DNA glycosylase that catalyzes the excision of an undamaged base from DNA. PMID

  12. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA

    PubMed Central

    Malik, Shuja S.; Coey, Christopher T.; Varney, Kristen M.; Pozharski, Edwin; Drohat, Alexander C.

    2015-01-01

    Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G·T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten–eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme–product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme–substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme–product complex. PMID:26358812

  13. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.

    PubMed

    Mullins, Elwood A; Shi, Rongxin; Kotsch, Lyle A; Eichman, Brandt F

    2015-01-01

    DNA glycosylases are important repair enzymes that eliminate a diverse array of aberrant nucleobases from the genomes of all organisms. Individual bacterial species often contain multiple paralogs of a particular glycosylase, yet the molecular and functional distinctions between these paralogs are not well understood. The recently discovered HEAT-like repeat (HLR) DNA glycosylases are distributed across all domains of life and are distinct in their specificity for cationic alkylpurines and mechanism of damage recognition. Here, we describe a number of phylogenetically diverse bacterial species with two orthologs of the HLR DNA glycosylase AlkD. One ortholog, which we designate AlkD2, is substantially less conserved. The crystal structure of Streptococcus mutans AlkD2 is remarkably similar to AlkD but lacks the only helix present in AlkD that penetrates the DNA minor groove. We show that AlkD2 possesses only weak DNA binding affinity and lacks alkylpurine excision activity. Mutational analysis of residues along this DNA binding helix in AlkD substantially reduced binding affinity for damaged DNA, for the first time revealing the importance of this structural motif for damage recognition by HLR glycosylases. PMID:25978435

  14. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    SciTech Connect

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appears to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.

  15. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Hazra, Tapas K.; Boor, Paul J.; Khan, M. Firoze

    2011-02-15

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline

  16. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.

    PubMed

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L

    2015-07-10

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  17. DNA damage processing by human 8-oxoguanine-DNA glycosylase mutants with the occluded active site.

    PubMed

    Lukina, Maria V; Popov, Alexander V; Koval, Vladimir V; Vorobjev, Yuri N; Fedorova, Olga S; Zharkov, Dmitry O

    2013-10-01

    8-Oxoguanine-DNA glycosylase (OGG1) removes premutagenic lesion 8-oxoguanine (8-oxo-G) from DNA and then nicks the nascent abasic (apurinic/apyrimidinic) site by β-elimination. Although the structure of OGG1 bound to damaged DNA is known, the dynamic aspects of 8-oxo-G recognition are not well understood. To comprehend the mechanisms of substrate recognition and processing, we have constructed OGG1 mutants with the active site occluded by replacement of Cys-253, which forms a wall of the base-binding pocket, with bulky leucine or isoleucine. The conformational dynamics of OGG1 mutants were characterized by single-turnover kinetics and stopped-flow kinetics with fluorescent detection. Additionally, the conformational mobility of wild type and the mutant OGG1 substrate complex was assessed using molecular dynamics simulations. Although pocket occlusion distorted the active site and greatly decreased the catalytic activity of OGG1, it did not fully prevent processing of 8-oxo-G and apurinic/apyrimidinic sites. Both mutants were notably stimulated in the presence of free 8-bromoguanine, indicating that this base can bind to the distorted OGG1 and facilitate β-elimination. The results agree with the concept of enzyme plasticity, suggesting that the active site of OGG1 is flexible enough to compensate partially for distortions caused by mutation. PMID:23955443

  18. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  19. Thermodynamics of the DNA Damage Repair Steps of Human 8-Oxoguanine DNA Glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Kuznetsova, Alexandra A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.

    2014-01-01

    Human 8-oxoguanine DNA glycosylase (hOGG1) is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG). In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van’t Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves. PMID:24911585

  20. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  1. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA

    PubMed Central

    Dunn, Andrew R.; Kad, Neil M.; Nelson, Shane R.; Warshaw, David M.; Wallace, Susan S.

    2011-01-01

    Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix–hairpin–helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe111 insertion. PMID:21666255

  2. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  3. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition

    PubMed Central

    Kuznetsov, Nikita A.; Bergonzo, Christina; Campbell, Arthur J.; Li, Haoquan; Mechetin, Grigory V.; de los Santos, Carlos; Grollman, Arthur P.; Fedorova, Olga S.; Zharkov, Dmitry O.; Simmerling, Carlos

    2015-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination. PMID:25520195

  4. Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53.

    PubMed

    da Costa, Nathalia Meireles; Hautefeuille, Agnès; Cros, Marie-Pierre; Melendez, Matias Eliseo; Waters, Timothy; Swann, Peter; Hainaut, Pierre; Pinto, Luis Felipe Ribeiro

    2012-12-15

    Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability. PMID:23165212

  5. Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53

    PubMed Central

    da Costa, Nathalia Meireles; Hautefeuille, Agnès; Cros, Marie-Pierre; Melendez, Matias Eliseo; Waters, Timothy; Swann, Peter; Hainaut, Pierre; Pinto, Luis Felipe Ribeiro

    2012-01-01

    Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability. PMID:23165212

  6. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein.

    PubMed Central

    Boiteux, S; O'Connor, T R; Laval, J

    1987-01-01

    An Escherichia coli genomic library composed of large DNA fragments (10-15 kb) was constructed using the plasmid pBR322 as vector. From it 700 clones were individually screened for increased excision of the ring-opened form of N7-methylguanine (2-6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine) or Fapy. One clone overproduced the Fapy-DNA glycosylase activity by a factor of 10-fold as compared with the wild-type strain. The Fapy-DNA glycosylase overproducer character was associated with a 15-kb recombinant plasmid (pFPG10). After subcloning a 1.4-kb fragment which contained the Fapy-DNA glycosylase gene (fpg+) was inserted in the plasmids pUC18 and pUC19 yielding pFPG50 and pFPG60 respectively. The cells harbouring pFPG60 displayed a 50- to 100-fold increase in glycosylase activity and overexpressed a 31-kd protein. From these cells the Fapy-DNA glycosylase was purified to apparent physical homogeneity as evidenced by a single protein band at 31 kd on SDS-polyacrylamide gels. The amino acid composition of the protein and the amino acid sequence deduced from the nucleotide sequence demonstrate that the cloned fragment contains the structural gene coding for the Fapy-DNA glycosylase. The nucleotide sequence of the fpg gene is composed of 809 base pairs and codes for a protein of 269 amino acids with a calculated mol. wt of 30.2 kd. Images Fig. 2. PMID:3319582

  7. The effect of sequence context on the activity of cytosine DNA glycosylases.

    PubMed

    Kimber, Scott T; Brown, Tom; Fox, Keith R

    2015-12-01

    We have prepared single (N204D) and double (N204D:L272A) mutants of human uracil DNA glycosylase (hUDG), generating two cytosine DNA glycosylases (hCDG and hCYDG). Both these enzymes are able to excise cytosine (but not 5-methylcytosine), when this base is part of a mismatched base pair. hCDG is more active than the equivalent E. coli enzyme (eCYDG) and also has some activity when the cytosine is paired with guanine, unlike eCYDG. hCDG also has some activity against single stranded DNA, while having poor activity towards an unnatural base pair that forces the cytosine into an extrahelical conformation (in contrast to eCYDG for which a bulky base enhances the enzyme's activity). We also examined how sequence context affects the activity of these enzymes, determining the effect of flanking base pairs on cleavage efficiency. An abasic site or a hexaethylene glycol linker placed opposite the target cytosine, also causes an increase in activity compared with an AC mismatch. Flanking an AC mismatch with GC base pairs resulted in a 100-fold decrease in excision activity relative to flanking AT base pairs and the 5'-flanking base pair had a greater effect on the rate of cleavage. However, this effect is not simply due to the stability of the flanking base pairs as adjacent GT mismatches also produce low cleavage efficiency. PMID:26463365

  8. Regulation of DNA glycosylases and their role in limiting disease

    PubMed Central

    SAMPATH, HARINI; MCCULLOUGH, AMANDA K.; LLOYD, R. STEPHEN

    2016-01-01

    This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations. PMID:22300253

  9. Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions.

    PubMed

    Luncsford, Paz J; Manvilla, Brittney A; Patterson, Dimeka N; Malik, Shuja S; Jin, Jin; Hwang, Bor-Jang; Gunther, Randall; Kalvakolanu, Snigdha; Lipinski, Leonora J; Yuan, Weirong; Lu, Wuyuan; Drohat, Alexander C; Lu, A-Lien; Toth, Eric A

    2013-12-01

    MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or G(o)) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar-phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5' to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9-Rad1-Hus1 (9-1-1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein-DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates. PMID:24209961

  10. Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions

    PubMed Central

    Luncsford, Paz J.; Manvilla, Brittney A.; Patterson, Dimeka N.; Malik, Shuja S.; Jin, Jin; Hwang, Bor-Jang; Gunther, Randall; Kalvakolanu, Snigdha; Lipinski, Leonora J.; Yuan, Weirong; Lu, Wuyuan; Drohat, Alexander C.; Lu-Chang, A-Lien; Toth, Eric A.

    2013-01-01

    MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or G°) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar-phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5' to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9-Rad1-Hus1 (9-1-1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein-DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates. PMID:24209961

  11. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  12. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  13. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.

    PubMed

    Zhang, Yaru; O'Brien, Patrick J

    2015-11-20

    Human alkyladenine DNA glycosylase (AAG) initiates the base excision repair pathway by excising alkylated and deaminated purine lesions. In vitro biochemical experiments demonstrate that AAG uses facilitated diffusion to efficiently search DNA to find rare sites of damage and suggest that electrostatic interactions are critical to the searching process. However, it remains an open question whether DNA searching limits the rate of DNA repair in vivo. We constructed AAG mutants with altered searching ability and measured their ability to protect yeast from alkylation damage in order to address this question. Each of the conserved arginine and lysine residues that are near the DNA binding interface were mutated, and the functional impacts were evaluated using kinetic and thermodynamic analysis. These mutations do not perturb catalysis of N-glycosidic bond cleavage, but they decrease the ability to capture rare lesion sites. Nonspecific and specific DNA binding properties are closely correlated, suggesting that the electrostatic interactions observed in the specific recognition complex are similarly important for DNA searching complexes. The ability of the mutant proteins to complement repair-deficient yeast cells is positively correlated with the ability of the proteins to search DNA in vitro, suggesting that cellular resistance to DNA alkylation is governed by the ability to find and efficiently capture cytotoxic lesions. It appears that chromosomal access is not restricted and toxic sites of alkylation damage are readily accessible to a searching protein. PMID:26317160

  14. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates.

    PubMed

    Begley, Thomas J; Haas, Brian J; Morales, Juan C; Kool, Eric T; Cunningham, Richard P

    2003-01-01

    We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product. PMID:12509271

  15. Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context*

    PubMed Central

    Zhou, Jia; Liu, Minmin; Fleming, Aaron M.; Burrows, Cynthia J.; Wallace, Susan S.

    2013-01-01

    The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA. PMID:23926102

  16. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase

    PubMed Central

    Endres, Matthias; Biniszkiewicz, Detlev; Sobol, Robert W.; Harms, Christoph; Ahmadi, Michael; Lipski, Andreas; Katchanov, Juri; Mergenthaler, Philipp; Dirnagl, Ulrich; Wilson, Samuel H.; Meisel, Andreas; Jaenisch, Rudolf

    2004-01-01

    Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung–/– fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung–/– primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung–/– mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia. PMID:15199406

  17. Thymine DNA Glycosylase Is a Positive Regulator of Wnt Signaling in Colorectal Cancer*

    PubMed Central

    Xu, Xuehe; Yu, Tianxin; Shi, Jiandang; Chen, Xi; Zhang, Wen; Lin, Ting; Liu, Zhihong; Wang, Yadong; Zeng, Zheng; Wang, Chi; Li, Mingsong; Liu, Chunming

    2014-01-01

    Wnt signaling plays an important role in colorectal cancer (CRC). Although the mechanisms of β-catenin degradation have been well studied, the mechanism by which β-catenin activates transcription is still not fully understood. While screening a panel of DNA demethylases, we found that thymine DNA glycosylase (TDG) up-regulated Wnt signaling. TDG interacts with the transcription factor TCF4 and coactivator CREB-binding protein/p300 in the Wnt pathway. Knocking down TDG by shRNAs inhibited the proliferation of CRC cells in vitro and in vivo. In CRC patients, TDG levels were significantly higher in tumor tissues than in the adjacent normal tissues. These results suggest that TDG warrants consideration as a potential biomarker for CRC and as a target for CRC treatment. PMID:24532795

  18. Inhibition of uracil-DNA glycosylase increases SCEs in BrdU-treated and visible light-irradiated cells

    SciTech Connect

    Maldonado, A.; Hernandez, P.; Gutierrez, C.

    1985-11-01

    The authors have approached the study of the ability of different types of lesions produced by DNA-damaging agents to develop sister-chromatid exchanges (SCEs) by analyzing SCE levels observed in Allium cepa L cells with BrdU-substituted DNA and exposed to visible light (VL), an irradiation which produces uracil residues in DNA after debromination of bromouracil and enhances SCE levels but only above a certain dose. They have partially purified an uracil-DNA glycosylase activity from A. cepa L root meristem cells, which removes uracil from DNA, the first step in the excision repair of this lesion. This enzyme was inhibited in vitro by 6-amino-uracil and uracil but not by thymine. When cells exposed to VL, at a dose that did not produce per se an SCE increase, were immediately post-treated with these inhibitors of uracil-DNA glycosylase, a significant increase in SCE levels was obtained. Moreover, SCE levels in irradiated cells dropped to control level when a short holding time elapsed between exposure to VL and the beginning of post-treatment with the inhibitor. Thus, our results showed that inhibitors of uracil-DNA glycosylase enhanced SCE levels in cells with unifilarly BrdU-substituted DNA exposed to visible light; and indicated the existence of a very rapid repair of SCE-inducing lesions produced by visible light irradiation of cells with unifilarly BrdU-containing DNA.

  19. Structural Features of the Interaction between Human 8-Oxoguanine DNA Glycosylase hOGG1 and DNA

    PubMed Central

    Koval, V. V.; Knorre, D. G.; Fedorova, O. S.

    2014-01-01

    The purpose of the present review is to summarize the data related with the structural features of interaction between the human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) and DNA. The review covers the questions concerning the role of individual amino acids of hOGG1 in the specific recognition of the oxidized DNA bases, formation of the enzyme–substrate complex, and excision of the lesion bases from DNA. Attention is also focused upon conformational changes in the enzyme active site and disruption of enzyme activity as a result of amino acid mutations. The mechanism of damaged bases release from DNA induced by hOGG1 is discussed in the context of structural dynamics. PMID:25349714

  20. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases

    PubMed Central

    Nelson, Shane R.; Dunn, Andrew R.; Kathe, Scott D.; Warshaw, David M.; Wallace, Susan S.

    2014-01-01

    DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism’s DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key “wedge residue” to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it. PMID:24799677

  1. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase

    PubMed Central

    Koval, Vladimir V.; Kuznetsov, Nikita A.; Zharkov, Dmitry O.; Ishchenko, Alexander A.; Douglas, Kenneth T.; Nevinsky, Georgy A.; Fedorova, Olga S.

    2004-01-01

    Formamidopyrimidine-DNA-glycosylase (Fpg pro tein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2′-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation. PMID:14769949

  2. 8-Oxoguanine DNA Glycosylase (OGG1) Deficiency Increases Susceptibility to Obesity and Metabolic Dysfunction

    PubMed Central

    Sampath, Harini; Vartanian, Vladimir; Rollins, M. Rick; Sakumi, Kunihiko; Nakabeppu, Yusaku; Lloyd, R. Stephen

    2012-01-01

    Oxidative damage to DNA is mainly repaired via base excision repair, a pathway that is catalyzed by DNA glycosylases such as 8-oxoguanine DNA glycosylase (OGG1). While OGG1 has been implicated in maintaining genomic integrity and preventing tumorigenesis, we report a novel role for OGG1 in altering cellular and whole body energy homeostasis. OGG1-deficient (Ogg1−/−) mice have increased adiposity and hepatic steatosis following exposure to a high-fat diet (HFD), compared to wild-type (WT) animals. Ogg1−/− animals also have higher plasma insulin levels and impaired glucose tolerance upon HFD feeding, relative to WT counterparts. Analysis of energy expenditure revealed that HFD-fed Ogg1−/− mice have a higher resting VCO2 and consequently, an increased respiratory quotient during the resting phase, indicating a preference for carbohydrate metabolism over fat oxidation in these mice. Additionally, microarray and quantitative PCR analyses revealed that key genes of fatty acid oxidation, including carnitine palmitoyl transferase-1, and the integral transcriptional co-activator Pgc-1α were significantly downregulated in Ogg1−/− livers. Multiple genes involved in TCA cycle metabolism were also significantly reduced in livers of Ogg1−/− mice. Furthermore, hepatic glycogen stores were diminished, and fasting plasma ketones were significantly reduced in Ogg1−/− mice. Collectively, these data indicate that OGG1 deficiency alters cellular substrate metabolism, favoring a fat sparing phenotype, that results in increased susceptibility to obesity and related pathologies in Ogg1−/− mice. PMID:23284747

  3. Association of the Rad9-Rad1-Hus1 checkpoint clamp with MYH DNA glycosylase and DNA.

    PubMed

    Hwang, Bor-Jang; Jin, Jin; Gunther, Randall; Madabushi, Amrita; Shi, Guoli; Wilson, Gerald M; Lu, A-Lien

    2015-07-01

    Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9-1-1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134-155) is a key determinant of MYH binding. Both the N-(residues 1-146) and C-terminal (residues 147-280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1(K136A) mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad9(1-266) (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 9(1-266)-1-1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 9(1-266)-1-1 to 5'-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9-1-1 subunits to MYH-directed BER based on subunit asymmetry in protein-protein interactions and DNA binding events. PMID:26021743

  4. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    NASA Astrophysics Data System (ADS)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; Yuen, Philip K.; David, Sheila S.; Igarashi, Yasuhiro; Eichman, Brandt F.

    2015-11-01

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

  5. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.

    PubMed

    Mullins, Elwood A; Shi, Rongxin; Parsons, Zachary D; Yuen, Philip K; David, Sheila S; Igarashi, Yasuhiro; Eichman, Brandt F

    2015-11-12

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision. PMID:26524531

  6. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine–DNA glycosylase

    PubMed Central

    Li, Haoquan; Endutkin, Anton V.; Bergonzo, Christina; Campbell, Arthur J.; de los Santos, Carlos; Grollman, Arthur; Zharkov, Dmitry O.; Simmerling, Carlos

    2016-01-01

    In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme–DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson–Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes. PMID:26553802

  7. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase.

