Science.gov

Sample records for 30-day-old obese zucker

  1. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    SciTech Connect

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M. )

    1988-03-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by (3-{sup 3}H)glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake.

  2. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  3. Comparison of tissue metal concentrations in Zucker lean, Zucker obese, and Zucker diabetic fatty rats and the effects of chromium supplementation on tissue metal concentrations.

    PubMed

    Staniek, Halina; Rhodes, Nicholas R; Di Bona, Kristin R; Deng, Ge; Love, Sharifa T; Pledger, Leigh Ann; Blount, Jeremy; Gomberg, Emmalea; Grappe, Frances; Cernosek, Chelsea; Peoples, Brittany; Rasco, Jane F; Krejpcio, Zbigniew; Vincent, John B

    2013-03-01

    Diabetes results in several metabolic changes, including alterations in the transport, distribution, excretion, and accumulation of metals. While changes have been examined in several rat models of insulin resistance and diabetes, the metal ion concentrations in the tissues of Zucker lean, Zucker obese (an insulin resistance and early stage diabetes model), and Zucker diabetic fatty (ZDF, a type 2 diabetes model) have not previously been examined in detail. The concentration of Cu, Zn, Fe, Mg, and Ca were examined in the liver, kidney, heart and spleen, and Cr concentration in the liver and kidney of these rats were examined. Zucker obese rats have a reduction in the concentration of Cu, Zn, Fe, Mg in the liver compared to ZDF and/or lean Zucker rats, presumably as a result of the increased fat content of the liver of the obese rats. ZDF rats have increased concentrations of kidney Cu compared to the lean rats, while kidney Ca concentrations are increased in the Zucker obese rats. Spleen Fe concentrations are decreased in Zucker obese rats compared to the lean rats. No effects on metal concentrations in the heart were observed between the lean, obese, and ZDF rats, and no effects on Cr concentrations were identified. Cr(III) complexes have previously been shown to have beneficial effects on the signs of insulin resistance in Zucker obese and ZDF rats. The effects of daily gavage administration of chromium picolinate ([Cr(pic)(3)]) (1 mg Cr/kg body mass), CrCl(3) (1 mg Cr/kg body mass), and Cr3 ([Cr(3)O(propionate)(6)(H(2)O)(3)](+)) (33 μg and 1 mg Cr/kg body mass) on metal concentrations in these tissues were examined. Treatment with CrCl(3) and Cr3, but not [Cr(pic)(3)], at 1 mg Cr/kg resulted in a statistically significant accumulation of Cr in the kidney of lean and obese but not ZDF rats but resulted in lowering the elevated levels of kidney Cu in ZDF rats, suggesting a beneficial effect on this symptom of type 2 diabetes. PMID:23250541

  4. Leucine and Protein Metabolism in Obese Zucker Rats

    PubMed Central

    She, Pengxiang; Olson, Kristine C.; Kadota, Yoshihiro; Inukai, Ayami; Shimomura, Yoshiharu; Hoppel, Charles L.; Adams, Sean H.; Kawamata, Yasuko; Matsumoto, Hideki; Sakai, Ryosei; Lang, Charles H.; Lynch, Christopher J.

    2013-01-01

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and

  5. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  6. Modulation of olfactory sensitivity and glucose-sensing by the feeding state in obese Zucker rats

    PubMed Central

    Aimé, Pascaline; Palouzier-Paulignan, Brigitte; Salem, Rita; Al Koborssy, Dolly; Garcia, Samuel; Duchamp, Claude; Romestaing, Caroline; Julliard, A. Karyn

    2014-01-01

    The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1) and insulin dependent glucose transporters 4 (GLUT4) are both expressed in the olfactory bulb (OB). By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF) in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory olfactory processing

  7. The metabolic clearance rate of corticosterone in lean and obese male Zucker rats

    SciTech Connect

    White, B.D.; Corll, C.B.; Porter, J.R.

    1989-06-01

    The obese Zucker rat is an animal model of human juvenile-onset obesity. These rats exhibit numerous endocrine and metabolic abnormalities. Adrenalectomy of obese rats has been shown to reduce or reverse several of these abnormalities, thereby implying that corticosterone may contribute to the expression of obesity in this animal. Furthermore, it has been shown that the circadian rhythm of plasma corticosterone is disturbed in obese Zucker rats resulting in elevated morning plasma corticosterone concentrations in obese rats as compared to lean rats. In a effort to better elucidate the mechanism of the elevated morning levels of plasma corticosterone, the metabolic clearance rate of corticosterone was determined in the morning for lean and obese male Zucker rats (12 to 20 weeks). Additionally, the biliary and urinary excretion of labeled corticosterone and/or its metabolites were determined. The metabolic clearance rate of corticosterone was significantly greater in obese rats than in their lean counterparts. Both the metabolic clearance rate and the volume of compartments significantly correlated with body weight. No correlation was found between body weight and the elimination rate constant. The increased metabolic clearance rate of obese rats appeared to be due to an increase in the physiologic distribution of corticosterone and not to an alteration in the enzymes responsible for corticosterone metabolism. It appears that the metabolic clearance rate of corticosterone in obese Zucker rats does not contribute to elevated morning concentrations of plasma corticosterone previously observed in these animals. It suggests that the adrenal corticosterone secretion rate must actually be greater than one would expect from the plasma corticosterone concentrations alone.

  8. Investigation of oxidant stress and vasodepression to glyceryl trinitrate in the obese Zucker rat in vivo

    PubMed Central

    Laight, David W; Kengatharan, K M; Gopaul, Nitin K; Änggård, Erik E; Carrier, Martin J

    1998-01-01

    We examined the relationship between oxidant stress and the vasodepressor activity of glyceryl trinitrate (GTN) in vivo, including rapid GTN tolerance development, in 13-week old obese and age-matched lean Zucker rats which had been maintained for 4 weeks on either control diet or diets enriched with the lipophilic, chain-breaking antioxidants vitamin E (0.5% w w−1) or probucol (0.5% w w−1) or the superoxide anion scavenger tiron (1% w v−1 in drinking water).The basal plasma level of the isoprostane 8-epi-PGF2α, an in vivo marker of lipid peroxidation, was elevated by approximately 5 fold in the obese Zucker rat and markedly reduced by dietary lipophilic antioxidants and depressed by dietary tiron.Vasodepression to bolus does GTN (0.1–100 μg kg−1 i.v.), but not endothelium-dependent vasodepression to bolus dose acetylcholine (ACh, 0.02–2.0 μg kg−1 i.v.), was impaired in obese animals and completely restored by dietary antioxidants.Nitrate tolerance developed in vivo during a 1 h infusion of GTN (40 μg kg−1 min−1 i.v.) appeared more severe in obese animals. However, rapid nitrate tolerance was not affected by dietary antioxidants in either the obese or lean Zucker rat.We therefore provide evidence that elevated oxidant stress in the obese Zucker rat is associated with an impairment in nitrate vasodepressor activity. However, our data are not consistent with either a role for oxidant stress in rapid nitrate tolerance development in the anaesthetized Zucker rat or the aggravation of this tolerance by pre-existing oxidant stress. PMID:9831930

  9. Cold-increase in brown fat thyroxine 5'-monodeiodinase is attenuated in Zucker obese rat

    SciTech Connect

    Wu, S.Y.; Stern, J.S.; Fisher, D.A.; Glick, Z.

    1987-01-01

    In this study the authors examined the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for enzymic conversion of thyroxine (T/sub 4/) to triiodothyronine (T/sub 3/) in BAT. A total of 34 lean and obese rats, approx.4 mo old were divided into three treatment groups: group 1 (5 lean and 6 obese) was fed Purina rat chow for 21 days, and group two (5 lean and 6 obese) was fed a cafeteria diet for 21 days, and groups 3 (6 lean and 6 obese) was fed Purina rat chow and maintained in the cold (8 +/- 1/sup 0/C) for 7 days. Activity of T/sub 4/ 5'-deiodinase was determined as the rate of T/sub 3/ production from added T/sub 4/ under controlled in vitro conditions. Serum T/sub 4/ and T/sub 3/ were determined by radioimmunoassay. The rate of T/sub 4/-to-T/sub 3/ conversion in BAT was similar in the lean and obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet. However, expressed per scapular BAT depot, lean rats exposed to cold displayed about a fivefold increase in BAT T/sub 3/ production whereas only a small increase was observed in the cold-exposed obese rats. Serum T/sub 3/ levels tended to be reduced in the Zucker obese rats. The data indicate a reduced capacity for T/sub 3/ production of Zucker rat BAT exposed to cold. This defect may account for the reduced tolerance of the obese animals to cold, but it does not account for their reduced diet-induced BAT thermogenesis.

  10. Hepatic denervation and dyslipidemia in obese Zucker (fa/fa) rats.

    PubMed

    Bruinstroop, E; Eliveld, J; Foppen, E; Busker, S; Ackermans, M T; Fliers, E; Kalsbeek, A

    2015-11-01

    Human and animal studies increasingly point toward a neural pathogenesis of the metabolic syndrome, involving hypothalamic and autonomic nervous system dysfunction. We hypothesized that increased very-low-density lipoprotein-triglyceride (VLDL-TG) secretion by the liver in a rat model for dyslipidemia, that is, the obese Zucker (fa/fa) rat, is due to relative hyperactivity of sympathetic, and/or hypoactivity of parasympathetic hepatic innervation. To test the involvement of the autonomic nervous system, we surgically denervated the sympathetic or parasympathetic hepatic nerve in obese Zucker rats. Our results show that cutting the sympathetic hepatic nerve lowers VLDL-TG secretion in obese rats, finally resulting in lower plasma TG concentrations after 6 weeks. In contrast, a parasympathetic denervation results in increased plasma total cholesterol concentrations. The effect of a sympathetic or parasympathetic denervation of the liver was independent of changes in humoral factors or changes in body weight or food intake. In conclusion, a sympathetic denervation improves the lipid profile in obese Zucker rats, whereas a parasympathetic denervation increases total cholesterol levels. We believe this is a novel treatment target, which should be further investigated. PMID:26134416

  11. Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats

    PubMed Central

    Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.

    2016-01-01

    Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063

  12. Changes in individual rates of pancreatic enzyme and isoenzyme biosynthesis in the obese Zucker rat.

    PubMed Central

    Trimble, E R; Rausch, U; Kern, H F

    1987-01-01

    Both alterations of enzyme content and a markedly decreased secretory response to selected physiological stimuli have been demonstrated previously in the pancreas of the obese Zucker rat. The purpose of the present investigation was to determine the degree to which alterations of enzyme content could be attributed to changes in enzyme biosynthesis. Amylase content of obese rats was decreased by 50%, whereas lipase and trypsinogens were significantly increased. However, the decrease in amylase content was less than might have been predicted from the rate of amylase biosynthesis (80% decrease), and the increases in content of trypsinogen(s) and lipase were greater than would have been predicted from alterations in the absolute rates of biosynthesis. In view of the rapid turnover of pancreatic enzymes under normal conditions, it seems probable that a markedly decreased secretory response to various stimuli leads to an increased content of some enzymes in the pancreas of the obese rat. Ciglitazone treatment, which decreases insulin resistance in obese animals and leads to normalization of glucose metabolism in their pancreatic tissue, restored the enzyme-synthesis rates towards normal, showing that the abnormalities of enzyme synthesis were linked to the insulin resistance rather than to the obese genotype itself. Lipid inclusion bodies were found in acinar cells of obese rats. These bodies have previously been described in acinar cells of starved animals, which, in common with the acinar tissue of the obese Zucker rat, have decreased glucose metabolism. Images Fig. 1. Fig. 3. Fig. 4. PMID:3325041

  13. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats

    PubMed Central

    Garcés-Rimón, M.; González, C.; Uranga, J. A.; López-Miranda, V.; López-Fandiño, R.; Miguel, M.

    2016-01-01

    The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications. PMID:26985993

  14. Contractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats.

    PubMed Central

    Dolan, P L; Tapscott, E B; Dorton, P J; Dohm, G L

    1993-01-01

    Both insulin and contraction stimulate glucose transport in skeletal muscle. Insulin-stimulated glucose transport is decreased in obese humans and rats. The aims of this study were (1) to determine if contraction-stimulated glucose transport was also compromised in skeletal muscle of genetically obese insulin-resistant Zucker rats, and (2) to determine whether the additive effects of insulin and contraction previously observed in muscle from lean subjects were evident in muscle from the obese animals. To measure glucose transport, hindlimbs from lean and obese Zucker rats were perfused under basal, insulin-stimulated (0.1 microM), contraction-stimulated (electrical stimulation of the sciatic nerve) and combined insulin-(+)contraction-stimulated conditions. One hindlimb was stimulated to contract while the contralateral leg served as an unstimulated control. 2-Deoxyglucose transport rates were measured in the white gastrocnemius, red gastrocnemius and extensor digitorum longus muscles. As expected, the insulin-stimulated glucose transport rate in each of the three muscles was significantly slower (P < 0.05) in obese rats when compared with lean animals. When expressed as fold stimulation over basal, there was no significant difference in contraction-induced muscle glucose transport rates between lean and obese animals. Insulin-(+)contraction-stimulation was additive in skeletal muscle of lean animals, but synergistic in skeletal muscle of obese animals. Prior contraction increased insulin responsiveness of glucose transport 2-5-fold in the obese rats, but had no effect on insulin responsiveness in the lean controls. This contraction-induced improvement in insulin responsiveness could be of clinical importance to obese subjects as a way to improve insulin-stimulated glucose uptake in resistant skeletal muscle. PMID:8424787

  15. Leucine and protein metabolism in obese zucker rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however they increase in obesity and appear to prognosticate diabetes onset. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1...

  16. OBESITY INCREASES BLOOD PRESSURE, CEREBRAL VASCULAR REMODELING, AND SEVERITY OF STROKE IN THE ZUCKER RAT

    PubMed Central

    Osmond, Jessica M.; Mintz, James D.; Dalton, Brian; Stepp, David W.

    2009-01-01

    Obesity is a risk factor for stroke, but the mechanisms by which obesity increases stroke risk are unknown. Because microvascular architecture contributes to the outcome of stroke, we hypothesized that middle cerebral arteries (MCA) from obese Zucker rats (OZR) undergo inward remodeling and develop increased myogenic tone compared to lean Zucker rats (LZR). We further hypothesized that OZR have an increased infarct following cerebral ischemia and that changes in vascular structure and function correlate with the development of hypertension in OZR. Blood pressure was measured by telemetery in LZR and OZR from 6 to 17 weeks of age. Vessel structure and function were assessed in isolated MCAs. Stroke damage was assessed after ischemia was induced for 60 minutes followed by 24 hours of reperfusion. While mean arterial pressure (MAP) was similar between young rats (6–8 weeks old), MAP was higher in adult (14–17 weeks old) OZR than LZR. MCAs from OZR had a smaller lumen diameter and increased myogenic vasoconstriction compared to those from LZR. Following ischemia, infarction was 58% larger in OZR than LZR. Prior to the development of hypertension, MCA myogenic reactity and lumen diameter as well as infarct size were similar between young LZR and OZR. Our results indicate that the MCAs of OZR undergo structural remodeling and that these rats have greater cerebral injury following cerebral ischemia. These cerebrovascular changes correlate with the development of hypertension and suggest that the increased blood pressure may be the major determinant for stroke risk in obese individuals. PMID:19104000

  17. Effects of Aerobic Exercise Training on Cardiac Renin-Angiotensin System in an Obese Zucker Rat Strain

    PubMed Central

    Barretti, Diego Lopes Mendes; Magalhães, Flávio de Castro; Fernandes, Tiago; do Carmo, Everton Crivoi; Rosa, Kaleizu Teodoro; Irigoyen, Maria Claudia; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes

    2012-01-01

    Objective Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results The resting HR decreased (∼12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p<0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats

  18. Obesity augments vasoconstrictor reactivity to angiotensin II in the renal circulation of the Zucker rat.

    PubMed

    Stepp, David W; Boesen, Erika I; Sullivan, Jennifer C; Mintz, James D; Hair, Clark D; Pollock, David M

    2007-10-01

    Obesity is an emerging risk factor for renal dysfunction, but the mechanisms are poorly understood. Obese patients show heightened renal vasodilation to blockade of the renin-angiotensin system, suggesting deficits in vascular responses to angiotensin II (ANG II). This study tested the hypothesis that obesity augments renal vasoconstriction to ANG II. Lean (LZR), prediabetic obese (OZR), and nonobese fructose-fed Zucker rats (FF-LZR) were studied to determine the effects of obesity and insulin resistance on reactivity of blood pressure and renal blood flow to vasoconstrictors. OZR showed enlargement of the kidneys, elevated urine output, increased sodium intake, and decreased plasma renin activity (PRA) vs. LZR, and renal vasoconstriction to ANG II was augmented in OZR. Renal reactivity to norepinephrine and mesenteric vascular reactivity to ANG II were similar between LZR and OZR. Insulin-resistant FF-LZR had normal reactivity to ANG II, indicating the insulin resistance was an unlikely explanation for the changes observed in OZR. Four weeks on a low-sodium diet (0.08%) to raise PRA reduced reactivity to ANG II in OZR back to normal levels without effect on LZR. From these data, we conclude that in the prediabetic stages of obesity, a decrease in PRA is observed in Zucker rats that may lead to increased renal vascular reactivity to ANG II. This increased reactivity to ANG II may explain the elevated renal vasodilator effects observed in obese humans and provide insight into early changes in renal function that predispose to nephropathy in later stages of the disease. PMID:17693541

  19. The Prostacyclin Analog Beraprost Sodium Ameliorates Characteristics of Metabolic Syndrome in Obese Zucker (Fatty) Rats

    PubMed Central

    Sato, Nahoko; Kaneko, Masayuki; Tamura, Mitsutaka; Kurumatani, Hajimu

    2010-01-01

    OBJECTIVE The prostacyclin analog, beraprost sodium (BPS), was examined for its potential to improve the symptoms of obesity-type diabetes (i.e., hyperglycemia, hyperinsulinemia, dyslipidemia, histopathologic changes, and diabetic complications). RESEARCH DESIGN AND METHODS Obese Zucker rats, an experimental model of genetic obesity-induced type 2 diabetes, were repeatedly administered BPS at oral doses of 0.2 or 0.6 mg · kg−1 · day−1 b.i.d. for 12 weeks, and serum chemistry, urinalysis, and histopathologic examination were performed. RESULTS BPS dose-dependently suppressed serum glucose, insulin, triglyceride, and cholesterol levels in obese animals. In oral glucose tolerance test, BPS suppressed the post–glucose-loading elevation of serum glucose in a dose-dependent manner. Urinary N-acetyl-β-D-glucosaminidase was significantly lower in BPS-treated obese animals compared with control animals, although no significant differences were observed in urinary protein levels between the BPS-treated groups and the control group. In addition, histopathologic examination revealed significant protective effects of BPS against renal disorder in obese animals. Histopathologically, BPS also inhibited the progression of hepatic steatosis, hypertrophy of adipose tissue, and pancreatic fibrosis. Furthermore, thermographic analysis of the hind limb sole skin surface indicated a significant increase in temperature in BPS-treated animals, compared with control animals, which was likely due to improved blood circulation by administration of BPS. CONCLUSIONS BPS suppressed the pathogenesis and development of diabetes and its complication, nephropathy, which was presumably accompanied by improving glucose intolerance and insulin resistance in obese Zucker rats. PMID:20068136

  20. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats

    PubMed Central

    Aldini, Giancarlo; Orioli, Marica; Rossoni, Giuseppe; Savi, Federica; Braidotti, Paola; Vistoli, Giulio; Yeum, Kyung-Jin; Negrisoli, Gianpaolo; Carini, Marina

    2011-01-01

    Abstract The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β-alanyl-L-histidine, L-CAR) and of its enantiomer (β-alanyl-D-histidine, D-CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products formation and development of nephropathy in the non-diabetic, Zucker obese rat. The Zucker rats received a daily dose of L-CAR or D-CAR (30 mg/kg in drinking water) for 24 weeks. Systolic blood pressure was recorded monthly. At the end of the treatment, plasma levels of triglycerides, total cholesterol, glucose, insulin, creatinine and urinary levels of total protein, albumin and creatinine were measured. Several indices of oxidative/carbonyl stress were also measured in plasma, urine and renal tissue. We found that both L- and D-CAR greatly reduced obese-related diseases in obese Zucker rat, by significantly restraining the development of dyslipidaemia, hypertension and renal injury, as demonstrated by both urinary parameters and electron microscopy examinations of renal tissue. Because the protective effect elicited by L- and D-CAR was almost superimposable, we conclude that the pharmacological action of L-CAR is not due to a pro-histaminic effect (D-CAR is not a precursor of histidine, since it is stable to peptidic hydrolysis), and prompted us to propose that some of the biological effects can be mediated by a direct carbonyl quenching mechanism. PMID:20518851

  1. Niacin in Pharmacological Doses Alters MicroRNA Expression in Skeletal Muscle of Obese Zucker Rats

    PubMed Central

    Most, Erika; Ringseis, Robert; Eder, Klaus

    2014-01-01

    Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value <0.05), 20 being down-regulated and 22 being up-regulated, between the niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5) and down-regulated (log2 ratio ≤−0.5) miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through mi

  2. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  3. Expression of fourteen novel obesity-related genes in zucker diabetic fatty rats

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) are useful to reveal an association between single nucleotide polymorphisms and different measures of obesity. A multitude of new loci has recently been reported, but the exact function of most of the according genes is not known. The aim of our study was to start elucidating the function of some of these genes. Methods We performed an expression analysis of fourteen genes, namely BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, LYPLAL1, MCR4, MTCH2, NEGR1, NRXN3, TMEM18, SEC16B and TFAP2B, via real-time RT-PCR in adipose tissue of the kidney capsule, the mesenterium and subcutaneum as well as the hypothalamus of obese Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats at an age of 22 weeks. Results All of our target genes except for SEC16B showed the highest expression in the hypothalamus. This suggests a critical role of these obesity-related genes in the central regulation of energy balance. Interestingly, the expression pattern in the hypothalamus showed no differences between obese ZDF and lean ZL rats. However, LYPLAL1, TFAP2B, SEC16B and FAIM2 were significantly lower expressed in the kidney fat of ZDF than ZL rats. NEGR1 was even lower expressed in subcutaneous and mesenterial fat, while MTCH2 was higher expressed in the subcutaneous and mesenterial fat of ZDF rats. Conclusion The expression pattern of the investigated obesity genes implies for most of them a role in the central regulation of energy balance, but for some also a role in the adipose tissue itself. For the development of the ZDF phenotype peripheral rather than central mechanisms of the investigated genes seem to be relevant. PMID:22553958

  4. Upregulation of orexin receptor in paraventricular nucleus promotes sympathetic outflow in obese Zucker rats

    PubMed Central

    Zhou, Jing-Jing; Yuan, Fang; Zhang, Yi; Li, De-Pei

    2015-01-01

    Sympathetic vasomotor tone is elevated in obesity-related hypertension. Orexin importantly regulates energy metabolism and autonomic function. We hypothesized that alteration of orexin receptor in the paraventricular nucleus (PVN) of the hypothalamus leads to elevated sympathetic vasomotor tone in obesity. We used in vivo measurement of sympathetic vasomotor tone and microinjection into brain nucleus, whole-cell patch clamp recording in brain slices, and immunocytochemical staining in obese Zucker rats (OZRs) and lean Zucker rats (LZRs). Microinjection of orexin 1 receptor (OX1R) antagonist SB334867 into the PVN reduced basal arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized OZRs but not in LZRs. Microinjection of orexin A into the PVN produced greater increases in ABP and RSNA in OZRs than in LZRs. Western blot analysis revealed that OX1R expression levels in the PVN were significantly increased in OZRs compared with LZRs. OX1R immunoreactivity was positive in retrogradely labeled PVN-spinal neurons. The basal firing rate of labeled PVN-spinal neurons was higher in OZRs than in LZRs. SB334867 decreased the basal firing activity of PVN-spinal neurons in OZRs but had no effect in LZRs. Orexin A induced a greater increase in the firing rate of PVN-spinal neurons in OZRs than in LZRs. In addition, orexin A induced larger currents in PVN-spinal neurons in OZRs than in LZRs. These data suggest that upregulation of OX1R in the PVN promotes hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in obesity. PMID:26277341

  5. Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats

    PubMed Central

    Pung, Yuh Fen; Rocic, Petra; Murphy, Michael P; Smith, Robin A J; Hafemeister, Jennifer; Ohanyan, Vahagn; Guarini, Giacinta; Yin, Liya; Chilian, William M

    2014-01-01

    Objective We have previously found abrogated ischemia-induced coronary collateral growth in Zucker obese fatty rats (ZOF) compared to Zucker lean rats (ZLN). Because ZOF have structural abnormalities in their mitochondria suggesting dysfunction, and also show increased production of O2ׄ−, we hypothesized that mitochondrial dysfunction, caused by oxidative stress impairs coronary collateral growth in ZOF. Methods and Results Increased levels of ROS were observed in aortic endothelium and smooth muscle cells in ZOF compared to ZLN. ROS levels were decreased by the mitochondria-targeted antioxidants MitoQuinone (MQ) and MitoTempol (MT) as assessed by MitoSox Red and DHE staining. Lipid peroxides (a marker of oxidized lipids) were increased in ZOF by ∼47 % compared to ZLN. The elevation in oxidative stress was accompanied by increased antioxidant enzymes, except GPx-1, and by increased uncoupling protein-2 in ZOF vs ZLN. In addition, elevated respiration rates were also observed in the obese compared to leans. Administration of MQ significantly normalized the metabolic profiles and reduced lipid peroxides in ZOF to the same level observed in leans. The protective effect of MQ also suppressed the induction of UCP-2 in the obese rats. Resolution of mitochondrial oxidative stress by MQ or MT restored coronary collateral growth to the same magnitude observed in ZLN in response to repetitive ischemia. Conclusions We conclude that mitochondrial oxidative stress and dysfunction play a key role in disrupting coronary collateral growth in obesity and the metabolic syndrome, and elimination of the mitochondrial oxidative stress with MQ or MT rescues collateral growth. PMID:22155454

  6. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats.

    PubMed

    Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D

    2015-12-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. PMID:26475592

  7. Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese Zucker rats.

    PubMed

    Llarena, Marta; Andrade, Fernando; Hasnaoui, Mounia; Portillo, María P; Pérez-Matute, Patricia; Arbones-Mainar, Jose M; Hijona, Elizabeth; Villanueva-Millán, María Jesús; Aguirre, Leixuri; Carpéné, Christian; Aldámiz-Echevarría, Luis

    2016-09-01

    Obesity-associated nephropathy is considered to be a leading cause of end-stage renal disease. Resveratrol supplementation represents a promising therapy to attenuate kidney injury, but the poor solubility and limited bioavailability of this polyphenol limits its use in dietary intervention. Piceatannol, a resveratrol analogue, has been suggested as a better option. In this study, we aimed to provide evidence of a preventive action of piceatannol in very early stages of obesity-associated nephropathy. Thirty obese Zucker rats were divided into three experimental groups: one control and two groups orally treated for 6 weeks with 15 and 45 mg piceatannol/kg body weight/day. Enzyme-linked immunosorbent assays (ELISA) were used to determine renal and urinary kidney injury molecule-1 (Kim-1), renal fibrosis markers (transforming growth factor β1 and fibronectin) and renal sirtuin-1 protein. Oxidative stress was assessed in the kidney by measuring lipid peroxidation and nitrosative stress (thiobarbituric acid reactive substrates and 3-nitrotyrosine levels, respectively) together with the activity of the antioxidant enzyme superoxide dismutase. Renal fatty acids profile analysis was performed by thin-layer and gas chromatography. Piceatannol-treated rats displayed lower levels of urinary and renal Kim-1. Renal fibrosis biomarkers and lipid peroxidation exhibited a tendency to decrease in the piceatannol-treated groups. Piceatannol treatment did not modify superoxide dismutase activity or sirtuin-1 protein levels, while it seemed to increase the levels of polyunsaturated and omega-6 polyunsaturated fatty acids in the kidneys. Our findings suggest a mild renoprotective effect of piceatannol in obese Zucker rats and the need of intervention at early stages of renal damage. PMID:26660756

  8. Soy protein isolate modified metabolic phenotype and hepatic Wnt signaling in obese Zucker rats.

    PubMed

    Cain, J; Banz, W J; Butteiger, D; Davis, J E

    2011-10-01

    We have previously shown that soy protein isolate (SPI) with intact phytoestrogen content prevented obesity-related dysfunction. Recent data have suggested that soy ingredients may act as regulators of adipogenic programming in adipose tissue (AT) and liver. Thus, the current study was undertaken to determine whether the beneficial effects of SPI are linked to changes in adipogenic regulators, such as the Wnt signaling cascade. For this, lean (LZR) and obese Zucker (OZR) rats were provided isocaloric and isonitrogenous diets containing SPI, sodium caseinate, or dairy whey protein for 17 weeks. At termination, SPI increased body weight and total adiposity in rodents, which corresponded with an increase in both adipocyte size and number. Furthermore, markers of inflammation, hypercholesterolemia, and hepatic steatosis were all reduced in OZR rats provided SPI. Transcript abundance of several canonical and noncanonical Wnt signaling intermediates in liver, but not AT, was distinctly modified by SPI. Collectively, these data confirm the protective SPI attenuated obesity-related metabolic dysfunction conceivably through regulation of adipogenic programming, as evident by changes in AT morphology and hepatic Wnt signaling. Collectively, this study confirmed the potential utilization of soy protein and its bioactive ingredients for prevention and treatment of obesity-related comorbidities. PMID:22009372

  9. Impaired Excitatory Neurotransmission in the Urinary Bladder from the Obese Zucker Rat: Role of Cannabinoid Receptors

    PubMed Central

    Blaha, Igor; Recio, Paz; Martínez, María Pilar; López-Oliva, María Elvira; Ribeiro, Ana S. F.; Agis-Torres, Ángel; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Fernandes, Vítor S.; Hernández, Medardo

    2016-01-01

    Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR. PMID:27285468

  10. Exaggerated sympathoexcitatory reflexes develop with changes in the rostral ventrolateral medulla in obese Zucker rats.

    PubMed

    Huber, Domitila A; Schreihofer, Ann M

    2016-08-01

    Obesity leads to altered autonomic reflexes that reduce stability of mean arterial pressure (MAP). Sympathoinhibitory reflexes such as baroreflexes are impaired, but reflexes that raise MAP appear to be augmented. In obese Zucker rats (OZR) sciatic nerve stimulation evokes larger increases in MAP by unknown mechanisms. We sought to determine the autonomic underpinnings of this enhanced somatic pressor reflex and whether other sympathoexcitatory reflexes are augmented. We also determined whether their final common pathway, glutamatergic activation of the rostral ventrolateral medulla (RVLM), was enhanced in male OZR compared with lean Zucker rats (LZR). Sciatic nerve stimulation or activation of the nasopharyngeal reflex evoked larger rises in splanchnic sympathetic nerve activity (SNA) (79% and 45% larger in OZR, respectively; P < 0.05) and MAP in urethane-anesthetized, ventilated, paralyzed adult OZR compared with LZR. After elimination of baroreflex feedback by pharmacological prevention of changes in MAP and heart rate, these two sympathoexcitatory reflexes were still exaggerated in OZR (167% and 69% larger, respectively, P < 0.05). In adult OZR microinjections of glutamate, AMPA, or NMDA into the RVLM produced larger rises in SNA (∼61% larger in OZR, P < 0.05 for each drug) and MAP, but stimulation of axonal fibers in the upper thoracic spinal cord yielded equivalent responses in OZR and LZR. In juvenile OZR and LZR, sympathoexcitatory reflexes and physiological responses to RVLM activation were comparable. These data suggest that the ability of glutamate to activate the RVLM becomes enhanced in adult OZR and may contribute to the development of exaggerated sympathoexcitatory responses independent of impaired baroreflexes. PMID:27280427

  11. Effect of changing body temperature on the ventilatory and metabolic responses of lean and obese Zucker rats.

    PubMed

    Maskrey, M; Megirian, D; Farkas, G A

    1998-08-01

    We measured body temperature (Tb) and ventilatory and metabolic variables in lean (n = 8) and obese (n = 8) Zucker rats. Measurements were made while rats breathed air, 4% CO2, and 10% O2. Under control conditions, Tb in obese rats was always less than that of their lean counterparts. Obese rats adopted a more rapid, shallow breathing pattern than lean rats in air and had a lower ventilation rate in 4% CO2. Respiration in 10% O2 was similar for the two groups. Metabolic variables did not differ between lean and obese rats whatever the gas breathed. When lean rats were cooled to match Tb in control obese rats with an implanted abdominal heat exchanger, they increased ventilation and metabolism in air; there was no effect of cooling on responses to 4% CO2; and ventilation increased while metabolism decreased in 10% O2. When obese rats were warmed to match Tb in control lean rats, trends in ventilation and metabolism resulted in a tendency toward hyperventilation in air and 4% CO2, but not in 10% O2. Taken overall, matching Tb in lean and obese rats accentuated differences in respiratory and metabolic variables between the two groups. We conclude that differences in respiration between lean and obese Zucker rats are not due to the difference in Tb. PMID:9688690

  12. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats

    PubMed Central

    2011-01-01

    Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose) on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group) were fed diets that contained wheat bran, barley or α-cellulose (control). After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC), malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL)-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI)-1, monocyte chemotactic protein (MCP)-1). Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06). Obese rats had higher plasma malondialdehyde (p < 0.01) and lower plasma glutathione peroxidase concentration (p < 0.01) but these levels were not affected by diet type. PAI-1 was elevated in the plasma of obese rats, and the wheat bran diet in comparison to the control group reduced PAI-1 to levels seen in the lean rats (p < 0.05). These changes in circulating PAI-1 levels could not be explained by PAI-1 secretion rates from visceral or subcutaneous adipose tissue. Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of

  13. Activity of thyroxine 5' deiodinase in brown fat of lean and obese zucker rats

    SciTech Connect

    Wu, S.Y.; Fisher, D.A.; Stern, J.S.; Glick, Z.

