Science.gov

Sample records for 30-mev c60 clusters

  1. Light-Initiated Transformation of C60 Clusters in Water

    EPA Science Inventory

    Although Buckminster fullerene (C60) has an extremely low water solubility (~8 ng/L), the formation of stable clusters (aqu/nC60) not only greatly increases the mass of C60 dispersed in water, but also alters its physicochemical properties. This research focused on investigating ...

  2. Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction.

    PubMed

    Lee, Jaesang; Song, Weihua; Jang, Seung S; Fortner, John D; Alvarez, Pedro J J; Cooper, William J; Kim, Jae-Hong

    2010-05-15

    Reactions of water-stable C(60) clusters (nC(60)) in water with OH radicals (*OH) and hydrated electrons (e(aq)(-)), generated by steady-state gamma-radiation, were observed and characterized. Ordered C(60) clusters were relatively recalcitrant to highly reactive *OH and e(aq)(-) species, with only a fraction of carbons oxidized and reduced, respectively. Pulse radiolysis suggested that the reactions of nC(60) with OH* and e(aq)(-) were diffusion limited, with rate constants of (7.34 +/- 0.31) x 10(9) M(-1) s(-1) and (2.34 +/- 0.02) x 10(10) M(-1) s(-1), respectively. Quantum mechanical calculations of binding energy of the C(60)-OH adduct as a function of C(60) clustering degree indicate, despite an initial fast reaction, a slower overall conversion due to thermodynamic instability of C(60)-OH intermediates. The results imply that ordered clustering of C(60) in the aqueous phase significantly hinders C(60)'s fundamental reactivity with radical species. PMID:20397700

  3. Electronic structure of pure and K-doped C 60 clusters

    NASA Astrophysics Data System (ADS)

    Guo, J.; Ellis, D. E.; Lam, D. J.

    1991-10-01

    The electronic structure of a C 60 cluster, the soccer ball-shaped structure determined from the recent X-ray study by Hawkins et al., and of its endohedral complex KC 60 were calculated using the self-consistent-field discrete variational (DV) method in the local density theoretical framework. The calculated C 60 cluster energy levels were found in excellent agreement with the recent X-ray photoemission spectra (XPS) of Weaver et al. The ionization potential and electron affinity calculated using the transition state method are in good agreement with the experimental data. It was found that electronic structure of the endohedral complex KC 60 cluster is the same as the C 60 except that K donates one electron into the lowest unoccupied molecular orbital of C 60. The electronic charge density of C 60 was found to lie within a spherical shell of ≈8.0 au thickness surrounding the C nuclei. A cage of ≈2.0 au radius at the center of the C 60 cluster was found nearly free of electrons ( p≪ 10 -3e/ a30). The 29 eV plasma energy loss calculated approximately from the dielectric function of C 60 explains the broad satellite feature seen ≈28 eV to the higher energy side from the C 1s core line in the XPS experiment.

  4. Advanced carbon-based material C60 modification using partially ionized cluster and energetic beams

    NASA Astrophysics Data System (ADS)

    Yuancheng, Du; Zhongmin, Ren; Zhifeng, Ying; Ning, Xu; Fuming, Li

    1997-06-01

    Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C60 films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C60 films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C60 soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV) nitrogen ion beams have been used to bombard C60 films to synthesize the carbon nitride films.

  5. Energetics and Kinetics of Ti Clustering on Neutral and Charged C60 Surfaces

    SciTech Connect

    Yang, Shenyuan; Yoon, Mina; Wang, Enge; Zhang, Zhenyu

    2008-01-01

    Abstract: Using ab initio spin density functional theory, we investigate the energetics and kinetics of Ti clustering on both neutral and charged C60 surfaces. We compare the formation energy of twodimensional (2D) and three-dimensional (3D) TiN clusters as a function of cluster size (N 12). We find that there exists a critical cluster size (NC) of NC=5, below which 2D layer structures are preferred to 3D structures. Hole- or B-doping greatly enhance the Ti-fullerene interaction and lead to stronger dispersion of Ti atoms. Even so, for moderate charge doping (less than seven holes) the critical size of Ti atoms on neutral C60 surprisingly remains unchanged or only slightly increases to NC=6 by B-doping. However, we find that the formation of 3D clusters is hindered by a high kinetic barrier related to the 2 process of single Ti atoms climbing up a single Ti layer. This barrier is ~1eV or even 1.47 eV for Bdoped C60 surfaces which is high enough to stabilize larger 2D structures (N NC) at low temperatures. These findings open a way to produce homogenously Ti-doped fullerenes which are believed to be a very promising material for hydrogen storage.

  6. Preparation of C 60 single crystalline thin film by ionized cluster beam deposition and ion implantation into single crystalline C 60 thin film

    NASA Astrophysics Data System (ADS)

    Isoda, Satoru; Kawakubo, Hiroaki; Nishikawa, Satoshi; Wada, Osamu

    1996-05-01

    We have succeeded in preparing single crystalline C 60 thin film of a lateral extension in the order of several millimeters on mica by ionized cluster beam (ICB) deposition. During the growth process, planar dendrite-like single crystalline islands were observed by an atomic force microscope (AFM). It was concluded from reflection high-energy electron diffraction (RHEED) and transmission electron diffraction (TED) analyses that these islands grow hetero-epitaxially on mica. As the deposition process continues, the single crystalline islands coalesce and finally form a giant single crystal without grain boundaries between the former islands. This layered dendrite-like crystal growth is considered to be due to the ICB process, namely, ionizing molecules and accelerating them. Furthermore, the effect of ion (P +, B +, Ar +) implantation into C 60 thin films on the molecular structure and the conductivity has been studied under various implantation conditions. It was found from the analyses of FT-IR and Raman spectroscopies that the soccer-ball-like structure of C 60 changes into a diamond-like carbon (DLC) structure with an implantation energy higher than 40 keV, whereas the structure undergoes virtually no change with 10 keV implantation. As for conductivity changes under the lower implantation energy condition, the minimum dose of P + ions required to increase the conductivity from the non-doped value (10 12 cm -2) is 10 times lower than in the case of Ar + implantation. The conductivity change for the P + implantation could be explained satisfactorily not only by the effect of chemically-modified C 60 but also by the effect of a charge-transfer state between C 60 and implanted ions. It was concluded from these results that the conductivity of the C 60 film can be controlled over a wide range based on the carrier generation mechanism, which depends on the implantation conditions.

  7. Determination of the sputtering yield of cholesterol using Arn(+) and C60(+(+)) cluster ions.

    PubMed

    Rakowska, P D; Seah, M P; Vorng, J-L; Havelund, R; Gilmore, I S

    2016-08-01

    The sputtering yield of cholesterol films on silicon wafers is measured using Arn(+) and C60(+(+)) ions in popular energy (E) and cluster size (n) ranges. It is shown that the C60(+(+)) ions form a surface layer that stabilizes the film so that a well-behaved profile is obtained. On the other hand, the Arn(+) gas clusters leave the material very clean but, at room temperature, the layer readily restructures into molecular bilayers, so that, although a useful measure may be made of the sputtering yield, the profiles become much more complex. This restructuring does not occur at room temperature normally but results from the actions of the beams in the sputtering process for profiling in secondary ion mass spectrometry. Better profiles may be made by reducing the sample temperature to -100 °C. This is likely to be necessary for many lower molecular weight materials (below 1000 Da) to avoid the movement of molecules. Measurements for cholesterol films on 37 nm of amiodarone on silicon are even better behaved and show the same sputtering yields at room temperature as those films directly on silicon at -100 °C. The yields for both C60(+(+)) and Arn(+) fit the Universal Equation to a standard deviation of 11%. PMID:27299934

  8. N-block separable random phase approximation: dipole oscillations in sodium clusters and {C}_{60} fullerene

    NASA Astrophysics Data System (ADS)

    Palade, D. I.; Baran, V.

    2016-09-01

    We generalize the schematic model based on the Random Phase Approximation (RPA) with separable interaction, to a collection of subspaces of ph excitations which interact with different coupling constants. This ansatz notably lowers the numerical effort involved, by reducing the RPA eigenvalue problem to a finite small dimensional system of equation. We derive the associated dispersion relation and the normalization condition for the newly defined unknowns of the system. In contrast with the standard separable approach, the present formalism is able to describe more than one collective excitation even in the degenerate limit, giving also access to the nature of the resonance. The theoretical framework is tested investigating the dipolar oscillations in various neutral and singly charged sodium clusters and C 60 fullerene with results in good agreement with full RPA calculations and experimental data. It is proven that the 40 eV resonance present in photoabsorption spectra of C 60 is a localized surface plasmon.

  9. Study of Flux Ratio of C60 to Ar Cluster Ion for Hard DLC Film deposition

    SciTech Connect

    Miyauchi, K.; Toyoda, N.; Kanda, K.; Matsui, S.; Kitagawa, T.; Yamada, I.

    2003-08-26

    To study the influence of the flux ratio of C60 molecule to Ar cluster ion on (diamond like carbon) DLC film characteristics, DLC films deposited under various flux ratios were characterized with Raman spectrometry and Near Edge X-ray Absorption Fine Structure (NEXAFS). From results of these measurements, hard DLC films were deposited when the flux ratio of C60 to Ar cluster ion was between 0.7 and 4. Furthermore the DLC film with constant sp2 content was obtained in the range of the ratio from 0.7 to 4, which contents are lower values than that of conventional films such as RF plasma. DLC films deposited under the ratio from 1 to 4 had hardness from 40 to 45GPa. It was shown that DLC films with stable properties of low sp2 content and high hardness were formed even when the fluxes were varied from 1 to 4 during deposition. It was indicated that this process was useful in the view of industrial application.

  10. Calculation of the cluster size distribution functions and small-angle neutron scattering data for C60/N-methylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Tropin, T. V.; Jargalan, N.; Avdeev, M. V.; Kyzyma, O. A.; Sangaa, D.; Aksenov, V. L.

    2014-01-01

    The aggregate growth in a C60/N-methylpyrrolidone (NMP) solution has been considered in the framework of the approach developed earlier for describing the cluster growth kinetics in fullerene polar solutions. The final cluster size distribution functions in model solutions have been estimated for two fullerene aggregation models including the influence of complex formation on the cluster growth using extrapolations of the characteristics of the cluster state and distribution parameters. Based on the obtained results, the model curves of small-angle neutron scattering have been calculated for a C60/NMP solution at various values of the model parameters.

  11. High-T c superconductivity in potassium-doped fullerene, K xC 60, via coupled C 60 (pπ) cluster molecular orbitals and dynamic Jahn-Teller coupling

    NASA Astrophysics Data System (ADS)

    Johnson, K. H.; McHenry, M. E.; Clougherty, D. P.

    1991-11-01

    Recently observed superconductivity at 18 K in potassium-doped fullerene, K xC 60, may be due to Cooper pairing of partially occupied icosahedral C 60 cluster t 1u (pπ) molecular orbitals, induced by cooperative dynamic Jahn-Teller coupling of these orbitals to “soft-mode” vibrations of the C 60 molecules, leading to a BCS-like mechanism. Predicted are a nonvanishing isotope effect and Tc increasing to 30 K or more with optimization of doping, and significant effects with pressure.

  12. New insight into the structure of the C60Sc20 cluster: bonding, vibrational and optical properties.

    PubMed

    Tlahuice-Flores, A

    2016-05-14

    Recently, a new stable C60Sc20 cluster has been proposed. Its structure has Th symmetry and a large HOMO-LUMO gap value. In this communication a systematic study of its bonding, IR, Raman and absorption spectra has been carried out. Its calculated absorption spectrum features four peaks located at 1.34, 1.6, 1.87 and 2.1 eV. Moreover its Raman and IR spectra are dominated by the signals of normal modes with Tu, Eg and Au irreducible representations. PMID:27105055

  13. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C60 and C70

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana; Jarrell, Mark; Shelton, William A.

