Science.gov

Sample records for 3-n-propyl methylpyridinium silsesquioxane

  1. Troponin T immunosensor based on liquid crystal and silsesquioxane-supported gold nanoparticles.

    PubMed

    Zapp, Eduardo; da Silva, Paulo Sérgio; Westphal, Eduard; Gallardo, Hugo; Spinelli, Almir; Vieira, Iolanda Cruz

    2014-09-17

    A nanostructured immunosensor based on the liquid crystal (E)-1-decyl-4-[(4-decyloxyphenyl)diazenyl]pyridinium bromide (Br-Py) and gold nanoparticles supported by the water-soluble hybrid material 3-n-propyl-4-picolinium silsesquioxane chloride (AuNP-Si4Pic(+)Cl(-)) was built for the detection of troponin T (cTnT), a cardiac marker for acute myocardial infarction (AMI). The functionalized nanostructured surface was used to bind anti-cTnT monoclonal antibodies through electrostatic interaction. The immunosensor (ab-cTnT/AuNP-Si4Pic(+)Cl(-)/Br-Py/GCE) surface was characterized by microscopy techniques. The electrochemical behavior of the immunosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. A calibration curve was obtained by square-wave voltammetry. The immnunosensor provided a limit of detection of 0.076 ng mL(-1) and a linear range between 0.1 and 0.9 ng mL(-1) (appropriate for AMI diagnosis). PMID:25111622

  2. Structure of 4-methylpyridinium Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Martuch, Robert A.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    4-Methylpyridinium hydrogen sulfide, (C6H7NH)HS, M(sub r) = 127.21, consists of C6H7NH(+) cations and HS(-) anions. Z = 2 for the crystal with monoclinic space group Cm (#8), dimensions of a = 8.679(2) A, b = 7.964(1) A, and c = 4.860(2) A, an angle beta of 101.10(2) degrees, and a volume of V = 329.6(3) A(exp 3). R = 0.039 and R(sub w) = 0.048 for 385 reflections with F(sub o)(exp 2) greater than 3 sigma(F(sub o)(exp 2)) and 59 variables. Both the C6H7NH(+) cation and the HS(-) anion lie on crystallographic mirror planes with the N,S, two carbon atoms, and two hydrogen atoms positioned in the planes. The hydrogen atom of the HS(-) anion was not located.

  3. An amino-imino resonance study of 2-amino-4-methylpyridinium nitrate and 2-amino-5-methylpyridinium nitrate.

    PubMed

    Yan, Xing-Chen; Fan, Yu-Hua; Bi, Cai-Feng; Zhang, Xia; Zhang, Zhong-Yu

    2013-01-01

    The contributions of the amino and imino resonance forms to the ground-state structures of 2-amino-4-methylpyridinium nitrate, C(6)H(9)N(2)(+)·NO(3)(-), and the previously reported 2-amino-5-methylpyridinium nitrate [Yan, Fan, Bi, Zuo & Zhang (2012). Acta Cryst. E68, o2084], were studied using a combination of IR spectroscopy, X-ray crystallography and density functional theory (DFT). The results show that the structures of 2-amino-4-methylpyridine and 2-amino-5-methylpyridine obtained upon protonation are best described as existing largely in the imino resonance forms. PMID:23282916

  4. Fibers And Composites Derived From Silsesquioxanes

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Hyatt, Lizbeth H.; Damore, Lisa, A.; Gorecki, Joy P.

    1988-01-01

    In new method, silsesquioxane powders blended to control ratio of carbon to silicon. Powders melted, and excess silanol groups condense with evolution of water. When melt attains suitable viscosity, extruded into fibers through die or drawn into fibers from melt at uniform rate. Fibers cured and heat treated. Enables easy fabrication of thermally stable fibers from inexpensive silsesquioxane precursors. Impregnation of fibers and preforms without solvent minimizes both shrinkage and formation of voids resulting from volatilization of trapped solvent.

  5. Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers.

    PubMed

    Silva, Paulo Sérgio da; Gasparini, Bianca C; Magosso, Hérica A; Spinelli, Almir

    2014-05-30

    The water-soluble 3-n-propyl-4-picolinium silsesquioxane chloride (Si4Pic(+)Cl(-)) polymer was prepared, characterized and used as a stabilizing agent for the synthesis of gold nanoparticles (nAu). The ability of Si4Pic(+)Cl(-) to adsorb anionic metal complexes such as AuCl4(-) ions allowed well-dispersed nAu to be obtained with an average particle size of 4.5nm. The liquid suspension of nAu-Si4Pic(+)Cl(-) was deposited by the drop coating method onto a glassy carbon electrode (GCE) surface to build a sensor (nAu-Si4Pic(+)Cl(-)/GCE) which was used for the detection of o-nitrophenol (o-NP) and p-nitrophenol (p-NP). Under optimized experimental conditions the reduction peak current increased with increasing concentrations of both nitrophenol isomers in the range of 0.1-1.5μmolL(-1). The detection limits were 46nmolL(-1) and 55nmolL(-1) for o-NP and p-NP, respectively. These findings indicate that the nAu-Si4Pic(+)Cl(-) material is a very promising candidate to assemble electrochemical sensors for practical applications in the field of analytical chemistry. PMID:24721696

  6. Silsesquioxanes as precursors to ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Hyatt, L.; Gorecki, J.; D'Amore, L.

    1987-01-01

    Silsesquioxanes having the general structure RSiO(1.5), where R = methyl, propyl, or phenyl, melt flow at 70 to 100 C. Above 100 C, free OH groups condense. At 225 C further crosslinking occurs, and the materials form thermosets. Pyrolysis, with accompanying loss of volatiles, takes place at nominally 525 C. At higher temperatures, the R group serves as an internal carbon source for carbo-thermal reduction to SiC accompanied by the evolution of CO. By blending silsesquioxanes with varying R groups, both the melt rheology and composition of the fired ceramic can be controlled. Fibers can be spun from the melt which are stable in argon in 1400 C. The silsesquioxanes also were used as matrix precursors for Nicalon and alpha-SiC platelet reinforced composites.

  7. Silsesquioxanes as precursors to ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Hyatt, Lizbeth H.; Gorecki, Joy; Damore, Lisa

    1987-01-01

    Silsesquioxanes having the general structure RSiO sub 1.5, where R = methyl, propyl, or phenyl, melt flow at 70 to 100 C. Above 100 C, free -OH groups condense. At 225 C further crosslinking occurs, and the materials form thermosets. Pyrolysis, with accompanying loss of volatiles, takes place at nominally 525 C. At higher temperatures, the R group serves as an internal carbon soruce for carbo-thermal reduction to SiC accompanied by the evolution of CO. By blending silsesquioxanes with varying R groups, both the melt rheology and composition of the fired ceramic can be controlled. Fibers can be spun from the melt which are stable in argon in 1400 C. The silsesquioxanes also were used as matrix precursors for Nicalon and alpha-SiC platelet reinforced composites.

  8. A polyhedral oligomeric silsesquioxane functionalized copper trimesate.

    PubMed

    Sanil, E S; Cho, Kyung-Ho; Hong, Do-Young; Lee, Ji Sun; Lee, Su-Kyung; Ryu, Sam Gon; Lee, Hae Wan; Chang, Jong-San; Hwang, Young Kyu

    2015-05-18

    A metal-organic framework (MOF), copper trimesate (Cu3(BTC)2), was selectively functionalized with aminopropylisooctyl polyhedral oligomeric silsesquioxane (O-POSS) to make the external surface of Cu3(BTC)2 hydrophobic and thereby enhance the stability of the material against humidity. POSS modification was also successfully applied to other MOFs such as MOF-74 and MIL-100. PMID:25813878

  9. Synthesis and characterization of 2-amino-3-methylpyridinium dihydrogenomonoarsenate

    SciTech Connect

    Oueslati, A.; Rayes, A.; Ben Nasr, C. . E-mail: cherif.bennasr@fsb.rnu.tn; Lefebvre, F.

    2005-10-06

    A new crystal of 2-amino-3-methylpyridinium dihydrogenomonoarsenate has been prepared and characterized by X-ray crystallography, thermal analysis and spectroscopic studies. This compound crystallizes in the triclinic space group P1-bar with a=7.2689 (2)A, b=8.0975 (2)A, c=8.3969 (4)A, {alpha}=77.09 (3) deg., {beta}=79.20 (3){sup o}, {gamma}=88.16 (2){sup o}, V=473.19 (3)A{sup 3}, Z=2. The crystal structure was solved and refined to R=0.027 with 3375 independent reflections. The atomic arrangement can be described as (H{sub 2}AsO{sub 4}{sup -}){sub n} polymeric chains anchoring the 2-amino-3-methylpyridinium cations through short hydrogen bonds. All the ring atoms of the organic entity are coplanar. The exocyclic N atom is an electron receiving center, which is consistent with features of imino resonance evidenced by bond lengths and angles. Solid-state {sup 13}C and {sup 15}N CP-MAS-NMR spectroscopies are in agreement with the X-ray structure. Ab initio calculations allow the attribution of carbons and nitrogen to the independent crystallographic sites.

  10. L-prolinium picrate and 2-methylpyridinium picrate.

    PubMed

    Anitha, K; Athimoolam, S; Natarajan, S

    2006-09-01

    In the structure of L-prolinium picrate, C5H10NO2+.C6H2N3O7-, the Cgamma atom of the pyrrolidine ring has conformational disorder. Both the major and minor conformers of the pyrrolidine ring adopt conformations intermediate between a half-chair and an envelope. Both the cation and anion are packed through chelated three-centred N-H...O hydrogen bonds. The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis. In 2-methylpyridinium picrate, C6H8N+.C6H2N3O7-, the cations and anions are packed separately along the a axis and are interconnected by N-H...O hydrogen bonds. Intramolecular contacts between phenolate O atoms and adjacent nitro groups are identified in both structures. A graph-set motif of R1(2)(6) is observed in both structures. PMID:16954644

  11. Pysico-chemical properties of hydrophobic ionic liquids containing1-octylpyridinium, 1-octyl-2-methylpyridinium or1-octyl-4-methylpyridinium cations

    SciTech Connect

    Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

    2006-09-15

    This paper reports synthesis of some ionic liquids based on cations 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium and anions dicyanamide [N(CN)2]-, bis(trifluoromethylsulfonyl)imide [Tf2N]-, bis(pentafluoroethylsulfonyl)imide [BETI]-, trifluoromethyl sulfonate [TfO]-, nonafluorobutyl sulfonate [NfO]-, tetrafluoroborate [BF4]-, trifluorophenylborate [BF3Ph]- or hexafluoroarsenate [AsF6]-. Melting points, decomposition temperatures, densities, mutual solubilities with water, and viscosities have been measured. Unlike similar ionic liquids containing imidazolium cations, pyridinium ionic liquids studied here are nearly immiscible in water. Viscosities are similar and water content is slightly lower than those for ionic liquids containing imidazolium cations.

  12. Structural Evolution of Silica Gel and Silsesquioxane Using Thermal Curing.

    PubMed

    Hu, Nan; Rao, YuanQiao; Sun, Shengtong; Hou, Lei; Wu, Peiyi; Fan, Shaojuan; Ye, Bangjiao

    2016-08-01

    The curing of coatings of two types of siloxane containing materials, silica gel and silsesquioxane, at a modest temperature (<280℃) was studied with in situ heating Fourier transform infrared spectroscopy (FT-IR) in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2D-COS) analyses. The result revealed detailed structural evolution of these two different gels. When the silica gel was heated, (Si-O)6 rings appeared from the random Si-O-Si network formed after sol gel reaction, followed by condensation of silanol groups. Upon further heating, the existing (Si-O)4 rings were broken down and converted into (Si-O)6 structures, and finally isolated silanols appeared. The transition from (Si-O)4 rings to (Si-O)6 rings was observed by IR and further confirmed with positron annihilation lifetime spectroscopy (PALS). In comparison, during the curing of hybrid silsesquioxane, the condensation of silanols happens immediately upon heating without the rearrangement of Si-O-Si network. Afterwards, the fraction of (Si-O)6 ring structure increased. (Si-O)4 structures exhibited higher stability in hybrid silsesquioxanes. In addition, the amount of silanols in silsesquioxane continued to reduce without the generation of isolated silanol in the end. The different curing behavior of silsesquioxanes from silica gel originates from the organic groups in silsesquioxanes, which lowers the cross-linking density and reduces the rigidity of siloxane network. PMID:27340213

  13. Rapid Preparation of Silsesquioxane-Based Ionic Liquids.

    PubMed

    Li, Liguo; Liu, Hongzhi

    2016-03-24

    Three new hybrid ionic liquids (ILs) based on cage silsesquioxane (SQ) were rapidly prepared in high yields from octa(mercaptopropyl)silsesquioxane and 1-allyl-3-methylimidazolium salts (Br(-) , BF4 (-) , PF6 (-) ) through the photochemical thiol-ene reaction. These SQ-based ILs exhibited low glass transition temperatures and good thermal stability. The unique amphiphilic nature of these hybrid ILs cause them to self-assemble into perfect vesicles with "yolk-shell" structures, in which cages formed the "yolk" due to their aggregation and outer anions formed the "shell". PMID:26864313

  14. Influence of anions on methylpyridinium ion adsorption on the mercury electrode in aqueous solutions

    SciTech Connect

    Gerovich, V.M.; Damaskin, B.B.; Ermolin, V.B.

    1987-02-01

    The adsorption behavior of aromatic and heterocyclic cations is known to be determined by image forces on one hand and by pi-electron interaction on the other. The first factor is effective at the negatively charged surface of the mercury electrode whereas the second factor is effective at the positively charged surface where the forces of pi-electron interaction are in opposition to the electrostatic repulsion forces of the cations. The authors of this paper study the adsorption of methylpyridinium as the aromatic cation in combination with persulfate, chlorine, bromine, and iodine as the anions. The potential range studied was limited on the anodic side by a potential of -0.1 eV, since the values of interfacial tension were poorly reproducible at more positive potentials, and on the cathodic side by a potential of -1.1 eV, since methylpyridinium is reduced at more negative potentials. It is found that the halide ions, owing to the possible formation of charge transfer complexes, have an even stronger effect on the adsorption behavior of organic cations than that observed previously for tetraalkylammonium ions.

  15. Novel silsesquioxane mixture-modified high elongation polyurethane with reduced platelet adhesion

    NASA Astrophysics Data System (ADS)

    Tao, William; Zhou, Hongyang; Zhang, Yan; Li, Gang

    2008-02-01

    We have successfully synthesized a kind of novel silsesquioxane mixture that can be used to modify the surface of biomaterial polyurethane (PU) for the purpose of making silsesquioxane/PU as low-price and high-quality biomaterial. HPLC, FTIR and 29Si NMR are used to characterize as-synthesized silsesquioxane mixture. XPS figure and SEM images show the silsesquioxane particles really self-assemble on the PU surface. Contact angle measurements verify that there is a large hysteresis loop, which relates to low- and high-surface free energy component on the surface. Platelet adsorption at 90 min of PU/silsesquioxane mixture is lower than that of poly(tetrafluoroethylene) (PTFE) and PU (two-way ANOVA, p < 0.05). Furthermore, SEM images show "island" morphologic pattern with Cooper grades I platelet adsorption morphology on the smooth PU/silsesquioxane surface, and mechanic test shows that the samples with silsesquioxane mixture can increase mechanic property of PU. On the basis of these results, we conclude that this kind of nanocomposite has promise for application in biomaterials.

  16. [4-(n-Dimethylaminostyryl)-1-methylpyridinium fluorescence in a living cell].

    PubMed

    Morozova, G I; Dobretsov, G E; Dubur, G Ia; Dubur, R R; Golitsyn, V M

    1981-08-01

    A fluorescent compound 4-(p-dimethylinostyryl)-1-methylpyridinium (DSM) has been synthesized, having the absorption maximum about 450 nm and the fluorescence maximum about 590 nm in a water solution. A considerable increase of its fluorescence intensity is found in DNA solutions. The binding of DSM with membranes leads to a shift of its fluorescence maximum to 550 nm. Polychromatic properties of DSM (green fluorescence in membranes, rich yellow - in energized mitochondria, red-orange - in nuclei) are found in DSM stained cells. DSM fluorescence is sensitive to changes in the energized state of cells; the uncupler dinitrophenol or respiration inhibitors-cyanide and amital-cause a strong decrease in the DSM fluorescence intensity in mitochondria. It is ascertained that DSM itself has a low toxicity with respect to cell energy: it had no influence on the mobility of Tetrahymena pyriformis during 23 hours after staining. Thus, DSM may be used as a fluorescent probe for live cells. PMID:7029833

  17. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.

    PubMed

    Guo, Haiquan; Meador, Mary Ann B; McCorkle, Linda; Quade, Derek J; Guo, Jiao; Hamilton, Bart; Cakmak, Miko; Sprowl, Guilherme

    2011-02-01

    We report the first synthesis of polyimide aerogels cross-linked through a polyhedral oligomeric silsesquioxane, octa(aminophenyl)silsesquioxane (OAPS). Gels formed from polyamic acid solutions of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), bisaniline-p-xylidene (BAX) and OAPS were chemically imidized and dried using supercritical CO(2) extraction to give aerogels having density around 0.1 g/cm(3). The aerogels are greater than 90 % porous, have high surface areas (230 to 280 m(2)/g) and low thermal conductivity (14 mW/m-K at room temperature). Notably, the polyimide aerogels cross-linked with OAPS have higher modulus than polymer reinforced silica aerogels of similar density and can be fabricated as both monoliths and thin films. Thin films of the aerogel are flexible and foldable making them an ideal insulation for space suits, and inflatable structures for habitats or decelerators for planetary re-entry, as well as more down to earth applications. PMID:21294517

  18. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. PMID:26627587

  19. Corner capping of silsesquioxane cages by chemical warfare agent simulants.

    PubMed

    Ferguson-McPherson, Melinda K; Low, Emily R; Esker, Alan R; Morris, John R

    2005-11-22

    The room-temperature uptake and reactivity of gas-phase methyl dichlorophosphate (MDCP) and trichlorophosphate (TCP) within trisilanolphenyl-polyhedral oligomeric silsesquioxane (POSS) Langmuir-Blodgett films are investigated. The halogenated phosphate molecules are found to readily diffuse into and react with the hybrid inorganic-organic silicon-oxide films under ambient conditions. Reflection absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), and fast atom bombardment-mass spectrometry (FAB-MS) measurements suggest that the chlorophosphates undergo hydrolysis with the silanol groups of the POSS LB-film. Substitution and elimination reactions appear to cap the corner of the POSS molecules, leaving a surface-bound phosphoryl group and a resulting structure that is highly stable at elevated temperatures. PMID:16285795

  20. Chemical incorporation of polyhedral oligomeric silsesquioxane into thermoset matrices

    NASA Astrophysics Data System (ADS)

    Cho, Hosouk

    A new class of organic-inorganic hybrid nanocomposites containing well-defined polyhedral oligomeric silsesquioxane (POSS) monomers, which have been copolymerized with organic monomers, were synthesized. Poly(isobutyl methacrylate-co-butanediol dimethacrylate-co-3-methacrylylpropyl-heptaisobutyl(T 8)polyhedral oligomeric silsesquioxane) (P(iBMA-co-BDMA-co-MA-POSS)) nanocomposites with different crosslink densities (BDMA loadings of 1, 3 and 5 wt%) and different MA-POSS percentages (5, 10, 15, 20 and 30 wt%) have been synthesized by radical-initiated terpolymerization. Linear P(iBMA-co-MA-POSS) copolymers were also prepared. Viscoelastic properties and morphologies were studied by DMTA (dynamic mechanical thermal analysis) and TEM (transmission electron microscopy). Two types of inorganic-organic hybrid polyhedral oligomeric silsesquioxane (POSS)/vinyl ester (VE) nanocomposites were synthesized. The first type contained a mixture of T8, T10 and T12 cages, each multifunctionalized with 3-methacrylylpropyl groups. The second type contained octa(3-methacrylylpropyldimethylsiloxyl)(T8)POSS. VE/POSS samples with weight ratios of 99/1, 97/3, 95/5, 90/10, 85/15 and 80/20 were prepared of each type. The nanocomposites were characterized by DMTA, TEM, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (X-EDS), swelling, extraction and FT-IR. Three classes of inorganic-organic hybrid phenolic resin/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were also synthesized via condensation polymerization. The POSS macromers employed included multifunctional dichloromethylsilylethylheptaisobutyl(T 8)POSS, trisilanolheptaphenyl-POSS, and poly(phenylsilsesquioxane) uncured POSS. A nonfunctional octaisobutyl(T8)POSS was blended into the uncured phenolic resin followed by curing under the same conditions as those used for the other three nanocomposites classes. Phenolic/POSS samples with weight ratios of 99/1, 97/3, 95/5 and 90/10 were prepared of each

  1. Maxillofacial Materials Reinforced with Various Concentrations of Polyhedral Silsesquioxanes

    PubMed Central

    Mohammad, Sharif A.; Wee, Alvin G.; Rumsey, Deborah J.; Schricker, Scott R.

    2010-01-01

    This study evaluates two mechanical properties, tensile strength and tear strength, of maxillofacial materials reinforced with functional polyhedral silsesquioxane (POSS) nanoparticles at 0.0, 0.5, 1.0, 2.0, and 5.0% (mass/mass) loading. Adding POSS was found to significantly affect the overall tensile strength and extensibility of the maxillofacial material. Significant differences were found in mean peak load (p = .050) and extension before failure (p = .050), respectively, between concentrations of 0% and 5%. For tear resistance, a significant difference was observed in mean load (p = .002) between concentrations of 1% and 5%. Significant differences were also observed in extension before failure between concentrations of 0% and 1% (p = .002) and between 0% and 2% (p = .002). Increased resistance to tensile or shearing stresses could lead to greater clinical longevity. The following results suggest that functional nanoparticles can be used to improve properties without compromising clinical handling. PMID:20981354

  2. Site-Specific Protein Transamination Using N-Methylpyridinium-4-carboxaldehyde

    PubMed Central

    Witus, Leah S.; Netirojjanakul, Chawita; Palla, Kanwal S.; Muehl, Ellen M.; Weng, Chih-Hisang; Iavarone, Anthony T.; Francis, Matthew B.

    2014-01-01

    The controlled attachment of synthetic groups to proteins is important for a number of fields, including therapeutics, where antibody-drug conjugates are an emerging area of biologic medicines. We have previously reported a site-specific protein modification method using a transamination reaction that chemoselectively oxidizes the N-terminal amine of a polypeptide chain to a ketone or an aldehyde group. The newly introduced carbonyl can be used for conjugation to a synthetic group in one location through the formation of an oxime or a hydrazone linkage. To expand the scope of this reaction, we have used a combinatorial peptide library screening platform as a method to explore new transamination reagents while simultaneously identifying their optimal N-terminal sequences. N-methylpyridinium-4-carboxaldehyde benzenesulfonate salt (Rapoport's salt, RS) was identified as a highly effective transamination reagent when paired with glutamate-terminal peptides and proteins. This finding establishes RS as a transamination reagent that is particularly well suited for antibody modification. Using a known therapeutic antibody, herceptin, it was demonstrated that RS can be used to modify the heavy chains of the wild type antibody, or both the heavy and the light chains after N-terminal sequence mutation to add glutamate residues. PMID:24191658

  3. Structure and spectroscopic studies of 2,3-diethoxycarbonyl-1-methylpyridinium nitrate

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Ratajczak-Sitarz, M.; Nowaczyk, Ł.; Katrusiak, A.; Dega-Szafran, Z.; Szafran, M.

    2013-03-01

    The structure of 2,3-diethoxycarbonyl-1-methylpyridinium nitrate (1) has been studied by X-ray diffraction, DFT calculations, FTIR, Raman and NMR spectra. The crystals are monoclinic, space group C2/c. Nitrate anion interacts electrostatically with the positively charged pyridinium nitrogen atom. In crystals the ethyl ester group at C(3) position (C(9)sbnd O(4)sbnd CH2sbnd CH3) is disordered in two orientations. The structures optimized by the B3LYP/6-311++G(d, p) 2 (in vacuum) and 3 (in CHCl3 solution) are similar to that in crystal 1. Linear correlations between the experimental 13C and 1H chemical shifts (δexp) of the investigated ester in CDCl3 and GIAO/B3LYP/6-311++G(d, p) magnetic isotropic shielding constants calculated by using the screening solvation model (COSMO), δexp = a + b · σcalc, are reported. The FTIR and Raman spectra of the solid compound are consistent with the X-ray structure.

  4. Shape-controlled bridged silsesquioxanes: hollow tubes and spheres.

    PubMed

    Moreau, Joël J E; Vellutini, Luc; Wong Chi Man, Michel; Bied, Catherine

    2003-04-01

    A new approach for the morphological control of bridged silsesquioxanes has been achieved by the hydrolysis of silylated organic molecules bearing urea groups. The urea groups are responsible for the auto-association of the molecules through intermolecular hydrogen-bonding interactions. The self-assembly leads to supramolecular architectures that have the ability to direct the organization of hybrid silicas under controlled hydrolysis. The hydrolysis of the chiral diureido derivatives of trans-(1,2)-diaminocyclohexane 1 under basic conditions has been examined. The solid-state NMR spectra ((29)Si and (13)C) showed the hybrid nature of these materials with wholly preserved S-C bond covalent bonds throughout the silicate network. Hybrid silicas with hollow tubular morphologies were obtained by the hydrolysis of the enantiomerically pure compounds, (R,R)-1 or (S,S)-1, whereas the corresponding racemic mixture, rac-1, led to a hybrid with ball-like structures. The tubular shape is likely to result from a combination of two phenomena: the auto-association abilities and a self-templating structuration of the hybrid materials by the organic crystalline precursor. Electronic microscopy techniques (SEM and TEM) gave evidence for the self-templating pathway. The formation of the ball-like structures occurs through a usual nucleation growth phenomenon owing to a higher solubility of the corresponding crystals in the same medium. PMID:12658658

  5. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS).

    PubMed

    Ghanbari, Hossein; Cousins, Brian G; Seifalian, Alexander M

    2011-07-15

    Ground-breaking advances in nanomedicine (defined as the application of nanotechnology in medicine) have proposed novel therapeutics and diagnostics, which can potentially revolutionize current medical practice. Polyhedral oligomeric silsesquioxane (POSS) with a distinctive nanocage structure consisting of an inner inorganic framework of silicon and oxygen atoms, and an outer shell of organic functional groups is one of the most promising nanomaterials for medical applications. Enhanced biocompatibility and physicochemical (material bulk and surface) properties have resulted in the development of a wide range of nanocomposite POSS copolymers for biomedical applications, such as the development of biomedical devices, tissue engineering scaffolds, drug delivery systems, dental applications, and biological sensors. The application of POSS nanocomposites in combination with other nanostructures has also been investigated including silver nanoparticles and quantum dot nanocrystals. Chemical functionalization confers antimicrobial efficacy to POSS, and the use of polymer nanocomposites provides a biocompatible surface coating for quantum dot nanocrystals to enhance the efficacy of the materials for different biomedical and biotechnological applications. Interestingly, a family of POSS-containing nanocomposite materials can be engineered either as completely non-biodegradable materials or as biodegradable materials with tuneable degradation rates required for tissue engineering applications. These highly versatile POSS derivatives have created new horizons for the field of biomaterials research and beyond. Currently, the application of POSS-containing polymers in various fields of nanomedicine is under intensive investigation with expectedly encouraging outcomes. PMID:21598339

  6. Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow

    NASA Astrophysics Data System (ADS)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi; Matschuk, Maria; Murthy, Swathi; Taboryski, Rafael

    2013-09-01

    Surface roughness or texture is the most visible property of any object, including injection molded plastic parts. Roughness of the injection molding (IM) tool cavity directly affects not only appearance and perception of quality, but often also the function of all manufactured plastic parts. So called “optically smooth” plastic surfaces is one example, where low roughness of a tool cavity is desirable. Such tool surfaces can be very expensive to fabricate using conventional means, such as abrasive diamond polishing or diamond turning. We present a novel process to coat machined metal parts with hydrogen silsesquioxane (HSQ) to reduce their surface roughness. Results from the testing of surfaces made from two starting roughnesses are presented; one polished with grit 2500 sandpaper, another with grit 11.000 diamond polishing paste. We characterize the two surfaces with AFM, SEM and optical profilometry before and after coating. We show that the HSQ coating is able to reduce peak-to-valley roughness more than 20 times on the sandpaper polished sample, from 2.44(±0.99) μm to 104(±22) nm and more than 10 times for the paste polished sample from 1.85(±0.63) μm to 162(±28) nm while roughness averages are reduced 10 and 3 times respectively. We completed more than 10,000 injection molding cycles without detectable degradation of the HSQ coating. This result opens new possibilities for molding of affordable plastic parts with perfect surface finish.

  7. Self-assembly of bridged silsesquioxanes: modulating structural evolution via cooperative covalent and noncovalent interactions.

    PubMed

    Creff, Gaelle; Pichon, Benoît P; Blanc, Christophe; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Roy, Pascale; Bartlett, John R; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2013-05-01

    The self-assembly of a bis-urea phenylene-bridged silsesquioxane precursor during sol-gel synthesis has been investigated by in situ infrared spectroscopy, optical microscopy, and light scattering. In particular, the evolution of the system as a function of processing time was correlated with covalent interactions associated with increasing polycondensation and noncovalent interactions such as hydrogen bonding. A comprehensive mechanism based on the hydrolysis of the phenylene-bridged organosilane precursor prior to the crystallization of the corresponding bridged silsesquioxane via H-bonding and subsequent irreversible polycondensation is proposed. PMID:23574041

  8. Synthesis and reactivity of nitrogen nucleophiles-induced cage-rearrangement silsesquioxanes.

    PubMed

    Jaroentomeechai, Thapakorn; Yingsukkamol, Pa-Kwan; Phurat, Chuttree; Somsook, Ekasith; Osotchan, Tanakorn; Ervithayasuporn, Vuthichai

    2012-11-19

    Novel phthalimide and o-sulfobenzimide-functionalized silsesquioxanes were successfully synthesized via nucleophilic substitution reactions from octakis(3-chloropropyl)octasilsesquioxane. Surprisingly, the formation of deca- and dodecasilsesquioxanes cages was discovered during substitution with phthalimide, but only octasilsesquioxane maintained a cage in the o-sulfobenzimide substitution reaction. Moreover, we report the electronic effect of nitrogen nucleophiles to promote cage-rearrangement of inorganic silsesquioxane core for the first time. Structures of products were confirmed by (1)H, (13)C, and (29)Si NMR spectroscopy, ESI-MS analysis, and single-crystal X-ray diffraction. PMID:23134535

  9. MEMBRANE TECHNOLOGY: OPPORTUNITIES FOR POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS) IN MEMBRANE-BASED SEPARATIONS

    EPA Science Inventory

    Membrane Technology: Opportunities for Polyhedral Oligomeric Silsesquioxanes (POSS?) in Membrane-Based Separations

    Leland M. Vane, Ph.D.
    U.S. Environmental Protection Agency
    Office of Research & Development
    Cincinnati, OH 45268
    Vane.Leland@epa.gov

    A sign...