    PubMed

    Li, Haoquan; Endutkin, Anton V; Bergonzo, Christina; Campbell, Arthur J; de los Santos, Carlos; Grollman, Arthur; Zharkov, Dmitry O; Simmerling, Carlos

    2016-01-29

    In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme-DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson-Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes. PMID:26553802

  8. An amplified electrochemical strategy using DNA-QDs dendrimer superstructure for the detection of thymine DNA glycosylase activity.

    PubMed

    Liu, Hongying; Lou, Youbing; Zhou, Fei; Zhu, Hao; Abdel-Halim, E S; Zhu, Jun-Jie

    2015-09-15

    A triple-signal amplification strategy was proposed for highly sensitive and selective detection of thymine DNA glycosylase (TDG) by coupling a dendrimer-like DNA label with the electrochemical method and quantum dots (QDs) tagging. The DNA-QDs dendrimer-like superstructure was designed by DNA hybridization and covalent assembling. Benefiting from outstanding performance of the amplification strategy, this assay showed high sensitivity, extraordinary stability, and easy operation. The limit of detection could reach 0.00003 U µL(-1) with a splendid specificity. The TDG content in different concentration of HeLa cell was also determined. This assay opens a new horizon for both qualitative and quantitative detection of TDG, holding great promise for potential application in cancer cell research and clinical diagnostics. PMID:25913445

  9. Characterization of GM-CSF-inhibitory factor and Uracil DNA glycosylase encoding genes from camel pseudocowpoxvirus.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Narnaware, S D; Mehta, S C; Singh, P K; Singh, Raghvendar; Tuteja, F C; Patil, N V

    2015-06-01

    The present study describes the PCR amplification of GM-CSF-inhibitory factor (GIF) and Uracil DNA glycosylase (UDG) encoding genes of pseudocowpoxvirus (PCPV) from the Indian Dromedaries (Camelus dromedarius) infected with contagious ecthyma using the primers based on the corresponding gene sequences of human PCPV and reindeer PCPV, respectively. The length of GIF gene of PCPV obtained from camel is 795 bp and due to the addition of one cytosine residue at position 374 and one adenine residue at position 516, the open reading frame (ORF) got altered, resulting in the production of truncated polypeptide. The ORF of UDG encoding gene of camel PCPV is 696 bp encoding a polypeptide of 26.0 kDa. Comparison of amino acid sequence homologies of GIF and UDG of camel PCPV revealed that the camel PCPV is closer to ORFV and PCPV (reference stains of both human and reindeer), respectively. PMID:25816930

  10. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  11. Role of uracil-DNA glycosylase in mutation avoidance by Streptococcus pneumoniae

    SciTech Connect

    Chen, Jau-Der; Lacks, S.A. )

    1991-01-01

    Uracil-DNA glycosylase activity was found in Streptococcus pneumoniae, and the enzyme was partially purified. An ung mutant lacking the activity was obtained by positive selection of cells transformed with a plasmid containing uracil in its DNA. The effects of the ung mutation on mutagenic processes in S. pneumoniae were examined. The sequence of several malM mutations revertible by nitrous acid showed them to correspond to A {center dot}T{r arrow}G {center dot} C transitions. This confirmed a prior deduction that nitrous acid action on transforming DNA gave only G {center dot} C{r arrow}A {center dot} T mutations. Examination of malM mutant reversion frequencies in ung strains indicated that G {center dot} C{r arrow}A {center dot} T mutation rates generally were 10-fold higher than in wild-type strains, presumably owing to lack of repair of deaminated cytosine residues in DNA. No effect of ung on mutation avoidance by the Hex mismatch repair system was observed, which means that uracil incorporation and removal from nascent DNA cannot be solely responsible for producing strand breaks that target nascent DNA for correction after replication. One malM mutation corresponding to an A {center dot} T{r arrow}G {center dot} C transition showed a 10-fold-higher spontaneous reversion frequency than other such transitions in a wild-type background. This hot spot was located in a directly repeated DNA sequence; it is proposed that transient slippage to the wild-type repeat during replication accounts for the higher reversion frequency.

  12. A Germline Polymorphism of Thymine DNA Glycosylase Induces Genomic Instability and Cellular Transformation

    PubMed Central

    Sjolund, Ashley; Nemec, Antonia A.; Paquet, Nicolas; Prakash, Aishwarya; Sung, Patrick; Doublié, Sylvie; Sweasy, Joann B.

    2014-01-01

    Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer. PMID:25375110

  13. Ginsenoside Rd Attenuates DNA Damage by Increasing Expression of DNA Glycosylase Endonuclease VIII-like Proteins after Focal Cerebral Ischemia

    PubMed Central

    Yang, Long-Xiu; Zhang, Xiao; Zhao, Gang

    2016-01-01

    Background: Ginsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins. This study aimed to investigate the effect of GSRd on the expression of DNA glycosylases NEILs in a rat model of focal cerebral ischemia. Methods: NEIL expression patterns were evaluated by quantitative real-time polymerase chain reaction in both normal and middle cerebral artery occlusion (MCAO) rat models. Survival rate and Zea-Longa neurological scores were used to assess the effect of GSRd administration on MCAO rats. Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damages were evaluated by the way of real-time analysis of mutation frequency. NEIL expressions were measured in both messenger RNA (mRNA) and protein levels by quantitative polymerase chain reaction and Western blotting analysis. Apoptosis level was quantitated by the expression of cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay. Results: We found that GSRd administration reduced mtDNA and nDNA damages, which contributed to an improvement in survival rate and neurological function; significantly up-regulated NEIL1 and NEIL3 expressions in both mRNA and protein levels of MCAO rats; and reduced cell apoptosis and the expression of cleaved caspase-3 in rats at 7 days after MCAO. Conclusions: Our results indicated that the neuroprotective function of GSRd for acute ischemic stroke might be partially explained by the up

  14. Purification and characterization of a novel UV lesion-specific DNA glycosylase/AP lyase from Bacillus sphaericus.

    PubMed

    Vasquez, D A; Nyaga, S G; Lloyd, R S

    2000-05-31

    The purification and characterization of a pyrimidine dimer-specific glycosylase/AP lyase from Bacillus sphaericus (Bsp-pdg) are reported. Bsp-pdg is highly specific for DNA containing the cis-syn cyclobutane pyrimidine dimer, displaying no detectable activity on oligonucleotides with trans-syn I, trans-syn II, (6-4), or Dewar photoproducts. Like other glycosylase/AP lyases that sequentially cleave the N--glycosyl bond of the 5' pyrimidine of a cyclobutane pyrimidine dimer, and the phosphodiester backbone, this enzyme appears to utilize a primary amine as the attacking nucleophile. The formation of a covalent enzyme-DNA imino intermediate is evidenced by the ability to trap this protein-DNA complex by reduction with sodium borohydride. Also consistent with its AP lyase activity, Bsp-pdg was shown to incise an AP site-containing oligonucleotide, yielding beta- and delta-elimination products. N-terminal amino acid sequence analysis of this 26 kDa protein revealed little amino acid homology to any previously reported protein. This is the first report of a glycosylase/AP lyase enzyme from Bacillus sphaericus that is specific for cis-syn pyrimidine dimers. PMID:10844244

  15. Electrostatic properties of complexes along a DNA glycosylase damage search pathway.

    PubMed

    Cravens, Shannen L; Hobson, Matthew; Stivers, James T

    2014-12-01

    Human uracil DNA glycosylase (hUNG) follows an extended reaction coordinate for locating rare uracil bases in genomic DNA. This process begins with diffusion-controlled engagement of undamaged DNA, followed by a damage search step in which the enzyme remains loosely associated with the DNA chain (translocation), and finally, a recognition step that allows the enzyme to efficiently bind and excise uracil when it is encountered. At each step along this coordinate, the enzyme must form DNA interactions that are highly specialized for either rapid damage searching or catalysis. Here we make extensive measurements of hUNG activity as a function of salt concentration to dissect the thermodynamic, kinetic, and electrostatic properties of key enzyme states along this reaction coordinate. We find that the interaction of hUNG with undamaged DNA is electrostatically driven at a physiological concentration of potassium ions (ΔGelect = -3.5 ± 0.5 kcal mol(-1)), with only a small nonelectrostatic contribution (ΔGnon = -2.0 ± 0.2 kcal mol(-1)). In contrast, the interaction with damaged DNA is dominated by the nonelectrostatic free energy term (ΔGnon = -7.2 ± 0.1 kcal mol(-1)), yet retains the nonspecific electrostatic contribution (ΔGelect = -2.3 ± 0.2 kcal mol(-1)). Stopped-flow kinetic experiments established that the salt sensitivity of damaged DNA binding originates from a reduction of kon, while koff is weakly dependent on salt. Similar findings were obtained from the salt dependences of the steady-state kinetic parameters, where the diffusion-controlled kcat/Km showed a salt dependence similar to kon, while kcat (limited by product release) was weakly dependent on salt. Finally, the salt dependence of translocation between two uracil sites separated by 20 bp in the same DNA chain was indistinguishable from that of kon. This result suggests that the transition-state for translocation over this spacing resembles that for DNA association from bulk solution and that h

  16. Electrostatic Properties of Complexes along a DNA Glycosylase Damage Search Pathway

    PubMed Central

    2015-01-01

    Human uracil DNA glycosylase (hUNG) follows an extended reaction coordinate for locating rare uracil bases in genomic DNA. This process begins with diffusion-controlled engagement of undamaged DNA, followed by a damage search step in which the enzyme remains loosely associated with the DNA chain (translocation), and finally, a recognition step that allows the enzyme to efficiently bind and excise uracil when it is encountered. At each step along this coordinate, the enzyme must form DNA interactions that are highly specialized for either rapid damage searching or catalysis. Here we make extensive measurements of hUNG activity as a function of salt concentration to dissect the thermodynamic, kinetic, and electrostatic properties of key enzyme states along this reaction coordinate. We find that the interaction of hUNG with undamaged DNA is electrostatically driven at a physiological concentration of potassium ions (ΔGelect = −3.5 ± 0.5 kcal mol–1), with only a small nonelectrostatic contribution (ΔGnon = −2.0 ± 0.2 kcal mol–1). In contrast, the interaction with damaged DNA is dominated by the nonelectrostatic free energy term (ΔGnon = −7.2 ± 0.1 kcal mol–1), yet retains the nonspecific electrostatic contribution (ΔGelect = −2.3 ± 0.2 kcal mol–1). Stopped-flow kinetic experiments established that the salt sensitivity of damaged DNA binding originates from a reduction of kon, while koff is weakly dependent on salt. Similar findings were obtained from the salt dependences of the steady-state kinetic parameters, where the diffusion-controlled kcat/Km showed a salt dependence similar to kon, while kcat (limited by product release) was weakly dependent on salt. Finally, the salt dependence of translocation between two uracil sites separated by 20 bp in the same DNA chain was indistinguishable from that of kon. This result suggests that the transition-state for translocation over this spacing resembles that for DNA association from bulk solution and

  17. Structural Characterization of Viral Ortholog of Human DNA Glycosylase NEIL1 Bound to Thymine Glycol or 5-Hydroxyuracil-containing DNA*

    PubMed Central

    Imamura, Kayo; Averill, April; Wallace, Susan S.; Doublié, Sylvie

    2012-01-01

    Thymine glycol (Tg) and 5-hydroxyuracil (5-OHU) are common oxidized products of pyrimidines, which are recognized and cleaved by two DNA glycosylases of the base excision repair pathway, endonuclease III (Nth) and endonuclease VIII (Nei). Although there are several structures of Nei enzymes unliganded or bound to an abasic (apurinic or apyrimidinic) site, until now there was no structure of an Nei bound to a DNA lesion. Mimivirus Nei1 (MvNei1) is an ortholog of human NEIL1, which was previously crystallized bound to DNA containing an apurinic site (Imamura, K., Wallace, S. S., and Doublié, S. (2009) J. Biol. Chem. 284, 26174–26183). Here, we present two crystal structures of MvNei1 bound to two oxidized pyrimidines, Tg and 5-OHU. Both lesions are flipped out from the DNA helix. Tg is in the anti conformation, whereas 5-OHU adopts both anti and syn conformations in the glycosylase active site. Only two protein side chains (Glu-6 and Tyr-253) are within hydrogen-bonding contact with either damaged base, and mutating these residues did not markedly affect the glycosylase activity. This finding suggests that lesion recognition by Nei occurs before the damaged base flips into the glycosylase active site. PMID:22170059

  18. Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Koval, Vladimir V.; Zharkov, Dmitry O.; Nevinsky, Georgy A.; Douglas, Kenneth T.; Fedorova, Olga S.

    2005-01-01

    Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG. PMID:16024742

  19. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  20. Protein p56 from the Bacillus subtilis phage ϕ29 inhibits DNA-binding ability of uracil-DNA glycosylase

    PubMed Central

    Serrano-Heras, Gemma; Ruiz-Masó, José A.; del Solar, Gloria; Espinosa, Manuel; Bravo, Alicia; Salas, Margarita

    2007-01-01

    Protein p56 (56 amino acids) from the Bacillus subtilis phage ϕ29 inactivates the host uracil-DNA glycosylase (UDG), an enzyme involved in the base excision repair pathway. At present, p56 is the only known example of a UDG inhibitor encoded by a non-uracil containing viral DNA. Using analytical ultracentrifugation methods, we found that protein p56 formed dimers at physiological concentrations. In addition, circular dichroism spectroscopic analyses revealed that protein p56 had a high content of β-strands (around 40%). To understand the mechanism underlying UDG inhibition by p56, we carried out in vitro experiments using the Escherichia coli UDG enzyme. The highly acidic protein p56 was able to compete with DNA for binding to UDG. Moreover, the interaction between p56 and UDG blocked DNA binding by UDG. We also demonstrated that Ugi, a protein that interacts with the DNA-binding domain of UDG, was able to replace protein p56 previously bound to the UDG enzyme. These results suggest that protein p56 could be a novel naturally occurring DNA mimicry. PMID:17698500

  1. Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice.

    PubMed

    Cheresh, Paul; Morales-Nebreda, Luisa; Kim, Seok-Jo; Yeldandi, Anjana; Williams, David B; Cheng, Yuan; Mutlu, Gökhan M; Budinger, G R Scott; Ridge, Karen; Schumacker, Paul T; Bohr, Vilhelm A; Kamp, David W

    2015-01-01

    Asbestos causes asbestosis and malignancies by mechanisms that are not fully established. Alveolar epithelial cell (AEC) injury and repair are crucial determinants of the fibrogenic potential of noxious agents such as asbestos. We previously showed that mitochondrial reactive oxygen species mediate asbestos-induced AEC intrinsic apoptosis and that mitochondrial human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme, prevents oxidant-induced AEC apoptosis. We reasoned that OGG1 deficiency augments asbestos-induced pulmonary fibrosis. Compared with intratracheal instillation of PBS (50 μl) or titanium dioxide (100 μg/50 μl), crocidolite or Libby amphibole asbestos (100 μg/50 μl) each augmented pulmonary fibrosis in wild-type C57BL/6J (WT) mice after 3 weeks as assessed by histology, fibrosis score, lung collagen via Sircol, and type 1 collagen expression; these effects persisted at 2 months. Compared with WT mice, Ogg1 homozygous knockout (Ogg1(-/-)) mice exhibit increased pulmonary fibrosis after crocidolite exposure and apoptosis in cells at the bronchoalveolar duct junctions as assessed via cleaved caspase-3 immunostaining. AEC involvement was verified by colocalization studies using surfactant protein C. Asbestos increased endoplasmic reticulum stress in the lungs of WT and Ogg1(-/-) mice. Compared with WT, alveolar type 2 cells isolated from Ogg1(-/-) mice have increased mtDNA damage, reduced mitochondrial aconitase expression, and increased P53 and cleaved caspase-9 expression, and these changes were enhanced 3 weeks after crocidolite exposure. These findings suggest an important role for AEC mtDNA integrity maintained by OGG1 in the pathogenesis of pulmonary fibrosis that may represent a novel therapeutic target. PMID:24918270

  2. Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase.

    PubMed

    Manuel, Raymond C; Hitomi, Kenichi; Arvai, Andrew S; House, Paul G; Kurtz, Andrew J; Dodson, M L; McCullough, Amanda K; Tainer, John A; Lloyd, R Stephen

    2004-11-01

    The Escherichia coli adenine DNA glycosylase, MutY, plays an important role in the maintenance of genomic stability by catalyzing the removal of adenine opposite 8-oxo-7,8-dihydroguanine or guanine in duplex DNA. Although the x-ray crystal structure of the catalytic domain of MutY revealed a mechanism for catalysis of the glycosyl bond, it appeared that several opportunistically positioned lysine side chains could participate in a secondary beta-elimination reaction. In this investigation, it is established via site-directed mutagenesis and the determination of a 1.35-A structure of MutY in complex with adenine that the abasic site (apurinic/apyrimidinic) lyase activity is alternatively regulated by two lysines, Lys142 and Lys20. Analyses of the crystallographic structure also suggest a role for Glu161 in the apurinic/apyrimidinic lyase chemistry. The beta-elimination reaction is structurally and chemically uncoupled from the initial glycosyl bond scission, indicating that this reaction occurs as a consequence of active site plasticity and slow dissociation of the product complex. MutY with either the K142A or K20A mutation still catalyzes beta and beta-delta elimination reactions, and both mutants can be trapped as covalent enzyme-DNA intermediates by chemical reduction. The trapping was observed to occur both pre- and post-phosphodiester bond scission, establishing that both of these intermediates have significant half-lives. Thus, the final spectrum of DNA products generated reflects the outcome of a delicate balance of closely related equilibrium constants. PMID:15326180

  3. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability.