    2014-08-21

    Discovery of fullerenes has opened a entirely new chapter in chemistry due to their wide range of properties which holds exciting applications in numerous disciplines of science. The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley in recoginition for their discovery of this new carbon allotrope. In this letter we are reporting ionization potential and electron attachment studies on fullerenes (C60 and C70) obtained with novel parallel implementation of the EA-EOM-CCSD and IP-EOM-CCSD methods in NWChem program package.

  14. New Volleyballenes: Y20C60 and La20C60

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Ying

    2016-08-01

    Two new stable Volleyballenes, the Y20C60 and La20C60 molecular clusters, are proposed on the basis of first-principles density functional theory. In conjunction with recent findings for the scandium system, these findings establish Volleyballene M20C60 molecules as a general class of stable molecules within the fullerene family. Both Y20C60 and La20C60 molecules have Th point group symmetries and relatively large HOMO-LUMO gaps.

  15. New Volleyballenes: Y20C60 and La20C60

    PubMed Central

    Wang, Jing; Liu, Ying

    2016-01-01

    Two new stable Volleyballenes, the Y20C60 and La20C60 molecular clusters, are proposed on the basis of first-principles density functional theory. In conjunction with recent findings for the scandium system, these findings establish Volleyballene M20C60 molecules as a general class of stable molecules within the fullerene family. Both Y20C60 and La20C60 molecules have Th point group symmetries and relatively large HOMO-LUMO gaps. PMID:27487765

  16. New Volleyballenes: Y20C60 and La20C60.

    PubMed

    Wang, Jing; Liu, Ying

    2016-01-01

    Two new stable Volleyballenes, the Y20C60 and La20C60 molecular clusters, are proposed on the basis of first-principles density functional theory. In conjunction with recent findings for the scandium system, these findings establish Volleyballene M20C60 molecules as a general class of stable molecules within the fullerene family. Both Y20C60 and La20C60 molecules have Th point group symmetries and relatively large HOMO-LUMO gaps. PMID:27487765

  17. Electrostatic propulsion using C60 molecules

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Rapp, Donald; Saunders, Winston A.

    1992-01-01

    An evaluation is made of the potential benefits of C60 molecules as a basis for ion propulsion. Because C60 is storable, its use may result in a larger usable propellant fraction than previous methods of cluster ion propulsion. C60 may also relax such engineering constraints as grid spacing, which restrict the performance of noble gas ion propulsion. The behavior of C60 in a plasma discharge environment, as well as various electron impact cross sections of the molecule, will greatly afftect the feasibility of the concept.

  18. Solubility of C60 in solvent mixtures.

    PubMed

    Kulkarni, Pradnya P; Jafvert, Chad T

    2008-02-01

    The potential large-scale production of fullerene C60 and its widespread use in consumer products may translate into occupational and public exposure and in long-term environmental exposure. To assess the risk and fate of C60 in the environment, it is important to understand its solvate formation in common industrial solvents as the solvates may affect various properties of C60 including reactivity and toxicity, particularly when solvates occur in C60 clusters. In this study, the solubility measurements in mixed solvent system can provide useful information about solvate formation. The solubility of C60 was measured in pure toluene, tetrahydrofuran, ethanol, and acetonitrile to be 3000, 11, 1.4, and 0.04 mg/L, respectively. Additionally, the solubility of C60 was measured in mixtures of toluene-acetonitrile, toluene-ethanol, toluene-tetrahydrofuran, and acetonitrile-tetrahydrofuran. The solubility data were modeled with some accuracy using Wohl's equation. The estimated crystal energy term for C60 in tetrahydrofuran was different than that in the other solvents, indicating that the C60 solid phase in equilibrium with tetrahydrofuran solution may be a solvated crystal. PMID:18323111

  19. Electronic structure, conductivity and superconductivity of metal doped C60

    SciTech Connect

    Haddon, R.C.

    1993-12-31

    The curvature and topology required for fullerene formation strongly enhances the electronegativity of the carbon clusters and as a result C60 readily accepts electrons. Solid C60 undergoes doping with a variety of metals to produce intercalation compounds which are conductors. In the case of the alkali metals the predominant phases present are: C60, A3C60, and A6C60. The A3C60 compounds are formed from C60 by occupancy of the interstitial sites of the fcc lattice. These phases constitute the first 3-dimensional organic conductors and for A=K, Rb the A3C60 compounds are superconductors with transition temperatures of Tc=19 and 28K, respectively. There is evidence to suggest that the superconductivity in these systems is driven by the intramolecular vibrations of the reduced C60 molecule. Recent experiments on a variety of metal doped C60 thin films will be presented.

  20. Buckling of C60 whiskers

    NASA Astrophysics Data System (ADS)

    Asaka, Koji; Kato, Ryoei; Miyazawa, Kun'ichi; Kizuka, Tokushi

    2006-08-01

    The authors demonstrated the mechanics of materials for crystalline whiskers composed of C60 molecules; compressive deformation of the whiskers was observed by in situ transmission electron microscopy with simultaneous force measurement by means of an optical cantilever method, as used in atomic force microscopy. In response to compression along the long axis, the whiskers bent first elastically, then buckled. A whisker with 160nm diameter fractured brittlely at a strain of 0.08. According to Euler's formula, Young's modulus of the whisker was estimated to be 32-54GPa, which is 160%-650% of that of C60 bulk crystals.

  1. Sc20C60: a volleyballene

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ma, Hong-Man; Liu, Ying

    2016-06-01

    An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable.An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable. Electronic supplementary information (ESI) available: Sc20C60: a Volleyballene_SI. See DOI: 10.1039/c5nr07784b

  2. Sc20C60: a volleyballene.

    PubMed

    Wang, Jing; Ma, Hong-Man; Liu, Ying

    2016-06-01

    An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as "Volleyballene". Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (∼1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable. PMID:26878201

  3. Helium Droplets Doped with Sulfur and C60

    PubMed Central

    2014-01-01

    Clusters of sulfur are grown by passing superfluid helium nanodroplets through a pickup cell filled with sulfur vapor. In some experiments the droplets are codoped with C60. The doped droplets are collided with energetic electrons and the abundance distributions of positively and negatively charged cluster ions are recorded. We report, specifically, distributions of Sm+, Sm–, and C60Sm– containing up to 41 sulfur atoms. We also observe complexes of sulfur cluster anions with helium; distributions are presented for HenSm– with n ≤ 31 and m ≤ 3. The similarity between anionic and cationic C60Sm± spectra is in striking contrast to the large differences between spectra of Sm+ and Sm–. PMID:26045732

  4. Biological applications of hydrophilic C60 derivatives (hC60s)- a structural perspective.

    PubMed

    Zhu, Xiaolei; Sollogoub, Matthieu; Zhang, Yongmin

    2016-06-10

    Reactive oxygen species (ROS) generation and radical scavenging are dual properties of hydrophilic C60 derivatives (hC60s). hC60s eliminate radicals in dark, while they produce reactive oxygen species (ROS) in the presence of irradiation and oxygen. Compared to the pristine C60 suspension, the aqueous solution of hC60s is easier to handle in vivo. hC60s are diverse and could be placed into two general categories: covalently modified C60 derivatives and pristine C60 solubilized non-covalently by macromolecules. In order to present in detail, the above categories are broken down into 8 parts: C60(OH)n, C60 with carboxylic acid, C60 with quaternary ammonium salts, C60 with peptide, C60 containing sugar, C60 modified covalently or non-covalently solubilized by cyclodextrins (CDs), pristine C60 delivered by liposomes, functionalized C60-polymer and pristine C60 solubilized by polymer. Each hC60 shows the propensity to be ROS producer or radical scavenger. This preference is dependent on hC60s structures. For example, major application of C60(OH)n is radical scavenger, while pristine C60/γ-CD complex usually serves as ROS producer. In addition, the electron acceptability and innate hydrophobic surface confer hC60s with O2 uptake inhibition, HIV inhibition and membrane permeability. In this review, we summarize the preparation methods and biological applications of hC60s according to the structures. PMID:27049677

  5. Nanosegregation in Na2C60

    SciTech Connect

    Klupp, G.; Kamaras, K.; Matus, P.; Kiss, L.F.; Kovats, E.; Pekker, S.; Nemes, N.M.; Quintavalle, D.; Janossy, A.

    2005-09-27

    There is continuous interest in the nature of alkali metal fullerides containing C{sub 60}{sup 4-} and C{sub 60}{sup 2-}, because these compounds are believed to be nonmagnetic Mott-Jahn-Teller insulators. This idea could be verified in the case of A4C60, but Na2C60 is more controversial. By comparing the results of infrared spectroscopy and X-ray diffraction, we found that Na2C60 is segregated into 3-10 nm large regions. The two main phases of the material are insulating C60 and metallic Na3C60. We found by neutron scattering that the diffusion of sodium ions becomes faster on heating. Above 470 K Na2C60 is homogeneous and we show IR spectroscopic evidence of a Jahn-Teller distorted C{sub 60}{sup 2-} anion.

  6. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  7. Photoemission study of Li@C60

    NASA Astrophysics Data System (ADS)

    Yagi, Hajime; Ogasawara, Naoko; Zenki, Masashi; Miyazaki, Takafumi; Hino, Shojun

    2016-05-01

    Ultraviolet and X-ray photoelectron spectra (UPS and XPS) of thin films prepared by either depositing or applying [Li@C60]+(PF6)- on the substrates are presented. The UPS and XPS of [Li@C60]+(PF6)- applied films suggest that PF6- anions come out from the surface by annealing at 250 °C. The UPS and XPS of the deposited thin films indicate that the film does not contain PF6- anion but is composed of only Li@C60. Changing the sublimation temperature reveals that encapsulated Li cations begin to escape from the C60 cage when heated above 550 °C.

  8. Structural and electronic properties of sodium-intercalated C60

    NASA Astrophysics Data System (ADS)

    Rosseinsky, M. J.; Murphy, D. W.; Fleming, R. M.; Tycko, R.; Ramirez, A. P.; Siegrist, T.; Dabbagh, G.; Barrett, S. E.

    1992-04-01

    The synthesis and initial characterization of bulk Na(x)C60 (x = 2-6) and mixed alkali phase Na2AC60 (where A is K, Rb, or Cs) are reported. All of these phases have intercalated fcc structures. The Na6C60 structure has a Na4 cluster centered on the octahedral site. The Na2AC60 compounds superconduct for the larger A cations, but a crossover to nonsuperconducting behavior occurs with decreasing cation size and correlates with a minimum in the unit cell volume.

  9. 15 CFR 8c.60 - Communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Communications. 8c.60 Section 8c.60 Commerce and Foreign Trade Office of the Secretary of Commerce ENFORCEMENT OF NONDISCRIMINATION ON THE... Communications. (a) The agency shall take appropriate steps to ensure effective communication with...

  10. 15 CFR 8c.60 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Communications. 8c.60 Section 8c.60 Commerce and Foreign Trade Office of the Secretary of Commerce ENFORCEMENT OF NONDISCRIMINATION ON THE... Communications. (a) The agency shall take appropriate steps to ensure effective communication with...