  10. N-heterocyclic carbenes--catalysts for the preparation of polyhedral silsesquioxanes.

    PubMed

    Koželj, Matjaž; Orel, Boris

    2013-07-14

    N-Heterocyclic carbenes could be used as powerful catalysts for the preparation of various polyhedral silsesquioxanes. NHCs also catalyze a rearrangement of existing cages and a scrambling between two different cages at a concentration as low as 1 mol%. PMID:23689470

  11. Understanding the mechanism of base development of hydrogen silsesquioxane

    SciTech Connect

    Kim, Jihoon; Chao, Weilun; Liang, Xiaogan; Griedel, Brian D.; Olynick, Deirdre L

    2009-01-09

    There have been numerous studies of electron beam exposed hydrogen silsesquioxane (HSQ) development conditions in order to improve the developer contrast. For TMAH based development, improvements were made by going to higher TMAH normalities and heating the developer. Yang and Berggren showed development of electron beam exposed (HSQ) by NaOH with added Na salts (various anions) significantly improves the contrast. Here, we study the contrast and etching rates of 100 keV exposed HSQ in NaOH in the presence of LiCl, NaCl, and KCl salts and use this as a segway to understand the mechanisms governing contrast during development HSQ development. The basic mechanism of development of HSQ can be understood by comparing to etching of quartz in basic solutions. Hydroxide ions act as nucleophiles which attack silicon. When a silicon-oxygen bond of the Si-O-Si matrix is broken, Si-O{sup -} and Si-OH are formed which can reversibly react to form the original structure. When a Si-H bond is broken via reaction with hydroxide, Si-O{sup -} and H{sub 2} gas are formed. Salts can change the etching rates as a function of dose in a non-linear fashion to increase etch contrast. Figs. 1, 2, and 3 show contrast curves for HSQ developed in 0.25 N sodium hydroxide and with the addition of NaCl, LiCl and KCl salts at several concentrations. NaCl addition resulted in the highest contrast. Contrast improves with additional salt concentration while sensitivity decreases. Interestingly enough, addition of salt decreases the removal of material of NaOH alone at higher doses while increasing the rate at lower concentrations. Addition of LiCl salts improves contrast over NaOH alone. Furthermore, the sensitivity at all doses increases as the LiCl concentration increases, a salting out effect. Similar to NaCl salt behavior, the addition of KCl salts, improves contrast at the expense of sensitivity. However, unlike NaCl, even at very high doses, KCl addition increases removal rate of HSQ. We

  12. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. PMID:24184578

  13. Synthesis, crystal structures, and magnetism of the binuclear radical complex [N-methylpyridinium]2[Ni(tdas)2]2

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Xue; Qiao, Fang; Wang, Chi-Feng; Chi, Yan-Hui; Cottrill, Ethan; Pan, Ning; Shi, Jing-Min; Zhu-Ge, Wei-Wei; Fu, Yong-Xin; Xu, Jun; Qian, Xiao-Ping

    2016-03-01

    The novel binuclear radical complex [N-methylpyridinium]2[Ni(tdas)2]2 (tdas = 1,2,5-thiadiazole-3,4-dithiolate) has been prepared and its crystal structures determined by X-ray crystallography at three different temperatures in order to investigate the changes in coordination structure and magnetic properties with temperature. In the binuclear radical complex the two nickel ions assume a distorted pyramidal geometry and are bridged by two S atoms of different tdas anionic ligands. At room temperature, the ESR spectrum of the binuclear radical complex in polycrystalline powder and the theoretical calculations reveal a very strong antiferromagnetic interaction, leading to diamagnetic crystals. In contrast, a peak with g = 2.05 appears in the ESR spectrum of the title complex in acetonitrile solution, which indicates that a fraction of the binuclear radical complexes dissociate. The theoretical calculations also reveal that as temperature increases the antiferromagnetic coupling strength gradually decreases, yet at 150 °C the antiferromagnetic coupling strength remains as strong as 2J = -734.26 cm-1. The strong antiferromagnetic coupling strengths should be attributed to the large spin densities on the nickel atoms and the relevant bridging sulfur atoms. This study is the first to report the correlations between the structure, magnetism, and temperature of a binuclear radical nickel complex with tdas as ligand and this study is also the first report the magnetic coupling strength of radical binuclear nickel complex with tdas as bridging ligand and with N-methylpyridinium as counter cation.

  14. Enzymatically degradable hybrid organic-inorganic bridged silsesquioxane nanoparticles for in vitro imaging

    NASA Astrophysics Data System (ADS)

    Fatieiev, Y.; Croissant, J. G.; Julfakyan, K.; Deng, L.; Anjum, D. H.; Gurinov, A.; Khashab, N. M.

    2015-09-01

    We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes.We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes. Electronic supplementary information (ESI) available: Detailed synthetic procedure, experimental procedure and Fig. S1-15. See DOI: 10.1039/c5nr03065j

  15. A Mechanistic Investigation of Gelation. The Sol-Gel Polymerization of Bridged Silsesquioxane Monomers

    SciTech Connect

    SHEA,KENNETH J.; LOY,DOUGLAS A.

    2000-07-14

    The study of a homologous series of silsesquioxane monomers has uncovered striking discontinuities in gelation behavior. An investigation of the chemistry during the early stages of the polymerization has provided a molecular basis for these observations. Monomers containing from one to four carbon atoms exhibit a pronounced tendency to undergo inter or intramolecular cyclization. The cyclic intermediates have been characterized by {sup 29}Si NMR, chemical ionization mass spectrometry and isolation from the reaction solution. These carbosiloxanes are local thermodynamic sinks that produce kinetic bottlenecks in the production of high molecular weight silsesquioxanes. The formation of cyclics results in slowing down or in some cases completely shutting down gelation. An additional finding is that the cyclic structures are incorporated intact into the final xerogel. Since cyclization alters the structure of the building block that eventually makes up the xerogel network, it is expected that this will contribute importantly to the bulk properties of the xerogel as well.

  16. Twisting in the excited state of an N-methylpyridinium fluorescent dye modulated by nano-heterogeneous micellar systems.

    PubMed

    Cesaretti, A; Carlotti, B; Gentili, P L; Germani, R; Spalletti, A; Elisei, F

    2016-04-13

    A push-pull N-methylpyridinium fluorescent dye with a pyrenyl group as the electron-donor portion was investigated within the nano-heterogeneous media provided by some micellar systems. The molecule was studied by stationary and time-resolved spectroscopic techniques in spherical micellar solutions and viscoelastic hydrogels, in order to throw light on the role played by twisting in its excited state deactivation. As proven by femtosecond fluorescence up-conversion and transient absorption experiments, the excited state dynamics of the molecule is ruled by charge transfer and twisting processes, which, from the locally excited (LE) state initially populated upon excitation, progressively lead to twisted (TICT) and planar (PICT) intramolecular charge transfer states. The inclusion within micellar aggregates was found to slow down and/or limit the rotation of the molecule with respect to what had previously been observed in water, while its confinement within the hydrophobic domains of the gel matrixes prevents any molecular torsion. The increasing viscosity of the medium, when passing from water to micellar systems, implies that the detected steady-state fluorescence comes from an excited state which is not fully relaxed, as is the case with the TICT state in micelles or the LE state in hydrogels, where the detected emission changes its usual orange colour to yellow. PMID:26982966

  17. Thermo-mechanical characterization of a monochlorophenyl, hepta isobutyl polyhedral oligomeric silsesquioxane/polystyrene composite

    SciTech Connect

    Blanco, Ignazio Bottino, Francesco A. Cicala, Gianluca Cozzo, Giulia Latteri, Alberta Recca, Antonino

    2014-05-15

    The thermal and mechanical properties of a monochlorophenyl, hepta isobutyl Polyhedral Oligomeric Silsesquioxane/Polystyrene (ph,hib-POSS/PS) composite were studied and compared with those of pristine polymer. ph,hib-POSS/PS system was prepared by solubilization and precipitation of Polystyrene (PS) in the presence of POSS. Scanning Electron Microscopy (SEM) was performed to check the distribution of the filler in the polymer matrix. Dynamic Mechanical Analysis (DMA) was carried out to measure viscoelastic properties of solid samples. Degradations were carried out into a thermobalance and the obtained thermogravimetric (TG) and differential thermogravimetric (DTG) curves were discussed and interpreted.

  18. Investigation on the vibrational and structural properties of a self-structured bridged silsesquioxane.

    PubMed

    Creff, Gaëlle; Arrachart, Guilhem; Hermet, Patrick; Wadepohl, Hubert; Almairac, Robert; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Dieudonné, Philippe; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2012-04-28

    The crystalline structure of ureidopyrimidinone-based silane (UPY) has been determined. The local and long range order structuring of the bridged silsesquioxane (MUPY) resulting from the sol-gel hydrolysis-condensation of the former precursor has been investigated by MFTIR (Mid Fourier Transform InfraRed) combined with DFT (Density Functional Theory) and XRD (X-ray diffraction) studies. These studies showed that a long range structuring exists within the organic fragments with the transcription of the DDAA (Donor-Donor-Acceptor-Acceptor) H-bonding array from UPY to MUPY whereas a disordered siloxane network was revealed in the hybrid material. PMID:22422291

  19. Assembly of DNA curtains using hydrogen silsesquioxane as a barrier to lipid diffusion.

    PubMed

    Fazio, T A; Lee, Ja Yil; Wind, S J; Greene, E C

    2012-09-18

    We have established a single-molecule imaging experimental platform called "DNA curtains" in which DNA molecules tethered to a lipid bilayer are organized into patterns at nanofabricated metallic barriers on the surface of a microfluidic sample chamber. This technology has wide applications for real-time single-molecule imaging of protein-nucleic acid interactions. Here, we demonstrate that DNA curtains can also be made from hydrogen silsesquioxane (HSQ). HSQ offers important advantages over metallic barriers because it can be lithographically patterned directly onto fused silica slides without any requirement for further processing steps, thereby offering the potential for rapid prototype development and/or scale up for manufacturing. PMID:22946619

  20. Solvothermal synthesis of hydrophobic chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites.

    PubMed

    Wysokowski, Marcin; Materna, Katarzyna; Walter, Juliane; Petrenko, Iaroslav; Stelling, Allison L; Bazhenov, Vasilii V; Klapiszewski, Łukasz; Szatkowski, Tomasz; Lewandowska, Olga; Stawski, Dawid; Molodtsov, Serguei L; Maciejewski, Hieronim; Ehrlich, Hermann; Jesionowski, Teofil

    2015-01-01

    Chitinous scaffolds isolated from the skeleton of marine sponge Aplysina cauliformis were used as a template for the deposition of polyhedral oligomeric silsesquioxanes (POSS). These chitin-POSS based composites with hydrophobic properties were prepared for the first time using solvothermal synthesis (pH 3, temp 80 °C), and were thoroughly characterized. The resulting material was studied using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetry. A mechanism for the chitin-POSS interaction after exposure to these solvothermal conditions is proposed and discussed. PMID:25889055

  1. Organic-inorganic hybrid saponites obtained by intercalation of titano-silsesquioxane.

    PubMed

    Carniato, Fabio; Bisio, Chiara; Gatti, Giorgio; Guidotti, Matteo; Sordelli, Laura; Marchese, Leonardo

    2011-03-01

    The synthesis and characterization of two bifunctional composite materials based on synthetic saponite clays is here presented. These materials were prepared by intercalation of a Ti-containing aminopropylisobutyl polyhedral oligomeric silsesquioxane (Ti-NH(2) POSS) in synthetic saponite samples containing interlayer sodium (Na-SAP) or protons (H-SAP). Hybrid organic-inorganic materials, Ti-NHM-1 and Ti-NHM-2, were obtained upon ion exchange. Structural, spectroscopic, and thermal properties of both hybrid materials were investigated in detail along with their catalytic activity in cyclohexene oxidation. PMID:21120985

  2. Azobenzene-functionalized cage silsesquioxanes as inorganic-organic hybrid, photoresponsive, nanoscale, building blocks.

    PubMed

    Liu, Yun; Yang, Wenyan; Liu, Hongzhi

    2015-03-16

    Mono- and octa-azobenzene-functionalized cage silsesquioxanes were easily synthesized by the reaction of 4-bromoazobenzene with monovinyl-substituted octasilsesquioxane and cubic octavinylsilsesquioxane through the Heck coupling reaction. Excited-state energies obtained from time-dependent density functional theory (TDDFT) and the CAM-B3LYP functional correlate very well with experimental trans-cis photoisomerization results from UV/Vis spectroscopy. These azobenzene-functionalized cages exhibit good thermal stability and are fluorescent with maximum emission at approximately 400 nm, making them potential materials for blue-light emission. PMID:25663005

  3. Morphological Behavior of Thin Polyhedral Oligomeric Silsesquioxane Films at the Molecular Scale

    SciTech Connect

    G Evmenenko; B Stripe; P Dutta

    2011-12-31

    Synchrotron X-ray reflectivity (XRR) was used to study the structure of thin films of polyhedral oligomeric silsesquioxanes (POSS) with side organic chains of different flexibility and containing terminal epoxy groups. POSS films were deposited from volatile solvents on hydroxylated and hydrogen-passivated silicon surfaces. The XRR data show a variety of structural morphologies, including autophobic molecular monolayers and bilayers as well as uniform films. The role of conformational and energetic factors governing the development of different morphologies in a restricted geometry is discussed.

  4. Inclusion of two push-pull N-methylpyridinium salts in anionic surfactant solutions: a comprehensive photophysical investigation.

    PubMed

    Cesaretti, Alessio; Carlotti, Benedetta; Consiglio, Giuseppe; Del Giacco, Tiziana; Spalletti, Anna; Elisei, Fausto

    2015-06-01

    Two N-methylpyridinium salts with push-pull properties have been investigated in the aqueous solution of anionic micelles of sodium dodecyl sulfate (SDS) and potassium p-(octyloxy)benzenesulfonate (pOoBSK) surfactants. These molecules are known to be extremely sensitive to the local environment, with their absorption spectrum being subjected to a net negative solvatochromism. These compounds are also characterized by an excited state deactivation strictly dependent on the physical properties of the chemical surrounding, with the formation of intramolecular charge-transfer (ICT) states accordingly stabilized. Thanks to steady-state and femtosecond resolved spectroscopic techniques, the photophysical properties of these molecules in the presence of anionic micelles have been fully characterized and an efficient permeation within the micellar aggregates can thus be inferred. The extent of the changes in the photophysical properties of these molecules (with respect to what is observed in water) is an indicator of the medium experienced in the nanoheterogeneous solutions: enhanced fluorescence emissions, reduced Stokes shifts and slowed-down excited state decays strongly confirm the confinement within a scarcely polar and restraining environment. The slightly different behavior shown in the two types of micelles can be ascribed to a peculiar interaction between the aromatic moiety of the surfactant and that of the cations. Additionally, the inclusion promotes the solubilization of these poorly water-soluble salts, which is alluring in their promising use as DNA binders for antitumor purposes. Thus, the anionic micelles allowed the solubilization of the pyridinium salts under investigation, which in turn allowed the characterization of the nonhomogeneous medium established by the micellar aggregates. PMID:25945687

  5. The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study.

    PubMed

    Kannan, Ruben Y; Salacinski, Henryk J; Odlyha, Marianne; Butler, Peter E; Seifalian, Alexander M

    2006-03-01

    Polymer biostability is one of the critical parameters by which these materials are selected for use as biomedical devices. This is the major rationale for the use of polymers which are highly crystalline and stiff namely expanded polytetrafluoroethylene (ePTFE) and Dacron in particular, as arterial bypass grafts. While this is immaterial in high-flow states, it becomes critically important at lower flows with a greater need for more compliant vessels. Polyurethanes being one of the most compliant polymers known are as such, the natural choice to build such constructs. However, concerns regarding their resistance to degradation have limited their use as vascular prostheses and in order to augment their strength, herein a novel polyhedral oligomeric silsesquioxane integrated poly(carbonate-urea)urethane (POSS-PCU) nanocomposite was synthesised by our group. In the following series of experiments, the POSS-PCU nanocomposite samples were exposed to accelerated degradative solutions, in an 'in-house' established model in vitro for up to 70 days before being subjected to infra-red spectroscopy, scanning electron microscopy, stress-strain studies and differential scanning calorimetry. Our results demonstrate that these silsesquioxane nanocores shield the soft segment(s) of the polyurethane, responsible for its compliance and elasticity from all forms of degradation, principally oxidation and hydrolysis. These nanocomposites hence provide an optimal method by which these polymers may be strengthened whilst maintaining their elasticity, making them ideal as vascular prostheses particularly at low flow states. PMID:16253324

  6. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    PubMed Central

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-01-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g−1) and large pore volumes (up to 0.90 cm3 g−1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4′-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405−; the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane. PMID:26062725

  7. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers.

    PubMed

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-01-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m(2) g(-1)) and large pore volumes (up to 0.90 cm(3) g(-1)). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4'-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O40(5-); the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane. PMID:26062725

  8. Synthesis and characterization of magnetic carbon nanotubes/silsesquioxane nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Osorio, Alice Gonçalves; Machado, Geraldo Beyer; Pereira, Marcelo Barbalho; Benvenutti, Edilson Valmir; Pereira, Luis Gustavo; Bergmann, Carlos Perez; Oliveira, Artur Harres de; Costa, Tania Maria Haas

    2016-05-01

    In the present study, magnetic carbon nanotubes (CNTs)/silsesquioxane nanocomposites were produced by sol-gel method and deposited as thin film by dip-coating process. Blank films and films with CNTs were characterized in order to evaluate their chemical composition and morphology. Profilometry technique showed the formation of films with 305 ± 22 nm of thickness for blank samples (without CNTs) and 173 ± 05 nm thickness for samples with CNTs. Microscopy techniques indicated the presence of CNTs well dispersed in the films and, with the aid of Raman and Fourier Transform Infrared spectroscopy, chemical composition of silsesquioxane matrix was evidenced and the presence of CNTs was confirmed in the films. Finally, the magnetic response of the deposited films was analyzed by Alternating Gradient-Field Magnetometer and results indicated that films reinforced with CNTs showed a hysteresis loop that indicates a coercivity of 103 Oe and the blank film did not show any significant response to the field applied. Hence, the authors suggest that this hybrid organic-inorganic material has potential to be applied as a new material for magnetic storage.

  9. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    NASA Astrophysics Data System (ADS)

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  10. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    NASA Astrophysics Data System (ADS)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  11. Synthesis and catalytic properties of hybrid mesoporous materials assembled from polyhedral and bridged silsesquioxane monomers.

    PubMed

    Díaz, Urbano; García, Teresa; Velty, Alexandra; Corma, Avelino

    2012-07-01

    A family of hybrid mesoporous materials with high temperature stability was obtained by the suitable covalent combination of two types of siloxane precursors. Specifically, cubic T(8) polyhedral oligomeric (POSS) and aryl bridged silsesquioxane monomers (1,4-bis(triethoxysilyl)benzene, BTEB) play the role of nanobuilders. An optimal molar ratio of the two precursors (5-25 mol% of total silicon content from the BTEB disilane) generated a homogenous, highly accessible, and well-defined mesoporous material with hexagonal symmetry and narrow pore-size distribution. Physicochemical, textural, and spectroscopic analysis corroborated the effective integration and preservation of the two different nanoprecursors, thereby confirming the framework of the mesoporous hybrid materials. A post-synthesis amination treatment allowed the effective incorporation of amino groups onto the aryl linkers, thereby obtaining a stable and recyclable basic catalyst for use in C-C bond-formation processes. PMID:22678926

  12. Ab initio molecular orbital study on the Ge-, Sn-, Zr- and Si/Ge-mixed silsesquioxanes.

    PubMed

    Kudo, Takako; Akasaka, Mitsutoshi; Gordon, Mark S

    2008-05-29

    For the purpose of designing new functional silsesquioxanes (POSS), the structure and stability of the analogous compounds of the heavier group 14 and 4 elements such as germanium (Ge-POSS), tin (Sn-POSS) and zirconium (Zr-POSS) analogues of POSS were investigated and compared with those of the parent POSS and the titanium analogue (Ti-POSS) with electronic structure theory calculations, including electron correlation effects. In order to obtain information about the metalloxane (-X-O-X-) linkage, the structures and properties of the building blocks of metallasilsesquioxanes, such as dimetalloxanes, H(OH)2XOX(OH)2H, X = Ge, Sn and Zr, and cyclometalloxanes, [H(OH)XO]n , n = 3-6, X = Ge, Sn and Zr, were examined. The stability of the Si/Ge-mixed POSS were also studied in comparison with POSS and the completely germanium-substituted POSS. PMID:18444638

  13. Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes.

    PubMed

    Duan, Yannan; Jana, Sadhan C; Reinsel, Anna M; Lama, Bimala; Espe, Matthew P

    2012-10-30

    This study evaluated polyhedral oligomeric silsesquioxane (POSS) molecules as useful, multifunctional reinforcing agents of silica aerogels. Silica aerogels have low-density and high surface area, although their durability is often compromised by the inherent fragility and strong moisture absorption behavior of the silica networks. POSS molecules carrying phenyl, iso-butyl, and cyclohexyl organic side groups, and several Si-OH functionalities were incorporated into silica networks via reactions between Si-OH functionalities in POSS molecules and silanes. Solid state (13)C and (29)Si NMR spectra established that greater than 90% of POSS molecules grafted onto silica networks and led to an increase in fractal dimensions. An almost 6-fold increase in compressive modulus was achieved with less than 5 wt % trisilanol phenyl POSS, and a 50-fold decrease in polarity with negligible changes in density were seen in aerogels modified with less than 5 wt % trisilanol isobutyl POSS. PMID:23046155

  14. Properties of PMR Polyimides Improved by Preparation of Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Lee, Andre

    2005-01-01

    The field of hybrid organic-inorganic materials has grown drastically over the last several years. This interest stems from our ever-increasing ability to custom-build and control molecular structure at several length scales. This ability to control both the composition and structure of hybrid materials is sometimes broadly referred to as nanocomposite systems. One class of hybrid (organic-inorganic) nanostructured material is polyhedral oligomeric silsesquioxane (POSS), shown in the preceding diagram. The hybrid composition gives POSS materials dramatically enhanced properties relative to traditional hydrocarbons and inorganics. An important benefit of this technology is that it makes possible the formulations of nanostructured chemicals with excellent thermal and oxidative stability. This is largely due to the inorganic component.

  15. Cube-octameric silsesquioxane-mediated cargo peptide delivery into living cancer cells.

    PubMed

    Hörner, Sebastian; Fabritz, Sebastian; Herce, Henry D; Avrutina, Olga; Dietz, Christian; Stark, Robert W; Cardoso, M Cristina; Kolmar, Harald

    2013-04-14

    Cube octameric silsesquioxanes (COSS) are among the smallest nanoparticles known to date with a diameter of only 0.7 nm. We describe a COSS-based delivery system which allows for the drug targeting in human cells. It comprises a siloxane core with seven pendant aminopropyl groups and a fluorescently labeled peptidic ligand attached to one cage corner via a reversible disulfide bond to ensure its intracellular release. Bimodal amplitude-modulated atomic force microscopy (AFM) experiments revealed the formation of dendritic COSS structures by a self-assembly of single particles on negatively charged surfaces. Nuclear targeting was demonstrated in HeLa cells by selective binding of released p21(Cip1/Waf1)-derived cargo peptide to PCNA, a protein involved in DNA replication and repair. PMID:23250285

  16. Cubic Polyhedral Oligomeric Silsesquioxane Based Functional Materials: Synthesis, Assembly, and Applications.

    PubMed

    Ye, Qun; Zhou, Hui; Xu, Jianwei

    2016-05-01

    Organically modified cubic polyhedral oligomeric silsesquioxanes (POSS) have attracted increasing attention in the design of novel functional hybrid materials for applications such as porous materials, liquid crystals, semiconductors, high-temperature lubricants, fuel cells, and lithium batteries. The nanosized POSS moiety can be conveniently modified on the periphery with a variety of functional groups to lead to hybrid materials with desired functions. In addition, suitable mono-functionalized POSS derivatives can be incorporated into polymers as side chains via various synthetic strategies to offer a wide class of functional polymeric materials with tunable physical properties for targeted applications. In this Focus Review, we aim to summarize the recent developments on the chemistry and applications of POSS-based molecules and polymers. Moreover, the properties as well as assembly behavior of the POSS-based functional hybrid materials will be reviewed, and the relationship of the performance of the hybrid materials with the intrinsic nature of the POSS unit will be addressed. PMID:26879136

  17. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    SciTech Connect

    Dobrzyńska-Mizera, Monika Sterzyński, Tomasz; Dutkiewicz, Michał; Di Lorenzo, Maria Laura

    2015-12-17

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  18. Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane.

    PubMed

    van Kan, Jeroen A; Bettiol, Andrew A; Watt, Frank

    2006-03-01

    Proton beam writing (p-beam writing) is a promising new direct-write lithographic technique for three-dimensional nanofabrication. In p-beam writing a megaelectronvolt proton beam is focused to a sub-100-nm spot size and scanned over a suitable resist material. Unlike electrons, when a proton beam interacts with resist it follows an almost straight path resulting in high aspect ratio structures with vertical, smooth sidewalls. The secondary electrons induced by the primary proton beam have low energy and therefore limited range, resulting in minimal proximity effects. Hydrogen silsesquioxane has been identified as a superior resist for p-beam writing, allowing the production of high-aspect-ratio structures down to 22 nm. PMID:16522066

  19. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGESBeta

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  20. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    SciTech Connect

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.

  1. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    NASA Astrophysics Data System (ADS)

    Dobrzyńska-Mizera, Monika; Dutkiewicz, Michał; Sterzyński, Tomasz; Di Lorenzo, Maria Laura

    2015-12-01

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  2. Unusual penta- and hexanuclear Ni(ii)-based silsesquioxane polynuclear complexes.

    PubMed

    Bilyachenko, Alexey N; Yalymov, Alexey I; Korlyukov, Alexander A; Long, Jérôme; Larionova, Joulia; Guari, Yannick; Vologzhanina, Anna V; Es'kova, Marina A; Shubina, Elena S; Levitsky, Mikhail M

    2016-04-25

    Fine-tuning of the reaction between alkali metal siloxanolate [PhSi(O)ONa]n and [Ni(NH3)6]Cl2 allowed us to design new hexa- [(PhSiO1,5)12(NiO)6(H2O)(DMSO)9] () and pentanuclear [(PhSiO1,5)10(NiO)5(NaOH)(DMF)7] () cage-like silsesquioxanes. Their specific structures were studied by single crystal X-ray diffraction and topological analyses. Compound is the first example of a pentanuclear "cylinder"-like metallasilsesquioxane. Magnetic property investigations demonstrate the presence of a slow relaxation of the magnetization, induced by spin glass-like behavior in both cases. PMID:27011035

  3. Integrated Chemical Systems: The Simultaneous Formation of Hybrid Nanocomposites of Iron Oxide and Organo Silsesquioxanes

    SciTech Connect

    Zhao, L; Clapsaddle, B; Jr., J S; Schaefer, D; Shea, K

    2004-10-15

    A sol-gel approach for the synthesis of hybrid nanocomposites of iron oxide and bridged polysilsesquioxanes has been established. The procedures allow for the simultaneous formation of iron oxide and polysilsesquioxane networks in monolithic xerogels and aerogels. These hybrid nanocomposites are synthesized from FeCl{sub 3} {center_dot} 6H{sub 2}O and functionalized silsesquioxane monomers in a one-pot reaction using epoxides as a gelation agent. The porosity and microstructure of the materials has been determined by nitrogen porosimetry, electron microscopy and ultra small angle X-ray scattering (USAXS). The hybrid nanocomposites exhibit a uniform dispersion of both components with no evidence for phase separation at length scales > 5 nm. At this limit of resolution it is not possible to distinguish between two independent interpenetrating networks integrated at molecular length scales or a random copolymer or mixtures of both.

  4. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A.; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-01

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy.

  5. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.

    PubMed

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-16

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy. PMID:20562479

  6. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    PubMed Central

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-01-01

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate. PMID:25687953

  7. Encapsulation of titanium (IV) silsesquioxane into the NH{sub 4}USY zeolite: Preparation, characterization and application

    SciTech Connect

    Ribeiro do Carmo, Devaney Dias Filho, Newton Luiz; Ramos Stradiotto, Nelson

    2007-10-02

    This work describes the encapsulation of titanium (IV) silsesquioxane into the supercavities of NH{sub 4}USY ultra stabilized zeolite, after chemical treatment. The modified zeolite was characterized by Fourier transform infrared spectra, Nuclear magnetic resonance, scanning electronic microscopy, X-ray diffraction and thermogravity. This encapsulated titanium (IV) silsesquioxane can adsorb Azure A chloride after treatment with H{sub 3}PO{sub 4}, without modifier leaching problems. In an electrochemical study, the cyclic voltammograms of the graphite paste modified electrode, shows two redox couples with formal potential (E{sup 0}') -0.1 V and 0.21 V to I and II redox couples respectively (v=700mVs{sup -1}; Britton Robinson buffer (B-R) solution, pH 3) versus SCE ascribed to a monomer and dimmer of azure. This paper shows the use of ultra stabilized zeolite in the electrochemical field as host for molecules with nanometric dimensions.

  8. Controlled click-assembly of well-defined hetero-bifunctional cubic silsesquioxanes and their application in targeted bioimaging.

    PubMed

    Pérez-Ojeda, M Eugenia; Trastoy, Beatriz; Rol, Álvaro; Chiara, María D; García-Moreno, Inmaculada; Chiara, Jose Luis

    2013-05-17

    A general procedure for the assembly of hetero-bifunctional cubic silsesquioxanes with diverse functionality and a perfectly controlled distribution of functional groups on the inorganic framework has been developed. The method is based on a two-step sequence of mono- and hepta-functionalization through the ligand-accelerated copper(I)-catalyzed azide-alkyne cycloaddition of a readily available octaazido cubic silsesquioxane. The stoichiometry of the reactants and the law of binomial distribution essentially determine the selectivity of the key monofunctionalization reaction when a copper catalyst with strong donor ligands is used. The methodology has been applied to the preparation of a set of bifunctional nano-building-blocks with orthogonal reactivity for the controlled assembly of precisely defined hybrid nanomaterials and a fluorescent multivalent probe for application in targeted cell-imaging. The inorganic cage provides an improved photostability to the covalently attached dye as well as a convenient framework for the 3D multivalent display of the pendant epitopes. Thus, fluorescent bioprobes based on well-defined cubic silsesquioxanes offer interesting advantages over more conventional fully organic analogues and ill-defined hybrid nanoparticles and promise to become powerful tools for the study of cell biology and for biomedical applications. PMID:23536481

  9. Binding-induced fluorescence of serotonin transporter ligands: A spectroscopic and structural study of 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) and APP(+) analogues.