    PubMed

    Cilli, Piera; Ventura, Ilenia; Minoprio, Anna; Meccia, Ettore; Martire, Alberto; Wilson, Samuel H; Bignami, Margherita; Mazzei, Filomena

    2016-06-20

    DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA damage that promotes TNR expansion. We demonstrate that during BER of 8-oxoguanine (8-oxodG) in TNR sequences, DNA polymerase β (POL β) can incorporate 8-oxodGMP with the formation of 8-oxodG:C and 8-oxodG:A mispairs. Their processing by the OGG1 and MUTYH DNA glycosylases generates closely spaced incisions on opposite DNA strands that are permissive for TNR expansion. Evidence in HD model R6/2 mice indicates that these DNA glycosylases are present in brain areas affected by neurodegeneration. Consistent with prevailing oxidative stress, the same brain areas contained increased DNA 8-oxodG levels and expression of the p53-inducible ribonucleotide reductase. Our in vitro and in vivo data support a model where an oxidized dNTPs pool together with aberrant BER processing contribute to TNR expansion in non-replicating cells. PMID:26980281

  4. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability

    PubMed Central

    Cilli, Piera; Ventura, Ilenia; Minoprio, Anna; Meccia, Ettore; Martire, Alberto; Wilson, Samuel H.; Bignami, Margherita; Mazzei, Filomena

    2016-01-01

    DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA damage that promotes TNR expansion. We demonstrate that during BER of 8-oxoguanine (8-oxodG) in TNR sequences, DNA polymerase β (POL β) can incorporate 8-oxodGMP with the formation of 8-oxodG:C and 8-oxodG:A mispairs. Their processing by the OGG1 and MUTYH DNA glycosylases generates closely spaced incisions on opposite DNA strands that are permissive for TNR expansion. Evidence in HD model R6/2 mice indicates that these DNA glycosylases are present in brain areas affected by neurodegeneration. Consistent with prevailing oxidative stress, the same brain areas contained increased DNA 8-oxodG levels and expression of the p53-inducible ribonucleotide reductase. Our in vitro and in vivo data support a model where an oxidized dNTPs pool together with aberrant BER processing contribute to TNR expansion in non-replicating cells. PMID:26980281

  5. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  6. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    SciTech Connect

    Reis, Amilcar; Hermanson, Ola

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. Black-Right-Pointing-Pointer No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. Black-Right-Pointing-Pointer OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. Black-Right-Pointing-Pointer Increased HP1{gamma} immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1{gamma} immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  7. Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex

    PubMed Central

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmunoprecipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme

  8. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations

    PubMed Central

    Fortes, F.P.; Kuasne, H.; Marchi, F.A.; Miranda, P.M.; Rogatto, S.R.; Achatz, M.I.

    2015-01-01

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results. PMID:25945745

  9. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations.

    PubMed

    Fortes, F P; Kuasne, H; Marchi, F A; Miranda, P M; Rogatto, S R; Achatz, M I

    2015-07-01

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53 mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results. PMID:25945745

  10. Electrostatic interactions play an essential role in DNA repair and cold-adaptation of uracil DNA glycosylase.

    PubMed

    Olufsen, Magne; Smalås, Arne O; Brandsdal, Bjørn O

    2008-03-01

    Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod (cUNG) catalyzes removal of uracil from DNA with an increased k(cat) and reduced K(m) relative to its warm-active human (hUNG) counterpart. Specific issues related to DNA repair and substrate binding/recognition (K(m)) are here investigated by continuum electrostatics calculations, MD simulations and free energy calculations. Continuum electrostatic calculations reveal that cUNG has surface potentials that are more complementary to the DNA potential at and around the catalytic site when compared to hUNG, indicating improved substrate binding. Comparative MD simulations combined with free energy calculations using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method show that large opposing energies are involved when forming the enzyme-substrate complexes. Furthermore, the binding free energies obtained reveal that the Michaelis-Menten complex is more stable for cUNG, primarily due to enhanced electrostatic properties, suggesting that energetic fine-tuning of electrostatics can be utilized for enzymatic temperature adaptation. Energy decomposition pinpoints the residual determinants responsible for this adaptation. PMID:18196298

  11. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs.

    PubMed

    Krokan, H; Wittwer, C U

    1981-06-11

    Uracil-DNA glycosylase was partially purified from HeLa cells. Various substrates containing [3H]dUMP residues were prepared by nick-translation of calf thymus DNA. The standard substrate was double-stranded DNA with [3H]dUMP located internally in the chain. Compared to the release of uracil from this substrate, a 3-fold increase in the rate was seen with single-stranded DNA, and a 20-fold reduction in the rate was observed when the [3H]dUMP-residue was located at the 3'end. The rate of [3H]uracil release decreased progressively when one, two or three of the dNMP residues were replaced by the corresponding rNMP; in the extreme case when the substrate contained [3H]dUMP in addition to rCMP, rGMP, and rAMP, the rate of [3H]uracil release was less than 3% of that of the control. The enzyme was inhibited to the same extent by uracil and the uracil analogs 6-aminouracil and 5-azauracil, but very weakly, or not at all, by 5 other analogs. Our results suggest strongly that uracil-DNA glycosylase has a high degree of selectivity for uracil in dUMP residues located internally in DNA chains and that the recognition of the correct substrate also depends on the residues flanking dUMP being deoxyribonucleotides. PMID:7279657

  12. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs.

    PubMed

    Hardeland, Ulrike; Bentele, Marc; Jiricny, Josef; Schär, Primo

    2003-05-01

    Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G.T and G.U mismatches, respectively, and was therefore proposed to play a central role in the cellular defense against genetic mutation through spontaneous deamination of 5-methylcytosine and cytosine. In this study, we characterized two newly discovered orthologs of TDG, the Drosophila melanogaster Thd1p and the Schizosaccharomyces pombe Thp1p proteins, with an objective to address the function of this subfamily of uracil-DNA glycosylases from an evolutionary perspective. A systematic biochemical comparison of both enzymes with human TDG revealed a number of biologically significant facts. (i) All eukaryotic TDG orthologs have broad and species-specific substrate spectra that include a variety of damaged pyrimidine and purine bases; (ii) the common most efficiently processed substrates of all are uracil and 3,N4- ethenocytosine opposite guanine and 5-fluorouracil in any double-stranded DNA context; (iii) 5-methylcytosine and thymine derivatives are processed with an appreciable efficiency only by the human and the Drosophila enzymes; (iv) none of the proteins is able to hydrolyze a non-damaged 5'-methylcytosine opposite G; and (v) the double strand and mismatch dependency of the enzymes varies with the substrate and is not a stringent feature of this subfamily of DNA glycosylases. These findings advance our current view on the role of TDG proteins and document that they have evolved with high structural flexibility to counter a broad range of DNA base damage in accordance with the specific needs of individual species. PMID:12711670

  13. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma

    PubMed Central

    Belanger, KarryAnne K.; Ameredes, Bill T.; Boldogh, Istvan

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms. PMID:27524866

  14. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3′-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix–hairpin–Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  15. Structure of Escherichia coli AlkA in Complex with Undamaged DNA

    SciTech Connect

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; Verdine, Gregory L

    2010-11-22

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.

  16. Sequence-dependent Structural Variation in DNA Undergoing Intrahelical Inspection by the DNA glycosylase MutM

    SciTech Connect

    Sung, Rou-Jia; Zhang, Michael; Qi, Yan; Verdine, Gregory L.

    2012-08-31

    MutM, a bacterial DNA-glycosylase, plays a critical role in maintaining genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions to initiate base excision DNA repair. The task faced by MutM of locating rare oxoG residues embedded in an overwhelming excess of undamaged bases is especially challenging given the close structural similarity between oxoG and its normal progenitor, guanine (G). MutM actively interrogates the DNA to detect the presence of an intrahelical, fully base-paired oxoG, whereupon the enzyme promotes extrusion of the target nucleobase from the DNA duplex and insertion into the extrahelical active site. Recent structural studies have begun to provide the first glimpse into the protein-DNA interactions that enable MutM to distinguish an intrahelical oxoG from G; however, these initial studies left open the important question of how MutM can recognize oxoG residues embedded in 16 different neighboring sequence contexts (considering only the 5'- and 3'-neighboring base pairs). In this study we set out to understand the manner and extent to which intrahelical lesion recognition varies as a function of the 5'-neighbor. Here we report a comprehensive, systematic structural analysis of the effect of the 5'-neighboring base pair on recognition of an intrahelical oxoG lesion. These structures reveal that MutM imposes the same extrusion-prone ('extrudogenic') backbone conformation on the oxoG lesion irrespective of its 5'-neighbor while leaving the rest of the DNA relatively free to adjust to the particular demands of individual sequences.

  17. The C-terminal Lysine of Ogg2 DNA Glycosylases is a Major Molecular Determinant for Guanine/8-Oxoguanine Distinction

    SciTech Connect

    Faucher, Frédérick; Wallace, Susan S.; Doublié, Sylvie

    2010-08-12

    7,8-Dihydro-8-oxoguanine (8-oxoG) is a major oxidative lesion found in DNA. The 8-oxoguanine DNA glycosylases (Ogg) responsible for the removal of 8-oxoG are divided into three families Ogg1, Ogg2 and AGOG. The Ogg2 members are devoid of the recognition loop used by Ogg1 to discriminate between 8-oxoG and guanine and it was unclear until recently how Ogg2 enzymes recognize the oxidized base. We present here the first crystallographic structure of an Ogg2 member, Methanocaldococcus janischii Ogg, in complex with a DNA duplex containing the 8-oxoG lesion. This structure highlights the crucial role of the C-terminal lysine, strictly conserved in Ogg2, in the recognition of 8-oxoG. The structure also reveals that Ogg2 undergoes a conformational change upon DNA binding similar to that observed in Ogg1 glycosylases. Furthermore, this work provides a structural rationale for the lack of opposite base specificity in this family of enzymes.

  18. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Meyer-Siegler, K.; Mauro, D.J.; Seal, G.; Wurzer, J.; DeRiel, J.K.; Sirover, M.A. )

    1991-10-01

    The authors have isolated and characterized a plasmid (pChug 20.1) that contains the cDNA of a nuclear uracil DNA glycosylase (UDG) gene isolated from normal human placenta. This cDNA directed the synthesis of a fusion protein that exhibited UDG activity. The enzymatic activity was specific for a uracil-containing polynucleotide substrate and was inhibited by a glycosylase antibody or a {beta}-galactosidase antibody. Sequence analysis demonstrated an open reading frame that encoded a protein of 335 amino acids of calculated M{sub r} 36,050 and pI 8.7, corresponding to the M{sub r} 37,000 and pI 8.1 of purified human placental UDG. Surprisingly, a search of the GenBank data base revealed that the cDNA of UDG was completely homologous with the 378-kDa subunit of human glyceraldehyde-3-phosphate dehydrogenase. Human erythrocyte glyceraldehyde-3-phosphate dehydrogenase was obtained commercially in its tetrameric form. A 37-kDa subunit was isolated form it and shown to possess UDG activity equivalent to that seen for the purified human placental UDG. The multiple functions of this 37-kDa protein as here and previously reported indicate that it possesses a series of activities, depending on its oligomeric state. Accordingly, mutation(s) in the gene of this multifunctional protein may conceivably result in the diverse cellular phenotypes of Bloom syndrome.

  19. 8-oxoguanine DNA glycosylase 1-deficiency modifies allergic airway inflammation by regulating STAT6 and IL-4 in cells and in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: 8-oxoguanine-DNA glycosylase (OGG-1) is an enzyme involved in DNA repair. OGG-1 has a potential role in regulating inflammation but its function in modulating allergic diseases remains undefined. Objectives: To investigate the role of OGG-1 in mediating allergic inflammation, we used OGG...

  20. Uracil DNA glycosylase (UNG) loss enhances DNA double strand break formation in human cancer cells exposed to pemetrexed

    PubMed Central

    Weeks, L D; Zentner, G E; Scacheri, P C; Gerson, S L

    2014-01-01

    Misincorporation of genomic uracil and formation of DNA double strand breaks (DSBs) are known consequences of exposure to TS inhibitors such as pemetrexed. Uracil DNA glycosylase (UNG) catalyzes the excision of uracil from DNA and initiates DNA base excision repair (BER). To better define the relationship between UNG activity and pemetrexed anticancer activity, we have investigated DNA damage, DSB formation, DSB repair capacity, and replication fork stability in UNG+/+ and UNG−/− cells. We report that despite identical growth rates and DSB repair capacities, UNG−/− cells accumulated significantly greater uracil and DSBs compared with UNG+/+ cells when exposed to pemetrexed. ChIP-seq analysis of γ-H2AX enrichment confirmed fewer DSBs in UNG+/+ cells. Furthermore, DSBs in UNG+/+ and UNG−/− cells occur at distinct genomic loci, supporting differential mechanisms of DSB formation in UNG-competent and UNG-deficient cells. UNG−/− cells also showed increased evidence of replication fork instability (PCNA dispersal) when exposed to pemetrexed. Thymidine co-treatment rescues S-phase arrest in both UNG+/+ and UNG−/− cells treated with IC50-level pemetrexed. However, following pemetrexed exposure, UNG−/− but not UNG+/+ cells are refractory to thymidine rescue, suggesting that deficient uracil excision rather than dTTP depletion is the barrier to cell cycle progression in UNG−/− cells. Based on these findings we propose that pemetrexed-induced uracil misincorporation is genotoxic, contributing to replication fork instability, DSB formation and ultimately cell death. PMID:24503537

  1. Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration

    PubMed Central

    Weil, Amy F.; Ghosh, Devlina; Zhou, Yan; Seiple, Lauren; McMahon, Moira A.; Spivak, Adam M.; Siliciano, Robert F.; Stivers, James T.

    2013-01-01

    HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature. PMID:23341616

  2. Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation.

    PubMed

    Ma, Changbei; Wu, Kefeng; Liu, Haisheng; Xia, Kun; Wang, Kemin; Wang, Jun

    2016-11-01

    We have developed a new methodology for fluorescence turn-on detection of uracil DNA glycosylase (UDG) activity based on G-quadruplex formation using a thioflavin T probe. In the presence of UDG, it catalyzed the hydrolysis of the uracil bases in the duplex DNA, resulting in the dissociation of the duplex DNA owing to their low melting temperature. Then, the probe DNA can be recognized quickly by the ThT dye and resulting in an increase in fluorescence. This approach is highly selective and sensitive with a detection limit of 0.01U/mL. It is simple and cost effective without requirement of labeling with a fluorophore-quencher pair. This new method could be used to evaluate the inhibition effect of 5-fluorouracil on UDG activity, and become a useful tool in biomedical research. PMID:27591637

  3. Functional Evaluation of Nine Missense-Type Variants of the Human DNA Glycosylase Enzyme MUTYH in the Japanese Population.

    PubMed

    Shinmura, Kazuya; Kato, Hisami; Goto, Masanori; Yamada, Hidetaka; Tao, Hong; Nakamura, Satoki; Sugimura, Haruhiko

    2016-04-01

    Biallelic germline mutations of MUTYH, the gene encoding DNA glycosylase, cause MUTYH-associated polyposis (MAP), characterized by multiple colorectal adenomas and carcinoma(s). However, a considerable number of MUTYH variants are still functionally uncharacterized. Herein, we report the results of functional evaluation of nine missense-type MUTYH variant proteins in the Japanese population. The DNA glycosylase activity and ability to suppress mutations caused by 8-hydroxyguanine, an oxidized form of guanine, were examined for the nine variants of type 2 MUTYH, a nuclear form of the enzyme, by DNA cleavage activity assay and supF forward mutation assay, respectively. Both activities were severely defective in the p.N210S MUTYH type 2 variant corresponding to p.N238S in the reference MUTYH form and partially defective in p.R219G variant corresponding to p.R247G, but nearly fully retained in seven other variants examined. Our results suggest that p.N238S and p.R247G are likely to be pathogenic alleles for MAP. PMID:26694661

  4. N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts

    PubMed Central

    Rinne, M. L.; He, Y.; Pachkowski, B. F.; Nakamura, J.; Kelley, M. R.

    2005-01-01

    Previous studies indicate that overexpression of N-methylpurine DNA glycosylase (MPG) dramatically sensitizes cells to alkylating agent-induced cytotoxicity. We recently demonstrated that this sensitivity is preceded by an increased production of AP sites and strand breaks, confirming that overexpression of MPG disrupts normal base excision repair and causes cell death through overproduction of toxic repair intermediates. Here we establish through site-directed mutagenesis that MPG-induced sensitivity to alkylation is dependent on enzyme glycosylase activity. However, in contrast to the sensitivity seen to heterogeneous alkylating agents, MPG overexpression generates no cellular sensitivity to MeOSO2(CH2)2-lexitropsin, an alkylator which exclusively induces 3-meA lesions. Indeed, MPG overexpression has been shown to increase the toxicity of alkylating agents that produce 7-meG adducts, and here we demonstrate that MPG-overexpressing cells have dramatically increased removal of 7-meG from their DNA. These data suggest that the mechanism of MPG-induced cytotoxicity involves the conversion of non-toxic 7-meG lesions into highly toxic repair intermediates. This study establishes a mechanism by which a benign DNA modification can be made toxic through the overexpression of an otherwise well-tolerated gene product, and the application of this principle could lead to improved chemotherapeutic strategies that reduce the peripheral toxicity of alkylating agents. PMID:15905475

  5. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity.

    PubMed

    Wang, Li-Juan; Ma, Fei; Tang, Bo; Zhang, Chun-Yang

    2016-08-01

    DNA glycosylase is an initiating enzyme of cellular base excision repair pathway which is responsible for the repair of various DNA lesions and the maintenance of genomic stability, and the dysregulation of DNA glycosylase activity is associated with a variety of human pathology. Accurate detection of DNA glycosylase activity is critical to both clinical diagnosis and therapeutics, but conventional methods for the DNA glycosylase assay are usually time-consuming with poor sensitivity. Here, we demonstrate the base-excision-repair-induced construction of a single quantum dot (QD)-based sensor for highly sensitive measurement of DNA glycosylase activity. We use human 8-oxoguanine-DNA glycosylase 1 (hOGG1), which is responsible for specifically repairing the damaged 8-hydroxyguanine (8-oxoG, one of the most abundant and widely studied DNA damage products), as a model DNA glycosylase. In the presence of biotin-labeled DNA substrate, the hOGG1 may catalyze the removal of 8-oxo G from 8-oxoG·C base pairs to generate an apurinic/apyrimidinic (AP) site. With the assistance of apurinic/apyrimidinic endonuclease (APE1), the cleavage of the AP site results in the generation of a single-nucleotide gap. Subsequently, DNA polymerase β incorporates a Cy5-labeled dGTP into the DNA substrate to fill the gap. With the addition of streptavidin-coated QDs, a QD-DNA-Cy5 nanostructure is formed via specific biotin-streptavidin binding, inducing the occurrence of fluorescence resonance energy transfer (FRET) from the QD to Cy5. The resulting Cy5 signal can be simply monitored by total internal reflection fluorescence (TIRF) imaging. The proposed method enables highly sensitive measurement of hOGG1 activity with a detection limit of 1.8 × 10(-6) U/μL. Moreover, it can be used to measure the enzyme kinetic parameters and detect the hOGG1 activity in crude cell extracts, offering a powerful tool for biomedical research and clinical diagnosis. PMID:27401302

  6. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    SciTech Connect

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  7. Characterization of a novel DNA glycosylase from S. sahachiroi involved in the reduction and repair of azinomycin B induced DNA damage

    PubMed Central

    Wang, Shan; Liu, Kai; Xiao, Le; Yang, LiYuan; Li, Hong; Zhang, FeiXue; Lei, Lei; Li, ShengQing; Feng, Xu; Li, AiYing; He, Jing

    2016-01-01

    Azinomycin B is a hybrid polyketide/nonribosomal peptide natural product and possesses antitumor activity by interacting covalently with duplex DNA and inducing interstrand crosslinks. In the biosynthetic study of azinomycin B, a gene (orf1) adjacent to the azinomycin B gene cluster was found to be essential for the survival of the producer, Streptomyces sahachiroi ATCC33158. Sequence analyses revealed that Orf1 belongs to the HTH_42 superfamily of conserved bacterial proteins which are widely distributed in pathogenic and antibiotic-producing bacteria with unknown functions. The protein exhibits a protective effect against azinomycin B when heterologously expressed in azinomycin-sensitive strains. EMSA assays showed its sequence nonspecific binding to DNA and structure-specific binding to azinomycin B-adducted sites, and ChIP assays revealed extensive association of Orf1 with chromatin in vivo. Interestingly, Orf1 not only protects target sites by protein–DNA interaction but is also capable of repairing azinomycin B-mediated DNA cross-linking. It possesses the DNA glycosylase-like activity and specifically repairs DNA damage induced by azinomycin B through removal of both adducted nitrogenous bases in the cross-link. This bifunctional protein massively binds to genomic DNA to reduce drug attack risk as a novel DNA binding protein and triggers the base excision repair system as a novel DNA glycosylase. PMID:26400161

  8. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA.