  11. Nonlinear spectroscopy of C60 single crystal

    NASA Astrophysics Data System (ADS)

    Zamboni, Roberto; Muccini, Michele; Danieli, R.; Taliani, Carlo; Mohn, H.; Muller, W.; ter Meer, Hans-Ulrich

    1994-11-01

    Two-photon excitation measurements of C60 single crystal at 4 K have been performed. The TPE spectrum shows a sharp band at 1.846 eV which is assigned to the C60 lowest forbidden Frenkel singlet exciton of T1g symmetry. This assignment is supported by the analysis of Herzberg-Teller induced photoluminescence.

  12. Electrostatic Propulsion Using C60 Molecules

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Saunders, Winston A.

    1993-01-01

    Report proposes use of C60 as propellant material in electrostatic propulsion system of spacecraft. C60, C70, and similar molecules, have recently been found to have characteristics proving advantageous in electrostatic propulsion. Report discusses these characteristics and proposes experiments to determine feasibility of concept.

  13. 15 CFR 8c.60 - Communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Communications. 8c.60 Section 8c.60 Commerce and Foreign Trade Office of the Secretary of Commerce ENFORCEMENT OF NONDISCRIMINATION ON THE... Communications. (a) The agency shall take appropriate steps to ensure effective communication with...

  14. Interaction of C(60) fullerene with lipids.

    PubMed

    Cataldo, Franco

    2010-06-01

    Unsaturated lipids when exposed to air at room temperature undergo a slow autoxidation. When fullerene C(60) was dissolved in selected lipids (ethyl oleate, ethyl linoleate, linseed oil and castor oil) the spectrophotometric analysis shows that the oxidation is concentrated to C(60) which is converted to an epoxide C(60)O. Thus, fullerene C(60) displays antioxidant activity not only when dissolved in unsaturated lipids but also, more generally, when dissolved in unsaturated solvents subjected to autoxidation like, for example, in cyclohexene. The behaviour of C(60) in ethyl oleate has been compared with that of the known antioxidant TMPPD (N,N',N,N,'-tetramethyl-p-phenylenediamine) in ethyl oleate. The mechanism of the antioxidant action of C(60) in lipids has been proposed. The kinetics of C(60) oxidation in lipids was determined spectrophotometrically both at room temperature in the dark and under UV irradiation. The oxidized products derived from C(60) photo-oxidation in lipids have been identified. PMID:20338159

  15. Electron transport properties and spin modulation effect analysis for C60, Au@C60 and Ag@C60

    NASA Astrophysics Data System (ADS)

    Wang, Fangyuan; Li, Guiqin

    2016-04-01

    The electron transport properties of C60, Au@C60 and Ag@C60 junctions between Au electrodes are investigated with density functional theory and the first-principle nonequilibrium Greens function. Density of states and transmission possibility as functions of energy are examined, and current-voltage characteristics of all these models are calculated with and without spin correction. With spin correction, we find a spin-current difference in Au@C60 as large as an order of magnitude. It may be used to obtain high-purity arbitrary spin current. By comparing the calculation results with and without spin correction, we attribute this spin difference to the spin resonance between transmission electrons and the valence electron of endohedral Au atom.

  16. Preparation of C60 by Detonation Technique

    NASA Astrophysics Data System (ADS)

    Wei, Xianfeng; Han, Yong; Long, Xinping

    2012-11-01

    A mixture of TNT (Trinitrotoluene) and natural graphite was detonated in a vacuum container which was immersed into cooling water; detonation products were collected for detecting. The results of mass spectroscopy, high performance liquid chromatography showed significant signals of C60, which proved that C60 could be synthesized by detonating the mixture of TNT/graphite and the detonation pressure was around 12.3 GPa and the detonation temperature was around 1985 K.

  17. Hugoniot of C60 fullerite: new results

    NASA Astrophysics Data System (ADS)

    Milyavskiy, Vladimir; Utkin, Alexander; Zhuk, Andrey; Yakushev, Vladislav; Fortov, Vladimir

    2005-07-01

    Recently, we have experimentally studied shock compressibility of C60 fullerite and sound velocity in shock-compressed fullerite at the pressure range up to ˜50 GPa [1]. In this work we present the results of new shock experiments executed with C60 fullerite in the same pressure range. On the base of new experimental results, we have made some correction of our concept [1] of the processes occurring in C60 fullerite at shock compression. In particular, the anomalous behavior of the rear surface velocity profiles was detected at pressure ˜9 GPa [1]. Additional experiments have shown that this anomalous behavior was caused by jump of the sound velocity in C60 because of formation of more hard carbon phase. We assume that it is a polymerized C60 phase. In the pressure region 9-25 GPa, destruction of this phase and formation of a graphite-like carbon occurs. With further growth of shock pressure, phase transition of the graphite-like carbon to a diamond-like phase is observed with a transition onset pressure ˜25 GPa. If shock pressures higher than ˜33 GPa, Hugoniot of C60 is determined by the thermodynamic properties of the diamond-like phase. [1] V.V. Milyavskiy, A.V. Utkin, E.B. Zaretsky, A.Z. Zhuk, V.V. Yakushev, V.E. Fortov. AIP CP 706 (2004) 667.

  18. IR absorptions of C60(+) and C60(-) in neon matrixes.

    PubMed

    Kern, Bastian; Strelnikov, Dmitry; Weis, Patrick; Böttcher, Artur; Kappes, Manfred M

    2013-08-29

    C60(+) ions were produced by electron-impact ionization of sublimed C60, collimated into an ion beam, turned 90° by an electrostatic deflector to separate them from neutrals, mass filtered by a radio frequency quadrupole, and co-deposited with Ne on a cold 5 K gold-coated sapphire substrate. Infrared absorption spectroscopy revealed the additional presence of C60 and C60(-) in the as-prepared cryogenic matrixes. To change the C60(+)/C60(-) ratio, CCl4 or CO2 electron scavengers were added to the matrix gas. Also taking into account DFT calculations, we have identified nine new previously unpublished IR absorptions of C60(+) and seven of C60(-) in Ne matrixes. Our measurements are in very good agreement with DFT calculations, predicting D5d C60(+) and D3d C60(-) ground states. The new results may be of interest regarding the presence of C60 and C70 (as well as ions thereof) in Space. PMID:23902528

  19. C60 oxide as a key component of aqueous C60 colloidal suspensions.

    PubMed

    Murdianti, Befrika S; Damron, Joshua T; Hilburn, Martha E; Maples, Randall D; Hikkaduwa Koralege, Rangika S; Kuriyavar, Satish I; Ausman, Kevin D

    2012-07-17

    Stable aqueous fullerene colloidal suspensions (nC(60)) are demonstrated to rely on the [6,6]-closed epoxide derivative of the fullerene (C(60)O) for stability. This derivative is present, though often unrecognized, in small quantities in nearly all C(60) starting materials due to a reaction with air. The low-yield formation of nC(60) from organic solvent solutions results from a preferential partitioning and thus enrichment of C(60)O in the colloidal particles. This partitioning is significantly retarded in the nC(60) synthesis method that does not involve organic solvent solutions: long-term stirring in water. Instead, this method relies on trace levels of ozone in the ambient atmosphere to produce sufficient C(60)O at the surfaces of the nC(60) particles to allow stable suspension in water. Controlled-atmosphere syntheses, deliberate C(60)O enrichment, light scattering measurements, and extraction followed by HPLC analysis and UV-visible absorption spectroscopy support the above model of nC(60) formation and stabilization. PMID:22703564

  20. C60 fullerene binding to DNA

    NASA Astrophysics Data System (ADS)

    Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.

    2014-09-01

    Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.

  1. Sublimed C60 films for tribology

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Gupta, B. K.; Van Cleef, Garrett W.; Capp, Cindy; Coe, James V.

    1993-06-01

    Fullerenes take the form of hollow, geodesic domes, which are formed from a network of pentagons and hexagons. The C60 molecule has the highest possible symmetry (icosahedral) and assumes the shape of a soccer ball. At room temperature, fullerene molecules pack in a face-centered-cubic lattice bonded with weak van der Waals attractions. Fullerenes can be dissolved in solvents such as toluene and benzene and easily sublimed. The resilience, high load bearing capacity, low surface energy, high chemical stability, and spherical shape of C60 molecules and weak intermolecular bonding offer great potential for various mechanical and tribological applications. Sublimed films of C60 have been produced and friction and wear performance of these films in various operating environments are the subject of this letter.

  2. Inversion Symmetry Breaking in Endohedral C_60

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis; Anderson, Frederick

    1998-03-01

    A pseudo--Jahn--Teller model describing central atom distortions is proposed for endohedral fullerenes of the form A@C_60 where A is either a rare gas or a metal atom. A critical (dimensionless) coupling gc is found, at or below which the symmetric configuration is stable and above which inversion symmetry is broken. Vibronic parameters are given for selected endohedral fullerenes.

  3. Fullerene (C60) films for solid lubrication

    SciTech Connect

    Bhushan, B.; Gupta, B.K.; Van Cleef, G.W.; Capp, C.E.; Coe, J.V. )

    1993-10-01

    The advent of techniques for producing gram quantities of a new form of stable, pure, solid carbon, designated as fullerene, opens a profusion of possibilities to be explored in many disciplines including tribology. Fullerenes take the form of hollow geodesic domes, which are formed from a network of pentagons and hexagons with covalently bonded carbon atoms. The C60 molecule has the highest possible symmetry (icosahedral) and assumes the shape of a soccer ball. At room temperature, fullerene molecules pack in an fcc lattice bonded with weak van der Waals attractions. Fullerenes can be dissolved in solvents such as toluene and benzene and are easily sublimed. The low surface energy, high chemical stability, spherical shape, weak intermolecular bonding, and high load bearing capacity of C60 molecules offer potential for various mechanical and tribological applications. This paper describes the crystal structure and properties of fullerenes and proposes a mechanism for self-lubricating action. Sublimed films of C60 have been produced and friction and wear performance of these films in various operating environments are the subject of this paper. The results of this study indicate that C60, owing to its unique crystal structure and bonding, may be a promising solid lubricant. 31 refs.

  4. The encapsulated lithium effect on the first hyperpolarizability of C60Cl2 and C60F2.

    PubMed

    Song, Yao-Dong; Wang, Liang; Wu, Li-Ming; Chen, Qiao-Ling; Liu, Fa-Kun; Tang, Xiao-Wen

    2016-02-01

    In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2. PMID:26841975

  5. Synthesis of C60H2 by rhodium-catalyzed hydrogenation of C60

    NASA Technical Reports Server (NTRS)

    Becker, L.; Evans, T. P.; Bada, J. L.; Miller, S. L. (Principal Investigator)

    1993-01-01

    Reduction of C60 with rhodium(0) on alumina and hydrogen in deuterated benzene (C6D6) at ambient temperature and pressure yields a mixture of hydrogenated compounds; C60H2 has been characterized as the major product in 14% yield based on 1H NMR.

  6. Charge transfer and formation of conducting C60 monolayers at C60/noble-metal interfaces

    NASA Astrophysics Data System (ADS)

    Nouchi, Ryo; Kanno, Ikuo

    2005-05-01

    The resistance of a conducting C60 monolayer formed on a polycrystalline Ag film was found to be 0.7±0.1kΩ by in situ resistance measurements. By another series of in situ resistance measurements, the surface scattering cross sections, whose magnitude represents the relative amount of transferred charge, were evaluated as 100Å2 for C60/Au, and 150Å2 for C60/Cu and C60/Ag systems. However, comparison with previous results obtained for monolayers formed on Au and Cu films showed that the resistances of conducting C60 monolayers do not show a simple dependence on the transferred charge. Atomic force microscopy measurements revealed that the grain size of the underlying noble metals also plays an important role.

  7. On the vibrational modes of C 60

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Gorman, John P.