    PubMed

    Wilson, James N; Ladefoged, Lucy Kate; Babinchak, W Michael; Schiøtt, Birgit

    2014-04-16

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  10. Binding-Induced Fluorescence of Serotonin Transporter Ligands: A Spectroscopic and Structural Study of 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) and APP+ Analogues

    PubMed Central

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  11. Aminophenyl double decker silsesquioxanes: Spectroscopic elucidation, physical and thermal characterization, and their applications

    NASA Astrophysics Data System (ADS)

    Schoen, Beth Whitney

    The incorporation of cage-like silsesquioxanes (SQ) to form polymers has demonstrated property enhancements in areas such as: thermal and mechanical characteristics, flame retardance, dielectric properties, and oxidative resistance. However, with most hybrid polymers investigated, the attached SQs are pendant with respect to the polymer backbone. A recently developed class of these nano-structured, cage-like silsesquioxanes, formally known as double decker silsesquioxanes (DDSQ), offers the opportunity to form hybrid polymers with SQ cages as a part of the polymer backbone. However, during the capping reaction, these functionalized DDSQs generate cis and trans isomers with respect to the 3D Si-O core. Therefore, it is logical to characterize properties, which will allow for optimization of capping reaction parameters, particularly if one isomer is favored over the other. Moreover, these characteristics are also relevant when reacting or incorporating these isomers, or mixtures thereof, with other molecules to form novel materials. In this dissertation, three aminophenyl DDSQs were synthesized. More specifically, two meta- aminophenyl DDSQs, which were differentiated according to the moiety attached to the D-Si (methyl or cyclohexyl), and one para-aminophenyl DDSQ with a methyl moiety were used. Chemical, physical, and thermal characteristics were evaluated for individual isomers as well as binary mixtures of different cis/trans ratios. The 1H NMR spectra of the cis and trans isomers of these DDSQ had not previously been assigned to a degree that allowed for quantification, which was necessary for these studies. Thus, 1H-29Si HMBC correlations were applied to facilitate 1H spectral assignments and also to confirm previous 29Si assignments. Using 1H NMR not only saves time and material over 29Si NMR, but also provides a more accurate quantification, thus allowing for the ratio of cis and trans isomers present in each compound to be determined. Solubility behavior was

  12. Self-Assembly of Polyhedral Oligomeric Silsesquioxane-Based Giant Molecular Shape Amphiphiles

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Cheng, Stephen

    2013-03-01

    A series of giant molecular shape amphiphiles based on functional polyhedral oligomeric silsesquioxane (POSS) particles was designed and synthesized. The supramolecualr structures of these assemblies along with the resulting ordered structures are fully investigated to determine their structure-property relationships. For example, functional POSS cages with different surface chemistry and sizes were employed to construct dumbbell- and snowman-like molecular Janus particles with various symmetry breakings. These particles could self-organize into hierarchically ordered supramolecular structures in the bulk. Another illustrating example is a series of novel giant surfactants, lipids and gemini surfactants possessing a hydrophilic POSS head and polymer or alkyl chain tails. Diverse architectures of this class of materials have been constructed and their self-assembly processes in solution and bulk state have been discussed. This set of research results not only has general implications in the basic physical principles underlying their self-assembly behaviors, but also create unique materials for developing advanced technologies by combining the properties of hybrid materials

  13. Self-Assembly of Giant Gemini Surfactants Based on Polystyrene- Hydrophilic Polyhedral Oligomeric Silsesquioxane Shape Amphiphiles

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Wang, Zhao; Cheng, Stephen

    2013-03-01

    A series of giant gemini surfactants consisting of two hydrophilic carboxylic acid-functionalized polyhedral oligomeric silsesquioxane (APOSS) heads and two hydrophobic polystyrene (PS) tails covalently linked via rigid spacers (PS-(APOSS)2-PS) was designed and synthesized Our current study revealed a morphological transition from vesicles to wormlike cylinders and further to spheres as the degree of ionization of the carboxylic acid groups on POSS heads increases in their micelle solutionPS tails were found to be less stretched in micellar cores of PS-(APOSS)2-PS than those of the corresponding single-chained giant surfactant. It was also observed that the PS tail conformations in the micelles were also affected by the length of rigid spacers where the one with longer spacer exhibits more stretched PS chain conformation. Both findings could be explained by the topological constraint imposed by the short rigid spacer in giant gemini surfactants. This constraint effectively increases the local charge density and leads to an anisotropic head shape that requires a proper re-distribution of the APOSS heads on the micellar surface to minimize the total electrostatic repulsive free energy. Moreover, their supramolecular structures in bulk were also found to be strongly affected by rigid spacer effects. Our study has general implications in the basic physical principles underlying their self-assembly behaviors in solution and bulk states

  14. Synthesis and Self-Assembly Behaviors of Polyhedral Oligomeric Silsesquioxane Based Giant Molecular Shape Amphiphiles

    NASA Astrophysics Data System (ADS)

    Yue, Kan; Yu, Xinfei; Liu, Chang; Zhang, Wen-Bin; Cheng, Stephen

    2013-03-01

    Recently, our group has focus on the synthesis and characterization of novel giant molecular shape amphiphiles (GMSAs) based on functionalized molecular nanoparticles (MNPs), such as polyhedral oligomeric silsesquioxane (POSS), tethered with polymeric tails. A general synthetic method via the combination of sequential ?click? reactions has been developed and several model GMSAs with various tail lengths and distinct molecular topologies, which can be referred as the ?giant surfactants?, ?giant lipids?, ?giant gemini surfactants?, and ?giant bolaform surfactants? etc., have been demonstrated. Studies on their self-assembly behaviors in the bulk have revealed the formation of different ordered mesophase structures with feature sizes around 10 nanometers, which have been investigated in detail by small angle X-ray scattering (SAXS) technique and transmission electron microscopy (TEM). These findings have general implications on understanding the underlying principles of self-assembly behaviors of GMSAs, and might have potential applications in nano-patterning technology. This work is supported by NSF (DMR-0906898) and the Joint-Hope Foundation.

  15. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons

    PubMed Central

    Ghanbari, Hossein; de Mel, Achala; Seifalian, Alexander M

    2011-01-01

    Revolutionary advances in nanotechnology propose novel materials with superior properties for biomedical application. One of the most promising nanomaterials for biomedical application is polyhedral oligomeric silsesquioxane (POSS), an amazing nanocage consisting of an inner inorganic framework of silicon and oxygen atoms and an outer shell of organic groups. The unique properties of this nanoparticle has led to the development of a wide range of nanostructured copolymers with significantly enhanced properties including improved mechanical, chemical, and physical characteristics. Since POSS nanomaterials are highly biocompatible, biomedical application of POSS nanostructures has been intensely explored. One of the most promising areas of application of POSS nanomaterials is the development of cardiovascular implants. The incorporation of POSS into biocompatible polymers has resulted in advanced nanocomposite materials with improved hemocompatibility, antithrombogenicity, enhanced mechanical and surface properties, calcification resistance, and reduced inflammatory response, which make these materials the material of choice for cardiovascular implants. These highly versatile POSS derivatives have opened new horizons to the field of cardiovascular implant. Currently, application of POSS containing polymers in the development of new generation cardiovascular implants including heart valve prostheses, bypass grafts, and coronary stents is under intensive investigation, with encouraging outcomes. PMID:21589645

  16. Synthesis and properties of hydroxyl-terminated polybutadiene-based polyurethanes reinforced with polyhedral oligomeric silsesquioxanes.

    PubMed

    Kim, Ho-Joong; Kwon, Younghwan; Kim, Chang Kee

    2014-11-01

    Polyurethane/polyhedral oligomeric silsesquioxane (PU/POSS) hybrid composites are prepared by a one-step PU reaction using hydroxyl-terminated polybutadiene (HTPB) prepolymer, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS molecule. The effect of incorporation of functionalized POSS molecules covalently bonded or physically blended into PU matrix is investigated in terms of mechanical reinforcement and thermal stability of these resulting PU/POSS hybrid composites. PU/POSS hybrid composites prepared with reactive POSS molecules exhibit the mechanical reinforcement while maintaining low glass transition temperataure (T(g)), probably due to the fact that reactive POSS molecules chemically incorporated in PU are aggregated to crystallize, effectively working as a physical crosslinking in PU/POSS hybrid composites. This can be advantageous in that mechanical reinforcement of PU/POSS hybrid composites can be achived without sacrificing the low temperature properties of these composites. However, the contribution of POSS molecules incorporated covalently into PU matrix is virtually absent on the thermal decomposition temperature (T(d,max)) measured using TGA/DTG. Thermal degradation behavior of these hybrid composites in the early stage rather appears to depend preferably on characteristics of POSS molecules incorporated. PMID:25958582

  17. Nanometer-scale fabrication of hydrogen silsesquioxane (HSQ) films with post exposure baking.

    PubMed

    Kim, Dong-Hyun; Kang, Se-Koo; Yeom, Geun-Young; Jang, Jae-Hyung

    2013-03-01

    A nanometer-scale grating structure with a 60-nm-wide gap and 200-nm-wide ridge has been successfully demonstrated on a silicon-on-insulator substrate by using a 220-nm-thick hydrogen silsesquioxane (HSQ) negative tone electron beam resist. A post exposure baking (PEB) process and hot development process with low concentration (3.5 wt%) of tetramethylammonium hydroxide (TMAH) solution were introduced to realize the grating pattern. To study the effects of post exposure baking on the HSQ resist, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses were carried out. From the FT-IR and XPS analyses, it was verified that a thin SiO2 with high cross-linked network structure was formed on the HSQ surface during the PEB step. This SiO2 layer prevents the formation of unwanted bonds on the HSQ surface, which results in clearly defined grating structures with a 60-nm-gap and 200-nm-wide-ridge on the 220-nm-thick HSQ resist. The nanometer-scale grating pattern was successfully transfered to the 280-nm-thick silicon layer of a silicon-on-insulator (SOI) substrate by using inductively-coupled-plasma-reactive-ion-etching (ICP-RIE). PMID:23755620

  18. Surface modification of polyhedral oligomeric silsesquioxane block copolymer films by 157 nm laser light

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, Evangelia; Kollia, Zoe; Cefalas, Alkiviadis Constantinos; Siokou, Ageliki Elina; Argitis, Panagiotis; Bellas, Vassilios; Kobe, Spomenka

    2009-06-01

    Thin films of ethyl polyhedral oligomeric silsesquioxane (ethyl-POSS) containing polymers at different compositions were chemically modified using laser irradiation at 157 nm. The irradiation caused photodissociation of C-O and C-H bonds followed by the formation of new chemical bonds. The content of Si-O and C-O bonds increased, as did the surface hardness. Vacuum ultraviolet (VUV) absorption, mass spectrometry, x-ray photoelectron spectroscopy, and atomic force microscopy imaging and indentation were used to evaluate the effects of the 157 nm irradiation. The chemical modification was restricted to a thin surface layer. The layer depth was determined by the penetration depth of the 157 nm VUV photons inside the thin copolymer layer. With prolonged VUV irradiation, the absorbance of the polymers increased, eventually becoming saturated. The chemical changes were accompanied by surface hardening, as evidenced by the increase in the Young's modulus from 4 to 24 GPa due to glassification of the irradiated parts. The chemically modified layer acts as a shield against photodissociation and degradation of the deeper portion of the POSS polymer by VUV radiation. Applications include the protection of solar cells on low orbit satellites from solar VUV photons.

  19. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    NASA Astrophysics Data System (ADS)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly

    2011-10-01

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  20. Low-voltage-exposure-enabled hydrogen silsesquioxane bilayer-like process for three-dimensional nanofabrication

    NASA Astrophysics Data System (ADS)

    Xiang, Quan; Chen, Yiqin; Wang, Yasi; Zheng, Mengjie; Li, Zhiqin; Peng, Wei; Zhou, Yanming; Feng, Bo; Chen, Yifang; Duan, Huigao

    2016-06-01

    We report a bilayer-like electron-beam lithographic process to obtain three-dimensional (3D) nanostructures by using only a single hydrogen silsesquioxane (HSQ) resist layer. The process utilizes the short penetration depth of low-energy (1.5 keV) electron irradiation to first obtain a partially cross-linked HSQ top layer and then uses a high-voltage electron beam (30 keV) to obtain self-aligned undercut (e.g. mushroom-shaped) and freestanding HSQ nanostructures. Based on the well-defined 3D resist patterns, 3D metallic nanostructures were directly fabricated with high fidelity by just depositing a metallic layer. As an example, Ag-coated mushroom-shaped nanostructures were fabricated, which showed lower plasmon resonance damping compared to their planar counterparts. In addition, the undercut 3D nanostructures also enable more reliable lift-off in comparison with the planar nanostructures, with which high-quality silver nanohole arrays were fabricated which show distinct and extraordinary optical transmission in the visible range.

  1. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties.

    PubMed

    Feng, Ye; Zhang, Jinming; He, Jiasong; Zhang, Jun

    2016-08-20

    The solubility of eight types of polyhedral oligomeric silsesquioxane (POSS) derivatives in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) and the dispersion of POSS in cellulose matrix were examined. Only a special POSS containing both aminophenyl and nitrophenyl groups (POSS-AN, NH2:NO2=2:6) was selected to prepare nanocomposites, because of its good solubility in AmimCl and high stability during the preparation process. POSS-AN nanoparticles were uniformly dispersed in a cellulose matrix with a size of 30-40nm, and so the resultant cellulose/POSS-AN nanocomposite films were transparent. The mechanical properties of the films achieved a maximum tensile strength of 190MPa after addition of 2wt% POSS-AN. Interestingly, all of the cellulose/POSS-AN films exhibited high UV-absorbing capability. For the 15wt% cellulose/POSS-AN film, the transmittance of UVA (315-400nm) and UVB (280-315nm) was only 9.1% and nearly 0, respectively. The UV aging and shielding experiments showed that the transparent cellulose/POSS-AN nanocomposite films possessed anti-UV aging and UV shielding properties. PMID:27178922

  2. Polyhedral Oligomeric Silsesquioxane-Containing Thiol-ene Fibers with Tunable Thermal and Mechanical Properties.

    PubMed

    Fang, Yichen; Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2016-05-01

    Polyhedral oligomeric silsesquioxanes (POSS) are versatile inorganic-organic hybrid building blocks that have potential applications as reinforcement nanofillers, thermal stabilizers, and catalyst supports for metal nanoparticles. However, fabrication of fibrous materials with high POSS content has been a challenge because of the aggregation and solubility limits of POSS units. In this paper, we describe a robust and environmentally friendly fabrication approach of inorganic-organic hybrid POSS fibers by integrating UV initiated thiol-ene polymerization and centrifugal fiber spinning. The use of monomeric liquids in this approach not only reduces the consumption of heat energy and solvent, but it also promotes homogeneous mixing of organic and inorganic components that allows integration of large amount of POSS (up to 80 wt %) into the polymer network. The POSS containing thiol-ene fibers exhibited enhanced thermomechanical properties compared to purely organic analogs as revealed by substantial increases in residual weight and a factor of 4 increase in modulus after thermal treatment at 1000 °C. This simple fabrication approach combined with the tunability in fiber properties afforded by tailoring monomer composition make POSS containing thiol-ene fibers attractive candidates for catalyst supports and filtration media, particularly in high-temperature and harsh environments. PMID:27057758

  3. Investigation of the Hydrogen Silsesquioxane (HSQ) Electron Resist as Insulating Material in Phase Change Memory Devices

    NASA Astrophysics Data System (ADS)

    Zhou, Jiao; Ji, Hongkai; Lan, Tian; Yan, Junbing; Zhou, Wenli; Miao, Xiangshui

    2015-01-01

    Phase change random access memory (PCRAM) affords many advantages over conventional solid-state memories due to its nonvolatility, high speed, and scalability. However, high programming current to amorphize the crystalline phase through the melt-quench process of PCRAM, known as the RESET current, poses a critical challenge and has become the most significant obstacle for its widespread commercialization. In this work, an excellent negative tone resist for high resolution electron beam lithography, hydrogen silsesquioxane (HSQ), has been investigated as the insulating material which locally blocks the contact between the bottom electrode and the phase change material in PCRAM devices. Fabrications of the highly scaled HSQ nanopore arrays (as small as 16 nm) are presented. The insulating properties of the HSQ material are studied, especially under e-beam exposure plus thermal curing. Some other critical issues about the thickness adjustment of HSQ films and the influence of the PCRAM electrode on electron scattering in e-beam lithography are discussed. In addition, the HSQ material was successfully integrated into the PCRAM devices, achieving ultra-low RESET current (sub-100 μA), outstanding on/off ratios (~50), and improved endurance at tens of nanometers.

  4. Investigation of the Hydrogen Silsesquioxane (HSQ) Electron Resist as Insulating Material in Phase Change Memory Devices

    NASA Astrophysics Data System (ADS)

    Zhou, Jiao; Ji, Hongkai; Lan, Tian; Yan, Junbing; Zhou, Wenli; Miao, Xiangshui

    2014-09-01

    Phase change random access memory (PCRAM) affords many advantages over conventional solid-state memories due to its nonvolatility, high speed, and scalability. However, high programming current to amorphize the crystalline phase through the melt-quench process of PCRAM, known as the RESET current, poses a critical challenge and has become the most significant obstacle for its widespread commercialization. In this work, an excellent negative tone resist for high resolution electron beam lithography, hydrogen silsesquioxane (HSQ), has been investigated as the insulating material which locally blocks the contact between the bottom electrode and the phase change material in PCRAM devices. Fabrications of the highly scaled HSQ nanopore arrays (as small as 16 nm) are presented. The insulating properties of the HSQ material are studied, especially under e-beam exposure plus thermal curing. Some other critical issues about the thickness adjustment of HSQ films and the influence of the PCRAM electrode on electron scattering in e-beam lithography are discussed. In addition, the HSQ material was successfully integrated into the PCRAM devices, achieving ultra-low RESET current (sub-100 μA), outstanding on/off ratios (~50), and improved endurance at tens of nanometers.

  5. Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes

    PubMed Central

    Wang, Weiguo; Sun, Xiang; Huang, Li; Gao, Yu; Ban, Jinghao; Shen, Lijuan; Chen, Jihua

    2014-01-01

    Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional groups]) were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials. PMID:24550674

  6. Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)-polyimide nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Han-Shiang; Jeng, Shie-Chang

    2013-05-01

    Polyimide (PI) films are widely used in the liquid crystal display (LCD) industry to align liquid crystal (LC) molecules in a specific orientation with a pretilt angle θp on the PI alignment films. It was observed that physical dispersion of polyhedral oligomeric silsesquioxane (POSS) nanoparticles in commercial homogenous PIs decreases the surface energy of the PI alignment films and generates a controllable θp in the range 0° < θp < 90°, which is not easily achieved by complicate PI synthesis. Characteristics of POSS-PI nanocomposites were studied to investigate the influence of POSS nanoparticles on PIs. Increased absorption in the infrared spectra and decreased decomposition temperature and glass transition temperature with POSS doped concentration in PI were observed due to the increase in free volume of POSS-PI nanocomposites. Such nanoscale hybridization suggests a novel approach to tune the properties of PIs through modification of molecular interaction. A fast response no-bias optically-compensated bend (OCB) LCD with a pretilt angle of 68° was also demonstrated in this work.

  7. Low-voltage-exposure-enabled hydrogen silsesquioxane bilayer-like process for three-dimensional nanofabrication.

    PubMed

    Xiang, Quan; Chen, Yiqin; Wang, Yasi; Zheng, Mengjie; Li, Zhiqin; Peng, Wei; Zhou, Yanming; Feng, Bo; Chen, Yifang; Duan, Huigao

    2016-06-24

    We report a bilayer-like electron-beam lithographic process to obtain three-dimensional (3D) nanostructures by using only a single hydrogen silsesquioxane (HSQ) resist layer. The process utilizes the short penetration depth of low-energy (1.5 keV) electron irradiation to first obtain a partially cross-linked HSQ top layer and then uses a high-voltage electron beam (30 keV) to obtain self-aligned undercut (e.g. mushroom-shaped) and freestanding HSQ nanostructures. Based on the well-defined 3D resist patterns, 3D metallic nanostructures were directly fabricated with high fidelity by just depositing a metallic layer. As an example, Ag-coated mushroom-shaped nanostructures were fabricated, which showed lower plasmon resonance damping compared to their planar counterparts. In addition, the undercut 3D nanostructures also enable more reliable lift-off in comparison with the planar nanostructures, with which high-quality silver nanohole arrays were fabricated which show distinct and extraordinary optical transmission in the visible range. PMID:27175929

  8. A Polyhedral Oligomeric Silsesquioxane-Polyoxometalate Hybrid Shape Amphiphile: Facile Synthesis, Characterization and Crystal Structure

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Jing; Yue, Kan; Jiang, Jing; Zhang, Wen-Bin; Cheng, Stephen

    2013-03-01

    This study contains the synthesis and characterization of a novel shape amphiphile composed of two covalently conjugated inorganic nanoparticles, i.e. an isobutyl substituted polyhedral oligomeric silsesquioxane (BPOSS) cage and a Lindqvist-type hexamolybdate ([Mo6O19]2-) cluster, and its crystal structure. The facile one-step coupling strategy was realized via the highly efficient palladium-catalyzed Sonogashira reaction between an alkyne-bearing POSS derivative (BPOSS-Alkyne) and an iodo-functionalized Lindqvist precursor (Lind-Iodide) in high yield. The precisely defined molecular structure was thoroughly characterized by combination of routine techniques, such as 1H and 13C NMR, FT-IR, and MALDI-TOF mass spectroscopy. The persistent shape and chemical incompatibility of the two building blocks, as well as the rigid p-phenylene ethynylene linker, drive BPOSS-Lind to pack into a monoclinic lattice, which was confirmed by bright field transmission electron microscopy (TEM), selected area electron diffraction (SAED), small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS). This work introduces a new dumbbell-shaped giant hybrid molecule (BPOSS-Lind) and shed light on the packing behavior of this shape amphiphile.

  9. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides

    NASA Astrophysics Data System (ADS)

    Wood, Michael G.; Chen, Li; Burr, Justin R.; Reano, Ronald M.

    2014-01-01

    We carried out a multiparameter fabrication study designed to reduce the line edge roughness (LER) of electron beam (e-beam) patterned hydrogen silsesquioxane resist for the purpose of producing low-loss silicon strip waveguides. Reduced mask roughness was achieved for 50°C pre-exposure baking, 5000 μC/cm2 dose with a beam spot size more than twice as large as the electron beam step size, development in 25% tetramethylammonium hydroxide and postdevelopment baking with rapid thermal annealing in an O2 ambient at 1000°C. The LER caused by pattern fracturing and stage stitches was reduced with multipass writing and per-pass linear and rotational offsets. Si strip waveguides patterned with the optimized mask have root-mean-square sidewall roughness of 2.1 nm with a correlation length of 94 nm, as measured by three-dimensional atomic force microscopy. Measured optical propagation losses of these waveguides across the telecommunications C-band were 2.5 and 2.8 dB/cm for the transverse magnetic and transverse electric modes, respectively. These reduced loss waveguides enable the fabrication of advanced planar lightwave circuit topologies.

  10. Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study.

    PubMed

    Croce, Gianluca; Carniato, Fabio; Milanesio, Marco; Boccaleri, Enrico; Paul, Geo; van Beek, Wouter; Marchese, Leonardo

    2009-11-21

    This work is focused on a multidisciplinary study of a completely condensed octaisobutyl-silsesquioxane (IBUPOSS) as a model of the alkyl POSS family. IBUPOSS is characterized by the presence of eight isobutyl groups bonded to the corners of the siliceous framework. Differential scanning calorimetric measurements and an innovative simultaneous in situ Raman/XRPD experiment suggested that IBUPOSS undergoes a solid phase transition around 330 K, and indicated that this transition is related to a change in the conformational freedom of the isobutyl chains. The X-ray powder diffraction (XRPD) pattern of the high temperature phase was indexed in the high symmetry [R3m] space group. The Raman data indicated a larger mobility of the aliphatic side chains at high temperature, thus inducing a disorder in the IBUPOSS moiety. Multidimensional heteronuclear solid-state NMR experiments were employed to probe the structural and motional features of the observed phase transition. The various conformations can be accounted for by a pseudo-D(3h) symmetry able to obey to the [R3m] space group. Simulations on molecular mechanics and dynamics, together with quantum-chemical calculations, confirmed this hypothesis and gave some hints on the conformational mobility and the energetic features of IBUPOSS, a base material with relevant applications in catalysis and polymer science. PMID:19865764

  11. Enhanced light extraction efficiency in organic light emitting diodes using a tetragonal photonic crystal with hydrogen silsesquioxane.

    PubMed

    Kim, Yang Doo; Han, Kyeong-Hoon; Park, Sang-Jun; Kim, Jung-Bum; Shin, Ju-Hyeon; Kim, Jang Joo; Lee, Heon

    2014-10-15

    We report an organic light emitting diode (OLED) with a hydrogen silsesquioxane as a scattering material, for enhancing light extraction efficiency. A tetragonal photonic crystal was used as pattern type, and fabricated using a direct printing technique. Planarization was accomplished using TiO₂ solgel solution, having a refractive index identical to that of the indium zinc oxide transparent electrode. The current efficiency and power efficiency of the OLED increased by 17.3% and 43.4% at 10  mA/cm², respectively, without electric degradation. PMID:25361115

  12. Mechanical property and thermal stability of polyurethane composites reinforced with polyhedral oligomeric silsesquioxanes and inorganic flame retardant filler.

    PubMed

    Kim, Ho-Joong; Kwon, Younghwan; Kim, Chang Kee

    2014-08-01

    Mechanical properties and thermal stability of polyurethane composites were investigated with a combination of polyhedral oligomeric silsesquioxane (POSS) molecules and inorganic barium sulfate. These hybrid composites were prepared using one-step method through the incorporation of flexible hydroxyl-terminated polybutadiene prepolymer, reactive POSS nanoparticles, and barium sulfate under isophorone diisocyanate curative system. In polyurethane composites, POSS and inorganic barium sulfate were utilized for mechanical reinforcement and flame retardant filler, respectively. The decomposition of POSS molecules during oxyacetylene torch exposure resulted in the formation of silica-based nanosized droplets, contributing on ablation behavior. PMID:25936054

  13. New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoqian; Dong, Liang; Sun, Lining; Song, Zhengmei; Wei, Ruoyan; Shi, Liyi; Chen, Haige

    2015-04-01

    A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology analysis, the POSS modified upconversion nanoplatforms were successfully applied to upconversion luminescence imaging of living cells in vitro and nude mouse in vivo (upon excitation at 980 nm). In addition, the doped Gd3+ ion endows the POSS-UCNPs with effective T1 signal enhancement and the POSS-UCNPs were successfully applied to in vivo magnetic resonance imaging (MRI) for a Kunming mouse, which makes them potential MRI positive-contrast agents. More importantly, the corner organic groups of POSS can be easily modified, resulting in kinds of POSS-UCNPs with many potential applications. Therefore, the method and results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology

  14. Marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS)

    PubMed Central

    CORREA, Luciano Ribeiro; BORGES, Alexandre Luiz Souto; GUIMARÃES, Heloisa Bailly; ALMEIDA, Elis Regina Nunes; POSKUS, Laiza Tatiana; SILVA, Eduardo Moreira

    2015-01-01

    Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations. Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS). Material and Methods A base composite (B) was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25). The composites P90 and TPH3 (TP3) were used as positive and negative controls, respectively. Marginal integrity (%MI) was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS) and the polymerization shrinkage stress (Pss - MPa) were also evaluated. Results The values for %MI were as follows: P90 (100%) = TP3 (98.3%) = B (96.9%) > P25 (93.2%), (p<0.05). The %VS ranged from 1.4% (P90) to 4.9% (P25), while Pss ranged from 2.3 MPa (P90) to 3.9 MPa (B). For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa). Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97), whereas the correlation between Pss and %MI was found to be moderate (r=0.76). Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite. PMID:26537714

  15. Topology Controlled Supramolecular Self-Assembly of Octa Triphenylene-Substituted Polyhedral Oligomeric Silsesquioxane Hybrid Supermolecules

    SciTech Connect

    Miao, J.; Zhu, L

    2010-01-01

    A series of liquid crystalline star supermolecules with polyhedral oligomeric silsesquioxane (POSS) as the central scaffold and eight triphenylenes (Tp) as the peripheral arms were synthesized via amidization reactions. The supermolecules were denoted as POSS(Tp){sub 8}. Six POSS(Tp){sub 8} samples were prepared with two alkyl chain lengths in the Tp (C{sub 5} and C{sub 12}) and three spacer lengths (C{sub 2}, C{sub 6}, and C{sub 10}) between the POSS core and the Tp arms. Three samples with C{sub 5}-Tp were amorphous because of too short alkyl chains in the Tp, while the other three samples with C{sub 12}-Tp self-assembled into hierarchical liquid crystalline mesophases, as studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). When the spacer length was C{sub 2}, a column-within-column super hexagonal columnar phase was observed, because the POSS core and the Tp arms were intimately coupled together. With increasing the spacer length to C{sub 6} and C{sub 10}, respectively, the POSS core and Tp arms became gradually decoupled. Alternating POSS-Tp lamellar morphology with a rectangular columnar symmetry (by XRD) was observed by TEM for the POSS(Tp){sub 8} sample with a C{sub 6}-spacer. For the POSS(Tp){sub 8} sample with a C{sub 10}-spacer, an oblique columnar phase was determined by XRD, and inverted columnar morphology with four Tp columns forming a super column within the POSS/alkyl chain matrix was observed by TEM. This study suggested that molecular topology played an important role in the supramolecular self-assembly of star-shaped POSS(Tp){sub 8} supermolecules.

  16. Cage-like copper(II) silsesquioxanes: transmetalation reactions and structural, quantum chemical, and catalytic studies.