    PubMed

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-19

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples. PMID:25487342

  9. Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase

    PubMed Central

    Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie

    2016-01-01

    The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells. Mass spectrometry (MS) analysis revealed phosphorylation at three serine residues: S207, S306, and a third novel site, S61. We expressed, purified, and characterized phosphomimetic (glutamate) and phosphoablating (alanine) mutants of the three phosphorylation sites in NEIL1 revealed by the MS analysis. All mutant enzymes were active and bound tightly to DNA, indicating that phosphorylation does not affect DNA binding and enzyme activity at these three serine sites. We also characterized phosphomimetic mutants of two other sites of phosphorylation, Y263 and S269, reported previously, and observed that mutation of Y263 to E yielded a completely inactive enzyme. Furthermore, based on sequence motifs and kinase prediction algorithms, we identified the c-Jun N-terminal kinase 1 (JNK1) as the kinase involved in the phosphorylation of NEIL1. JNK1, a member of the mitogen activated protein kinase (MAPK) family, was detected in NEIL1 immunoprecipitates, interacted with NEIL1 in vitro, and was able to phosphorylate the enzyme at residues S207, S306, and S61. PMID:27518429

  10. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

    PubMed

    Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Szczesny, Bartosz; Radak, Zsolt; Hazra, Tapas K; Sur, Sanjiv; Ba, Xueqing; Boldogh, Istvan

    2013-01-01

    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits. PMID:23127499

  11. Synthetic Routes to N-9 Alkylated 8-Oxoguanines; Weak Inhibitors of the Human DNA Glycosylase OGG1.

    PubMed

    Mahajan, Tushar R; Ytre-Arne, Mari Eknes; Strøm-Andersen, Pernille; Dalhus, Bjørn; Gundersen, Lise-Lotte

    2015-01-01

    The human 8-oxoguanine DNA glycosylase OGG1 is involved in base excision repair (BER), one of several DNA repair mechanisms that may counteract the effects of chemo- and radiation therapy for the treatment of cancer. We envisage that potent inhibitors of OGG1 may be found among the 9-alkyl-8-oxoguanines. Thus we explored synthetic routes to 8-oxoguanines and examined these as OGG1 inhibitors. The best reaction sequence started from 6-chloroguanine and involved N-9 alkylation, C-8 bromination, and finally simultaneous hydrolysis of both halides. Bromination before N-alkylation should only be considered when the N-substituent is not compatible with bromination conditions. The 8-oxoguanines were found to be weak inhibitors of OGG1. 6-Chloro-8-oxopurines, byproducts in the hydrolysis of 2,6-halopurines, turned out to be slightly better inhibitors than the corresponding 8-oxoguanines. PMID:26364627

  12. Solution-state NMR Investigation of DNA Binding Interactions in Escherichia coli Formamidopyrimidine-DNA Glycosylase (Fpg): A Dynamic Description of the DNA/Protein Interface

    SciTech Connect

    Buchko, Garry W.; McAteer, Kathleen; Wallace, Susan S.; Kennedy, Michael A.

    2005-03-02

    Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free and bound to a double-stranded DNA oligomer (13-PD) containing propanediol, a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 252 (83%) free-precession HSQC cross peaks were observed and 180 of these were assignable, indicating that ~30% of the residues undergo intermediate timescale motion that makes them intractable in backbone assignment experiments. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate time-scale motion observed for free Fpg. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that was quenched upon binding 13-PD. Collectively, these observations reveal that, in solution, Fpg contains highly flexible regions. The dynamic nature of Fpg, especially at the DNA binding surface, may be key to its processive search mechanism.

  13. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase.

    PubMed

    Lavrukhin, O V; Lloyd, R S

    2000-12-12

    Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates. PMID:11106507

  14. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.

    PubMed

    Maher, Robyn L; Vallur, Aarthy C; Feller, Joyce A; Bloom, Linda B

    2007-01-01

    The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1. PMID:17018265

  15. Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase

    PubMed Central

    Wang, Hao-Ching; Ho, Chun-Han; Chou, Chia-Cheng; Ko, Tzu-Ping; Huang, Ming-Fen; Hsu, Kai-Cheng; Wang, Andrew H.-J.

    2016-01-01

    Uracil-DNA glycosylases (UDGs) are highly conserved proteins that can be found in a wide range of organisms, and are involved in the DNA repair and host defense systems. UDG activity is controlled by various cellular factors, including the uracil-DNA glycosylase inhibitors, which are DNA mimic proteins that prevent the DNA binding sites of UDGs from interacting with their DNA substrate. To date, only three uracil-DNA glycosylase inhibitors, phage UGI, p56, and Staphylococcus aureus SAUGI, have been determined. We show here that SAUGI has differential inhibitory effects on UDGs from human, bacteria, Herpes simplex virus (HSV; human herpesvirus 1) and Epstein-Barr virus (EBV; human herpesvirus 4). Newly determined crystal structures of SAUGI/human UDG and a SAUGI/HSVUDG complex were used to explain the differential binding activities of SAUGI on these two UDGs. Structural-based protein engineering was further used to modulate the inhibitory ability of SAUGI on human UDG and HSVUDG. The results of this work extend our understanding of DNA mimics as well as potentially opening the way for novel therapeutic applications for this kind of protein. PMID:26980279

  16. Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Chou, Chia-Cheng; Ko, Tzu-Ping; Huang, Ming-Fen; Hsu, Kai-Cheng; Wang, Andrew H-J

    2016-05-19

    Uracil-DNA glycosylases (UDGs) are highly conserved proteins that can be found in a wide range of organisms, and are involved in the DNA repair and host defense systems. UDG activity is controlled by various cellular factors, including the uracil-DNA glycosylase inhibitors, which are DNA mimic proteins that prevent the DNA binding sites of UDGs from interacting with their DNA substrate. To date, only three uracil-DNA glycosylase inhibitors, phage UGI, p56, and Staphylococcus aureus SAUGI, have been determined. We show here that SAUGI has differential inhibitory effects on UDGs from human, bacteria, Herpes simplex virus (HSV; human herpesvirus 1) and Epstein-Barr virus (EBV; human herpesvirus 4). Newly determined crystal structures of SAUGI/human UDG and a SAUGI/HSVUDG complex were used to explain the differential binding activities of SAUGI on these two UDGs. Structural-based protein engineering was further used to modulate the inhibitory ability of SAUGI on human UDG and HSVUDG. The results of this work extend our understanding of DNA mimics as well as potentially opening the way for novel therapeutic applications for this kind of protein. PMID:26980279

  17. An unprecedented nucleic acid capture mechanism for excision of DNA damage

    SciTech Connect

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.; Gold, Barry; Eichmanbrand, Brandt F.

    2010-11-18

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.

  18. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination

    PubMed Central

    Yousif, Ashraf S.; Stanlie, Andre; Begum, Nasim A.

    2014-01-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR. PMID:24994819

  19. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Begum, Nasim A; Honjo, Tasuku

    2014-10-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR. PMID:24994819

  20. Excision of 5-halogenated Uracils by Human Thymine DNA Glycosylase: Robust Activity for DNA Contexts other than CpG*

    PubMed Central

    Morgan, Michael T.; Bennett, Matthew T.; Drohat, Alexander C.

    2010-01-01

    Thymine DNA glycosylase (TDG) excises thymine from G·T mispairs, and removes a variety of damaged bases (X), with a preference for lesions in a CpG·X context. We recently reported that human TDG rapidly excises 5-halogenated uracils, exhibiting much greater activity for CpG·FU, CpG·ClU, and CpG·BrU than for CpG·T. Here, we examine the effects of altering the CpG context on the excision activity for U, T, FU, ClU, and BrU. We show that the maximal activity (kmax) for G·X substrates depends significantly on the 5′ base pair. For example, kmax decreases by 6-, 11-, and 82-fold for TpG·ClU, GpG·ClU, and ApG·ClU, respectively, as compared to CpG·ClU. For the other G·X substrates, the 5′-neighbor effects have a similar trend but vary in magnitude. The activity for G·FU, G·ClU, and G·BrU, with any 5′-flanking pair, meets and in most cases significantly exceeds the CpG·T activity. Strikingly, hTDG activity is reduced 102.3- to 104.3-fold for A·X relative to G·X pairs, and reduced further for A·X pairs with a 5′ pair other than C·G. The effect of altering the 5′ pair and/or the opposing base (G·X versus A·X) is greater for substrates that are larger (BrdU, dT) or have a more stable N-glycosidic bond (such as dT). The largest CpG context effects are observed for the excision of thymine. The potential role played by hTDG in the cytotoxic effects of ClU and BrU incorporation into DNA, which can occur under inflammatory conditions, and in the cytotoxicity of FU, a widely used anticancer agent, are discussed. PMID:17602166

  1. Deficiency of the oxidative damage-specific DNA glycosylase NEIL1 leads to reduced germinal center B cell expansion

    PubMed Central

    Mori, Hiromi; Ouchida, Rika; Hijikata, Atsushi; Kitamura, Hiroshi; Ohara, Osamu; Li, Yingqian; Gao, Xiang; Yasui, Akira; Lloyd, R. Stephen; Wang, Ji-Yang

    2016-01-01

    Mammalian cells possess multiple DNA glycosylases, including OGG1, NTH1, NEIL1, NEIL2 and NEIL3, for the repair of oxidative DNA damage. Among these, NEIL1 and NEIL2 are able to excise oxidized bases on single stranded or bubble-structured DNA and has been implicated in repair of oxidative damage associated with DNA replication or transcription. We found that Neil1 was highly constitutively expressed in the germinal center (GC) B cells, a rapidly dividing cell population that is undergoing immunoglobulin (Ig) gene hypermutation and isotype switching. While Neil1−/− mice exhibited normal B and T cell development and maturation, these mice contained a significantly lower frequency of GC B cells than did WT mice after immunization with a T-dependent antigen. Consistent with the reduced expansion of GC B cells, Neil1−/− mice had a decreased frequency of Ig gene hypermutation and produced less antibody against a T-dependent antigen during both primary and secondary immune responses. These results suggest that repair of endogenous oxidative DNA damage by NEIL1 is important for the rapid expansion of GC B cells and efficient induction of humoral immune responses. PMID:19782007

  2. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  3. Differential regulation of S-region hypermutation and class-switch recombination by noncanonical functions of uracil DNA glycosylase

    PubMed Central

    Yousif, Ashraf S.; Stanlie, Andre; Mondal, Samiran; Honjo, Tasuku; Begum, Nasim A.

    2014-01-01

    Activation-induced cytidine deaminase (AID) is essential to class-switch recombination (CSR) and somatic hypermutation (SHM) in both V region SHM and S region SHM (s-SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair (BER) complex, is required for CSR. Strikingly, however, UNG deficiency causes augmentation of SHM, suggesting involvement of distinct functions of UNG in SHM and CSR. Here, we show that noncanonical scaffold functions of UNG regulate s-SHM negatively and CSR positively. The s-SHM suppressive function of UNG is attributed to the recruitment of faithful BER components at the cleaved DNA locus, with competition against error-prone polymerases. By contrast, the CSR-promoting function of UNG enhances AID-dependent S-S synapse formation by recruiting p53-binding protein 1 and DNA-dependent protein kinase, catalytic subunit. Several loss-of-catalysis mutants of UNG discriminated CSR-promoting activity from s-SHM suppressive activity. Taken together, the noncanonical function of UNG regulates the steps after AID-induced DNA cleavage: error-prone repair suppression in s-SHM and end-joining promotion in CSR. PMID:24591630

  4. Differential regulation of S-region hypermutation and class-switch recombination by noncanonical functions of uracil DNA glycosylase.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Mondal, Samiran; Honjo, Tasuku; Begum, Nasim A

    2014-03-18

    Activation-induced cytidine deaminase (AID) is essential to class-switch recombination (CSR) and somatic hypermutation (SHM) in both V region SHM and S region SHM (s-SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair (BER) complex, is required for CSR. Strikingly, however, UNG deficiency causes augmentation of SHM, suggesting involvement of distinct functions of UNG in SHM and CSR. Here, we show that noncanonical scaffold functions of UNG regulate s-SHM negatively and CSR positively. The s-SHM suppressive function of UNG is attributed to the recruitment of faithful BER components at the cleaved DNA locus, with competition against error-prone polymerases. By contrast, the CSR-promoting function of UNG enhances AID-dependent S-S synapse formation by recruiting p53-binding protein 1 and DNA-dependent protein kinase, catalytic subunit. Several loss-of-catalysis mutants of UNG discriminated CSR-promoting activity from s-SHM suppressive activity. Taken together, the noncanonical function of UNG regulates the steps after AID-induced DNA cleavage: error-prone repair suppression in s-SHM and end-joining promotion in CSR. PMID:24591630

  5. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links.

    PubMed

    Admiraal, Suzanne J; O'Brien, Patrick J

    2015-03-10

    Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions. PMID:25679877

  6. Potential role of 8-oxoguanine DNA glycosylase 1 as a STAT1 coactivator in endotoxin-induced inflammatory response.

    PubMed

    Kim, Hong Sook; Kim, Byung-Hak; Jung, Joo Eun; Lee, Chang Seok; Lee, Hyun Gyu; Lee, Jung Weon; Lee, Kun Ho; You, Ho Jin; Chung, Myung-Hee; Ye, Sang-Kyu

    2016-04-01

    Human 8-oxoguanine DNA glycosylase 1 (OGG1) is the major DNA repair enzyme that plays a key role in excision of oxidative damaged DNA bases such as 8-oxoguainine (8-oxoG). Recent studies suggest another function of OGG1, namely that it may be involved in the endotoxin- or oxidative stress-induced inflammatory response. In this study, we investigated the role of OGG1 in the inflammatory response. OGG1 expression is increased in the organs of endotoxin-induced or myelin oligodendrocyte glycoprotein (MOG)-immunized mice and immune cells, resulting in induction of the expression of pro-inflammatory mediators at the transcriptional levels. Biochemical studies showed that signal transducer and activator of transcription 1 (STAT1) plays a key role in endotoxin-induced OGG1 expression and inflammatory response. STAT1 regulates the transcriptional activity of OGG1 through recruiting and binding to the gamma-interferon activation site (GAS) motif of the OGG1 promoter region, and chromatin remodeling by acetylation and dimethylation of lysine-14 and -4 residues of histone H3. In addition, OGG1 acts as a STAT1 coactivator and has transcriptional activity in the presence of endotoxin. The data presented here identifies a novel mechanism, and may provide new therapeutic strategies for the treatment of endotoxin-mediated inflammatory diseases. PMID:26496208

  7. Structure/Function Analysis of DNA-glycosylases That Repair Oxidized Purines and Pyrimidines and the Influence of Surrounding DNA Sequence on Their Interactions

    SciTech Connect

    Wallace, Susan S.

    2005-08-22

    The overall goal of this project was to elucidate the structure/function relationships between oxidized DNA bases and the DNA repair enzymes that recognize and remove them. The NMR solution structure of formamidopyrimidine DNA glycosylase (Fpg) that recognizes oxidized DNA purines was to be determined. Furthermore, the solution structures of DNA molecules containing specific lesions recognized by Fpg was to be determined in sequence contexts that either facilitate or hinder this recognition. These objectives were in keeping with the long-term goals of the Principal Investigator's laboratory, that is, to understand the basic mechanisms that underpin base excision repair processing of oxidative DNA lesions and to elucidate the interactions of unrepaired lesions with DNA polymerases. The results of these two DNA transactions can ultimately determine the fate of the cell. These objectives were also in keeping with the goals of our collaborator, Dr. Michael Kennedy, who is studying the repair and recognition of damaged DNA. Overall the goals of this project were congruent with those of the Department of Energy's Health Effects and Life Sciences Research Program, especially to the Structural Biology, the Human Genome and the Health Effects Programs. The mission of the latter Program includes understanding the biological effects and consequences of DNA damages produced by toxic agents in the many DOE waste sites so that cleanup can be accomplished in a safe, effective and timely manner.

  8. Absence of the Uracil DNA Glycosylase of Murine Gammaherpesvirus 68 Impairs Replication and Delays the Establishment of Latency In Vivo

    PubMed Central

    Minkah, Nana; Macaluso, Marc; Oldenburg, Darby G.; Paden, Clinton R.; White, Douglas W.; McBride, Kevin M.