    1996-03-01

    The vibrational spectrum of C 60 is compared to the spectrum of a classical isotropic elastic spherical shell. We show correlations between the low frequency modes of C 60 and those of the spherical shell. We find the spherical model gives the approximate frequency ordering for the low frequency modes. We estimate a Poisson ratio of σ ≈ 0.30 and a transverse speed of sound of υs ≈ 1800 m/s for the equivalent elastic shell. We also find that ω( M1) /ω( M0) = √ 3/2 for the shell modes M 0 and M 1, independent of elastic constants. We find that this ratio compares favorably with an experimental value of 1.17.

  8. C_60 Nanotips for Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Halas, N. J.

    1997-03-01

    Individual C_60 molecules are shown to provide stable conductive molecular tunneling sites, or nanotips, on the probe tip of a scanning tunneling microscope (STM). The chemisorptive attachment and subsequent imaging of discrete single molecules on an STM tip apex have been previously reported.(K. F. Kelly, D. Sarkar, S. Prato, J. S. Resh, G. D. Hale, and N. J. Halas, J. Vac. Sci. Tech. B14), 593 (1996). Functionalizing an STM tip with a C_60 molecular adsorbate alters the density of states near the Fermi energy of the tip tunneling site and modifies its imaging characteristics. These tips have permitted the observation of threefold symmetric electron scattering surrounding point defects on graphite surfaces, an effect which could not be observed using bare metal tips.(K. F. Kelly, D. Sarkar, G. D. Hale, S. J. Oldenburg, and N. J. Halas, Science 273), 1371 (1996).

  9. Ferroelectricity in (K@C60)n

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2000-09-01

    A theoretical analysis of the ground state of long-chain (K@C60)n is presented. Within mean field theory, a ferroelectric ground state is found to be stable because of the pseudo-Jahn-Teller mixing of the b1u and the b2g band with a zone-center optical phonon involving the displacement of the endohedral K- ions. A phase diagram for this model is derived in the narrow bandwidth regime.

  10. Electronic Structure of Crystalline Buckyballs: fcc-C60

    NASA Astrophysics Data System (ADS)

    Jalali-Asadabadi, Saeid; Ghasemikhah, E.; Ouahrani, T.; Nourozi, B.; Bayat-Bayatani, M.; Javanbakht, S.; Aliabad, H. A. Rahnamaye; Ahmad, Iftikhar; Nematollahi, J.; Yazdani-Kachoei, M.

    2016-01-01

    The electronic properties of pristine fcc-C60 are calculated by utilizing a variety of density functional theory (DFT) approaches including the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), PBE-GGA+DFT-D3(vdW), Engel and Vosko GGA (EV-GGA), GGA plus Hubbard U parameter (GGA+U), hybrids Becke-Perdew-Wang hybrid functional (B3PW91), Becke-Lee-Yang-Parr hybrid functional (B3LYP), the PBE exchange-correlation functional (PBE0), and Tran and Blaha regular and non-regular modified Becke and Johnson (TB-mBJ) potential within a DFT frame work using augmented plane waves plus local orbital method. The comparison of the calculated results with the experimental values shows that the non-regular TB-mBJ method reproduces a correct experimental direct band gap of 2.12 eV at X symmetry for this compound. The effectiveness of this theoretical approach in the reproduction of the experimental band gap is due to the proper treatment of the electrons in the interstitial region of the crystal. Our results show that the C60 clusters are weakly interacting with each other in the fcc crystal. This study also reveals that the five-fold degeneracies of the isolated C60 molecule due to its icosahedral symmetry are completely lifted at an X symmetry point by the crystal field.

  11. SiC formation on Si(100) via C 60 precursors

    NASA Astrophysics Data System (ADS)

    De Seta, M.; Tomozeiu, N.; Sanvitto, D.; Evangelisti, F.

    2000-07-01

    The interaction between C 60 molecules and the Si(100) surface and the preparation of silicon-carbide thin films by thermal reaction of C 60 molecules with the Si(100) surface have been investigated using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, reflection high-energy electron diffraction and atomic force microscopy measurements. The effects of annealing temperature and C 60 coverage on the SiC formation will be discussed. It is found that the C 60 molecules bond covalently with silicon, and the number of bonds increase upon increasing the annealing temperature. Annealing at T≥830°C entails the formation of stoichiometric silicon carbide clusters that coalesce to form a continuous SiC layer when the C 60 coverage is greater than one monolayer. Deep pits acting as silicon diffusion channels are present with dimensions that increase with the amounts of C 60. The interaction of C 60 with the SiC surface was also investigated. It is found that a similar covalent interaction is present in the two systems C 60/Si and C 60/SiC.

  12. Exohedral M-C60 and M2-C60 (M = Pt, Pd) systems as tunable-gap building blocks for nanoarchitecture and nanocatalysis

    NASA Astrophysics Data System (ADS)

    Özdamar, Burak; Boero, Mauro; Massobrio, Carlo; Felder-Flesch, Delphine; Le Roux, Sébastien

    2015-09-01

    Transition metal-fullerenes complexes with metal atoms bound on the external surface of C60 are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C60, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd-C60, Pt-C60, PtPd-C60, Pd2-C60, and Pt2-C60 complexes. The most stable structures feature the metal atom located above a high electron density site, namely, the π bond between two adjacent hexagons (π-66 bond). When two metal atoms are added, the most stable configuration is those in which metal atoms still stand on π-66 bonds but tends to clusterize. The electronic structure, rationalized in terms of localized Wannier functions, provides a clear picture of the underlying interactions responsible for the stability or instability of the complexes, showing a strict relationship between structure and electronic gap.

  13. Energy spectrum of C60 fullerene

    NASA Astrophysics Data System (ADS)

    Mironov, G. I.; Murzashev, A. I.

    2011-11-01

    The energy spectrum of the C60 fullerene has been calculated in terms of the Shubin-Vonsovskii-Hubbard model using an approximation of static fluctuations. Based on the spectrum, the optical absorption bands at 4.84, 5.88, and 6.30 eV observed experimentally have been successfully explained. It has been concluded that the model used is applicable for the calculation of the energy spectrum and the energy properties of other nanosystems, such as fullerenes of higher orders, carbon nanotubes, and grafen planes.

  14. Enhanced photoluminescence of C 60 incorporated into interlayers of hydrotalcite

    NASA Astrophysics Data System (ADS)

    Ding, Weiping; Gu, Gang; Zhong, Wei; Zang, Wen-Cheng; Du, Youwei

    1996-11-01

    Strong photoluminescence of sodium-reduced C 60 incorporated into interlayers of hydrotalcite is observed. This phenomenon is correlated to the fact that the reduced C 60 is positioned between positively charged layers of the anion clay. The interaction between the layers and reduced C 60 alters the photophysical properties of C 60 and relaxes the electron transition inhibition, thus enhancing photoluminescence.

  15. Identification of More Interstellar C60+ Bands

    NASA Astrophysics Data System (ADS)

    Walker, G. A. H.; Bohlender, D. A.; Maier, J. P.; Campbell, E. K.

    2015-10-01

    Based on gas-phase laboratory spectra at 6 K, Campbell et al. confirmed that the diffuse interstellar bands (DIBs) at 9632.7 and 9577.5 Å are due to absorption by the fullerene ion {{{C}}}60+. They also reported the detection of two other, weaker bands at 9428.5 and 9365.9 Å. These lie in spectral regions heavily contaminated by telluric water vapor lines. We acquired CFHT ESPaDOnS spectra of HD 183143 close to the zenith and chopped with a nearby standard to correct for the telluric line absorption which enabled us to detect a DIB at 9365.9 Å of relative width and strength comparable to the laboratory absorption. There is a DIB of similar strength and FWHM at 9362.5 Å. A stellar emission feature at 9429 Å prevented detection of the 9428.5 Å band. However, a CFHT archival spectrum of HD 169454, where emission is absent at 9429 Å, clearly shows the 9428.5 Å DIB with the expected strength and width. These results further confirm {{{C}}}60+ as a DIB carrier. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  16. Yttrium-dispersed C60 fullerenes as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-01

    Interaction between hydrogen molecules and functionalized C60 is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C60 decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H2 molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H2 molecule. Consequently, the C60Y12 complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ˜6.30 wt. %.

  17. Geometric, electronic, and vibrational structures of C50, C60, C70, and C80

    NASA Astrophysics Data System (ADS)

    Woo, Sang Jeong; Kim, Eunja; Lee, Young Hee

    1993-03-01

    We have performed a molecular-dynamics simulation combined with the empirical tight-binding total-energy calculation method to study the carbon clusters C50, C60, C70, and C80. The optimized structure of C60, obtained by slow quenching from finite-temperature molecular dynamics, gives excellent agreement with results reported previously. The corresponding cluster structures are also determined through this calculational scheme. A systematic study of the geometric, electronic, and vibrational properties of these clusters is carried out and compared with other results.

  18. Short-pulse laser-produced plasma from C60 molecules

    SciTech Connect

    Wuelker, Cornelius; Theobald, Wolfgang; Ouw, Donald; Schaefer, Fritz P.; Chichkov, Boris N.

    1995-05-01

    The first experimental observations of a plasma produced in a vapor of C60 molecules with a high-intensity subpicosecond KrF laser (6x10{sup 15} W/cm{sup 2}) are reported. It differs from a plasma created in an ordinary carbon preplasma by reaching much higher ionization stages under the same experimental conditions. This remarkable property of C60 molecules (and other clusters) opens new prospects for short-pulse driven X-ray lasers.

  19. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    PubMed

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives. PMID:27417325

  20. Mesoscale aggregation properties of C60 in toluene and chlorobenzene.

    PubMed

    Guo, Rong-Hao; Hua, Chi-Chung; Lin, Po-Chang; Wang, Ting-Yu; Chen, Show-An

    2016-07-20

    The mesoscale aggregation properties of C60 in two distinct aromatic solvents (toluene and chlorobenzene) and a practical range of concentrations (c = 1-2 and c = 1-5 mg mL(-1), respectively) were systematically explored by static/dynamic light scattering (SLS/DLS), small angle X-ray scattering (SAXS), depolarized dynamic light scattering (DDLS), and cryogenic transmission electron microscopy (cryo-TEM) analyses. The central observations were as follows: (1) aggregate species of sizes in the range of several hundred nanometers have been independently revealed by SLS, DLS, and DDLS analyses for both solvent systems. (2) DDLS and cryo-TEM measurements further revealed that while C60 clusters are notably anisotropic (rod-like) in chlorobenzene, they are basically isotropic (spherical) in toluene. (3) Detailed analyses of combined SLS and SAXS profiles suggested that varied, yet self-similar, solvent-induced aggregate units were responsible for the distinct (mesoscale) aggregation features noted above. (4) From a dynamic perspective, specially commissioned DLS measurements ubiquitously displayed two relaxation modes (fast and slow mode), with the second (slow) mode being q (wave vector) independent. While the fast mode in both solvent systems was basically diffusive by nature and leads to geometrical features in good agreement with the above static analyses, the slow mode was analyzed and tentatively suggested to reflect the effect of mutual confinement. (5) Micron-scale aggregate morphology of drop-cast thin films displays similar contrasting features for the two solvent media used. Overall, this study suggests that solvent-induced, nanoscale, aggregate units may be a promising factor to control a hierarchy of microscopic aggregation properties of C60 solutions and thin films. PMID:27376417

  1. DFT study of hydrogen storage in Pd-decorated C60 fullerene

    NASA Astrophysics Data System (ADS)

    El Mahdy, A. M.