    PubMed

    Bilyachenko, Alexey N; Dronova, Marina S; Yalymov, Alexey I; Lamaty, Frédéric; Bantreil, Xavier; Martinez, Jean; Bizet, Christelle; Shul'pina, Lidia S; Korlyukov, Alexander A; Arkhipov, Dmitry E; Levitsky, Mikhail M; Shubina, Elena S; Kirillov, Alexander M; Shul'pin, Georgiy B

    2015-06-01

    The transmetalation of bimetallic copper-sodium silsesquioxane cages, namely, [(PhSiO1.5 )10 (CuO)2 (NaO0.5 )2 ] ("Cooling Tower"; 1), [(PhSiO1.5 )12 (CuO)4 (NaO0.5 )4 ] ("Globule"; 2), and [(PhSiO1.5 )6 (CuO)4 (NaO0.5 )4 (PhSiO1.5 )6 ] ("Sandwich"; 3), resulted in the generation of three types of hexanuclear cylinder-like copper silsesqui- oxanes, [(PhSiO1.5 )12 (CuO)6 (C4 H9 OH)2 (C2 H5 OH)6 ] (4), [(PhSiO1.5 )12 (CuO)6 (C4 H8 O2 )4 (PhCN)2 (MeOH)4 ] (5), and [(PhSiO1.5 )12 (CuO)6 (NaCl)(C4 H8 O2 )12 (H2 O)2 ] (6). The products show a prominent "solvating system-structure" dependency, as determined by X-ray diffraction. Topological analysis of cages 1-6 was also performed. In addition, DFT theory was used to examine the structures of the Cooling Tower and Cylinder compounds, as well as the spin density distributions. Compounds 1, 2, and 5 were applied as catalysts for the direct oxidation of alcohols and amines into the corresponding amides. Compound 6 is an excellent catalyst in the oxidation reactions of benzene and alcohols. PMID:25950426

  17. Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane.

    PubMed

    Moitra, Nirmalya; Kamei, Toshiyuki; Kanamori, Kazuyoshi; Nakanishi, Kazuki; Takeda, Kazuyuki; Shimada, Toyoshi

    2013-10-01

    Synthesis of class II hybrid silica materials requires the formation of covalent linkage between organic moieties and inorganic frameworks. The requirement that organosilylating agents be present to provide the organic part limits the synthesis of functional inorganic oxides, however, due to the water sensitivity and challenges concerning purification of the silylating agents. Synthesis of hybrid materials with stable molecules such as simple alcohols, rather than with these difficult silylating agents, may therefore provide a path to unprecedented functionality. Herein, we report the novel functionalization of silica with organic alcohols for the first time. Instead of using hydrolyzable organosilylating agents, we used stable organic alcohols with a Zn(II) catalyst to modify the surface of a recently discovered highly reactive macro-mesoporous hydrogen silsesquioxane (HSQ, HSiO1.5) monolith, which was then treated with water with the catalyst to form surface-functionalized silica. These materials were comprehensively characterized with FT-IR, Raman, solid-state NMR, fluorescence spectroscopy, thermal analysis, elemental analysis, scanning electron microscopy, and nitrogen adsorption-desorption measurements. The results obtained from these measurements reveal facile immobilization of organic moieties by dehydrogenative addition onto surface silane (Si-H) at room temperature with high loading and good tolerance of functional groups. The organic moieties can also be retrieved from the monoliths for recycling and reuse, which enables cost-effective and ecological use of the introduced catalytic/reactive surface functionality. Preservation of the reactivity of as-immobilized organic alcohols has been confirmed, moreover, by successfully performing copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reactions on the immobilized silica surfaces. PMID:23977900

  18. Growth and characterization of an organic single crystal: 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide.

    PubMed

    Senthil, K; Kalainathan, S; Ruban Kumar, A

    2014-05-01

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. (1)H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker's hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal. PMID:24566112

  19. Growth and characterization of an organic single crystal: 2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Kalainathan, S.; Ruban Kumar, A.

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. 1H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker’s hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal.

  20. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application.

    PubMed

    Yahyaei, Hossein; Mohseni, Mohsen; Ghanbari, Hossein; Messori, Massimo

    2016-04-01

    Organic-inorganic hybrid materials have shown improved properties to be used as biocompatible coating in biomedical applications. Polyhedral oligomeric silsesquioxane (POSS) containing coatings are among hybrid materials showing promising properties for these applications. In this work an open cage POSS has been reacted with a titanium alkoxide to end cap the POSS molecule with titanium atom to obtain a so called polyhedral oligomeric metalized silsesquioxane (POMS). The synthesized POMS was characterized by FTIR, RAMAN and UV-visible spectroscopy as well as (29)Si NMR and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) techniques. Appearance of peaks at 920 cm(-1) in FTIR and 491 cm(-1) and 1083 cm(-1) in Raman spectra confirmed Si-O-Ti linkage formation. It was also demonstrated that POMS was in a monomeric form. To evaluate the biocompatibility of hybrids films, pristine POSS and synthesized POMS were used in synthesis of a polycarbonate urethane polymer. Results revealed that POMS containing hybrid, not only had notable thermal and mechanical stability compared to POSS containing one, as demonstrated by DSC and DMTA analysis, they also showed controlled surface properties in such a manner that hydrophobicity and biocompatibility were both reachable to give rise to improved cell viability in presence of human umbilical vein endothelial cells (HUVEC) and MRC-5 cells. PMID:26838853

  1. Highly efficient phosphorescent materials based on Ir(iii) complexes-grafted on a polyhedral oligomeric silsesquioxane core.

    PubMed

    Yu, Tianzhi; Xu, Zixuan; Su, Wenming; Zhao, Yuling; Zhang, Hui; Bao, Yanjun

    2016-09-14

    A new iridium(iii) complex containing a coumarin derivative as the cyclometalated ligand (L) and a carbazole-functionalized β-diketonate (Cz-acac-allyl) as the ancillary ligand, namely, Ir(iii) bis(3-(pyridin-2-yl)coumarinato-N,C(4))(1-(9-butyl-9H-carbazol-3-yl)hept-6-ene-1,3-dionato-O,O) [Ir(L)2(Cz-acac-allyl)], was firstly synthesized as the emissive iridium(iii) complex. Then three new phosphorescent polyhedral oligomeric silsesquioxane (POSS) materials, consisting of the emissive Ir(iii) complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core were successfully synthesized by hydrosilylation reaction in the presence of platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane (Pt-dvs) as the catalyst. These phosphorescent POSS materials offer many advantages including amorphous properties, good thermal stabilities, and good solubility in common solvents, and high purity via column chromatography. The photoluminescence spectra of the POSS materials in solution and in the solid state indicate a reduction in the degrees of interactions among the Ir(iii) complex units and concentration quenching due to the bulky POSS core. Solution processed light-emitting devices based on these phosphorescent POSS materials exhibit a maximum external quantum efficiency (EQE) of 9.77%. PMID:27501335

  2. Self-structuring of lamellar bridged silsesquioxanes with long side spacers.

    PubMed

    Fernandes, Mariana; Nobre, Sónia S; Xu, Qinghong; Carcel, Carole; Cachia, Jean Nicolas; Cattoën, Xavier; Sousa, José M; Ferreira, Rute A S; Carlos, Luís D; Santilli, Celso V; Wong Chi Man, Michel; Bermudez, Verónica de Zea

    2011-09-22

    Diurea cross-linked bridged silsesquioxanes (BSs) C(10)C(n)C(10) derived from organosilane precursors, including decylene chains as side spacers and alkylene chains with variable length as central spacers (EtO)(3)Si-(CH(2))(10)-Y-(CH(2))(n)-Y-(CH(2))(10)-Si(OEt)(3) (n = 7, 9-12; Y = urea group and Et = ethyl), have been synthesized through the combination of self-directed assembly and an acid-catalyzed sol-gel route involving the addition of dimethylsulfoxide (DMSO) and a large excess of water. This new family of hybrids has enabled us to conclude that the length of the side spacers plays a unique role in the structuring of alkylene-based BSs, although their morphology remains unaffected. All the samples adopt a lamellar structure. While the alkylene chains are totally disordered in the case of the C(10)C(7)C(10) sample, a variable proportion of all-trans and gauche conformers exists in the materials with longer central spacers. The highest degree of structuring occurs for n = 9. The inclusion of decylene instead of propylene chains as side spacers leads to the formation of a stronger hydrogen-bonded urea-urea array as evidenced by two dimensional correlation Fourier transform infrared spectroscopic analysis. The emission spectra and emission quantum yields of the C(10)C(n)C(10) materials are similar to those reported for diurea cross-linked alkylene-based BSs incorporating propylene chains as side spacers and prepared under different experimental conditions. The emission of the C(10)C(n)C(10) hybrids is ascribed to the overlap of two distinct components that occur within the urea cross-linkages and within the siliceous nanodomains. Time-resolved photoluminescence spectroscopy has provided evidence that the average distance between the siliceous domains and the urea cross-links is similar in the C(10)C(n)C(10) BSs and in oxyethylene-based hybrid analogues incorporating propylene chains as side spacers (diureasils), an indication that the longer side chains in the

  3. Synthesis and characterization of novel thermoplastic elastomers employing polyhedral oligomeric silsesquioxane physical crosslinks

    NASA Astrophysics Data System (ADS)

    Seurer, Bradley

    Polyhedral oligomeric silsesquioxanes (POSS) are molecularly precise isotropic particles with average diameters of 1-2 nm. A typical T 8 POSS nanoparticle has an inorganic Si8O12 core surrounded by eight aliphatic or aromatic groups attached to the silicon vertices of the polyhedron promoting solubility in conventional solvents. Previously, efficient synthetic methods have been developed whereby one of the aliphatic groups on the periphery is substituted by a functional group capable of undergoing either homo- or copolymerization. In the current investigations, preparative methods for the chemical incorporation of POSS macromonomers in a series elastomers have been developed. Analysis of the copolymers using WAXD reveals that pendant POSS groups off the polymer backbones aggregate, and can crystallize as nanocrystals. From both line-broadening of the diffraction maxima, and also the oriented diffraction in a drawn material, the individual POSS sub-units are crystallizing as anisotropically shaped crystallites. The formation of POSS particle aggregation is strongly dependent on the nature of the polymeric matrix and the POSS peripheral group. X-ray studies show aggregation of POSS in ethylene-propylene elastomers occurred only with a phenyl periphery, whereas POSS particles with isobutyl and ethyl peripheries disperse within the polymer matrix. By altering the polymer matrix to one containing chain repulsive fluorine units, aggregation is observed with both the phenyl and isobutyl peripheries. Altering the polymer chain to poly(dimethylcyclooctadiene), POSS aggregates with isobutyl, ethyl, cyclopentyl, and phenyl peripheries. The formation of POSS nanocrystals increases the mechanical properties of these novel thermoplastic elastomers, including an increase in the tensile storage modulus and formation of a rubbery plateau region. Tensile tests of these elastomers show an increase in elastic modulus with increasing POSS loading. The elongation at break was as high as

  4. Structure/property relationships of polymers containing hybrid nano-filler: Polyhedral oligomeric silsesquioxanes (POSS)

    NASA Astrophysics Data System (ADS)

    Geng, Haiping

    Polyhedral Oligomeric Silsesquioxane (POSS) is a three-dimensional structurally well-defined cage-like molecule represented by formula (RSiO 1.5)n (n = 6, 8, 10 or higher, R is an organic group). POSS macromers have an inorganic silica-like core, which is surrounded by organic groups, and the physical size of the POSS cage is about 1.5 nm. Because of their hybrid nature and nanometer-scale feature, as shown in this study, POSS macromers were dispersed in a molecular level into polymeric systems by blending, in effect achieved POSS/Polymer nano-blends. The POSS macromers used in this work were cubic-caged POSS macromers bearing different organic corner groups. Polystyrene (PS) and polydimethyl siloxane (PDMS) were used as model polymers. The investigations involved in this work include two parts. In the first part, the microstructures and thermal properties of the POSS macromers were investigated by using X-ray diffractometer, Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In the second part, the morphologies of POSS/Polymer blends were examined using Transmission Electronic Microscopy (TEM), and X-ray diffractometer. Their thermal and rheological properties were studied with DSC, TGA, and Rheometer. The results of this work showed that different corner groups on the POSS cage affected the morphological structures and properties of the POSS macromers. The higher the degree of the symmetry and regularity of the POSS macromers and the smaller the size of the corner groups, the more ordered the POSS macromers. The POSS macromers with functionalities, which may undergo chemical cross-linking reactions, possessed high thermal stabilities. The morphology studies of POSS/PS and POSS/PDMS blends showed that depending on the attached organic groups on the POSS cages, the structures of the polymer matrix and the composition of the blends, the morphologies of the POSS/polymer blends ranged from complete separation to homogeneous dispersion in

  5. Three-dimensional hydrogen silsesquioxane nanostructure fabrication by reversal room-temperature nanoimprint using poly(dimethylsiloxane) mold

    NASA Astrophysics Data System (ADS)

    Sugano, Norihiro; Okada, Makoto; Haruyama, Yuichi; Matsui, Shinji

    2015-06-01

    Room temperature (RT) nanoimprinting is an attractive technique for nanofabrication, because it is not required a thermal cycle or UV irradiation process. Previously, it has reported that RT-nanoimprinting enables the fabrication of nanostructures using hydrogen silsesquioxane (HSQ) as a resin. HSQ has the HSiO3/2 structure and transforms to SiOx, such as glass, upon annealing. We developed, for the first time, reversal nanoimprint using RT nanoimprint to fabricate a three-dimensional (3D) HSQ structure and succeeded in fabricating a 3D HSQ nanostructure with two cross-stacked layers. Furthermore, it was confirmed that the 3D HSQ structure has a sufficient interface adhesion between the upper and lower layers by a durability test using ultrasonic vibration and also that it was not deformed after an annealing treatment at 1000 °C.

  6. Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides.

    PubMed

    Bilyachenko, Alexey N; Yalymov, Alexey I; Shul'pina, Lidia S; Mandelli, Dalmo; Korlyukov, Alexander A; Vologzhanina, Anna V; Es'kova, Marina A; Shubina, Elena S; Levitsky, Mikhail M; Shul'pin, Georgiy B

    2016-01-01

    New hexanuclear nickel(II) silsesquioxane [(PhSiO1.5)12(NiO)₆(NaCl)] (1) was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,5)12(NiO)₆(NaCl)(C₄H₈O₂)13(PhCN)₂(H₂O)₂ and studied by X-ray and topological analysis. The compound exhibits cylinder-like type of molecular architecture and represents very rare case of polyhedral complexation of metallasilsesquioxane with benzonitrile. Complex 1 exhibited catalytic activity in activation of such small molecules as light alkanes and alcohols. Namely, oxidation of alcohols with tert-butylhydroperoxide and alkanes with meta-chloroperoxybenzoic acid. The oxidation of methylcyclohexane gave rise to the isomeric ketones and unusual distribution of alcohol isomers. PMID:27213319

  7. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    PubMed

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system. PMID:27017579

  8. Promotion of Förster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye.

    PubMed

    Olivero, Francesco; Carniato, Fabio; Bisio, Chiara; Marchese, Leonardo

    2014-01-01

    A new hybrid photostable saponite clay with embedded donor-acceptor dyes was prepared and characterized in this work. The saponite is intercalated with a luminescent polyhedral oligomeric silsesquioxane, which transfers the photoexcitation energy directly to an acceptor dye (rhodamine B). The obtained composite material was characterized by means of XRD, TEM microscopy, and UV/Vis and photoluminescence spectroscopy. A physicochemical study showed that the system behaved as an efficient Förster resonance energy transfer pair, owing to the very good spectral overlap of donor emission (λem =510-540 nm) and acceptor absorption in the λ=530-570 nm range. The hybrid material represents the first example of a photonic antenna based on a synthetic saponite clay and can be considered a step forward in the search for new, efficient, and stable materials suitable for light-harvesting applications. PMID:24124165

  9. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane.

    PubMed

    Han, Zhongyou; Xi, Yukun; Kwon, Younghwan

    2016-02-01

    Series of polydimethylsiloxane (PDMS)-based polyurethane (PU)/polyhedral oligomeric silsesquioxane (POSS) composites are prepared using ether or polyether modified diol/polyol PDMS prepolymers, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS. The effect of POSS incorporated chemically or physically, number of ethylene oxide units and crosslinking on PDMS based PU is investigated in terms of thermal stability and ablation properties. The ablation property is measured using an oxyacetylene torch test, and the ablation rate is evaluated. The results show that POSS molecules make a considerable influence on the ablative resistance, because they act as protective silica forming precursors under oxyacetylene condition. POSS molecules, especially methyl POSS, in PU matrix leads to the formation of densely accumulated spherical silica layers on the top of the ablated surface, resulting in improved ablation resistance. PMID:27433703

  10. V2O5/SiO2 surface inspired, silsesquioxane-derived oxovanadium complexes and their properties.

    PubMed

    Ohde, Christian; Brandt, Marcus; Limberg, Christian; Döbler, Jens; Ziemer, Burckhard; Sauer, Joachim

    2008-01-21

    Inspired by surface species proposed to occur on heterogeneous catalysts novel oxovanadium(v) silsesquioxanes were synthesised. Reaction of a T8-silsequioxane containing two geminal OH groups with O=V(O(i)Pr)3 led to a dinuclear compound where the geminal disiloxide functions of two silsesquioxanes are bridging two O=V(O(i)Pr) moieties (2). Formation of 2 shows that--in contrast to proposals made for silica surfaces--in molecular chemistry a bidentate coordination of geminal siloxides to one vanadium centre is not favourable. With the background that species being doubly anchored to a support have been suggested to play active roles on V2O5/SiO2 catalysts an anionic complex has been prepared where a divalent dioxovanadium unit replaces one Si corner of a (RSiO1.5)8, cube (a Si-OH function remains pending) (3). 3 has been intensely investigated by vibrational spectroscopy, and to support assignments not only of the v(V=O) bands but also of the v(V-O-Si) bands, whose positions are of interest in the area of heterogeneous catalysis, isotopic enrichment studies and DFT calculations have been performed. The corresponding investigations were aided by the synthesis and analysis of a silylated derivative of 3, 4. Moreover, with regard to their potential as structural and spectroscopic models all complexes were characterised by single crystal X-ray diffraction. Finally, 2 and 3 were tested as potential catalysts for the photooxidation of cyclohexane and benzene with O2. While 2 shows a slightly higher activity than vanadylacetylacetonate, 3 leads to significantly increased turnover numbers for the conversion of benzene to phenol. PMID:18411841

  11. Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole

    NASA Astrophysics Data System (ADS)

    Pan, Haiyan; Zhang, Yuanyuan; Pu, Hongting; Chang, Zhihong

    2014-10-01

    A new series of organic-inorganic hybrid proton exchange membranes (PEMs) were prepared using sulfonated polyimides containing benzimidazole (SPIBIs) and glycidyl ether of polyhedral oligomeric silsesquioxanes (G-POSS). SPIBIs were synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 5-amino-2-(4-aminophenyl) benzimidazole (APBIA) and 4,4‧-diaminodiphenyl ether-2,2‧-disulfonic acid (ODADS). The organic-inorganic cross-linked membranes can be prepared by SPIBIs with G-POSS by a thermal treatment process. The cross-linking density of the membranes was evaluated by gel fractions. The water uptake, swelling ratio, mechanical property, thermal behavior, proton conductivity, oxidative and hydrolytic stability of the cross-linked organic-inorganic membranes were intensively investigated. All the cross-linked membranes exhibit high cross-linking density for the gel fraction higher than 70%. Compared to pristine membranes (SPIBIs) and membranes without benzimidazole groups (SPI), the anti-free-radical oxidative and hydrolytic stabilities of cross-linked membranes are significantly higher. The anti-free-oxidative stability of SPIBI-100-P (cross-linked SPIBI membrane with 100% degree of sulfonation) is nearly four-fold higher than that of SPIBI-100. The proton conductivity of the cross-linked membranes ranges from 10-3 S cm-1 to 10-2 S cm-1 depending both on the degree of sulfonation (DS) of the SPIBI and temperature.

  12. Mass-fractal growth in niobia/silsesquioxane mixtures: a small-angle X-ray scattering study

    PubMed Central

    Besselink, Rogier; ten Elshof, Johan E.

    2014-01-01

    The nucleation and growth of niobium pentaethoxide (NPE)-derived clusters in ethanol, through acid-catalyzed hydrolysis/condensation in the presence and absence of the silsesquioxane 1,2-bis(triethoxysilyl)ethane (BTESE), was monitored at 298–333 K by small-angle X-ray scattering. The data were analyzed with a newly derived model for polydisperse mass-fractal-like structures. At 298–313 K in the absence of BTESE the data indicated the development of relatively monodisperse NPE-derived structures with self-preserving polydispersity during growth. The growth exponent was consistent with irreversible diffusion-limited cluster agglomeration. At 333 K the growth exponent was characteristic for fast-gelling reaction-limited cluster agglomeration. The reaction yielded substantially higher degrees of polydispersity. In the presence of BTESE the growth exponents were substantially smaller. The smaller growth exponent in this case is not consistent with irreversible Smoluchowski-type agglomeration. Instead, reversible Lifshitz–Slyozov-type agglomeration seems to be more consistent with the experimental data. PMID:25294980

  13. Preparation and characterization of crosslinked poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Jung, Chan-Hee; Kang, Dong-Woo; Hwang, In-Tae; Choi, Jae-Hak

    2012-09-01

    Crosslinked poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxane (PCL/POSS) nanocomposite films prepared by a solution casting were crosslinked by electron beam irradiation under various conditions. The results of the crosslinking degree measurement revealed that the crosslinking degree of the PCL/POSS nanocomposites reached to 74%, which depended on the POSS content and the absorbed dose. The results of the FE-SEM and EDX analyses revealed that the POSS was homogeneously dispersed in the PCL matrix. In comparison to the virgin PCL with a tensile strength of 20 MPa, the tensile strength of the crosslinked PCL/POSS nanocomposites increased to 25.8 MPa with an increasing POSS content and absorbed dose to 100 kGy, whereas their elongation-at-break was considerably reduced. The results of the dynamic mechanical analysis revealed that the crosslinked PCL/POSS nanocomposites had a higher heat resistance than the virgin PCL. Based on the results of the enzymatic degradation test, the biodegradability of the crosslinked PCL/POSS nanocomposites was significantly reduced in comparison to that of the virgin PCL.

  14. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality

    SciTech Connect

    LU,YUNFENG; FAN,HONGYOU; DOKE,NILESH; LOY,DOUGLAS A.; ASSINK,ROGER A.; LAVAN,DAVID A.; BRINKER,C. JEFFREY

    2000-06-12

    Since the discovery of surfactant-templated silica mesophases, the development of organic modification schemes to impart functionality to the pore surfaces has received much attention. Most recently, using the general class of compounds referred to as bridged silsesquioxanes (RO){sub 3}Si-R{prime}-Si(OR){sub 3} (Scheme 1), three research groups have reported the formation of a new class of poly(bridgedsilsesquioxane) mesophases BSQMs with integral organic functionality. In contrast to previous hybrid mesophases where organic ligands or molecules are situated on pore surfaces, this class of materials necessarily incorporates the organic constituents into the framework as molecularly dispersed bridging ligands. Although it is anticipated that this new mesostructural organization should result in synergistic properties derived from the molecular scale mixing of the inorganic and organic components, few properties of BSQMs have been measured. In addition samples prepared to date have been in the form of granular precipitates, precluding their use in applications like membranes, fluidics, and low k dielectric films needed for all foreseeable future generations of microelectronics.

  15. Bragg Reflectors Based on Block Copolymer/Polyhedral Oligomeric Silsesquioxanes (POSS) and TiO2 Hybrid Nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Colella, Nicholas; Watkins, James

    2014-03-01

    Maleamic acid functionalized polyhedral oligomeric silsesquioxanes (POSS) can interact with the poly (ethylene oxide) (PEO) block in Pluronics F108 block copolymer via hydrogen bonding to form well-ordered block copolymer nanocomposites. In this study, the block copolymer composites are spin coated into thin films and maleamic acid groups are thermal crosslinked to stabilize the nanocomposite structure. High temperature calcination of the stabilized nanocomposite yields a robust mesoporous silica thin film. By adjusting the loading of POSS into the block copolymer prior to calcination, the refractive index (RI) of mesoporous silica films can be tuned between 1.13 and 1.18. We show these low RI films can be sequentially layered with hybrid TiO2 nanocomposite films that exhibit a RI of approximately 2.0 to yield efficient Bragg reflectors. The TiO2 films are prepared by the calcinations of polymer/anatase TiO2 nanoparticle composites with NP loadings as high as 90wt%. Due to the porosity existing in each layer, the wavelength of the reflected light is sensitive to the adsorption of solvent vapors such as toluene, isopropanol, and tetrahydrofuran, or analytes, which suggest applications in sensors. Acknowledge The Center for Hierarchical Manufacturing.

  16. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    SciTech Connect

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  17. Preparation and characterization of crosslinked poly(butylene adipate-co-terephthalate)/polyhedral oligomeric silsesquioxane nanocomposite by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Jung, Chan-Hee; Hwang, In-Tae; Choi, Jae-Hak

    2013-01-01

    The electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate) (PBAT)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites was investigated in this study. PBAT/POSS nanocomposites prepared by a solution blending with various compositions were crosslinked by electron beam irradiation at various absorbed doses ranging from 20 to 200 kGy and their properties were characterized in terms of their degree of crosslinking, morphology, thermal and mechanical properties, and biodegradability. The results of the degree of crosslinking measurements revealed that PBAT/POSS nanocomposites were more effectively crosslinked than the pure PBAT and that the degree of crosslinking was dependent on the absorbed dose and POSS content. From the results of the FE-SEM and EDX analyses, the POSS was found to be uniformly dispersed in the PBAT matrix. Based on the results of the UTM, DMA, and TMA, the crosslinked PBAT/POSS nanocomposites exhibited much higher thermal and mechanical properties compared to those of the pure PBAT.

  18. Interaction of SF6 and O2 plasma with porous poly phenyl methyl silsesquioxane low-κ films

    NASA Astrophysics Data System (ADS)

    Cherunilam, J. F.; Rajani, K. V.; Byrne, C.; Heise, A.; McNally, P. J.; Daniels, S.

    2015-04-01

    A reduction in the κ-value of dielectric materials is of great interest today as it leads to the reduction of resistance-capacitance delays and parasitic capacitances within integrated circuits, thereby improving device performance. We have recently reported our studies on the great potential of the Poly phenyl methyl silsesquioxane (PMSQ) low-κ films (κ = 2.7  ±  0.2) for interlayer dielectric applications. Here we report on the deposition and characterisation of porous PMSQ thin films using Heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin as the porogen. A reduction in the κ-value of the films was achieved as a function of the increase in porogen loading in the film. The removal of the thermally liable porogen material from the hybrid films was studied using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The change in density as a function of the porosity was studied using x-ray reflectivity techniques. The interaction of the films with pure SF6 and O2 plasmas was studied and the surface modification that occurs in the films as a result of the interaction was studied using FTIR and x-ray photoelectron spectroscopy. A change in the κ-value of the films was observed after plasma treatment which is attributed to the chemical modification of the film surface due to plasma interaction.

  19. A designed 5-fluorouracil-based bridged silsesquioxane as an autonomous acid-triggered drug-delivery system.

    PubMed

    Giret, Simon; Théron, Christophe; Gallud, Audrey; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel; Wong Chi Man, Michel; Carcel, Carole

    2013-09-16

    Two new prodrugs, bearing two and three 5-fluorouracil (5-FU) units, respectively, have been synthesized and were shown to efficiently treat human breast cancer cells. In addition to 5-FU, they were intended to form complexes through H-bonds to an organo-bridged silane prior to hydrolysis-condensation through sol-gel processes to construct acid-responsive bridged silsesquioxanes (BS). Whereas 5-FU itself and the prodrug bearing two 5-FU units completely leached out from the corresponding materials, the prodrug bearing three 5-FU units was successfully maintained in the resulting BS. Solid-state NMR ((29) Si and (13) C) spectroscopy show that the organic fragments of the organo-bridged silane are retained in the hybrid through covalent bonding and the (1) H NMR spectroscopic analysis provides evidence for the hydrogen-bonding interactions between the prodrug bearing three 5-FU units and the triazine-based hybrid matrix. The complex in the BS is not affected under neutral medium and operates under acidic conditions even under pH as high as 5 to deliver the drug as demonstrated by HPLC analysis and confirmed by FTIR and (13) C NMR spectroscopic studies. Such functional BS are promising materials as carriers to avoid the side effects of the anticancer drug 5-FU thanks to a controlled and targeted drug delivery. PMID:23929826

  20. Fabrication of boronate-decorated polyhedral oligomeric silsesquioxanes grafted cotton fiber for the selective enrichment of nucleosides in urine.

    PubMed

    Gao, Li; Wei, Yinmao

    2016-06-01

    Various cotton fiber based boronate-affinity adsorbents are recently developed for the sample pretreatment of cis-diol-containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4-formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis-diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in-pipette-tip solid-phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in-pipette-tip solid-phase extraction coupled with high-performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N  =  3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9-10.2%, n = 3). PMID:27138862

  1. Fluorinated Polyhedral Oligomeric Silsesquioxane Based Giant Molecular Shape Amphiphiles: Hierarchical Self-Assembly with Unusual Chain Conformation

    NASA Astrophysics Data System (ADS)

    Dong, Xue-Hui; Bo NI Collaboration; Ziran Chen Collaboration; Yiwen Li Collaboration; Wen-Bin Zhang Collaboration; Stephen Z. D. Cheng Collaboration

    2014-03-01

    The fluorous phase has thus been considered as the third phase that repels both oil and water due to its ultra-low surface energy. Incorporation of fluorinated component into hydrophilic/hydrophobic polymers is anticipated to bring novel self-assembly behaviors in the bulk, solution and thin film states, which are not only academically intriguing but also technological relevant. Among them, fluorous molecular clusters are of particular interest. A topologic isomer pair of giant molecular shape amphiphiles can be constructed by tethering molecular nanoparticle at different location of block polymers. In this study, a fluorinated polyhedral oligomeric silsesquioxane (FPOSS) was precisely fixed onto polystyreneblockpoly(ethylene oxide) (PS- b-PEO) at chain end (FPOSS-PS- b-PEO), or junction point [PS-(FPOSS)-PEO]. The interplay between nanoparticle and block polymers results in hierarchical structures with three types of order. The incommensuration of cross-sectional area between FPOSS and block polymer stretches polymer chains, which found to enhance the immiscibility between PEO and PS block.

  2. Electrospun Poly(ε-caprolactone)/Polyhedral Oligomeric Silsesquioxane-Based Copolymer Blends: Evolution of Fiber Internal Structures.

    PubMed

    Bauer, Adam J P; Wu, Yitian; Li, Bingbing

    2016-05-01

    This study reports the structural transition of electrospun poly(ε-caprolactone) (PCL)/poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsesquioxane)-co-(methyl meth-acrylate)] (POSS-MMA) blends, from PCL-rich fibers, to bicontinuous PCL core/POSS-MMA shell fibers, to POSS-MMA-rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS-MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS-MMA blend ratios. X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS-MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS-copolymer-based systems, which hold great potential for a broad spectrum of biomedical applications. PMID:26782272

  3. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl-Substituted Polyhedral Oligomeric Silsesquioxanes

    SciTech Connect

    Drazkowski, Daniel B.; Lee, Andre; Haddad, Timothy S.