    2015-01-01

    ABSTRACT Uracil DNA glycosylases (UNG) are highly conserved proteins that preserve DNA fidelity by catalyzing the removal of mutagenic uracils. All herpesviruses encode a viral UNG (vUNG), and yet the role of the vUNG in a pathogenic course of gammaherpesvirus infection is not known. First, we demonstrated that the vUNG of murine gammaherpesvirus 68 (MHV68) retains the enzymatic function of host UNG in an in vitro class switch recombination assay. Next, we generated a recombinant MHV68 with a stop codon in ORF46/UNG (ΔUNG) that led to loss of UNG activity in infected cells and a replication defect in primary fibroblasts. Acute replication of MHV68ΔUNG in the lungs of infected mice was reduced 100-fold and was accompanied by a substantial delay in the establishment of splenic latency. Latency was largely, yet not fully, restored by an increase in virus inoculum or by altering the route of infection. MHV68 reactivation from latent splenocytes was not altered in the absence of the vUNG. A survey of host UNG activity in cells and tissues targeted by MHV68 indicated that the lung tissue has a lower level of enzymatic UNG activity than the spleen. Taken together, these results indicate that the vUNG plays a critical role in the replication of MHV68 in tissues with limited host UNG activity and this vUNG-dependent expansion, in turn, influences the kinetics of latency establishment in distal reservoirs. IMPORTANCE Herpesviruses establish chronic lifelong infections using a strategy of replicative expansion, dissemination to latent reservoirs, and subsequent reactivation for transmission and spread. We examined the role of the viral uracil DNA glycosylase, a protein conserved among all herpesviruses, in replication and latency of murine gammaherpesvirus 68. We report that the viral UNG of this murine pathogen retains catalytic activity and influences replication in culture. The viral UNG was impaired for productive replication in the lung. This defect in expansion at the

  9. Triphlorethol-A from Ecklonia cava up-regulates the oxidant sensitive 8-oxoguanine DNA glycosylase 1.

    PubMed

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Piao, Mei Jing; Ryu, Min Ju; Kim, Jeong Mi; Lee, Nam Ho; Hyun, Jin Won

    2014-11-01

    This study investigated the protective mechanisms of triphlorethol-A, isolated from Ecklonia cava, against oxidative stress-induced DNA base damage, especially 8-oxoguanine (8-oxoG), in Chinese hamster lung fibroblast V79-4 cells. 8-Oxoguanine DNA glycosylase-1 (OGG1) plays an important role in the removal of 8-oxoG during the cellular response to DNA base damage. Triphlorethol-A significantly decreased the levels of 8-oxoG induced by H2O2, and this correlated with increases in OGG1 mRNA and OGG1 protein levels. Furthermore, siOGG1-transfected cell attenuated the protective effect of triphlorethol-A against H2O2 treatment. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor for OGG1, and Nrf2 combines with small Maf proteins in the nucleus to bind to antioxidant response elements (ARE) in the upstream promoter region of the OGG1 gene. Triphlorethol-A restored the expression of nuclear Nrf2, small Maf protein, and the Nrf2-Maf complex, all of which were reduced by oxidative stress. Furthermore, triphlorethol-A increased Nrf2 binding to ARE sequences and the resulting OGG1 promoter activity, both of which were also reduced by oxidative stress. The levels of the phosphorylated forms of Akt kinase, downstream of phosphatidylinositol 3-kinase (PI3K), and Erk, which are regulators of OGG1, were sharply decreased by oxidative stress, but these decreases were prevented by triphlorethol-A. Specific PI3K, Akt, and Erk inhibitors abolished the cytoprotective effects of triphlorethol-A, suggesting that OGG1 induction by triphlorethol-A involves the PI3K/Akt and Erk pathways. Taken together, these data indicate that by activating the DNA repair system, triphlorethol-A exerts protective effects against DNA base damage induced by oxidative stress. PMID:25353254

  10. Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA☆

    PubMed Central

    Chan, Michael K.; Ocampo-Hafalla, Maria T.; Vartanian, Vladimir; Jaruga, Pawel; Kirkali, Güldal; Koenig, Karen L.; Brown, Stuart; Lloyd, R. Stephen; Dizdaroglu, Miral; Teebor, George W.

    2016-01-01

    We have generated a strain of mice lacking two DNA N-glycosylases of base excision repair (BER), NTH1 and NEIL1, homologs of bacterial Nth (endonuclease three) and Nei (endonuclease eight). Although these enzymes remove several oxidized bases from DNA, they do not remove the well-known carcinogenic oxidation product of guanine: 7,8-dihydro-8-oxoguanine (8-OH-Gua), which is removed by another DNA N-glycosylase, OGG1. The Nth1−/−Neil1−/− mice developed pulmonary and hepatocellular tumors in much higher incidence than either of the single knockouts, Nth1−/− and Neil1−/−. The pulmonary tumors contained, exclusively, activating GGT→GAT transitions in codon 12 of K-ras of their DNA. Such transitions contrast sharply with the activating GGT→GTT transversions in codon 12 of K-ras of the pathologically similar pulmonary tumors, which arose in mice lacking OGG1 and a second DNA N-glycosylase, MUTY. To characterize the biochemical phenotype of the knockout mice, the content of oxidative DNA base damage was analyzed from three tissues isolated from control, single and double knockout mice. The content of 8-OH-Gua was indistinguishable among all genotypes. In contrast, the content of 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) derived from adenine and guanine, respectively, were increased in some but not all tissues of Neil1−/− and Neil1−/−Nth1−/− mice. The high incidence of tumors in our Nth1−/−Neil1−/− mice together with the nature of the activating mutation in the K-ras gene of their pulmonary tumors, reveal for the first time, the existence of mutagenic and carcinogenic oxidative damage to DNA which is not 8-OH-Gua. PMID:19346169

  11. Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence—stopped-flow pre-steady-state kinetics

    PubMed Central

    Kuznetsov, Nikita A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.

    2012-01-01

    Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10–30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van’t Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process. PMID:22584623

  12. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA

    PubMed Central

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-01

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples. PMID:25487342

  13. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  14. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  15. 3-methyladenine, an autophagic inhibitor, attenuates therapeutic effects of sirolimus on scopolamine-induced cognitive dysfunction in a rat model

    PubMed Central

    Zhu, Bin; Yang, Chun; Ding, Liang-Cai; Liu, Ning

    2014-01-01

    Previous studies have demonstrated that sirolimus has therapeutic effects for Alzheimer’s disease which characterized by cognitive dysfunction. However, its underlying mechanisms have not been fully elucidated. In the present study, we aimed to investigate the mechanisms of therapeutic effects of sirolimus for cognitive dysfunction rat model which induced by chronic administration of scopolamine. Forty Wistar rats were randomly divided into 4 groups (n=10 each): saline group and scopolamine group, sirolimus plus scopolamine group and 3-methyladenine pretreatment group. Morris water maze test was applied to measure the cognitive function of rat. After behavioral test, rats were sacrificed and prefrontal cortex and hippocampus were harvested for measuring amyloid-β (Aβ), Beclin-1 and mammalian target of rapamycin (mTOR). Compared with saline group, scopolamine administered significantly decreased the cognitive performance of rats during the Morris water maze test and changed Aβ, Beclin-1 and mTOR levels in rat prefrontal cortex and hippocampus (P<0.05); In addition, rats in sirolimus plus scopolamine group significantly reversed scopolamine-induced effects (P<0.05). Most importantly, 3-methyladenine abrogated the effects of sirolimus on scopolamine-induced cognitive dysfunction (P<0.05). In conclusion, the mechanism of sirolimus exerting therapeutic effects for scopolamine-induced cognitive dysfunction is likely related to the activation of autophagy. PMID:25419365

  16. Evaluation of the Role of the Vaccinia Virus Uracil DNA Glycosylase and A20 Proteins as Intrinsic Components of the DNA Polymerase Holoenzyme*

    PubMed Central

    Boyle, Kathleen A.; Stanitsa, Eleni S.; Greseth, Matthew D.; Lindgren, Jill K.; Traktman, Paula

    2011-01-01

    The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N′ terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site. PMID:21572084

  17. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.

    PubMed

    Kellie, Jennifer L; Wilson, Katie A; Wetmore, Stacey D

    2013-12-01

    8-Oxoguanine (OG) is one of the most frequently occurring forms of DNA damage and is particularly deleterious since it forms a stable Hoogsteen base pair with adenine (A). The repair of an OG:A mispair is initiated by adenine-DNA glycosylase (MutY), which hydrolyzes the sugar-nucleobase bond of the adenine residue before the lesion is processed by other proteins. MutY has been proposed to use a two-part chemical step involving protonation of the adenine nucleobase, followed by SN1 hydrolysis of the glycosidic bond. However, differences between a recent (fluorine recognition complex, denoted as the FLRC) crystal structure and the structure on which most mechanistic conclusions have been based to date (namely, the lesion recognition complex or LRC) raise questions regarding the mechanism used by MutY and the discrete role of various active-site residues. The present work uses both molecular dynamics (MD) and quantum mechanical (ONIOM) models to compare the active-site conformational dynamics in the two crystal structures, which suggests that only the understudied FLRC leads to a catalytically competent reactant. Indeed, all previous computational studies on MutY have been initiated from the LRC structure. Subsequently, for the first time, various mechanisms are examined with detailed ONIOM(M06-2X:PM6) reaction potential energy surfaces (PES) based on the FLRC structure, which significantly extends the mechanistic picture. Specifically, our work reveals that the reaction proceeds through a different route than the commonly accepted mechanism and the catalytic function of various active-site residues (Geobacillus stearothermophilus numbering). Specifically, contrary to proposals based on the LRC, E43 is determined to solely be involved in the initial adenine protonation step and not the deglycosylation reaction as the general base. Additionally, a novel catalytic role is proposed for Y126, whereby this residue plays a significant role in stabilizing the highly charged

  18. Naturally occurring polyphenol, morin hydrate, inhibits enzymatic activity of N-methylpurine DNA glycosylase, a DNA repair enzyme with various roles in human disease

    PubMed Central

    Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M.; Roy, Rabindra

    2015-01-01

    Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50 = 2.6 µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavanoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease. PMID:25650313

  19. "Light-up" Sensing of human 8-oxoguanine DNA glycosylase activity by target-induced autocatalytic DNAzyme-generated rolling circle amplification.

    PubMed

    Kong, Xiang-Juan; Wu, Shuang; Cen, Yao; Yu, Ru-Qin; Chu, Xia

    2016-05-15

    Human 8-oxoguanine DNA glycosylase (hOGG1) plays a crucial role in maintaining the genomic integrity of living organisms for its capability of repairing DNA oxidative damage. The expression level of hOGG1 is closely associated with many diseases including various kinds of cancers. In this study, a novel "light-up" sensor based on target-induced formation of 5' phosphorylated probe and autocatalytic DNAzyme-generated rolling circle amplification has been developed for highly sensitive human 8-oxoguanine DNA glycosylase (hOGG1) activity assay. The approach reaches detection limit as low as 0.001U/mL for hOGG1 via scarcely increased background signal and dual signal amplification strategy. To the best of our knowledge, it is one of the most sensitive methods for the detection of base excision repair enzyme. Moreover, the approach shows excellent specificity over other nonspecific enzymes would interfere with the assay and holds great promise for application in real sample analysis. Hence, the proposed method provides a highly sensitive, selective, and desirable hOGG1 sensing platform. PMID:26765532

  20. Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice

    PubMed Central

    Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M.; Gorodnya, Olena M.; Ruchko, Mykhaylo V.; Potter, Barry J.; Wilson, Glenn L.; Gillespie, Mark N.

    2013-01-01

    This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH2O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH2O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH2O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury. PMID:23241530

  1. Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia

    PubMed Central

    JIN, LINLIN; YANG, HAIPING; FU, JIANHUA; XUE, XINDONG; YAO, LI; QIAO, LIN

    2015-01-01

    Previous studies have demonstrated that oxidative stress-induced lung injury is involved in the occurrence and developmental process of bronchopulmonary dysplasia (BPD). The present study assessed whether oxidative DNA damage occurs in the early stages of hyperoxia-induced BPD in neonatal rats and evaluated the expression and localization of the DNA repair gene, 8-oxoguanine DNA glycosylase 1 (OGG1), upon exposure to hyperoxia. Neonatal rats and primary cultured neonatal rat alveolar epithelial type II (AECII) cells were exposed to hyperoxia (90% O2) or normoxia (21% O2) and the expression levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the lung tissues and AECII cells were determined using a competitive enzyme-linked immunosorbent assay. DNA strand breaks in the AECII cells were detected using a comet assay. The expression and localization of the OGG1 protein in the lung tissues and AECII cells were determined by immunofluorescence confocal microscopy and western blotting. The mRNA expression levels of OGG1 in the lung tissues and AECII cells were determined by reverse transcription polymerase chain reaction. The expression of 8-OHdG was elevated in the hyperoxia-exposed neonatal rat lung tissue and the AECII cells compared with the normoxic controls. The occurrence of DNA strand breaks in the AECII cells increased with increasing duration of hyperoxia exposure. The protein expression of OGG1 was significantly increased in the hyperoxia-exposed lung tissues and AECII cells, with OGG1 preferentially localized to the cytoplasm. No concomitant increase in the mRNA expression of OGG1 was detected. These results revealed that oxidative DNA damage occurred in lung epithelial cells during early-stage BPD, as confirmed by in vitro and in vivo hyperoxia exposure experiments, and the increased expression of OGG1 was associated with this process. PMID:25672835

  2. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications

    PubMed Central

    Burroughs, A Maxwell; Aravind, L

    2014-01-01

    A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein–protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins. PMID:24646681

  3. Influence of local duplex stability and N6-methyladenine on uracil recognition by mismatch-specific uracil-DNA glycosylase (Mug).

    PubMed

    Valinluck, Victoria; Liu, Pingfang; Burdzy, Artur; Ryu, Junichi; Sowers, Lawrence C

    2002-12-01

    To maintain genomic integrity, DNA repair enzymes continually remove damaged bases and lesions resulting from endogenous and exogenous processes. These repair enzymes must distinguish damaged bases from normal bases to prevent the inadvertent removal of normal bases, which would promote genomic instability. The mechanisms by which this high level of specificity is accomplished are as yet unresolved. One member of the uracil-DNA glycosylase family of repair enzymes, Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug), is reported to distinguish U:G mispairs from U:A base pairs based upon specific contacts with the mispaired guanine after flipping the target uracil out of the duplex. However, recent studies suggest other mechanisms for base selection, including local duplex stability. In this study, we used the modified base N6-methyladenine to probe the effect of local helix perturbation on Mug recognition of uracil. N6-Methyladenine is found in E. coli as part of both the mismatch repair and restriction-modification systems. In its cis isomer, N6-methyladenine destabilizes hydrogen bonding by interfering with pseudo-Watson-Crick base pairing. It is observed that the selection of uracil by Mug is sequence dependent and that uracil residues in sequences of reduced thermostability are preferentially removed. The replacement of adenine by N6-methyladenine increases the frequency of removal of the uracil residue paired opposite the modified adenine. These results are in accord with suggestions that local helix stability is an important determinant of base recognition by some DNA repair enzymes and provide a potential strategy for identifying the sequence location of modified bases in DNA. PMID:12482242

  4. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    SciTech Connect

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-06-16

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, (/sup 3/H)thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m/sup 2/, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.

  5. The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer's disease.

    PubMed

    Sliwinska, Agnieszka; Kwiatkowski, Dominik; Czarny, Piotr; Toma, Monika; Wigner, Paulina; Drzewoski, Jozef; Fabianowska-Majewska, Krystyna; Szemraj, Janusz; Maes, Michael; Galecki, Piotr; Sliwinski, Tomasz

    2016-09-15

    Evidence indicates that oxidative stress contributes to neuronal cell death in Alzheimer's disease (AD). Increased oxidative DNA damage l, as measured with 8-oxoguanine (8-oxoG), and reduced capacity of proteins responsible for removing of DNA damage, including 8-oxoguanine DNA glycosylase 1 (OGG1), were detected in brains of AD patients. In the present study we assessed peripheral blood biomarkers of oxidative DNA damage, i.e. 8- oxoG and OGG1, in AD diagnosis, by comparing their levels between the patients and the controls. Our study was performed on DNA and serum isolated from peripheral blood taken from 100 AD patients and 110 controls. For 8-oxoG ELISA was employed. The OGG1 level was determined using ELISA and Western blot technique. Levels of 8-oxoG were significantly higher in DNA of AD patients. Both ELISA and Western blot showed decreased levels of OGG1 in serum of AD patients. Our results show that oxidative DNA damage biomarkers detected in peripheral tissue could reflect the changes occurring in the brain of patients with AD. These results also suggest that peripheral blood samples may be useful to measure oxidative stress biomarkers in AD. PMID:27538622

  6. Label-free and selective photoelectrochemical detection of chemical DNA methylation damage using DNA repair enzymes.

    PubMed

    Wu, Yiping; Zhang, Bintian; Guo, Liang-Hong

    2013-07-16

    Exogenous chemicals may produce DNA methylation that is potentially toxic to living systems. Methylated DNA bases are difficult to detect with biosensors because the methyl group is small and chemically inert. In this report, a label-free photoelectrochemical sensor was developed for the selective detection of chemically methylated bases in DNA films. The sensor employed two DNA repair enzymes, human alkyladenine DNA glycosylase and human apurinic/apyrimidinic endonuclease, to convert DNA methylation sites in DNA films on indium tin oxide electrodes into strand breaks. A DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was then used as the photoelectrochemical signal indicator to detect the DNA strand breaks. Its photocurrent signal was found to correlate inversely with the amount of 3-methyladenines (metAde) produced with a methylating agent, methylmethane sulfonate (MMS). The sensor detected the methylated bases produced with as low as 1 mM MMS, at which concentration the amount of metAde on the sensor surface was estimated to be 0.5 pg, or 1 metAde in 1.6 × 10(5) normal bases. Other DNA base modification products, such as 5-methylcytosine and DNA adducts with ethyl and styrene groups did not attenuate the photocurrent, demonstrating good selectivity of the sensor. This strategy can be utilized to develop sensors for the detection of other modified DNA bases with specific DNA repair enzymes. PMID:23777269

  7. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands

    PubMed Central

    Talhaoui, Ibtissam; Couve, Sophie; Gros, Laurent; Ishchenko, Alexander A.; Matkarimov, Bakhyt; Saparbaev, Murat K.

    2014-01-01

    The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N6-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes. PMID:24692658

  8. Structural and biophysical analysis of interactions between cod and human uracil-DNA N-glycosylase (UNG) and UNG inhibitor (Ugi)

    SciTech Connect

    Assefa, Netsanet Gizaw; Niiranen, Laila; Johnson, Kenneth A.; Leiros, Hanna-Kirsti Schrøder; Smalås, Arne Oskar; Willassen, Nils Peder; Moe, Elin

    2014-08-01

    A structural and biophysical study of the interactions between cod and human uracil-DNA N-glycosylase (UNG) and their inhibitor Ugi is presented. The stronger interaction between cod UNG and Ugi can be explained by a greater positive electrostatic surface potential. Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme–substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG–Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG–Ugi complex with previously determined structures of UNG–Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (K{sub b}) which is one order of magnitude larger than that for hUNG–Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein–Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG.

  9. Entrapment and Structure of an Extrahelical Guanine Attempting to Enter the Active Site of a Bacterial DNA Glycosylase, MutM

    SciTech Connect

    Qi, Yan; Spong, Marie C.; Nam, Kwangho; Karplus, Martin; Verdine, Gregory L.

    2010-09-21

    MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.