    2015-11-01

    Hydrogen storage reactions on Pd-doped C60 fullerene are investigated by using the state-of-the-art density functional theory calculations. The Pd atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to four hydrogen molecules with average adsorption energies of 0.61, 0.45, 0.32, and 0.21 eV per hydrogen molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.8 wt%. While the desorption activation barriers of the complexes nH2 + Pd-C60 with n = 1 are outside the department of energy (DOE) domain (-0.2 to -0.6 eV), the desorption activation barriers of the complexes nH2 + Pd-C60 with n = 2-4 are inside this domain. While the interaction of 1H2 with Pd + C60 is irreversible at 459 K, the interaction of 2H2 with Pd + C60 is reversible at 529 K. The hydrogen storage of the irreversible 1H2 + Pd-C60 and reversible 2H2 + Pd-C60 interactions are characterised in terms of densities of states, infrared, Raman, and proton magnetic resonance spectra, electrophilicity, and statistical thermodynamic stability.

  2. Mapping intermolecular bonding in C60

    PubMed Central

    Sundqvist, Bertil

    2014-01-01

    The formation of intermolecular bonds in C60 has been investigated in detail at pressures below 2.2 GPa and up to 750 K. Fullerene samples were heated in a temperature gradient to obtain data on the formation of dimers and low-dimensional polymers along isobars. Intermolecular bonding was analyzed ex situ by Raman scattering, using both intramolecular modes and intermolecular stretching modes. Semi-quantitative reaction maps are given for the formation of dimers and chains. The activation energy for dimer formation decreases by 0.2 meV pm−1 when intermolecular distances decrease and dimer formation is noticeably affected by the rotational state of molecules. Above 400–450 K larger oligomers are formed; below 1.4 GPa most of these are disordered, with small domains of linear chains, but above this the appearance of stretching modes indicates the existence of ordered one-dimensional polymers. At the highest pressures and temperatures two-dimensional polymers are also observed. PMID:25145952

  3. EPR study of radical reactions of C 60 dimer connected by a silicon bridge and single bond (C 60SiPh 2C 60)

    NASA Astrophysics Data System (ADS)

    Tumanskii, B. L.; Kalina, O. G.; Sokolov, V. I.; Chistyakov, A. L.; Stankevich, I. V.; Han, A.; Murata, Y.; Komatsu, K.

    2004-09-01

    Radical reactions of C 60 dimer connected by a silicon bridge and single bond (C 60SiPh 2C 60) were studied by EPR-spectroscopy. Attack of phosphoryl radicals or 2,2,6,6-tetramethylpiperidine- N-oxyl on the silicon atom leads to radical substitution of the fullerene and formation of a new fullerenyl radical, the structure of the former being confirmed by quantum-chemical calculations (DFT). The formation of only one type of spin-adduct on addition of phosphoryl radicals to the fullerene core is associated with small distortion of the fullerene cage in C 60SiPh 2C 60. Geometry of fullerene core in dimer differs only slightly from C 60 owing probably to flexibility of Si-C and C-C bonds which share a five-membered ring.

  4. Properties Of N@C60-Derived Peapods

    NASA Astrophysics Data System (ADS)

    Gembus, A.; Simon, F.; Jánossy, A.; Kuzmany, H.; Dinse, K.-P.

    2004-09-01

    Using pulsed EPR techniques, the basic spin relaxation properties of N@C60-based peapods were determined. In contrast to narrow line spectra typical for N@C60 in solid solution or in a C60 matrix, substantial line broadening is observed for the SWCNT-encapsulated N@C60 molecules, which might be indicative for uniaxial cage distortion by interaction with the nanotube.

  5. IR, NIR, and UV Absorption Spectroscopy of C60(2+) and C60(3+) in Neon Matrixes.

    PubMed

    Kern, Bastian; Strelnikov, Dmitry; Weis, Patrick; Böttcher, Artur; Kappes, Manfred M

    2014-02-01

    C60(2+) and C60(3+) were produced by electron-impact ionization of sublimed C60 and charge-state-selectively codeposited onto a gold mirror substrate held at 5 K together with neon matrix gas containing a few percent of the electron scavengers CO2 or CCl4. This procedure limits charge-changing of the incident fullerene projectiles during matrix isolation. IR, NIR, and UV-vis spectra were then measured. Ten IR absorptions of C60(2+) were identified. C60(3+) was observed to absorb in the NIR region close to the known vibronic bands of C60(+). UV spectra of C60, C60(+), and C60(2+) were almost indistinguishable, consistent with a plasmon-like nature of their UV absorptions. The measurements were supported by DFT and TDDFT calculations, revealing that C60(2+) has a singlet D5d ground state whereas C60(3+) forms a doublet of Ci symmetry. The new results may be of interest regarding the presence of C60(2+) and C60(3+) in space. PMID:26276592

  6. Investigation of Photochemical Properties of C60 Aggregates in Water

    EPA Science Inventory

    As an emerging new material with unique structure and properties, the behavior and fate of Buckminster fullerene (C60) in natural waters has gained increasing attention. Although the water solubility of C60 is extremely low, the formation of C60 aggregates in water could alter th...

  7. Retention of Aqu/C60 Nanoparticles on Quartz Surfaces

    EPA Science Inventory

    Studies have shown that C60 fullerene can form stable suspensions of colloidal sized particles in water resulting in C60 aqueous concentrations many orders of magnitude above C60’s aqueous solubility. These studies have raised concern over the mobility and distribution of fuller...

  8. Screening of C60 crystallization using a microfluidic system.

    PubMed

    Shinohara, Kyosuke; Fukui, Takeshi; Abe, Hiroaki; Sekimura, Naoto; Okamoto, Koji

    2006-07-18

    We have carried out screening of C60 crystallization using a simple liquid/liquid interfacial precipitation method in a microfluidic device. By controlling the time, temperature, and concentration, various metastable phases of C60 crystals were found, including tubes, spheres, open-ended hollow columns, stars, branches, and trees. The obtained C60 crystal shapes are similar to those of snow crystals. These findings suggest an urgent need to screen C60 crystallization for the development of fullerene C60 drugs. PMID:16830986

  9. C60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer

    DOE PAGESBeta

    Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.

    2015-12-03

    Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate of ~5 Pbmore » atoms per C60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less

  10. C60-induced Devil's Staircase transformation on a Pb/Si(111) wetting layer

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Lin; Johnson, Duane D.; Tringides, Michael C.

    2015-12-01

    Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C60/Pb /Si (111 ) to explain the unusually fast and error-free transformations between the "Devil's Staircase" (DS) phases on the Pb/Si(111) wetting layer at low temperature (˜110 K ). The formation energies of vacancy clusters are calculated in C60/Pb /Si (111 ) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate of ˜5 Pb atoms per C60. The high energy cost (˜0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.

  11. C60-Induced Devil's Staircase Transformation on Pb/Si(111) Wetting Layer

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Lin; Johnson, Duane D.; Tringides, Michael C.

    Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C60/Pb/Si(111) to explain the unusually fast and error-free transformations between the ``Devil's Staircase'' (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110 K). The formation energies of vacancy clusters are calculated in C60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than 5 Pb atoms are found to be stable with 7 being the most stable, while vacancy clusters smaller than 5 are highly unstable, which agrees well with the observed ejection rate of ~5 Pb atoms per C60. The high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but correlated multi-atom processes. DOE Office of Science, Basic Energy Sciences from the Divisions of MSE (DE-AC02-07CH1135) and Ames Lab LDRD. Ames Laboratory is operated for DOE by Iowa State University under contract DE-AC02-07CH11358.

  12. Colloidal Properties of Aqueous Fullerenes: Isoelectric Points and Aggregation Kinetics of C60 and C60 Derivatives

    EPA Science Inventory

    Aqueous colloidal suspensions of C-60 (aqu/C-60) and the C-60 derivatives PCBM ([6,6]-phenyl C-61-butyric acid methyl ester) and the corresponding butyl and octyl esters, PCBB and PCBO (aqu/PCB-R, where R is an alkyl group), were produced by stirring in double deionized water for...

  13. C60 fullerenes from combustion of common fuels.

    PubMed

    Tiwari, Andrea J; Ashraf-Khorassani, Mehdi; Marr, Linsey C

    2016-03-15

    Releases of C60 fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C60 requires an understanding of how its prevalence in the environment compares to that of natural and incidental C60. This work describes the characterization of incidental C60 present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C60 was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C60 per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C60 content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C60 to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr(-1), depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C60 produced on an annual basis. Consequent loading of incidental C60 to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C60. PMID:26789363

  14. Superconductivity at 45 K in Rb/Tl codoped C60 and C60/C70 mixtures

    NASA Astrophysics Data System (ADS)

    Iqbal, Zafar; Baughman, Ray H.; Khare, Sandeep; Murthy, N. S.; Ramakrishna, B. L.; Bornemann, Hans J.; Morris, Donald E.

    1991-11-01

    The appearance of superconductivity at relatively high temperatures in alkali metal-doped C60 fullerene provides the challenge to both understand the nature and origin of the superconductivity and to determine the upper limit of the superconducting transition temperature (Tc). Toward the latter goal, it is shown that doping with potassium-thallium and rubidium-thallium alloys in the 400 to 430 C temperature range increases the Tc of C60/C70 mixtures to 25.6 K and above 45 K, respectively. Similar increases in Tc were also observed on analogous doping of pure C60. Partial substitution of potassium with thallium in interstitial sites between C60 molecules is suggested by larger observed unit cell parameters than for the K3C60 and K4C60 phases. Contrary to previous results for C60 doped with different alkali metals, such expansion does not alone account for the changes in critical temperature.

  15. Buckminsterfullerene C60 — a surface with curvature and interesting properties

    NASA Astrophysics Data System (ADS)

    Rosén, Arne; Wästberg, Bo

    1992-05-01

    Molecular cluster calculations within the local density approximation have been performed in a study of the electronic structure of the truncated icosahedral C60 also known as "Buckminsterfullerene" and C60 doped with K, B and N. Evaluated ionisation energies for C60 are found to be in good agreement with recently observed gas phase and solid-state photoelectron spectra. Excitation energies evaluated in the 1-10 eV energy range are also found to reproduce UV, IR and HREELS spectra. Calculations for the KC60 molecule, with the K atom located at the centre of the cage, show how the valence electron from K is transferred to the LUMO state of the bare C60 molecule. Doping with a B or N atom in the centre of the cage creates a different structure with a partly occupied level in the band gap, similar to the donor and acceptor levels in traditionally doped semiconductors. Doping by substitution of two of the carbon atoms in the cage with X = B or N, as modelled with the C58X2 cluster, gives a different structure with a splitting of the HOMO and LUMO levels in the bare C60 molecule.

  16. C60-DOM interactions and effects on C60 apparent solubility: a molecular mechanics and density functional theory study.

    PubMed

    Wang, Zhuang; Chen, Jingwen; Sun, Qian; Peijnenburg, Willie J G M

    2011-08-01

    Dissolved organic matter (DOM) plays a critical role in the transport of carbon nano-particles (e.g. C(60)) in the aquatic environment. However, the mechanism for C(60)-DOM interactions and its environmental implications needs further investigations. In this study, the interaction of C(60) with relevant reference compounds of DOM (DOM(R)) is computationally simulated by molecular mechanics and density functional theory (DFT). All the C(60)-DOM(R) complexes are firstly optimized by classical annealing, and then DFT using the Dmol(3) code. The adsorption energies of C(60) on DOM(R) were computed. The computed electrostatic potential indicates that DOM(R) are electron acceptors in the C(60)-DOM(R) complexes, and the thermodynamic calculations indicate that electrostatic interaction is the dominant driving force for the C(60)-gallic acid complexation process in water. The presence of DOM(R) increases the apparent water solubility of C(60). It is also observed that the C(60) apparent water solubility decrease with the increase of the energy gaps of frontier molecular orbitals (E(LUMO)-E(HOMO)) for each C(60)-DOM(R) complex. These findings indicate that computational simulation is an important tool for predicting the behavior and fate of carbon nano-particles in the aquatic environment. PMID:21419494

  17. "Soft" metallic contact to isolated C60 molecules.