    2008-10-03

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different initial morphologies were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules. The POSS octamers, R{prime}R{sub 7}Si{sub 8}O{sub 12}, were designed to contain a single silane functional group, R{prime}, which was used to graft onto the dangling 1,2-butadienes in the polybutadiene block and seven identical organic groups, R = isobutyl (iBu). Morphology and phase transitions of these iBu-POSS-modified SBS were investigated using small-angle X-ray scattering and rheological methods. It was observed that when iBu-POSS was grafted to the butadiene segment, the long-range and local order of the morphology were preserved, and the d-spacing showed a small, systematic increase with increasing POSS content. These observations suggest that grafted iBu-POSS were well-distributed within the butadiene domains and did not interact with the styrene domains; effectively, grafting of iBu-POSS to butadiene did not affect the segregation between butadiene and styrene domains. However, addition of iBu-POSS reduces the overall polystyrene volume. Consequently, from a morphology standpoint, this modification effectively shifts the phase diagram to lower styrene content. This was supported with SAXS and transition temperatures measurements made from the different host morphologies.

  4. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.

    PubMed

    Du, Yuzhang; Yu, Meng; Chen, Xiaofeng; Ma, Peter X; Lei, Bo

    2016-02-10

    Biodegradable elastomeric biomaterials have attracted much attention in tissue engineering due to their biomimetic viscoelastic behavior and biocompatibility. However, the low mechanical stability at hydrated state, fast biodegradation in vivo, and poor osteogenic activity greatly limited bioelastomers applications in bone tissue regeneration. Herein, we develop a series of poly(octanediol citrate)-polyhedral oligomeric silsesquioxanes (POC-POSS) hybrids with highly tunable elastomeric behavior (hydrated state) and biodegradation and osteoblasts biocompatibility through a facile one-pot thermal polymerization strategy. POC-POSS hybrids show significantly improved stiffness and ductility in either dry or hydrated conditions, as well as good antibiodegradation ability (20-50% weight loss in 3 months). POC-POSS hybrids exhibit significantly enhanced osteogenic differentiation through upregulating alkaline phosphatase (ALP) activity, calcium deposition, and expression of osteogenic markers (ALPL, BGLAP, and Runx2). The high mechanical stability at hydrated state and enhanced osteogenic activity make POC-POSS hybrid elastomers promising as scaffolds and nanoscale vehicles for bone tissue regeneration and drug delivery. This study may also provide a new strategy (controlling the stiffness under hydrated condition) to design advanced hybrid biomaterials with high mechanical properties under physiological condition for tissue regeneration applications. PMID:26765285

  5. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior.

    PubMed

    Li, Yizhuo; Guan, Yanqing; Liu, Yang; Yin, Jianbo; Zhao, Xiaopeng

    2016-05-13

    Graphene oxide (GO) shows potential as an anisotropic nanofiller or a dispersed phase of electro-responsive electrorheological (ER) nanofluid due to its small size and high aspect ratio. But it is difficult to disperse GO in non-polar oil due to the hydrophilic nature of GO and thus the resulting fluid is often subject to dispersion instability and low ER effect. These disadvantages largely limit the real application of GO-based ER nanofluid. In this paper, we develop the polyhedral oligomeric silsesquioxane (POSS)-decorated GO (POSS-GO) nanosheets and demonstrate that decorating with POSS overcomes the dispersion instability of GO in silicone oil and enhances the ER effect. The morphology and structure of samples are characterized by atomic force microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and x-ray photoelectronic spectroscopy. The results show that the POSS-GO nanosheets are ultrathin with ∼3 nm thickness and have good compatibility with silicone oil and, as a result, the nanofluid of POSS-GO nanosheets in silicone oil shows high dispersion stability. After standing for one year at room temperature, no sedimentation occurs. Under an external electric field, the ER efficiency of the POSS-GO nanofluid is ten times as high as that of the pure GO fluid. This enhanced electro-responsive behavior is related to the fact that decorating with POSS partly reduces the GO and compresses the dielectrophoretic effect of the negatively charged pure GO fluid. PMID:27041243

  6. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior

    NASA Astrophysics Data System (ADS)

    Li, Yizhuo; Guan, Yanqing; Liu, Yang; Yin, Jianbo; Zhao, Xiaopeng

    2016-05-01

    Graphene oxide (GO) shows potential as an anisotropic nanofiller or a dispersed phase of electro-responsive electrorheological (ER) nanofluid due to its small size and high aspect ratio. But it is difficult to disperse GO in non-polar oil due to the hydrophilic nature of GO and thus the resulting fluid is often subject to dispersion instability and low ER effect. These disadvantages largely limit the real application of GO-based ER nanofluid. In this paper, we develop the polyhedral oligomeric silsesquioxane (POSS)-decorated GO (POSS-GO) nanosheets and demonstrate that decorating with POSS overcomes the dispersion instability of GO in silicone oil and enhances the ER effect. The morphology and structure of samples are characterized by atomic force microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and x-ray photoelectronic spectroscopy. The results show that the POSS-GO nanosheets are ultrathin with ∼3 nm thickness and have good compatibility with silicone oil and, as a result, the nanofluid of POSS-GO nanosheets in silicone oil shows high dispersion stability. After standing for one year at room temperature, no sedimentation occurs. Under an external electric field, the ER efficiency of the POSS-GO nanofluid is ten times as high as that of the pure GO fluid. This enhanced electro-responsive behavior is related to the fact that decorating with POSS partly reduces the GO and compresses the dielectrophoretic effect of the negatively charged pure GO fluid.

  7. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    PubMed

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. PMID:21945683

  8. Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation.

    PubMed

    Guo, Yan-Lin; Wang, Wenshou; Otaigbe, Joshua U

    2010-10-01

    Incorporation of polyhedral oligomeric silsesquioxanes (POSS) into poly(ester urethanes) (PEU) as a building block results in a PEU/POSS hybrid polymer with increased mechanical strength and thermostability. An attractive feature of the new polymer is that it forms a porous matrix when cast in the form of a thin film, making it potentially useful in tissue engineering. In this study, we present detailed microscopic analysis of the PEU/POSS matrix and demonstrate its biocompatibility with cell culture. The PEU/POSS polymer forms a continuous porous matrix with open pores and interconnected grooves. From SEM image analysis, it is calculated that there are about 950 pores/mm(2) of the matrix area with pore diameter size in the range 1-15 µm. The area occupied by the pores represents approximately 7.6% of the matrix area. Using mouse embryonic stem cells (ESCs), we demonstrate that the PEU/POSS matrix provides excellent support for cell proliferation and differentiation. Under the cell culture condition optimized to maintain self-renewal, ESCs grown on a PEU/POSS matrix exhibit undifferentiated morphology, express pluripotency markers and have a similar growth rate to cells grown on gelatin. When induced for differentiation, ESCs underwent dramatic morphological change, characterized by the loss of clonogenecity and increased cell size, with well-expanded cytoskeleton networks. Differentiated cells are able to form a continuous monolayer that is closely embedded in the matrix. The excellent compatibility between the PEU/POSS matrix and ESC proliferation/differentiation demonstrates the potential of using PEU/POSS polymers in future ESC-based tissue engineering. PMID:20213627

  9. Biocompatibility of Synthetic Poly(ester urethane)/Polyhedral Oligomeric Silsesquioxane Matrices with Embryonic Stem Cell Proliferation and Differentiation

    PubMed Central

    Guo, Yan-Lin; Wang, Wenshou; Otaigbe, Joshua U.

    2010-01-01

    Incorporation of polyhedral oligomeric silsesquioxanes (POSS) into poly (ester urethane)s (PEU) as a building block results in a PEU/POSS hybrid polymer with increased mechanical strength and thermostability. An attractive feature of the new polymer is that it forms a porous matrix when cast in the form of a thin film, making it potentially useful in tissue engineering. In this study, we present detailed microscopic analysis of the PEU/POSS matrix and demonstrate its biocompatibility with cell culture. The PEU/POSS polymer forms a continuous porous matrix with open pores and interconnected grooves. From SEM image analysis, it is calculated that there are about 950 pores per mm2 of the matrix area with pore size ranging from 1 to 15 μm in diameter. The area occupied by the pores represents approximately 7.6 % of matrix area. Using mouse embryonic stem cells (ESCs), we demonstrate that the PEU/POSS matrix provides excellent support for cell proliferation and differentiation. Under the cell culture condition optimized to maintain self-renewal, ESCs grown on a PEU/POSS matrix exhibit undifferentiated morphology, express pluripotency markers, and have similar growth rate to cells grown on gelatin. When induced for differentiation, ESCs underwent dramatic morphological change, characterized by the loss of clonogenecity and increased cell size with well-expanded cytoskeleton networks. Differentiated cells are able to form a continuous monolayer that is closely embedded on the matrix. The excellent compatibility between the PEU/POSS matrix and ESC proliferation/differentiation demonstrates the potential of using PEU/POSS polymers in future ESC-based tissue engineering. PMID:20213627

  10. Advanced Aromatic Polymers with Excellent Antiatomic Oxygen Performance Derived from Molecular Precursor Strategy and Copolymerization of Polyhedral Oligomeric Silsesquioxane.

    PubMed

    Wang, Pei; Tang, Yusheng; Yu, Zhen; Gu, Junwei; Kong, Jie

    2015-09-16

    In this contribution, the advanced aromatic polymers with excellent antiatomic oxygen (AO) performance were designed and synthesized using molecular precursor strategy and copolymerization of polyhedral oligomeric silsesquioxane (POSS). A soluble poly(p-phenylene benzobisoxazole) (PBO) precursor, that is, TBS-PBO (tert-butyldimethylsilyl was denoted as TBS), was designed to overcome the poor solubility of PBO in organic solvents. Then the new copolymer of TBS-PBO-POSS was synthesized by the copolymerization of TBS-PBO and POSS, which possessed good solubility and film-forming ability in common organic solvents, such as N-methylpyrrolidone, N,N-dimethylacetamide, and dimethyl sulfoxide. More importantly, the TBS-PBO-POSS films exhibited outstanding antiatomic oxygen properties because of the incorporation of POSS monomers with cagelike structure into the main chain of copolymer, which drastically reduced the AO-induced erosion owing to the formation of the passivating silica layer on the surface of polymers. When the TBS-PBO-POSS films were exposed to AO effective fluences of 1.5495×10(20) atom cm(-2) (5 h) and 4.6486×10(20) atom cm(-2) (15 h), the relative mass loss was merely 0.19% and 0.41%, respectively. This work provides a new perspective and efficient strategy for the molecular design of aromatic heterocyclic polymers possessing excellent combination properties including processing convenience and antioxidative and mechanical properties, which can be employed as potential candidates to endure the aggressive environment encountered in low earth orbits. PMID:26322523

  11. Influence of Sol-Gel Conditions on the Growth of Thiol-Functionalized Silsesquioxanes Prepared by In Situ Water Production.

    PubMed

    Borovin, Evgeny; Callone, Emanuela; Papendorf, Benjamin; Guella, Graziano; Diré, Sandra

    2016-03-01

    Thiol-functionalized oligosilsesquioxanes have been synthesized by sol-gel chemistry via the in-situ water production (ISWP) approach, exploiting the esterification reaction of chloro-acetic acid and 1-propanol. The extent of hydrolysis-condensation of 3-Mercaptopropyltrimethoxysilane (McPTMS) has been studied by FT-IR and NMR spectroscopy, gel permeation chromatography (GPC) and MALDI-TOF techniques. The esterification reaction plays a key role in ruling out the oligomer structural development. In this work, we have investigated the influence of the theoretical amount of water available for the organosilane hydrolysis, defined by the ratio of chloro-acetic acid to McPTMS in the reaction mixture, and the role of different catalysts like trifluoroacetic acid (TFA) and dibutyldilauryltin (DBTL). The behavior of the catalyst is complex since, according to its nature, it may improve the kinetics of the sol-gel reactions and the esterification reaction as well. Comparing the reactions carried out with under-stoichiometric water content, the degree of condensation of the silsesquioxanes is higher if the reaction is catalyzed by TFA than by DBTL, because TFA may improve the kinetics of both hydrolysis-condensation and esterification reactions. The use of DBTL in under-stoichiometric and stoichiometric hydrolytic conditions raises the yield in ladder-like structures. The degree of condensation generally increases increasing the hydrolysis ratio as well as the yield in cage-like structures. However, when an over-stoichiometric amount of water is provided for the sol-gel reaction, condensation degree and ratio among cages and ladder-like structures appear unaffected by the employed catalyst. PMID:27455755

  12. Polycarbonate-silsesquioxane and polycarbonate-siloxane nanocomposites: Synthesis, characterization, and application in the fabrication of porous inorganic films

    NASA Astrophysics Data System (ADS)

    Abdallah, Jassem

    Three types of poly(bicycle[2.2.1]heptane carbonate) or poly(norbornane carbonate) or PNC oligomers were synthesized and characterized via spectroscopic methods and elemental analyses to validate their chemical structures. End-group analyses were used to estimate the degree of polymerization of the oligomers via the use of proton nuclear magnetic resonance (1H NMR) results. Random-coil and rigid-rod models were used to estimate the sizes of individual PNC chains based on the degrees of polymerization calculated from NMR data. Due to the small sizes of the PNC chains, dynamic light scattering (DLS) was incapable of measuring the hydrodynamic radii, RH, of individual chains. Attempts at using gel permeation chromatography (GPC) data to estimate the hydrodynamic radii of individual chains consistently provided values that were an order of magnitude smaller than the estimated sizes of individual chains based on random-coil calculations. The thermal properties of PNCs were determined via differential scanning calorimetry (DSC) and thermogravimetric analyses (TGAs). All three types of PNC structures were both thermally-labile and acidolytically-labile, allowing them to be used as sacrificial materials in both direct-write and thermally-processed template systems. TGA data was used to determine the kinetic parameters for the thermolytic decomposition reactions and evolved-gas analysis via mass spectrometry (TGA-MS) was used to validate the mechanisms for polycarbonate thermolysis reactions that have been previously proposed in literature. PNC oligomers were freely-mixed with hydrogen silsesquioxane (HSQ) to form solutions that were spin-coated to form templated films. Ellipsometry and dielectric measurements were used to track the changes in the optical and dielectric properties of templated films and effective medium approximations were used to estimate the level of porosity incorporated within each porous film. Transmission electron microscopy (TEM) showed that the free

  13. Ferrocene adsorbed into the porous octakis(hydridodimethylsiloxy)silsesquioxane after thermolysis in tetrahydrofuran media: An applied surface for ascorbic acid determination

    SciTech Connect

    Ribeiro do Carmo, Devaney; Lataro Paim, Leonardo; Ramos Stradiotto, Nelson

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Octakis(hydridodimethylsiloxi)silsesquioxane was synthesized and Ferrocene was adsorbed. Black-Right-Pointing-Pointer Polymeric net through electrostatic interactions was observed. Black-Right-Pointing-Pointer The novel materials presents electroacatalytic activity for Ascorbic acid. -- Abstract: Octakis(hydridodimethylsiloxi)silsesquioxane (Q{sub 8}M{sub 8}{sup H}) was synthesized and Ferrocene was adsorbed in a polymeric net through electrostatic interactions, with anion forming after the cleavage of any siloxy groups (ESFc). The nanostructured materials (Q{sub 8}M{sub 8}{sup H} and EsFc) were characterized by Fourier transform infrared spectra (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Thermogravimetric analyses and Voltammetric technique The cyclic voltammograms of the graphite paste electrode modified with ESFc showed one redox couple with E{sup 0} Prime = 0.320 V (1.0 mol L{sup -1} NaCl, v = 50 mV s{sup -1}), with a diffusion-controlled process and the redox process shows electrocatalytic activity for the oxidation of ascorbic acid.

  14. Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material.

    PubMed

    Ghanbari, Hossein; Radenkovic, Dina; Marashi, Sayed Mahdi; Parsno, Shirin; Roohpour, Nima; Burriesci, Gaetano; Seifalian, Alexander M

    2016-06-01

    In the cardiovascular system, the endothelial layer provides a natural antithrombogenic surface on the inner portion of the heart and associated vessels. For a synthetic material therefore, the ability to attract and retain endothelial or endothelial progenitor cells (EPCs), ultimately creating a single endothelial layer on its surface, is of prime importance. The authors have developed a nanocomposite polymer, based on a combination of polyhedral oligomeric silsesquioxane nanoparticles and polycarbonate urea urethane (POSS-PCU), which is biocompatible and has been used in human for the world's first synthetic trachea, tear duct, and bypass graft. In this study, the authors modified the surface of this casted nanocomposite by grafting fibronectin derived bioactive peptides [glycine-arginine-glycine-aspartic acid-glycine (GRGDG) and lauric acid conjugated GRGDG (GRGDG-LA)] to enhance the endothelialization for using heart valves leaflets from circulating EPCs. Human peripheral blood mononuclear cells were separated using Ficoll-Paque centrifugation, with harvested EPCs purified using CD34 microbead labeling and magnetic-activated cell sorting. Cells were seeded onto 96 well plates coated with POSS-PCU, GRGDG/GRGDG-LA modified POSS-PCU and PCU polymers, for a period of 21 days. Cells were studied under light, confocal, and scanning electron microscope (SEM). Fluorescence-activated cell sorting was used to analyze cell surface markers. Cell attachment and proliferation was observed in all POSS-PCU samples, significantly higher than the activity seen within the control PCU polymers (p < 0.05). Microscopic examination revealed clonal expansion and morphological changes in cells seeded on POSS-PCU. The cells expressed increasing levels of mature endothelial cell markers over time with a concurrent reduction in hematopoietic stem cell marker expression. SEM showed a mixed population of morphologically differentiated endothelial cells and EPCs. These results support

  15. COSMO-RS analysis on mixing properties obtained for the systems 1-butyl-X-methylpyridinium tetrafluoroborate [X = 2,3,4] and 1,ω-dibromoalkanes [ω = 1-6].

    PubMed

    Navas, Ana; Ortega, Juan; Palomar, José; Díaz, Carlos; Vreekamp, Remko

    2011-05-01

    A theoretical-experimental study for a set of 18 binary systems comprised of [bXmpy][BF(4)] (X=2-4) + 1,ω-Br(CH(2))(v)Br (v =ω=1-6) at a temperature of 298.15 K is presented. The solubility curves are determined for each binary system, establishing the intervals of measurement for the excess properties, H(E)(m) and V(E)(m). These properties are then determined for those systems that present a miscibility zone. Binary systems containing 1,ω-dibromoalkanes with ω=5,6 present reduced solubility intervals at the temperature of 298.15 K. However, the mixtures with 1,1-dibromomethane were totally miscible with the three isomers of 1-butyl-X-methylpyridinium tetrafluoroborate. Mixtures with dibromomethane present H(E)(m) <0, whereas H(E)(m) >0 for the other binary systems. Sigmoidal curves were observed for the V(E)(m) describing expansion and contraction processes for all the systems, except for the mixtures of [b2mpy][BF(4)] with the smaller dibromoalkanes, which present contraction effects. The COSMO-RS methodology was used to estimate the solubilities and the intermolecular interaction energies, giving an acceptable explanation of the behavioral structure of pure compounds and solutions. PMID:21437322

  16. Synthesis and antimicrobial activity of guanylhydrazones. Synthesis of 2-(2-methylthio-2-aminovinyl)-1-methylpyridinium iodides and 2-(2-methylthio-2-aminovinyl)-1-methylquinolinium iodides as potential radioprotective and anticancer agents

    SciTech Connect

    Almassian, B.

    1985-01-01

    The finding of appreciable antileukemic activity in a series of 2-(2-methylthio-2-amino)vinyl-1-methylquinolinium iodides (Foye et al., 1980, 1983) suggested that greater basicity, as compared with the corresponding dithioacetic acids, was contributing to the increase in activity. The addition of a greater degree of basicity in the design of anticancer possibilities in this series was considered worth investigation, particularly in view of the activity of a series of bis(quanylhydrazones) synthesized at Lederle Laboratories. Accordingly, a series of guanylhydrazones of 4-pyridine-,2-pyridine- and 4-quinolinecarboxyaldehydes was synthesized for anticancer as well as antibacterial screening. Also, substitution of additional basic functions in the 2-(2-methylthio-2-amino) vinyl-1-methylquinolinium and pyridinium iodide series has been made. Appreciable antimicrobial activities have been found with both 2-pyridine and 4-quinolinealdehyde guanylhydrazones, as well as with 2-(2-methylthio-2-amino)vinyl-1-methyl-pyridinium iodides. The overall approach to the synthesis of potential anticancer agents in this project is thus to observe the effect of increasing basicity of these compounds on DNA binding and anticancer activity.

  17. 2-Methylpyridinium/pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olates as potent anticonvulsant agents—synthesis and crystal structure

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, G.; Kalaivani, D.

    2013-12-01

    The molecular salt, 2-methylpyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropy-rimidin-4-olate) ( I), is prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, pyrimidine-2,4,6-(1H,3H,5H)-trione (barbituric acid) and 2-methylpyridine at room temperature, and the molecular salt, pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate ( II), is prepared from the same reactants, by dissolving them in hot DMSO and ethanol mixture at 70°C. The structures of I and II are characterized by visible, IR, 1H-NMR, 13C-NMR and elemental analysis and confirmed by single crystal X-ray analysis. Both the salts crystallize in triclinic crystal system with sp. gr. . They possess noticeable anticonvulsant activity even at low concentration (25 mg/kg). Acute toxicity studies of these complexes indicate that LD50 values are greater than 1500 mg/kg and the tested animals do not show any behavioural changes.

  18. 2-Methylpyridinium/pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olates as potent anticonvulsant agents—synthesis and crystal structure

    SciTech Connect

    Mangaiyarkarasi, G.; Kalaivani, D.

    2013-12-15

    The molecular salt, 2-methylpyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropy-rimidin-4-olate) (I), is prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, pyrimidine-2,4,6-(1H,3H,5H)-trione (barbituric acid) and 2-methylpyridine at room temperature, and the molecular salt, pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (II), is prepared from the same reactants, by dissolving them in hot DMSO and ethanol mixture at 70°C. The structures of I and II are characterized by visible, IR, {sup 1}H-NMR, {sup 13}C-NMR and elemental analysis and confirmed by single crystal X-ray analysis. Both the salts crystallize in triclinic crystal system with sp. gr. P-bar1. They possess noticeable anticonvulsant activity even at low concentration (25 mg/kg). Acute toxicity studies of these complexes indicate that LD{sub 50} values are greater than 1500 mg/kg and the tested animals do not show any behavioural changes.

  19. Regulated dielectric loss of polymer composites from coating carbon nanotubes with a cross-linked silsesquioxane shell through free-radical polymerization.

    PubMed

    Sun, Da; Zhou, Zheng; Chen, Guang-Xin; Li, Qifang

    2014-11-12

    We report a synthetic strategy for coating multiwalled carbon nanotubes (MWCNTs) with cross-linked octa-methacrylate-polyhedral oligomeric silsesquioxane (MA-POSS) by direct, in situ free-radical polymerization in a controlled manner. This strategy resulted in a core-shell structure with an MWCNT center. The shell thickness could be varied from ∼ 7 nm to 40 nm by choosing different initiators, solvents, and weight ratios of MWCNT and octa-MA-POSS. Coated MWCNT hybrids had controlled electrical performance depending on the coating layer thickness and were well-dispersed in the polymer matrix. POSS-coated MWCNTs were compounded with poly(vinylidene fluoride) to obtain a composite with high dielectric permittivity and low dielectric loss. PMID:25337905

  20. Nanofabrication of super-high-aspect-ratio structures in hydrogen silsesquioxane from direct-write e-beam lithography and hot development.

    SciTech Connect

    Ocola, L. E.; Tirumala, V. R.; Center for Nanoscale Materials; NIST

    2008-11-01

    Super-high-aspect-ratio structures (>10) in hydrogen silsesquioxane resist using direct write electron beam lithography at 100 kV and hot development and rinse are reported. Posts of 100 nm in width and 1.2 {micro}m tall have been successfully fabricated without the need of supercritical drying. Hot rinse solution with isopropyl alcohol has been used to reduce surface tension effects during drying. Dose absorption effects have been observed and modeled using known Monte Carlo models. These results indicate that for e-beam exposures of thick negative resists (>1 {micro}m), the bottom of the structures will have less cross-link density and therefore will be less stiff than the top. These results will have impact in the design of high-aspect-ratio structures that can be used in microelectromechanical system devices and high-aspect-ratio Fresnel zone plates.

  1. Characterization of the thermodynamics and deformation behavior of styrene-butadiene-styrene grafted with polyhedral oligomeric silsesquioxanes

    NASA Astrophysics Data System (ADS)

    Drazkowski, Daniel B.

    This research study uses a model nanostructure-copolymer system in order to develop a fundamental understanding of how polymers are affected by functionalized nanostructures. For this study, polyhedral oligomeric silsesquioxanes (POSS) was chosen as the model nanostructure and polystyrene-block-polybutadiene-block-polystyrene copolymer (SBS) as the model polymer host. The choice of materials and chemical reaction scheme for grafting the SBS-POSS copolymers allows for reproducible products with the opportunity for wide selection of nanostructure grafting fractions. In order to examine the effects that the nanostructure's electronic properties have on the host polymer, the organic group of the POSS nanostructures was varied. To facilitate a rigorous comparison, four sterically similar, yet electronically different POSS derivatives were selected (cyclopentyl (Cp), cyclopenyl (Cy), cyclohexenyl (Cye), and phenyl (Ph)). Ph-POSS results in the greatest changes relative to the ungrafted SBS block copolymer because its chemistry has the largest contrast to the block in which it is grafted while simultaneously having the largest affinity toward the ungrafted block. All four of the cyclic POSS were found to have some affinity toward the polystyrene phase, so iBu-POSS was investigated in order to observe the effects of incorporating a noninteracting nanostructure. Two host morphologies were examined in order to compare noninteracting (iBu) and strongly interacting (Ph) POSS nanostructures. The morphology and phase behavior observed for noninteracting POSS is consistent with simply changing polystyrene content with no noticeable change in chi. Furthermore, local and long-ranged order of the morphology is well-preserved. The interacting nanostructures reduce chi substantially and disrupt the local order of the morphology, which is equivalent to a compatibilizing effect. Deformation was studied to supplement the previous findings regarding the equilibrium morphology, and give

  2. Solvent-controlled synthesis of tetranuclear cage-like copper(II) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides.

    PubMed

    Dronova, Marina S; Bilyachenko, Alexey N; Yalymov, Alexey I; Kozlov, Yuriy N; Shul'pina, Lidia S; Korlyukov, Alexander A; Arkhipov, Dmitry E; Levitsky, Mikhail M; Shubina, Elena S; Shul'pin, Georgiy B

    2014-01-14

    Two principally different in their molecular architecture isomeric tetranuclear copper(ii) silsesquioxanes, "Globule"-like compound [(PhSiO1.5)12(CuO)4(NaO0.5)4] (1) and "Sandwich"-like derivative [(PhSiO1.5)6(CuO)4(NaO0.5)4(PhSiO1.5)6] (2), were synthesized by the partial cleavage of polymeric copper(ii) silsesquioxane [(PhSiO1.5)2(CuO)]n by tetraphenylcyclotetrasiloxanolate. The route leading to the formation of either 1 or 2 entirely depends on the nature and composition of the solvent used for this reaction. Thus, the process in an ethanol-1-butanol solution gives compound 1. When a 1,4-dioxane-methanol mixture was used, compound 2 was prepared. The structures and unusual crystal packing of the cages were confirmed by the X-ray studies. It has been found that the reaction of benzene with H2O2 in acetonitrile solution at 50 °C catalyzed by 1 requires addition of trifluoroacetic acid (TFA) in low concentration and gives phenol with a turnover number (TON) of 250 after 3 h. The initial reaction rate W0 linearly depends on the concentration of catalyst 2. The oxidation of 1-phenylethanol to acetophenone with hydrogen peroxide catalyzed by complex 1 in the presence of TFA is not efficient. In contrast, 1 exhibited excellent activity in the oxidation with tert-butyl hydroperoxide (TBHP) in the absence of any acid (the yield of acetophenone was close to the quantitative, TON attained 475 after 2 h). A kinetic study of this reaction led to the conclusion that the process occurs with the participation of radicals tert-BuO˙ produced in the Cu-promoted decomposition of TBHP. The mode of dependence of W0 on the initial concentration of TBHP indicates the formation of an intermediate adduct between the catalyst 1 and TBHP (characterized by the equilibrium constant K1≈ 2 M(-1) for the conditions of conducted experiments) followed by subsequent decomposition of the adduct (k2≈ 0.2 s(-1)) to generate an intermediate species tert-BuO˙ which induces the alcohol oxidation

  3. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells

    PubMed Central

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; G, Natasha; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Hamblin, Michael R; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-01-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings. PMID:24706135

  4. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells.

    PubMed

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; G, Natasha; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Hamblin, Michael R; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-12-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings. PMID:24706135

  5. Hydrophobic interface controlled electrochemical sensing of nitrite based on one step synthesis of polyhedral oligomeric silsesquioxane/reduced graphene oxide nanocomposite.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-04-01

    In this paper, we report a novel hydrophobic interface controlled electrochemical sensing of nitrite based on polyhedral oligomeric silsesquioxane/ reduced graphene oxide nanocomposite (POSS/rGO). The POSS/rGO is prepared by one step hydrothermal synthesis method, and characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), Zeta-potential measurement analyzer, electrochemical impedance spectroscopy (EIS) and zero current potential method respectively. Then the POSS/rGO composite is used to fabricate electrochemical sensor for nitrite detection. According to experimental results, it is found that under control of hydrophobic force, the current peak will be shifted to lower potential (0.72V) and the possible reason has been analyzed in manuscript. In addition, the POSS/rGO based sensor also has wide linear range (0.5μM to 120mM), low detection limit (0.08μM) and good selectivity. In a word, the hydrophobic force controlled detection in this paper will provide a new platform for electrochemical sensing. PMID:26838412

  6. Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior.

    PubMed

    Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi

    2014-01-14

    In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements. PMID:24651714

  7. Fabrication and characterization of a α,β,γ,δ-Tetrakis(1-methylpyridinium-4-yl)porphine/silica nanocomposite thin-layer membrane for detection of ppb-level heavy metal ions.