  10. Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase

    PubMed Central

    Kang, Weimin; Jiang, Ning; Wang, Xun; Zhang, Yong; Ji, Li Li

    2014-01-01

    Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ) load and to modify the progression of Alzheimer's disease (AD). However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1) level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg) mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration. PMID:25538817

  11. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.

    PubMed

    McLaughlin, Dylan; Coey, Christopher T; Yang, Wei-Chih; Drohat, Alexander C; Matunis, Michael J

    2016-04-22

    Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo. PMID:26917720

  12. Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase.

    PubMed

    Bo, Hai; Kang, Weimin; Jiang, Ning; Wang, Xun; Zhang, Yong; Ji, Li Li

    2014-01-01

    Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ) load and to modify the progression of Alzheimer's disease (AD). However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1) level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg) mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration. PMID:25538817

  13. Age-dependent changes in 8-oxoguanine-DNA-glycosylase activity is modulated by adaptive responses to physical exercise in human skeletal muscle

    PubMed Central

    Radak, Zsolt; Bori, Zoltan; Koltai, Erika; Fatouros, Ioannis G.; Jamurtas, Athanasios Z.; Douroudos, Ioannis I.; Terzis, Gerasimos; Nikolaidis, Michalis G.; Chatzinikolaou, Athanasios; Sovatzidis, Apostolos; Kumagai, Shuzo; Naito, Hisahi; Boldogh, Istvan

    2012-01-01

    8-Oxo-7,8 dihydroguanine (8-oxoG) accumulates in the genome over time and is believed to contribute to the development of aging characteristics of skeletal muscle and various aging-related diseases. Here, we show a significantly increased level of intrahelical 8-oxoG and 8-oxoguanine DNA glycosylase (OGG1) expression in aged human skeletal muscle compared to that of young individuals. In response to exercise, the 8-oxoG level was found to be lastingly elevated in sedentary young and old subjects, but returned rapidly to pre-exercise levels in the DNA of physically active individuals independent of age. 8-OxoG levels in DNA were inversely correlated with the abundance of acetylated OGG1 (Ac-OGG1), but not with total OGG1, apurinic/apyrimidinic endonuclease (AP)-1 or Ac-APE1. The actual Ac-OGG1 level was linked to exercise-induced oxidative stress, as shown by changes in lipid peroxide levels and expression of Cu,Zn-SOD, Mn-SOD and SIRT3, as well as the balance between acetyl transferase p300/CBP and the deacetylase SIRT1, but not SIRT6 expression. Together these data suggest that that acetylated form of OGG1, and not OGGl itself, correlates inversely with the 8-oxoG level in the DNA of human skeletal muscle, and the Ac-OGG1 level is dependent on adaptive cellular responses to physical activity, but is age independent. PMID:21569841

  14. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity

    PubMed Central

    Wibowo, Anjar; Becker, Claude; Marconi, Gianpiero; Durr, Julius; Price, Jonathan; Hagmann, Jorg; Papareddy, Ranjith; Putra, Hadi; Kageyama, Jorge; Becker, Jorg; Weigel, Detlef; Gutierrez-Marcos, Jose

    2016-01-01

    Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal ‘short-term stress memory’ with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring. DOI: http://dx.doi.org/10.7554/eLife.13546.001 PMID:27242129

  15. Uracil DNA Glycosylase Is Dispensable for Human Immunodeficiency Virus Type 1 Replication and Does Not Contribute to the Antiviral Effects of the Cytidine Deaminase Apobec3G

    PubMed Central

    Kaiser, Shari M.; Emerman, Michael

    2006-01-01

    It is well established that many host factors are involved in the replication of human immunodeficiency virus (HIV) type 1. One host protein, uracil DNA glycosylase 2 (UNG2), binds to multiple viral proteins and is packaged into HIV type 1 virions. UNG initiates the removal of uracils from DNA, and this has been proposed to be important both for reverse transcription and as a mediator to the antiviral effect of virion-incorporated Apobec3G, a cytidine deaminase that generates numerous uracils in the viral DNA during virus replication. We used a natural human UNG−/− cell line as well as cells that express a potent catalytic active-site inhibitor of UNG to assess the effects of removing UNG activity on HIV infectivity. In both cases, we find UNG2 activity and protein to be completely dispensable for virus replication. Moreover, we find that virion-associated UNG2 does not affect the loss of infectivity caused by Apobec3G. PMID:16378989

  16. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity.

    PubMed

    Wibowo, Anjar; Becker, Claude; Marconi, Gianpiero; Durr, Julius; Price, Jonathan; Hagmann, Jorg; Papareddy, Ranjith; Putra, Hadi; Kageyama, Jorge; Becker, Jorg; Weigel, Detlef; Gutierrez-Marcos, Jose

    2016-01-01

    Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring. PMID:27242129

  17. The simian varicella virus uracil DNA glycosylase and dUTPase genes are expressed in vivo, but are non-essential for replication in cell culture

    PubMed Central

    Ward, Toby M.; Williams, Marshall V.; Traina-Dorge, Vicki; Gray, Wayne L.

    2012-01-01

    Neurotropic herpesviruses express viral deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and uracil DNA glycosylase (UDG) enzymes which may reduce uracil misincorporation into viral DNA, particularly in neurons of infected ganglia. The simian varicella virus (SVV) dUTPase (ORF 8) and UDG (ORF 59) share 37.7% and 53.9% amino acid identity, respectively, with varicella-zoster virus (VZV) homologs. Infectious SVV mutants defective in either dUTPase (SVV-dUTPase−) or UDG (SVV-UDG−) activity or both (SVV-dUTPase−/UDG−) were constructed using recA assisted endonuclease cleavage (RARE) and a cosmid recombination system. Loss of viral dUTPase and UDG enzymatic activity was confirmed in CV-1 cells infected with the SVV mutants. The SVV-dUTPase−, SVV-UDG−, and SVV-dUTPase−/UDG− mutants replicated as efficiently as wild-type SVV in cell culture. SVV dUTPase and UDG expression was detected in tissues derived from acutely infected animals, but not in tissues derived from latently infected animals. Further studies will evaluate the pathogenesis of SVV dUTPase and UDG mutants and their potential as varicella vaccines. PMID:19200445

  18. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer

    PubMed Central

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko

    2016-01-01

    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load. PMID:27042257

  19. X4 and R5 HIV-1 have distinct post-entry requirements for uracil DNA glycosylase during infection of primary cells.

    PubMed

    Jones, Kate L; Roche, Michael; Gantier, Michael P; Begum, Nasim A; Honjo, Tasuku; Caradonna, Salvatore; Williams, Bryan R G; Mak, Johnson

    2010-06-11

    It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is approximately 10-20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations. PMID:20371602

  20. X4 and R5 HIV-1 Have Distinct Post-entry Requirements for Uracil DNA Glycosylase during Infection of Primary Cells

    PubMed Central

    Jones, Kate L.; Roche, Michael; Gantier, Michael P.; Begum, Nasim A.; Honjo, Tasuku; Caradonna, Salvatore; Williams, Bryan R. G.; Mak, Johnson

    2010-01-01

    It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is ∼10–20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations. PMID:20371602

  1. 8-Oxoguanine DNA glycosylase-1 augments pro-inflammatory gene expression by facilitating the recruitment of site-specific transcription factors

    PubMed Central

    Ba, Xueqing; Bacsi, Attila; Luo, Jixian; Aguilera-Aguirre, Leopoldo; Zeng, Xianlu; Radak, Zsolt; Brasier, Allan R; Boldogh, Istvan

    2014-01-01

    Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair (BER) pathway. Here we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we utilized a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, siRNA knockdown, real-time PCR, Comet and reporter transcription assays. Our data show that exposure of cells to tumor necrosis factor alpha (TNF-α) altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences and transiently inhibited BER of 8-oxoG. Promoter-associated OGG1 then enhanced NF-êB/RelA binding to cis-elements and facilitated recruitment of Specificity Protein 1 (SP1), transcription initiation factor II-D (TFIID), and phospho-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. siRNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α-induced inflammatory responses. Together, these results show that non-productive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response. PMID:24489103

  2. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    PubMed Central

    De Silva, Frank S; Moss, Bernard

    2008-01-01

    Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant

  3. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    PubMed

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-01

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses. PMID:26899234

  4. Polymorphisms of human 8-oxoguanine DNA glycosylase 1 and 8-hydroxydeoxyguanosine increase susceptibility to arsenic methylation capacity-related urothelial carcinoma.

    PubMed

    Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Chen, Wei-Jen; Lin, Ying-Chin; Hsueh, Yu-Mei

    2016-08-01

    Arsenic causes oxidative stress in cultured animal and human cells, and it is a well-documented human carcinogen. We conducted a hospital-based case-control study including 167 cases of urothelial carcinoma (UC) and 334 age- and gender-matched healthy controls to evaluate the relationships between urinary arsenic profiles, urinary 8-hydroxydeoxyguanosine (8-OHdG) levels, and human 8-oxoguanine DNA glycosylase (hOGG1) genotypes and UC. The urinary arsenic species were analyzed by high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Genotyping for hOGG1 (Ser326Cys) and hOGG1 (-15C>G) was performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Urinary 8-OHdG was measured with high-sensitivity enzyme-linked immunosorbent assay kits. The results indicated that the hOGG1 326 Cys/Cys genotype and the hOGG1 -15C>G G/G genotype were associated with an increased risk of UC (OR [95 % CI] 1.57 [1.04-2.35] and 1.57 [1.04-2.35], respectively). Participants with high urinary total arsenic, regardless of the haplotype of hOGG1 Ser326Cys and the -15C>G polymorphism, had significantly higher urinary 8-OHdG compared to participants with low urinary total arsenic. This is the first study to investigate the joint effects of high urinary total arsenic or inefficient arsenic methylation capacity indices, and the high-risk G-G haplotype of hOGG1 on the risk of UC. The findings are especially meaningful for participants with risk factors such as high urinary total arsenic, inefficient arsenic methylation indices, high urinary 8-OHdG, and the high-risk G-G haplotype of hOGG1 which are all associated with an increased UC risk. PMID:26359225

  5. Structural and biophysical analysis of interactions between cod and human uracil-DNA N-glycosylase (UNG) and UNG inhibitor (Ugi).

    PubMed

    Assefa, Netsanet Gizaw; Niiranen, Laila; Johnson, Kenneth A; Leiros, Hanna-Kirsti Schrøder; Smalås, Arne Oskar; Willassen, Nils Peder; Moe, Elin

    2014-08-01

    Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme-substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG-Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG-Ugi complex with previously determined structures of UNG-Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (Kb) which is one order of magnitude larger than that for hUNG-Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein-Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG. PMID:25084329

  6. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    SciTech Connect

    Yan, Lifeng; Zhou, Yong; Yu, Shanhe; Ji, Guixiang; Liu, Wei; Gu, Aihua

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  7. Intrathecal Injection of 3-Methyladenine Reduces Neuronal Damage and Promotes Functional Recovery via Autophagy Attenuation after Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Wei, Xing; Zhou, Zhentao; Li, Lingyun; Gu, Jun; Wang, Chen; Xu, Fuqi; Dong, Qirong; Zhou, Xiaozhong

    2016-01-01

    The present study aimed to determine the occurrence of autophagy following ischemia/reperfusion (I/R) injury in the rat spinal cord and whether autophagy inhibition contributes to neural tissue damage and locomotor impairment. A spinal cord I/R model was induced via descending thoracic aorta occlusion for 10 min using systemic hypotension (40 mmHg) in adult male Sprague-Dawley rats. Then, 600 nmol 3-methyladenine (3-MA) or vehicle was intrathecally administered. Ultrastructural spinal cord changes were observed via transmission electron microscopy (TEM) and immunofluorescent double-labeling. Western blots were used to determine the protein expression of microtubule-associated protein light chain 3 (LC3) and Beclin 1. Autophagy was activated after spinal cord I/R injury as demonstrated by significantly increased LC3 and Beclin 1 expression at 3-48 h after injury. Furthermore, TEM images indicated the presence of autophagosomes and autolysosomes in the injured spinal cord. 3-MA significantly decreased LC3 and Beclin 1 expression and the number of LC3-positive cells in spinal cord of I/R versus vehicle groups. Moreover, the 3-MA-treated rats exhibited better neurobehavioral scores compared with control rats. These findings suggest activation of autophagy leading to neuronal cell death in the I/R injured spinal cord. These effects were significantly inhibited by intrathecal 3-MA administration. Thus intrathecal 3-MA administration may represent a novel treatment target following spinal cord I/R injury. PMID:27150140

  8. Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance.

    PubMed Central

    Kaasen, I; Evensen, G; Seeberg, E

    1986-01-01

    We have constructed plasmids which overproduce the tag and alkA gene products of Escherichia coli, i.e., 3-methyladenine DNA glycosylases I and II. The tag and alkA gene products were identified radiochemically in maxi- or minicells as polypeptides of 21 and 30 kilodaltons, respectively, which are consistent with the gel filtration molecular weights of the enzyme activities, thus confirming the identity of the cloned genes. High expression of the tag+-coded glycosylase almost completely suppressed the alkylation sensitivity of alkA mutants, indicating that high levels of 3-methyladenine DNA glycosylase I will eliminate the need for 3-methyladenine DNA glycosylase II in repair of alkylated DNA. Furthermore, overproduction of the alkA+-coded glycosylase greatly sensitizes wild-type cells to alkylation, suggesting that only a limited expression of this enzyme will allow efficient DNA repair. Images PMID:3536857

  9. Hyperglycemia-induced inflammation caused down-regulation of 8-oxoG-DNA glycosylase levels in murine macrophages is mediated by oxidative-nitrosative stress-dependent pathways.

    PubMed

    Kumar, Premranjan; Swain, Mitali Madhusmita; Pal, Arttatrana

    2016-04-01

    High glucose-induced increase in production of reactive oxygen/nitrogen species (ROS/RNS) is recognized as a major cause of the clinical complications associated with diabetes. ROS/RNS apart from being redox agents, cause an unwanted severe physiological load to cells, also act as cellular messengers, and play a key role in activation of circulating macrophages. However, the molecular mechanisms of activation of macrophages by hyperglycemic conditions are currently unclear. In the present study, we report that high glucose (HG) causes a dramatic increase in the production of inflammatory cytokines and chemokines, at least in part through enhanced mRNA transcription. The increase in levels of inflammatory cytokines/chemokines corresponds to increased levels of ROS/RNS, which is accompanied by increased activities of Akt, ERK1/2, tuberin, down regulation of 8-oxoG-DNA glycosylase (OGG1), and increase in 8-hydroxydeoxyguanosine (8-OHdG) accumulation in DNA. Elevated levels of ROS/RNS are triggering alteration in antioxidants level, biomolecules damage, cell cycle dysregulation, and apoptosis in macrophage cells. Pretreatment of antioxidants caused decrease in the levels of ROS/RNS leads to an increase in the levels of antioxidants, decrease in biomolecules damage, alterations in Akt, ERK1/2, tuberin, upregulation of OGG1, and decrease in 8-OHdG accumulations in DNA. Further, antioxidants treatments inhibit the effects of HG on the transcriptional activity of cytokines and chemokines. Our results demonstrate that intracellular signaling pathways mediated by ROS/RNS are linked to each other by elevated glucose in macrophages activation leading to inflammation. These findings provide a mechanistic explanation of how ROS/RNS cooperate to conduct inflammatory intracellular signals in macrophages related complications in hyperglycemic conditions. PMID:26860957

  10. Enhancement of Borrelia burgdorferi PCR by uracil N-glycosylase.

    PubMed Central

    Loewy, Z G; Mecca, J; Diaco, R

    1994-01-01

    Uracil DNA glycosylases are DNA repair enzymes present in virtually every organism. These enzymes function by excising from DNA uracil residues resulting from either misincorporation of dUMP residues by a DNA polymerase or deamination of cytosine. Recently, the enzyme has been exploited in PCRs as a means for controlling carryover contamination from previously amplified DNA. When the enzyme is used in amplifications of Borrelia burgdorferi target sequences, we have observed an enhancement in signal detected by a microwell plate DNA hybridization assay. This increase in signal is dependent upon the length of the target, is titratable with enzyme concentration, and has been observed with amplifications performed with both symmetric and asymmetric PCR profiles. The enhancement is shown to occur at the level of the target genomic DNA. PMID:8126168

  11. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus.

    PubMed

    Tang, Yi; Chen, Hao; Diao, Youxiang

    2016-01-01

    Tembusu virus (TMUV) is a mosquito-borne flavivirus which threatens both poultry production and public health. In this study we developed a complete open reading frame alignment-based rRT-LAMP method for the universal detection of TUMV. To prevent false-positive results, the reaction was supplemented with uracil DNA glycosylase (UDG) to eliminate carryover contamination. The detection limit of the newly developed UDG-rRT-LAMP for TMUV was as low as 100 copies/reaction of viral RNA and 1 × 10(0.89) - 1 × 10(1.55) tissue culture infectious dose/100 μL of viruses. There were no cross-reactions with other viruses, and the reproducibility of the assay was confirmed by intra- and inter-assay tests with variability ranging from 0.22-3.33%. The new UDG-rRT-LAMP method for TMUV produced the same results as viral isolation combined with RT-PCR as the "gold standard" in 96.88% of cases for 81 clinical samples from subjects with suspected TMUV infection. The addition of UDG can eliminate as much as 1 × 10(-16) g/reaction of contaminants, which can significantly reduce the likelihood of false-positive results during the rRT-LAMP reaction. Our result indicated that our UDG-rRT-LAMP is a rapid, sensitive, specific, and reliable method that can effectively prevent carryover contamination in the detection of TMUV. PMID:27270462

  12. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus

    PubMed Central

    Tang, Yi; Chen, Hao; Diao, Youxiang

    2016-01-01

    Tembusu virus (TMUV) is a mosquito-borne flavivirus which threatens both poultry production and public health. In this study we developed a complete open reading frame alignment-based rRT-LAMP method for the universal detection of TUMV. To prevent false-positive results, the reaction was supplemented with uracil DNA glycosylase (UDG) to eliminate carryover contamination. The detection limit of the newly developed UDG-rRT-LAMP for TMUV was as low as 100 copies/reaction of viral RNA and 1 × 100.89 − 1 × 101.55 tissue culture infectious dose/100 μL of viruses. There were no cross-reactions with other viruses, and the reproducibility of the assay was confirmed by intra- and inter-assay tests with variability ranging from 0.22–3.33%. The new UDG-rRT-LAMP method for TMUV produced the same results as viral isolation combined with RT-PCR as the “gold standard” in 96.88% of cases for 81 clinical samples from subjects with suspected TMUV infection. The addition of UDG can eliminate as much as 1 × 10−16 g/reaction of contaminants, which can significantly reduce the likelihood of false-positive results during the rRT-LAMP reaction. Our result indicated that our UDG-rRT-LAMP is a rapid, sensitive, specific, and reliable method that can effectively prevent carryover contamination in the detection of TMUV. PMID:27270462

  13. Both base excision repair and O6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis

    PubMed Central

    Wirtz, Stefan; Nagel, Georg; Eshkind, Leonid; Neurath, Markus F.; Samson, Leona D.; Kaina, Bernd

    2010-01-01

    Methylating agents are widely distributed environmental carcinogens. Moreover, they are being used in cancer chemotherapy. The primary target of methylating agents is DNA, and therefore, DNA repair is the first-line barrier in defense against their toxic and carcinogenic effects. Methylating agents induce in the DNA O6-methylguanine (O6MeG) and methylations of the ring nitrogens of purines. The lesions are repaired by O6-methylguanine-DNA methyltransferase (Mgmt) and by enzymes of the base excision repair (BER) pathway, respectively. Whereas O6MeG is well established as a pre-carcinogenic lesion, little is known about the carcinogenic potency of base N-alkylation products such as N3-methyladenine and N3-methylguanine. To determine their role in cancer formation and the role of BER in cancer protection, we checked the response of mice with a targeted gene disruption of Mgmt or N-alkylpurine-DNA glycosylase (Aag) or both Mgmt and Aag, to azoxymethane (AOM)-induced colon carcinogenesis, using non-invasive mini-colonoscopy. We demonstrate that both Mgmt- and Aag-null mice show a higher colon cancer frequency than the wild-type. With a single low dose of AOM (3 mg/kg) Aag-null mice showed an even stronger tumor response than Mgmt-null mice. The data provide evidence that both BER initiated by Aag and O6MeG reversal by Mgmt are required for protection against alkylation-induced colon carcinogenesis. Further, the data indicate that non-repaired N-methylpurines are not only pre-toxic but also pre-carcinogenic DNA lesions. PMID:20732909

  14. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    SciTech Connect

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.; Wells, Peter G.