    1986-03-01

    This study examines the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for conversion of T/sub 4/ to T/sub 3/ in BAT, through activity of T/sub 4/ 5' deiodinase. Eighteen lean (Fa/.) and 18 age matched obese (fa/fa), about 16 weeks old, were each divided into 3 groups (n=6 per group). Group 1 and 2 were fed Purina Rat Chow and a cafeteria diet respectively for 21 days, and maintained at 22/sup 0/C+/-2. Group 3 was fed rat chow and maintained at 8/sup 0/C+/-1 for 7 days. Activity of T/sub 4/5'deiodinase was determined in vitro. T/sub 3/ was measured by a radioimmunoassay. The rate of T/sub 4/ to T/sub 3/ conversion was similar in the lean and the obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet (about 40 to 50 pmol T/sub 3//scapular BAT depot, per hour). However, lean rats exposed to the cold displayed about a 5 fold increase in T/sub 4/5' deiodinase activity (p<0.0001), with only a small increase displayed by the cold exposed obese rats. Our data suggest that a reduced capacity of the brown rat to produce T/sub 3/ may account for the reduced tolerance of obese animals to cold, but it does not account for their reduced diet induced BAT thermogenesis.

  14. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats.

    PubMed

    Merdzo, Ivan; Rutkai, Ibolya; Tokes, Tunde; Sure, Venkata N L R; Katakam, Prasad V G; Busija, David W

    2016-04-01

    Little is known about mitochondrial functioning in the cerebral vasculature during insulin resistance (IR). We examined mitochondrial respiration in isolated cerebral arteries of male Zucker obese (ZO) rats and phenotypically normal Zucker lean (ZL) rats using the Seahorse XFe24 analyzer. We investigated mitochondrial morphology in cerebral blood vessels as well as mitochondrial and nonmitochondrial protein expression levels in cerebral arteries and microvessels. We also measured reactive oxygen species (ROS) levels in cerebral microvessels. Under basal conditions, the mitochondrial respiration components (nonmitochondrial respiration, basal respiration, ATP production, proton leak, and spare respiratory capacity) showed similar levels among the ZL and ZO groups with the exception of maximal respiration, which was higher in the ZO group. We examined the role of nitric oxide by measuring mitochondrial respiration following inhibition of nitric oxide synthase withN(ω)-nitro-l-arginine methyl ester (l-NAME) and mitochondrial activation after administration of diazoxide (DZ). Both ZL and ZO groups showed similar responses to these stimuli with minor variations.l-NAME significantly increased the proton leak, and DZ decreased nonmitochondrial respiration in the ZL group. Other components were not affected. Mitochondrial morphology and distribution within vascular smooth muscle and endothelium as well as mitochondrial protein levels were similar in the arteries and microvessels of both groups. Endothelial nitric oxide synthase (eNOS) and ROS levels were increased in cerebral microvessels of the ZO. Our study suggests that mitochondrial function is not significantly altered in the cerebral vasculature of young ZO rats, but increased ROS production might be due to increased eNOS in the cerebral microcirculation during IR. PMID:26873973

  15. A novel experimental model of orthopedic trauma with acute kidney injury in obese Zucker rats

    PubMed Central

    Mittwede, Peter N; Xiang, Lusha; Lu, Silu; Clemmer, John S; Hester, Robert L

    2013-01-01

    Obesity is associated with an increased risk of acute kidney injury (AKI) after blunt traumatic injury in humans. Because limitations exist in studying trauma in human patients, animal models are necessary to elucidate mechanisms of remote organ injury after trauma. We developed a model of severe orthopedic trauma in lean (LZ) and obese (OZ) Zucker rats, in which OZ develop greater kidney dysfunction after trauma than LZ. Orthopedic trauma was inflicted via bilateral hindlimb soft tissue injury, fibula fracture, and injection of homogenized bone components. Mean arterial pressure (MAP) and heart rate (HR) were measured for 6 h after trauma, and again at 24 h after trauma. Urine was collected for 24 h before and after trauma to measure urine albumin excretion. Glomerular filtration rate (GFR), renal plasma flow (RPF), plasma interleukin-6 (IL-6), and renal macrophage infiltration (ED-1 [CD68 Antibody] immunostaining) were measured in animals with and without trauma. MAP and HR were similar between LZ and OZ throughout the study, with the exception that OZ had a 18 mmHg lower pressure 24 h posttrauma. GFR and RPF were decreased significantly (∼50%), while urine albumin excretion, plasma IL-6, and renal ED-1-positive cells were increased in OZ 24 h after trauma compared to both OZ without trauma and LZ after trauma. In conclusion, these data are consistent with studies in humans that show that AKI develops more frequently in obese than in lean individuals. This model will be an important experimental tool to better understand the underlying mechanisms of poor outcomes after trauma in obese patients. PMID:24303169

  16. A diet supplemented with husks of Plantago ovata reduces the development of endothelial dysfunction, hypertension, and obesity by affecting adiponectin and TNF-alpha in obese Zucker rats.

    PubMed

    Galisteo, Milagros; Sánchez, Manuel; Vera, Rocío; González, Mercedes; Anguera, Anna; Duarte, Juan; Zarzuelo, Antonio

    2005-10-01

    The aim of the present study was to analyze whether consumption of a fiber-supplemented diet containing 3.5% Plantago ovata husks prevented many of the abnormalities clustered in the metabolic syndrome, including obesity, dyslipidemia, hypertension and endothelial dysfunction. For this purpose, obese Zucker rats, a model of type 2 diabetes, and their lean littermates were studied. Rats consumed a standard control diet or that diet supplemented with 3.5% P. ovata husks for 25 wk. Body weights were measured weekly. Systolic blood pressure (SBP) was measured monthly. At the end of the treatment, plasma concentrations of triglycerides, total cholesterol, FFAs, glucose, insulin, adiponectin, and tumor necrosis factor alpha (TNF-alpha) were determined, and studies on vascular function were performed using aortic rings. Rats fed the P. ovata husk-supplemented diet had a significantly reduced body weight gain compared with those fed the standard diet. Decreased endothelium-dependent relaxation in response to acetylcholine (ACh) by aortic rings from obese Zucker rats was improved in those fed the fiber-supplemented diet. The greater SBP, higher plasma concentrations of triglycerides, total cholesterol, FFA, glucose, insulin, and TNF-alpha, and the hypoadinectinemia that occurred in obese Zucker rats that consumed the control diet were significantly improved in those fed the fiber-supplemented diet. We conclude that intake of a P. ovata husk-supplemented diet prevents endothelial dysfunction, hypertension, and obesity development, and ameliorates dyslipidemia and abnormal plasma concentrations of adiponectin and TNF-alpha in obese Zucker rats. PMID:16177203

  17. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats.

    PubMed

    Legette, Leecole L; Luna, Arlyn Y Moreno; Reed, Ralph L; Miranda, Cristobal L; Bobe, Gerd; Proteau, Rosita R; Stevens, Jan F

    2013-07-01

    Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid-chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (p<0.05) elevated in the highest dose group. There was a dose-dependent effect on body weight and plasma glucose levels. The highest dose group (n=6) had significantly lower plasma glucose levels compared to the control group (n=6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome. PMID:22640929

  18. Effects of salt rich diet in the obese Zucker rats: studies on renal function during isotonic volume expansion.

    PubMed

    Pamidimukkala, Jaya; Jandhyala, Bhagavan S

    2004-01-01

    Obese Zucker rats (OZR) are hyperinsulenemic, hyperglycemic and dyslipidemic and develop salt dependent hypertension. Since salt sensitivity is considered to be due to impaired handling of renal sodium excretion, these studies were conducted in the obese and lean Zucker rats (LZR) anesthetized with Inactin to evaluate renal function under basal conditions and during acute isotonic fluid volume expansion (VE). Mean Arterial blood pressure (MBP), heart rate (HR), renal blood flow(RBF) and glomerular filtration rate (GFR) were not significantly different between the lean Zucker rats fed normal diet or that fed salt rich diet(8% NaCI). However, basal UV and UNaV were significantly greater in the LZR fed high salt. During VE essentially identical increases occurred in GFR, UV and UNaV in both the lean groups. In the OZR fed salt rich diet also, there were no significant changes in the heart rate, RBF and GFR. However, arterial blood pressure of the OZR fed salt rich diet was significantly greater than that of the OZR on the normal diet as well as that of both the lean groups. Also, as in the LZR, basal UV and UNaV were significantly greater in the salt fed obese rats. During volume expansion there were no impairments in the ability of the obese groups fed normal or salt rich diet to eliminate sodium and water during volume load. In fact, the net sodium and water excretions during and 60 min after VE in both the obese groups were significantly greater than that of corresponding lean groups. Furthermore, these values in the OZR fed salt rich diet were significantly greater than that of the obese rats on normal salt diet perhaps due to the contribution of pressure natriuretic mechanisms'. These data demonstrate that although OZR are salt sensitive, the renal mechanisms that would collectively respond to acute isotonic VE were fully functional. An unexpected and a novel finding in these studies is that the salt rich diet, in addition to increasing arterial blood pressure

  19. Systemic Characterization of an Obese Phenotype in the Zucker Rat Model Defining Metabolic Axes of Energy Metabolism and Host-Microbial Interactions.

    PubMed

    Phetcharaburanin, Jutarop; Lees, Hannah; Marchesi, Julian R; Nicholson, Jeremy K; Holmes, Elaine; Seyfried, Florian; Li, Jia V

    2016-06-01

    The Zucker (fa/fa) rat is a valuable and extensively utilized model for obesity research. However, the metabolic networks underlying the systemic response in the obese Zucker rats remain to be elucidated. This information is important to further our understanding of the circulation of the microbial or host-microbial metabolites and their impact on host metabolism. (1)H nuclear magnetic resonance spectroscopy-based metabolic profiling was used to probe global metabolic differences in portal vein and peripheral blood plasma, urine and fecal water between obese (fa/fa, n = 12) and lean (fa/+, n = 12) Zucker rats. Urinary concentrations of host-microbial co-metabolites were found to be significantly higher in lean Zucker rats. Higher concentrations of fecal lactate, short chain fatty acids (SCFAs), 3-hydroxyphenyl propionic acid and glycerol, and lower levels of valine and glycine were observed in obese rats compared with lean animals. Regardless of phenotype, concentrations of SCFAs, tricarboxylic acid cycle intermediates, and choline metabolites were higher in portal vein blood compared to peripheral blood. However, higher levels of succinate, phenylalanine and tyrosine were observed in portal vein blood compared with peripheral blood from lean rats but not in obese rats. Our findings indicate that the absorption of propionate, acetate, choline, and trimethylamine is independent of the Zucker rat phenotypes. However, urinary host-microbial co-metabolites were highly associated with phenotypes, suggesting distinct gut microbial metabolic activities in lean and obese Zucker rats. This work advances our understanding of metabolic processes associated with obesity, particularly the metabolic functionality of the gut microbiota in the context of obesity. PMID:27087596

  20. Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Horwitz, B. A.; Hamilton, J. S.; Fuller, C. A.

    2001-01-01

    Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.

  1. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats.

    PubMed

    Frisbee, Jefferson C; Goodwill, Adam G; Frisbee, Stephanie J; Butcher, Joshua T; Brock, Robert W; Olfert, I Mark; DeVallance, Evan R; Chantler, Paul D

    2014-12-15

    Evolution of metabolic syndrome is associated with a progressive reduction in skeletal muscle microvessel density, known as rarefaction. Although contributing to impairments to mass transport and exchange, the temporal development of rarefaction and the contributing mechanisms that lead to microvessel loss are both unclear and critical areas for investigation. Although previous work suggests that rarefaction severity in obese Zucker rats (OZR) is predicted by the chronic loss of vascular nitric oxide (NO) bioavailability, we have determined that this hides a biphasic development of rarefaction, with both early and late components. Although the total extent of rarefaction was well predicted by the loss in NO bioavailability, the early pulse of rarefaction developed before a loss of NO bioavailability and was associated with altered venular function (increased leukocyte adhesion/rolling), and early elevation in oxidant stress, TNF-α levels, and the vascular production of thromboxane A2 (TxA2). Chronic inhibition of TNF-α blunted the severity of rarefaction and also reduced vascular oxidant stress and TxA2 production. Chronic blockade of the actions of TxA2 also blunted rarefaction, but did not impact oxidant stress or inflammation, suggesting that TxA2 is a downstream outcome of elevated reactive oxygen species and inflammation. If chronic blockade of TxA2 is terminated, microvascular rarefaction in OZR skeletal muscle resumes, but at a reduced rate despite low NO bioavailability. These results suggest that therapeutic interventions against inflammation and TxA2 under conditions where metabolic syndrome severity is moderate or mild may prevent the development of a condition of accelerated microvessel loss with metabolic syndrome. PMID:25305181

  2. Repeated electroacupuncture in obese Zucker diabetic fatty rats: adiponectin and leptin in serum and adipose tissue.

    PubMed

    Peplow, Philip V

    2015-04-01

    Fasted, male, obese, Zucker, diabetic fatty rats aged 10-16 weeks were anesthetized with 1% halothane in nitrous oxide-oxygen (3:1) on alternate weekdays over 2 weeks. Group 1 (n = 4) did not receive electroacupuncture (controls); Group 2 (n = 4) received electroacupuncture using the Zhongwan and the Guanyuan acupoints; Group 3 (n = 4) received electroacupuncture using the bilateral Zusanli acupoints; Group 4 (n = 6) received neither halothane in nitrous oxide:oxygen nor electroacupuncture. At the end of study, animals were injected with sodium pentobarbitone (60 mg/mL, i.p.), and blood and white adipose tissue were collected. Analysis of variance and Duncan's tests showed that the mean leptin in serum was significantly lower and the adiponectin:leptin ratio was significantly higher in Group 2 than in Group 1 (p < 0.05); for Group 4, the serum leptin was significantly higher than it was for Groups 1-3 (p < 0.05), and the adiponectin:leptin ratio was significantly lower than it was for Group 2 (p < 0.05). Similar changes occurred for the leptin levels in the pelvic adipose tissue. In addition, for Group 2, the mean serum insulin: glucose ratio was significantly higher than it was for Group 1 (p < 0.05); for Group 4 the mean serum insulin and insulin: glucose ratio were significantly higher than they were for Groups 1 and 3 (p < 0.05), but not Group 2 (p > 0.05). No significant differences in the serum or the adipose-tissue measurements between Groups 1 and 3 were observed (p > 0.05). PMID:25952122

  3. Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats.

    PubMed

    Bruce, C R; Lee, J S; Hawley, J A

    2001-10-01

    We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance. PMID:11568131

  4. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats. PMID:23014486

  5. Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects.

    PubMed

    Hijona, E; Aguirre, L; Pérez-Matute, P; Villanueva-Millán, M J; Mosqueda-Solis, A; Hasnaoui, M; Nepveu, F; Senard, J M; Bujanda, L; Aldámiz-Echevarría, L; Llarena, M; Andrade, F; Perio, P; Leboulanger, F; Hijona, L; Arbones-Mainar, J M; Portillo, M P; Carpéné, C

    2016-09-01

    Resveratrol is beneficial in obese and diabetic rodents. However, its low bioavailability raises questions about its therapeutic relevance for treating or preventing obesity complications. In this context, many related natural polyphenols are being tested for their putative antidiabetic and anti-obesity effects. This prompted us to study the influence of piceatannol, a polyhydroxylated stilbene, on the prevention of obesity complications in Zucker obese rats. A 6-week supplementation was followed by the determination of various markers in plasma, liver, adipose tissue and heart, together with a large-scale analysis of gut microbiota composition. When given in doses of 15 or 45 mg/kg body weight/day, piceatannol did not reduce either hyperphagia or fat accumulation. It did not modify the profusion of the most abundant phyla in gut, though slight changes were observed in the abundance of several Lactobacillus, Clostridium, and Bacteroides species belonging to Firmicutes and Bacteroidetes. This was accompanied by a tendency to reduce plasma lipopolysaccharides by 30 %, and by a decrease of circulating non-esterified fatty acids, LDL-cholesterol, and lactate. While piceatannol tended to improve lipid handling, it did not mitigate hyperinsulinemia and cardiac hypertrophy. However, it increased cardiac expression of ephrin-B1, a membrane protein that contributes to maintaining cardiomyocyte architecture. Lastly, ascorbyl radical plasma levels and hydrogen peroxide release by adipose tissue were similar in control and treated groups. Thus, piceatannol did not exhibit strong slimming capacities but did limit several obesity complications. PMID:26792656

  6. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease

  7. Angiotensin II Type 2-Receptor Agonist C21 Reduces Proteinuria and Oxidative Stress in Kidney of High-Salt-Fed Obese Zucker Rats.

    PubMed

    Patel, Sanket N; Ali, Quaisar; Hussain, Tahir

    2016-05-01

    Oxidative and nitrosative stress have been implicated in high-sodium diet (HSD)-related hypertensive renal injury. In this study, we investigated angiotensin II type 2-receptor-mediated renoprotection in obese Zucker rats fed HSD. Obese Zucker rats were fed normal sodium diet or HSD 4%, for 14 days, with/without angiotensin II type 2-receptor agonist C21, delivered subcutaneously via osmotic pump, 1 mg/kg per day. Compared with normal sodium diet controls, HSD rats exhibited increase in cortical nicotinamide adenine dinucleotide phosphate oxidase activity, urinary H2O2, and 8-isoprostanes, which were associated with severe glomerulosclerosis, interstitial fibrosis, decline in estimated glomerular filtration rate, and an increase in urinary leak and activity ofN-acetyl-β-d-glucosaminidase, a lysosomal enzyme and a marker of tubular damage. These changes were improved by C21 treatment. Cortical expression of endothelial nitric oxide synthase, phospho-endothelial nitric oxide synthase (Ser(1177)), and plasma nitrites were reduced after HSD intake, whereas nitrosative stress (3-nitrotyrosine) and enzymatic defense (superoxide dismutase-to-catalase activity) remained unaltered. However, C21 preserved plasma nitrites in HSD-fed obese Zucker rat. C21 treatment reduced protein-to-creatinine, albumin-to-creatinine, as well as fractional excretion of protein and albumin in HSD-fed obese Zucker rat, which is independent of changes in protein recycling receptors, megalin, and cubilin. HSD intake also altered renal excretory and reabsorptive capacity as evident by elevated plasma urea nitrogen-to-creatinine and fractional excretion of urea nitrogen, and reduced urine-to-plasma creatinine, which were modestly, but insignificantly, improved by C21 treatment. Together results demonstrate that angiotensin II type 2-receptor activation protects against HSD-induced kidney damage in obesity plausibly by reducing nicotinamide adenine dinucleotide phosphate oxidase activity and

  8. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension

    PubMed Central

    Goodwill, Adam G.; James, Milinda E.; Frisbee, Jefferson C.

    2008-01-01

    This study determined if altered vascular prostacyclin (PGI2) and/or thromboxane A2 (TxA2) production with reduced Po2 contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po2 under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po2. Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI2 production with reduced Po2 was similar between strains, although TxA2 production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH2/TxA2 receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA2, which competes against the vasodilator influences of PGI2. These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA2 production and may blunt vascular sensitivity to PGI2. PMID:18689495

  9. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension.

    PubMed

    Goodwill, Adam G; James, Milinda E; Frisbee, Jefferson C

    2008-10-01

    This study determined if altered vascular prostacyclin (PGI(2)) and/or thromboxane A(2) (TxA(2)) production with reduced Po(2) contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po(2) under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po(2). Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI(2) production with reduced Po(2) was similar between strains, although TxA(2) production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH(2)/TxA(2) receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA(2), which competes against the vasodilator influences of PGI(2). These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA(2) production and may blunt vascular sensitivity to PGI(2). PMID:18689495

  10. Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats.

    PubMed

    Talbot, Sébastien; Dias, Jenny Pena; El Midaoui, Adil; Couture, Réjean

    2016-07-01

    Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia. PMID:27172260

  11. Treatment with a novel oleic-acid–dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats

    PubMed Central

    Decara, Juan M.; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L.; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-01-01

    ABSTRACT Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg−1) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver

  12. Protective Effects of Antioxidant Fortified Diet on Renal Function and Metabolic Profile in Obese Zucker Rat

    PubMed Central

    Slyvka, Yuriy; Inman, Sharon R.; Malgor, Ramiro; Jackson, Edwin J.; Yee, Jennifer; Oshogwemoh, Olusayo; Adame, John; Nowak, Felicia V.

    2008-01-01

    Oxidative stress contributes to the pathophysiology of type 2 diabetes mellitus and its complications, including nephropathy. The current study was designed to test the hypothesis that a diet fortified with antioxidants would be beneficial to delay or prevent the progression of this disease. Male and female Zucker fa/fa rats were fed a control or an antioxidant (AO) fortified diet starting at four weeks of age. Metabolic parameters, renal function and renal histopathology were analyzed at 6, 13 and 20 weeks of age. Females on the AO diet had significantly lower blood glucose at 6 and 13 weeks, less severe renal pathology at 20 weeks, and higher glomerular filtration rates (GFR) at 20 weeks than age matched females on the regular diet (p < 0.05). Metabolic parameters including blood glucose, insulin resistance and serum cholesterol, and mean arterial pressure (MAP), worsened with age in both males and females, as expected. GFR decreased and renal pathology also became more severe with age. Finally, females on the AO diet had higher GFRs and lower MAP at 20 weeks than males on the same diet. This may denote a protective effect of the AO diet in females, but not in males. These findings may have implications for the role of antioxidants as therapy in humans with T2DM. PMID:19051067

  13. Joint Feedback Analysis Modeling of Nonesterified Fatty Acids in Obese Zucker Rats and Normal Sprague–Dawley Rats after Different Routes of Administration of Nicotinic Acid

    PubMed Central

    Tapani, Sofia; Almquist, Joachim; Leander, Jacob; Ahlström, Christine; Peletier, Lambertus A; Jirstrand, Mats; Gabrielsson, Johan

    2014-01-01

    Data were pooled from several studies on nicotinic acid (NiAc) intervention of fatty acid turnover in normal Sprague–Dawley and obese Zucker rats in order to perform a joint PKPD of data from more than 100 normal Sprague–Dawley and obese Zucker rats, exposed to several administration routes and rates. To describe the difference in pharmacodynamic parameters between obese and normal rats, we modified a previously published nonlinear mixed effects model describing tolerance and oscillatory rebound effects of NiAc on nonesterified fatty acids plasma concentrations. An important conclusion is that planning of experiments and dose scheduling cannot rely on pilot studies on normal animals alone. The obese rats have a less-pronounced concentration–response relationship and need higher doses to exhibit desired response. The relative level of fatty acid rebound after cessation of NiAc administration was also quantified in the two rat populations. Building joint normal-disease models with scaling parameter(s) to characterize the “degree of disease” can be a useful tool when designing informative experiments on diseased animals, particularly in the preclinical screen. Data were analyzed using nonlinear mixed effects modeling, for the optimization, we used an improved method for calculating the gradient than the usually adopted finite difference approximation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2571–2584, 2014 PMID:24986056

  14. Fluid deprivation increases isotonic NaCl intake, but not hypertonic salt intake, under normal and heated conditions in obese Zucker rats.

    PubMed

    Omouessi, S T; Lemamy, G J; Kiki-Mvouaka, S; Fernette, B; Falconetti, C; Ndeboko, B; Mouecoucou, J; Thornton, S N

    2016-02-01

    In the course of exposure to fluid deprivation and heated environment, mammals regulate their hydromineral balance and body temperature by a number of mechanisms including sweating, water and salt intakes. Here we challenged obese Zucker rats, known to have a predisposition to hypertension, with 0.9%NaCl alone or with 2%NaCl solution + water to drink under fluid deprivation and heated conditions. Food and fluid intakes, body weight, diuresis and natriuresis were measured daily throughout. Serum aldosterone levels and Na(+) concentration were also analyzed. Data showed that obese and lean rats presented similar baseline measurements of food, 0.9%NaCl and fluid intakes, diuresis and fluid balance; whereas hypertonic 2%NaCl consumption was almost absent. Before and during fluid deprivation animals increased isotonic but not hypertonic NaCl intake; the obese showed significant increases in diuresis and Na(+) excretion, whereas, total fluid intake was similar between groups. Heat increased isotonic NaCl intake and doubled natriuresis in obese which were wet on their fur and displayed a paradoxical increase of fluid gain. Fluid deprivation plus heat produced similar negative fluid balance in all groups. Body weight losses, food intake and diuresis reductions were amplified under the combined conditions. Animals exposed to 2%NaCl showed higher circulating levels of aldosterone and obese were lower than leans. In animals which drank 0.9%NaCl, obese showed higher serum levels of Na(+) than leans. We conclude that in spite of their higher sensitivity to high salt and heat obese Zucker rats can control hydromineral balance in response to fluid deprivation and heat by adjusting isotonic NaCl preference with sodium balance and circulating levels of aldosterone. This suggests a key hormonal role in the mechanisms underlying thermoregulation, body fluid homeostasis and sodium intake. PMID:26621332

  15. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies. PMID:25693487

  16. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats.

    PubMed

    Ali, Quaisar; Patel, Sanket; Hussain, Tahir

    2015-06-15

    High-sodium intake is a risk factor for the pathogenesis of hypertension, especially in obesity. The present study is designed to investigate whether angiotensin type 2 receptor (AT2R) activation with selective agonist C21 prevents high-sodium diet (HSD)-induced hypertension in obese animals. Male obese rats were treated with AT2R agonist C21 (1 mg·kg(-1)·day(-1), oral) while maintained on either normal-sodium diet (NSD; 0.4%) or HSD (4%) for 2 wk. Radiotelemetric recording showed a time-dependent increase in systolic blood pressure in HSD-fed obese rats, being maximal increase (∼27 mmHg) at day 12 of the HSD regimen. C21 treatment completely prevented the increase in blood pressure of HSD-fed rats. Compared with NSD controls, HSD-fed obese rats had greater natriuresis/diuresis and urinary levels of nitrates, and these parameters were further increased by C21 treatment. Also, C21 treatment improved glomerular filtration rate in HSD-fed rats. HSD-fed rats expressed higher level of cortical ANG II, which was reduced to 50% by C21 treatment. HSD feeding and/or C21 treatment had no effects on cortical renin activity and the expression of angiotensin-converting enzyme (ACE) and chymase, which are ANG II-producing enzymes. However, ANG(1-7) concentration and ACE2 activity in the renal cortex were reduced by HSD feeding, and C21 treatment rescued both the parameters. Also, C21 treatment reduced the cortical expression of AT1R in HSD-fed rats, but had no effect of AT2R expression. We conclude that chronic treatment with the AT2R agonist C21 prevents salt-sensitive hypertension in obese rats, and a reduction in the renal ANG II/AT1R and enhanced ACE2/ANG(1-7) levels may play a potential role in this phenomenon. PMID:25855512

  17. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations. PMID:25383490

  18. Role of Neural NO Synthase (nNOS) Uncoupling in the Dysfunctional Nitrergic Vasorelaxation of Penile Arteries from Insulin-Resistant Obese Zucker Rats

    PubMed Central

    Sánchez, Ana; Contreras, Cristina; Martínez, María Pilar; Climent, Belén; Benedito, Sara; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2012-01-01

    Objective Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes. Methods and Results Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls. Conclusions The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This

  19. Oral ingestion of aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Nomaguchi, Kouji; Nabeshima, Kazumi; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-03-21

    We investigated the effects of the oral administration of lophenol (Lo) and cycloartanol (Cy), two kinds of antidiabetic phytosterol isolated from Aloe vera , on glucose and lipid metabolism in Zucker diabetic fatty (ZDF) rats. We demonstrated that the administrations of Lo and Cy suppressed random and fasting glucose levels and reduced visceral fat weights significantly. It was also observed that treatments with Lo and Cy decreased serum and hepatic lipid concentrations (triglyceride, nonesterified fatty acid, and total cholesterol). Additionally, Lo and Cy treatments resulted in a tendency for reduction in serum monocyte chemotactic protein-1 (MCP-1) level and an elevation in serum adiponectin level. Furthermore, the expression levels of hepatic genes encoding gluconeogenic enzymes (G6 Pase, PEPCK), lipogenic enzymes (ACC, FAS), and SREBP-1 were decreased significantly by the administrations of aloe sterols. In contrast, Lo and Cy administration increased mRNA levels of glycolysis enzyme (GK) in the liver. It was also observed that the hepatic β-oxidation enzymes (ACO, CPT1) and PPARα expressions tended to increase in the livers of the Lo- and Cy-treated rats compared with those in ZDF-control rats. We therefore conclude that orally ingested aloe sterols altered the expressions of genes related to glucose and lipid metabolism, and ameliorated obesity-associated metabolic disorders in ZDF rats. These findings suggest that aloe sterols could be beneficial in preventing and improving metabolic disorders with obesity and diabetes in rats. PMID:22352711

  20. Reduced pancreatic protein secretion in response to cholecystokinin (CCK) in the obese Zucker rat correlates with a reduced receptor capacity for CCK

    SciTech Connect

    Praissman, M.; Izzo, R.S.

    1986-08-01

    Pancreatic membrane receptors for cholecystokinin (CCK) in obese and nonobese Zucker rats were compared with the use of a biologically active (/sup 125/I)iodo-CCK-8 radioprobe. Membrane homogenates from obese rats bound half the amount of radioligand in 2 h as did membranes from lean rats (specifically bound, 7.0% vs. 14.0%; P less than 0.001). The reduced binding in membranes from obese rats did not result from kinetic effects or radioligand degradation; similar rates of association and dissociation of (/sup 125/I)iodo-CCK-8 were obtained in membrane preparations from both, and no differences were found in the extent of radioligand degradation in the two membrane preparations. These differences also did not reflect an effect of cell size, as pancreatic acinar cells from obese and nonobese rats had about the same perimeters (24.6 and 26.3 micron, respectively) and areas (30.1 and 34.2 micron 2, respectively). Scatchard-type plots of competitive displacement data for CCK-binding sites on pancreatic membranes from both genotypes were curvilinear and were analyzed by a two-site binding model. The Kd values for both the high (0.56 vs. 0.45 nM) and low (9.0 vs. 14 nM) affinity sites on membranes from nonobese and obese rats, respectively, were the same (P greater than 0.1), whereas the capacities for CCK in the high (365 vs. 165 fmol/mg protein) and low (1020 vs. 360 fmol/mg protein) affinity regions were significantly different (P less than 0.025). This difference in CCK receptor capacity was reflected by a reduced pancreatic protein secretory response in the obese rat. After injections of 40, 80, 160, and 320 ng CCK/kg BW, total pancreatic protein secretion in nonobese rats increased 5, 12, 19, and 21 times above basal levels, whereas the same doses caused 2-, 6-, 12-, and 13-fold increases in obese rats.