    PubMed

    Glowatzki, Hendrik; Bröker, Benjamin; Blum, Ralf-Peter; Hofmann, Oliver T; Vollmer, Antje; Rieger, Ralph; Müllen, Klaus; Zojer, Egbert; Rabe, Jürgen P; Koch, Norbert

    2008-11-01

    C60 adsorbed on a monolayer of hexaazatriphenylene-hexanitrile (HATCN) on Ag(111) is investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling microscopy. UPS and quantum-mechanical modeling show that HATCN chemisorbed on Ag(111) displays metallic character. This metallic molecular layer decouples C60 electronically from the Ag substrate and simultaneously acts both as template for the stable adsorption of isolated C60 molecules at room temperature and as "soft" metallic contact for subsequently deposited molecules. PMID:18954123

  18. Epitaxial Templating of C60 with a Molecular Monolayer.

    PubMed

    Rochford, L A; Jones, T S; Nielsen, C B

    2016-09-01

    Commensurate epitaxial monolayers of truxenone on Cu (111) were employed to template the growth of monolayer and bilayer C60. Through the combination of STM imaging and LEED analysis we have demonstrated that C60 forms a commensurate 8 × 8 overlayer on truxenone/Cu (111). Bilayers of C60 retain the 8 × 8 periodicity of templated monolayers and although Kagome lattice arrangements are observed these are explained with combinations of 8 × 8 symmetry. PMID:27540868

  19. Photoexcitation of a volume plasmon in C60 ions

    SciTech Connect

    Scully, S.W.J.; Emmons, E.D.; Gharaibeh, M.F.; Phaneuf, R.A.; Kilcoyne, A.L.D.; Schlachter, A.S.; Schippers, S.; Muller, A.; Chakraborty, H.S.; Madjet, M.E.; Rost, J.M.

    2005-06-21

    Neutral C60 is well known to exhibit a giant resonance in its photon absorption spectrum near 20 eV. This is associated with a surface plasmon, where delocalized electrons oscillate as a whole relative to the ionic cage. Absolute photoionization cross-section measurements for C60(sup+), C60(sup2+), and C60(sup3+) ions in the 17 75eV energy range show an additional resonance near 40 eV. Time-dependent density functional calculations confirm the collective nature of this feature, which is characterized as a dipole-excited volume plasmon made possible by the special fullerene geometry.

  20. Synthesis and characterization of tetrakis-silylated C60 isomers.

    PubMed

    Maeda, Yutaka; Rahman, G M Aminur; Wakahara, Takatsugu; Kako, Masahiro; Okamura, Mutsuo; Sato, Soichi; Akasaka, Takeshi; Kobayashi, Kaoru; Nagase, Shigeru

    2003-08-22

    A photochemical reaction of C(60) with disilane in a 2:3 ratio affords the isomer mixture of the tetrakis-adduct of C(60)((t)BuPh(2)Si)(4) as the major product. The use of a three-stage HPLC separation system isolated three of their isomers. Their structural assignments were based on FAB mass, UV-vis, NMR, and cyclic voltammetry (CV) measurements. The CV analysis showed that the terakis-adduct has lower oxidation and higher reduction potentials than the bis-adduct C(60)((t)BuPh(2)Si)(2) and the parent C(60). PMID:12919050

  1. Electron spin resonance study of Rb xC 60 and K xC 60 powders

    NASA Astrophysics Data System (ADS)

    Feng, S. Q.; Jia, Y. Q.; Zhu, S. L.; Fu, J. S.; Wu, E.; Mao, J. C.; Han, R. S.; Gu, Z. N.; Zhou, X. H.; Jin, Z. X.

    1993-11-01

    Rb and K doped C 60 compounds are prepared by the vapor-solid reaction method. Superconductive shielding fraction is determined as 35-75% for Rb xC 60 and 10% for K xC 60. Electron spin resonance (ESR) measurements in absorption mode are performed in the temperature range of 5-300 K. A strong ESR signal at g=2.002 for Rb xC 60 and g=2.003 for K xC 60 has been observed. The g-value is nearly independent upon temperature for both Rb xC 60 and K xC 60 while the linewidth behaves differently, increasing from 2.0 G at 5 K to 6.0 G at 250 K in Rb xC 60 and remaining constant of 2.3 G in K xC 60. No drastic change of the ESR spectra is observed with the onset of superconductivity, leading to a conclusion that the observed dominant ESR signal originates from a non-superconducting phase.

  2. Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2.

    PubMed

    Vance, Steven J; Desai, Vibhuti; Smith, Brian O; Kennedy, Malcolm W; Cooper, Alan

    2016-01-01

    C60 fullerene is not soluble in water and dispersion usually requires organic solvents, sonication or vigorous mechanical mixing. However, we show here that mixing of pristine C60 in water with natural surfactant proteins latherin and ranaspumin-2 (Rsn-2) at low concentrations yields stable aqueous dispersions with spectroscopic properties similar to those previously obtained by more vigorous methods. Particle sizes are significantly smaller than those achieved by mechanical dispersion alone, and concentrations are compatible with clusters approximating 1:1 protein:C60 stoichiometry. These proteins can also be adsorbed onto more intractable carbon nanotubes. This promises to be a convenient way to interface a range of hydrophobic nanoparticles and related materials with biological macromolecules, with potential to exploit the versatility of recombinant protein engineering in the development of nano-bio interface devices. It also has potential consequences for toxicological aspects of these and similar nanoparticles. PMID:27214760

  3. [Stability of C60 nanoparticles in aquatic systems].

    PubMed

    Fang, Hua; Shen, Bing-Bing; Jing, Jie; Lu, Ji-Lai; Wang, Yuan

    2014-04-01

    The influences of storage time, pH, electrolytes and organic matters on the stability of two different suspensions of C60 nanoparticles were investigated. The results showed that the C60 nanoparticles prepared by solvent substitution (C60/son) were more stable than that prepared by prolonged stirring (C60/aq), and kept stable for a period of time. Higher pH enhanced the stability of C60 nanoparticles. The presence of electrolyte made a dramatic decrease in the surface zeta potential and an increase in the particle size. The aggregation process of C60 nanoparticles exhibited slow and rapid regions, which was found to be consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. The critical coagulation concentration (CCC) values of C60/son, obtained from the intersection of the interpolated lines through the slow and fast regions, were estimated as 321 mmol x L(-1) NaCl, 316 mmol x L(-1) KCl, 9.6 mmol x L(-1) MgCl2 and 6.7 mmol x L(-1) CaCl2. The CCC values of C60/aq were estimated as 295 mmol x L(-1) NaCl, 278 mmol x L(-1) KCl, 7.8 mmol x L(-1) MgCl2 and 5.9 mmol x L(-1) CaCl2, which were much higher than their concentrations in natural waters. The presence of humic acid enhanced the stability of C60 nanoparticles, which was attributable to steric repulsion. Therefore, C60 nanoparticles will keep relatively stable in typical aquatic environments. PMID:24946585

  4. Axis-dependent magnetic behavior of C60 and C60(10+). consequences of spherical aromatic character.

    PubMed

    Muñoz-Castro, A

    2015-06-28

    The magnetic response of C60 has been studied and compared to its spherical aromatic counterpart C60(10+), focusing on the overall and local shielding tensors. A high axis dependence behavior at the outside region of the structure is characterized, unravelling a characteristic pattern of the local chemical shift anisotropy as a consequence of the spherical aromatic behavior. PMID:26022142

  5. Coherence of Auger and inter-Coulombic decay processes in the photoionization of Ar@C60 versus Kr@C60

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; De, Ruma; Javani, Mohammad H.; Madjet, Mohamed E.; Manson, Steven T.; Chakraborty, Himadri S.

    2016-04-01

    For the asymmetric spherical dimer of an endohedrally confined atom and a host fullerene, an innershell vacancy of either system can decay through the continuum of an outer electron hybridized between the systems. Such decays, viewed as coherent superpositions of the single-center Auger and two-center inter-Coulombic (ICD) amplitudes, are found to govern leading decay mechanisms in noble-gas endofullerenes, and are likely omnipresent in this class of nanomolecules. A comparison between resulting autoionizing resonances calculated in the photoionization of Ar@C60 and Kr@C60 exhibits details of the underlying processes. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  6. C60 fullerene soil sorption, biodegradation, and plant uptake.

    PubMed

    Avanasi, Raghavendhran; Jackson, William A; Sherwin, Brie; Mudge, Joseph F; Anderson, Todd A

    2014-01-01

    Assessments of potential exposure to fullerenes and their derivatives in the environment are important, given their increasing production and use. Our study focused on fate processes that determine the movement and bioavailability of fullerenes in soil. We evaluated the sorption, biodegradation, and plant uptake of C60 fullerene using (14)C-labeled C60 solutions in water produced by either solvent exchange with tetrahydrofuran or sonication/extended mixing in water. Organic carbon appeared to have an important influence on C60 soil sorption. The log Koc values for (14)C60 were equivalent for sandy loam and silt loam (3.55 log[mL/g]) but higher for loam (4.00 log[mL/g]), suggesting that other factors, such as pH, clay content and mineralogy, and cation exchange capacity, also influence C60 soil sorption. There was little (14)CO2 production in the silt loam or the sandy loam soil after 754 and 328 days, respectively, suggesting high resistance of C60 to mineralization in soil. Plant uptake was generally low (∼7%), with most of the uptaken (14)C accumulating in the roots (40-47%) and smaller amounts of accumulation in the tuber (22-23%), stem (12-16%), and leaves (18-22%). Our results indicate that C60 released to the environment will not be highly bioavailable but will likely persist in soil for extended periods. PMID:24521447

  7. Optimal High-TC Superconductivity in Cs3C60

    NASA Astrophysics Data System (ADS)

    Harshman, Dale; Fiory, Anthony

    The highest superconducting transition temperatures in the (A1-xBx)3C60 superconducting family are seen in the A15 and FCC structural phases of Cs3C60 (optimized under hydrostatic pressure), exhibiting measured values for near-stoichiometric samples of TC0 meas . = 37.8 K and 35.7 K, respectively. It is argued these two Cs-intercalated C60 compounds represent the optimal materials of their respective structures, with superconductivity originating from Coulombic e- h interactions between the C60 molecules, which host the n-type superconductivity, and mediating holes associated with the Cs cations. A variation of the interlayer Coulombic pairing model [Harshman and Fiory, J. Supercond. Nov. Magn. 28 ̲, 2967 (2015), and references therein] is introduced in which TC0 calc . ~ 1 / lζ , where l relates to the mean spacing between interacting charges on surfaces of the C60 molecules, and ζ is the average radial distance between the surface of the C60 molecules and the neighboring Cs cations. For stoichiometric Cs3C60, TC0 calc . = 38.08 K and 35.67 K for the A15 and FCC macrostructures, respectively; the dichotomy is attributable to differences in ζ.