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  15. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase

    PubMed Central

    Hill, Jeff W.; Evans, Michele K.

    2006-01-01

    Human 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme for repairing 8-oxoguanine (8-oxoG), a mutagenic guanine base lesion produced by reactive oxygen species (ROS). A frequently occurring OGG1 polymorphism in human populations results in the substitution of serine 326 for cysteine (S326C). The 326 C/C genotype is linked to numerous cancers, although the mechanism of carcinogenesis associated with the variant is unclear. We performed detailed enzymatic studies of polymorphic OGG1 and found functional defects in the enzyme. S326C OGG1 excised 8-oxoG from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than the wild-type enzyme, depending upon the base opposite the lesion. Binding experiments showed that the polymorphic OGG1 binds DNA damage with significantly less affinity than the wild-type enzyme. Remarkably, gel shift, chemical cross-linking and gel filtration experiments showed that S326C both exists in solution and binds damaged DNA as a dimer. S326C OGG1 enzyme expressed in human cells was also found to have reduced activity and a dimeric conformation. The glycosylase activity of S326C OGG1 was not significantly stimulated by the presence of AP-endonuclease. The altered substrate specificity, lack of stimulation by AP-endonuclease 1 (APE1) and anomalous DNA binding conformation of S326C OGG1 may contribute to its linkage to cancer incidence. PMID:16549874

  16. Overexpression, purification, crystallization and preliminary X-ray analysis of uracil N-glycosylase from Mycobacterium tuberculosis in complex with a proteinaceous inhibitor

    SciTech Connect

    Singh, Prem; Talawar, Ramappa K.; Krishna, P. D. V.; Varshney, Umesh; Vijayan, M.

    2006-12-01

    Uracil N-glycosylase from M. tuberculosis has been crystallized in complex with a proteinaceous inhibitor (Ugi) and X-ray diffraction data have been collected. Uracil N-glycosylase is an enzyme which initiates the pathway of uracil-excision repair of DNA. The enzyme from Mycobacterium tuberculosis was co-expressed with a proteinaceous inhibitor from Bacillus subtilis phage and was crystallized in monoclinic space group C2, with unit-cell parameters a = 201.14, b = 64.27, c = 203.68 Å, β = 109.7°. X-ray data from the crystal have been collected for structure analysis.

  17. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY.

    PubMed

    Trasviña-Arenas, Carlos H; Lopez-Castillo, Laura M; Sanchez-Sandoval, Eugenia; Brieba, Luis G

    2016-02-01

    7,8-Dihydro-8-deoxyguanine (8oG) is one of the most common oxidative lesions in DNA. DNA polymerases misincorporate an adenine across from this lesion. Thus, 8oG is a highly mutagenic lesion responsible for G:C→T:A transversions. MutY is an adenine glycosylase, part of the base excision repair pathway that removes adenines, when mispaired with 8oG or guanine. Its catalytic domain includes a [4Fe-4S] cluster motif coordinated by cysteinyl ligands. When this cluster is absent, MutY activity is depleted and several studies concluded that the [4Fe-4S] cluster motif is an indispensable component for DNA binding, substrate recognition and enzymatic activity. In the present study, we identified 46 MutY homologues that lack the canonical cysteinyl ligands, suggesting an absence of the [4Fe-4S] cluster. A phylogenetic analysis groups these novel MutYs into two different clades. One clade is exclusive of the order Lactobacillales and another clade has a mixed composition of anaerobic and microaerophilic bacteria and species from the protozoan genus Entamoeba. Structural modeling and sequence analysis suggests that the loss of the [4Fe-4S] cluster is compensated by a convergent solution in which bulky amino acids substitute the [4Fe-4S] cluster. We functionally characterized MutYs from Lactobacillus brevis and Entamoeba histolytica as representative members from each clade and found that both enzymes are active adenine glycosylases. Furthermore, chimeric glycosylases, in which the [4Fe-4S] cluster of Escherichia coli MutY is replaced by the corresponding amino acids of LbY and EhY, are also active. Our data indicates that the [4Fe-4S] cluster plays a structural role in MutYs and evidences the existence of alternative functional solutions in nature. PMID:26613369

  18. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases.

    PubMed

    Woods, Ryan D; O'Shea, Valerie L; Chu, Aurea; Cao, Sheng; Richards, Jody L; Horvath, Martin P; David, Sheila S

    2016-01-29

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  19. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases

    PubMed Central

    Woods, Ryan D.; O'Shea, Valerie L.; Chu, Aurea; Cao, Sheng; Richards, Jody L.; Horvath, Martin P.; David, Sheila S.

    2016-01-01

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for ‘retaining’ O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  20. Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, hOGG1*

    PubMed Central

    Crenshaw, Charisse M.; Nam, Kwangho; Oo, Kimberly; Kutchukian, Peter S.; Bowman, Brian R.; Karplus, Martin; Verdine, Gregory L.

    2012-01-01

    A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility. PMID:22511791

  1. Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, hOGG1

    SciTech Connect

    Crenshaw, Charisse M.; Nam, Kwangho; Oo, Kimberly; Kutchukian, Peter S.; Bowman, Brian R.; Karplus, Martin; Verdine, Gregory L.

    2012-09-05

    A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.

  2. Effect of 8-oxoguanine glycosylase deficiency on aflatoxin B1 tumourigenicity in mice

    PubMed Central

    Mulder, Jeanne E.; Turner, Patricia V.; Massey, Thomas E.

    2015-01-01

    The mycotoxin aflatoxin B1 (AFB1) may initiate cancer by causing oxidatively damaged DNA, specifically by causing 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) lesions. Base excision repair removes these lesions, with 8-oxoguanine glycosylase (OGG1) being the rate-limiting enzyme. The aim of this study was to determine the effect of ogg1 deficiency on AFB1-induced oxidatively damaged DNA and tumourigenesis. Female wild-type, heterozygous and homozygous ogg1 null mice were given a single dose of 50mg/kg AFB1 or 40 µl dimethyl sulfoxide (DMSO) ip. Neither ogg1 genotype nor AFB1 treatment affected levels of oxidised guanine in lung or liver 2h post-treatment. AFB1-treated ogg1 null mice showed exacerbated weight loss and mortality relative to DMSO-treated ogg1 null mice, but AFB1 treatment did not significantly increase lung or liver tumour incidence compared with controls, regardless of ogg1 genotype. Suspect lung masses from three of the AFB1-treated mice were adenomas, and masses from two of the mice were osteosarcomas. No osteosarcomas were observed in DMSO-treated mice. All liver masses from AFB1-treated mice were adenomas, and one also contained a hepatocellular carcinoma. In DNA from the lung tumours, the K-ras mutation pattern was inconsistent with initiation by AFB1. In conclusion, ogg1 status did not have a significant effect on AFB1-induced oxidatively damaged DNA or tumourigenesis, but deletion of one or both alleles of ogg1 did increase susceptibility to other aspects of AFB1 toxicity. PMID:25583175

  3. Autophagy promotes DNA-protein crosslink clearance.

    PubMed

    Mu, Haibo; Liu, Qianjin; Niu, Hong; Wang, Dongdong; Tang, Jiangjiang; Duan, Jinyou

    2016-02-01

    Toxic DNA-protein crosslinks (DPCs) can result from exposure to radiation or chemotherapeutic agents. DPCs can also accumulate during aging or stress. However, the cellular mechanisms underlying clearance of DPCs remain largely unknown. Here, we have identified an important role of autophagy in the processing of DPCs induced by three representative agents: formaldehyde, a chemical used widely in industry; UV light; and camptothecin, a cytotoxic anticancer drug. Autophagy inhibitors, 3-methyladenine (3-MA) or chloroquine (CQ), promoted the accumulation of DPCs in damaged cells and injured organs. siRNA-mediated silencing of Atg5 or Atg7, two essential components for the formation of the autophagosome, gave similar results. In contrast, the autophagy inducer rapamycin (RAP) attenuated DPCs in vitro and in vivo. Our findings reveal the importance of autophagy in controlling the level of DPCs, and may open up a new avenue for understanding the formation and clearance of this detrimental DNA adduct. PMID:26921017

  4. Radiolysis of DNA-protein complexes

    NASA Astrophysics Data System (ADS)

    Běgusová, Marie; Gillard, Nathalie; Sy, Denise; Castaing, Bertrand; Charlier, Michel; Spotheim-Maurizot, Melanie

    2005-02-01

    We discuss here modifications of DNA and protein radiolysis due to the interaction of these two partners in specific complexes. Experimental patterns of frank strand breaks (FSB) and alkali revealed breaks (ARB) obtained for DNA lac operator bound to the lac repressor and for a DNA containing an abasic site analog bound to the formamidopyrimidine-DNA glycosylase are reported. Experimental data are compared to predicted damage distribution obtained using the theoretical model RADACK.

  5. Nonspecific DNA Binding and Coordination of the First Two Steps of Base Excision Repair

    PubMed Central

    Baldwin, Michael R.; O'Brien, Patrick J.

    2010-01-01

    The base excision repair (BER) pathway repairs a wide variety of damaged nucleobases in DNA. This pathway is initiated by a DNA repair glycosylase, which locates the site of damage and catalyzes the excision of the damaged nucleobase. The resulting abasic site is further processed by apurinic/apyrimidinic site endonuclease 1 (APE1) to create a single strand nick with the 3'-hydroxyl that serves as a primer for DNA repair synthesis. Since an abasic site is highly mutagenic it is critical that the steps of the BER pathway be coordinated. Most human glycosylases bind tightly to their abasic product. APE1 displaces the bound glycosylase, thereby stimulating multiple turnover base excision. It has been proposed that direct protein-protein interactions are involved in the stimulation by APE1, but no common interaction motifs have been identified among the glycosylases that are stimulated by APE1. We characterized the APE1 stimulation of alkyladenine DNA glycosylase (AAG) using a variety of symmetric and asymmetric lesion-containing oligonucleotides. Efficient stimulation on a wide variety of substrates favors a model whereby both AAG and APE1 can simultaneously bind to DNA, but may not interact directly. Rather, nonspecific DNA binding by both AAG and APE1 enables APE1 to replace AAG at the abasic site. AAG is not displaced into solution, but remains bound to an adjacent undamaged site. We propose that nonspecific DNA binding interactions allow transient exposure of the abasic site so that it can be captured by APE1. PMID:20701268

  6. Differential modulation of base excision repair activities during brain ontogeny: implications for repair of transcribed DNA.

    PubMed

    Englander, Ella W; Ma, Huaxian

    2006-01-01

    DNA repair sustains fidelity of genomic replication in proliferating cells and integrity of transcribed sequences in postmitotic tissues. The repair process is critical in the brain, because high oxygen consumption exacerbates the risk for accumulation of oxidative DNA lesions in postmitotic neurons. Most oxidative DNA damage is repaired by the base excision repair (BER) pathway, which is initiated by specialized DNA glycosylases. Because the newly discovered Nei-like mammalian DNA glycosylases (NEIL1/2) proficiently excise oxidized bases from bubble structured DNA, it was suggested that NEILs favor repair of transcribed or replicated DNA. In addition, since NEILs generate 3'-phosphate termini, which are poor targets for AP endonuclease (APE1), it was proposed that APE1-dependent and independent BER sub-pathways exist in mammalian cells. We measured expression and activities of BER enzymes during brain ontogeny, i.e., during a physiologic transition from proliferative to postmitotic differentiated state. While a subset of BER enzymes, exhibited declining expression and excision activities, expression of NEIL1 and NEIL2 glycosylases increased during brain development. Furthermore, the capacity for excision of 5-hydroxyuracil from bubble structured DNA was retained in the mature rat brain suggesting a role for NEIL glycosylases in maintaining the integrity of transcribed DNA in postmitotic brain. PMID:16257035

  7. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    PubMed

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  8. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  9. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability. PMID:27158700

  10. 3CAPS – a structural AP–site analogue as a tool to investigate DNA base excision repair

    PubMed Central

    Schuermann, David; Scheidegger, Simon P.; Weber, Alain R.; Bjørås, Magnar; Leumann, Christian J.; Schär, Primo

    2016-01-01

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases. PMID:26733580

  11. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  12. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  13. Listeria monocytogenes DNA glycosylase AdiP affects flagellar motility, biofilm formation, virulence, and stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...

  14. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation

    PubMed Central

    Müller, Udo; Bauer, Christina; Siegl, Michael; Rottach, Andrea; Leonhardt, Heinrich

    2014-01-01

    The discovery of hydroxymethyl-, formyl- and carboxylcytosine, generated through oxidation of methylcytosine by TET dioxygenases, raised the question how these modifications contribute to epigenetic regulation. As they are subjected to complex regulation in vivo, we dissected links to gene expression with in vitro modified reporter constructs. We used an Oct4 promoter-driven reporter gene and demonstrated that in vitro methylation causes gene silencing while subsequent oxidation with purified catalytic domain of TET1 leads to gene reactivation. To identify proteins involved in this pathway we screened for TET interacting factors and identified TDG, PARP1, XRCC1 and LIG3 that are involved in base-excision repair. Knockout and rescue experiments demonstrated that gene reactivation depended on the glycosylase TDG, but not MBD4, while NEIL1, 2 and 3 could partially rescue the loss of TDG. These results clearly show that oxidation of methylcytosine by TET dioxygenases and subsequent removal by TDG or NEIL glycosylases and the BER pathway results in reactivation of epigenetically silenced genes. PMID:24948610

  15. Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells.

    PubMed

    Regnell, Christine Elisabeth; Hildrestrand, Gunn Annette; Sejersted, Yngve; Medin, Tirill; Moldestad, Olve; Rolseth, Veslemøy; Krokeide, Silje Zandstra; Suganthan, Rajikala; Luna, Luisa; Bjørås, Magnar; Bergersen, Linda H

    2012-09-27

    Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis. Adult neurogenesis is crucial for maintenance of hippocampus-dependent functions involved in behavior. Herein, behavioral studies reveal learning and memory deficits and reduced anxiety-like behavior in Neil3(-/-) mice. Neural stem/progenitor cells from aged Neil3(-/-) mice show impaired proliferative capacity and reduced DNA repair activity. Furthermore, hippocampal neurons in Neil3(-/-) mice display synaptic irregularities. It appears that Neil3-dependent repair of oxidative DNA damage in neural stem/progenitor cells is required for maintenance of adult neurogenesis to counteract the age-associated deterioration of cognitive performance. PMID:22959434

  16. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected].

    PubMed

    Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2015-01-01

    Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774

  17. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  18. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging

    PubMed Central

    Noren Hooten, Nicole; Fitzpatrick, Megan; Kompaniez, Kari; Jacob, Kimberly D.; Moore, Brittany R.; Nagle, Julia; Barnes, Janice; Lohani, Althaf; Evans, Michele K.

    2012-01-01

    Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog of Escherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity. Recently, we reported that OGG1 binds to the Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein that poly(ADP-ribosyl)ates nuclear proteins in response to DNA damage and other cellular signals. Here, we show that NEIL1 and PARP-1 bind both in vitro and in vivo. PARP-1 binds to the C-terminal-100 amino acids of NEIL1 and NEIL1 binds to the BRCT domain of PARP-1. NEIL1 stimulates the poly(ADP-ribosyl)ation activity of PARP-1. Furthermore, NEIL-deficient fibroblasts have impaired poly(ADP-ribosyl)ation of cellular proteins after DNA damage, which can be rescued by NEIL1 expression. Additionally, PARP-1 inhibits NEIL1 incision activity in a concentration-dependent manner. Consistent with the idea of impaired DNA repair during aging, we observed differential binding of PARP-1 to recombinant NEIL1 in older mice compared to younger mice. These data further support the idea that dynamic interplay between different base excision repair proteins is important for efficient BER. PMID:23104860

  19. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Marciano, R. S.; Guimarães, O. R.; Polignano, G. A. C.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-06-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase.

  20. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review.

    PubMed

    Ku, Seockmo

    2016-01-01

    Various microorganisms have been widely applied in nutraceutical industries for the processing of phytochemical conversion. Specifically, in the Asian food industry and academia, notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted experiments in order to determine the best conditions to produce more active and stable enzymes, which can be applicable to produce diverse types of ginsenosides for commercial applications. In this sense, there are various reviews that cover the biofunctional effects of multiple types of ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been published on the production methods of probiotic enzymes, which is a critical component of ginsenoside processing. This review aims to investigate current preparation methods, results on the discovery of new glycosylases, the application potential of probiotic enzymes and their use for biocatalysis of ginsenosides in the nutraceutical industry. PMID:27196878

  1. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.

    PubMed

    Zhu, Chenxu; Lu, Lining; Zhang, Jun; Yue, Zongwei; Song, Jinghui; Zong, Shuai; Liu, Menghao; Stovicek, Olivia; Gao, Yi Qin; Yi, Chengqi

    2016-07-12

    NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction. PMID:27354518

  2. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    SciTech Connect

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter; Wells, Peter G.