  1. Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats.

    PubMed

    Noratto, Giuliana; Martino, Hercia S D; Simbo, Sunday; Byrne, David; Mertens-Talcott, Susanne U

    2015-06-01

    Polyphenols from fruits have been implied in the prevention of risk factors for cardiometabolic disorders and cardiovascular disease. The purpose of this study was to investigate if the consumption of peach and plum juice has a protective effect against obesity and metabolic disorders that promote the development of cardiovascular diseases. Obese Zucker and lean rats were fed with peach, plum juice ad libitum or placebo. Body weight gain, biochemical markers and molecular markers for inflammation and cardiovascular disease in heart tissue were quantified. Results show that peach and plum juice consumption protected against a combination of obesity-induced metabolic disorders including hyperglycemia, insulin and leptin resistance, dyslipidemia and low-density lipoprotein oxidation. This was accompanied by a decreased expression of pro-atherogenic and pro-inflammatory biomarkers in plasma and heart tissues including intercellular cell adhesion molecule-1, monocyte chemotactic protein-1, NF-κB and foam cell adherence to aortic arches. In addition, peach and plum juice consumption decreased the levels of angiotensin II in plasma and its receptor Agtr1 in heart tissues, suggesting a role of peach and plum polyphenols as peroxisome proliferator-activated receptor-γ agonists. Furthermore, only plum juice significantly prevented body weight gain and increased the ratio high-density lipoprotein cholesterol/total cholesterol in plasma. This effect is most likely attributed to the plum's higher content of polyphenols (three times that of peach). Altogether, these results imply that cardioprotective effects can be achieved by replacing drinks high in sugar content with fruit juice rich in polyphenols in a diet. PMID:25801980

  2. Acute effects of food, 2-deoxy-D-glucose and noradrenaline on metabolic rate and brown adipose tissue in normal and atropinised lean and obese (fa/fa) Zucker rats.

    PubMed

    Rothwell, N J; Saville, M E; Stock, M J

    1981-12-01

    1. Intragastric feeding (40 kJ) produced a 17% rise in metabolic rate in lean Zucker rats but only an 8% increase in obese (fa/fa) rats, and both of these responses were significantly reduced by beta-adrenergic blockade with propranolol (10 mg/kg, s.c.). 2. Parasympathetic blockade with atropine (0.5 mg/kg, s.c.) caused a doubling of the response to food in lean rats and a threefold increase in the obese mutants, such that all atropinised animals showed the same increase in metabolic rate after food. 3. Feeding also caused a significant rise in interscapular brown adipose tissue temperature, which was greatest in the lean animals and was enhanced by atropine in both groups. 4. Injection of noradrenaline (250 micrograms/kg, s.c.) caused a similar (40%) rise in metabolic rate in lean and obese animals but this response was unaffected by atropine. 5. 2-Deoxy-D-glucose injection (360 mg/kg, s.c.) depressed oxygen consumption by 25 and 8% in lean and obese rats respectively and this effect was totally abolished by atropine. 6. These results suggest that the rise in metabolic rate after a meal is partly due to sympathetic activation of brown adipose tissue. The reduced thermic response in obese Zucker rats is not due to insensitivity to noradrenaline, but may be partly due to parasympathetic inhibition of thermogenesis and partly to insensitivity to glucose availability. PMID:7322844

  3. AZ 242, a novel PPARalpha/gamma agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats.

    PubMed

    Ljung, Bengt; Bamberg, Krister; Dahllöf, Björn; Kjellstedt, Ann; Oakes, Nicholas D; Ostling, Jörgen; Svensson, Lennart; Camejo, Germán

    2002-11-01

    Abnormalities in fatty acid (FA) metabolism underlie the development of insulin resistance and alterations in glucose metabolism, features characteristic of the metabolic syndrome and type 2 diabetes that can result in an increased risk of cardiovascular disease. We present pharmacodynamic effects of AZ 242, a novel peroxisome proliferator activated receptor (PPAR)alpha/gamma agonist. AZ 242 dose-dependently reduced the hypertriglyceridemia, hyperinsulinemia, and hyperglycemia of ob/ob diabetic mice. Euglycemic hyperinsulinemic clamp studies showed that treatment with AZ 242 (1 micromol/kg/d) restored insulin sensitivity of obese Zucker rats and decreased insulin secretion. In vitro, in reporter gene assays, AZ 242 activated human PPARalpha and PPARgamma with EC(50) in the micro molar range. It also induced differentiation in 3T3-L1 cells, an established PPARgamma effect, and caused up-regulation of liver fatty acid binding protein in HepG-2 cells, a PPARalpha-mediated effect. PPARalpha-mediated effects of AZ 242 in vivo were documented by induction of hepatic cytochrome P 450-4A in mice. The results indicate that the dual PPARalpha/gamma agonism of AZ 242 reduces insulin resistance and has beneficial effects on FA and glucose metabolism. This effect profile could provide a suitable therapeutic approach to the treatment of type 2 diabetes, metabolic syndrome, and associated vascular risk factors. PMID:12401884

  4. The effect of exercise training combined with PPARγ agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats

    PubMed Central

    2016-01-01

    [Purpose] Exercise training with PPARγ agonist is expected to increase glucose uptake and improve insulin sensitivity in skeletal muscle of patients with diabetes. However, its mechanisms to effect glucose uptake and insulin sensitivity in skeletal muscle are unclear. [Methods] The mechanism of action was determined by co-treatment with PPARγ agonist- rosiglitazone and exercise training in streptozotocin induced-diabetic obese Zucker rats. Exercise training was carried out for 6 weeks (swimming, 1 h/day, 5 times/week, 5% weight/g, 32±1℃) with rosiglitazone treatment (3mg/kg/day, 6weeks). [Results] Glucose uptake and insulin sensitivity was decreased in diabetic than normal animals. Exercise training and rosiglitazone treatment respectively increased the expression of PPAR(peroxisome proliferators-activated receptor)-α, -β/δ, -γ, PGC-1α(PPAR-γ coactivator-1α), adiponectin, GLUT-4(glucose transportor-4) and p-AMPK-α2(phospho-AMP activated protein kinase-α2) in EDL and SOL of diabetic, as compared to normal animals. Interestingly, training combined with rosiglitazone significantly increased glucose uptake and insulin sensitivity, which resulted in high expression of all molecules in diabetic than all other groups. [Conclusion] These results indicated that exercise training combined with rosiglitazone might mediate regulation of glucose uptake and insulin sensitivity in skeletal muscle. Therefore, exercise training combined with rosiglitazone may be recommended as complementary therapies for diabetes. PMID:27508153

  5. Effects of dietary CLA on n-3 HUFA score and N-acylethanolamides biosynthesis in the liver of obese Zucker rats.

    PubMed

    Piras, Antonio; Carta, Gianfranca; Murru, Elisabetta; Lopes, Paula A; Martins, Susana V; Prates, José A M; Banni, Sebastiano

    2015-07-01

    We have recently shown that PPAR alpha agonists induce N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA) biosynthesis. Conjugated linoleic acid (CLA), a known dietary PPAR alpha inducer, may therefore increase OEA and PEA levels and favor docosahexaenoic acid (DHA) biosynthesis by enhancing peroxisomal β-oxidation via induction of liver PPARα. To evaluate whether CLA is able to increase DHA, OEA and PEA levels and thereby influencing liver lipid deposition in a model of visceral obesity-induced fatty liver, Zucker rats were fed a background diet rich in saturated fat with or without 1% of CLA for 4 weeks. Our data showed that CLA intake increased DHA, OEA and PEA levels in the liver by 24%, 31% and 36% respectively, and reduced hepatic lipid accumulation by 16%. We may conclude that dietary CLA is able to influence not only fatty acid metabolism but also the biosynthesis of bioactive mediators such as OEA and PEA which may contribute to ameliorate fatty liver. PMID:25912618

  6. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats.

    PubMed

    Batetta, Barbara; Griinari, Mikko; Carta, Gianfranca; Murru, Elisabetta; Ligresti, Alessia; Cordeddu, Lina; Giordano, Elena; Sanna, Francesca; Bisogno, Tiziana; Uda, Sabrina; Collu, Maria; Bruheim, Inge; Di Marzo, Vincenzo; Banni, Sebastiano

    2009-08-01

    Dietary (n-3) long-chain PUFA [(n-3) LCPUFA] ameliorate several metabolic risk factors for cardiovascular diseases, although the mechanisms of these beneficial effects are not fully understood. In this study, we compared the effects of dietary (n-3) LCPUFA, in the form of either fish oil (FO) or krill oil (KO) balanced for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, with a control (C) diet containing no EPA and DHA and similar contents of oleic, linoleic, and alpha-linolenic acids, on ectopic fat and inflammation in Zucker rats, a model of obesity and related metabolic dysfunction. Diets were fed for 4 wk. Given the emerging evidence for an association between elevated endocannabinoid concentrations and metabolic syndrome, we also measured tissue endocannabinoid concentrations. In (n-3) LCPUFA-supplemented rats, liver triglycerides and the peritoneal macrophage response to an inflammatory stimulus were significantly lower than in rats fed the control diet, and heart triglycerides were lower, but only in KO-fed rats. These effects were associated with a lower concentration of the endocannabinoids, anandamide and 2-arachidonoylglycerol, in the visceral adipose tissue and of anandamide in the liver and heart, which, in turn, was associated with lower levels of arachidonic acid in membrane phospholipids, but not with higher activity of endocannabinoid-degrading enzymes. Our data suggest that the beneficial effects of a diet enriched with (n-3) LCPUFA are the result of changes in membrane fatty acid composition. The reduction of substrates for inflammatory molecules and endocannabinoids may account for the dampened inflammatory response and the physiological reequilibration of body fat deposition in obese rats. PMID:19549757

  7. Alpha-Lipoic Acid Reduces LDL-Particle Number and PCSK9 Concentrations in High-Fat Fed Obese Zucker Rats

    PubMed Central

    Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W.; Li, Zhuyun; Patel, Mulchand S.; Williamson, David L.; Rideout, Todd C.

    2014-01-01

    We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

  8. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats

    PubMed Central

    Rideout, Todd C.; Carrier, Bradley; Wen, Shin; Raslawsky, Amy; Browne, Richard W.; Harding, Scott V.

    2015-01-01

    To investigate the cholesterol-lowering effectiveness of a phytosterol/α-lipoic acid (PS/αLA) therapy, thirty-two male Zucker rats were randomly assigned to 1 of 4 diets for 30 days: (i) high fat diet (HF, 40% energy from fat); (ii) HF diet supplemented with 3% phytosterols; (iii) HF diet supplemented with 0.25% αLA; or (iv) HF diet supplemented with PS (3%) and αLA (0.25%, PS/αLA). Compared with the HF diet, combination PS/αLA proved more effective in reducing non-HDL cholesterol (−55%) than either the PS (−24%) or the αLA (−25%) therapies alone. PS supplementation did not affect LDL particle number, however, αLA supplementation reduced LDL particle number when supplemented alone (−47%) or in combination with PS (−54%). Compared with the HF-fed animals, evidence of increased HDL-particle number was evident in all treatment groups to a similar extent (21–22%). PS-mediated interruption of intestinal cholesterol absorption was evident by increased fecal cholesterol loss (52%) and compensatory increase in HMG-CoA reductase mRNA (1.6 fold of HF), however, αLA supplementation did not affect fecal cholesterol loss. Hepatic mRNA and protein expression patterns suggested that αLA modulated multiple aspects of cholesterol homeostasis including reduced synthesis (HMG-CoA reductase mRNA, 0.7 fold of HF), reduced bile acid synthesis (CYP7a1 expression, 0.17 of HF), and increased cholesterol clearance (reduced PCSK9 mRNA, 0.5 fold of HF; increased LDLr protein, 2 fold of HF). Taken together, this data suggests that PS and αLA work through unique and complementary mechanisms to provide a superior and more comprehensive cholesterol lowering response than either therapy alone. PMID:25664679

  9. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats.

    PubMed

    Rideout, Todd C; Carrier, Bradley; Wen, Shin; Raslawsky, Amy; Browne, Richard W; Harding, Scott V

    2016-01-01

    To investigate the cholesterol-lowering effectiveness of a phytosterol/α-lipoic acid (PS/αLA) therapy, thirty-two male Zucker rats were randomly assigned to 1 of 4 diets for 30 days: (i) high fat diet (HF, 40% energy from fat); (ii) HF diet supplemented with 3% phytosterols; (iii) HF diet supplemented with 0.25% αLA; or (iv) HF diet supplemented with PS (3%) and αLA (0.25%, PS/αLA). Compared with the HF diet, combination PS/αLA proved more effective in reducing non-HDL cholesterol (-55%) than either the PS (-24%) or the αLA (-25%) therapies alone. PS supplementation did not affect LDL particle number, however, αLA supplementation reduced LDL particle number when supplemented alone (-47%) or in combination with PS (-54%). Compared with the HF-fed animals, evidence of increased HDL-particle number was evident in all treatment groups to a similar extent (21-22%). PS-mediated interruption of intestinal cholesterol absorption was evident by increased fecal cholesterol loss (+52%) and compensatory increase in HMG-CoA reductase mRNA (1.6 fold of HF), however, αLA supplementation did not affect fecal cholesterol loss. Hepatic mRNA and protein expression patterns suggested that αLA modulated multiple aspects of cholesterol homeostasis including reduced synthesis (HMG-CoA reductase mRNA, 0.7 fold of HF), reduced bile acid synthesis (CYP7a1 expression, 0.17 of HF), and increased cholesterol clearance (reduced PCSK9 mRNA, 0.5 fold of HF; increased LDLr protein, 2 fold of HF). Taken together, this data suggests that PS and αLA work through unique and complementary mechanisms to provide a superior and more comprehensive cholesterol lowering response than either therapy alone. PMID:25664679

  10. LOSS OF CARDIAC METABOLIC ADAPTATION AND DYSFUNCTION OF THE HEART WITH WESTERN DIET IN THE OBESE ZUCKER RAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The normal heart sustains its work output through changing the proportion of substrates it oxidizes depending on fuel supply. This metabolic adaptation is thought to be regulated at a transcriptional level by the peroxisome proliferator-activated receptor alpha (PPAR-alpha). We proposed that obesity...

  11. Design of small molecule inhibitors of acetyl-CoA carboxylase 1 and 2 showing reduction of hepatic malonyl-CoA levels in vivo in obese Zucker rats.

    PubMed

    Bengtsson, Christoffer; Blaho, Stefan; Saitton, David Blomberg; Brickmann, Kay; Broddefalk, Johan; Davidsson, Ojvind; Drmota, Tomas; Folmer, Rutger; Hallberg, Kenth; Hallén, Stefan; Hovland, Ragnar; Isin, Emre; Johannesson, Petra; Kull, Bengt; Larsson, Lars-Olof; Löfgren, Lars; Nilsson, Kristina E; Noeske, Tobias; Oakes, Nick; Plowright, Alleyn T; Schnecke, Volker; Ståhlberg, Pernilla; Sörme, Pernilla; Wan, Hong; Wellner, Eric; Oster, Linda

    2011-05-15

    Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability. X-ray crystallography has shown this series binding in the CT-domain of ACC2 and revealed two key hydrogen bonding interactions. Both 33 and 37 lower levels of hepatic malonyl-CoA in vivo in obese Zucker rats. PMID:21515056

  12. Electrospray Quadrupole Travelling Wave Ion Mobility Time-of-Flight Mass Spectrometry for the Detection of Plasma Metabolome Changes Caused by Xanthohumol in Obese Zucker (fa/fa) Rats

    PubMed Central

    Wickramasekara, Samanthi I.; Zandkarimi, Fereshteh; Morré, Jeff; Kirkwood, Jay; Legette, LeeCole; Jiang, Yuan; Gombart, Adrian F.; Stevens, Jan F.; Maier, Claudia S.

    2013-01-01

    This study reports on the use of traveling wave ion mobility quadrupole time-of-flight (ToF) mass spectrometry for plasma metabolomics. Plasma metabolite profiles of obese Zucker fa/fa rats were obtained after the administration of different oral doses of Xanthohumol; a hop-derived dietary supplement. Liquid chromatography coupled data independent tandem mass spectrometry (LC-MSE) and LC-ion mobility spectrometry (IMS)-MSE acquisitions were conducted in both positive and negative modes using a Synapt G2 High Definition Mass Spectrometry (HDMS) instrument. This method provides identification of metabolite classes in rat plasma using parallel alternating low energy and high energy collision spectral acquisition modes. Data sets were analyzed using pattern recognition methods. Statistically significant (p < 0.05 and fold change (FC) threshold > 1.5) features were selected to identify the up-/down-regulated metabolite classes. Ion mobility data visualized using drift scope software provided a graphical read-out of differences in metabolite classes. PMID:24958146

  13. Extrapancreatic effects of incretin hormones: evidence for weight-independent changes in morphological aspects and oxidative status in insulin-sensitive organs of the obese nondiabetic Zucker rat (ZFR).

    PubMed

    Colin, Ides M; Colin, Henri; Dufour, Ines; Gielen, Charles-Edouard; Many, Marie-Christine; Saey, Jean; Knoops, Bernard; Gérard, Anne-Catherine

    2016-08-01

    Incretin-based therapies are widely used to treat type 2 diabetes. Although hypoglycemic actions of incretins are mostly due to their insulinotropic/glucagonostatic effects, they may also influence extrapancreatic metabolism. We administered exendin-4 (Ex-4), a long-acting glucagon-like peptide receptor agonist, at low dose (0.1 nmol/kg/day) for a short period (10 days), in obese nondiabetic fa/fa Zucker rats (ZFRs). Ex-4-treated ZFRs were compared to vehicle (saline)-treated ZFRs and vehicle- and Ex-4-treated lean rats (LRs). Blood glucose levels were measured at days 0, 9, and 10. Ingested food and animal weight were recorded daily. On the day of sacrifice (d10), blood was sampled along with liver, epididymal, subcutaneous, brown adipose, and skeletal muscle tissues from animals fasted for 24 h. Plasma insulin and blood glucose levels, food intake, and body and epididymal fat weight were unchanged, but gross morphological changes were observed in insulin-sensitive tissues. The average size of hepatocytes was significantly lower in Ex-4-treated ZFRs, associated with decreased number and size of lipid droplets and 4-hydroxy-2-nonenal (HNE) staining, a marker of oxidative stress (OS). Myocytes, which were smaller in ZFRs than in LRs, were significantly enlarged and depleted of lipid droplets in Ex-4-treated ZFRs. Weak HNE staining was increased by Ex-4. A similar observation was made in brown adipose tissue, whereas the elevated HNE staining observed in epididymal adipocytes of ZFRs, suggestive of strong OS, was decreased by Ex-4. These results suggest that incretins by acting on OS in insulin-sensitive tissues may contribute to weight-independent improvement in insulin sensitivity. PMID:27511983

  14. Alpha-lipoic acid supplementation reduces mTORC1 signaling in skeletal muscle from high fat fed, obese Zucker rats.

    PubMed

    Li, Zhuyun; Dungan, Cory M; Carrier, Bradley; Rideout, Todd C; Williamson, David L

    2014-12-01

    The mammalian target of rapamycin (mTOR) signaling pathway is hyperactive in liver, adipose and skeletal muscle tissues of obese rodents. Alpha-lipoic acid (αLA) has been well accepted as a weight-loss treatment, though there are limited studies on its effect on mTOR signaling in high-fat fed, obese rodents. Therefore, the goal of this study was to determine mTOR signaling and oxidative protein alterations in skeletal muscle of high-fat fed, obese rats after αLA supplementation. Phosphorylation of the mTOR substrate, eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and eIF4B were significantly reduced (p < 0.05) in muscle from αLA supplemented rats. Activation of AMP-activated protein kinase (AMPK), an mTOR inhibitory kinase, was higher (p < 0.05) in the αLA group. Protein expression of markers of oxidative metabolism, acetyl CoA carboxylase (ACC), cytochrome c oxidase IV (COX IV), peroxisome proliferator-activated receptor (PPAR), and PPAR gamma coactivator 1-alpha (PGC-1α) were significantly higher (p < 0.05) after αLA supplementation compared to non-supplemented group. Our findings show that αLA supplementation limits the negative ramifications of consuming a high fat diet on skeletal muscle markers of oxidative metabolism and mTORC1 signaling. PMID:25366515

  15. Soluble fiber-enriched diets improve inflammation and oxidative stress biomarkers in Zucker fatty rats.

    PubMed

    Sánchez, David; Quiñones, Mar; Moulay, Leila; Muguerza, Begoña; Miguel, Marta; Aleixandre, Amaya

    2011-07-01

    In this study we evaluated the effect of the administration of different soluble fiber enriched-diets on inflammatory and redox state of Zucker fatty rats. Four groups of ten 8 week-old female Zucker fatty rats were used. The four groups were respectively fed the following diets until the 15th week of life: standard diet (obese control), 10% high methoxylated apple pectin (HMAP)-, 5% soluble cocoa fiber (SCF)-, and 10% β-glucan-enriched diets. A group of Zucker lean rats fed the standard diet was also used as control for normal values of this rat strain. The plasma levels of tumoral necrosis factor-α (TNF-α), adiponectin, and malondialdehyde (MDA) were measured at the end of treatment. The reduced glutathione liver levels were also obtained at that moment. TNF-α plasma levels decreased somewhat in Zucker fatty rats fed the different fibers, and MDA plasma levels significantly decreased in these animals. Nevertheless, adiponectin plasma levels increased in the Zucker fatty rats fed the SCF enriched diet, but did not change in the HMAP and the β-glucan group. The Zucker fatty rats fed the different fiber showed a trend towards increased the reduced glutathione liver levels, but significant differences with obese control rats were only obtained in the β-glucan group. The results obtained in this study suggest that the intake of the different soluble fiber-enriched diets that we have evaluated could prevent and/or attenuate the inflammatory and/or the prooxidative state of the metabolic syndrome. PMID:21349333

  16. The effects of phenylpropanolamine on Zucker rats selected for fat food preference.

    PubMed

    Svec, F; Muehlenhein, M; Porter, J

    2003-04-01

    Treatments of human and rodent obesity frequently involve administration of amphetamine derivatives, much like phenylpropanolamine, which suppress food intake. The Zucker rat is a commonly employed model of youth-onset obesity in which the homozygous genotype manifests hyperphagia as well as other characteristics that parallel human obesity. Using a macronutrient selection procedure, we examined phenylpropanolamine's differential actions in controlling dietary intake, spontaneous open-field activity, and regional hypothalamic neurotransmitter levels in obese female Zucker rats of varying fat food preference. We hypothesized that phenylpropanolamine would alter hypothalamic monoamine levels differently in low-fat preferring and high-fat preferring Zucker rats, and hence affect feeding behavior and activity differently in these two groups. It was found that in high-fat preferring animals, phenylpropanolamine significantly decreased spontaneous open-field activity, decreased only carbohydrate caloric intake, and increased serotonin and 5-HIAA levels in the paraventricular nucleus (PVN). In low-fat preferring animals, phenylpropanolamine decreased carbohydrate, protein, and total caloric intake, had no significant effect of spontaneous activity, and increased serotonin and 5-hydroxyindole acetic acid levels in the PVN. Inherent and induced physiological differences of low-fat and high-fat preferring animals are discussed as well as phenylpropanolamine's potential in combination drug therapy for the treatment of human hyperphagic obesity. PMID:12722984

  17. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    SciTech Connect

    Finan, A.; Cleary, M.P.

    1986-03-05

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either (1-/sup 14/C) glucose or (6-/sup 14/C) glucose resulted in significant decreases in CO/sub 2/ production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats.

  18. Respiratory muscle weakness in the Zucker diabetic fatty rat.

    PubMed

    Allwood, Melissa A; Foster, Andrew J; Arkell, Alicia M; Beaudoin, Marie-Soleil; Snook, Laelie A; Romanova, Nadya; Murrant, Coral L; Holloway, Graham P; Wright, David C; Simpson, Jeremy A

    2015-10-01

    The obesity epidemic is considered one of the most serious public health problems of the modern world. Physical therapy is the most accessible form of treatment; however, compliance is a major obstacle due to exercise intolerance and dyspnea. Respiratory muscle atrophy is a cause of dyspnea, yet little is known of obesity-induced respiratory muscle dysfunction. Our objective was to investigate whether obesity-induced skeletal muscle wasting occurs in the diaphragm, the main skeletal muscle involved in inspiration, using the Zucker diabetic fatty (ZDF) rat. After 14 wk, ZDF rats developed obesity, hyperglycemia, and insulin resistance, compared with lean controls. Hemodynamic analysis revealed ZDF rats have impaired cardiac relaxation (P = 0.001) with elevated end-diastolic pressure (P = 0.006), indicative of diastolic dysfunction. Assessment of diaphragm function revealed weakness (P = 0.0296) in the absence of intrinsic muscle impairment in ZDF rats. Diaphragm morphology revealed increased fibrosis (P < 0.0001), atrophy (P < 0.0001), and reduced myosin heavy-chain content (P < 0.001), compared with lean controls. These changes are accompanied by activation of the myostatin signaling pathway with increased serum myostatin (P = 0.017), increased gene expression (P = 0.030) in the diaphragm and retroperitoneal adipose (P = 0.033), and increased SMAD2 phosphorylation in the diaphragm (P = 0.048). Here, we have confirmed the presence of respiratory muscle atrophy and weakness in an obese, diabetic model. We have also identified a pathological role for myostatin signaling in obesity, with systemic contributions from the adipose tissue, a nonskeletal muscle source. These findings have significant implications for future treatment strategies of exercise intolerance in an obese, diabetic population. PMID:26246509

  19. Obesity

    MedlinePlus

    Morbid obesity; Fat - obese ... is because the body stores unused calories as fat. Obesity can be caused by: Eating more food ... use your BMI to estimate how much body fat you have. Your waist measurement is another way ...

  20. Obesity

    MedlinePlus

    Obesity means having too much body fat. It is different from being overweight, which means weighing too ... what's considered healthy for his or her height. Obesity occurs over time when you eat more calories ...

  1. Obesity

    MedlinePlus

    ... may have less time to exercise. The term eating disorder means a group of medical conditions that have ... obese, follow an unhealthy diet, and have an eating disorder all at the same time. Sometimes, medical problems ...

  2. Obesity.

    PubMed

    Callaway, C W

    1987-01-01

    Obesity is not a single disease, but a variety of conditions resulting from different mechanisms and associated with various types and degrees of risks. To determine who should lose weight, how much weight should be lost, and how to undertake weight loss, the following types of information are needed: personal-demographic data, developmental patterns, family history, energy balance, body composition/fat distribution, psychological/behavioral measures, endocrine/metabolic measures, complications and associated conditions. Weight reduction should be undertaken by women with morbid obesity, with complications secondary to the obesity, with a strong family history of conditions associated with obesity, or with increased abdomen:hip ratios. In contrast, women who have excess weight localized in the hips and thighs and no personal or family history of associated conditions may not benefit from dietary restriction. Low calorie diets result in adaptive changes, "designed" to prolong survival in the face of famine. These include changes in water balance, metabolic rate, and appetite. Metabolic rate declines, allowing the individual to burn fewer and fewer calories. Each time a woman diets she tends to lose weight less rapidly than the time before. "Restrained eating" predisposes binge eating. Indeed, bulimia rarely occurs in the absence of prior caloric restrictions. Current medical definitions of obesity do not consider these nuances. Existing definitions "over-diagnose" obesity in women, in general, and in older women and nonwhite women, in particular. For example, by existing standards, more than 60 percent of black women more than 45 years of age are considered obese. In contrast, the health risks of similar degrees of obesity are substantially greater for men than for women. Part of the problems lies in the fact that many women have pear-shaped fat distribution,a pattern which is not associated with increased health risks.Current cultural definitions of obesity for

  3. Obesity Induces Tissue-Specific Changes in Lipid Peroxidation Defense Enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid peroxidation is thought to be a component of obesity-induced pathology. However, the tissue-dependent changes in lipid peroxidation (LOOH) and LOOH defense mechanisms in response to obesity are unclear. In this work, we utilized 14-week old male, obese Zucker rats and their control, lean litte...

  4. Obesity

    MedlinePlus

    ... come from muscle, bone, fat, and/or body water. Both terms mean that a person's weight is greater than what's considered healthy for his or her height. Obesity occurs over time when you eat more calories than you use. The balance between calories-in and calories-out differs for ...

  5. Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats: modulation of cardiac endothelin-1 and nuclear factor-kappaB pathways.

    PubMed

    Huang, Tom H W; Yang, Qinglin; Harada, Masaki; Li, George Q; Yamahara, Johji; Roufogalis, Basil D; Li, Yuhao

    2005-12-01

    The diabetic heart shows increased fibrosis, which impairs cardiac function. Endothelin (ET)-1 and nuclear factor-kappaB (NF-kappaB) interactively regulate fibroblast growth. We have recently demonstrated that Punica granatum flower (PGF), a Unani anti-diabetic medicine, is a dual activator of peroxisome proliferator-activated receptor (PPAR)-alpha and -gamma, and improves hyperglycemia, hyperlipidemia, and fatty heart in Zucker diabetic fatty (ZDF) rat, a genetic animal model of type 2 diabetes and obesity. Here, we demonstrated that six-week treatment with PGF extract (500 mg/kg, p.o.) in Zucker diabetic fatty rats reduced the ratios of van Gieson-stained interstitial collagen deposit area to total left ventricular area and perivascular collagen deposit areas to coronary artery media area in the heart. This was accompanied by suppression of overexpressed cardiac fibronectin and collagen I and III mRNAs. Punica granatum flower extract reduced the up-regulated cardiac mRNA expression of ET-1, ETA, inhibitor-kappaBbeta and c-jun, and normalized the down-regulated mRNA expression of inhibitor-kappaBalpha in Zucker diabetic fatty rats. In vitro, Punica granatum flower extract and its components oleanolic acid, ursolic acid, and gallic acid inhibited lipopolysaccharide-induced NF-kappaB activation in macrophages. Our findings indicate that Punica granatum flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats, at least in part, by modulating cardiac ET-1 and NF-kappaB signaling. PMID:16306813

  6. Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats.

    PubMed

    Barbu, Andreea; Hedlund, Gabriella Persdotter; Lind, Jenny; Carlsson, Carina

    2009-02-27

    In view of the central role of preadipocyte factor-1, adiponectin and leptin in white adipose tissue function, the aim of the present study was to analyze the mRNA expression of these proteins and of the inflammatory markers interleukin-6 and tumor necrosis factor-alpha in visceral and subcutaneous fat pads of rats with different metabolic disorders. We demonstrated highly divergent expression of preadipocyte factor-1, upregulated expression of adiponectin, interleukin-6 and TNF-alpha mRNA in adipose tissues of the diabetic Goto Kakizaki rat compared to the obese Zucker rat. This was correlated to an increased number of large adipocytes and serum levels of adiponectin. Furthermore, in all four strains studied (as above plus Wistar Furth and Zucker Lean), significant heterogeneity was evident in adipokine expression within specific adipose tissues previously defined as belonging to the visceral or subcutaneous fat depots. These results suggest that significantly increased levels of inflammation and redistribution of adipocyte size are mechanisms contributing to the development of type 2 diabetes in the GK rat. PMID:19084046

  7. The cannabinoid CB1 receptor antagonist SR141716A (Rimonabant) enhances the metabolic benefits of long-term treatment with oleoylethanolamide in Zucker rats.