    PubMed

    Latt, Kyaing Kyaing; Takahashi, Yukiko

    2011-03-01

    A new detection membrane for filtration enrichment combined with colorimetric determination of Cd(II), Zn(II), Pb(II) and Cu(II) ions is presented. We have demonstrated the use of a dye nanoparticle coated test strip (DNTS) structured with a reagent layer for on-site analysis of trace metal ions. In this study, a [TMPyP/SA] DNTS coated with a nanocomposite layer (average thickness: 5.39 μm) of α,β,γ,δ-Tetrakis(1-methylpyridinium-4-yl)porphine (TMPyP) and silica-SA on the top surface of a cellulose ester membrane filter was fabricated by a simple filtration of an aqueous TMPyP/silica-SA nanocomposite dispersion through a membrane filter. The nanocomposite formation of cationic TMPyP and negatively charged colloidal SA (9-80 nm) was based on electrostatic interaction and was confirmed in the 120-800 nm diameter range by a dynamic light scattering photometer (DLS). To optimize the DNTS nanocomposite layer, surface uniformity, mechanical strength, the percent retention of TMPyP, and sensitivity to Cd(II) detection for six DNTSs with five different types of silica were examined. A half[TMPyP/SA] DNTS with an average layer thickness of 2.60 μm, which was prepared by controlling the amount of TMPyP and SA, demonstrated the highest sensitivity to Cd(II) ion because it had the lowest background absorbance. In addition, factors that affected the percent retention of TMPyP, such as pH and TMPyP/SA ratio, were determined. More than 99% of the TMPyP was retained on a membrane filter at pH 7.8 with a TMPyP and SA concentration of 2 × 10(-5) M and 4 × 10(-5) wt%, respectively. Filtration enrichment of 100mL of an aqueous solution containing Cd(II), Zn(II), and Pb(II) at ppb levels was achieved by concentrating the metal ions in a nanocomposite layer (the effective TMPyP area was 1.77 cm(2), pH 10.2). The signaling surface changed from a brown color to green when the ions were captured. The percent extraction for metal ions on a half[TMPyP/SA] DNTS were estimated by TLC

  8. Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers

    SciTech Connect

    Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.; Greaves, J.; Loy, D.A.; Shaltout, R.; Shea, K.J.; Small, J.H.

    1999-01-04

    Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.

  9. Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction.

    PubMed

    Liu, Zhongshan; Ou, Junjie; Lin, Hui; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2014-05-16

    A polyhedral oligomeric silsesquioxane (POSS) hybrid monolith was simply prepared by using octaglycidyldimethylsilyl POSS (POSS-epoxy) and cystamine dihydrochloride as monomers via ring-opening polymerization. The effects of composition of prepolymerization solution and polycondensation temperature on the morphology and permeability of monolithic column were investigated in detail. The obtained POSS hybrid monolithic column showed 3D skeleton morphology and exhibited high column efficiency of ∼71,000 plates per meter in reversed-phase mechanism. Owing to this POSS hybrid monolith essentially possessing a great number of disulfide bonds, the monolith surface would expose thiol groups after reduction with dithiothreitol (DTT), which supplied active sites to functionalize with various alkene monomers via thiol-ene click reaction. The results indicated that the reduction with DTT could not destroy the 3D skeleton of hybrid monolith. Both stearyl methylacrylate (SMA) and benzyl methacrylate (BMA) were selected to functionalize the hybrid monolithic columns for reversed-phase liquid chromatography (RPLC), while [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide (MSA) was used to modify the hybrid monolithic column in hydrophilic interaction chromatography (HILIC). These modified hybrid monolithic columns could be successfully applied for separation of small molecules with high efficiency. It is demonstrated that thiol-ene click reaction supplies a facile way to introduce various functional groups to the hybrid monolith possessing thiol groups. Furthermore, due to good permeability of the resulting hybrid monoliths, we also prepared long hybrid monolithic columns in narrow-bore capillaries. The highest column efficiency reached to ∼70,000 plates using a 1-m-long column of 75μm i.d. with a peak capacity of 147 for isocratic chromatography, indicating potential application in separation and analysis of complex biosamples. PMID:24725471

  10. Preparation and Characterization of Polyhedral Oligomeric Silsesquioxane-Containing, Titania-Thiol-Ene Composite Photocatalytic Coatings, Emphasizing the Hydrophobic-Hydrophilic Transition.

    PubMed

    Jefferson, LaCrissia U; Netchaev, Anton D; Jefcoat, Jennifer A; Windham, Amber D; McFarland, Frederick M; Guo, Song; Buchanan, Randy K; Buchanan, J Paige

    2015-06-17

    Coatings prepared from titania-thiol-ene compositions were found to be both self-cleaning, as measured by changes in water contact angle, and photocatalytic toward the degradation of an organic dye. Stable titania-thiol-ene dispersions at approximately 2 wt % solids were prepared using a combination of high-shear mixing and sonication in acetone solvent from photocatalytic titania, trisilanol isobutyl polyhedral oligomeric silsesquioxane (POSS) dispersant, and select thiol-ene monomers, i.e., trimethylolpropane tris(3-mercaptopropionate) (TMPMP), pentaerythritol allyl ether (APE), and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT). The dispersed particle compositions were characterized by DLS and TEM. The synthetic methods employed yield a strongly bound particle/POSS complex, supported by IR, 29Si NMR, and TGA. The factors of spray techniques, carrier solvent volatility, and particle size and size distributions, in combination, likely all contribute to the highly textured but uniform surfaces observed via SEM and AFM. Polymer composites possessed thermal transitions (e.g., Tg) consistent with composition. In general, the presence of polymer matrix provided mechanical integrity, without significantly compromising or prohibiting other critical performance characteristics, such as film processing, photocatalytic degradation of adsorbed contaminants, and the hydrophobic-hydrophilic transition. In all cases, coatings containing photocatalytic titania were converted from superhydrophobic to superhydrophilic, as defined by changes in the water contact angle. The superhydrophilic state of samples was considered persistent, since long time durations in complete darkness were required to observe any significant hydrophobic return. In a preliminary demonstration, the photocatalytic activity of prepared coatings was confirmed through the degradation of crystal violet dye. This work demonstrates that a scalable process can be found to prepare titania

  11. Modeling of novel hybrid photonic crystal structures involving cured hydrogen silsesquioxane pillars for improving the light extraction in light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    The Solid-State Lighting (SSL) industry utilizes semiconductor based light-emitting diodes (LEDs) as core elements of light sources. LED lighting has several advantages over conventional incandescent bulbs; however, device-level issues such as material quality, low quantum efficiencies, and low light extraction efficiencies still exist. Many techniques have been explored to provide improvement in the area of LED light extraction. Improvement in light extraction efficiency, through the use of integrated optical components such as photonic crystals, is critical for the improvement in the overall efficiency of the device. Fabrication and integration of PhCs into LEDs with little or no degradation in device's electrical characteristics is an important accomplishment to be considered. Use of electron beam lithography and novel electron beam resists like hydrogen silsesquioxane will allow advancements toward achieving this goal. The unique chemical properties of HSQ allows transformation of the patterned resist into silicon dioxide. This leads to hybrid PhC structures that contain the cured form of HSQ and other materials of interest in an LED. In this work, novel hybrid PhC structures in square and triangular lattice configurations will be modeled to improve light extraction in blue InGaN/GaN based LEDs (λ=465 nm) and attain an optimal structure. Feature sizes from 100 nm to 465 nm will be modeled and the effect of the patterned structure (band gap and/or diffraction) on the light extraction will be studied and analyzed. Simulation data from frequency domain and time domain engines in MPB and OptiFDTD respectively will be analyzed and presented.

  12. Self-Assembly and Chain-Folding in Hybrid Coil-Coil-Cube Triblock Oligomers of Polyethylene-b-Poly(ethylene Oxide)-b-Polyhedral Oligomeric Silsesquioxane

    SciTech Connect

    Miao,J.; Cui, L.; Lau, H.; Mather, P.; Zhu, L.

    2007-01-01

    Self-assembly and chain-folding in well-defined oligomeric polyethylene-block-poly(ethylene oxide)-block-polyhedral oligomeric silsesquioxane (PE-b-PEO-b-POSS) triblock molecules were studied by small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and transmission electron microscopy (TEM). The triblock oligomers were synthesized by attaching two kinds of functional POSS molecules, namely, isocyanatopropyldimethylsilylisobutyl-POSS (Ib-POSS) and isocyanatopropyldimethylsilylcyclopentyl-POSS (Cp-POSS), to a hydroxyl-terminated PE-b-PEO-OH diblock oligomer (denoted as E{sub 39}EO{sub 23}) via urethane reactions. In these triblock oligomers, both PE and POSS were crystalline, whereas PEO became amorphous due to tethering of its both ends to other two blocks. In the crystalline state, PE chains tilted 32{sup o} from the lamellar normal, and both Ib-POSS and Cp-POSS molecules stacked into four-layer (ABCA) lamellar crystals, having the same trigonal (R{bar 3}m) symmetry as in pure POSS crystals. Because the cross-sectional area for a PE chain in the PE crystals (0.216 nm{sup 2}/chain) at the interface was much smaller than that for a POSS molecule in POSS crystals (1.136 nm{sup 2}/molecule), the self-assembly and PE chain-folding were substantially affected by the sequence of PE and POSS crystallization when crystallizing from the melt. For example, PE crystallization induced the POSS crystallization in the bulk E{sub 39}EO{sub 23}-Ib-POSS, and thus extended-chain PE crystals were observed. The grains of crystalline lamellae again were small with often highly curved lamellar crystals. This could also be attributed to the unbalanced interfacial areas for POSS and PE blocks (the interfacial area ratio being 2.6 for interdigitated PE crystals, i.e., two PE chains per POSS molecule). For the E{sub 39}EO{sub 23}-Cp-POSS triblock oligomer, POSS molecules crystallized before PE crystallization, forming a well-defined lamellar structure. The preexisting

  13. Synthesis and Characterization of Ru(II) Tris(1,1O-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium Cation or N-Benzyl-N'-methyl-viologen. Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2004-01-01

    The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.

  14. 4-[2-(4-cyanophenyl)ethenyl]-N-methylpyridinium tetraphenylborate.

    PubMed

    Jin, Dan; Zhang, De Chun

    2005-11-01

    In the title compound, C(15)H(13)N(2)(+).C(24)H(20)B(-), the pyridyl ring of the cation makes a dihedral angle of 1.6 degrees with the benzene ring. Each is rotated in the same direction with respect to the central -C-CH=CH-C- linkage, by 3.8 and 5.3 degrees, respectively. The anions have a slightly distorted tetrahedral geometry. Molecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which interact with the central anion through C-H...pi interactions. The cations are hydrogen bonded in a head-to-tail fashion, forming chains along [101]. PMID:16272603

  15. 2-Amino-5-methyl-pyridinium 4-chloro-benzoate.

    PubMed

    Thanigaimani, Kaliyaperumal; Farhadikoutenaei, Abbas; Arshad, Suhana; Razak, Ibrahim Abdul

    2013-01-01

    The 4-chloro-benzoate anion of the title salt, C6H9N2(+)·C7H4ClO2(-), is nearly planar with a dihedral angle of 5.14 (16)° between the benzene ring and the carboxyl-ate group. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds with an R2(2)(8) ring motif. The ion pairs are further connected via N-H⋯O and weak C-H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The crystal structure also features a π-π stacking inter-action between the pyridinium and benzene rings with a centroid-centroid distance of 3.7948 (9) Å. PMID:23476392

  16. 2-Amino-6-methyl-pyridinium 3-chloro-benzoate.

    PubMed

    Thanigaimani, Kaliyaperumal; Khalib, Nuridayanti Che; Arshad, Suhana; Razak, Ibrahim Abdul

    2013-03-01

    In the title salt, C6H9N2(+)·C7H4ClO2(-), the 3-chloro-benzoate anion shows a whole-mol-ecule disorder over two positions with a refined occupancy ratio of 0.505 (4):0.495 (4). In the crystal, the cations and anions are linked via N-H⋯O hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R2(2)(8) and R4(2)(8) ring motifs. The crystal structure also features a π-π stacking inter-action between the pyridinium rings with a centroid-centroid distance of 3.8339 (9) Å. PMID:23476517

  17. 2-Amino-5-methyl-pyridinium 4-methyl-benzoate.

    PubMed

    Thanigaimani, Kaliyaperumal; Farhadikoutenaei, Abbas; Arshad, Suhana; Razak, Ibrahim Abdul

    2013-01-01

    The 4-methyl-benzoate anion of the title salt, C6H9N2(+)·C8H7O2(-), is nearly planar, with a dihedral angle of 6.26 (10)° between the benzene ring and the carboxyl-ate group. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds with an R2(2)(8) ring motif, forming an approximately planar ion pair with a dihedral angle of 9.63 (4)° between the pyridinium and benzene rings. The ion pairs are further connected via N-H⋯O and weak C-H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. PMID:23476474

  18. Formation of Mixed Monolayers of Silsesquioxanes and Alkylsilanes on Gold

    SciTech Connect

    Owens,T.; Nicholson, K.; Fosnancht, D.; Orr, B.; Banaszak Holl, M.

    2006-01-01

    The formation of mixed monolayers of hydridospherosilsesquioxane clusters (H{sub 8}Si{sub i}O{sub 12}) and alkylsilanes (H{sub 2n+1}C{sub n}SiH{sub 3}) on Au has been investigated using X-ray photoelectron and reflection-absorption infrared spectroscopies and scanning tunneling microscopy. All of the techniques indicate the displacement of the majority of the siloxane clusters from the surface in favor of the alkylsilane.

  19. 2-Amino-5-methyl-pyridinium 2-hy-droxy-5-chloro-benzoate.

    PubMed

    Thanigaimani, Kaliyaperumal; Farhadikoutenaei, Abbas; Arshad, Suhana; Razak, Ibrahim Abdul

    2013-01-01

    In the 5-chloro-salicylate anion of the title salt, C6H9N2(+)·C7H4ClO3(-), an intra-molecular O-H⋯O hydrogen bond with an S(6) graph-set motif is observed and the dihedral angle between the benzene ring and the -CO2 group is 1.6 (6)°. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms via a pair of N-H⋯O hydrogen bonds, forming an R2(2)(8) ring motif. The crystal structure also features N-H⋯O and weak C-H⋯O inter-actions, resulting in a layer parallel to (10-1). PMID:23476391

  20. Syntheses and quadratic optical nonlinearities of ruthenium(II) complexes with ethynyl-connected N-methylpyridinium electron acceptors.

    PubMed

    Coe, Benjamin J; Harries, Josephine L; Helliwell, Madeleine; Brunschwig, Bruce S; Harris, James A; Asselberghs, Inge; Hung, Sheng-Ting; Clays, Koen; Horton, Peter N; Hursthouse, Michael B

    2006-02-01

    We have prepared a number of new dipolar complexes containing ethynyl or buta-1,3-diynyl units linking electron-rich {Ru(II)(NH3)5}2+, trans-{Ru(II)(NH3)4L}+ (L = pyridine or N-methylimidazole), or trans-{Ru(II)Cl(pdma)2}+ [pdma = 1,2-phenylenebis(dimethylarsine)] centers to pyridinium electron acceptors. In acetonitrile solutions at 295 K, the new complexes display unusual blue-shifting of their metal-to-ligand charge-transfer (MLCT) bands as the conjugation is extended, in a fashion similar to that of the corresponding ethenyl systems. Hyper-Rayleigh scattering (HRS) and Stark spectroscopic measurements provide direct and indirect estimates of static first hyperpolarizabilities beta0, and both the linear and nonlinear optical (NLO) properties are temperature- and medium-dependent. Thus, at 77 K in butyronitrile glasses, the MLCT bands display more normal red shifts upon conjugation extension. While the Stark-derived beta0 values generally increase as n (the number of ethynyl units) increases from 0 to 2, the HRS data show maximization at n = 1 for two of the ammine series but an increase upon moving from n = 1 to 2 for the pdma complexes. Comparisons with the analogous ethenyl chromophores show that the latter generally display larger beta0 values, whether determined via HRS or Stark data, and the inferiority of the ethynyl systems in terms of NLO response is more pronounced when n = 2. This differing behavior is attributable primarily to larger increases in the transition dipole moment mu12 (and, hence, donor-acceptor pi-electronic coupling) on elongation in the ethenyl chromophores. PMID:16441133

  1. Applications of time-dependent Raman scattering theory to the one-electron reduction of 4-cyano-n-methylpyridinium

    SciTech Connect

    Johnson, C.S. )

    1992-02-01

    Activation barrier heights, and therefore rates, for molecule-based electron-transfer (ET) reactions are governed by redox thermodynamics and Frank-Condon effects. Quantitative assessment of the latter requires a detailed, quantitative knowledge of all internal and external normal-coordinate displacements, together with appropriate vibrational frequencies (v) or force constants (f). In favorable cases, the desire internal or vibrational displacement information can be satisfactorily estimated from redox-induced bond-length changes as provided, for example, by x-ray crystallography or extended x-ray absorption fine structure (EXAFS) measurements. Other potentially useful methods include Franck-Condon analysis of structured emission or absorption spectra, hole burning techniques, and application of empirical structure/frequency relationships (E.g., Badger's rules). There are, however, a number of limitations. The most obvious limitations for crystallography are that measurements can be made only in a crystalline environment and that experiments cannot be done on short-lived electron-transfer excited states or on systems which suffer from chemical decomposition following oxidation or reduction. For EXAFS there are additional constrains in that only selected elements display useful scattering and only atoms in close proximity to the scattering center may be detected. This report contains the first successful applications of the Raman methodology to a much larger class of ET reactions, namely, outer-sphere reactions. The report also necessarily represents the first application to a monomeric redox system.

  2. A novel electroluminescent PPV copolymer and silsesquioxane nanocomposite film for the preparation of efficient PLED devices.

    PubMed

    Venegoni, Ivan; Carniato, Fabio; Olivero, Francesco; Bisio, Chiara; Pira, Nello Li; Lambertini, Vito Guido; Marchese, Leonardo

    2012-11-01

    Polymer light-emitting diodes (PLEDs) have attracted growing interest in recent years for their potential use in displays and lighting fields. Nevertheless, PLED devices have some disadvantages in terms of low optoelectronic efficiency, high cost, short lifetimes and low thermal stability, which limit their final applications. Huge efforts have been made recently to improve the performances of these devices. The addition of inorganic or hybrid organic-inorganic nanoparticles to the light-emitting polymers, for example, allows their thermal stability and electroluminescent efficiency to be increased. Following this approach, novel PLED devices based on composite films of PPV-derivative copolymer (commercial name Super Yellow, SY) and octaisobutil POSS, were developed in this study. The device containing Super Yellow loaded with 1 wt% of POSS showed higher efficiency (ca. +30%) and improved lifetime in comparison to PLED prepared with the pure electroluminescent polymer. The PLED devices developed in this study are suitable candidates for automotive dashboards and, in general, for lighting applications. PMID:23059798

  3. In-situ photocrosslinkable nanohybrid elastomer based on polybutadiene/polyhedral oligomeric silsesquioxane.

    PubMed

    Mirmohammadi, Seyed Amin; Nekoomanesh-Haghighi, Mehdi; Mohammadian Gezaz, Somayyeh; Bahri-Laleh, Naeimeh; Atai, Mohammad

    2016-11-01

    Hydroxyl functionalized nano-sized POSS or ethyleneglycol as diol monomers was incorporated to hydroxyl-terminated polybutadiene (HTPBD) chain in the presence of fumaryl chloride as extender. Blue light photocrosslinking system based on camphorquinone (photoinitiator) and dimethylaminoethyl methacrylate (accelerator) was applied to cure these two synthesized fumarate based macromers. Self-crosslinkability of unsaturated macromers and also crosslinking in presence of a reactive diluent were investigated in absence and presence of 1,4-butanediol dimethacrylate, respectively. Finally, photocured samples were characterized by XRD, SEM, equilibrium swelling study, TGA, DMTA, AFM and cell culture. The results showed that incorporation of POSS nanoparticle into the polymer matrix with a perfect distribution and dispersion can enhance thermal stability, mechanical and biocompatibility properties which can prove a good potential of this in-situ photocrosslinkable nanohybrid in medical applications. PMID:27524051

  4. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization

    NASA Astrophysics Data System (ADS)

    Kaverzin, Alexey

    Physical properties of electrons in graphene offer not only functionality in terms of conventional charge transport, but also allow to explore spin and valley degrees of freedom. The presence of internal coupling between the nontrivial current states and normal charge current provides the effective mechanism for studying these properties. At the same time a nonlocal geometry of the transport experiments allows to separate the useful signal associated with either spin or valley degree of freedom from trivial charge contribution. In this work using the nonlocal geometry we study the transport properties of hydrogenated graphene Hall bar devices. The observed nonlocal signal is seen to substantially exceed the background ohmic contribution and, therefore, has to be understood in terms of nontrivial mediative current. The channel length dependence of the useful signal falls into direct/inverse spin Hall effect description, however, the absence of the modulation of the measured effect with the applied in plane magnetic field discredits the spin nature of the observed phenomenon. Our findings cannot be explained with the existing models suggesting that further investigation is required. European Union's Seventh Framework Programme Grant 604391 Graphene Flagship, FOM, NWO.

  5. Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface.

    PubMed

    Dopierała, Katarzyna; Maciejewski, Hieronim; Prochaska, Krystyna

    2016-04-01

    Binary mixtures of cholesterol and fully-condensed octakis[{2-(3,4-epoxycyclohexyl) etyl}dimethyl-silyloxy]octasilsesquioxane (OE-POSS) were characterized using Langmuir trough for obtaining surface pressure-area isotherms. The most characteristic feature of the mixed films is the presence of two collapse points on the isotherms. The first one is attributed to the collapse of less stable OE-POSS and it occurs at similar surface pressures for all compositions, while the second one corresponds to cholesterol collapse. Brewster angle microscopy observations confirmed the collapse behavior of the mixed film. Strong condensing effect was observed for the mean molecular areas dependence on cholesterol content in the film. Moreover, formation of microdomains of each component in the matrix of the other one was confirmed by BAM images. For the reasons of molecular structures and interactions a true mixed and homogenous film did not form in the systems considered. Phase separation was observed for all the compositions experimented. The lack of the interactions of OE-POSS with biomembrane components represented by cholesterol is beneficial for applications of OE-POSS in biomedical devices. PMID:26752210

  6. NEW FE(III) AND OS(VI) SILSESQUIOXANES. (R829553)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. A novel electroluminescent PPV copolymer and silsesquioxane nanocomposite film for the preparation of efficient PLED devices

    NASA Astrophysics Data System (ADS)

    Venegoni, Ivan; Carniato, Fabio; Olivero, Francesco; Bisio, Chiara; Li Pira, Nello; Lambertini, Vito Guido; Marchese, Leonardo

    2012-11-01

    Polymer light-emitting diodes (PLEDs) have attracted growing interest in recent years for their potential use in displays and lighting fields. Nevertheless, PLED devices have some disadvantages in terms of low optoelectronic efficiency, high cost, short lifetimes and low thermal stability, which limit their final applications. Huge efforts have been made recently to improve the performances of these devices. The addition of inorganic or hybrid organic-inorganic nanoparticles to the light-emitting polymers, for example, allows their thermal stability and electroluminescent efficiency to be increased. Following this approach, novel PLED devices based on composite films of PPV-derivative copolymer (commercial name Super Yellow, SY) and octaisobutil POSS, were developed in this study. The device containing Super Yellow loaded with 1 wt% of POSS showed higher efficiency (ca. +30%) and improved lifetime in comparison to PLED prepared with the pure electroluminescent polymer. The PLED devices developed in this study are suitable candidates for automotive dashboards and, in general, for lighting applications.

  8. Bis(2-amino-4-methyl-pyridinium) trans-diaqua-bis-(pyrazine-2,3-dicarboxyl-ato)cuprate(II) hexa-hydrate.

    PubMed

    Eshtiagh-Hosseini, Hossein; Gschwind, Fabienne; Alfi, Nafiseh; Mirzaei, Masoud

    2010-01-01

    The title compound, (C(6)H(9)N(2))(2)[Cu(C(6)H(2)N(2)O(4))(2)(H(2)O)(2)]·6H(2)O, consists of a mononuclear trans-[Cu(pzdc)(2)(H(2)O)(2)](2-) dianion (pzdc is pyrazine-2,3-dicarboxyl-ate) and two [ampyH](+) cations (ampy is 2-amino-4-methyl-pyridine) with six water mol-ecules of solvation. The Cu(II) atom is hexa-coordinated by two pzdc groups and two water mol-ecules. The coordinated water mol-ecules are in trans-diaxial positions and the pzdc dianion acts as a bidentate ligand through an O atom of the carboxyl-ate group and the N atom of the pyrazine ring. There are diverse hydrogen-bonding inter-actions, such as N-H⋯O and O-H⋯O contacts, which lead to the formation of a three-dimensional supra-molecular architecture. PMID:21587740

  9. Syntheses and spectroscopic and quadratic nonlinear optical properties of extended dipolar complexes with ruthenium(II) ammine electron donor and N-methylpyridinium acceptor groups.

    PubMed

    Coe, Benjamin J; Jones, Lathe A; Harris, James A; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Persoons, André; Garín, Javier; Orduna, Jesús

    2004-03-31

    In this paper, we describe the extremely unusual optical properties of Ru(II)-based electron donor-acceptor (D-A) polyene and some closely related chromophores. For three different polyene series, the intense, visible d-->pi* metal-to-ligand charge-transfer bands unexpectedly blue-shift as the number of E-ethylene units (n) increases from 1 to 3, and the static first hyperpolarizabilities beta(0) determined via hyper-Rayleigh scattering and Stark spectroscopy maximize at n = 2, in marked contrast to other known D-A polyenes in which beta(0) increases steadily with n. Time-dependent density-functional theory and finite field calculations verify these empirical trends, which arise from the orbital structures of the complexes. This study illustrates that transition metal-based nonlinear optical chromophores can show very different behavior when compared with their more thoroughly studied purely organic counterparts. PMID:15038742

  10. Crystal structure of 4-{2-[4-(di-methyl-amino)-phen-yl]diazen-1-yl}-1-methyl-pyridinium iodide.

    PubMed

    Chulvi, Katherine; Costero, Ana; Ochando, Luis E; Gaviña, Pablo

    2015-12-01

    The mol-ecular geometry of the ionic title compound, C14H17N4 (+)·I(-) or DAZOP(+)·I(-), is essentially featureless. Regarding the crystal structure, in addition to the obvious cation-anion Coulombic inter-actions, the packing is mostly directed by non-covalent inter-actions involving both ring systems, as well as the iodide anion. It consists of cationic mol-ecules aligned along [101] and disposed in an anti-parallel fashion while linked into π-bonded dimeric entities by a stacking contact involving symmetry-related phenyl rings, with a centroid-centroid distance of 3.468 (3) Å and a slippage of 0.951 Å. The dimers are, in addition, sustained by a number of C-H⋯I and I⋯π (I⋯centroid = 3.876 Å) inter-actions involving the anion. Finally, inter-dimeric contacts are of the C-H⋯I and C-H⋯π types. PMID:26870502

  11. Improvement of interfacial property between PBO fibers and epoxy resin by surface grafting of polyhedral oligomeric silsesquioxanes (POSS)

    NASA Astrophysics Data System (ADS)

    Song, B.; Meng, L. H.; Huang, Y. D.

    2012-10-01

    PBO fiber as reinforced material has been widely applied in various fields such as aerospace, automobile and sport apparatus due to excellent mechanic property during past two decades. However, poor interfacial adhesion limits the further application of PBO fiber. To solve this problem, plenty of work has been done. In the present study, the surface of PBO fibers was treated through surface grafting of polyhedral oligomeric silsequioxanes (POSS). The effect of POSS grafting on bulk mechanic property and interfacial property of PBO fiber were studied. Surface chemical composition, surface morphologies, surface free energy, single-fiber tensile strength of untreated and treated PBO fiber were characterized. The results show that POSS nanoparticles were grafted on the fiber surface successfully. The surface characteristics of treated PBO fiber were different from that of untreated one. Oxygen-containing polar functional groups, elemental ratio of oxygen to carbon, surface roughness and surface free energy increased significantly. In addition, interfacial shear strength between treated PBO fibers and epoxy resin increased to 54.9 MPa comparative with untreated one. Meanwhile tensile strength of treated PBO fibers only very little decreased. Therefore, POSS surface grafting can be utilized to enhance the interfacial adhesion between PBO fibers and epoxy resin matrix.

  12. Thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane/polyhedral oligomeric silsesquioxane nanocomposites plasticized with DOA.

    PubMed

    Kim, Ho-Joong; Kwon, Younghwan; Kim, Chang Kee

    2013-01-01

    Thermal and mechanical properties of PU/POSS nanocomposites plasticized with DOA were investigated. These hybrid materials were prepared using one-step method through the incorporation of flexible HTPB prepolymer, reactive or non-reactive POSS nanoparticle, and DOA plasticizer under IPDI curative system. The plasticizer added into PU/POSS composites decreased glass transition temperature, mechanical strength and modulus, while the change of thermal stability was modest. Thermal stability of these hybrid composites was found to depend preferably on characteristics of POSS molecules incorporated. PMID:23646777

  13. Enhanced processability of MWCNT through surface treatment by octa(phenol) polyhedral oligomeric silsesquioxane nano-crosslinking

    NASA Astrophysics Data System (ADS)

    Omrani, Abdollah; Yen, Ying-Chieh; Cheng, Chih-Chia; Chang, Feng-Chih

    2014-01-01

    A facile method was developed to prepare MWCNT/POSS nanocomposites by direct esterification between carboxylic acid functionalized MWCNT and octa(phenol) octasilsesquioxane. Completeness of the MWCNT surface modification was confirmed by FT-IR. The hybrid nano-MWCNT-OP-POSS composite structure and properties was characterized using DSC, TGA, optical microscopy, WAXD, and AFM. The results indicated the solubility and processability of MWCNT-COOH improved because of OP-POSS grafting on MWCNT surface. The Tg and thermal stability of the nanocomposites was higher than that of the OP-POSS as a result of the cross-linking reaction. AFM observations revealed that the nanocomponents were reacted in a homogeneous phase at nanoscale level.

  14. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Bayer, Ilker S.; Jursich, Gregory M.; Das, Arindam; Megaridis, Constantine M.

    2012-08-01

    Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications.Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30979c

  15. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.

    PubMed

    Schutzius, Thomas M; Bayer, Ilker S; Jursich, Gregory M; Das, Arindam; Megaridis, Constantine M

    2012-09-01

    Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ∼100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications. PMID:22820974

  16. The microstructure of polyamide 6 and polyamide 6/polyhedral oligomeric silsesquioxane nanocomposites synthesized by phase inversion procedure under electric field

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Cong, Yang; Wu, Ningkun; Loo, Leslie S.

    2015-12-01

    Polyamide 6 (PA6) and PA6/octaammonium POSS (OA-POSS) nanocomposites were synthesized by phase inversion procedure assisted with external electric field and characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (CA) measurements. It is very interesting to find that external electric field has greatly different effects on the microstructure evolution behaviors of PA6 and PA6/OA-POSS nanocomposites. For pure PA6 samples, crystallization was retarded while hydrophilicity was enhanced with increasing the strength of applied electric field. However, for PA6/OA-POSS nanocomposites, both crystallinity and hydrophilicity keep stable with increased electric field strength. The migration behavior of OA-POSS molecules was hindered under electric field. The mechanism for the formation of PA6 and PA6/OA-POSS nanocomposites with the presence of external electric field is discussed.