  8. Shock compression and equation of state of C60 fullerite

    NASA Astrophysics Data System (ADS)

    Milyavskiy, Vladimir; Khishchenko, Konstantin; Utkin, Alexander; Yakushev, Vladislav; Zhuk, Andrey; Fortov, Vladimir

    2007-06-01

    Recently, we have experimentally studied shock compressibility of C60 fullerite and sound velocity in shock-compressed fullerite [1]. The Hugoniot of C60 fullerite had a set of peculiarities. Appearance of a rather hard carbon phase was detected at shock pressure ˜ 9 GPa. We assume that it is a 2D-polymerized C60 phase. With increase of shock pressure, destruction of this phase and formation of a graphite-like carbon occurs. With further increase of shock pressure, the graphite- like carbon transforms to a diamond-like phase. If shock pressure is higher than ˜ 33 GPa, shock compressibility of C60 fullerite is determined by the thermodynamic properties of the diamond-like phase. The results of the shock-wave measurements were used for the description of thermodynamic properties of C60 fullerite and products of its transformations in a wide range of pressures and temperatures. A semiempirical equation of state for the simple cubic phase of C60 fullerite is proposed. The EOS we have developed for fullerite C60 provides a consistent representation of the available experimental data. The work was supported by RFBR. [1] Milyavskiy V.V., Utkin A.V., Zhuk A.Z., Yakushev V.V. and Fortov V.E. Diamond and Rel. Mat. 14 (2005) 1920.

  9. Superconductivity at 52 K in hole-doped C60.

    PubMed

    Schön, J H; Kloc, C; Batlogg, B

    2000-11-30

    Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60--yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice. PMID:11117735

  10. C60 as a Probe for Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Brieva, A. C.; Gredel, R.; Jäger, C.; Huisken, F.; Henning, T.

    2016-08-01

    The C60 molecule has been recently detected in a wide range of astrophysical environments through its four active intramolecular vibrational modes (T 1u) near 18.9, 17.4, 8.5, and 7.0 μm. The strengths of the mid-infrared emission bands have been used to infer astrophysical conditions in the fullerene-rich regions. Widely varying values of the relative intrinsic strengths (RIS) of these four bands are reported in laboratory and theoretical papers, which impedes the derivation of the excitation mechanism of C60 in the astrophysical sources. The spectroscopic analysis of the C60 samples produced with our method delivers highly reproducible RIS values of 100, 25 ± 1, 26 ± 1 and 40 ± 4. A comparison of the inferred C60 emission band strengths with the astrophysical data shows that the observed strengths cannot be explained in terms of fluorescent or thermal emission alone. The large range in the observed 17.4 μm/18.9 μm emission ratios indicates that either the emission bands contain significant contributions from emitters other than C60, or that the population distribution among the C60 vibrational modes is affected by physical processes other than thermal or UV excitation, such as chemo-luminescence from nascent C60 or possibly Poincaré fluorescence resulting from an inverse internal energy conversion. We have carefully analyzed the effect of the weakly active fundamental modes and second order modes in the mid-infrared spectrum of C60, and propose that neutral C60 is the carrier of the unidentified emission band at 6.49 μm which has been observed in fullerene-rich environments.

  11. Orientation-dependent C-60 electronic structures revealed byphotoemission spectroscopy

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Choi, H.J.; Louie, S.G.; Cohen, M.L.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z.X.

    2008-01-17

    We observe, with angle-resolved photoemission, a dramaticchange in the electronic structure of two C60 monolayers, deposited,respectively, on Ag (111) and (100) substrates, and similarly doped withpotassium to half filling of the C60 lowest unoccupied molecular orbital.The Fermi surface symmetry, the bandwidth, and the curvature of thedispersion at gamma point are different. Orient ations of the C60molecules on the two substrates are known to be the main structuraldifference between the two monolayers, and we present new band-structurecalculations for some of these orientations. We conclude thatorientations play a key role in the electronic structure offullerides.

  12. Aggregation and Deposition of C60 in Aqueous Systems

    EPA Science Inventory

    The extremely low water solubility of many fullerenes precludes aqueous solution processing for engineering applications and minimizes the potential for fullerene environmental effects in aqueous environments. However, studies have shown that C60 fullerene can form stable colloi...

  13. Structure and photophysics in C 60-micellar solutions

    NASA Astrophysics Data System (ADS)

    Eastoe, Julian; Crooks, Esther R.; Beeby, Andrew; Heenan, Richard K.

    1995-11-01

    Routes to the preparation of monomeric and colloidal C 60 in micellar solutions of non-ionic surfactants are described. UV-visible spectra and small-angle neutron scattering provide clear evidence for these two different forms. The micelles serve to stabilise the excited triplet state 3C 60 and the lifetime τT is increased by a factor of 3 as compared to 3C 60 in toluene. Furthermore, with monomeric dispersions in the presence of the electron donor DABCO, the radical anion C 60- is formed, with an unusually long lifetime τA = 16 ms. This lifetime is approximately 270 times longer than for γ-cyclodextrin. stabilised systems.

  14. Formation of buckminsterfullerene (C60) in interstellar space

    PubMed Central

    Berné, Olivier; Tielens, A. G. G. M.

    2012-01-01

    Buckminsterfullerene (C60) was recently confirmed as the largest molecule identified in space. However, it remains unclear how and where this molecule is formed. It is generally believed that C60 is formed from the buildup of small carbonaceous compounds in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that polycyclic aromatic hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative—top-down—routes are key to understanding the organic inventory in space. PMID:22198841

  15. Formation of buckminsterfullerene (C60) in interstellar space

    NASA Astrophysics Data System (ADS)

    Berné, Olivier; Tielens, Alexander G. G. M.

    2012-01-01

    Buckminsterfullerene (C60) was recently confirmed to be the largest molecule identified in space. However, it remains unclear how, and where this molecule is formed. It is generally believed that C60 is formed from the build up of small carbonaceous compounds, in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that Polycyclic Aromatic Hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative - top-down - routes are key to understanding the organic inventory in space.

  16. Mechanical characterization of C60 whiskers by MEMS bend testing

    NASA Astrophysics Data System (ADS)

    Larsson, M. P.; Lucyszyn, S.

    2009-04-01

    Little has been published on the mechanical characteristics of C60 whiskers, due to the inherent difficulties in physically mounting such small test samples. Earlier reported results suggested Young's modulus values of 32 and 54 GPa, with 130 and 160 micron diameter C60 nanowhiskers, respectively, using compressive deformation techniques. In our work, an experimental bespoke silicon-based microelectromechanical system has been developed to extract an other value. 1th as been found, through parameter extraction techniques, that a Young's modulus of only ~ 2 GPa is obtained with a C60 whisker having a diameter of 4 microns. By including the previously published data points, there is now strong evidence to suggest an inverse proportionality relationship between the Young's modulus and the diameter of a C60 whisker.

  17. Energetics and structural stability of Cs3C60

    SciTech Connect

    Saito, Susumu; Umemoto, Koichiro; Louie, Steven G.; Cohen, MarvinL.

    2003-12-15

    Using the ab initio pseudo potential total-energy method and the density-functional theory, we study the energetics of face-centered-cubic Cs3C60 which is a material of great interest as a possible high transition-temperature superconductor. At the optimized lattice constant the volume per C60 is found to be smaller than the most stable hexagon-coordination A15 phase, while the total energy of the fcc phase is about 0.9 eV higher than the A15 phase. These results indicate that a low-temperature and high-pressure synthesis method might be a possible way to produce the fcc Cs3C60 phase. In addition, it is also found that the A15 Cs3C60 should show a phase transformation from a hexagon-coordination phase to a pentagon-coordination phase under hydrostatic pressure.

  18. New Phases of C60 Synthesized at High Pressure

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.; Arima, T.; Fleming, R. M.; Siegrist, T.; Zhou, O.; Haddon, R. C.; Rothberg, L. J.; Lyons, K. B.; Carter, H. L., Jr.; Hebard, A. F.; Tycko, R.; Dabbagh, G.; Krajewski, J. J.; Thomas, G. A.; Yagi, T.

    1994-06-01

    The fullerene C60 can be converted into two different structures by high pressure and temperature. They are metastable and revert to pristine C60 on reheating to 300^circC at ambient pressure. For synthesis temperatures between 300^circ and 400^circC and pressures of 5 gigapascals, a nominal face-centered-cubic structure is produced with a lattice parameter a_o = 13.6 angstroms. When treated at 500^circ to 800^circC at the same pressure, C60 transforms into a rhombohedral structure with hexagonal lattice parameters of a_o = 9.22 angstroms and c_o = 24.6 angstroms. The intermolecular distance is small enough that a chemical bond can form, in accord with the reduced solubility of the pressure-induced phases. Infrared, Raman, and nuclear magnetic resonance studies show a drastic reduction of icosahedral symmetry, as might occur if the C60 molecules are linked.

  19. Paper Models for Fullerenes C60-C84.

    ERIC Educational Resources Information Center

    Beaton, John M.

    1995-01-01

    Describes a system to construct paper models of all 51 of the possible fullerene isomers from C60 through C84. Provides students, teachers, and specialists with an inexpensive mechanism to follow the literature interplay on fullerene structures. (JRH)

  20. Hemicarceplexes modify the solubility and reduction potentials of C60.

    PubMed

    Wong, Tzu-Huan; Chang, Jia-Cheng; Lai, Chien-Chen; Liu, Yi-Hung; Peng, Shie-Ming; Chiu, Sheng-Hsien

    2014-04-18

    A highly stable C60-incarcerated hemicarceplex, which retains its molecular integrity after heating at 523 K in air for at least 3 h, significantly increases the solubility of C60 in nonpolar solvents and increases the reduction potentials of the entrapped fullerene. Modification with [(η(5)-C5Me5)Ru(II)](+) dramatically increases the solubility of this hemicarceplex in polar, protic solvents (e.g., MeOH). PMID:24665822

  1. Tailorable acceptor C(60-n)B(n) and donor C(60-m)N(m) pairs for molecular electronics.

    PubMed

    Xie, Rui-Hua; Bryant, Garnett W; Zhao, Jijun; Smith, Vedene H; Di Carlo, Aldo; Pecchia, Alessandro

    2003-05-23

    Our first-principles calculations demonstrate that C(60-n)B(n) and C(60-m)N(m) can be engineered as the acceptors and donors, respectively, needed for molecular electronics by properly controlling the dopant number n and m in C60. We show that acceptor C48B12 and donor C48N12 are promising components for molecular rectifiers, carbon nanotube-based n-p-n (p-n-p) transistors, and p-n junctions. PMID:12785911

  2. Soil microbial response to photo-degraded C60 fullerenes.

    PubMed

    Berry, Timothy D; Clavijo, Andrea P; Zhao, Yingcan; Jafvert, Chad T; Turco, Ronald F; Filley, Timothy R

    2016-04-01

    Recent studies indicate that while unfunctionalized carbon nanomaterials (CNMs) exhibit very low decomposition rates in soils, even minor surface functionalization (e.g., as a result of photochemical weathering) may accelerate microbial decay. We present results from a C60 fullerene-soil incubation study designed to investigate the potential links between photochemical and microbial degradation of photo-irradiated C60. Irradiating aqueous (13)C-labeled C60 with solar-wavelength light resulted in a complex mixture of intermediate products with decreased aromaticity. Although addition of irradiated C60 to soil microcosms had little effect on net soil respiration, excess (13)C in the respired CO2 demonstrates that photo-irradiating C60 enhanced its degradation in soil, with ∼ 0.78% of 60 day photo-irradiated C60 mineralized. Community analysis by DGGE found that soil microbial community structure was altered and depended on the photo-treatment duration. These findings demonstrate how abiotic and biotic transformation processes can couple to influence degradation of CNMs in the natural environment. PMID:26774781

  3. Elucidating the Significance of the ``Nano-Effect'' in Determining the Mobility of C60 Nanoparticles in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Jia, Q.; Brant, J.