    PubMed

    Serrano, Antonia; Del Arco, Ignacio; Javier Pavón, Francisco; Macías, Manuel; Perez-Valero, Vidal; Rodríguez de Fonseca, Fernando

    2008-01-01

    Anandamide and oleoylethanolamide (OEA) are lipid mediators that regulate feeding and lipid metabolism. While anandamide, a cannabinoid CB1 receptor agonist, promotes feeding and lipogenesis, oleoylethanolamide, an endogenous agonist of peroxisome proliferator activated receptor alpha (PPAR-alpha), decreases food intake and activates lipid mobilization and oxidation. The treatment with a cannabinoid CB1 receptor antagonist results in reduction of body weight gain and cholesterol in obese humans and rodents. In the present study, we show the benefits of the treatment of obese Zucker rats with a combination of a cannabinoid CB1 receptor antagonist (Rimonabant) and oleoylethanolamide. This combinational therapy improved the separate effects of Rimonabant and OEA, and resulted in marked decreases on feeding, body weight gain, and plasma cholesterol levels. Additionally, the treatment with both drugs reduced the hepatic steatosis observed in Zucker rats, decreasing liver fat deposits and damage, as revealed by the levels of alanine aminotransferase activity in serum. The combined treatment inhibits the expression of stearoyl coenzyme-A desaturase-1 (SCD-1), a pivotal enzyme in lipid biosynthesis and triglyceride mobilization that is linked to obesity phenotypes. These results support the use of combined therapies with cannabinoid CB1 receptor antagonists and PPAR-alpha agonists for the treatment of obesity associated with dyslipemia. PMID:17467748

  8. Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes.

    PubMed

    Stanley, Christopher P; Wheal, Amanda J; Randall, Michael D; O'Sullivan, Saoirse E

    2013-11-15

    Circulating levels of anandamide are increased in diabetes, and cannabidiol ameliorates a number of pathologies associated with diabetes. The aim of the present study was to examine how exposure to anandamide or cannabidiol might affect endothelial dysfunction associated with Zucker Diabetic Fatty rats. Age-matched Zucker Diabetic Fatty and Zucker lean rats were killed by cervical dislocation and their arteries mounted on a myograph at 37 °C. Arteries were incubated for 2h with anandamide, cannabidiol or vehicle, contracted, and cumulative concentration-response curves to acetylcholine were constructed. Anandamide (10 µM, 2h) significantly improved the vasorelaxant responses to acetylcholine in aortae and femoral arteries from Zucker Diabetic Fatty rats but not Zucker lean rats. By contrast, anandamide (1 µM, 2h) significantly blunted acetylcholine-induced vasorelaxation in third-order mesenteric arteries (G3) from Zucker Diabetic Fatty rats. Cannabidiol incubation (10 µM, 2h) improved acetylcholine responses in the arteries of Zucker Diabetic Fatty rats (aorta and femoral) and Zucker lean (aorta, femoral and G3 mesenteric), and this effect was greater in the Zucker Diabetic Fatty rat. These studies suggest that increased circulating endocannabinoids may alter vascular function both positively and negatively in type 2 diabetes, and that part of the beneficial effect of cannabidiol in diabetes may be due to improved endothelium-dependent vasorelaxation. PMID:24120371

  9. Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome

    PubMed Central

    Lees, Hannah; Swann, Jonathan; Poucher, Simon M.; Nicholson, Jeremy K.; Holmes, Elaine; Wilson, Ian D.; Marchesi, Julian R.

    2014-01-01

    Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture? PMID:25232735

  10. Age and microenvironment outweigh genetic influence on the Zucker rat microbiome.

    PubMed

    Lees, Hannah; Swann, Jonathan; Poucher, Simon M; Nicholson, Jeremy K; Holmes, Elaine; Wilson, Ian D; Marchesi, Julian R

    2014-01-01

    Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture? PMID:25232735

  11. Obesity Preserves Myocardial Function During Blockade of the Glycolytic Pathway

    PubMed Central

    de Campos, Dijon Henrique Salomé; Leopoldo, André Soares; Lima-Leopoldo, Ana Paula; do Nascimento, André Ferreira; de Oliveira-Junior, Silvio Assis; da Silva, Danielle Cristina Tomaz; Sugizaki, Mario Mateus; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2014-01-01

    Background Obesity is defined by excessive accumulation of body fat relative to lean tissue. Studies during the last few years indicate that cardiac function in obese animals may be preserved, increased or diminished. Objective Study the energy balance of the myocardium with the hypothesis that the increase in fatty acid oxidation and reduced glucose leads to cardiac dysfunction in obesity. Methods 30-day-old male Wistar rats were fed standard and hypercaloric diet for 30 weeks. Cardiac function and morphology were assessed. In this paper was viewed the general characteristics and comorbities associated to obesity. The structure cardiac was determined by weights of the heart and left ventricle (LV). Myocardial function was evaluated by studying isolated papillary muscles from the LV, under the baseline condition and after inotropic and lusitropic maneuvers: myocardial stiffness; postrest contraction; increase in extracellular Ca2+ concentration; change in heart rate and inhibitor of glycolytic pathway. Results Compared with control group, the obese rats had increased body fat and co-morbities associated with obesity. Functional assessment after blocking iodoacetate shows no difference in the linear regression of DT, however, the RT showed a statistically significant difference in behavior between the control and the obese group, most notable being the slope in group C. Conclusion The energy imbalance on obesity did not cause cardiac dysfunction. On the contrary, the prioritization of fatty acids utilization provides protection to cardiac muscle during the inhibition of glycolysis, suggesting that this pathway is fewer used by obese cardiac muscle. PMID:25352507

  12. Weak production and electroproduction of Δ(1236) in a Zucker-model calculation

    NASA Astrophysics Data System (ADS)

    Choudhury, S. Rai; Dewan, H. K.

    1983-07-01

    Zucker's model for weak production and electroproduction of Δ(1236) is reconsidered in the light of recent experimental data. We find that the disagreement between the predictions of the Zucker model and the experimental data can be significantly reduced by choosing a different form for ω exchange.

  13. Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats.

    PubMed

    Zhou, Xin; Rougée, Luc R A; Bedwell, David W; Cramer, Jeff W; Mohutsky, Michael A; Calvert, Nathan A; Moulton, Richard D; Cassidy, Kenneth C; Yumibe, Nathan P; Adams, Lisa A; Ruterbories, Kenneth J

    2016-08-01

    The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms. Among the drugs examined, metformin, cleared through renal excretion, and rosiglitazone, metabolized by hepatic cytochrome P450 2C, did not exhibit differences in the plasma clearance in ZDF and SD rats. In contrast, glibenclamide, metabolized by hepatic CYP3A, canagliflozin, metabolized mainly by UDP-glucuronosyltransferases (UGT), and troglitazone, metabolized by sulfotransferase and UGT, exhibited significantly lower plasma clearance in ZDF than in SD rats after a single intravenous administration. To elucidate the mechanisms for the difference in the drug clearance, studies were performed to characterize the activity of hepatic drug-metabolizing enzymes using liver S9 fractions from the two strains. The results revealed that the activity for CYP3A and UGT was decreased in ZDF rats using the probe substrates, and decreased unbound intrinsic clearance in vitro for glibenclamide, canagliflozin, and troglitazone was consistent with lower plasma clearance in vivo. The difference in pharmacokinetics of these two strains may complicate pharmacokinetic/pharmacodynamic correlations, given that ZDF is used as a pharmacological model, and SD rat as the pharmacokinetics and toxicology strain. PMID:27217490

  14. Pressor recovery after acute stress is impaired in high fructose-fed Lean Zucker rats.

    PubMed

    Thompson, Jennifer A; D'Angelo, Gerard; Mintz, James D; Fulton, David J; Stepp, David W

    2016-06-01

    Insulin resistance is a powerful predictor of cardiovascular disease; however, the mechanistic link remains unclear. This study aims to determine if early cardiovascular changes associated with short-term fructose feeding in the absence of obesity manifest as abnormal blood pressure control. Metabolic dysfunction was induced in Lean Zucker rats by short-term high-fructose feeding. Rats were implanted with telemetry devices for the measurement of mean arterial blood pressure (MAP) and subjected to air jet stress at 5 and 8 weeks after feeding. Additional animals were catheterized under anesthesia for the determination of MAP and blood flow responses in the hind limb and mesenteric vascular beds to intravenous injection of isoproterenol (0.001-0.5 μm), a β-adrenergic agonist. Metabolic dysfunction in high-fructose rats was not accompanied by changes in 24-h MAP Yet, animals fed a high-fructose diet for 8 weeks exhibited a marked impairment in blood pressure recovery after air-jet stress. Dose-dependent decreases in MAP and peripheral blood flow in response to isoproterenol treatment were significantly attenuated in high-fructose rats. These data suggest that impaired blood pressure recovery to acute mental stress precedes the onset of hypertension in the early stages of insulin resistance. Further, blunted responses to isoproterenol implicate β2-adrenergic sensitivity as a possible mechanism responsible for altered blood pressure control after short-term high-fructose feeding. PMID:27335430

  15. Combining sitagliptin/metformin with a functional fiber delays diabetes progression in Zucker rats.

    PubMed

    Reimer, Raylene A; Grover, Gary J; Koetzner, Lee; Gahler, Roland J; Lyon, Michael R; Wood, Simon

    2014-03-01

    Our primary objective was to determine whether administering the viscous and fermentable polysaccharide PolyGlycopleX (PGX) with metformin (MET) or sitagliptin/metformin (S/MET) reduces hyperglycemia in Zucker diabetic fatty (ZDF) rats more so than monotherapy of each. Glucose tolerance, adiposity, satiety hormones and mechanisms related to dipeptidyl peptidase 4 activity, gut microbiota and, hepatic and pancreatic histology were examined. Male ZDF rats (9-10 weeks of age) were randomized to: i) cellulose/vehicle (control, C); ii) PGX (5% wt/wt)/vehicle (PGX); iii) cellulose/metformin (200  mg/kg) (MET); iv) cellulose/S/MET (10  mg/kg+200  mg/kg) (S/MET); v) PGX (5%)+MET (200  mg/kg) (PGX+MET); vi) cellulose/sitagliptin/MET (5%)+(10  mg/kg+200  mg/kg) (PGX+S/MET) for 6 weeks. PGX+MET and PGX+S/MET reduced glycemia compared with C and singular treatments (P=0.001). Weekly fasted and fed blood glucose levels were lower in PGX+MET and PGX+S/MET compared with all other groups at weeks 4, 5, and 6 (P=0.001). HbA1c was lower in PGX+S/MET than C, MET, S/MET, and PGX at week 6 (P=0.001). Fat mass was lower and GLP1 was higher in PGX+S/MET compared with all other groups (P=0.001). β-cell mass was highest and islet degeneration lowest in PGX+S/MET. Hepatic lipidosis was significantly lower in PGX+S/MET compared with PGX or S/MET alone. When combined with PGX, both MET and S/MET markedly reduce glycemia; however, PGX+S/MET appears advantageous over PGX+MET in terms of increased β-cell mass and reduced adiposity. Both combination treatments attenuated diabetes in the obese Zucker rat. PMID:24389593

  16. Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats.

    PubMed

    Li, Yuhao; Wen, Suping; Kota, Bhavani Prasad; Peng, Gang; Li, George Qian; Yamahara, Johji; Roufogalis, Basil D

    2005-06-01

    Postprandial hyperglycemia plays an important role in the development of type 2 diabetes and has been proposed as an independent risk factor for cardiovascular diseases. The flowering part of Punica granatum Linn. (Punicaceae) (PGF) has been recommended in Unani literature as a remedy for diabetes. We investigated the effect and action mechanism of a methanolic extract from PGF on hyperglycemia in vivo and in vitro. Oral administration of PGF extract markedly lowered plasma glucose levels in non-fasted Zucker diabetic fatty rats (a genetic model of obesity and type 2 diabetes), whereas it had little effect in the fasted animals, suggesting it affected postprandial hyperglycemia in type 2 diabetes. In support of this conclusion the extract was found to markedly inhibit the increase of plasma glucose levels after sucrose loading, but not after glucose loading in mice, and it had no effect on glucose levels in normal mice. In vitro, PGF extract demonstrated a potent inhibitory effect on alpha-glucosidase activity (IC50: 1.8 microg/ml). The inhibition is dependent on the concentration of enzyme and substrate, as well as on the length of pretreatment with the enzyme. These findings strongly suggest that PGF extract improves postprandial hyperglycemia in type 2 diabetes and obesity, at least in part, by inhibiting intestinal alpha-glucosidase activity. PMID:15894133

  17. Metabolic responses to fasting and refeeding in lean and genetically obese rats.

    PubMed

    Rothwell, N J; Saville, M E; Stock, M J

    1983-05-01

    Injection of norepinephrine (NE) (25 micrograms/100 g body wt) caused a similar rise in metabolic rate in lean and obese (fa/fa) Zucker rats, but 3-day fasting suppressed the response in lean rats and enhanced the rise in obese mutants. Triiodothyronine (T3) injection (10 micrograms/100 g body wt) caused a significantly greater rise in oxygen consumption (Vo2) in obese than lean rats, but the response was attenuated by fasting in all animals. The thermic response to a single meal of either mixed composition, carbohydrate, or protein (40 kJ) was much smaller in obese rats than lean, but the response to the mixed nutrient meal was similar for all rats after a 3-day fast. Refeeding 3-day fasted lean rats with a single carbohydrate meal (40 kJ) caused a rise in plasma T3 levels after 3 h and a delayed increase in metabolic rate 24 h later. Injection of NE instead of refeeding caused a similar delayed rise in metabolic rate. Carbohydrate refeeding had no effect on plasma T3 levels or oxygen consumption in 3-day fasted obese Zuckers, but injection of NE did produce a significant increase in metabolic rate after 24 h. Refeeding 3-day fasted rats with protein (40 kJ) caused a rise in oxygen consumption 24 h later in lean animals but had no effect in obese animals. The data from lean Zucker rats confirm previous findings in Sprague-Dawley rats and suggest that the thermic response to refeeding involves a complex interaction between the sympathetic nervous system and thyroid hormones. Obese Zuckers responded normally to NE and T3, indicating that their reduced thermogenesis after food may be due to insensitivity to nutrient availability or an inability to activate the sympathetic nervous system. PMID:6846570

  18. Danhong Huayu Koufuye combined with metformin attenuated diabetic retinopathy in Zucker diabetic fatty rats

    PubMed Central

    Chen, Wen-Pei; Wang, Yan-Dong; Ma, Yan; Zhang, Zi-Yang; Hu, Lu-Yun; Lin, Jun-Li; Lin, Bao-Qin

    2015-01-01

    AIM To evaluate effects of Danhong Huayu Koufuye (DHK, a Chinese medicinal formulae) alone or combined with metformin on diabetic retinopathy (DR) in Zucker diabetic fatty (ZDF) rats, an animal model of obese type-2 diabetes, and then to investigate the mechanisms. METHODS ZDF (fa/fa) rats were administered with vehicle (distilled water), metformin, DHK, and DHK plus metformin. Electrophysiological and histological analysis were applied to evaluated effects of DHK alone or combined with metformin on DR. The levels of fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) in blood were measured to evaluate the antihyperglycemic activity of DHK. Furthermore, levels of nitric oxide (NO), malondialdehyde (MDA) and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in serum were measured to study effects of DHK on oxidative stress in ZDF rats. In addition, body weight, lipidic indexes and insulin level were also assessed. RESULTS DHK combined with metformin significantly reversed the prolongation of latency times of flash electroretinogram (FERG) and oscillatory potentials (OPs) in diabetic rats. Furthermore, DHK alone or combined with metformin showed a remarkable suppression of retinal neovascularization and amelioration of retinal internal limiting membrane morphology. Moreover, DHK alone or plus metformin reduced FBG (P<0.05), HbA1c (P<0.01) and MDA (P<0.01) levels in diabetic rats. In addition, reductions in levels of triglycerides (TG) (P<0.01) and low density lipoprotein cholesterol (LDL-c) (P<0.01 and P<0.05, respectively) were also observed in diabetic rats treated with DHK alone or plus metformin. CONCLUSION DHK in combination with metformin had a preventive and therapeutic effect on DR in type-2 diabetic rats, and the possible mechanisms may be alleviating hyperglycemia, reducing oxidative stress and improving lipid metabolism. PMID:26682154

  19. [Updates on ossification of posterior longitudinal ligament. Effect of insulin/IGF-1 signals and leptin signals on ossification of the spinal ligament in Zucker fatty rats].

    PubMed

    Yamamoto, Kengo; Kosaka, Taiichi

    2009-10-01

    The involvement of insulin/IGF-1 signals and leptin signals in spinal ligament cells was investigated using Zucker fatty rats (fa/fa) that carry mutation of the leptin receptor gene (fa) and monosodium glutamate-treated (MSG) rats that present obesity due to destruction of the hypothalamic ventromedial nucleus. Zucker fatty rats (ZFR) , that have a with functional abnormality of leptin receptors are a spontaneous model of ossification of the posterior longitudinal ligament that develops sympathetic nerve hypoactivity. (insulin/IGF-1 signals) IRS-1-positive cells, IRS-1 protein were eminent by detected in the cartilage endplate and the enthesis region in ZFR group. On the other hand, IRS-2-positive cells were slightly less in the ZFR group than in the MSG and control groups. The results suggest that IRS-1-mediated signaling for cell proliferation was enhanced in ZFR, which may explain the ossification of the posterior longitudinal ligament. (Leptin signals) We investigated the effects of leptin on the spinal ligament in ZFR histopathologically and immunohistochemically. Since Ob-R does not play any role due to functional abnormality in ZFR, the direct involvement of leptin in ligament ossification may be slight in ZFR. beta(2)AR expression in the stage preceding ligament ossification was confirmed, suggesting that ossification of the spinal ligament may be inhibited by sympathetic nerve stimulation in ZFR. PMID:19794255

  20. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-{alpha}

    SciTech Connect

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-02-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-{alpha}, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-{alpha} mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-{alpha} luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-{alpha} antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-{alpha} activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.

  1. The effects of obesity, diabetes and metabolic syndrome on the hydrolytic enzymes of the endocannabinoid system in animal and human adipocytes

    PubMed Central

    2014-01-01

    Background Circulating endocannabinoid levels are increased in obesity and diabetes. We have shown that fatty acid amide hydrolase (FAAH, an endocannabinoid hydrolysing enzyme) in subcutaneous adipose tissue positively correlates with BMI in healthy volunteers. The aim of the present study was to investigate whether the hydrolytic enzymes of the endocannabinoid system are affected by diabetes or metabolic syndrome in obesity. Methods Using radiolabelled substrates, FAAH and monoacylglycerol lipase (MGL) activities were assessed in adipocytes from various adipose depots in Zucker rats (n = 22, subcutaneous abdominal, visceral and epididymal) and bariatric patients (n = 28, subcutaneous abdominal and omental). Results FAAH activity was significantly increased in adipocytes of obese (Zucker Fatty) compared to Zucker lean rats (P < 0.05) but was not raised in the Zucker Diabetic Fatty rats (ZDF). MGL activity was raised in both Zucker Fatty (P < 0.001-0.01) and ZDF rats (P < 0.05) and was positively correlated with body weight and plasma glucose levels (P < 0.01). In bariatric patients (BMI range 37–58 kg.m2), there was a trend for MGL activity to correlate positively with BMI, reaching significance when type 2 diabetic patients were removed. FAAH and MGL activities in obese humans were not correlated with blood pressure, skinfold thicknesses, fasting glucose, insulin, HbA1c, triglycerides or cholesterol levels. Conclusions FAAH in adipocytes is differentially altered in animal models of obesity and diabetes, while MGL activity is increased by both. However, in obese humans, FAAH or MGL activity in adipocytes is not affected by diabetes, dyslipidaemia or other markers of metabolic dysfunction. This suggests increased circulating levels of endocannabinoids are not a result of altered degradation in adipose tissue. PMID:24593280

  2. The Heme Oxygenase System Suppresses Perirenal Visceral Adiposity, Abates Renal Inflammation and Ameliorates Diabetic Nephropathy in Zucker Diabetic Fatty Rats

    PubMed Central

    Ndisang, Joseph Fomusi; Jadhav, Ashok; Mishra, Manish

    2014-01-01

    The growing incidence of chronic kidney disease remains a global health problem. Obesity is a major risk factor for type-2 diabetes and renal impairment. Perirenal adiposity, by virtue of its anatomical proximity to the kidneys may cause kidney disease through paracrine mechanisms that include increased production of inflammatory cytokines. Although heme-oxygenase (HO) is cytoprotective, its effects on perirenal adiposity and diabetic nephropathy in Zucker-diabetic fatty rats (ZDFs) remains largely unclear. Upregulating the HO-system with hemin normalised glycemia, reduced perirenal adiposity and suppressed several pro-inflammatory/oxidative mediators in perirenal fat including macrophage-inflammatory-protein-1α (MIP-1α), endothelin (ET-1), 8-isoprostane, TNF-α, IL-6 and IL-1β. Furthermore, hemin reduced ED1, a marker of pro-inflammatory macrophage-M1-phenotype, but interestingly, enhanced markers associated with anti-inflammatory M2-phenotype such as ED2, CD206 and IL-10, suggesting that hemin selectively modulates macrophage polarization towards the anti-inflammatory M2-phenotype. These effects were accompanied by increased adiponectin, HO-1, HO-activity, atrial-natriuretic peptide (ANP), and its surrogate marker, urinary-cGMP. Furthermore, hemin reduced renal histological lesions and abated pro-fibrotic/extracellular-matrix proteins like collagen and fibronectin that deplete nephrin, an important transmembrane protein which forms the scaffolding of the podocyte slit-diaphragm allowing ions to filter but not massive excretion of proteins, hence proteinuria. Correspondingly, hemin increased nephrin expression in ZDFs, reduced markers of renal damage including, albuminuria/proteinuria, but increased creatinine-clearance, suggesting improved renal function. Conversely, the HO-blocker, stannous-mesoporphyrin nullified the hemin effects, aggravating glucose metabolism, and exacerbating renal injury and function. The hemin effects were less-pronounced in Zucker

  3. Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a).

    PubMed

    Slieker, L J; Sundell, K L; Heath, W F; Osborne, H E; Bue, J; Manetta, J; Sportsman, J R

    1992-02-01

    We used antibodies to the fat/muscle glucose transporter (GLUT4) and the liver glucose transporter (GLUT2) to measure levels of these proteins in various tissues of two rodent models of non-insulin-dependent (type II) diabetes mellitus: the obese spontaneously diabetic male Zucker fa/fa rat (ZDF/drt) and the male viable yellow Avy/a obese diabetic mouse. The ZDF/drt strain generally develops overt diabetes associated with decreased plasma insulin levels. Depending on the age of the animals, the ZDF/drt rats can be arbitrarily segregated into age-matched obese, mildly diabetic (blood glucose less than 11 mM) and obese, and severely diabetic (blood glucose greater than 20 mM) groups. Avy/a mice are comparably hyperglycemic but unlike the ZDF/drt rats are severely hyperinsulinemic. In both groups of diabetic animals, GLUT4 in adipose tissue, heart, and skeletal muscle was reduced 25-55%, and GLUT2 in liver was increased 30-40%, relative to lean, age-matched controls. However, when the mildly diabetic ZDF/drt rats were compared to the lean controls, the only significant difference was a 25% reduction of GLUT4 in heart. Within all of the ZDF/drt rats (excluding the lean controls), GLUT2 in liver and GLUT4 in adipose tissue, heart, and skeletal muscle correlated significantly with glycemia. These data suggest that, in these two models of type II diabetes, glucose transporter levels in muscle, adipose tissue, and liver are regulated in a tissue-selective manner in response to changes in insulin and glucose. Furthermore, at least in the ZDF/drt rat, alterations in GLUT2 and/or GLUT4 protein levels appear not to be associated with obesity per se but appear to be secondary to the severely diabetic state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1733808

  4. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    PubMed Central

    Raza, Haider; John, Annie; Howarth, Frank C.

    2012-01-01

    The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old) rat heart compared to age matched Zucker lean (ZL) controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats). An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention. PMID:23203193

  5. Tissue somatostatin levels in three models of genetic obesity in rats.

    PubMed

    Voyles, N R; Bhathena, S J; Kennedy, B; Wilkins, S D; Michaelis, O E; Zalenski, C M; Timmers, K I; Recant, L

    1987-05-01

    A potential role for somatostatin (SRIF) in the pathogenesis of the hyperinsulinemia of obese rats was considered. SRIF like immunoreactivity (ng/mg protein) was therefore measured in hot 2 N acetic acid extracts of pancreas, stomach, pituitary, and hypothalamus in tissues obtained from three models of genetic obesity in rats. These models included the obese and lean controls of LA/N-cp, SHR/N-cp, and Zucker rats. To assess the effects of diet on SRIF levels, mixed diets were provided ad lib which contained a carbohydrate as either sucrose or starch. Some groups were fed chow diets. No significant dietary effects on tissue levels of SRIF were obtained. However, two of the three models (Zucker and SHR/N-cp) showed phenotypic effects on SRIF levels in pancreas; namely, obese rats showed a significantly greater concentration of SRIF (P less than 0.0005 and less than 0.0002, respectively) than did the lean littermates. These findings were confirmed by measurement of total pancreas SRIF content. Gastric levels were significantly altered only in the obese Zucker rats (P less than 0.005) where obese tissues had lower concentrations than those of lean animals. However similar directional changes in pancreas and stomach were observed in all models. It is concluded that the hyperinsulinemia of the obese animals studied is not due to absolute deficiency in pancreatic SRIF content. It is postulated however that decreased pancreatic SRIF secretion (paracrine or otherwise) relative to pancreatic insulin content could still play a role. PMID:2883660

  6. Effects of Gosha-jinki-gan (Chinese herbal medicine: Niu-Che-Sen-Qi-Wan) on hyperinsulinemia and hypertriglyceridemia in prediabetic Zucker fatty rats.

    PubMed

    Hirotani, Y; Okumura, K; Yoko, U; Myotoku, M

    2013-06-01

    The Chinese herbal medicine, Goshajinki-gan (GJ) (Niu-Che-Sen-Qi-Wan), has been widely used for treating patients with melalgia, lower back pain, numbness, and diabetic neuropathy. We investigated the effects of GJ on the regulation of serum insulin and triglyceride levels in obese Zucker fatty rats (fa/fa; ZFR). We administrated GJ to 6-week-old ZFR and non-obese lean rats (LR) for 12 weeks. Body weight and serum glucose, insulin, total cholesterol, and triglyceride levels were significantly increased at 18 weeks in ZFR as compared to the LR. GJ treatment in ZFR significantly suppressed elevation in serum glucose, insulin, and triglyceride levels, but no significant differences were observed in body weight and serum cholesterol levels in the ZFR group with GJ treatment compared to the ZFR group without GJ treatment. These results suggest that GJ may improve hyperinsulinemia and hypertriglyceridemia in ZFR and that GJ may be useful for preventing or delaying the onset of diabetes mellitus in a pre-diabetic state. PMID:23917858

  7. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  8. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-{alpha}-mediated transcription of fatty acid metabolic genes

    SciTech Connect

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-01-15

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-{alpha} plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-{alpha} activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-{alpha} mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-{alpha}-mediated FA metabolic gene transcription.

  9. Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects.

    PubMed

    Banni, Sebastiano; Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Giordano, Elena; Sirigu, Anna Rita; Berge, Kjetil; Vik, Hogne; Maki, Kevin C; Di Marzo, Vincenzo; Griinari, Mikko

    2011-01-01

    We have previously shown that krill oil (KO), more efficiently than fish oil, was able to downregulate the endocannabinoid system in different tissues of obese zucker rats.We therefore aimed at investigating whether an intake of 2 g/d of either KO or menhaden oil (MO), which provides 309 mg/d of EPA/DHA 2:1 and 390 mg/d of EPA/DHA 1:1 respectively, or olive oil (OO) for four weeks, is able to modify plasma endocannabinoids in overweight and obese subjects.The results confirmed data in the literature describing increased levels of endocannabinoids in overweight and obese with respect to normo-weight subjects. KO, but not MO or OO, was able to significantly decrease 2-arachidonoylglycerol (2-AG), although only in obese subjects. In addition, the decrease of 2-AG was correlated to the plasma n-6/n-3 phospholipid long chain polyunsaturated fatty acid (LCPUFA) ratio. These data show for the first time in humans that relatively low doses of LCPUFA n-3 as KO can significantly decrease plasma 2-AG levels in obese subjects in relation to decrease of plasma phospholipid n-6/n-3 LCPUFA ratio. This effect is not linked to changes of metabolic syndrome parameters but is most likely due to a decrease of 2-AG biosynthesis caused by the replacement of 2-AG ultimate precursor, arachidonic acid, with n-3 PUFAs, as previously described in obese Zucker rats. PMID:21276269

  10. NADPH oxidase inhibitor, apocynin, improves renal glutathione status in Zucker diabetic fatty rats: a comparison with melatonin.