  17. Gold Nanoparticle@Polyhedral Oligomeric Silsesquioxane Hybrid Scaffolds in Microfluidic Format – Highly Efficient and Green Catalytic Platforms

    PubMed Central

    Scholder, Pascal; Hafner, Martina; Hassel, Achim W.; Nischang, Ivo

    2016-01-01

    Abstract We report on the preparation of new hybrid organic–inorganic multiporous monolithic capillary columns carrying gold nanoparticles of 5, 10, 50, and 100 nm size and their use as flow‐through catalytic platforms for aqueous liquid‐phase reduction reactions. We found that the flow‐through performance of the reactors depends not only on the size of the gold nanoparticles but also on the interplay of the pore size of the scaffolds and the catalytically available gold surface within the system, that is, loading an increased number of gold nanoparticles of smaller size does not necessarily result in strictly improved performance. This indicates the importance of the interplay between the nanopore size of the scaffolds and the catalytically active gold surface existing within the system. Demonstration of the highly efficient catalytic flow‐through operation within seconds and the repeated use of the reactors without loss of performance indicates their excellent suitability as microfluidic device elements.

  18. Lasing characteristics of difluoroborates of 2,2'-dipyrromethene derivatives in solid matrices

    SciTech Connect

    Kuznetsova, R T; Aksenova, Yu V; Solodova, T A; Kopylova, T N; Tel'minov, E N; Mayer, G V; Berezin, M B; Antina, E V; Burkova, S L; Semeikin, A S

    2014-03-28

    The luminescence-spectral, lasing and photochemical characteristics of laser media based on boron fluoride complexes of dipyrromethenes, embedded into solid bulk matrices of polymethylmethacrylate and its modifications (obtained by adding polyhedral oligomeric silsesquioxane during polymerisation) and into polymer films, in which polyhedral silsesquioxane enters the composition of monomeric unit, have been investigated. (lasers)

  19. Synthesis of a Nanostructured Composite: Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxane via Click Reaction.

    PubMed

    Ghodsi, Mohammadi Ziarani; Shakiba Nahad, Monireh; Lashgari, Negar; Alireza, Badiei

    2015-01-01

    Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxanes as functionalized silsesquioxanes were synthesized via click reaction (copper-catalyzed Huisgen 1,3-dipolar cycloaddition reaction) between azidemoiety functionalized silsesquioxane and prop-2-ynyl 2-chlorobenzoate. The latter one was synthesized via the condensation reaction of propargyl alcohol and 2-chlorobenzoyl chloride in the presence of SBA-Pr-NH(2) (Santa Barbara Amorphous type material) as a nano basic catalyst. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of silsesquioxanes. PMID:26454606

  20. POSS-containing red fluorescent nanoparticles for rapid detection of aqueous fluoride ions.

    PubMed

    Du, Fanfan; Bao, Yinyin; Liu, Bin; Tian, Jiao; Li, Qianbiao; Bai, Ruke

    2013-05-21

    Polyhedral oligomeric silsesquioxane (POSS)-containing red fluorescent nanoparticles were designed and prepared for rapid detection of aqueous fluoride ions by virtue of the fluoride-triggered self-quenching of perylene bisimide dyes in nanoparticle cores. PMID:23575958

  1. Miniaturized catalysis: monolithic, highly porous, large surface area capillary flow reactors constructed in situ from polyhedral oligomeric silsesquioxanes (POSS)† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cy00510h Click here for additional data file.

    PubMed Central

    Scholder, P.

    2015-01-01

    A single-step molding process utilizing free-radical cross-linking reaction of vinyl POSS in microliter-sized dimensions leads to hierarchically-structured, mechanically robust, porous hybrid structures. Functional variants show excellent performance in Suzuki-type coupling reactions. Due to their small volume, long-term operational robustness, and potential chemical diversity, these materials are promising candidates for catalyst screening applications. PMID:26322221

  2. Molecular composites from hydrido and vinyl functionalized silsequioxanes

    SciTech Connect

    Zhang, C.; Baranwal, R.; Laine, R.M.

    1995-12-31

    Hydrido and vinyl functionalized silsesquioxanes [RSiO{sub 1.5}]{sub 8} (R=H, 1; R=vinyl, 2; R=OSi(CH{sub 3}){sub 2}H, 3; R=OSi(CH{sub 3}){sub 2}-vinyl, 4.) can be synthesized through rather simple processes from fairly inexpensive starting materials. The rigid caged silsesquioxane (cube) structures are very similar to those found in zeolites and may lead to highly porous materials with high surface areas. In this study, the hydrido and vinyl silsesquioxanes 1-4 were cross-coupled via {open_quote}Pt{close_quote} catalyzed hydrosilylation. The resultant polymeric materials showed good thermal stability and high surface area as found by TGA and porosimetry studies. DSC and FTIR studies indicate that on beating, further curing of the residual reactive functional groups occurs. These high surface area materials may have potential applications as insulating and low dielectric materials.

  3. Electrorheological fluids and methods

    SciTech Connect

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  4. Coherent Random Fiber Laser Based on Nanoparticles Scattering in the Extremely Weakly Scattering Regime

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Zhang, Qun; Miao, Bo; Fu, Qiang; Zou, Gang; Chen, Yang; Luo, Yi; Zhang, Douguo; Wang, Pei; Ming, Hai; Zhang, Qijin

    2012-12-01

    We demonstrate the realization of a coherent random fiber laser (RFL) in the extremely weakly scattering regime, which contains a dispersive solution of polyhedral oligomeric silsesquioxanes nanoparticles (NPs) and laser dye pyrromethene 597 in carbon disulfide that was injected into a hollow optical fiber. Multiple scattering of polyhedral oligomeric silsesquioxanes NPs greatly enhanced by the waveguide confinement effect was experimentally verified to account for coherent lasing observed in our RFL system. This Letter extends the NPs-based RFLs from the incoherent regime to the coherent regime.

  5. Modification of the Surface Properties of Polyimide Films using POSS Deposition and Oxygen Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.

    2008-01-01

    Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.

  6. Trapping molecular bromine: a one-dimensional bromobismuthate complex with Br2 as a linker.

    PubMed

    Adonin, S A; Gorokh, I D; Abramov, P A; Plyusnin, P E; Sokolov, M N; Fedin, V P

    2016-03-01

    The reaction between solid (NMP)n{[BiBr4]}n (1) (NMP = N-methylpyridinium) and Br2, generated in situ in HBr solution, results in the formation of (NMP)3[Bi2Br9]·Br2 (2). In the structure of 2, dibromine molecules connect discrete binuclear [Bi2Br9](3-) anions into an extended network. Complex 2 is thermally stable (up to 150 °C). PMID:26905232

  7. [Effect of radiation on erythrocyte membrane structure using fluorescent probes].

    PubMed

    Gorbenko, G P; Krupin, V D; Tovstiak, V V

    1994-01-01

    The effect of electrons with the energy of 5 MeV on the erythrocyte membrane structure was investigated using a fluorescent probe (4-dimethylaminostiryl)-1-methylpyridinium (DSM). Analysis of a competitive binding of DSM and ribonuclease with the erythrocyte ghosts has shown that irradiation causes an increase in the constant of protein association with membranes. It is suggested that a negative surface change increase with irradiation. PMID:7754561

  8. A study on the stability of n-type conductive polymer

    NASA Astrophysics Data System (ADS)

    Onoda, M.

    2016-04-01

    Novel n-type conducting polymer, poly (p-methylpyridinium vinylene), PMePyV were synthesized by using the quaternization of poly (p-pyridyl vinylene), PPyV and several regiochemical consequences in this polymer were proposed. The electrical, optical, and electrochemical properties of n-type conductive polymer were observed. In addition, a possibility of a variety of functional applications of n-type conductive polymer was indicated.

  9. Polyoxometalate salts of cationic nitronyl nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Giménez-Saiz, Carlos; Gómez-García, Carlos J.; Romero, Francisco M.

    2008-12-01

    The cationic nitronyl nitroxide free radical of the N-methylpyridinium type p-MepyNN + has been combined with [Mo 8O 26] 4- and Keggin [SiW 12O 40] 4- polyanions to afford salts ( p-MepyNN) 4[Mo 8O 26]·DMSO (DMSO = dimethylsulfoxide) ( 1) and ( p-MepyNN) 4[SiW 12O 40]·6DMF (DMF = dimethylformamide) ( 2). Herein, their structural and magnetic properties are described.

  10. Interfacial self-assembly of water-soluble cationic porphyrins for the reduction of oxygen to water.

    PubMed

    Olaya, Astrid J; Schaming, Delphine; Brevet, Pierre-Francois; Nagatani, Hirohisa; Xu, Hai-Jun; Meyer, Michel; Girault, Hubert H

    2012-06-25

    Meet at the border: Assembly of the water-soluble cobalt tetrakis(N-methylpyridinium-4-yl)porphyrin [CoTMPyP](4+) at soft interfaces is enhanced and stabilized by its interfacial interaction with the lipophilic anion (C(6)F(5))(4)B(-). The supramolecular structure thus formed provides excellent catalytic activity in the four-electron reduction of oxygen. PMID:22615211

  11. Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples.

    PubMed

    Bispo, Vanderson S; de Arruda Campos, Ivan P; Di Mascio, Paolo; Medeiros, Marisa H G

    2016-01-01

    Aldehydes accumulate in inflammation, during myocardial infarction and have been associated with pain symptoms. One pathway of aldehyde detoxification is the conjugation with carnosine. A 3-methylpyridinium carnosine adduct from the reaction of carnosine and acrolein was characterized using extensive spectroscopic measurements. The adduct with urinary concentrations of 1.82 ± 0.68 nmol/mg of creatinine is one of the most abundant acrolein metabolites in urine and opens promising therapeutic strategies for carnosine. PMID:26783107

  12. Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples

    PubMed Central

    Bispo, Vanderson S.; de Arruda Campos, Ivan P.; Di Mascio, Paolo; Medeiros, Marisa H. G.

    2016-01-01

    Aldehydes accumulate in inflammation, during myocardial infarction and have been associated with pain symptoms. One pathway of aldehyde detoxification is the conjugation with carnosine. A 3-methylpyridinium carnosine adduct from the reaction of carnosine and acrolein was characterized using extensive spectroscopic measurements. The adduct with urinary concentrations of 1.82 ± 0.68 nmol/mg of creatinine is one of the most abundant acrolein metabolites in urine and opens promising therapeutic strategies for carnosine. PMID:26783107

  13. Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline.

    PubMed

    Stadler, Richard H; Varga, Natalia; Hau, Jörg; Vera, Francia Arce; Welti, Dieter H

    2002-02-27

    Trigonelline is a well-known precursor of flavor/aroma compounds in coffee and undergoes significant degradation during roasting. This study investigates the major nonvolatile products that are procured after trigonelline has been subjected to mild pyrolysis conditions (220-250 degrees C) under atmospheric pressure. Various salt forms of trigonelline were also prepared and the thermally produced nonvolatiles analyzed by thin layer chromatography, liquid chromatography-electrospray ionization tandem mass spectrometry, and (1)H and (13)C nuclear magnetic resonance. Results revealed the decarboxylated derivative 1-methylpyridinium as a major product of certain salts, the formation of which is positively correlated to temperature from 220 to 245 degrees C. Moreover, trigonelline hydrochloride afforded far greater amounts of 1-methylpyridinium compared to the monohydrate over the temperature range studied. Investigations into other potential quaternary amine products of trigonelline also indicate nucleophilic substitution reactions that lead to dialkylpyridiniums, albeit at concentration levels approximately 100-fold lower than those recorded for 1-methylpyridinium. PMID:11853503

  14. Synthesis and evaluation of novel analogues of vitamin B6 as reactivators of tabun and paraoxon inhibited acetylcholinesterase.

    PubMed

    Gaso-Sokac, Dajana; Katalinić, Maja; Kovarik, Zrinka; Busić, Valentina; Kovac, Spomenka

    2010-09-01

    A series of novel pyridinium oximes was prepared by reactions of quaternization of pyridoxal oxime with substituted phenacyl bromides in acetone at room temperature. The structures of compounds were determined according to the data obtained by IR spectroscopy, mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy as well as by elemental analysis. We tested pyridoxal oxime (1) and five prepared oximes in 1mM concentration as reactivators of human erythrocytes acetylcholinesterase (AChE) inhibited by organophosphorus compounds tabun and paraoxon: 1-phenacyl-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (2), 1-(4'-chlorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (3), 1-(4'-fluorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (4), 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-methylphenacyl)pyridinium bromide (5), 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-methoxyphenacyl)pyridinium bromide (6). However, tested oximes were not efficient in reactivation of either tabun or paraoxon inhibited AChE. The maximum restored enzyme activity in 24h was below 25%. Therefore, this class of compounds cannot be considered as potential improvement in a search for new and more efficient antidotes against OP poisoning. PMID:20144593

  15. LDRD final report on nanocomposite materials based on hydrocarbon-bridged siloxanes

    SciTech Connect

    Ulibarri, T.A.; Bates, S.E.; Loy, D.A.; Jamison, G.M.; Emerson, J.A.; Curro, J.G.

    1997-05-01

    Silicones [polydimethylsiloxane (PDMS) polymers] are environmentally safe, nonflammable, weather resistant, thermally stable, low T{sub g} materials which are attractive for general elastomer applications because of their safety and their performance over a wide temperature range. However, PDMS is inherently weak due to its low glass transition temperature (T{sub g}) and lack of stress crystallization. The major goal of this project was to create a family of reinforced elastomers based on silsesquioxane/PDMS networks. Polydimethylsiloxane-based (PDMS) composite materials containing a variety of alkylene-arylene-bridged polysilsesquioxanes were synthesized in order to probe short chain and linkage effects in bimodal polymer networks. Monte Carlo simulations on the alkylene-bridged silsesquioxane/PDMS system predicted that the introduction of the silsesquioxane short chains into the long chain PDMS network would have a significant reinforcing effect on the elastomer. The silsesquioxane-PDMS networks were synthesized and evaluated. Analysis of the mechanical properties of the resulting materials indicated that use of the appropriate silisesquioxane generated materials with greatly enhanced properties. Arylene and activated alkylene systems resulted in materials that showed superior adhesive strength for metal-to-metal adhesion.

  16. Kinetics of the reduction of pyridinium ions by 2-hydroxy-2-propyl radicals in aqueous solution

    SciTech Connect

    Shimura, M.; Espenson, J.H.

    1983-01-19

    Kinetic measurements were made for the reductions of the pyridinium ions derived from pyridine, 4-methylpyridine, 3-hydroxypyridine, nicotinamide, and isonicotinamide as well as 1-methylpyridinium and 1,4-dimethylpyridinium ions by 2-hydroxy-2-propyl radicals, which were generated by the homolytic cleavage of the chromium-carbon bond in (H/sub 2/O)/sub 5/CrC(CH/sub 3/)/sub 2/OH/sup 2 +/. The rate constants (dm/sup 3/ mol/sup -1/ s/sup -1/) at 25.0/sup 0/C and an ionic strength of 1.0M (LiClO/sub 4/) are as follows: pyridinium ion, 9.6 x 10/sup 5/; 1-methylpyridinium ion, 3.7 x 10/sup 5/; 4-methylpyridinium ion, 7.3 x 10/sup 4/; 1,4-dimethylpyridinium ion, less than or equal to1 x 10/sup 4/; 3-hydroxypyridinium ion, 1.4 x 10/sup 8/; 3-(aminocarbonyl)pyridinium ion, 7.9 x 10/sup 8/; 4-(aminocarbonyl)pyridinium ion, 1.2 x 10/sup 9/. The rate constants are reasonably well correlated by the Hammett p-sigma equation with p = +8.5. The first two compounds show a second kinetic term corresponding to the rate law k'(Cr/sup 2 +/)(pyH/sup +/)(.C-(CH/sub 3/)/sub 2/OH)(H/sup +/)/sup -1/, consistent with reduction of a Cr(II)-pyridine complex by the free radical.

  17. Photo and Collision Induced Isomerization of a Cyclic Retinal Derivative: An Ion Mobility Study

    NASA Astrophysics Data System (ADS)

    Coughlan, Neville J. A.; Scholz, Michael S.; Hansen, Christopher S.; Trevitt, Adam J.; Adamson, Brian D.; Bieske, Evan J.

    2016-09-01

    A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N- n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.

  18. Photo and Collision Induced Isomerization of a Cyclic Retinal Derivative: An Ion Mobility Study.

    PubMed

    Coughlan, Neville J A; Scholz, Michael S; Hansen, Christopher S; Trevitt, Adam J; Adamson, Brian D; Bieske, Evan J

    2016-09-01

    A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N-n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.Graphical Abstract. PMID:27278825

  19. Photo and Collision Induced Isomerization of a Cyclic Retinal Derivative: An Ion Mobility Study

    NASA Astrophysics Data System (ADS)

    Coughlan, Neville J. A.; Scholz, Michael S.; Hansen, Christopher S.; Trevitt, Adam J.; Adamson, Brian D.; Bieske, Evan J.

    2016-06-01

    A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N-n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.

  20. Synthesis and oxidation of aminoalkyl-onium compounds by pig kidney diamine oxidase

    PubMed Central

    Bardsley, W. G.; Ashford, J. S.; Hill, C. M.

    1971-01-01

    1. The preparation of a series of compounds derived from diamines by replacing one amino group by a dimethylsulphonium, isothiuronium, trimethylammonium, NN′-dimethylimidazolium or N-methylpyridinium species is described. 2. The behaviour of these compounds as substrates of pig kidney diamine oxidase is reported. All but the trimethylammonium compounds proved to be substrates. 3. Many of these compounds showed potent inhibition at high substrate concentration and this was studied. 4. On the basis of these and other observations a scheme for enzyme–substrate interaction is suggested. PMID:5001323

  1. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection.

    PubMed

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang

    2016-05-25

    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection. PMID:27158976

  2. Oxygen Plasma Modification of Poss-Coated Kapton(Registered TradeMark) HN Films

    NASA Technical Reports Server (NTRS)

    Wohl, C. J.; Belcher, M. A.; Ghose, S.; Connell, J. W.

    2008-01-01

    The surface energy of a material depends on both surface composition and topographic features. In an effort to modify the surface topography of Kapton(Registered TradeMark) HN film, organic solutions of a polyhedral oligomeric silsesquioxane, octakis(dimethylsilyloxy)silsesquioxane (POSS), were spray-coated onto the Kapton(Registered TradeMark) HN surface. Prior to POSS application, the Kapton(Registered TradeMark) HN film was activated by exposure to radio frequency (RF)-generated oxygen plasma. After POSS deposition and solvent evaporation, the films were exposed to various durations of RF-generated oxygen plasma to create a topographically rich surface. The modified films were characterized using optical microscopy, attenuated total reflection infrared (ATR-IR) spectroscopy, and high-resolution scanning electron microscopy (HRSEM). The physical properties of the modified films will be presented.

  3. Preparation and electric property of polysilsesquioxane thin films incorporating carbazole groups.

    PubMed

    Watase, Seiji; Fujisaki, Daiki; Watanabe, Mitsuru; Mitamura, Koji; Nishioka, Noboru; Matsukawa, Kimihiro

    2014-09-26

    New silsesquioxane incorporating a carbazole groups (PCTSQ) has been synthesized by a click thiol-ene reaction and a subsequent sol-gel reaction. To evaluate the electric property of this hybrid, diode devices have been fabricated by using PCTSQ thin film by spin-coating onto n-type ZnO film prepared by the electrodeposition method. The thin film hybrid devices showed good electric characteristics and high rectification ratio, as well as worked as a rectifier. PMID:25111904

  4. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  6. Thermo-responsive PNIPAM nanofibres crosslinked by OpePOSS

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hurren, Christopher; Sutti, Alessandra; Lin, Tong; Wang, Xungai

    2013-08-01

    Stable and re-usable thermo-responsive hydrogel nanofibres were produced by electrospinning poly(Nisopropylacrylamide) (PNIPAM) in presence of a polyhedral oligomeric silsesquioxane (POSS) possessing eight epoxide groups, and of a 2-ethyl-4-methylimidazole (EMI) as a catalyst, followed by a heat curing treatment. The roles of the organic-base catalyst in the formation of crosslinked polymer network, fibre morphologies, and hydrogel properties were examined in this paper.

  7. Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage.

    PubMed

    Lee, Seungwoo; Jeong, Yong-Cheol; Lee, Jihye; Park, Jung-Ki

    2009-10-15

    We demonstrate a holographic photopolymer based on multifunctional photoreactive inorganic cages, polyhedral oligomeric silsesquioxane (POSS). It is shown that a second photopolymerizable monomer, POSS, for the photopolymer, contributes to significantly enhance photosensitivity as well as refractive index modulation (Deltan). We also found that during the formation of holographic gratings, polymerization of POSS could effectively suppress volume shrinkage of photopolymer resin, owing to its filler-strengthening effect of inorganic cages accompanied with interpenetrating effect. PMID:19838237

  8. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO2 removal.

    PubMed

    Park, Sunghwan; Lee, Albert S; Do, Yu Seong; Hwang, Seung Sang; Lee, Young Moo; Lee, Jung-Hyun; Lee, Jong Suk

    2015-10-25

    Poly(methoxy(polyethyleneoxy)propyl-co-methacryloxypropyl) silsesquioxane membranes with different copolymer ratios were successfully fabricated via UV-induced crosslinking with mechanical stability. By selectively introducing polyethylene oxide (PEO) groups covalently bound to the ladder-structured polysilsesquioxane, we effectively suppressed the PEO crystallization, allowing for excellent CO2/H2 and CO2/N2 separation under single as well as mixed gas conditions. PMID:26340230

  9. Hybrid electrolytes with controlled network structures for lithium metal batteries.

    PubMed

    Pan, Qiwei; Smith, Derrick M; Qi, Hao; Wang, Shijun; Li, Christopher Y

    2015-10-21

    Solid polymer electrolytes (SPEs) with tunable network structures are prepared by a facile one-pot reaction of polyhedral oligomeric silsesquioxane and poly(ethylene glycol). These SPEs, with high conductivity and high modulus, exhibit superior resistance to lithium dendrite growth even at high current densities. Measurements of lithium metal batteries with a LiFePO4 cathode show excellent cycling stability and rate capability. PMID:26316140

  10. A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability† †Electronic supplementary information (ESI) available: Experimental details and characterization data as mentioned in the text. See DOI: 10.1039/c4py01789g Click here for additional data file.

    PubMed Central

    Alves, F.

    2015-01-01

    We prepared new and scalable, hybrid inorganic–organic step-growth hydrogels with polyhedral oligomeric silsesquioxane (POSS) network knot construction elements and hydrolytically degradable poly(ethylene glycol) (PEG) di-ester macromonomers by in situ radical-mediated thiol–ene photopolymerization. The physicochemical properties of the gels are fine-tailored over orders of magnitude including functionalization of their interior, a hierarchical gel structure, and biodegradability. PMID:25821524

  11. Pyrene-POSS nanohybrid as a dispersant for carbon nanotubes in solvents of various polarities: its synthesis and application in the preparation of a composite membrane

    PubMed Central

    2012-01-01

    In this study we report the preparation of nanohybrid dispersant molecules based on pyrene and polyhedral oligomeric silsesquioxanes for non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs). The prepared dispersant improves the dispersion of MWCNTs in organic solvents with very different polarities such as tetrahydrofuran, toluene, and n-hexane. The functionalized MWCNTs were used to introduce conductivity into polydimethylsiloxane membranes which can be used for electrostatic discharge applications. PMID:22676373

  12. Coherent random fiber lasers in a weakly scattering system based on waveguide effect

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Miao, Bo; Zhang, Qijin

    2012-11-01

    Coherent random fiber laser is obtained by end pumping a hollow optical fiber (HOF) filled with a dispersive solution of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles and laser dye pyrromethene 597 (PM597) in carbon disulfide (CS2). However, coherent random laser can not been observed for the same solution in the quartz cuvette. We suggest that the coherent feedback is caused by the cooperative effect of light scattering and waveguide effect. We will deep research the effect in the near future.

  13. Characterization of 3-Aminopropyl Oligosilsesquioxane.

    PubMed

    Dimzon, Ian Ken D; Frömel, Tobias; Knepper, Thomas P

    2016-05-01

    The synthesis routes in the production of polysilsesquioxanes have largely relied upon in situ formations. This perspective often leads to polymers in which their basic structures including molecular weight and functionality are unknown [ Lichtenhan , J. D. ; et al. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes Macromolecules , 1993 , 26 , 2141 - 2142 , http://dx.doi.org/10.1021/ma0060a053 ]. For a better understanding of the polysilsesquioxane properties and applications, there is a need to develop more techniques to enable their chemical characterization. An innovative method was developed to determine the molecular weight distribution (MWD) of an oligosilsesquioxane synthesized in-house from (3-aminopropyl)triethoxysilane. This method, which can be applied to other silsesquioxanes, siloxanes, and similar oligomers and polymers, involved separation using high performance liquid chromatography (HPLC) and detection using mass spectrometry (MS) with electrospray ionization (ESI). The novelty of the method lies on the unique determination of the absolute concentrations of the individual homologues present in the sample formulation. The use of absolute concentrations is necessary in estimating the MWD of the formulation when relative percentage, which is based solely on mass spectral ion intensities, becomes irrelevant due to the disproportionate response factors of the homologues. Determination of absolute concentration requires the use of single-homologue calibration standards. Because of commercial unavailability, these standards were prepared by efficient fractionation of the original formulation. PMID:27018602

  14. Deliberate design of an acentric diamondoid metal-organic network

    SciTech Connect

    Yang Caiqin; Wang Jing; Wang Wei; Zhan Wenhong

    2011-09-15

    Reaction of 2.5-dicarboxy-1-methylpyridinium (DCMP) chloride and Zn(NO{sub 3}){sub 2}.6H{sub 2}O in the presence of NaHCO{sub 3} in water gave an expected acentric diamondoid network [Zn(DCMP){sub 2}] with a three-fold interpenetration. With long Zn-Zn separations, very large cavities are formed within each diamondoid network with high propensity to interpenetration, which makes it show a promising non-linear optical property with SHG efficiency approximately 7 times higher than that of potassium dihydrogen phosphate (KDP). The design strategy of ligand through methylation of the corresponding pyrdinecarboxylic acid can be extended to other widely used carboxylic acids, more importantly, to lead to an unsymmetric bifunctional bridging ligand, which is essential for generating polar solids. - Graphical Abstract: Reaction of Zn(NO{sub 3}){sub 2}.6H{sub 2}O with a deliberately designed unsymmetrical ligand 2.5-dicarboxy-1-methylpyridinium (DCMP) chloride and in the presence of NaHCO{sub 3} gave an expected noncentric diamondoid network [Zn(DCMP){sub 2}], which has its SHG response approximately 7 times higher than that of potassium dihydrogen phosphate (KDP). Highlights: > DCMP as an unsymmetrical organic ligand to design metal organic framework. > Long Zn-Zn separations and very large cavities formed. > Diamondoid network with high propensity to interpenetration formed. > Bifunctional bridging ligand was used to generate polar solids with large SHG response.

  15. Structural effects of the β-vinyl linker in pyridinium porphyrins: spectroscopic studies in organic solvents and AOT reverse micelles.

    PubMed

    Vaz Serra, Vanda; Andrade, Suzana M; Silva, Eduarda M P; Silva, Artur M S; Neves, Maria G P M S; Costa, Sílvia M B

    2013-12-01

    Two isomeric β-vinylpyridinium porphyrins, 2-[2-(2-methylpyridinium)vinyl]-5,10,15,20-tetraphenylporphyrin (1, ortho isomer) and 2-[2-(4-methylpyridinium)vinyl]-5,10,15,20-tetraphenylporphyrin (2, para isomer), which have shown different photodynamic behavior were investigated in organic solvents and sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. In organic systems, the absorption spectra present a red-shifted band that is more intense in the para isomer, in addition to the usual Soret band. This new band presents interesting solvatochromic effects which obey the multiparametric Kamlet-Taft equation. In AOT reverse micelles, the ortho isomer exhibits a strong dependence with the parameter ω0 = [H2O]/[AOT] which indicates that the molecule resides at the interface toward the organic phase. By contrast, no evidence was detected for the encapsulation of para isomer 2 in AOT reverse micelles. The hypothesis of two ground state isomers with different contributions of trans and quinoid structures is advanced on the basis of the overall data collected from electronic absorption, steady-state, and transient-state fluorescence emission. A charge transfer state in which an electron is fully transferred from the porphyrin to the pyridinium moiety is associated to a quinoid structure in isomer 2. The trans/quinoid relative proportions may be accounted for by the orientation of the ortho-/para-pyridinium isomers relatively to the porphyrin core. PMID:24175940

  16. Ionic liquid biodegradability depends on specific wastewater microbial consortia.

    PubMed

    Docherty, Kathryn M; Aiello, Steven W; Buehler, Barbara K; Jones, Stuart E; Szymczyna, Blair R; Walker, Katherine A

    2015-10-01

    Complete biodegradation of a newly-synthesized chemical in a wastewater treatment plant (WWTP) eliminates the potential for novel environmental pollutants. However, differences within- and between-WWTP microbial communities may alter expectations for biodegradation. WWTP communities can also serve as a source of unique consortia that, when enriched, can metabolize chemicals that tend to resist degradation, but are otherwise promising green alternatives. We tested the biodegradability of three ionic liquids (ILs): 1-octyl-3-methylpyridinium bromide (OMP), 1-butyl-3-methylpyridinium bromide (BMP) and 1-butyl-3-methylimidazolium chloride (BMIM). We performed tests using communities from two WWTPs at three time points. Site-specific and temporal variation both influenced community composition, which impacted the success of OMP biodegradability. Neither BMP nor BMIM degraded in any test, suggesting that these ILs are unlikely to be removed by traditional treatment. Following standard biodegradation assays, we enriched for three consortia that were capable of quickly degrading OMP, BMP and BMIM. Our results indicate WWTPs are not functionally redundant with regard to biodegradation of specific ionic liquids. However, consortia can be enriched to degrade chemicals that fail biodegradability assays. This information can be used to prepare pre-treatment procedures and prevent environmental release of novel pollutants. PMID:25985304

  17. Phase equilibria and modeling of pyridinium-based ionic liquid solutions.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Ramjugernath, Deresh; Letcher, Trevor M; Tumba, Kaniki

    2010-11-25

    The phase diagrams of the ionic liquid (IL) N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide ([BM(4)Py][NTf(2)]) with water, an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol), an aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), an alkane (n-hexane, n-heptane, n-octane), or cyclohexane have been measured at atmospheric pressure using a dynamic method. This work includes the characterization of the synthesized compound by water content and also by differential scanning calorimetry. Phase diagrams for the binary systems of [BM(4)Py][NTf(2)] with all solvents reveal eutectic systems with regards to (solid-liquid) phase equilibria and show immiscibility in the liquid phase region with an upper critical solution temperature (UCST) in most of the mixtures. The phase equilibria (solid, or liquid-liquid) for the binary systems containing aliphatic hydrocarbons reported here exhibit the lowest solubility and the highest immiscibility gap, a trend which has been observed for all ILs. The reduction of experimental data has been carried out using the nonrandom two-liquid (NRTL) correlation equation. The phase diagrams reported here have been compared with analogous phase diagrams reported previously for systems containing the IL N-butyl-4-methylpyridinium tosylate and other pyridinium-based ILs. The influence of the anion of the IL on the phase behavior has been discussed. PMID:20964426

  18. Delineating solute-solvent interactions in binary mixtures of ionic liquids in molecular solvents and preferential solvation approach.