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity in the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic

  3. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. PMID:26105778

  4. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Nataliya; Chouljenko, Vladimir N.; Kousoulas, Konstantin G.; Alexeyev, Mikhail F.

    2016-01-01

    Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells. PMID:27136098

  5. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration

    PubMed Central

    Blasiak, Janusz; Synowiec, Ewelina; Salminen, Antero; Kaarniranta, Kai

    2012-01-01

    The pathogenesis of age-related macular degeneration (AMD) is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133) in the hOGG1 gene and the c.972G>C polymorphism (rs3219489) in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395) and c.–32A>G (rs3087404) polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2), XRCC1 and ERCC6 (CSB) have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis. PMID:23202958

  6. Complexities of the DNA Base Excision Repair Pathway for Repair of Oxidative DNA Damage

    PubMed Central

    Mitra, Sankar; Boldogh, Istvan; Izumi, Tadahide; Hazra, Tapas K.

    2016-01-01

    Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase β or replicative polymerases δ and ε. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation. PMID:11746753

  7. Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite.

    PubMed

    Bau, Da-Tian; Wang, Tsu-Shing; Chung, Chiao-Hui; Wang, Alexander S S; Wang, Alexander S S; Jan, Kun-Yan

    2002-10-01

    Arsenic is recognized to be a nonmutagenic carcinogen because it induces DNA damage only at very high concentrations. However, many more DNA strand breaks could be detected by digesting the DNA of arsenite-treated cells with endonuclease III, formamidopyrimidine-DNA glycosylase, and proteinase K. By doing so, arsenite could be shown to induce DNA damage in human cells within a pathologically meaningful concentration range. Oxidized guanine products were detected in all arsenite-treated human cells examined. DNA-protein cross-links were also detected in arsenite-treated NB4 and HL60 cells. In human umbilical vein endothelial cells, the induction of oxidized guanine products by arsenite was sensitive to inhibitors of nitric oxide (NO) synthase but not to oxidant modulators, whereas the opposite result was obtained in vascular smooth muscle cells. On the other hand, the arsenite-induced oxidized guanine products and DNA-protein cross-links in NB4 and HL60 cells were sensitive to modulators of calcium, NO synthase, oxidant, and myeloperoxidase. Therefore, although oxidized guanine products were detected in all the human cells treated with arsenite, the pathways could be different in different cell types. Because the sensitivity and the mechanism of arsenic intoxication are cell specific, it is important that target tissues and target cells are used for investigations. It is also important that pathologically or pharmacologically meaningful concentrations of arsenic are used. This is because in most cases we are dealing with the chronic effect rather than acute toxicity. PMID:12426126

  8. Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2014-12-01

    Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.

  9. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair

    PubMed Central

    Crespan, Emmanuele; Furrer, Antonia; Rösinger, Marcel; Bertoletti, Federica; Mentegari, Elisa; Chiapparini, Giulia; Imhof, Ralph; Ziegler, Nathalie; Sturla, Shana J.; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. PMID:26917111

  10. Seasonal variations of DNA damage in human lymphocytes: correlation with different environmental variables.

    PubMed

    Giovannelli, Lisa; Pitozzi, Vanessa; Moretti, Silvia; Boddi, Vieri; Dolara, Piero

    2006-01-29

    Several types of DNA damage, including DNA breaks and DNA base oxidation, display a seasonal trend. In the present work, a sample of 79 healthy subjects living in the city of Florence, Italy, was used to analyse this effect. Three possible causative agents were taken into consideration: solar radiation, air temperature and air ozone level. DNA damage was measured in isolated human lymphocytes at different times during the year and the observed damage was correlated with the levels of these three agents in the days preceding blood sampling. Three time windows were chosen: 3, 7 and 30 days before blood sampling. DNA strand breaks and the oxidized purinic bases cleaved by the formamidopyrimidine glycosylase (FPG sites) were measured by means of the comet assay. The results of multivariate regression analysis showed a positive correlation between lymphocyte DNA damage and air temperature, and a less strong correlation with global solar radiation and air ozone levels. PMID:16095632

  11. Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM.

    PubMed

    Finney-Manchester, Shawn P; Maheshri, Narendra

    2013-05-01

    A major hurdle to evolutionary engineering approaches for multigenic phenotypes is the ability to simultaneously modify multiple genes rapidly and selectively. Here, we describe a method for in vivo-targeted mutagenesis in yeast, targeting glycosylases to embedded arrays for mutagenesis (TaGTEAM). By fusing the yeast 3-methyladenine DNA glycosylase MAG1 to a tetR DNA-binding domain, we are able to elevate mutation rates >800 fold in a specific ∼20-kb region of the genome or on a plasmid that contains an array of tetO sites. A wide spectrum of transitions, transversions and single base deletions are observed. We provide evidence that TaGTEAM generated point mutations occur through error-prone homologous recombination (HR) and depend on resectioning and the error-prone polymerase Pol ζ. We show that HR is error-prone in this context because of DNA damage checkpoint activation and base pair lesions and use this knowledge to shift the primary mutagenic outcome of targeted endonuclease breaks from HR-independent rearrangements to HR-dependent point mutations. The ability to switch repair in this way opens up the possibility of using targeted endonucleases in diverse organisms for in vivo-targeted mutagenesis. PMID:23470991

  12. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  13. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    SciTech Connect

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B.; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  14. NEIL1 Binding to DNA containing 2′-Fluorothymidine Glycol Stereoisomers and the Effect of Editing

    PubMed Central

    Onizuka, Kazumitsu; Yeo, Jongchan

    2012-01-01

    Thymine glycol (Tg), one of the oxidized bases formed in DNA by reactive oxygen species, is repaired by the DNA glycosylases such as NEIL1, NTH1 and Endo III. In our recent studies, we showed that NEIL1’s catalytic efficiency and lesion specificity are regulated by an RNA editing adenosine deamination reaction. In this study, we synthesized oligodeoxynucleotides containing 2′-fluorothymidine glycol with either ribo or arabino configuration and investigated the binding of these modified DNAs with the unedited and edited forms of human NEIL1 along with E. coli Endo III. For the two forms of hNEIL1, binding affinities to FTg-containing DNA were similar indicating the editing effect is more subtle than to simply alter substrate affinity. While the NEIL1 binding to FTg-containing DNAs was largely insensitive to C5 and 2′ stereochemistry, a preference was observed for the FTg-G pair over the FTg-A pair. In addition, we found that optimal binding is observed with Endo III and duplex DNA with riboFTg (5S) paired with dG. The modified DNAs reported here will provide useful tools for further characterizing the interaction between DNA repair glycosylases and thymine glycol containing DNA. PMID:22639086

  15. The function of cux1 in oxidative dna damage repair is needed to prevent premature senescence of mouse embryo fibroblasts

    PubMed Central

    Ramdzan, Zubaidah M.; Pal, Ranjana; Kaur, Simran; Leduy, Lam; Bérubé, Ginette; Davoudi, Sayeh; Vadnais, Charles; Nepveu, Alain

    2015-01-01

    Despite having long telomeres, mouse embryo fibroblasts (MEFs) senesce more rapidly than human diploid fibroblasts because of the accumulation of oxidative DNA damage. The CUX1 homeodomain protein was recently found to prevent senescence in RAS-driven cancer cells that produce elevated levels of reactive-oxygen species. Here we show that Cux1−/− MEFs are unable to proliferate in atmospheric (20%) oxygen although they can proliferate normally in physiological (3%) oxygen levels. CUX1 contains three domains called Cut repeats. Structure/function analysis established that a single Cut repeat domain can stimulate the DNA binding, Schiff-base formation, glycosylase and AP-lyase activities of 8-oxoguanine DNA glycosylase 1, OGG1. Strikingly and in contrast to previous reports, OGG1 exhibits efficient AP-lyase activity in the presence of a Cut repeat. Repair of oxidative DNA damage and proliferation in 20% oxygen were both rescued in Cux1−/− MEFs by ectopic expression of CUX1 or of a recombinant Cut repeat protein that stimulates OGG1 but is devoid of transcription activation potential. These findings reinforce the causal link between oxidative DNA damage and cellular senescence and suggest that the role of CUX1 as an accessory factor in DNA repair will be critical in physiological situations that generate higher levels of reactive oxygen species. PMID:25682875

  16. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions). PMID:25728944

  17. Enzymatic DNA oxidation: mechanisms and biological significance

    PubMed Central

    Xu, Guo-Liang; Walsh, Colum P.

    2014-01-01

    DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development. [BMB Reports 2014; 47(11): 609-618] PMID:25341925

  18. Repair of DNA-containing pyrimidine dimers

    SciTech Connect

    Grossman, L.; Caron, P.R.; Mazur, S.J.; Oh, E.Y.

    1988-08-01

    Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.21 references.

  19. Specificity of damage recognition and catalysis of DNA repair.

    PubMed

    Osman, R; Fuxreiter, M; Luo, N

    2000-05-01

    A common feature of DNA repair enzymes is their ability to recognize the damage independently of sequence in which they are found. The presence of a flipped out base inserted into the protein in several DNA-enzyme complexes suggests a contribution to enzyme specificity. Molecular simulations of damaged DNA indicate that the damage produces changes in DNA structure and changes the dynamics of DNA bending. The reduced bending force constant can be used by the enzyme to induce DNA bending and facilitate base flipping. We show that a thymine dimer (TD) containing DNA requires less energy to bend, lowering the barrier for base flipping. On the other hand, bending in DNA with U-G mismatch is affected only by a small amount and flipping is not enhanced significantly. T4 endonuclease V (endoV), which recognizes TD, utilizes the reduced barrier for flipping as a specific recognition element. In uracil DNA glycosylase (UDG), which recognizes U-G mismatches, base flipping is not enhanced and recognition is encoded in a highly specific binding pocket for the flipped base. Simulations of UDG and endoV in complex with damaged DNA provide insight into the essential elements of the catalytic mechanism. Calculations of pKas of active site residues in endoV and endoV-DNA complex show that the pKa, of the N-terminus is reduced from 8.01 to 6.52 while that of Glu-23 increases from 1.52 to 7.82. Thus, the key catalytic residues are in their neutral form. The simulations also show that Glu-23 is also H-bonded to O4' of the 5'-TD enhancing the nucleophilic attack on Cl and that Arg-26 enhances the hydrolysis by electrostatic stabilization but does not participate in proton transfer. In the enzyme-substrate complex of UDG, the role of electrostatic stabilization is played by His-268, whose pKa increases to 7.1 from 4.9 in the free enzyme. The pKa of Asp-145, the other important catalytic residue, remains around 4.2 in the free enzyme and in the complex. Thus, it can not act as a proton

  20. Persistent damage induces mitochondrial DNA degradation

    PubMed Central

    Shokolenko, Inna N.; Wilson, Glenn L.; Alexeyev, Mikhail F.

    2013-01-01

    Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by six hours after induction of mutant uracil-N-glycosylase and by twelve hours after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and “foaming” of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence

  1. Surviving the sun: Repair and bypass of DNA UV lesions

    PubMed Central

    Yang, Wei

    2011-01-01

    Structural studies of UV-induced lesions and their complexes with repair proteins reveal an intrinsic flexibility of DNA at lesion sites. Reduced DNA rigidity stems primarily from the loss of base stacking, which may manifest as bending, unwinding, base unstacking, or flipping out. The intrinsic flexibility at UV lesions allows efficient initial lesion recognition within a pool of millions to billions of normal DNA base pairs. To bypass the damaged site by translesion synthesis, the specialized DNA polymerase η acts like a molecular “splint” and reinforces B-form DNA by numerous protein–phosphate interactions. Photolyases and glycosylases that specifically repair UV lesions interact directly with UV lesions in bent DNA via surface complementation. UvrA and UvrB, which recognize a variety of lesions in the bacterial nucleotide excision repair pathway, appear to exploit hysteresis exhibited by DNA lesions and conduct an ATP-dependent stress test to distort and separate DNA strands. Similar stress tests are likely conducted in eukaryotic nucleotide excision repair. PMID:21898645

  2. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  3. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression.

    PubMed

    Perillo, Bruno; Ombra, Maria Neve; Bertoni, Alessandra; Cuozzo, Concetta; Sacchetti, Silvana; Sasso, Annarita; Chiariotti, Lorenzo; Malorni, Antonio; Abbondanza, Ciro; Avvedimento, Enrico V

    2008-01-11

    Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription. PMID:18187655

  4. Circadian Modulation of 8-Oxoguanine DNA Damage Repair

    PubMed Central

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  5. Circadian Modulation of 8-Oxoguanine DNA Damage Repair.

    PubMed

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  6. The induction of SCE and chromosomal aberrations with relation to specific base methylation of DNA in Chinese hamster cells by N-methyl-N-nitrosourea and dimethyl sulphate.

    PubMed

    Connell, J R; Medcalf, A S

    1982-01-01

    Chinese hamster cells (V79) were treated, either as exponentially proliferating cultures or under conditions where they were density-inhibited, with various doses of the potent carcinogen N-methyl-N-nitrosourea (MNU) or the relatively weak carcinogen dimethylsulphate (DMS). The colony forming ability of these cells and the induced frequencies of sister chromatid exchanges (SCEs) and chromosomal aberrations were assayed. Following the exposure of density-inhibited cells to radio-labelled methylating agents (labelled in the methyl group) these phenomena were related to the levels of 7-methylguanine (7-meGua), O6-methylguanine (O6-meGua) and 3-methyladenine (3-me-Ade) in the DNA. At equitoxic doses MNU and DMS induced similar frequencies of SCEs and chromosomal aberrations. Since, at equitoxic doses, MNU produces approximately 20 times more O6-meGua in V79 cell DNA than does DMS, this indicates that the formation of O6-meGua in DNA is not a major cause of SCEs and chromosomal aberrations. DMS-induced SCEs may be mediated via the production of both 3-meAde and 7-meGua in the DNA; these two methylated purines may also be responsible for MNU-induced SCEs. Therefore, no one specific methylated purine was identified as being solely accountable for the formation of SCEs. Also, the repair of lesions in the DNA of non-replicating V79 cells leads to a reduction in the SCE frequency on their subsequent release from the density-inhibited state, suggesting that repair is not intimately responsible for their formation. No association was discernable between chromosomal aberrations and any of the three methylated purines studied. PMID:7094205

  7. Bifilar enzyme-sensitive sites in ultraviolet-irradiated DNA are indicative of closely opposed cyclobutyl pyrimidine dimers.

    PubMed Central

    Lam, L H; Reynolds, R J

    1986-01-01

    Incubation of UV-irradiated DNA with pyrimidine dimer-DNA glycosylase in cell-free lysates prepared from Micrococcus luteus results in the appearance of double-strand breaks. It has previously been assumed that such double-strand breaks result from cleavage at closely opposed dimers. We have used hybrid molecules of bacteriophage T7 DNA comprised of two unirradiated strands, two UV-irradiated strands, or one unirradiated and one UV-irradiated strand to test this hypothesis. Bifilar cleavage was observed only with molecules consisting of two irradiated strands and no bifilar cleavage was observed after the monomerization of pyrimidine dimers by enzymatic photoreactivation. Our results indicate that at least 80% of the double-strand breaks result from cleavage at closely opposed dimers and that the induction of dimers in one strand does not influence the induction of dimers at closely opposed positions in the complementary strand of a DNA double helix. PMID:3527288

  8. The antileishmanial drug miltefosine (Impavido(®)) causes oxidation of DNA bases, apoptosis, and necrosis in mammalian cells.

    PubMed

    Castelo Branco, Patrícia Valéria; Soares, Rossy-Eric Pereira; de Jesus, Luís Cláudio Lima; Moreira, Vanessa Ribeiro; Alves, Hugo José; de Castro Belfort, Marta Regina; Silva, Vera Lucia Maciel; Ferreira Pereira, Silma Regina

    2016-08-01

    Miltefosine was developed to treat skin cancer; further studies showed that the drug also has activity against Leishmania. Miltefosine is the first oral agent for treating leishmaniasis. However, its mechanism of action is not completely understood. We have evaluated the induction of DNA damage by miltefosine. Cytotoxicity and genotoxicity (comet assay) tests were performed on human leukocytes exposed to the drug in vitro. Apoptosis and necrosis were also evaluated. In vivo tests were conducted in Swiss male mice (Mus musculus) treated orally with miltefosine. Oxidation of DNA bases in peripheral blood cells was measured using the comet assay followed by digestion with formamidopyrimidine glycosylase (FPG), which removes oxidized guanine bases. The micronucleus test was performed on bone marrow erythrocytes. Miltefosine caused DNA damage, apoptosis, and necrosis in vitro. Mice treated with miltefosine showed an increase in the DNA damage score, which was further increased following FPG digestion. The micronucleus test was also positive. PMID:27476333

  9. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    PubMed

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-01

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery. PMID:26943244

  10. Potentiation of cytotoxicity by 3-aminobenzamide in DNA repair-deficient human tumor cell lines following exposure to methylating agents or anti-neoplastic drugs.

    PubMed

    Babich, M A; Day, R S

    1988-04-01

    We studied the potentiation by 3-aminobenzamide (3AB) of killing of nine human cell lines exposed to alkylating agents. Cell lines included normal, transformed and DNA repair-proficient and -deficient phenotypes. 3AB potentiated cell killing by the methylating agents methylmethanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in all lines tested. The degree of potentiation ranged from 1.7- to 3.8-fold, based on the LD99. The average potentiation observed with MMS (2.7-fold) was greater than with MNNG (2.2-fold). On average the potentiation of MMS and MNNG killing of repair-deficient Mer- lines (2.4-fold) was similar to that of repair-proficient Mer+ lines. The degree of 3AB potentiation of MNNG killing (2.0-fold) was similar in Mer+ Rem- lines and in Mer+ Rem+ lines. Mer+ Rem+, Mer+ Rem-, Mer- Rem+, and Mer- Rem- strains all appeared proficient in a 3AB-sensitive DNA repair pathway. Within experimental error, 20 mM 3AB did not inhibit the removal of the MNNG-induced methylpurines 7-methylguanine, O6-methylguanine and 3-methyladenine from the DNA of repair-proficient Mer+ Rem+ HT29 cells, consistent with evidence that 3AB inhibits the ligation step of excision repair. 3AB potentiated cell killing by the bifunctional alkylating agents 1-(2-chlorethyl)-1-nitrosourea or busulfan, two anti-neoplastic drugs, by only 0.9- to 1.5-fold. These drugs therefore produce DNA damage which is not efficiently repaired by the pathways that repair methylated bases. PMID:3356063