    PubMed

    Winiarska, Katarzyna; Focht, Dorota; Sierakowski, Bartosz; Lewandowski, Krystian; Orlowska, Marta; Usarek, Michal

    2014-07-25

    Apocynin (4'-hydroxy-3'-methoxyacetophenone) is the most commonly used NADPH oxidase (Nox) inhibitor. However, its application raises serious controversies, as the compound has been reported to reveal some prooxidative effects. The aim of this study was to elucidate apocynin action on glutathione, the main intracellular antioxidant, metabolism in kidneys of Zucker diabetic fatty (ZDF) rat, a well established model of diabetes type 2. Additionally, apocynin effects were compared with those of melatonin. The experiments were performed on five groups of animals: (1) untreated lean (?/+) ZDF rats, (2) ZDF ?/+ rats treated with apocynin (2 g/l) in drinking water, (3) untreated obese diabetic (fa/fa) ZDF rats, (4) ZDF fa/fa rats treated with apocynin (2 g/l) in drinking water, and (5) ZDF fa/fa rats treated with melatonin (20 mg/l) in drinking water. After 8weeks of the treatment, the following parameters were measured in kidneys: NADPH oxidase activity, the rate of hydroxyl free radicals (HFR) production, GSH and GSSG content and the activities of the enzymes of glutathione metabolism: γ-glutamylcysteine synthetase (GCS), glutathione reductase (GR) and glutathione peroxidase (GPx). Compared to ?/+ controls, ZDF fa/fa rats exhibited increased Nox activity, accelerated HFR generation and dramatically lowered GSH/GSSG ratio accompanied by increased GPx and diminished GCS activities. In case of diabetic animals, apocynin treatment resulted in attenuation of both Nox activity and HFR production, restoration of control GSH/GSSG ratio (due to both an increase in GSH and a decline in GSSG content), normalization of GPx activity and a slight increase in GCS activity. Similar observations were made upon melatonin application to ZDF fa/fa rats. Thus, it is concluded that, in the diabetic model studied, apocynin extends a beneficial effect on renal glutathione homeostasis. The mechanism of this phenomenon involves attenuation of glutathione peroxidase activity, which is

  11. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    NASA Astrophysics Data System (ADS)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  12. The Preventive Effects of 8 Weeks of Resistance Training on Glucose Tolerance and Muscle Fiber Type Composition in Zucker Rats

    PubMed Central

    Kim, Ji-yeon; Choi, Mi Jung; So, Byunghun; Kim, Hee-jae; Seong, Je Kyung

    2015-01-01

    Background We investigated the therapeutic effects of resistance training on Zucker rats before and after the onset of diabetes to understand the importance of the timing of exercise intervention. We assessed whether 8 weeks of resistance training ameliorated impaired glucose tolerance and altered muscle fiber type composition in Zucker rats. Methods Five-week-old male Zucker rats were divided into Zucker lean control (ZLC-Con), non-exercised Zucker diabetic fatty (ZDF-Con), and exercised Zucker diabetic fatty (ZDF-Ex) groups. The ZDF-Ex rats climbed a ladder three times a week for 8 weeks. Intraperitoneal glucose tolerance tests (IPGTT) were performed on the 1st and 8th weeks of training, and grip strength was measured during the last week. We also measured glucose transporter 4 (GLUT4) expression by Western blot and immunofluorescence. Moreover, immunohistochemistry was performed to assess muscle fiber type composition. Results Fasting glucose levels and area under the curve responses to IPGTTs gradually increased as diabetes progressed in the ZDF-Con rats but decreased in the ZDF-Ex rats. Grip strength decreased in the ZDF-Con rats. However, resistance training did not improve grip strength in the ZDF-Ex rats. GLUT4 expression in the ZLC-Con and the ZDF-Con rats did not differ, but it increased in the ZDF-Ex rats. The proportions of myosin heavy chain I and II were lower and higher, respectively, in the ZDF-Con rats compared to the ZLC-Con rats. Muscle fiber type composition did not change in the ZDF-Ex rats. Conclusion Our results suggest that regular resistance training initiated at the onset of diabetes can improve glucose tolerance and GLUT4 expression without changing muscle morphology in Zucker rats. PMID:26566500

  13. Chronic Running Exercise Alleviates Early Progression of Nephropathy with Upregulation of Nitric Oxide Synthases and Suppression of Glycation in Zucker Diabetic Rats

    PubMed Central

    Ito, Daisuke; Cao, Pengyu; Kakihana, Takaaki; Sato, Emiko; Suda, Chihiro; Muroya, Yoshikazu; Ogawa, Yoshiko; Hu, Gaizun; Ishii, Tadashi; Ito, Osamu; Kohzuki, Masahiro; Kiyomoto, Hideyasu

    2015-01-01

    Exercise training is known to exert multiple beneficial effects including renal protection in type 2 diabetes mellitus and obesity. However, the mechanisms regulating these actions remain unclear. The present study evaluated the effects of chronic running exercise on the early stage of diabetic nephropathy, focusing on nitric oxide synthase (NOS), oxidative stress and glycation in the kidneys of Zucker diabetic fatty (ZDF) rats. Male ZDF rats (6 weeks old) underwent forced treadmill exercise for 8 weeks (Ex-ZDF). Sedentary ZDF (Sed-ZDF) and Zucker lean (Sed-ZL) rats served as controls. Exercise attenuated hyperglycemia (plasma glucose; 242 ± 43 mg/dL in Sed-ZDF and 115 ± 5 mg/dL in Ex-ZDF) with increased insulin secretion (plasma insulin; 2.3 ± 0.7 and 5.3 ± 0.9 ng/mL), reduced albumin excretion (urine albumin; 492 ± 70 and 176 ± 11 mg/g creatinine) and normalized creatinine clearance (9.7 ± 1.4 and 4.5 ± 0.8 mL/min per body weight) in ZDF rats. Endothelial (e) and neuronal (n) NOS expression in kidneys of Sed-ZDF rats were lower compared with Sed-ZL rats (p<0.01), while both eNOS and nNOS expression were upregulated by exercise (p<0.01). Furthermore, exercise decreased NADPH oxidase activity, p47phox expression (p<0.01) and α-oxoaldehydes (the precursors for advanced glycation end products) (p<0.01) in the kidneys of ZDF rats. Additionally, morphometric evidence indicated renal damage was reduced in response to exercise. These data suggest that upregulation of NOS expression, suppression of NADPH oxidase and α-oxoaldehydes in the kidneys may, at least in part, contribute to the renal protective effects of exercise in the early progression of diabetic nephropathy in ZDF rats. Moreover, this study supports the theory that chronic aerobic exercise could be recommended as an effective non-pharmacological therapy for renoprotection in the early stages of type 2 diabetes mellitus and obesity. PMID:26379244

  14. Diabetic Nephropathy Amelioration by a Low-Dose Sitagliptin in an Animal Model of Type 2 Diabetes (Zucker Diabetic Fatty Rat)

    PubMed Central

    Mega, Cristina; Teixeira de Lemos, Edite; Vala, Helena; Fernandes, Rosa; Oliveira, Jorge; Mascarenhas-Melo, Filipa; Teixeira, Frederico; Reis, Flávio

    2011-01-01

    This study was performed to assess the effect of chronic low-dose sitagliptin, a dipeptidyl peptidase 4 inhibitor, on metabolic profile and on renal lesions aggravation in a rat model of type-2 diabetic nephropathy, the Zucker diabetic fatty (ZDF) rat. Diabetic and obese ZDF (fa/fa) rats and their controls ZDF (+/+) were treated for 6 weeks with vehicle (control) or sitagliptin (10 mg/kg/bw). Blood/serum glucose, HbA1c, insulin, Total-c, TGs, urea, and creatinine were assessed, as well as kidney glomerular and tubulointerstitial lesions (interstitial fibrosis/tubular atrophy), using a semiquantitative rating from 0 (absent/normal) to 3 (severe and extensive damage). Vascular lesions were scored from 0–2. Sitagliptin in the diabetic rats promoted an amelioration of glycemia, HbA1c, Total-c, and TGs, accompanied by a partial prevention of insulinopenia. Furthermore, together with urea increment prevention, renal lesions were ameliorated in the diabetic rats, including glomerular, tubulointerstitial, and vascular lesions, accompanied by reduced lipid peroxidation. In conclusion, chronic low-dose sitagliptin treatment was able to ameliorate diabetic nephropathy, which might represent a key step forward in the management of T2DM and this serious complication. PMID:22203828

  15. Effects of Salsalate Therapy on Recovery From Vascular Injury in Female Zucker Fatty Rats

    PubMed Central

    Murthy, Subramanyam N.; Desouza, Cyrus V.; Bost, Neal W.; Hilaire, Rose-Claire St.; Casey, David B.; Badejo, Adeleke M.; Dhaliwal, Jasdeep S.; McGee, Jennifer; McNamara, Dennis B.; Kadowitz, Philip J.; Fonseca, Vivian A.

    2010-01-01

    OBJECTIVE Salsalate is a dimeric form of salicylic acid that has been shown to have anti-inflammatory activity and to reduce glucose levels, insulin resistance, and cytokine expression. However, the effect of salsalate on vascular injury has not been determined. The objective of this study is to investigate the effect of salsalate on vascular injury and repair in a rat model of carotid artery balloon catheter injury. RESEARCH DESIGN AND METHODS Salsalate treatment was started in female Zucker fatty rats (insulin resistant) 1 week before carotid artery balloon catheter injury and continued for 21 days, at which time the animals were killed and studied. RESULTS Treatment with salsalate significantly decreased the intima-to-media ratio and upregulated the expression of aortic endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS) (ser 1177), and manganese superoxide dismutase (MnSOD) and reduced serum interleukin (IL)-6 with concomitant downregulation of nuclear factor (NF) κB subunit p65 and vascular endothelial growth factor (VEGF) expression in the balloon-injured carotid artery of female Zucker fatty rats. CONCLUSIONS The present study shows that salsalate treatment decreases vascular damage caused by balloon catheter injury in female Zucker fatty rats. The beneficial effect of salsalate on vascular injury was associated with upregulation of eNOS, p-eNOS, and MnSOD, which reduce oxidative stress and have anti-inflammatory properties, as evidenced by reduction in serum IL-6 and the downregulation of VEGF and NFκB, which promote inflammation without changing glucose levels. These results suggest that salsalate may be useful in reducing vascular injury and restenosis following interventional revascularization procedures. PMID:20876710

  16. AT2 receptor: Its role in obesity associated hypertension

    PubMed Central

    Ali, Quaisar; Hussain, Tahir

    2016-01-01

    The renin-angiotensin system (RAS) is a hormonal cascade that acts together to regulate blood pressure. Angiotensin II (Ang II) is the major octapeptide of RAS and mediates its cellular and physiological actions by acting on AT1 and AT2 receptor. Most of the cellular and physiological actions of Ang II such as cellular growth and proliferation, vasoconstriction, antinatriuresis and increase in blood pressure are mediated via AT1 receptor. The functions associated with the AT2 receptors are less studied, in part, due to its lower expression in adult tissues. However, AT2 receptor has been suggested as functional antagonist of AT1 receptors and thereby opposes the actions of Ang II mediated via AT1 receptor. Thus, the activation of AT2 receptors has been shown to cause vasodilatation, natriuresis and decrease in blood pressure. After the discovery of the AT2 receptor in various parts of the kidney, including in proximal tubules, there has been an interest in establishing a link between the renal AT2 receptor, renal Na-excretion and blood pressure regulation. Earlier, we have reported that activation of renal AT2 receptors increases urinary Na excretion in obese Zucker rats, in part via inhibiting Na+/K+- ATPase (NKA) activity and stimulating nitric oxide/cGMP pathway in the proximal tubules. An impaired pressure natriuresis and increased AT1 receptor function is believed to be the cause of hypertension in obese Zucker rats and other animal models of obesity. In this review, we are focussing on the role of renin angiotensin system especially AT2 receptors in obesity associated hypertension.

  17. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon is rich in L-citrulline, an effective precursor of L-arginine. This study was conducted to determine whether dietary supplementation with watermelon pomace juice could ameliorate the metabolic syndrome in the Zucker diabetic fatty (ZDF) rat, an animal model of noninsulin-dependent diabet...

  18. Trouble and Triumph: German Life-Turkish Tradition in Renan Demirkan's "Schwarzer Tee mit drei Stuck Zucker"

    ERIC Educational Resources Information Center

    Ebert, Reika

    2004-01-01

    This paper explores Demirkan's narrative strategies in "Schwarzer Tee mit drei Stuck Zucker" to negotiate issues of a life between two cultures and traditions. Based on Bhabha's insights that mainstream culture needs intellectual and artistic infusion from the margins of a society in order to remain vital; and that cultural production itself is a…

  19. Childhood Obesity

    ERIC Educational Resources Information Center

    Yuca, Sevil Ari, Ed.

    2012-01-01

    This book aims to provide readers with a general as well as an advanced overview of the key trends in childhood obesity. Obesity is an illness that occurs due to a combination of genetic, environmental, psychosocial, metabolic and hormonal factors. The prevalence of obesity has shown a great rise both in adults and children in the last 30 years.…

  20. Obesity management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rates of obesity in the United States have increased dramatically over the past 30 years. Approximately 35% of children and 66% of adults are currently considered overweight or obese. Although obesity is seen in all ethnicities and economic classes, ethnic minorities and those of lower socioeconomic...

  1. Expression of p27Kip1, a cell cycle repressor protein, is inversely associated with potential carcinogenic risk in the genetic rodent models of obesity and long-lived Ames dwarf mice

    PubMed Central

    Eto, Isao

    2014-01-01

    Introduction The association of genetic rodent models of obesity and cancer still remains a controversial issue. Although this controversy has largely been resolved in recent years for homozygous leptin receptor-deficient obese Zucker rats and homozygous long-lived Ames dwarf mice, it is still unresolved for homozygous leptin-deficient obese ob/ob mice. Objective The objective of the present study described below was to investigate whether the expression of the cell cycle repressor protein p27(Kip1) is (a) down-regulated in the tumor-free homozygous leptin receptor-deficient obese Zucker rats as well as tumor-free homozygous leptin-deficient obese ob/ob mice and (b) up-regulated in the tumor-free homozygous long-lived Ames dwarf mice. Methods To achieve this objective, we first performed western immunoblot analysis of the hepatic expression of p27. We then performed western immunoblot analysis and proteomic analysis of the hepatic expression of the proteins involved in the upstream molecular signaling pathways for the expression of p27. Lastly, we analyzed the serum levels of glucose, insulin, and branched-chain amino acids, all of which have been shown to regulate, causally and inversely, the expression of p27. Results/Conclusions The results indicated that the hepatic expression of p27 was down-regulated in the homozygous leptin receptor-deficient obese Zucker rats and up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the hepatic expression of p27 was down-regulated in the homozygous leptin-deficient obese ob/ob mice. This last observation was not completely consistent with all of the results of the published studies where homozygous leptin-deficient obese ob/ob mice were used. PMID:23357529

  2. Childhood obesity.

    PubMed

    Dean, Erin

    2016-08-31

    Essential facts Nearly one third of children aged 2-15 in England are overweight or obese. Younger generations are becoming obese at earlier ages and staying so for longer. Reducing obesity levels is a major public health challenge as the condition doubles the risk of dying prematurely. Obese adults are more likely to develop health conditions such as heart disease, type 2 diabetes and depression. Treating conditions related to obesity is a major financial burden on the NHS, costing more than £5 billion a year. PMID:27577286

  3. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity.

    PubMed

    Nilsson, Mats I; Dobson, Justin P; Greene, Nicholas P; Wiggs, Michael P; Shimkus, Kevin L; Wudeck, Elyse V; Davis, Amanda R; Laureano, Marissa L; Fluckey, James D

    2013-10-01

    Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals. PMID:23804240

  4. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats.

    PubMed

    Weigt, Carmen; Hertrampf, Torsten; Flenker, Ulrich; Hülsemann, Frank; Kurnaz, Pinar; Fritzemeier, Karl Heinrich; Diel, Patrick

    2015-11-01

    The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway. PMID:26134426

  5. Childhood obesity.

    PubMed

    Ahmad, Qazi Iqbal; Ahmad, Charoo Bashir; Ahmad, Sheikh Mushtaq

    2010-01-01

    Obesity is increasing at an alarming rate throughout the world. Today it is estimated that there are more than 300 million obese people world-wide. Obesity is a condition of excess body fat often associated with a large number of debilitating and life-threatening disorders. It is still a matter of debate as to how to define obesity in young people. Overweight children have an increased risk of being overweight as adults. Genetics, behavior, and family environment play a role in childhood overweight. Childhood overweight increases the risk for certain medical and psychological conditions. Encourage overweight children to expand high energy activity, minimize low energy activity (screen watching), and develop healthful eating habits. Breast feeding is protective against obesity. Diet restriction is not recommended in very young children. Children are to be watched for gain in height rather than reduction in weight. Weight reduction of less than 10% is a normal variation, not significant in obesity. PMID:21448410

  6. Childhood Obesity

    PubMed Central

    Ahmad, Qazi Iqbal; Ahmad, Charoo Bashir; Ahmad, Sheikh Mushtaq

    2010-01-01

    Obesity is increasing at an alarming rate throughout the world. Today it is estimated that there are more than 300 million obese people world-wide. Obesity is a condition of excess body fat often associated with a large number of debilitating and life-threatening disorders. It is still a matter of debate as to how to define obesity in young people. Overweight children have an increased risk of being overweight as adults. Genetics, behavior, and family environment play a role in childhood overweight. Childhood overweight increases the risk for certain medical and psychological conditions. Encourage overweight children to expand high energy activity, minimize low energy activity (screen watching), and develop healthful eating habits. Breast feeding is protective against obesity. Diet restriction is not recommended in very young children. Children are to be watched for gain in height rather than reduction in weight. Weight reduction of less than 10% is a normal variation, not significant in obesity. PMID:21448410

  7. Obesity vaccines

    PubMed Central

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight. PMID:24365968

  8. Obesity Statistics.

    PubMed

    Smith, Kristy Breuhl; Smith, Michael Seth

    2016-03-01

    Obesity is a chronic disease that is strongly associated with an increase in mortality and morbidity including, certain types of cancer, cardiovascular disease, disability, diabetes mellitus, hypertension, osteoarthritis, and stroke. In adults, overweight is defined as a body mass index (BMI) of 25 kg/m(2) to 29 kg/m(2) and obesity as a BMI of greater than 30 kg/m(2). If current trends continue, it is estimated that, by the year 2030, 38% of the world's adult population will be overweight and another 20% obese. Significant global health strategies must reduce the morbidity and mortality associated with the obesity epidemic. PMID:26896205

  9. Childhood obesity.

    PubMed

    Seth, Anju; Sharma, Rajni

    2013-04-01

    Childhood obesity is an issue of serious medical and social concern. In developing countries including India, it is a phenomenon seen in higher socioeconomic strata due to the adoption of a western lifestyle. Consumption of high calorie food, lack of physical activity and increased screen time are major risk factors for childhood obesity apart from other genetic, prenatal factors and socio-cultural practices. Obese children and adolescents are at increased risk of medical and psychological complications. Insulin resistance is commonly present especially in those with central obesity and manifests as dyslipidemia, type 2 diabetes mellitus, impaired glucose tolerance, hypertension, polycystic ovarian syndrome and metabolic syndrome. Obese children and adolescents often present to general physicians for management. The latter play a key role in prevention and treatment of obesity as it involves lifestyle modification of the entire family. This article aims at discussing the approach to diagnosis and work-up, treatment and preventive strategies for childhood obesity from a general physician's perspective. PMID:23255079

  10. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  11. Obesity-related pulmonary arterial hypertension in rats correlates with increased circulating inflammatory cytokines and lipids and with oxidant damage in the arterial wall but not with hypoxia

    PubMed Central

    Irwin, David C.; Garat, Chrystelle V.; Crossno, Joseph T.; MacLean, Paul S.; Sullivan, Timothy M.; Erickson, Paul F.; Jackman, Matthew R.; Harral, Julie W.; Reusch, Jane E. B.

    2014-01-01

    Abstract Obesity is causally linked to a number of comorbidities, including cardiovascular disease, diabetes, renal dysfunction, and cancer. Obesity has also been linked to pulmonary disorders, including pulmonary arterial hypertension (PAH). It was long believed that obesity-related PAH was the result of hypoventilation and hypoxia due to the increased mechanical load of excess body fat. However, in recent years it has been proposed that the metabolic and inflammatory disturbances of obesity may also play a role in the development of PAH. To determine whether PAH develops in obese rats in the absence of hypoxia, we assessed pulmonary hemodynamics and pulmonary artery (PA) structure in the diet-resistant/diet-induced obesity (DR/DIO) and Zucker lean/fatty rat models. We found that high-fat feeding (DR/DIO) or overfeeding (Zucker) elicited PA remodeling, neomuscularization of distal arterioles, and elevated PA pressure, accompanied by right ventricular (RV) hypertrophy. PA thickening and distal neomuscularization were also observed in DIO rats on a low-fat diet. No evidence of hypoventilation or chronic hypoxia was detected in either model, nor was there a correlation between blood glucose or insulin levels and PAH. However, circulating inflammatory cytokine levels were increased with high-fat feeding or calorie overload, and hyperlipidemia and oxidant damage in the PA wall correlated with PAH in the DR/DIO model. We conclude that hyperlipidemia and peripheral inflammation correlate with the development of PAH in obese subjects. Obesity-related inflammation may predispose to PAH even in the absence of hypoxia. PMID:25610600

  12. Differential Effect of Electroacupuncture on Inflammatory Adipokines in Two Rat Models of Obesity.

    PubMed

    Liaw, Jacqueline J T; Peplow, Philip V

    2016-08-01

    Chronic inflammation is known to be associated with visceral obesity and insulin resistance which are characterized by altered levels of production of pro- and anti-inflammatory adipokines. The dysregulation of the production of inflammatory adipokines and their functions in obese individuals leads to a state of chronic low-grade inflammation and may promote obesity-linked metabolic disorders and cardiovascular diseases such as insulin resistance, metabolic syndrome, and atherosclerosis. Electroacupuncture (EA) was tested to see if there was a difference in its effect on pro- and anti-inflammatory adipokine levels in the blood serum and the white adipose tissue of obese Zucker fatty rats and high-fat diet-induced obese Long Evans rats. In the two rat models of obesity, on Day 12 of treatment, repeated applications of EA were seen to have had a significant differential effect for serum tumor necrosis factor-α, adiponectin, the adiponectin:leptin ratio, and blood glucose. For the adipose tissue, there was a differential effect for adiponectin that was on the borderline of significance. To explore these changes further and how they might affect insulin resistance would require a modification to the research design to use larger group sizes for the two models or to give a greater number of EA treatments. PMID:27555223

  13. Obesity-associated Gingival Vascular Inflammation and Insulin Resistance.

    PubMed

    Mizutani, K; Park, K; Mima, A; Katagiri, S; King, G L

    2014-06-01

    Obesity is a risk factor for periodontitis, but the pathogenic mechanism involved is unclear. We studied the effects of insulin in periodontal tissues during the state of obesity-induced insulin resistance. Gingival samples were collected from fatty (ZF) and lean (ZL, control) Zucker rats. Endothelial nitric oxide synthase (eNOS) expression was decreased, and activities of protein kinase C (PKC) α, ß2, δ, and ϵ isoforms were significantly increased in the gingiva from ZF rats compared with those from ZL rats. Expression of oxidative stress markers (mRNA) and the p65 subunit of NF-κB was significantly increased in ZF rats. Immunohistochemistry revealed that NF-κB activation was also increased in the gingival endothelial cells from transgenic mice overexpressing NF-κB-dependent enhanced green fluorescent protein (GFP) and on a high-fat vs. normal chow diet. Analysis of the gingiva showed that insulin-induced phosphorylation of IRS-1, Akt, and eNOS was significantly decreased in ZF rats, but Erk1/2 activation was not affected. General PKC inhibitor and an anti-oxidant normalized the action of insulin on Akt and eNOS activation in the gingiva from ZF rats. This provided the first documentation of obesity-induced insulin resistance in the gingiva. Analysis of our data suggested that PKC activation and oxidative stress may selectively inhibit insulin-induced Akt and eNOS activation, causing endothelial dysfunction and inflammation. PMID:24744283

  14. Methodological evaluation of indirect calorimetry data in lean and obese rats.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1993-11-01

    1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits

  15. Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report

    PubMed Central

    2011-01-01

    Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF). Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28%) or a high-salt diet (5.5%) starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food) (ZDF+S+E), hydralazine (25 mg/kg per day) (ZDF+S+H), or no treatment (ZDF+S). Rats on normal salt-diet were assigned to eplerenone (ZDF+E) or no treatment (ZDF). Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL) or high-salt diet (ZL+S) serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio) and vascular stiffness (strain and stress) were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition with less

  16. Childhood obesity.

    PubMed

    Han, Joan C; Lawlor, Debbie A; Kimm, Sue Y S

    2010-05-15

    Worldwide prevalence of childhood obesity has increased greatly during the past three decades. The increasing occurrence in children of disorders such as type 2 diabetes is believed to be a consequence of this obesity epidemic. Much progress has been made in understanding of the genetics and physiology of appetite control and from these advances, elucidation of the causes of some rare obesity syndromes. However, these rare disorders have so far taught us few lessons about prevention or reversal of obesity in most children. Calorie intake and activity recommendations need reassessment and improved quantification at a population level because of sedentary lifestyles of children nowadays. For individual treatment, currently recommended calorie prescriptions might be too conservative in view of evolving insight into the so-called energy gap. Although quality of research into both prevention and treatment has improved, high-quality multicentre trials with long-term follow-up are needed. Meanwhile, prevention and treatment approaches to increase energy expenditure and decrease intake should continue. Recent data suggest that the spiralling increase in childhood obesity prevalence might be abating; increased efforts should be made on all fronts to continue this potentially exciting trend. PMID:20451244

  17. Brown Norway chromosome 1 congenic reduces symptoms of renal disease in fatty Zucker rats.

    PubMed

    Warden, Craig H; Slupsky, Carolyn; Griffey, Stephen M; Bettaieb, Ahmed; Min, Esther; Le, Anh; Fisler, Janis S; Hansen, Susan; Haj, Fawaz; Stern, Judith S

    2014-01-01

    We previously reported that a congenic rat with Brown Norway (BN) alleles on chromosome 1 reduces renal disease of 15-week old fatty Zucker rats (ZUC). Development of renal disease in fatty BN congenic and fatty ZUC rats from 9 through 28 weeks is now examined. Analysis of urine metabolites by (1)H nuclear magnetic resonance (NMR) spectroscopy revealed a significantly increased urinary loss of glucose, myo-inositol, urea, creatine, and valine in ZUC. Food intake was lower in the BN congenic rats at weeks 9-24, but they weighed significantly more at 28 weeks compared with the ZUC group. Fasting glucose was significantly higher in ZUC than congenic and adiponectin levels were significantly lower in ZUC, but there was no significant genotype effect on Insulin levels. Glucose tolerance tests exhibited no significant differences between ZUC and congenic when values were normalized to basal glucose levels. Quantitative PCR on livers revealed evidence for higher gluconeogenesis in congenics than ZUC at 9 weeks. Plasma urea nitrogen and creatinine were more than 2-fold higher in 28-week ZUC. Twelve urine protein markers of glomerular, proximal and distal tubule disease were assayed at three ages. Several proteins that indicate glomerular and proximal tubular disease increased with age in both congenic and ZUC. Epidermal growth factor (EGF) level, a marker whose levels decrease with distal tubule disease, was significantly higher in congenics. Quantitative histology of 28 week old animals revealed the most significant genotype effect was for tubular dilation and intratubular protein. The congenic donor region is protective of kidney disease, and effects on Type 2 diabetes are likely limited to fasting glucose and adiponectin. The loss of urea together with a small increase of food intake in ZUC support the hypothesis that nitrogen balance is altered in ZUC from an early age. PMID:24498189

  18. Niacin-bound chromium increases life span in Zucker Fatty Rats.

    PubMed

    Preuss, Harry G; Echard, Bobby; Clouatre, Dallas; Bagchi, Debasis; Perricone, Nicholas V

    2011-10-01

    Avoiding insulin resistance (IR) associated with aging might lengthen life span based on previous studies using caloric-restricted animals. We assessed whether consuming niacin-bound chromium (NBC) alone or in a formula containing other so-called "insulin sensitizers" would overcome various manifestations of aging and extend life span in Zucker Fatty Rats (ZFR). We compared many metabolic parameters of ZFR fed NBC alone (n=12) or NBC in a unique formula (n=10) to a control group (n=10). In addition to NBC, the formula contained Allium sativum, Momordica charantia, Trigonella foenum-graecum and Gymnema sylvestre. The formula group received roughly 1/2 as much NBC daily as the NBC group. At week 44, all rats still lived, and no abnormalities in blood count (CBC), renal, or liver functions were found. In the two treatment groups compared to control, circulating glucose levels were significantly lower, with a trend toward lower HbA1C. Relatively elevated cholesterol and triglyceride concentrations occurred in the formula group. Compared to control, the NBC group had increased average lifespan (21.8%), median lifespan (14.1%), 30th percentile survival (19.6%), and maximum lifespan (22%). Despite similar beneficial effects on the glucose and blood pressure systems, a difference in aging was also found when the NBC group was compared to the formula group. When all rats in the other two groups had died, four in the NBC group continued to live at least a month longer. We attribute lack of a similar aging effect in the formula group to either lower dosing of NBC and/or that various ingredients in the formula counteracted the antiaging effect(s) of NBC. PMID:21930012

  19. Cannabidiol improves vasorelaxation in Zucker diabetic fatty rats through cyclooxygenase activation.

    PubMed

    Wheal, Amanda J; Cipriano, Mariateresa; Fowler, Christopher J; Randall, Michael D; O'Sullivan, Saoirse Elizabeth

    2014-11-01

    Cannabidiol (CBD) decreases insulitis, inflammation, neuropathic pain, and myocardial dysfunction in preclinical models of diabetes. We recently showed that CBD also improves vasorelaxation in the Zucker diabetic fatty (ZDF) rat, and the objective of the present study was to establish the mechanisms underlying this effect. Femoral arteries from ZDF rats and ZDF lean controls were isolated, mounted on a myograph, and incubated with CBD (10 μM) or vehicle for 2 hours. Subsequent vasorelaxant responses were measured in combination with various interventions. Prostaglandin metabolites were detected using enzyme immunoassay. Direct effects of CBD on cyclooxygenase (COX) enzyme activity were measured by oxygraph assay. CBD enhanced the maximum vasorelaxation to acetylcholine (ACh) in femoral arteries from ZDF lean rats (P < 0.01) and especially ZDF rats (P < 0.0001). In ZDF arteries, this enhancement persisted after cannabinoid receptor (CB) type 1, endothelial CB, or peroxisome proliferator-activated receptor-γ antagonism but was inhibited by CB2 receptor antagonism. CBD also uncovered a vasorelaxant response to a CB2 agonist not previously observed. The CBD-enhanced ACh response was endothelium-, nitric oxide-, and hydrogen peroxide-independent. It was, however, COX-1/2- and superoxide dismutase-dependent, and CBD enhanced the activity of both purified COX-1 and COX-2. The CBD-enhanced ACh response in the arteries was inhibited by a prostanoid EP4 receptor antagonist. Prostaglandin E2 metabolite levels were below the limits of detection, but 6-keto prostaglandin F1 α was decreased after CBD incubation. These data show that CBD exposure enhances the ability of arteries to relax via enhanced production of vasodilator COX-1/2-derived products acting at EP4 receptors. PMID:25212218

  20. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    SciTech Connect

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-11-03

    In type 2 diabetes (T2DM) {beta}-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 {+-} 3.8%) than ZF rats (48.8 {+-} 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 {+-} 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.

  1. Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5

    PubMed Central

    Mart, Ryan; Bond, Cherie E.

    2014-01-01

    Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5), the precursor for Irisin. Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR) and lean Zucker rat (LZR) with 9 weeks of aerobic training on a motorized treadmill. Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise. Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by obesity and

  2. Glucose lowering effect of montbretin A in Zucker Diabetic Fatty rats.

    PubMed

    Yuen, Violet G; Coleman, John; Withers, Steven G; Andersen, Raymond J; Brayer, Gary D; Mustafa, Sally; McNeill, John H

    2016-01-01

    Diabetes is an increasingly prevalent disease state with a global impact. It is important that effective and cost-efficient methods be developed to treat this disease state. Zucker diabetic fatty rats, an animal model of type 2 diabetes, were treated with montbretin A (MbA), a selective human pancreatic α-amylase inhibitor, isolated from the corms of the Crocosmia crocosmiiflora plant that may have potential as a glucose-lowering agent. The study purpose was to determine if MbA was an orally effective treatment for diabetes. The effect of MbA was compared to a current clinical treatment modality, acarbose that is associated with gastrointestinal side effects known to affect patient compliance. MbA and acarbose were administered daily in the drinking water. Body weight and fluid intake were measured daily to calculate dose consumption. Plasma glucose levels were determined twice weekly in both the fed and fasted state. At termination samples were collected to assess increased risk of secondary complications related to diabetes and oxidative stress. There was no effect of either MbA or acarbose treatment on insulin levels. Plasma glucose levels were significantly lower following MbA treatment in the ZT group which persisted throughout the study period (day 49: 12.1 ± 1.2 mM). However, while there was an initial decrease in plasma glucose levels in the acarbose-treated fatty group, this effect was not sustained (day 49: 20.6 ± 1.3 mM) through to termination. MbA improved the oxidative status of the fatty diabetic animals as well as attenuated markers for increased risk of cardiovascular complications associated with diabetes. This study demonstrated that, at a lower dose as compared to acarbose (10 mg/kg/day), chronic oral administration of MbA (7.5 mg/kg/day) was an effective glucose-lowering agent in the treatment of type 2 diabetes. PMID:26547551

  3. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain.

    PubMed

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38(MAPK)), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38(MAPK), and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70(S6K) kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38(MAPK) activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK-AMPK-mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  4. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain☆

    PubMed Central

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M.; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  5. Are there healthy obese?

    PubMed

    Griera Borrás, José Luis; Contreras Gilbert, José

    2014-01-01

    It is currently postulated that not all obese individuals have to be considered as pathological subjects. From 10% to 20% of obese people studied do not show the metabolic changes common in obese patients. The term "healthy obese" has been coined to refer to these patients and differentiate them from the larger and more common group of pathological obese subjects. However, the definition of "healthy obese" is not clear. Use of "healthy obese" as a synonym for obese without metabolic complications is risky. Clinical markers such as insulin resistance are used to identify this pathology. It is not clear that healthy obese subjects have lower morbidity and mortality than pathologically obese patients. According to some authors, healthy obese would represent an early stage in evolution towards pathological obesity. There is no agreement as to the need to treat healthy obese subjects. PMID:24210176

  6. Psychosocial factors in obesity.

    PubMed

    Mustajoki, P

    1987-01-01

    Obese people as a group have similar mental health as normal weight people, and there are no psychiatric features characteristic of obesity in general. However, small subgroups of obese individuals may have psychiatric abnormalities which are specific for obesity, such as body image disturbance or periodic compulsive overeating (bulimia). Obesity is strongly related to sociocultural factors. In western countries obesity is commoner in lower than in higher social classes. Thus, the development of obesity is influenced by social status. However, also the converse is true: recent observations suggest that obese people lose social status. This is probably due to prejudice and discrimination against obese persons in the modern western society. PMID:3477994

  7. Obesity and Cancer Risk

    MedlinePlus

    ... cancer screening among obese adults. National Collaborative on Childhood Obesity Research (NCCOR) NCCOR brings together four of the nation’s leading funders of childhood obesity research: the CDC, NIH, Robert Wood Johnson Foundation, ...

  8. Obesity Prevalence Maps

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Adult Obesity Prevalence Maps ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  9. Obesity and Hispanic Americans

    MedlinePlus

    ... and Data > Minority Population Profiles > Hispanic/Latino > Obesity Obesity and Hispanic Americans Among Mexican American women, 77 ... ss6304.pdf [PDF | 3.38MB] HEALTH IMPACT OF OBESITY More than 80 percent of people with type ...

  10. Obesity and African Americans

    MedlinePlus

    ... Data > Minority Population Profiles > Black/African American > Obesity Obesity and African Americans African American women have the ... ss6304.pdf [PDF | 3.38MB] HEALTH IMPACT OF OBESITY More than 80 percent of people with type ...