    PubMed

    Khupse, Nageshwar D; Kumar, Anil

    2011-02-01

    The effect of solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators in binary mixtures of ionic liquids with molecular solvents has been investigated. The binary mixtures of the pyridinium-based ionic liquids 1-butylpyridinium tetrafluoroborate ([BP][BF4]), 1-butyl-3-methylpyridinium tetrafluoroborate ([3-MBP][BF4]), and 1-butyl-4-methylpyridinium tetrafluoroborate ([4-MBP][BF4]) with molecular solvents like water, methanol, and dichloromethane have been selected for this investigation. The effect of addition of ionic liquids to molecular solvents on the polarity parameters E(T)(N), Kamlet-Taft parameters, hydrogen bond donor ability (HBD) (α), hydrogen bond acceptor ability (HBA) (β), and polarizability (π*) was obtained. The polarity parameters of the mixture display nonideality on addition of ionic liquids to water and dichloromethane. On the other hand, strong synergetic effects were seen in the ionic liquid-methanol binary mixtures. The preferential solvation models have been employed to analyze the collected data in order to achieve information on solute-solvent interactions in these binary mixtures. PMID:21142058

  19. Acid-base strength and acidochromism of some dimethylamino-azinium iodides. An integrated experimental and theoretical study.

    PubMed

    Benassi, Enrico; Carlotti, Benedetta; Fortuna, Cosimo G; Barone, Vincenzo; Elisei, Fausto; Spalletti, Anna

    2015-01-15

    The effects of pH on the spectral properties of stilbazolium salts bearing dimethylamino substituents, namely, trans isomers of the iodides of the dipolar E-[2-(4-dimethylamino)styryl]-1-methylpyridinium, its branched quadrupolar analogue E,E-[2,6-di-(p-dimethylamino)styryl]-1-methylpyridinium, and three analogues, chosen to investigate the effects of the stronger quinolinium acceptor, the longer butadiene π bridge, or both, were investigated through a joint experimental and computational approach. A noticeable acidochromism of the absorption spectra (interesting for applications) was observed, with the basic and protonated species giving intensely colored and transparent solutions, respectively. The acid–base equilibrium constants for the protonation of the dimethylamino group in the ground state (pKa) were experimentally derived. Theoretical calculations according to the thermodynamic Born-Haber cycle provided pKa values in good agreement with the experimental values. The very low fluorescence yield did not allow a direct investigation of the changes in the acid-base properties in the excited state (pKa*) by fluorimetric titrations. Their values were derived by quantum-mechanical calculations and estimated experimentally on the basis of the Förster cycle. PMID:25521813

  20. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12).

    PubMed

    Walker, J; Rohm, B; Lang, R; Pariza, M W; Hofmann, T; Somoza, V

    2012-02-01

    Coffee and caffeine are known to affect the limbic system, but data on the influence of coffee and coffee constituents on neurotransmitter release is limited. We investigated dopamine release and Ca(2+)-mobilization in pheochromocytoma cells (PC-12 cells) after stimulation with two lyophilized coffee beverages prepared from either Coffea arabica (AR) or Coffea canephora var. robusta (RB) beans and constituents thereof. Both coffee lyophilizates showed effects in dilutions between 1:100 and 1:10,000. To identify the active coffee compound, coffee constituents were tested in beverage and plasma representative concentrations. Caffeine, trigonelline, N-methylpyridinium, chlorogenic acid, catechol, pyrogallol and 5-hydroxytryptamides increased calcium signaling and dopamine release, although with different efficacies. While N-methylpyridinium stimulated the Ca(2+)-mobilization most potently (EC(200): 0.14±0.29μM), treatment of the cells with pyrogallol (EC(200): 48±14nM) or 5-hydroxytryptamides (EC(200): 10±3nM) lead to the most pronounced effect on dopamine release. In contrast, no effect was seen for the reconstituted biomimetic mixture. We therefore conclude that each of the coffee constituents tested stimulated the dopamine release in PC-12 cells. Since no effect was found for their biomimetic mixture, we hypothesize other coffee constituents being responsible for the dopamine release demonstrated for AR and RB coffee brews. PMID:22019894

  1. Phototoxic Activity and DNA Interactions of Water-Soluble Porphyrins and Their Rhenium(I) Conjugates.

    PubMed

    Mion, Giuliana; Gianferrara, Teresa; Bergamo, Alberta; Gasser, Gilles; Pierroz, Vanessa; Rubbiani, Riccardo; Vilar, Ramon; Leczkowska, Anna; Alessio, Enzo

    2015-11-01

    In the search for alternative photosensitizers for use in photodynamic therapy (PDT), herein we describe two new water-soluble porphyrins, a neutral fourfold-symmetric compound and a +3-charged tris-methylpyridinium derivative, in which either four or one [1,4,7]-triazacyclononane (TACN) units are connected to the porphyrin macrocycle through a hydrophilic linker; we also report their corresponding tetracationic Re(I) conjugates. The in vitro (photo)toxic effects of the compounds toward the human cell lines HeLa (cervical cancer), H460M2 (non-small-cell lung carcinoma), and HBL-100 (non-tumorigenic epithelial cells) are reported. Three of the compounds are not cytotoxic in the dark up to 100 μm, and the fourfold-symmetric couple revealed very good phototoxic indexes (PIs). The intracellular localization of all derivatives was studied in HeLa cells by confocal fluorescence microscopy. Although low nuclear localization was observed for some of them, it still prompted us to investigate their capacity to bind both quadruplex and duplex DNA; we observed significant selectivity in the tris-methylpyridinium derivatives for G-quadruplex interactions. PMID:26332425

  2. Pyridinium quenchers of Ru(bpy)/sub 3//sup 2 +/ charge effects of the yield of electron transfer

    SciTech Connect

    Jones, G. II.; Malba, V.

    1985-12-27

    The quenching of the luminescent state of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)/sub 3//sup 2 +/) by a series of pyridinium ions has been studied. 4-Acetyl-, 4-cyano-, 4-carbomethoxy-, or 4-carboxy-1-methylpyridinium, along with the well-known electron-transfer agent methyl viologen (MV/sup 2 +/), were employed as electron-acceptor quenchers in order to reveal the effects of charge type on the yield of photoinduced electron transfer involving the Ru(II) luminescent state as electron donor. Rates of quenching by the pyridinium ions were measured by using steady irradiation techniques and compared with expectations based on the calculated energetics of electron transfer. Electron transfer yields were obtained by measurement of the transient absorbances of photogenerated radicals (e.g., pyridinyls) using conventional flash photolysis (broad band visible excitation, pH 5, ..mu.. = 0.5). The transient photoleaching of Ru(bpy)/sub 3//sup 2 +/ by 4-carboxy-1-methylpyridinium was studied by using a Nd:YAG laser with results showing pH control of the charge type and yield of net electron transfer due to in-cage protonation of photogenerated geminate radical pairs. The electrochemical properties of the pyridinium ions were also examined by cyclic voltammetry and a Hammett correlation was made of the reduction potentials.

  3. The metabolism of 3-benzoylpyridine.

    PubMed

    Eyer, P; Hell, W

    1983-11-01

    3-Benzoylpyridine (3-BP), a decomposition product of the soman antidote, HGG-12 (3-benzoylpyridino(1)-methyl 2'-hydroxyiminomethylpyridino(1')methyl ether dichloride) was rapidly metabolized in the isolated perfused rat liver, giving 3-(alpha-hydroxybenzyl)pyridine and its corresponding glucuronide, 3-benzoylpyridine-N-oxide, and 3-(alpha-hydroxybenzyl)pyridine-N-oxide. The latter is formed both from 3-(alpha-hydroxybenzyl)pyridine and 3-benzoylpyridine-N-oxide. Metabolism of 3-BP studied in rats and dogs in vivo revealed significant species differences. In rat, 80% of 14C-3-BP was excreted as N-oxides and alpha-hydroxybenzyl derivatives in the urine. In dogs, 95% dose was excreted in urine mostly as the glucuronide of 3-(alpha-hydroxybenzyl)pyridine and as the quaternary pyridinium compounds, 3-benzoyl-1-methylpyridinium and 3-(alpha-hydroxybenzyl)-1-methylpyridinium. These latter were hardly detected in rat urine. In contrast to rats, the N-oxides were present only in small amounts in dog urine. PMID:6673376

  4. Alkylpyridiniums. 2. Isolation and quantification in roasted and ground coffees.

    PubMed

    Stadler, Richard H; Varga, Natalia; Milo, Christian; Schilter, Benoit; Vera, Francia Arce; Welti, Dieter H

    2002-02-27

    Recent model studies on trigonelline decomposition have identified nonvolatile alkylpyridiniums as major reaction products under certain physicochemical conditions. The quaternary base 1-methylpyridinium was isolated from roasted and ground coffee and purified by ion exchange and thin-layer chromatography. The compound was characterized by nuclear magnetic resonance spectroscopy ((1)H, (13)C) and mass spectrometry techniques. A liquid chromatography-electrospray ionization tandem mass spectrometry method was developed to quantify the alkaloid in coffee by isotope dilution mass spectrometry. The formation of alkylpyridiniums is positively correlated to the roasting degree in arabica coffee, and highest levels of 1-methylpyridinium, reaching up to 0.25% on a per weight basis, were found in dark roasted coffee beans. Analyses of coffee extracts also showed the presence of dimethylpyridinium, at concentrations ranging from 5 to 25 mg/kg. This is the first report on the isolation and quantification of alkylpyridiniums in coffee. These compounds, described here in detail for the first time, may have an impact on the flavor/aroma profile of coffee directly (e.g., bitterness), or indirectly as precursors, and potentially open new avenues in the flavor/aroma modulation of coffee. PMID:11853504

  5. Polymerization of trialkoxysilanes. Effect of the organic substituent on the formation of gels

    SciTech Connect

    Loy, D.A.; Baugher, B.M.; Schneider, D.A.

    1998-09-01

    Hydrolysis and condensation of trialkoxysilanes, R-Si(OR{prime}){sub 3}, generally leads to the formation of silsesquioxane oligomers and polymers. These polymers are composed of a monomer repeat unit, [R-SiO{sub 1.5}]{sub n}, with a single silicon atom attached to other repeat units in the polymer through one to three siloxane bonds. The remaining substituent is an organic group attached to the silicon through a silicon-carbon single bond. Silsesquioxanes have been the subject of intensive study in the past and are becoming important again as a vehicle for introducing organic functionalities into hybrid organic-inorganic materials through sol-gel processing. Despite all of this interest, there has not been a systematic study of the ability of trialkoxysilanes to form gels through the sol-gel process. In fact, it has been noted that silsesquioxanes are generally isolated as soluble resins rather than the highly crosslinked network polymers (gels) one would expect from a tri-functional monomer. In this study, the authors have examined the sol-gel chemistry of a variety of trialkoxysilanes with different organic substituents (R = H, Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, t-Bu, n-octadecyl, n-dodecyl, cyclohexyl, vinyl, phenyl, benzyl, phenethyl), with methoxide or ethoxide substituents on silicon, at varying monomer concentrations ranging up to neat monomer, and with different catalysts (HCl, NaOH, formic acid, fluoride). Gels were prepared from tetramethoxysilane and tetraethoxysilane at identical concentrations for purposes of comparison.

  6. Study of Positronium in Low-k Dielectric Films by means of 2D-Angular Correlation Experiments at a High-Intensity Slow-Positron Beam

    SciTech Connect

    Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H

    2001-06-20

    Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.

  7. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    NASA Astrophysics Data System (ADS)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  8. New mono- and diethynylsiloxysilsesquioxanes--efficient procedures for their synthesis.

    PubMed

    Dudziec, Beata; Rzonsowska, Monika; Marciniec, Bogdan; Brząkalski, Dariusz; Woźniak, Bartosz

    2014-09-21

    Ethynyl-substituted siloxysilsesquioxanes are promising building blocks for a wide range of substances based on a POSS/DDSQ core, especially for (oligo-)polymer syntheses and modifications (the formation of hybrid materials with interesting photophysical and mechanical properties). In this study, we report on a series of new mono- and diethynylsiloxysilsesquioxanes formed via an efficient and highly selective one-pot process from silsesquioxanes with reactive Si-OH groups based on sequential condensation, hydrolysis, chlorination and substitution reactions. All newly synthesized compounds were isolated and characterized by spectroscopic methods. PMID:25047114

  9. Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles

    SciTech Connect

    Maiti, A; Gee, R H; Maxwell, R; Saab, A

    2007-02-01

    Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

  10. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  11. Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser.

    PubMed

    Hu, Zhijia; Miao, Bo; Wang, Tongxin; Fu, Qiang; Zhang, Douguo; Ming, Hai; Zhang, Qijin

    2013-11-15

    We have demonstrated the realization of a random polymer fiber laser (RPFL) based on laser dye Pyrromethene 597-doped one-dimensional disordered polymer optical fiber (POF). The stabilized coherent laser action for the disordered POF has been obtained by the weak optical multiple scattering of the polyhedral oligomeric silsesquioxanes nanoparticles in the core of the POF in situ formed during polymerization, which was enhanced by the waveguide confinement effect. Meanwhile, the threshold of our RPFL system is almost one order of magnitude lower than that of the liquid core random fiber laser reported previously, which promotes the development of random lasers. PMID:24322095

  12. Nanotechnology and bio-functionalisation for peripheral nerve regeneration

    PubMed Central

    Sedaghati, Tina; Seifalian, Alexander M.

    2015-01-01

    There is a high clinical demand for new smart biomaterials, which stimulate neuronal cell proliferation, migration and increase cell-material interaction to facilitate nerve regeneration across these critical-sized defects. This article briefly reviews several up-to-date published studies using Arginine-Glycine-Aspartic acid peptide sequence, nanocomposite based on polyhedral oligomeric silsesquioxane nanoparticle and nanofibrous scaffolds as promising strategies to enhance peripheral nerve regeneration by influencing cellular behaviour such as attachment, spreading and proliferation. The aim is to establish the potent manipulations, which are simple and easy to employ in the clinical conditions for nerve regeneration and repair. PMID:26487832

  13. Synthesis, characterization and photophysical properties of polyfunctional phenylsilsesquioxanes: [o-RPhSiO(1.5)](8), [2,5-R(2)PhSiO(1.5)](8), and [R(3)PhSiO(1.5)](8). compounds with the highest number of functional units/unit volume

    SciTech Connect

    Sulaiman, Santi; Zhang, Jin; Goodson, III, Theodore; Laine, Richard M.

    2011-01-01

    The availability of pure samples of o-Br₈OPS, 2,5-Br₁₆OPS, and Br₂₄OPS provides a rare opportunity to synthesize sets of corresponding stilbene derivatives: o-RStyr₈OPS, RStyr₁₆OPS, and RStyr₂₄OPS where R = 4-methyl (Me), Boc-protected 4-amino (NBoc), or 4-acetoxy (Ace). These derivatives show unique UV-Vis absorption and photoluminescent behavior that points to interesting interactions between the organic tethers and the silsesquioxane cage. o-RStyr₈OPS shows blue-shifts in the absorption spectra compared to p-MeStyr₈OPS, suggesting that the stilbene groups sit over and interact with the face of the electrophilic silsesquioxane cage as is the case with the parent molecule, o-Br₈OPS. The emission spectra of o-RStyr₈OPS are similar to p-MeStyr₈OPS indicating similar excited states involving the core LUMO. RStyr₁₆OPS exhibits absorption and emission spectra as well as Φ{sub PL} similar to 1,4-distyrylbenzene, pointing to disruption in conjugation with the silsesquioxane cage because of steric interactions. RStyr₂₄OPS offers absorption maxima that are blue-shifted and emission maxima that are red-shifted relative to RStyr₁₆OPS. We speculate that RStyr₂₄OPS is so sterically hindered that interactions with the cage face must occur. NBocStyr₂₄OPS and AceStyr₂₄OPS show moderate Φ{sub PL} and high two photon cross-section values, leading us to conclude that there are two excited states of nearly equivalent energy in these molecules with similar decay rates: a normal radiative π–π* transition and charge transfer involving the silsesquioxane cage. These same functional groups can be anticipated to offer much greater two photon absorption if different methods can be found for protecting the free amine from oxidation or replacing the acetoxy group (e.g. perhaps using alkyl or aryl groups).

  14. Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Yang, Chen-Yu

    2009-02-15

    The nanoparticles-induced vertical alignment technique was applied to generate variable liquid-crystal pretilt angles based on doping different concentrations of polyhedral oligomeric silsesquioxane (POSS) nanoparticles in the planar-aligned liquid crystal cells. Competition between the homogeneously aligned polyimide layer and POSS-induced spontaneous vertical alignment domain generated the variable pretilt angle. Experimental results demonstrated that the pretilt angle theta(p) is a function of the doped POSS concentration and can be controlled continuously over the range of 0 degrees

  15. Composite Polymer Derived Ceramic System for Oxidizing Environments

    SciTech Connect

    Torrey, Jessica D.; Bordia, Rajendra K.; Henager, Charles H.; Blum, Y.; Shin, Yongsoon; Samuels, William D.

    2006-07-01

    Preceramic polymers and expansion agents are being investigated to process composite ceramic coatings. In this paper, we present results of a systematic approach to selecting the preceramic polymer and expansion agents, and the optimization of the processing parameters to produce composite ceramics. Six commercially available poly(silsesquioxane) polymers and two polysiloxanes were studied. In addition, several metals and intermetallics were considered as potential expansion agents. Based on this study, the most desirable polymer/expansion agent combination and optimal processing parameters have been identified.

  16. Polymer precursors for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    The fiber composite approach to reinforced ceramics provides the possibility of achieving ceramics with high fracture toughness relative to monolithics. Fabrication of ceramic composites, however, demands low processing temperatures to avoid fiber degradation. Formation of complex shapes further requires small diameter fibers as well as techniques for infiltrating the matrix between fibers. Polymers offer low temperature processability, control of rheology not available with ceramic powders, and should serve as precursors to matrix fibers. In recent years, a number of polysilanes and polysilezanes were investigated as potential presursors. A review of candidate polymers is presented, including recent studies of silsesquioxanes.

  17. Synthesis and Characterization of Periodic Mesoporous Organosilicas as Anion-Exchance Resins for Perrhenate Adsorption.

    SciTech Connect

    Lee, Byunghwan; Im, Hee-Jung; Luo, Huimin; Hagaman, Edward {Ed} W; Dai, Sheng

    2005-01-01

    A new methodology to immobilize ionic liquids through the use of a bridged silsesquioxane N-(3-triethoxysilylpropyl), N(3)-3-trimethoxysilylpropyl-4,5-dihydroimidazolium iodide that incorporates an ionic functionality for the assembly of novel periodic mesoporous organosilica (PMO) materials has been developed. The resulting PMO materials were investigated for use as novel anion exchange resins for the separation of perrhenate anions in aqueous solution. As compared with cetyltrimethylammonium chloride, 1-hexadecane-3-methylimidazolium bromide has been demonstrated to be a more efficient surfactant template for the generation of mesopores and surface areas for such PMO materials.

  18. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes

    SciTech Connect

    Ashani, Y.; Radic, Z.; Tsigelny, I.; Vellom, D.C.; Pickering, N.A.

    1995-03-17

    Single and multiple site mutants of recombinant mouse acetyicholinesterase (rMoAChE) were inhibited with racemic 7-(methylethoxyphosphinyloxy)- 1-methylquinolinium iodide (MEPQ) and the resulting mixture of two enantiomers, CH3PR,S(O) (OC2H5)-AChE(EMPR,S AChE), were subjected to reactivation with 2-(hydrox- yiminomethyl) -1 -methylpyridinium methanesulfonate (P2S) and 1- (2-hydroxyiminomethyl- 1` -pyridinium)-3- (4`-carbamoyl-1- pyridinium)-2-oxapropane dichloride (HI-6). Kinetic analysis of the reactivation profiles revealed biphasic behavior with an approximate 1:1 ratio of two presumed reactivatable enantiomeric components. Equilibrium dissociation and kinetic rate constants for reactivation of site-specific mutant enzymes were compared with those obtained for wild-type rMoAChE, tissue-derived Torpedo AChE and human plasma butyrylcholinesterase.

  19. Observation of Organic Molecules at the Aerosol Surface.

    PubMed

    Wu, Yajing; Li, Wanyi; Xu, Bolei; Li, Xia; Wang, Han; McNeill, V Faye; Rao, Yi; Dai, Hai-Lung

    2016-06-16

    Organic molecules at the gas-particle interface of atmospheric aerosols influence the heterogeneous chemistry of the aerosol and impact climate properties. The ability to probe the molecules at the aerosol particle surface in situ therefore is important but has been proven challenging. We report the first successful observations of molecules at the surface of laboratory-generated aerosols suspended in air using the surface-sensitive technique second harmonic light scattering (SHS). As a demonstration, we detect trans-4-[4-(dibutylamino)styryl]-1-methylpyridinium iodide and determine its population and adsorption free energy at the surface of submicron aerosol particles. This work illustrates a new and versatile experimental approach for studying how aerosol composition may affect the atmospheric properties. PMID:27249662

  20. Metal-Free, Visible Light-Photocatalyzed Synthesis of Benzo[b]phosphole Oxides: Synthetic and Mechanistic Investigations.

    PubMed

    Quint, Valentin; Morlet-Savary, Fabrice; Lohier, Jean-François; Lalevée, Jacques; Gaumont, Annie-Claude; Lakhdar, Sami

    2016-06-15

    Highly functionalized benzo[b]phosphole oxides were synthesized from reactions of arylphosphine oxides with alkynes under photocatalytic conditions by using eosin Y as the catalyst and N-ethoxy-2-methylpyridinium tetrafluoroborate as the oxidant. The reaction works under mild conditions and has a broad substrate scope. Mechanistic investigations have been undertaken and revealed the formation of a ground state electron donor-acceptor complex (EDA) between eosin (the photocatalyst) and the pyridinium salt (the oxidation agent). This complex, which has been fully characterized both in the solid state and in solution, turned out to exhibit a dual role, i.e., the oxidation of the photocatalyst and the formation of the initiating radicals, which undergoes an intramolecular reaction avoiding the classical diffusion between the two reactants. The involvement of ethoxy and phosphinoyl radicals in the photoreaction has unequivocally been evidenced by EPR spectroscopy. PMID:27186629

  1. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    NASA Astrophysics Data System (ADS)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  2. A traceless approach for the parallel solid-phase synthesis of 2-(arylamino)quinazolinones.

    PubMed

    Yu, Yongping; Ostresh, John M; Houghten, Richard A

    2002-08-01

    A traceless approach for the parallel solid-phase synthesis of 2-arylamino-substituted quinazolinones is described. Acylation of MBHA resin with o-nitrobenzoic acid derivatives, followed by reduction of the nitro group with tin chloride, generated a resin-bound o-anilino derivative. Reaction of resin-bound o-anilino derivative with arylisothiocyanates yielded resin-bound thioureas, which reacted with amines in the present of Mukaiyama's reagent (2-chloro-1-methylpyridinium iodide) to afford resin-bound guanidines. Following intramolecular cyclization of the resin-bound guanidines during cleavage from the resin by HF/anisole (95/5) for 1.5 h at 0 degrees C, the desired products were obtained in good yield and purity. PMID:12153287

  3. On the spectral behavior of an ionic styryl dye: effect of micelle-polyethylene-block-polyethylene glycol diblock copolymer assembly.

    PubMed

    Sahoo, Dibakar; Bhattacharya, Prosenjit; Chakravorti, Sankar

    2009-10-15

    The interaction of anionic micelle sodium dodecyl sulfate (SDS) and amphiphilic block copolymers polyethylene-b-polyethylene glycol (PE-b-PEG) and the sharp change of excited-state charge-transfer complex photophysics of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) inside of the supramolecular assembly have been addressed in the paper. The dramatic enhancement of emission intensity of DASPMI incorporated inside of the nanostructure formed by micellar and polymeric chains indicates a completely different environment compared to that in the water and micellar system. A huge increase in the rotational relaxation time obtained from time-resolved anisotropy decay and the value of the order parameter is indicative of a very restrictive regime in the self-assembly system. The wobbling and translational motion of the probe is also restricted inside of the micelle-polymer aggregate due to the presence of polymer chains. The translational diffusion coefficient is drastically reduced due to the aggregation. PMID:19761273

  4. FABRICATION OF A RETINAL PROSTHETIC TEST DEVICE USING ELECTRODEPOSITED SILICON OVER POLYPYRROLE PATTERNED WITH SU-8 PHOTORESIST

    PubMed Central

    Miller, Eric; Ellis, Daniel; Charles, Duran; McKenzie, Jason

    2016-01-01

    A materials fabrication study of a photodiode array for possible application of retina prosthesis was undertaken. A test device was fabricated using a glassy carbon electrode patterned with SU-8 photoresist. In the openings, p-type polypyrrole was first electrodeposited using 1-butyl-1-methylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquid. The polypyrrole was self-doped with imide ion at ~1.5 mole %, was verified as p-type, and had a resistivity of ~20 Ωcm. N-type Silicon was then electrodeposited over this layer using silicon tetrachloride / phosphorus trichloride in acetonitrile and passivated in a second electrodeposition using trimethylchlorosilane. Electron microscopy revealed the successful electrodeposition of silicon over patterned polypyrrole. Rudimentary photodiode behavior was observed. The passivation improved but did not completely protect the electrodeposited silicon from oxidation by air.

  5. Antiradiation compounds. 20. 1-Methylquinolinium(and pyridinium)-2-dithioacetic acid derivatives

    SciTech Connect

    Foye, W.O.; Jones, R.W.; Ghoshal, P.K.; Almassian, B.

    1987-01-01

    A new class of radiation-protective compounds has been found in the bis(methylthio) and methylthio amino derivatives of 1-methylquinolinium- and 1-methylpyridinium-2-dithioacetic acids. The compounds gave good protection to mice vs. 1000-rad gamma-radiation in ip doses of 10 mg/kg or less, much lower than those required for the aminoalkyl thiols (approximately 150-600 mg/kg). The dithioacetic acid zwitterions were prepared from the base-catalyzed reaction of carbon disulfide with quinaldine and picoline methiodides, and the bis(methylthio) derivatives resulted from reaction with methyl iodide at room temperature. Replacement of one methylthio moiety took place readily on reaction of the bis(methylthio) derivatives with 1 molar equiv of an amine. The best protective activity was found with the methylthio piperidino derivative in both the quinolinium and pyridinium series.

  6. Intramolecular charge transfer of push-pull pyridinium salts in the singlet manifold.

    PubMed

    Carlotti, Benedetta; Consiglio, Giuseppe; Elisei, Fausto; Fortuna, Cosimo G; Mazzucato, Ugo; Spalletti, Anna

    2014-05-22

    The solvent effect on the photophysical and photochemical properties of the iodides of three trans (E) isomers of 2-D-vinyl,1-methylpyridinium, where D is a donor group (4-dimethylaminophenyl, 3,4,5-trimethoxyphenyl and 1-pyrenyl), was studied by stationary and transient absorption techniques. The results obtained allowed the negative solvatochromism and relaxation pathways of the excited states in the singlet manifold to be reasonably interpreted. Resorting to ultrafast absorption techniques and DFT calculations allowed information on the excited state dynamics and the role of the solvent-controlled intramolecular charge transfer (ICT) processes to be obtained. The structure-dependent excited state dynamics in nonpolar solvents, where the ICT is slower than solvent rearrangement, and in polar solvents, where an opposite situation is operative, was thus explained. The push-pull character of the three compounds, particularly the anilino-derivative, suggests their potential application in optoelectronics. PMID:24779555

  7. A new micro/nanoencapsulated porphyrin formulation for PDT treatment.

    PubMed

    Deda, Daiana K; Uchoa, Adjaci F; Caritá, Eduardo; Baptista, Maurício S; Toma, Henrique E; Araki, Koiti

    2009-07-01

    The highly hydrophobic 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin (3MMe) cationic species was synthesized, characterized and encapsulated in marine atelocollagen/xanthane gum microcapsules by the coacervation method. Further reduction in the capsule size, from several microns down to about 300-400 nm, was carried out successfully by ultrasonic processing in the presence of up to 1.6% Tween 20 surfactant, without affecting the distribution of 3MMe in the oily core. The resulting cream-like product exhibited enhanced photodynamic activity but negligible cytotoxicity towards HeLa cells. The polymeric micro/nanocapsule formulation was found to be about 4 times more phototoxic than the respective phosphatidylcholine lipidic emulsion, demonstrating high potentiality for photodynamic therapy applications. PMID:19409465

  8. Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale.

    PubMed

    Pohar, Andrej; Plazl, Igor; Žnidaršič-Plazl, Polona

    2009-12-01

    A continuously operated psi-shaped microreactor was used for lipase-catalyzed synthesis of isoamyl acetate in the 1-butyl-3-methylpyridinium dicyanamide/n-heptane two-phase system. The chosen solvent system with dissolved Candida antarctica lipase B, which was attached to the ionic liquid/n-heptane interfacial area due to its amphiphilic properties, was shown to be highly efficient and enabled simultaneous esterification and product removal. At preliminarily selected conditions regarding the type of acyl donor, its molar ratio to alcohol and enzyme concentration, 48.4 g m(-3) s(-1) of isoamyl acetate was produced, which was almost three-fold better as compared to the intensely mixed batch process. This was mainly a consequence of efficient reaction-diffusion dynamics in the microchannel system, where the developed flow pattern comprising of intense emulsification provided a large interfacial area for the reaction and simultaneous product extraction. PMID:19904405

  9. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  10. Dynamic structural effects and ultrafast biomolecular kinetics in photoinduced charge transfer reactions. Three year progress report, March 15, 1991--May 14, 1994

    SciTech Connect

    Hupp, J.T.

    1994-04-01

    The reactions were primarily electron-transfer-reactivity related (ET?). Goals were to obtain complete, multimode, experimental descriptions of vibrational (Franck-Condon) barriers to intramolecular electron transfer, explore molecular generality of time-dependent scattering analysis, connect the information directly to measured rates of photoinduced ET (femtosecond, picosecond, nanosecond regime), obtain complementary information in the microsecond regime (longer-range thermal ET) via pulsed-accelrated flow, explore valence localization/delocalization via vibronic coupling (resonance Raman in extended near infrared) and via reversible external manipulation of internal electronic structure, and manipulate and accelerate bimolecular photoredox processes by using room-temperature supercritical fluids. Fe and Ru complexes with such compounds as cyano-N-methylpyridinium compounds were studied.