  11. Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Ángeles; Escrivá, Fernando; Álvarez, Carmen; Goya, Luis; Ramos, Sonia

    2015-07-01

    Insulin resistance is the primary characteristic of type 2 diabetes and results from insulin signaling defects. Cocoa has been shown to exert anti-diabetic effects by lowering glucose levels. However, the molecular mechanisms responsible for this preventive activity and whether cocoa exerts potential beneficial effects on the insulin signaling pathway in the liver remain largely unknown. Thus, in this study, the potential anti-diabetic properties of cocoa on glucose homeostasis and insulin signaling were evaluated in type 2 diabetic Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet. ZDF rats supplemented with cocoa (ZDF-Co) showed a significant decrease in body weight gain, glucose and insulin levels, as well as an improved glucose tolerance and insulin resistance. Cocoa-rich diet further ameliorated the hepatic insulin resistance by abolishing the increased serine-phosphorylated levels of the insulin receptor substrate 1 and preventing the inactivation of the glycogen synthase kinase 3/glycogen synthase pathway in the liver of cocoa-fed ZDF rats. The anti-hyperglycemic effect of cocoa appeared to be at least mediated through the decreased levels of hepatic phosphoenolpyruvate carboxykinase and increased values of glucokinase and glucose transporter 2 in the liver of ZDF-Co rats. Moreover, cocoa-rich diet suppressed c-Jun N-terminal kinase and p38 activation caused by insulin resistance. These findings suggest that cocoa has the potential to alleviate both hyperglycemia and hepatic insulin resistance in type 2 diabetic ZDF rats. PMID:25814291

  12. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats. PMID:26634322

  13. Resistance training inhibits the elevation of skeletal muscle derived-BDNF level concomitant with improvement of muscle strength in zucker diabetic rat

    PubMed Central

    Kim, Hee-Jae; So, Byunghun; Son, Jun Seok; Song, Han Sol; Oh, Seung Lyul; Seong, Je Kyung; Lee, Hoyoung; Song, Wook

    2015-01-01

    [Purpose] In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats. [Methods] Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week). [Results] After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle. [Conclusion] Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. PMID:27274460

  14. Managing childhood obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of childhood obesity has steadily increased over the last decades, with approximately 35% of children aged 6-19 classified as overweight or obese. Recently, a plateau in the increasing rates of obesity has been observed. Despite this leveling off, overweight and obese children are hea...

  15. Genetics of Obesity.

    PubMed

    Srivastava, Apurva; Srivastava, Neena; Mittal, Balraj

    2016-10-01

    Numerous classical genetic studies have proved that genes are contributory factors for obesity. Genes are directly responsible for obesity associated disorders such as Bardet-Biedl and Prader-Willi syndromes. However, both genes as well as environment are associated with obesity in the general population. Genetic epidemiological approaches, particularly genome-wide association studies, have unraveled many genes which play important roles in human obesity. Elucidation of their biological functions can be very useful for understanding pathobiology of obesity. In the near future, further exploration of obesity genetics may help to develop useful diagnostic and predictive tests for obesity treatment. PMID:27605733

  16. Glucomannan and glucomannan plus spirulina added to pork significantly block dietary cholesterol effects on lipoproteinemia, arylesterase activity, and CYP7A1 expression in Zucker fa/fa rats.

    PubMed

    González-Torres, Laura; Vázquez-Velasco, Miguel; Olivero-David, Raúl; Bastida, Sara; Benedí, Juana; González, Rafaela Raposo; González-Muñoz, Ma José; Sánchez-Muniz, Francisco J

    2015-12-01

    Zucker fa/fa rats easily develop dyslipidemia and obesity. Restructured pork (RP) is a suitable matrix for including functional ingredients. The effects of glucomannan- RP or glucomannan plus spirulina-enriched RP on plasma lipid/lipoprotein levels, cytochrome P450 7A1 (CYP7A1) expression, and arylesterase activity in growing fa/fa rats fed high-energy, high-fat cholesterol-enriched diets were tested. Groups of six rats each received diet containing 15% control-RP (C), 15% glucomannan-RP diet (G), 15% glucomannan + spirulina-RP diet (GS), and same diets enriched with 2.4% cholesterol and 0.49% cholic acid (cholesterol-enriched control (HC), cholesterol-enriched glucomannan (HG), and cholesterol-enriched glucomannan + spirulina (HGS) diets) over a 7-week period. C diet induced obesity, severe hyperglycemia, moderate hypercholesterolemia, and hypertriglyceridemia. Those facts were not significantly modified by G or GS diets. G diet increased CYP7A1 expression but decreased the total cholesterol/high density lipoproteins (HDL)-cholesterol ratio (p < 0.05) vs. C diet. GS vs. G diet increased (p < 0.05) CYP7A1 expression. HC vs. C diet reduced food intake, body weight gain, and plasma glucose (p < 0.01) but increased cholesterolemia (p < 0.01), lipidemia (plasma cholesterol plus triglycerides) (p < 0.001), cholesterol/triglyceride ratio in very low density lipoproteins (VLDL), and HDL (p < 0.05), cholesterol transported by VLDL and intermediate density lipoproteins (IDL) + low density lipoproteins (LDL), total cholesterol/HDL-cholesterol ratio and CYP7A1 expression (at least p < 0.05). HG and HGS diets vs. HC noticeably reduced lipidemia (p < 0.001), normalized VLDL and IDL + LDL lipid composition, and increased CYP7A1 expression (p < 0.01) but did not modify the cholesterol/HDL-cholesterol ratio. HGS vs. HG decreased triglyceridemia, the triglyceride-glucose (TyG) index and increased arylesterase/HDL-cholesterol activity (p < 0

  17. Therapeutic effect of vagus nerve stimulation on depressive-like behavior, hyperglycemia and insulin receptor expression in Zucker fatty rats.

    PubMed

    Li, Shaoyuan; Zhai, Xu; Rong, Peijing; McCabe, Michael F; Wang, Xing; Zhao, Jingjun; Ben, Hui; Wang, Shuxing

    2014-01-01

    Depression and type 2 diabetes (T2D) are common comorbid diseases and highly prevalent in the clinical setting with an unclarified mechanism. Zucker diabetic fatty (ZDF, fa/fa) rats natively develop T2D with hyperglycemia and hyperinsulinemia. Here we studied whether ZDF rats also innately develop depression, what a correlation is between depression and T2D, whether insulin receptor (IR) expression is involved in, and whether transcutaneous auricular vagus nerve stimulation (taVNS) would be beneficial in amelioration of the comorbidity. Six week old male ZDF and Zucker lean (ZL, fa/+) littermates were randomly divided into naïve (ZDF, n = 6; ZL, n = 7) and taVNS (ZDF-taVNS, n = 8; ZL-taVNS, n = 6) groups. Once daily 30 min-taVNS sessions were administrated under anesthesia for 34 consecutive days in taVNS groups. Blood glucose levels were tested weekly, and plasma glycosylated hemoglobin (HbAlc) level and immobility time in forced swimming test were determined on day 35 in all groups. The expression of insulin receptor (IR) in various tissues was also detected by immunostaining and Western blot. We found that naïve ZDF rats developed hyperglycemia steadily. These ZDF rats showed a strong positive correlation between longer immobility time and higher plasma HbAlC level. Long term taVNS treatment simultaneously prevented the development of depression-like behavior and progression of hyperglycemia in ZDF rats. The expression of IR in various tissues of naïve ZDF rats is lower than in naïve ZL and long-term taVNS treated ZDF rats. Collectively, our results indicate that in ZDF rats, i) depression and T2D develop simultaneously, ii) immobility time and HbAlc concentrations are highly and positively correlated, iii) a low expression of IR may be involved in the comorbidity of depression and T2D, and iv) taVNS is antidiabetic and antidepressive possibly through IR expression upregulation. PMID:25365428

  18. LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition.

    PubMed

    Matravadia, Sarthak; Zabielski, Piotr; Chabowski, Adrian; Mutch, David M; Holloway, Graham P

    2016-04-01

    While the cause of Type 2 diabetes remains poorly defined, the accumulation of reactive lipids within white adipose tissue, skeletal muscle, and liver have been repeatedly implicated as underlying mechanisms. The ability of polyunsaturated fatty acids (PUFAs) to prevent the development of insulin resistance has gained considerable interest in recent years; however, the mechanisms-of-action remain poorly described. Therefore, we determined the efficacy of diets supplemented with either linoleic acid (LA) or α-linolenic acid (ALA) in preventing insulin resistance and reactive lipid accumulation in key metabolic tissues of the obese Zucker rat. Obese Zucker rats displayed impaired glucose homeostasis and reduced n-3 and n-6 PUFA content in the liver and epididymal white adipose tissue (EWAT). After the 12-wk feeding intervention, both LA- and ALA-supplemented diets prevented whole body glucose and insulin intolerance; however, ALA had a more pronounced effect. These changes occurred in association with n-3 and n-6 accumulation in all tissues studied, albeit to different extents (EWAT > liver > muscle). Triacylglycerol (TAG), diacylglycerol (DAG), ceramide, and sphingolipid accumulation were not attenuated in obese animals supplemented with either LA or ALA, suggesting that preservation of glucose homeostasis occurred independent of changes in reactive lipid content. However, PUFA-supplemented diets differentially altered the fatty acid composition of TAGs, DAGs, and PLs in a tissue-specific manner, suggesting essential fatty acid metabolism differs between tissues. Together, our results indicate that remodeling of the fatty acid composition of various lipid fractions may contribute to the improved glucose tolerance observed in obese rats fed PUFA-supplemented diets. PMID:26764053

  19. A Metabolomics-driven Elucidation of the Anti-obesity Mechanisms of Xanthohumol*

    PubMed Central

    Kirkwood, Jay S.; Legette, LeeCole L.; Miranda, Cristobal L.; Jiang, Yuan; Stevens, Jan F.

    2013-01-01

    Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response. PMID:23673658

  20. Effects of antibodies to adipocytes on body weight, food intake, and adipose tissue cellularity in obese rats.

    PubMed

    Flint, D J

    1998-11-01

    Female Wistar rats were fed on a high fat diet for 18 weeks, during which their energy intake increased by 25% and body weight by 50% due to a doubling of adipose tissue tissue stores. Animals were then treated with increasing doses of a sheep polyclonal antiserum to rat adipocytes on days 1-4 and 7 after which they remained untreated for 14 weeks. Antibody treatment reduced body weight by 10% and the weight of parametrial and subcutaneous adipose tissue by 30-40%. This decrease was explicable entirely in terms of a decrease in the number of adipocytes presumably due to adipocyte lysis. These favourable changes in body fat mass were accompanied by improvement in at least one metabolic factor associated with obesity - serum leptin concentrations were significantly reduced in treated animals compared with high fat controls. Genetically obese Zucker rats also showed decreases in the number of adipocytes after treatment with antibodies but in contrast to diet-induced obese rats, they showed a compensatory increase in adipocyte volume which attenuated the effects on body fat mass. These results demonstrate for the first time, the potential to treat diet-induced obesity with antibodies to adipocytes by producing long-term reductions in the number of adipocytes, with minimal side-effects. PMID:9813180

  1. Metabolic profile of the hippocampus of Zucker Diabetic Fatty rats assessed by in vivo 1H magnetic resonance spectroscopy.

    PubMed

    van der Graaf, Marinette; Janssen, Susan W J; van Asten, Jack J A; Hermus, Ad R M M; Sweep, C G J; Pikkemaat, Jeroen A; Martens, Gerard J M; Heerschap, Arend

    2004-10-01

    Localized in vivo 1H magnetic resonance spectroscopy (MRS) was used to investigate metabolite levels in the brain of adult Zucker Diabetic Fatty (ZDF) rats, an animal model for type 2 diabetes mellitus. This study focussed on the hippocampus, assumed to be one of the main brain areas affected by this disease. Together with an almost 5-fold increase in blood glucose concentration measured by glucose oxidation, significant increases were found in the hippocampal concentrations of glucose (4.93 vs 1.66 mM p < 0.001), myo-inositol (6.52 vs 4.30 mM; p < 0.05), and total creatine (12.71 vs 10.50 mM; p < 0.05) in ZDF rats (n = 5) compared with littermates (n = 5). Although no obvious alterations were detected in the hippocampal levels of other metabolites, including NAA + NAAG and choline-containing compounds in the ZDF rats, the increase in Glc and Ins levels is in line with elevated brain tissue contents of these metabolites in patients with diabetes mellitus. PMID:15386626

  2. Antioxidant diet and sex interact to regulate NOS isoform expression and glomerular mesangium proliferation in Zucker diabetic rat kidney.

    PubMed

    Slyvka, Yuriy; Malgor, Ramiro; Inman, Sharon R; Ding, Julia; Heh, Victor; Nowak, Felicia V

    2016-03-01

    Oxidative stress contributes substantially to the pathophysiology of diabetic nephropathy (DN). Consumption of an antioxidant-fortified (AO) diet from an early age prevents or delays later development of DN in the Zucker rat female with type 2 diabetes. We hypothesize this is due to effects on mesangial matrix and renal nitric oxide synthase (NOS) distribution and to sex-specific differences in NOS responses in the diabetic kidney. Total glomerular tuft area (GTA) and PAS-positive tuft area (PTA), endothelial (e), neuronal (n) and inducible (i) NOS were quantified in males and females on AO or regular (REG) diet at 6 and 20 weeks of age. eNOS was observed in glomeruli and tubules. nNOS predominantly localized to tubular epithelium in both cortex and medulla. iNOS was expressed in proximal and distal tubules and collecting ducts. Sex, diabetes duration and AO diet affected the distribution of the three isoforms. GTA and PTA increased with duration of hyperglycemia and showed a negative correlation with renal levels of all NOS isoforms. AO diet in both genders was associated with less PAS-positive staining and less mesangial expansion than the REG diet, an early increase in cortical iNOS in males, and sex-specific changes in cortical eNOS at 20 weeks. These effects of AO diet may contribute to sex-specific preservation of renal function in females. PMID:26797190

  3. The effect of combined treatment with canagliflozin and teneligliptin on glucose intolerance in Zucker diabetic fatty rats.

    PubMed

    Oguma, Takahiro; Kuriyama, Chiaki; Nakayama, Keiko; Matsushita, Yasuaki; Yoshida, Kumiko; Kiuchi, Satoko; Ikenaga, Yuka; Nakamaru, Yoshinobu; Hikida, Kumiko; Saito, Akira; Arakawa, Kenji; Oka, Kozo; Ueta, Kiichiro; Shiotani, Masaharu

    2015-04-01

    To assess the impact of concomitant inhibition of sodium-glucose cotransporter (SGLT) 2 and dipeptidyl peptidase IV (DPP4) for the treatment of type 2 diabetes mellitus (T2DM), the effect of combined treatment with canagliflozin, a novel SGLT2 inhibitor, and teneligliptin, a DPP4 inhibitor, on glucose intolerance was investigated in Zucker diabetic fatty (ZDF) rats. Canagliflozin potently inhibited human and rat SGLT2 and moderately inhibited human and rat SGLT1 activities but did not affect DPP4 activity. In contrast, teneligliptin inhibited human and rat DPP4 activities but not SGLT activities. A single oral treatment of canagliflozin and teneligliptin suppressed plasma glucose elevation in an oral glucose tolerance test in 13 week-old ZDF rats. This combination of agents elevated plasma active GLP-1 levels in a synergistic manner, probably mediated by intestinal SGLT1 inhibition, and further improved glucose intolerance. In the combination-treated animals, there was no pharmacokinetic interaction of the drugs and no further inhibition of plasma DPP4 activity compared with that in the teneligliptin-treated animals. These results suggest that the inhibition of SGLT2 and DPP4 improves glucose intolerance and that combined treatment with canagliflozin and teneligliptin is a novel therapeutic option for glycemic control in T2DM. PMID:25892328

  4. Anti-inflammatory effect of amlodipine plus atorvastatin treatment on carotid atherosclerosis in zucker metabolic syndrome rats.

    PubMed

    Zhang, Xuemei; Tian, Fengfeng; Kawai, Hiromi; Kurata, Tomoko; Deguchi, Shoko; Deguchi, Kentaro; Shang, Jingwei; Liu, Ning; Liu, Wentao; Ikeda, Yoshio; Matsuura, Tohru; Kamiya, Tatsushi; Abe, Koji

    2012-12-01

    To investigate the effects of amlodipine in combination with atorvastatin on carotid atherosclerotic changes in metabolic syndrome, 8-week-old Zucker fatty rats were treated with vehicle, amlodipine, atorvastatin, or amlodipine in combination with atorvastatin for 28 days. Histological studies of common carotid arteries showed that lipid deposition determined by Sudan III staining was significantly reduced in rats treated with amlodipine or atorvastatin alone and was further reduced by amlodipine in combination with atorvastatin. Immunohistochemical studies of the pro-inflammatory cytokine tumor necrosis factor (TNF)-α, the arterial calcification initiator bone morphogenetic protein (BMP) 2, the angiogenic factor Notch1, and the smooth muscle cell marker α-smooth muscle actin (SMA) showed that the high expression of all four protein in vehicle-treated rats was greatly decreased by amlodipine, atorvastatin, or amlodipine in combination with atorvastatin, in ascending order. Double immunostaining showed marked colocalization of TNF-α with bone morphogenetic protein 2 and Notch1 with α-SMA in the vehicle group, which was greatly reduced by amlodipine plus atorvastatin. These data suggest that combination therapy may be more effective in preventing atherosclerotic processes and subsequent carotid vascular events than administrating amlodipine or atorvastatin alone in metabolic syndrome. PMID:24323832

  5. ASP4000, a slow-binding dipeptidyl peptidase 4 inhibitor, has antihyperglycemic activity of long duration in Zucker fatty rats.

    PubMed

    Tanaka-Amino, Keiko; Matsumoto, Kazumi; Hatakeyama, Yoshifumi; Takakura, Shoji; Mutoh, Seitaro

    2010-03-01

    ASP4000 ((2S)-1-{[(1R,3S,4S,6R)-6-hydroxy-2-azabicyclo[2.2.1]hept-3-yl]carbonyl}-2-pyrrolidinecarbonitrile hydrochloride) is a novel, potent and selective dipeptidyl peptidase 4 (DPP IV, EC 3.4.14.5) inhibitor (Keiko Tanaka-Amino et al. in Eur J pharmacol 59:444-449, 2008). The aim of the present study was to characterize the kinetic profile of and identify the long duration effect of the antihyperglycemic activity of ASP4000. ASP4000 was found to inhibit human recombinant DPP4 activity with a K(i) of 1.05 nM, a k(on) value of 22.3 x 10(5) M(-1) s(-1), and a k (off) of 2.35 x 10(-3) M(-1) s(-1), with higher affinity than that of vildagliptin. The kinetic studies indicate that both the formation and dissociation of ASP4000/DPP4 complex were faster than those of vildagliptin, and that ASP4000 slow-bindingly inhibits DPP4 with a different mode of inhibition than vildagliptin. In addition, ASP4000 augmented the insulin response and ameliorated the glucose excursion during the oral glucose tolerance test in Zucker fatty rats at 4 h post dosing. ASP4000 is expected to be a promising, long duration DPP4 inhibitor for type 2 diabetes. PMID:19238312

  6. Obesity and Anesthesia

    MedlinePlus

    ... Apnea and Anesthesia Smoking and Anesthesia Outpatient Surgery Obesity and Anesthesia More than one-third of Americans ... Sleep Apnea, a chronic medical problem common with obesity, can present with serious breathing problems before, during, ...

  7. Obesity and health (image)

    MedlinePlus

    Obesity increases a person's risk of illness and death due to diabetes, stroke, heart disease, hypertension, high cholesterol, and kidney and gallbladder disease. Obesity may increase the risk for some types of ...

  8. Reducing Childhood Obesity

    MedlinePlus

    ... Bar Home Current Issue Past Issues Reducing Childhood Obesity Past Issues / Summer 2007 Table of Contents For ... Ga. were the first three We Can! cities. Obesity Research: A New Approach The percentage of children ...

  9. Defining Overweight and Obesity

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Defining Adult Overweight and ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  10. Obesity Disease and Surgery

    PubMed Central

    Al-Mulhim, Abdulrahman Saleh; Al-Hussaini, Hessah Abdulaziz; Al-Jalal, Bashaeer Abdullah; Al-Moagal, Rehab Omar; Al-Najjar, Sara Abdullah

    2014-01-01

    Obesity is a medical disease that is increasing significantly nowadays. Worldwide obesity prevalence doubled since 1980. Obese patients are at great risk for complications with physical and psychological burdens, thus affecting their quality of life. Obesity is well known to have higher risk for cardiovascular diseases, diabetes mellitus, musculoskeletal diseases and shorter life expectancy. In addition, obesity has a great impact on surgical diseases, and elective surgeries in comparison to general population. There is higher risk for wound infection, longer operative time, poorer outcome, and others. The higher the BMI (body mass index), the higher the risk for these complications. This literature review illustrates the prevalence of obesity as a diseases and complications of obesity in general as well as, in a surgical point of view, general surgery perioperative risks and complications among obese patients. It will review the evidence-based updates in these headlines. PMID:26464861

  11. Obesity Hypoventilation Syndrome

    MedlinePlus

    ... Twitter. What Is Obesity Hypoventilation Syndrome? Obesity hypoventilation (HI-po-ven-tih-LA-shun) syndrome (OHS) is ... e-DE-mah), pulmonary hypertension (PULL-mun-ary HI-per-TEN-shun), cor pulmonale (pul-meh-NAL- ...

  12. Obesity: Pathophysiology and Intervention

    PubMed Central

    Zhang, Yi; Liu, Ju; Yao, Jianliang; Ji, Gang; Qian, Long; Wang, Jing; Zhang, Guansheng; Tian, Jie; Nie, Yongzhan; Zhang, Yi Edi.; Gold, Mark S.; Liu, Yijun

    2014-01-01

    Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity. PMID:25412152

  13. Obesity in children

    MedlinePlus

    Obesity means having too much body fat. It is not the same as overweight, which means a ... they develop more fat cells and may develop obesity. Normally, infants and young children respond to signals ...

  14. Obesity: pathophysiology and intervention.

    PubMed

    Zhang, Yi; Liu, Ju; Yao, Jianliang; Ji, Gang; Qian, Long; Wang, Jing; Zhang, Guansheng; Tian, Jie; Nie, Yongzhan; Zhang, Yi Edi; Gold, Mark S; Liu, Yijun

    2014-11-01

    Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity. PMID:25412152

  15. Reducing Childhood Obesity

    MedlinePlus

    ... To help counter the current epidemic of childhood obesity in the United States, five NIH institutes joined together in 2005 to start and promote an obesity-prevention program " We Can! "—"Ways to Enhance Children's ...

  16. Childhood Obesity: An Overview

    ERIC Educational Resources Information Center

    Reilly, John J.

    2007-01-01

    This article reviews recent research evidence, largely from systematic reviews, on a number of aspects of childhood obesity: its definition and prevalence; consequences; causes and prevention. The basis of the body mass index (BMI) as a means of defining obesity in children and adolescents is discussed: a high BMI for age constitutes obesity. In…

  17. The Complexity of Obesity

    ERIC Educational Resources Information Center

    Gray, Katti

    2010-01-01

    With Americans fatter and more malnourished than ever--almost two-thirds of the population is considered overweight or obese compared with 56 percent in the late 1980s and early 1990s, and people of color and the poor are the most obese of all--federal and university researchers and outreach workers from various anti-obesity organizations aim to…

  18. Childhood environment and obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    US children are at risk for developing childhood obesity. Currently, 23% of children ages 2–5 are overweight or obese, i.e., at or above the 85th percentile. This prevalence becomes even higher as children age, with 34% of children ages 6–11 being overweight or obese. Ethnic minority children are at...

  19. Obesity, Physical Activity - Children.

    ERIC Educational Resources Information Center

    Gilliam, Thomas B.

    Childhood obesity starts at a very early age, and preventive measures taken early enough may retard the development of fat cells. It appears that physical activity plays an important role in reducing obesity. The activity program must start early, in preschool days. It is felt that screening children for obesity when they first enter school and…

  20. Obesity and Psychoanalysis.

    ERIC Educational Resources Information Center

    Rand, Colleen S.; Stunkard, Albert J.

    This report describes a collaborative study undertaken by 72 psychoanalysts in an effort to (1) collect systematic data about obese patients in psychoanalysis and (2) assess the effect of psychoanalysis in the treatment of obesity. A total of 84 obese and 63 normal weight patients was studied. Each analyst completed a detailed questionnaire on his…

  1. Environmental Perturbations: Obesity

    PubMed Central

    Shore, Stephanie A.

    2014-01-01

    Obesity currently affects about one third of the U.S. population, while another one third is overweight. The importance of obesity for certain conditions such as heart disease and type 2 diabetes is well appreciated. The effects of obesity on the respiratory system have received less attention and are the subject of this chapter. Obesity alters the static mechanic properties of the respiratory system leading to a reduction in the functional residual capacity (FRC) and the expiratory reserve volume (ERV). There is substantial variability in the effects of obesity on FRC and ERV, at least some of which is related to the location, rather than the total mass of adipose tissue. Obesity also results in airflow obstruction, which is only partially attributable to breathing at low lung volume, and can also promote airway hyperresponsiveness and asthma. Hypoxemia is common is obesity, and correlates well with FRC, as well as with measures of abdominal obesity. However, obese subjects are usually eucapnic, indicating that hypoventilation is not a common cause of their hypoxemia. Instead, hypoxemia results from ventilation perfusion mismatch caused by closure of dependent airways at FRC. Many obese subjects complain of dyspnea either at rest or during exertion, and the dyspnea score also correlates with reductions in FRC and ERV. Weight reduction should be encouraged in any symptomatic obese individual, since virtually all of the respiratory complications of obesity improve with even moderate weight loss. PMID:23737172

  2. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats.

    PubMed

    Sudre, Béatrice; Broqua, Pierre; White, Richard B; Ashworth, Doreen; Evans, D Michael; Haigh, Robert; Junien, Jean-Louis; Aubert, Michel L

    2002-05-01

    Acute suppression of dipeptidyl peptidase IV (DPP-IV) activity improves glucose tolerance in the Zucker fatty rat, a rodent model of impaired glucose tolerance, through stabilization of glucagon-like peptide (GLP)-1. This study describes the effects of a new and potent DPP-IV inhibitor, FE 999011, which is able to suppress plasma DPP-IV activity for 12 h after a single oral administration. In the Zucker fatty rat, FE 999011 dose-dependently attenuated glucose excursion during an oral glucose tolerance test and increased GLP-1 (7-36) release in response to intraduodenal glucose. Chronic treatment with FE 999011 (10 mg/kg, twice a day for 7 days) improved glucose tolerance, as suggested by a decrease in the insulin-to-glucose ratio. In the Zucker diabetic fatty (ZDF) rat, a rodent model of type 2 diabetes, chronic treatment with FE 999011 (10 mg/kg per os, once or twice a day) postponed the development of diabetes, with the twice-a-day treatment delaying the onset of hyperglycemia by 21 days. In addition, treatment with FE 999011 stabilized food and water intake to prediabetic levels and reduced hypertriglyceridemia while preventing the rise in circulating free fatty acids. At the end of treatment, basal plasma GLP-1 levels were increased, and pancreatic gene expression for GLP-1 receptor was significantly upregulated. This study demonstrates that DPP-IV inhibitors such as FE 999011 could be of clinical value to delay the progression from impaired glucose tolerance to type 2 diabetes. PMID:11978643

  3. [Obesity and asthma].

    PubMed

    Vázquez García, Juan Carlos

    2002-01-01

    Obesity and asthma are two disorders of high and increasing worldwide prevalence. A consistent association between obesity and asthma has been recently found in case-control, cross-sectional and longitudinal studies. This association is more consistent in women after the puberty. Moreover, an improvement in the severity of asthma has been described after weight reduction in obese patients. A causal association between asthma and obesity may represent an additional respiratory work that could increase the morbidity and medical expenditures. The most striking studies which demonstrate association between obesity and asthma and the possible causal mechanisms are reviewed. PMID:12587420

  4. Challenges in obesity research.

    PubMed

    Palou, Andreu; Bonet, M Luisa

    2013-09-01

    Obesity is the main nutritional problem and one of the most important health problems in developed societies. Central to the challenge of obesity prevention and management is a thoroughly understanding of its determinants. Multiple socio-cultural, socio-economic, behavioural and biological factors--often interrelated and many of them still unknown or poorly understood--can contribute to the establishment and perpetuation of obese phenotypes. Here, we address current research challenges regarding basic aspects of obesity and emerging science for its control, including brown adipose tissue thermogenesis and browning of white fat as possible therapeutic targets for obesity, the influence of the microbioma, and genetics, epigenetics, nutrigenomics and nutrigenetics of obesity. We also highlight hot topics in relation to food and lifestyle as determinants of obesity, including the brain mechanisms underlying environmental motivation to eat, the biological control of spontaneous physical activity, the possible role of concrete foods and food components, and the importance of early life nutrition and environment. Challenges regarding the connections of obesity with other alterations and pathologies are also briefly addressed, as well as social and economical challenges in relation to healthy food production and lifestyle for the prevention of obesity, and technological challenges in obesity research and management. The objective is to give a panoramic of advances accomplished and still ahead relevant to the different stakeholders engaged in understanding and combating obesity. PMID:24010755

  5. Endoscopic Devices for Obesity.

    PubMed

    Sampath, Kartik; Dinani, Amreen M; Rothstein, Richard I

    2016-06-01

    The obesity epidemic, recognized by the World Health Organization in 1997, refers to the rising incidence of obesity worldwide. Lifestyle modification and pharmacotherapy are often ineffective long-term solutions; bariatric surgery remains the gold standard for long-term obesity weight loss. Despite the reported benefits, it has been estimated that only 1% of obese patients will undergo surgery. Endoscopic treatment for obesity represents a potential cost-effective, accessible, minimally invasive procedure that can function as a bridge or alternative intervention to bariatric surgery. We review the current endoscopic bariatric devices including space occupying devices, endoscopic gastroplasty, aspiration technology, post-bariatric surgery endoscopic revision, and obesity-related NOTES procedures. Given the diverse devices already FDA approved and in development, we discuss the future directions of endoscopic therapies for obesity. PMID:27115879

  6. [Cardiovascular complications of obesity].

    PubMed

    Cascella, Teresa; Giallauria, Francesco; Tafuri, Domenico; Lombardi, Gaetano; Colao, Annamaria; Vigorito, Carlo; Orio, Francesco

    2006-12-01

    Obesity is one of the major coronary risk factor representing an increasingly important worldwide health problem. The increased prevalence of obesity among younger population is likely to have long-term implications for cardiovascular disease (CVD). Obesity plays a central role in the insulin resistance syndrome and contributes to increase the risk of atherosclerotic CVD. The present review will examine the relationships among cardiovascular risk factors during the childhood-adolescence-adulthood transition. In fact, the relationship between obesity (especially visceral obesity) and CVD appears to develop at a relatively young age. The foremost physical consequence of obesity is atherosclerotic cardiovascular disease and polycystic ovary syndrome represents an intriguing example of obesity-related cardiovascular complications affecting young women. PMID:17312846

  7. Obesity: an emerging disease.

    PubMed

    Ogunbode, A M; Ladipo, Mma; Ajayi, I O; Fatiregun, A A

    2011-01-01

    Obesity is rapidly becoming an emerging disease in developing countries due to the increasing westernization of societies and change in the lifestyle. The etiology of obesity is said to be multifactorial, with a combination of genetic and environmental factors. Literature has been extensively reviewed to provide a broad overview of obesity. Data for this review were obtained from original articles, review articles and textbooks. Internet search engines were also employed. The years searched were from 1993 to 2008. Obesity, classified in terms of the body mass index and the waist-hip ratio, has several associated co-morbidities such as diabetes mellitus, hypertension, degenerative osteoarthritis and infertility. In Nigeria, there is limited information on obesity. A literature review on obesity is necessary to improve the knowledge about obesity in developing countries, its prevention and its management. PMID:22248935

  8. Obesity and gastrointestinal diseases.

    PubMed

    Fujimoto, Ai; Hoteya, Shu; Iizuka, Toshiro; Ogawa, Osamu; Mitani, Toshifumi; Kuroki, Yuichiro; Matsui, Akira; Nakamura, Masanori; Kikuchi, Daisuke; Yamashita, Satoshi; Furuhata, Tsukasa; Yamada, Akihiro; Nishida, Noriko; Arase, Koji; Hashimoto, Mitsuyo; Igarashi, Yoshinori; Kaise, Mitsuru

    2013-01-01

    The prevalence of obesity in the Japanese population has been increasing dramatically in step with the Westernization of lifestyles and food ways. Our study demonstrated significant associations between obesity and a number of gastrointestinal disorders in a large sample population in Japan. We demonstrated that reflux esophagitis and hiatal hernia were strongly related to obesity (BMI > 25) in the Japanese. In particular, obesity with young male was a high risk for these diseases. On the other hand, it has been reported that obesity is also associated with Barrett's esophagus and colorectal adenoma; however, obesity was not a risk factor for these diseases in our study. The difference of ethnicity of our subjects may partly explain why we found no data to implicate obesity as a risk factor for Barrett's esophagus. Arterial sclerosis associated with advanced age and hyperglycemia was accompanied by an increased risk of colorectal adenoma. PMID:23781242

  9. Gastrointestinal Morbidity in Obesity

    PubMed Central

    Acosta, Andres; Camilleri, Michael

    2014-01-01

    Obesity is a complex disease that results from increased energy intake and decreased energy expenditure. The gastrointestinal system plays a key role in the pathogenesis of obesity and facilitates caloric imbalance. Changes in gastrointestinal hormones and the inhibition of mechanisms that curtail caloric intake result in weight gain. It is not clear if the gastrointestinal role in obesity is a cause or an effect of this disease. Obesity is often associated with type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). Obesity is also associated with gastrointestinal disorders, which are more frequent and present earlier than T2DM and CVD. Diseases such as gastro-esophageal reflux disease, cholelithiasis or non-alcoholic steatohepatitis are directly related to body weight and abdominal adiposity. Our objective is to assess the role of each gastrointestinal organ in obesity and the gastrointestinal morbidity resulting in those organs from effects of obesity. PMID:24602085

  10. Obesity and Gastrointestinal Diseases

    PubMed Central

    Fujimoto, Ai; Hoteya, Shu; Iizuka, Toshiro; Ogawa, Osamu; Mitani, Toshifumi; Kuroki, Yuichiro; Matsui, Akira; Nakamura, Masanori; Kikuchi, Daisuke; Yamashita, Satoshi; Furuhata, Tsukasa; Yamada, Akihiro; Nishida, Noriko; Arase, Koji; Hashimoto, Mitsuyo; Igarashi, Yoshinori; Kaise, Mitsuru

    2013-01-01

    The prevalence of obesity in the Japanese population has been increasing dramatically in step with the Westernization of lifestyles and food ways. Our study demonstrated significant associations between obesity and a number of gastrointestinal disorders in a large sample population in Japan. We demonstrated that reflux esophagitis and hiatal hernia were strongly related to obesity (BMI > 25) in the Japanese. In particular, obesity with young male was a high risk for these diseases. On the other hand, it has been reported that obesity is also associated with Barrett's esophagus and colorectal adenoma; however, obesity was not a risk factor for these diseases in our study. The difference of ethnicity of our subjects may partly explain why we found no data to implicate obesity as a risk factor for Barrett's esophagus. Arterial sclerosis associated with advanced age and hyperglycemia was accompanied by an increased risk of colorectal adenoma. PMID:23781242

  11. Obesity and obligation.

    PubMed

    Jeppsson, Sofia

    2015-03-01

    The belief that obese people ought to lose weight and keep it off is widespread, and has a profound negative impact on the lives of the obese. I argue in this paper that most obese people have no such obligation, even if obesity is bad, and caused by calorie input exceeding output. Obese people do not have an obligation to achieve long-term weight loss if this is impossible for them, is worse than the alternative, or requires such an enormous effort in relation to what stands to be gained that this option is supererogatory rather than obligatory. It is highly plausible that most obese people fall into one of these three groups. Politicians may still have obligations to fight obesity, but they ought to do so through progressive politics rather than blaming and shaming. PMID:25843121

  12. Metformin Protects Kidney Cells From Insulin-Mediated Genotoxicity In Vitro and in Male Zucker Diabetic Fatty Rats.

    PubMed

    Othman, Eman Maher; Oli, R G; Arias-Loza, Paula-Anahi; Kreissl, Michael C; Stopper, Helga

    2016-02-01

    Hyperinsulinemia is thought to enhance cancer risk. A possible mechanism is induction of oxidative stress and DNA damage by insulin, Here, the effect of a combination of metformin with insulin was investigated in vitro and in vivo. The rationales for this were the reported antioxidative properties of metformin and the aim to gain further insights into the mechanisms responsible for protecting the genome from insulin-mediated oxidative stress and damage. The comet assay, a micronucleus frequency test, and a mammalian gene mutation assay were used to evaluate the DNA damage produced by insulin alone or in combination with metformin. For analysis of antioxidant activity, oxidative stress, and mitochondrial disturbances, the cell-free ferric reducing antioxidant power assay, the superoxide-sensitive dye dihydroethidium, and the mitochondrial membrane potential-sensitive dye 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide were applied. Accumulation of p53 and pAKT were analyzed. As an in vivo model, hyperinsulinemic Zucker diabetic fatty rats, additionally exposed to insulin during a hyperinsulinemic-euglycemic clamp, were treated with metformin. In the rat kidney samples, dihydroethidium staining, p53 and pAKT analysis, and quantification of the oxidized DNA base 8-oxo-7,8-dihydro-2'-deoxyguanosine were performed. Metformin did not show intrinsic antioxidant activity in the cell-free assay, but protected cultured cells from insulin-mediated oxidative stress, DNA damage, and mutation. Treatment of the rats with metformin protected their kidneys from oxidative stress and genomic damage induced by hyperinsulinemia. Metformin may protect patients from genomic damage induced by elevated insulin levels. This may support efforts to reduce the elevated cancer risk that is associated with hyperinsulinemia. PMID:26636185

  13. Effects of glucomannan/spirulina-surimi on liver oxidation and inflammation in Zucker rats fed atherogenic diets.

    PubMed

    Vázquez-Velasco, Miguel; González-Torres, Laura; López-Gasco, Patricia; Bastida, Sara; Benedí, Juana; González-Muñoz, María José; Sánchez-Muniz, Francisco J

    2015-12-01

    Cholesterolemia is associated with pro-oxidative and proinflammatory effects. Glucomannan- or glucomannan plus spirulina-enriched surimis were included in cholesterol-enriched high-saturated diets to test the effects on lipemia; antioxidant status (glutathione status, and antioxidant enzymatic levels, expressions and activities); and inflammation biomarkers (endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α)) in Zucker fa/fa rats. Groups of eight rats each received diet containing squid-surimi (C), squid-surimi cholesterol-enriched diet (HC), glucomannan-squid-surimi cholesterol-enriched diet (HG), or glucomannan-spirulina-squid-surimi cholesterol-enriched diet (HGS) over a period of 7 weeks. HC diet induced severe hyperlipemia, hepatomegalia, increased inflammation markers, and impaired antioxidant status significantly (at least p < 0.05) vs. C diet. HG diet decreased lipemia and liver size and normalized antioxidant status to C group levels, but increased TNF-α with respect to HC diet (p < 0.05). In general terms, 3 g/kg of spirulina in diet maintained the positive results observed in the HG diet but, in addition, increased inflammation index [eNOS/(eNOS + iNOS)] and decreased plasma TNF-α (both p < 0.05). In conclusion, glucomannan plus a small amount of spirulina blocks negative effects promoted by hypercholesterolemic diets. Although more studies are needed, present results suggest the utility of including glucomannan and/or spirulina as functional ingredients into fish derivates to be consumed by people on metabolic syndrome risk. PMID:26239810

  14. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats

    PubMed Central

    Delic, Denis; Eisele, Claudia; Schmid, Ramona; Luippold, Gerd; Mayoux, Eric; Grempler, Rolf

    2016-01-01

    The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications. PMID:27153060

  15. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats.

    PubMed

    Delic, Denis; Eisele, Claudia; Schmid, Ramona; Luippold, Gerd; Mayoux, Eric; Grempler, Rolf

    2016-01-01

    The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications. PMID:27153060

  16. Effects of Whey Proteins on Glucose Metabolism in Normal Wistar Rats and Zucker Diabetic Fatty (ZDF) Rats

    PubMed Central

    Gregersen, Soren; Bystrup, Sara; Overgaard, Ann; Jeppesen, Per B.; Sonderstgaard Thorup, Anne C.; Jensen, Erik; Hermansen, Kjeld

    2013-01-01

    BACKGROUND: Beneficial effects of milk protein on glucose metabolism have been reported. OBJECTIVES: We hypothesized that dietary supplementation with specific milk protein fractions could prevent diabetes and differentially alter tissue gene expression. Therefore, we studied the effects of supplementing the diet with whey isolate, whey hydrolysate, Α-lactalbumin, and casein proteins in Zucker Diabetic Fatty rats (ZDF) and normal Wistar rats. A chow diet was included as well. METHODS: Six week old male ZDF (n = 60) and Wistar rats (n = 44) were used in a 13 week study. P-glucose, p-insulin, p-glucagon, HbA1c, total-cholesterol, HDL-cholesterol, and triglycerides were measured. An oral glucose tolerance test (OGTT) was performed. Liver, muscle, and adipose samples were used for RT-PCR. One-way ANOVA and multiple comparison tests were performed. RESULTS: HbA1c increased during intervention, and was significantly lower for all milk protein fractions compared to chow in the ZDF rats (p < 0.05). At week 18, iAUCs during OGTT in the ZDF rats were similar for all milk protein-treated groups and significantly lower than in the chow fed group (p < 0.01). In the chow-fed group of ZDF rats, p-glucagon increased significantly compared to all milk protein fed animals. Total and HDL cholesterol were increased in the milk protein-treated ZDF rats compared with the control group. Expression of liver GYS2 and SREBP-2 were downregulated in the milk protein-fed ZDF groups compared with chow. CONCLUSIONS: We conclude that milk protein fractions improve glycemic indices in diabetic rats. No major differences were seen between the milk protein fractions. However, the fractions had a differential impact on tissue gene expression, most pronounced in ZDF rats. PMID:24841879

  17. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats.

    PubMed

    Fu, Jin; Oveisi, Fariba; Gaetani, Silvana; Lin, Edward; Piomelli, Daniele

    2005-06-01

    The fatty-acid ethanolamide, oleoylethanolamide (OEA), is a naturally occurring lipid that regulates feeding and body weight [Rodriguez de Fonseca, F., Navarro, M., Gomez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., Kathuria, S., Gall, C., Piomelli, D., 2001. An anorexic lipid mediator regulated by feeding. Nature 414, 209-212], and serves as an endogenous agonist of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth., A., Luecke, H., Di Giacomo, B., Tarzia, G., Piomelli, D., 2003. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93], a ligand-activated transcription factor that regulates several aspects of lipid metabolism [. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688]). OEA reduces food intake in wild-type mice, but not in mice deficient in PPAR-alpha (PPAR-alpha(-/-)), an effect that is also observed with the PPAR-alpha agonists Wy-14643 and GW7647 [Brown, P.J., Chapman, J.M., Oplinger, J.A., Stuart, L.W., Willson, T.M. and Wu, Z., 2000. Chemical compounds as selective activators of PPAR-alpha. PCT Int. Appl., 32; . The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527-550]. By contrast, specific agonists of PPAR-delta/beta (GW501516) or PPAR-gamma (ciglitazone) have no such effect. In obese Zucker rats, which lack functional leptin receptors, OEA reduces food intake and lowers body-weight gain along with plasma lipid levels. Similar effects are seen in diet-induced obese rats and mice. In the present study, we report that subchronic OEA treatment (5mgkg(-1), intraperitoneally, i.p., once daily for two weeks) in Zucker rats initiates transcription of PPAR-alpha and other PPAR-alpha target genes, including fatty-acid translocase (FAT/CD36), liver fatty

  18. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism.

    PubMed

    She, Pengxiang; Van Horn, Cynthia; Reid, Tanya; Hutson, Susan M; Cooney, Robert N; Lynch, Christopher J

    2007-12-01

    Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the obesity-related rises in BCAAs, we assessed the first two enzymatic steps, catalyzed by mitochondrial branched chain amino acid aminotransferase (BCATm) or the branched chain alpha-keto acid dehydrogenase (BCKD E1alpha subunit) complex, in two rodent models of obesity (ob/ob mice and Zucker rats) and after surgical weight loss intervention in humans. Obese rodents exhibited hyperaminoacidemia including BCAAs. Whereas no obesity-related changes were observed in rodent skeletal muscle BCATm, pS293, or total BCKD E1alpha or BCKD kinase, in liver BCKD E1alpha was either unaltered or diminished by obesity, and pS293 (associated with the inactive state of BCKD) increased, along with BCKD kinase. In epididymal fat, obesity-related declines were observed in BCATm and BCKD E1alpha. Plasma BCAAs were diminished by an overnight fast coinciding with dissipation of the changes in adipose tissue but not in liver. BCAAs also were reduced by surgical weight loss intervention (Roux-en-Y gastric bypass) in human subjects studied longitudinally. These changes coincided with increased BCATm and BCKD E1alpha in omental and subcutaneous fat. Our results are consistent with the idea that tissue-specific alterations in BCAA metabolism, in liver and adipose tissue but not in muscle, may contribute to the rise in plasma BCAAs in obesity. PMID:17925455

  19. The sociology of obesity.

    PubMed

    Rosengren, Annika; Lissner, Lauren

    2008-01-01

    The current obesity epidemic is largely driven by environmental factors, including nutritional transition towards refined and fatty foods with the growing production of energy-dense food at relatively low cost, increased access to motor vehicles, mechanisation of work and sedentary lifestyles. These influences in modern society are modified by individual characteristics. Ultimately, energy intake in excess of caloric expenditure causes obesity, but why this occurs in some but not all individuals is not known. Obesity is more prevalent in the lower socioeconomic classes but even so, there is a varying relation of socioeconomic status with obesity between countries at different stages of development and, even in the Western world, socioeconomic gradients with respect to obesity are both heterogeneous and in transition. Potential mechanisms for an effect of obesity on subsequent social status have been proposed, the most obvious being related to the stigmatisation experienced by the obese. Obesity seems to be causally related to mood disturbances, whereas there is no conclusive evidence that the reverse is true. When considering psychological aspects of obesity, depressive symptoms are more likely to be consequences, rather than causes of obesity. PMID:18230907

  20. Obesity and asthma.

    PubMed

    Gibson, Peter G

    2013-12-01

    There is a global epidemic of asthma and obesity that is concentrated in Westernized and developed countries. A causal association in some people with asthma is suggested by observations that obesity precedes the onset of asthma and that bariatric surgery for morbid obesity can resolve asthma. The obese asthma phenotype features poor asthma control, limited response to corticosteroids, and an exaggeration of the physiological effects of obesity on lung function, which includes a reduction in expiratory reserve volume and airway closure occurring during tidal breathing. Obesity has important implications for asthma treatment. Increasing corticosteroid doses based on poor asthma control, as currently recommended in guidelines, may lead to overtreatment with corticosteroids in obese asthma. Enhanced bronchodilation, particularly of the small airways, may reduce the component of airway closure due to increased bronchomotor tone and suggests that greater emphasis should be placed on long-acting bronchodilators in obese asthma. The societal implications of this are important: with increasing obesity there will be increasing asthma from obesity, and the need to identify successful individual and societal weight-control strategies becomes a key goal. PMID:24313764

  1. Effects of genetic obesity on rat upper airway muscle and diaphragm contractile properties.

    PubMed

    van Lunteren, E

    1996-10-01

    The contractile properties of pharyngeal respiratory muscle are altered in sleep apnoea and in conditions associated with sleep apnoea, such as ageing. We hypothesized that the contractile properties of the pharyngeal musculature are also altered by obesity, another factor associated with sleep apnoea. Studies compared a pharyngeal muscle, the sternohyoid, with the diaphragm. These were chosen as representative muscles whose contraction has opposing effects on upper airway patency. Both muscles were removed from nine lean and nine obese male Zucker rats (a genetic model of obesity), and isometric contractile properties were studied in vitro at 37 degrees C. For the sternohyoid muscle, in obese compared to lean animals there were no significant differences in isometric contraction time (15.2 +/- 0.3 vs 14.2 +/- 0.6 ms, respectively), half-relaxation time (13.6 +/- 0.5 vs 12.6 +/- 0.9 ms, respectively), twitch-to-tetanic tension ratio (0.22 +/- 0.02 vs 0.24 +/- 0.02, respectively), force-frequency relationship, fatigue resistance (2 min fatigue index 0.20 +/- 0.03 vs 0.18 +/- 0.02, respectively), or maximal degree of force potentiation during repetitive stimulation (52 +/- 11 vs 74 +/- 20% increase, respectively). For the diaphragm, the only significant effect of obesity was a lowering of the twitch-to-tetanic tension ratio (0.25 +/- 0.01 vs 0.29 +/- 0.02, respectively). In obese, as in lean animals, the sternohyoid had faster isometric twitch kinetics, a larger degree of force potentiation, and lower resistance to fatigue, than the diaphragm. In lean, but not obese, animals the sternohyoid twitch-to-tetanic tension ratio was lower than and the force frequency relationship was located to the right of that of the diaphragm. In this study, genetic obesity in rats was not associated with any significant alterations in the contractile properties of the pharyngeal muscle, and only small changes in the relationship between the contractile properties of the sternohyoid and

  2. A Rosemary Extract Rich in Carnosic Acid Selectively Modulates Caecum Microbiota and Inhibits β-Glucosidase Activity, Altering Fiber and Short Chain Fatty Acids Fecal Excretion in Lean and Obese Female Rats

    PubMed Central

    Larrosa, Mar; Obiol, María; García-Villalba, Rocío; González-Barrio, Rocío; Issaly, Nicolas; Flanagan, John; Roller, Marc; Tomás-Barberán, Francisco A.; García-Conesa, María-Teresa

    2014-01-01

    Background Carnosic acid (CA) and rosemary extracts (RE) show body-weight, energy metabolism and inflammation regulatory properties in animal models but the mechanisms are not yet understood. Gut microbiota plays an important role in the host metabolism and inflammatory status and is modulated by the diet. The aim of this research was to investigate whether a RE enriched in CA affected caecum microbiota composition and activity in a rat model of genetic obesity. Methods and Principal Findings A RE (40% CA) was administered with the diet (0.5% w/w) to lean (fa/+) and obese (fa/fa) female Zucker rats for 64 days. Changes in the microbiota composition and β-glucosidase activity in the caecum and in the levels of macronutrients and short chain fatty acids (SCFA) in feces were examined. The RE increased the Blautia coccoides and Bacteroides/Prevotella groups and reduced the Lactobacillus/Leuconostoc/Pediococccus group in both types of animals. Clostridium leptum was significantly decreased and Bifidobacterium increased only in the lean rats. β-Glucosidase activity was significantly reduced and fecal fiber excretion increased in the two genotypes. The RE also increased the main SCFA excreted in the feces of the obese rats but decreased them in the lean rats reflecting important differences in the uptake and metabolism of these molecules between the two genotypes. Conclusions Our results indicate that the consumption of a RE enriched in CA modifies microbiota composition and decreases β-glucosidase activity in the caecum of female Zucker rats while it increases fiber fecal elimination. These results may contribute to explain the body weight gain reducing effects of the RE. The mutated leptin receptor of the obese animals significantly affects the microbiota composition, the SCFA fecal excretion and the host response to the RE intake. PMID:24733124

  3. [The pharmacotherapy of obesity].

    PubMed

    Budai, Kinga Anna; Mirzahosseini, Arash; Noszál Béla; Tóth, Gergő

    2015-01-01

    Obesity is considered the most concerning and blatantly visible--yet most neglected--public health problem by the WHO. The steadily increasing number of overweight and obese people has reached 2.3 billion and 700 million worldwide, respectively. Obesity is a complex condition, one that presents serious health risks with respect to type 2 diabetes, ischemic heart disease, and hypertension, therefore controlling the global obesity epidemic decreases not only health problems, but also expenditure. The underlying cause of obesity is a metabolic disorder of genetic, central nervous system or endocrine etiology that manifests in increased nutritional intake and/or decreased physical activity ultimately leading to excessive lipogenesis. The natural treatment of obesity, that is often advised, is comprised of healthy lifestyle choices, namely low-calorie diet and exercise. However, the pharmaceutic treatment of obesity is just as important; having a better compliance rate, anti-obesity drugs also improve quality of life and patient-care outcome concerning accompanying diseases. In most countries only one drug is currently available against obesity: orlistat, which is a specific and irreversible lipase inhibitor. One of the reasons for the scarce number of anti-obesity drugs is the complex pathomechanism involved in obesity. Interference with the intricate biochemical processes that govern alimentation may lead to widespread adverse effects. The advances of the field however, have prompted novel drug leads. In the past few years FDA has approved new drugs for the treatment of obesity, recently liraglutide in 2014. The approval of drug combinations, such as phentermine/topiramate and bupropion/naltrexone are also noteworthy, the components of which have been previously approved, but not necessarily for obesity as main indication. Furthermore, there are many anti-obesity drug candidates currently in clinical phase trials, with promisingly modest adverse effect profiles; hence

  4. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men.

    PubMed

    Berge, Kjetil; Piscitelli, Fabiana; Hoem, Nils; Silvestri, Cristoforo; Meyer, Ingo; Banni, Sebastiano; Di Marzo, Vincenzo

    2013-01-01

    We have previously shown that treatment of Zucker rats and mice with diet-induced obesity with dietary docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids in the form of krill oil reduces peripheral levels of endocannabinoids, ectopic fat formation and hyperglycemia. We reported that such treatment reduces plasma endocannabinoid levels also in overweight and obese human individuals, in whom high triglycerides may correlate with high circulating endocannabinoid levels. In this study, we report the effects of krill powder, which contains proteins (34%) in addition to krill oil (61.8%), on these two parameters. We submitted 11 obese men (average BMI of 32.3 kg/m², age of 42.6 years and plasma triglycerides of 192.5 ± 96.3 mg/dl) to a 24 week dietary supplementation with krill powder (4 g/day per os) and measured anthropometric and metabolic parameters, as well as blood endocannabinoid (anandamide and 2-arachidonoylglycerol) and esterified DHA and EPA levels. Six subjects were included as control subjects and not given any supplements. The treatment produced, after 12 and 24 weeks, a significant increase in DHA and EPA in total plasma, a 59 and 84% decrease in anandamide plasma levels, and a 22.5 and 20.6% decrease in triglyceride levels, respectively. There was also a significant decrease in waist/hip ratio and visceral fat/skeletal muscle mass ratio at 24 weeks, but no change in body weight. These data confirm that dietary krill powder reduces peripheral endocannabinoid overactivity in obese subjects, and might ameliorate some parameters of the metabolic syndrome. PMID:23706001

  5. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men

    PubMed Central

    2013-01-01

    We have previously shown that treatment of Zucker rats and mice with diet-induced obesity with dietary docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids in the form of krill oil reduces peripheral levels of endocannabinoids, ectopic fat formation and hyperglycemia. We reported that such treatment reduces plasma endocannabinoid levels also in overweight and obese human individuals, in whom high triglycerides may correlate with high circulating endocannabinoid levels. In this study, we report the effects of krill powder, which contains proteins (34%) in addition to krill oil (61.8%), on these two parameters. We submitted 11 obese men (average BMI of 32.3 kg/m2, age of 42.6 years and plasma triglycerides of 192.5 ± 96.3 mg/dl) to a 24 week dietary supplementation with krill powder (4 g/day per os) and measured anthropometric and metabolic parameters, as well as blood endocannabinoid (anandamide and 2-arachidonoylglycerol) and esterified DHA and EPA levels. Six subjects were included as control subjects and not given any supplements. The treatment produced, after 12 and 24 weeks, a significant increase in DHA and EPA in total plasma, a 59 and 84% decrease in anandamide plasma levels, and a 22.5 and 20.6% decrease in triglyceride levels, respectively. There was also a significant decrease in waist/hip ratio and visceral fat/skeletal muscle mass ratio at 24 weeks, but no change in body weight. These data confirm that dietary krill powder reduces peripheral endocannabinoid overactivity in obese subjects, and might ameliorate some parameters of the metabolic syndrome. PMID:23706001

  6. Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models.

    PubMed

    Rajpal, Deepak K; Klein, Jean-Louis; Mayhew, David; Boucheron, Joyce; Spivak, Aaron T; Kumar, Vinod; Ingraham, Karen; Paulik, Mark; Chen, Lihong; Van Horn, Stephanie; Thomas, Elizabeth; Sathe, Ganesh; Livi, George P; Holmes, David J; Brown, James R

    2015-01-01

    The gastrointestinal tract microbiome has been suggested as a potential therapeutic target for metabolic diseases such as obesity and Type 2 diabetes mellitus (T2DM). However, the relationship between changes in microbial communities and metabolic disease-phenotypes are still poorly understood. In this study, we used antibiotics with markedly different antibacterial spectra to modulate the gut microbiome in a diet-induced obesity mouse model and then measured relevant biochemical, hormonal and phenotypic biomarkers of obesity and T2DM. Mice fed a high-fat diet were treated with either ceftazidime (a primarily anti-Gram negative bacteria antibiotic) or vancomycin (mainly anti-Gram positive bacteria activity) in an escalating three-dose regimen. We also dosed animals with a well-known prebiotic weight-loss supplement, 10% oligofructose saccharide (10% OFS). Vancomycin treated mice showed little weight change and no improvement in glycemic control while ceftazidime and 10% OFS treatments induced significant weight loss. However, only ceftazidime showed significant, dose dependent improvement in key metabolic variables including glucose, insulin, protein tyrosine tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Subsequently, we confirmed the positive hyperglycemic control effects of ceftazidime in the Zucker diabetic fatty (ZDF) rat model. Metagenomic DNA sequencing of bacterial 16S rRNA gene regions V1-V3 showed that the microbiomes of ceftazidime dosed mice and rats were enriched for the phylum Firmicutes while 10% OFS treated mice had a greater abundance of Bacteroidetes. We show that specific changes in microbial community composition are associated with obesity and glycemic control phenotypes. More broadly, our study suggests that in vivo modulation of the microbiome warrants further investigation as a potential therapeutic strategy for metabolic diseases. PMID:26709835

  7. Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models

    PubMed Central

    Rajpal, Deepak K.; Klein, Jean-Louis; Mayhew, David; Boucheron, Joyce; Spivak, Aaron T.; Kumar, Vinod; Ingraham, Karen; Paulik, Mark; Chen, Lihong; Van Horn, Stephanie; Thomas, Elizabeth; Sathe, Ganesh; Livi, George P.; Holmes, David J.; Brown, James R.

    2015-01-01

    The gastrointestinal tract microbiome has been suggested as a potential therapeutic target for metabolic diseases such as obesity and Type 2 diabetes mellitus (T2DM). However, the relationship between changes in microbial communities and metabolic disease-phenotypes are still poorly understood. In this study, we used antibiotics with markedly different antibacterial spectra to modulate the gut microbiome in a diet-induced obesity mouse model and then measured relevant biochemical, hormonal and phenotypic biomarkers of obesity and T2DM. Mice fed a high-fat diet were treated with either ceftazidime (a primarily anti-Gram negative bacteria antibiotic) or vancomycin (mainly anti-Gram positive bacteria activity) in an escalating three-dose regimen. We also dosed animals with a well-known prebiotic weight-loss supplement, 10% oligofructose saccharide (10% OFS). Vancomycin treated mice showed little weight change and no improvement in glycemic control while ceftazidime and 10% OFS treatments induced significant weight loss. However, only ceftazidime showed significant, dose dependent improvement in key metabolic variables including glucose, insulin, protein tyrosine tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Subsequently, we confirmed the positive hyperglycemic control effects of ceftazidime in the Zucker diabetic fatty (ZDF) rat model. Metagenomic DNA sequencing of bacterial 16S rRNA gene regions V1-V3 showed that the microbiomes of ceftazidime dosed mice and rats were enriched for the phylum Firmicutes while 10% OFS treated mice had a greater abundance of Bacteroidetes. We show that specific changes in microbial community composition are associated with obesity and glycemic control phenotypes. More broadly, our study suggests that in vivo modulation of the microbiome warrants further investigation as a potential therapeutic strategy for metabolic diseases. PMID:26709835

  8. Transcriptional Alterations of ET-1 Axis and DNA Damage in Lung Tissue of a Rat Obesity Model

    PubMed Central

    Cabiati, Manuela; Salvadori, Costanza; Guiducci, Letizia; Caselli, Chiara; Prescimone, Tommaso; Facioni, Maria Sole; Azzarà, Alessia; Chiaramonte, Anna; Mazzoni, Stefano; Bruschi, Fabrizio; Giannessi, Daniela

    2015-01-01

    Obesity has been implicated in the development of many cancers. This can lead to genome damage, especially in the form of double-strand break, the presence of which is now easily detected through nuclear phosphorylation of histone H2AX (γ-H2AX) focus assay. Recently, the endothelin (ET) axis has also been shown to have a role in the growth and progression of several tumors, including lung cancer. The aim of this study was to evaluate the ET-1 system transcriptional alterations and γ-H2AX in lung tissue of Zucker rats subdivided into obese (O, n=22) and controls (CO, n=18) rats: under either fasting conditions (COfc-Ofc) or acute hyperglycemia (COAH-OAH). Significantly higher prepro-ET-1 (p=0.05) and ET-converting enzyme (ECE)-2 mRNA expression was observed in O with respect to CO. A significant positive association was observed between prepro-ET-1 and ET-A in the whole rat population (p=0.009) or in the obese group alone (p=0.007). The levels of γ-H2AX in O and in OAH rats were significantly higher (p=0.019) than in the corresponding CO and COAH rats (p=0.038). The study shows an inappropriate secretion of ET-1 in O animals with a parallel DNA damage in their lungs, providing novel mechanisms by which ET receptor antagonist may exert organ protection. PMID:25517973

  9. Obesity in Children

    PubMed Central

    2008-01-01

    The prevalence of childhood obesity has increased dramatically during the past decades all over the world. The majority of obesity in adulthood has its origins in childhood which makes obesity a pediatric concern and the period when interventions should be done. Obesity is associated with increased morbidity and mortality in adult life and several adverse consequences in childhood like insulin resistance, type 2 diabetes, dyslipidemia, polycystic ovarian syndrome, pulmonary and orthopedic disorders and psychological problems. Both genetic and environmental factors play a role in the development of obesity. Prevention of obesity is critical, since effective treatment of this disease is limited. Food management and increased physical activity must be encouraged, promoted, and prioritized to protect children. Conflict of interest:None declared. PMID:21318065

  10. Obesity and obstetric anaesthesia.

    PubMed

    Mace, H S; Paech, M J; McDonnell, N J

    2011-07-01

    Obesity is increasing in the population as a whole, and especially in the obstetric population, among whom pregnancy-induced physiological changes impact on those already present due to obesity. In particular, changes in the cardiovascular and respiratory systems during pregnancy further alter the physiological effects and comorbidities of obesity. Obese pregnant women are at increased risk of diabetes, hypertensive disorders of pregnancy, ischaemic heart disease, congenital malformations, operative delivery postpartum infection and thromboembolism. Regional analgesia and anaesthesia is usually preferred but may be challenging. Obese pregnant women appear to have increased morbidity and mortality associated with caesarean delivery and general anaesthesia for caesarean delivery in particular, and more anaesthesia-related complications. This article summarises the physiological and pharmacological implications of obesity and pregnancy and describes the issues surrounding the management of these women for labour and delivery. PMID:21823371

  11. Obesity in pregnancy.

    PubMed

    Lim, Chu Chin; Mahmood, Tahir

    2015-04-01

    The prevalence of obesity has reached alarming proportions globally, and continues to rise in both developed and developing countries. Maternal obesity has become one of the most commonly occurring risk factors in obstetric practice. The 2003-2005 report of the Confidential Enquiries into Maternal Deaths in the United Kingdom highlighted obesity as a significant risk for maternal death [1]. More than half of all women who died from direct or indirect causes were either overweight or obese. For the mother, obesity increases the risk of obstetric complications during the antenatal, intrapartum and postnatal period, as well as contributing to technical difficulties with fetal assessment. The offspring of obese mothers also have a higher rate of perinatal morbidity and an increased risk of long-term health problems. PMID:25702971

  12. Thinking Evolutionarily About Obesity

    PubMed Central

    Genné-Bacon, Elizabeth A.

    2014-01-01

    Obesity, diabetes, and metabolic syndrome are growing worldwide health concerns, yet their causes are not fully understood. Research into the etiology of the obesity epidemic is highly influenced by our understanding of the evolutionary roots of metabolic control. For half a century, the thrifty gene hypothesis, which argues that obesity is an evolutionary adaptation for surviving periods of famine, has dominated the thinking on this topic. Obesity researchers are often not aware that there is, in fact, limited evidence to support the thrifty gene hypothesis and that alternative hypotheses have been suggested. This review presents evidence for and against the thrifty gene hypothesis and introduces readers to additional hypotheses for the evolutionary origins of the obesity epidemic. Because these alternate hypotheses imply significantly different strategies for research and clinical management of obesity, their consideration is critical to halting the spread of this epidemic. PMID:24910556

  13. Victimization of obese adolescents.

    PubMed

    Robinson, Sabrina

    2006-08-01

    Peer victimization of obese adolescents has been associated with low self-esteem, body dissatisfaction, social isolation, marginalization, poor psychosocial adjustment, depression, eating disorders, and suicidal ideation and attempts, not to mention poor academic performance. Weight-based peer victimization is defined as unsolicited bullying and teasing as a result of being overweight or obese. The victimization may be overt or relational. Obese adolescents are at risk of victimization, because their peers view them as different and undesirable. Although peer victimization occurs commonly among adolescents, obese adolescents are more susceptible than their average-weight peers. Because school nurses are often the first line of defense for obese adolescents, they are in an excellent position to identify forms of peer victimization and be prepared to intervene with the victims. School nurses can potentially preserve the psychosocial integrity of obese adolescents by promoting healthy peer interactions and experiences. PMID:16856773

  14. Pediatric obesity. An introduction.

    PubMed

    Yanovski, Jack A

    2015-10-01

    The prevalence of child and adolescent obesity in the United States increased dramatically between 1970 and 2000, and there are few indications that the rates of childhood obesity are decreasing. Obesity is associated with myriad medical, psychological, and neurocognitive abnormalities that impact children's health and quality of life. Genotypic variation is important in determining the susceptibility of individual children to undue gains in adiposity; however, the rapid increase in pediatric obesity prevalence suggests that changes to children's environments and/or to their learned behaviors may dramatically affect body weight regulation. This paper presents an overview of the epidemiology, consequences, and etiopathogenesis of pediatric obesity, serving as a general introduction to the subsequent papers in this Special Issue that address aspects of childhood obesity and cognition in detail. PMID:25836737

  15. [Obesity and gastrointestinal motility].

    PubMed

    Lee, Joon Seong

    2006-08-01

    Gastrointestinal (GI) motility has a crucial role in the food consumption, digestion and absorption, and also controls the appetite and satiety. In obese patients, various alterations of GI motility have been investigated. The prevalence of GERD and esophageal motor disorders in obese patients are higher than those of general population. Gastric emptying of solid food is generally accelerated and fasting gastric volume especially in distal stomach is larger in obese patients without change in accommodation. Contractile activity of small intestine in fasting period is more prominent, but orocecal transit is delayed. Autonomic dysfunction is frequently demonstrated in obese patients. These findings correspond with increased appetite and delayed satiety in obese patients, but causes or results have not been confirmed. Therapeutic interventions of these altered GI motility have been developed using botulinum toxin, gastric electrical stimulation in obese patients. Novel agents targeted for GI hormone modulation (such as ghrelin and leptin) need to be developed in the near future. PMID:16929152

  16. Programming towards childhood obesity.

    PubMed

    Tounian, Patrick

    2011-01-01

    There is now considerable evidence that a constitutional susceptibility to fat gain is necessary for children to become obese under the pressure of an obesogenic environment; this is the programming towards obesity. The role of genetics in this programming is dominant. Besides the rare monogenic recessive forms of obesity secondary to mutations in genes involved in the hypothalamic appetite control pathways, obesity linked to mutations in melanocortin 3 and 4 receptors are more frequent due to their dominant mode of transmission. Predisposition to common obesity is polygenic and involves a network of genes; nevertheless, more research is required to elucidate their exact role. Fetal and perhaps early postnatal programming is also possible. Under- and overnutrition, diabetes, and maternal smoking during pregnancy were shown to promote later obesity and may affect the central body weight regulatory system during fetal development. The role of early postnatal factors such as formula-feeding rather than breastfeeding, excess in n-6 polyunsaturated fatty acids or protein intakes, and excessive weight gain early in life is more questionable and needs further investigation. Taking into consideration that childhood obesity is a programmed disease should modify its clinical management. Childhood obesity should no longer be considered as the result of inappropriate eating habits and/or excessive inactivity in order to relieve the obese children's discrimination and their parents' guilt. Since treatment of obese children requires a substantial motivation to continuously fight against the programmed excessive drive to eat, it seems wiser to wait for children to be old enough, thus more motivated, to initiate energy restriction. Moreover, with the great majority of children being not predisposed to obesity, prevention strategies should not be addressed to the whole pediatric population but targeted to those children at risk. Improvement of knowledge on programming towards

  17. DBS for Obesity.

    PubMed

    Franco, Ruth; Fonoff, Erich T; Alvarenga, Pedro; Lopes, Antonio Carlos; Miguel, Euripides C; Teixeira, Manoel J; Damiani, Durval; Hamani, Clement

    2016-01-01

    Obesity is a chronic, progressive and prevalent disorder. Morbid obesity, in particular, is associated with numerous comorbidities and early mortality. In patients with morbid obesity, pharmacological and behavioral approaches often have limited results. Bariatric surgery is quite effective but is associated with operative failures and a non-negligible incidence of side effects. In the last decades, deep brain stimulation (DBS) has been investigated as a neurosurgical modality to treat various neuropsychiatric disorders. In this article we review the rationale for selecting different brain targets, surgical results and future perspectives for the use of DBS in medically refractory obesity. PMID:27438859

  18. Obesity, Inflammation, and Cancer.

    PubMed

    Deng, Tuo; Lyon, Christopher J; Bergin, Stephen; Caligiuri, Michael A; Hsueh, Willa A

    2016-05-23

    Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity. PMID:27193454

  19. Childhood Overweight and Obesity

    MedlinePlus

    ... Resources & Publications Reports Prevention Strategies & Guidelines Fact Sheets Social Media Tools ... now affects 1 in 6 children and adolescents in the United States. Childhood Obesity Facts How ...

  20. Treating Obesity As a Disease

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  1. Obesity in Infants to Preschoolers

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  2. Obesity and Cardiovascular Disease.

    PubMed

    Ortega, Francisco B; Lavie, Carl J; Blair, Steven N

    2016-05-27

    The prevalence of obesity has increased worldwide over the past few decades. In 2013, the prevalence of obesity exceeded the 50% of the adult population in some countries from Oceania, North Africa, and Middle East. Lower but still alarmingly high prevalence was observed in North America (≈30%) and in Western Europe (≈20%). These figures are of serious concern because of the strong link between obesity and disease. In the present review, we summarize the current evidence on the relationship of obesity with cardiovascular disease (CVD), discussing how both the degree and the duration of obesity affect CVD. Although in the general population, obesity and, especially, severe obesity are consistently and strongly related with higher risk of CVD incidence and mortality, the one-size-fits-all approach should not be used with obesity. There are relevant factors largely affecting the CVD prognosis of obese individuals. In this context, we thoroughly discuss important concepts such as the fat-but-fit paradigm, the metabolically healthy but obese (MHO) phenotype and the obesity paradox in patients with CVD. About the MHO phenotype and its CVD prognosis, available data have provided mixed findings, what could be partially because of the adjustment or not for key confounders such as cardiorespiratory fitness, and to the lack of consensus on the MHO definition. In the present review, we propose a scientifically based harmonized definition of MHO, which will hopefully contribute to more comparable data in the future and a better understanding on the MHO subgroup and its CVD prognosis. PMID:27230640

  3. Yacon diet (Smallanthus sonchifolius, Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats

    PubMed Central

    Satoh, H; Audrey Nguyen, M T; Kudoh, A; Watanabe, T

    2013-01-01

    Objective: Yacon is a perennial plant forming a clump of >20 big, edible underground tubers. Yacon, which originates from South America, has become increasingly popular in the Japanese diet for tubers have a lower caloric value and a high fiber content. Recent studies have suggested that yacon feeding ameliorates diabetes as indicated by reduced blood glucose. Methods: We fed male Zucker fa/fa rats for 5 weeks with isocaloric normal chow diet containing from 6.5% control aroid or 6.5% yacon. Insulin sensitivity was evaluated by euglycemic-hyperinsulinemic clamp study. Results: Body weight was comparable between yacon- and aroid-fed rats. In the basal state, yacon feeding had an effect to lower fasting glucose levels from 184.1±4.1 to 167.8±2.7 mg dl−1 (P<0.01), as well as basal hepatic glucose output (HGO) from 9.9±0.4 to 7.4 ± 0.2 mg kg−1 per min (P<0.01). During the clamp studies, the glucose infusion rate required to maintain euglycemia was increased by 12.3% in yacon-fed rat. The insulin suppression of HGO was also increased in yacon-fed rats compared with control rats (85.3±2.4% vs 77.0±3.0% P<0.05), whereas the glucose disposal rate was not different between the two groups. Consistent with the clamp data, the insulin-stimulated phosphorylation of Akt was significantly enhanced in liver but not in skeletal muscle. Furthermore, tribbles 3 (Trb3) expression, which is a negative regulator of Akt activity, was markedly reduced in the liver of yacon-fed rats compared with control rats. Conclusion: These results indicate that the effect of yacon feeding to reduce blood glucose is likely due to its beneficial effects on hepatic insulin sensitivity in the insulin resistant state. PMID:23712282

  4. Battling the Obesity Epidemic.

    ERIC Educational Resources Information Center

    Kelly, Mark; Moag-Stahlberg, Alicia

    2002-01-01

    Describes causes of overweight and obesity in children; cites research linking good nutrition and a child's capacity to learn; includes six Web-based links to resources to help principals and teachers reduce the serious problem of overweight and obese children. (PKP)

  5. Renal consequences of obesity.

    PubMed

    Naumnik, Beata; Myśliwiec, Michał

    2010-08-01

    The worldwide prevalence of obesity and its associated metabolic and cardiovascular disorders has risen dramatically within the past 2 decades. Our objective is to review the mechanisms that link obesity with altered kidney function. Current evidence suggests that excess weight gain may be responsible for 65-75% of the risk for arterial hypertension. Impaired renal pressure natriuresis, initially due to increased renal tubular sodium reabsorption, is a key factor linking obesity with hypertension. Obesity increases renal sodium reabsorption by activating the renin-angiotensin and sympathetic nervous systems, and by altering intrarenal physical forces. Adipose tissue functions as an endocrine organ, secreting hormones/cytokines (e.g., leptin) which may trigger sodium retention and hypertension. Additionally, excess visceral adipose tissue may physically compress the kidneys, increasing intrarenal pressures and tubular reabsorption. Eventually, sustained obesity via hyperinsulinemia, due to resistance to insulin, causes hyperfiltration, resulting in structural changes in the kidneys--glomerular hyperthrophy and occasionally focal segmental glomerulosclerosis. The consequences of kidney injury are continuous loss of glomerular filtration rate, further increase of arterial pressure and escalation of cardiovascular morbidity and mortality. There is a growing awareness of the renal consequences of obesity, and considerable progress is being made in understanding its pathophysiology. Weight reduction results in lowered proteinuria. Aside from low sodium diet and exercises, more widespread use of renoprotective therapy (e.g., ACE inhibitors and statins) in treatment of hypertension in obese subjects should be advocated. Renal protection should result in reducing the cardiovascular complications of obesity. PMID:20671624

  6. Obesity in children

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007508.htm Obesity in children To use the sharing features on this page, ... Preventive Services Task Force, Barton M. Screening for obesity in children and adolescents: U.S. Preventive Services Task Force recommendation ...

  7. Obesity: A Bibliographic Review

    ERIC Educational Resources Information Center

    McGowan, Beth

    2012-01-01

    The study of obesity is a relatively new interdisciplinary academic field. The community college library shelves should contain two types of resources. First, several kinds of reference materials, and second, a host of broader materials that place the discussion of obesity within a cultural framework. This overview is divided into two major…

  8. Obesity and kidney protection

    PubMed Central

    Chandra, Aravind; Biersmith, Michael; Tolouian, Ramin

    2014-01-01

    Context: Obesity, both directly and indirectly, increases the risk for a variety of disease conditions including diabetes, hypertension, liver disease, and certain cancers, which in turn, decreases the overall lifespan in both men and women. Though the cardiovascular risks of obesity are widely acknowledged, less often identified is the relationship between obesity and renal function. Evidence Acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, PubMed, EBSCO and Web of Science has been searched. Results: The concept of the “Metabolic Syndrome“ helps us to understand this close link between obesity, diabetes, hypertension, and renal dysfunction. An elevated body mass index has shown to be one of the major determinants of glomerular hyperfiltration that lead to the development of chronic kidney disease. Interestingly, weight loss can lead to attenuation of hyperfiltration in severely obese patients suggesting a possible therapeutic option to combat obesity-related hyperfiltration. Conclusions: Various treatment strategies had been suggested to decrease impact of obesity on kidneys. These are blood pressure controling, inhibition of the renin-angiotensinaldosterone axis, improving glycemic control, improving dyslipidemia, improving protein uriaand lifestyle modifications. Regardless of the numerous pharmacotherapies, the focus should be on the root cause: obesity. PMID:25093156

  9. [The epidemiology of obesity].

    PubMed

    Sánchez-Castillo, Claudia P; Pichardo-Ontiveros, Edgar; López-R, Patricia

    2004-01-01

    In excess of 50% of adult population and nearly one third of children in Mexico have overweight and obesity. This accounts for slightly >32,671,000 million persons, excluding children; thus, total numbers are even more significant. These figures are alarming for those responsible for the economic future and well-being of Mexico. Overweight and obesity lead to higher risk of mortality as well as development of multiple diseases, mainly coronary heart disease, diabetes type 2, cancer, and stroke, which are at present the principal causes of mortality in Mexico. The World Health Organization (WHO) announced that there are throughout the world more than one billion adults with overweight, of whom 300 million have obesity. In addition to the obesity epidemic in Mexico, there is high prevalence of diabetes type 2. Coexistence of both epidemics has been denominated the twin epidemic. As many as 80% of cases of type 2 diabetes are linked with overweight or obesity, particularly abdominal obesity. The disease was once thought to be limited to adults, but obese children are now developing the illness. In Mexico, we are able to refer to at least three epidemics, because not only are obesity and type 2 diabetes advancing rapidly in the country, but also cardiovascular disease, linked with high prevalence of both hypertension and metabolic syndrome as reported by scientists based on Mexican National Health Survey 2000 data. PMID:15641467

  10. Gender, Obesity, and Education

    ERIC Educational Resources Information Center

    Crosnoe, Robert

    2007-01-01

    Obesity is a health condition, but its consequences extend far beyond the realm of health. To illuminate an important route by which the experience of obesity can filter into the status attainment process, this study drew on nationally representative data from the National Longitudinal Study of Adolescent Health to test a social psychological…

  11. Effective Obesity Treatments

    ERIC Educational Resources Information Center

    Powell, Lynda H.; Calvin, James E., III; Calvin, James E., Jr.

    2007-01-01

    To curb the epidemic of obesity in the United States, revised Medicare policy allows support for efficacious obesity treatments. This review summarizes the evidence from rigorous randomized trials (9 lifestyle trials, 5 drug trials, and 2 surgical trials) on the efficacy and risk-benefit profile of lifestyle, drug, and surgical interventions aimed…

  12. Barriers to obesity treatment.

    PubMed

    Mauro, Marina; Taylor, Valerie; Wharton, Sean; Sharma, Arya M

    2008-05-01

    Obesity, one of the most prevalent health problems in the Western world, is a chronic and progressive condition. Therefore, as with other chronic diseases, patients with obesity require lifelong treatment. Long-term efficacy and effectiveness of obesity treatments is notoriously poor. This may in part be attributable to the substantial barriers that undermine long-term obesity management strategies. These can include lack of recognition of obesity as a chronic condition, low socioeconomic status, time constraints, intimate saboteurs, and a wide range of comorbidities including mental health, sleep, chronic pain, musculoskeletal, cardiovascular, respiratory, digestive and endocrine disorders. Furthermore, medications used to treat some of these disorders may further undermine weight-loss efforts. Lack of specific obesity training of health professionals, attitudes and beliefs as well as coverage and availability of obesity treatments can likewise pose important barriers. Health professionals need to take care to identify, acknowledge and address these barriers where possible to increase patient success as well as compliance and adherence with treatments. Failure to do so may further undermine the sense of failure, low self esteem and self efficacy already common among obese individuals. Addressing treatment barriers can save resources and increase the prospect of long-term success. PMID:18395160

  13. Obesity drug therapy.

    PubMed

    Baretić, M

    2013-09-01

    Obesity is a chronic disease, and it requires chronic therapy. Hypertension, dyslipidemia, diabetes and cardiovascular diseases are leading causes of mortality in the modern world. All of them are strongly linked to obesity. While treating obesity, those conditions are also managed. Obese patients should always be treated through lifestyle interventions, though the results of such interventions are modest. Pharmacotherapy is a second step in the treatment of obesity, approved only when weight loss targets were not reached through lifestyle intervention. During the history of antiobesity drugs, many of them were withdrawn because of their side effects. Various guidelines recommend prescribing drug therapy for obesity through consideration of the potential benefits and limitations. Orlistat deactivates intestinal lipase and inhibits intestinal fat lipolysis. It is actually the only drug on the European market approved for the treatment of obesity. Orlistat therapy reduces weight to a modest extent, but it reduces the incidence of diabetes beyond the result achieved with lifestyle changes. Recently, some effective antiobesity drugs like sibutramine and rimonabant have been removed from the market due to their side effects. The new combination of topimarate and fentermine is approved in the US but not in Europe. The cost effectiveness of long-term pharmacotherapy of obesity is still an unresolved question. PMID:24126545

  14. Childhood Obesity. ERIC Digest.

    ERIC Educational Resources Information Center

    Summerfield, Liane M.

    In this discussion of childhood obesity, the medical and psychological problems associated with the condition are noted. Childhood obesity most likely results from an interaction of nutritional, psychological, familial, and physiological factors. Three factors--the family, low-energy expenditure, and heredity--are briefly examined. Early…

  15. Lifestyle management of obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is one of the most significant health concerns in the United States and other countries worldwide. In the United States, 68% of adults and 34% of children are overweight or obese. Prevalence rates continue to rise along with corresponding increases in health consequences. Type 2 diabetes, hy...

  16. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity

    PubMed Central

    Ndisang, Joseph Fomusi; Tiwari, Shuchita

    2014-01-01

    Obesity and excessive inflammation/oxidative stress are pathophysiological forces associated with kidney dysfunction. Although we recently showed that heme-oxygenase (HO) improves renal functions, the mechanisms are largely unclear. Moreover, the effects of the HO-system on podocyte cytoskeletal proteins like podocin, podocalyxin, CD2-associated-protein (CD2AP) and proteins of regeneration/repair like beta-catenin, Oct3/4, WT1 and Pax2 in renal tissue from normoglycemic obese Zucker-fatty rats (ZFs) have not been reported. Treatment with hemin reduced renal histo-pathological lesions including glomerular-hypertrophy, tubular-cast, tubular-atrophy and mononuclear cell-infiltration in ZFs. These were associated with enhanced expression of beta-catenin, Oct3/4, WT1, Pax2 and nephrin, an essential transmembrane protein required for the formation of the scaffoldings of the podocyte slit-diaphragm, permitting the filtration of small ions, but not massive excretion of proteins, hence proteinuria. Besides nephrin, hemin also enhanced other important podocyte-regulators including, podocalyxin, podocin and CD2AP. Correspondingly, important markers of renal dysfunction such as albuminuria and proteinuria were reduced, while creatinine clearance increased, suggesting improved renal function in hemin-treated ZFs. The renoprotection by hemin was accompanied by the reduction of inflammatory/oxidative mediators including, macrophage-inflammatory-protein-1α, macrophage-chemoattractant-protein-1 and 8-isoprostane, whereas HO-1, HO-activity and the total-anti-oxidant-capacity increased. Contrarily, the HO-inhibitor, stannous-mesoporphyrin nullified the reno-protection by hemin. Collectively, these data suggest that hemin ameliorates nephropathy by potentiating the expression of proteins of repair/regeneration, abating oxidative/inflammatory mediators, reducing renal histo-pathological lesions, while enhancing nephrin, podocin, podocalyxin, CD2AP and creatinine clearance, with

  17. Health impacts of Obesity.

    PubMed

    Djalalinia, Shirin; Qorbani, Mostafa; Peykari, Niloofar; Kelishadi, Roya

    2015-01-01

    The aim of this communication is to provide some evidence linking the overweight/obesity and their impacts on different dimensions of health. We reviewed the related studies published from 1990 up till now through PubMed Central/Medline, which provide evidence linking obesity with health related issues. It is a risk factor for metabolic disorders and leads to serious health consequences for individuals and burden for the health care system as a whole. Literature search showed that it is related to at least 18 co-morbidities which are attributable to overweight and obesity. Moreover obese individuals more often suffer from significant joint pains, disorders and it also has social as well as psychological impairments. It is high time that countries facing the problems of obesity initiate some intervention measures to monitor and control this growing epidemic. PMID:25878654

  18. [DNA methylation in obesity].

    PubMed

    Pokrywka, Małgorzata; Kieć-Wilk, Beata; Polus, Anna; Wybrańska, Iwona

    2014-01-01

    The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes), have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA) synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described. PMID:25531701

  19. [Obesity in elderly].

    PubMed

    Lechleitner, Monika

    2016-03-01

    The prevalence of obesity is increasing also in the elderly population. The European Euronut-Seneca study described an obesity prevalence of 12-41% in elderly women and of 8-24% in elderly men. Obesity in the elderly is related to the cardiometabolic risk, but also to degenerative joint diseases and impaired physical functions. Some discrepancies are caused by the description of a so-called obesity paradox with a more favourable prognosis for certain diseases in the presence of overweight compared to normal or reduced body weight. The so-called sarcopenic obesity is associated with the worst prognosis.Preventive and therapeutic regimens should consider the increased risk of malnutrition in elderly. The combinations of individually tailored nutritional recommendations and physical exercise is of advantage for the prognosis of comorbidities and the quality of life. PMID:26820990

  20. Paediatric asthma and obesity.

    PubMed

    Lucas, Sean R; Platts-Mills, Thomas A E

    2006-12-01

    None of the explanations proposed for the increase in paediatric asthma have been adequate. It is becoming apparent that the cause of the increase in asthma must be multi-factorial. Increasing attention has been focused on the role of lifestyle in the development of asthma. Lifestyle changes that have occurred in children are those in diet and decreased physical activity, with obesity being the product of these changes. The increase in asthma, obesity and a sedentary lifestyle have occurred together. However, a temporal relationship between asthma, obesity and decreased physical activity has not been determined in the paediatric literature. Limited data suggest that decreased physical activity could be playing a role in the aetiology of asthma independent of obesity. Furthermore, there has been substantial research on the benefits of exercise programmes for paediatric patients with asthma. Longitudinal trials monitoring physical activity, obesity and the development of asthma are needed. PMID:17098637

  1. Obesity: why be concerned?

    PubMed

    Brown, W Virgil; Fujioka, Ken; Wilson, Peter W F; Woodworth, Kristina A

    2009-04-01

    The obesity epidemic in the United States represents a critical public health issue that has the potential to incur major healthcare costs because of the substantial risks associated with excess body fat. Whereas many recognize the significant risk of cardiovascular disease and diabetes mellitus associated with excess body fat, a myriad of other health problems can accompany overweight and obesity, potentially leading to early morbidity and mortality. Public recognition of obesity as an important health crisis, and not simply a matter of cosmetics or lifestyle choice, is clearly needed. A greater awareness of the health risks associated with excess weight will facilitate more frequent obesity screenings and discussions about healthy weight management that have the potential to result in a greater commitment of healthcare resources to effective obesity prevention and management strategies. PMID:19410676

  2. 10: Management of obesity.

    PubMed

    Proietto, Joseph; Baur, Louise A

    2004-05-01

    Obesity has reached epidemic proportions in Australia, with 67.5% of men, 52.1% of women and 19%-23% of children and adolescents being overweight or obese. Genetically predisposed individuals are especially vulnerable to developing obesity in the highly obesogenic environment of 21st century Australia. Obesity causes or contributes to many comorbidities, including type 2 diabetes, hypertension, dyslipidaemia, sleep apnoea, non-alcoholic steatohepatitis, orthopaedic problems and polycystic ovary syndrome. Management in the individual requires their complete co-operation and should be tailored to individual needs and complications. Management of obesity in children should consider the family context and involve the parents. All treatment strategies must involve lifestyle modification, with a reduction of energy intake and an increase in physical activity. Some patients may also require the assistance of drug therapy or bariatric surgery. PMID:15115430

  3. Current mapping of obesity.

    PubMed

    Pérez Rodrigo, Carmen

    2013-09-01

    Obesity is a major risk factor for non-communicable diseases (NCDs), such as diabetes, cardiovascular diseases, and cancers. The worldwide prevalence of obesity has almost doubled between 1980 and 2008. In some regions, such as Europe, the Eastern Mediterranean and the Americas, more than 50% of women are overweight. Tonga, Nauru and the Cook Islands show the highest prevalence of obesity worldwide, above 60% in men and in women. China and the United States are the countries that experienced the largest absolute increase in the number of overweight and obese people between 1980 and 2008, followed by Brazil and Mexico. The regions with the largest increase in the prevalence of female obesity were Central Latin America, Oceania and Southern Latin America. Updated data provide evidence that the progression of the epidemic has effectively slowed for the past ten years in several countries. In low-income countries obesity is generally more prevalent among the better-off, while disadvantaged groups are increasingly affected as countries grow. Many studies have shown an overall socio-economic gradient in obesity in modern industrialized societies. Rates tend to decrease progressively with increasing socio-economic status. Children obesity rates in Spain are amongst the highest in the OECD. One in 3 children aged 13 to 14 are overweight. Overweight in infants and young children is observed in the upper middle-income countries. However, the fastest growth occurs in the group of lower middle-income countries. There is a growing body of evidence for an inverse association between SES and child obesity in developed countries. The prevalence of overweight and obesity is high in all age groups in many countries, but especially worrying in children and adolescents in developed countries and economies in transition. PMID:24010741

  4. Maternal Obesity at Conception Programs Obesity in the Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adult-life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in the offspring, we have developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via ...

  5. Maternal Obesity at Conception Programs Obesity in the Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in the offspring, we have developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via ...

  6. Sleep and obesity

    PubMed Central

    Beccuti, Guglielmo; Pannain, Silvana

    2013-01-01

    Purpose of review This review summarizes the most recent evidence linking decreased sleep duration and poor sleep quality to obesity, focusing upon studies in adults. Recent findings Published and unpublished health examination surveys and epidemiological studies suggest that the worldwide prevalence of obesity has doubled since 1980. In 2008, 1 in 10 adults was obese, with women more likely to be obese than men. This obesity epidemic has been paralleled by a trend of reduced sleep duration. Poor sleep quality, which leads to overall sleep loss has also become a frequent complaint. Growing evidence from both laboratory and epidemiological studies points to short sleep duration and poor sleep quality as new risk factors for the development of obesity. Summary Sleep is an important modulator of neuroendocrine function and glucose metabolism and sleep loss has been shown to result in metabolic and endocrine alterations, including decreased glucose tolerance, decreased insulin sensitivity, increased evening concentrations of cortisol, increased levels of ghrelin, decreased levels of leptin, and increased hunger and appetite. Recent epidemiological and laboratory evidence confirm previous findings of an association between sleep loss and increased risk of obesity. PMID:21659802

  7. Epigenetics of Obesity.

    PubMed

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. PMID:27288829

  8. Obesity and economic environments.

    PubMed

    Sturm, Roland; An, Ruopeng

    2014-01-01

    This review summarizes current understanding of economic factors during the obesity epidemic and dispels some widely held, but incorrect, beliefs. Rising obesity rates coincided with increases in leisure time (rather than increased work hours), increased fruit and vegetable availability (rather than a decline in healthier foods), and increased exercise uptake. As a share of disposable income, Americans now have the cheapest food available in history, which fueled the obesity epidemic. Weight gain was surprisingly similar across sociodemographic groups or geographic areas, rather than specific to some groups (at every point in time; however, there are clear disparities). It suggests that if one wants to understand the role of the environment in the obesity epidemic, one needs to understand changes over time affecting all groups, not differences between subgroups at a given time. Although economic and technological changes in the environment drove the obesity epidemic, the evidence for effective economic policies to prevent obesity remains limited. Taxes on foods with low nutritional value could nudge behavior toward healthier diets, as could subsidies/discounts for healthier foods. However, even a large price change for healthy foods could close only part of the gap between dietary guidelines and actual food consumption. Political support has been lacking for even moderate price interventions in the United States and this may continue until the role of environmental factors is accepted more widely. As opinion leaders, clinicians play an important role in shaping the understanding of the causes of obesity. PMID:24853237

  9. Obesity and Economic Environments

    PubMed Central

    Sturm, Roland; An, Ruopeng

    2014-01-01

    This review summarizes our understanding of economic factors during the obesity epidemic and dispels some widely held, but incorrect, beliefs: Rising obesity rates coincided with increases in leisure time (rather than increased work hours), increased fruit and vegetable availability (rather than a decline of healthier foods), and increased exercise uptake. As a share of disposable income, Americans now have the cheapest food available in history, which fueled the obesity epidemic. Weight gain was surprisingly similar across sociodemographic groups or geographic areas, rather than specific to some groups (at every point in time, however, there are clear disparities). It suggests that if we want to understand the role of the environment in the obesity epidemic, we need to understand changes over time affecting all groups, not differences between subgroups at a given time. Although economic and technological changes in the environment drove the obesity epidemic, the evidence for effective economic policies to prevent obesity remains limited. Taxes on foods with low nutritional value could nudge behavior towards healthier diets, as could subsidies/discounts for healthier foods. However, even a large price change for healthy foods could only close a part of the gap between dietary guidelines and actual food consumption. Political support has been lacking for even moderate price interventions in the US and this may continue until the role of environment factors is accepted more widely. As opinion leaders, clinicians play an important role to shape the understanding of the causes of obesity. PMID:24853237

  10. [Asthma, obesity and diet].

    PubMed

    Barranco, P; Delgado, J; Gallego, L T; Bobolea, I; Pedrosa, Ma; García de Lorenzo, A; Quirce, S

    2012-01-01

    Asthma and obesity have a considerable impact on public health and their prevalence has increased in recent years. Numerous studies have linked both disorders. Most prospective studies show that obesity is a risk factor for asthma and have found a positive correlation between baseline body mass index (BMI) and the subsequent development of asthma, although these results are not conclusive when studying the association between airway hyperresponsiveness with BMI. Furthermore, several studies suggest that whereas weight gain increases the risk of asthma, weight loss improves the course of the illness. Different factors could explain this association. Obesity is capable of reducing pulmonary compliance, lung volumes and the diameter of peripheral respiratory airways as well as affecting the volume of blood in the lungs and the ventilation-perfusion relationship. Furthermore, the increase in the normal functioning of adipose tissue in obese subjects leads to a systemic proinflammatory state, which produces a rise in the serum concentrations of several cytokines, the soluble fractions of their receptors and chemokines. Many of these mediators are synthesized and secreted by cells from adipose tissue and receive the generic name of adipokines, including IL-6, IL-10, eotaxin, TNF-α, TGF- 1, PCR, leptin y adiponectin. Finally, specific regions of the human genome which are related to both asthma and obesity have been identified. Most studies point out that obesity is capable of increasing the prevalence and incidence of asthma, although this effect appears to be modest. The treatment of obese asthmatics must include a weight control program. PMID:22566313