    2010-12-01

    Fullerenes are all carbon molecules that may exist in a variety of geometries, such as cages, cylinders, and planar sheets. Buckminsterfullerene (C60) is one type of fullerene that has received considerable interest from the scientific community for its use in commercial applications (bio-medical technologies, electronics, optics, and composites) and environmental implications (toxicity, mobility). Once released into the environment, the toxicity and bioavailability of C60 nanoparticles will be largely influenced by transport and retention processes in porous media. To date, many studies have investigated C60 mobility in saturated porous media, which has relevance to both groundwater protection and potable treatment by filtration methods. Previous research efforts have determined that the technique used for dispersing the C60 in water, chemistry of the dispersion solution (pH, ionic composition/strength), and Darcy velocity all affect C60 mobility. However, far less attention has been directed toward determining the impact of nanoparticle size. In other words, is there a nano-effect for C60, and if it exists to what extent does it alter C60 mobility in saturated porous media. The overall objective of this study was to explore to what extent the size of the C60 clusters (nC60) affects their mobility in saturated porous media in order to determine if the nano-effect does indeed exist for these systems. Nanoparticle mobility in two relatively well-characterized porous media, glass spheres and quartz sand, was assessed as a function of solution chemistry and Darcy velocity. The surface charge of the collector media was modified to elucidate the significance of charge interactions for nanoparticles. Preliminary results suggest that nC60 mobility increases as particle size decreases, supporting the belief that the nano-effect is indeed a real phenomenon.

  4. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.

    PubMed

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ. PMID:26894888

  5. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  6. Alkylation of C60. Reaction between C60 anions and tert-butyl chloride and mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Bourcier, S.; Chaurand, P.; Ciot, C.; Della-Negra, S.; Fabre, C.; Greugny, V.; Marx, L.; Rassat, A.; Rousseau, A.

    1996-11-01

    Alkylation of C60 in tetrahydrofuran with tert-butyl chloride and lithium gives a variety of products. Adducts of general formula C60Hn(t-Bu)qOx(thf)y (where t-Bu is the tert-butyl group and thf the tetrahydrofuryl group (C4H7O)) have been detected by mass spectrometry, with n <= 8, q + y <= 18 and x = 0, 1, 2 depending on experimental conditions. IR and NMR spectra of products confirm these assignments.

  7. Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures.

    PubMed

    Kim, Kwanpyo; Lee, Tae Hoon; Santos, Elton J G; Jo, Pil Sung; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-06-23

    Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications. PMID:26027690

  8. Jellium model potentials for the C60 molecule and the photoionization of endohedral atoms, A@C60

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Manson, S. T.; Msezane, A. Z.

    2015-09-01

    Approximating the C60 shell as a collection of carbon atoms, the potential experienced by a confined atom has been calculated within the framework of the self-consistent spherical jellium model. It has been found that the potential well in this model has a cusp-shaped Lorentz-like profile. The parameters of the model Lorentz-bubble potential (depth and thickness) have been selected so that in the potential well there would be an electronic level corresponding to the experimental electron affinity of the C60 molecule. The spatial distribution of the positive charge of the C-atomic nuclei and the negative charge of the electron clouds forming the electrostatic potential of C60, as a whole, has been analyzed using the Poisson equation. It is demonstrated that the often used radial square-well potential to approximate the C60 corresponds to a non-physical charge density for the C60 molecule. This analysis demonstrates that the phenomenological potentials simulating the C60 shell potential should belong to a family of potentials with a non-flat bottom and non-parallel potential walls similar to the Lorentz-bubble potential. The photoionization cross-sections of a hydrogen atom localized at the center of the C60 shell have been calculated as well. It is found that confinement oscillations in the cross-sections are exhibited within the framework of the cusp-shaped potential model and these oscillations are essentially the same as those in the case of the potential wells with well-defined borders (parallel walls), thereby demonstrating that the inherent characteristic distances of the potential, e.g., radii of the potential walls, or the distances between potential walls, are not necessary to produce confinement resonances; this should be a general result for atoms or molecules confined in near-spherical fullerenes.

  9. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  10. Magnetic phases and relaxation effects in fullerite C60

    NASA Astrophysics Data System (ADS)

    Chigvinadze, J. G.; Buntar, V.; Ashimov, S. M.; Dolbin, A. V.

    2016-02-01

    A highly sensitive torsional vibration technique is used to study the magnetic properties of fullerite C60 (99.98%) at temperatures of 77-300 K in dynamic and static experiments. Vibrational energy absorption peaks associated with phase transitions and realignment of the magnetic structure of the fullerite are detected at T = 152, 195, 230, and 260 K. Relaxation magnetic processes in fullerite C60 at room temperature are studied. "Spontaneous" rotation of a motionless sample of fullerite freely suspended on an elastic filament is observed when external longitudinal or transverse magnetic fields are switched on. The direction of the "spontaneous" rotation changes with time. It is proposed that these phenomena are related to relaxation processes in the rotational subsystem of C60 molecular rotators, as well as to magnetic flux trapped in the fullerite and weakly damped eddy currents induced in the sample by the applied field.

  11. Charging C60 islands with the AFM tip.

    PubMed

    Hoff, Brice; Henry, Claude R; Barth, Clemens

    2016-01-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. PMID:26617348

  12. ESR study of superconducting K-doped C 60 "polymer"

    NASA Astrophysics Data System (ADS)

    Kinoshita, N.; Grigoryan, L. S.; Kinoshita, T.; Tokumoto, M.

    1997-03-01

    ESR measurements of the superconducting K-doped C 60 "polymer" were carried out, in order to clarify the difference from ordinary K-doped C 60, i.e. monomer. Observed ESR spectrum was simulated by four Lorentzian lines. The temperature dependences of the ESR linewidth, g factor and spin susceptibility are obtained for each ESR line. At room temperature the linewidth and g factor of the broadest ESR absorption line are, about 400 G and 2.01, respectively. The linewidths for other lines are 150, 53 and 16 G with the common g factor of 2.000. The linewidths of the ESR spectrum of superconducting K-doped C 60 "polymer" are found to be much broader than those of monomer sample. Similar to monomer sample, two absorption lines with weakly temperature-dependent intensity were observed, one of which disappeared (150 G width) below the super-conducting transition temperature ( Tc = 15 K).

  13. C60 + in Diffuse Clouds: Laboratory and Astronomical Comparison

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2016-07-01

    The wavelengths of the strongest absorptions in the electronic spectrum of {{{C}}}60+ have been determined by experimental investigation into the perturbation caused by the helium in the laboratory spectra of {{{C}}}60+-{{{He}}}n(n=1{--}3). The extrapolation of these gives absorption bands of bare {{{C}}}60+ at 9348.4, 9365.2, 9427.8, 9577.0, and 9632.1 Å, with ±0.2 Å as the 2σ uncertainty. The laboratory data are compared with the complete set of astronomical observations reported in the literature. The spectral characteristics are found to be in agreement with five diffuse interstellar bands, for which the systematic uncertainties are larger than for the laboratory data.

  14. Radial vibrations of a sodium ion inside icosahedral C60

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Dunlap, B. I.

    1992-01-01

    The very high symmetry of icosahedral C60 suggests that, as a first approximation, an atom trapped inside C60 would be subject to a potential that is radially symmetric about the center. All-electron local-density-functional calculations of the total energy of a sodium ion as a function of radial displacement from the center along the fivefold axis of C60 serve to refine such a radial potential. In particular, the calculations suggest studying potentials that have minima displaced from the center. An analytic functional form for a radial potential having a positive cusp at the origin is proposed, and the s-wave radial solutions of the corresponding Schroedinger equation are examined.

  15. A search for C60 in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    De Vries, M. S.; Reihs, K.; Wendt, H. R.; Golden, W. G.; Hunziker, H. E.; Fleming, R.; Peterson, E.; Chang, S.

    1993-01-01

    Analysis of interior samples of the Murchison meteorite by two routes yielded an upper limit of 2 ppb for its C60 content, as compared to parts per million levels for individual polycyclic aromatic hydrocarbons (PAHs ). Provided the samples contain an interstellar component, which is probable since Murchison hydrocarbons contain excess deuterium, this result argues against the ubiquitous presence of C60 in the interstellar medium. A possible explanation for the absence of C60 was found in experiments showing how PAHs replace fullerenes as stable end products when hydrogen is present during carbon condensation. As a secondary result we found high molecular weight PAHs in the Murchison and Allende meteorites. Coronene and its methyl derivatives are especially interesting since features in the coronene spectrum have been shown to match some of the unidentified interstellar infrared emission bands.

  16. Ionisation of C60: is it temperature dependent?

    NASA Astrophysics Data System (ADS)

    Baba, M. Sai; Narasimhan, T. S. Lakshmi; Balasubramanian, R.; Mathews, C. K.

    1994-01-01

    In a recent paper, Drewello [T. Drewello, W. Kratschmer, M. Fieber-Erdmann and A. Ding, Int. J. Mass Spectrom. Ion Processes, 124 (1993) R1] reported a temperature dependent ionisation cross section for the formation of C2+60 in their photoionisation dynamic studies on C60 using synchrotron radiation. To check this, the ratio of ion intensities of C2+60 to that of C60 was determined as a function of temperature of C60 samples using a Knudsen effusion mass spectrometer. Our results indicate the absence of any temperature dependence of cross section for the formation of C2+60 in the temperature range of measurement (600-800 K) using electron impact ionisation.

  17. Vibration-rotation spectroscopy of molecules trapped inside C60.

    PubMed

    Cross, R James

    2008-08-01

    A simple model is developed to treat the energy levels and spectroscopy of diatomic molecules inside C 60. The C 60 cage is treated as spherically symmetric, and the coupling to the C 60 vibrations is ignored. The remaining six degrees of freedom correspond to the vibrations and rotations of the diatomic molecule and the rattling vibration of the molecule inside the cage. By using conservation of angular momentum, we can remove two of these motions and simplify the calculations. The resulting energy levels are simple and can be labeled by a set of quantum numbers. The IR and Raman spectra look like those of gas-phase diatomic molecules at low temperatures. At higher temperatures, hot bands due to the low-frequency rattling mode appear, and the spectrum becomes congested, looking like a solution spectrum. PMID:18598014

  18. A study of thermally activated delayed fluorescence in C 60

    NASA Astrophysics Data System (ADS)

    Salazar, Filipa A.; Fedorov, Aleksandre; Berberan-Santos, Mário N.

    1997-06-01

    The existence of thermally activated delayed fluorescence in C 60 is demonstrated by the study of the temperature dependence (291-353 K) of the fluorescence intensity of C 60 degassed solutions. The determined singlet-triplet energy gap, 35 ± 2 kJ/mol, agrees with the value calculated from previously reported fluorescence and low temperature phosphorescence spectra for this molecule (35 kJ/mol). The estimated quantum yield of triplet formation, 0.8 ± 0.1, agrees with previous determinations. The fluorescence lifetime of C 60, also measured, τ = 1.1 ns, does not change appreciably with excitation wavelength, degassing nor with temperature, in the range 243-343 K.

  19. Charging C60 islands with the AFM tip

    NASA Astrophysics Data System (ADS)

    Hoff, Brice; Henry, Claude R.; Barth, Clemens

    2015-12-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system.We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR04541J

  20. Quenching of fluorescence in C60 fulleropyrrolidines by chloroform

    NASA Astrophysics Data System (ADS)

    Parveen, Abdulrazack; Sughanya, Venkatesan; Nagarajan, Samuthira

    2016-01-01

    Functionalized [C60] fullerene, fulleropyrrolidines were synthesized and their photophysical properties are studied. The absorption and emission patterns are altered in fulleropyrrolidines, when compared with C60. Fluorescence of the molecules is quenched by CHCl3 in toluene solution at room temperature. Effect of nature and length of side chains in fulleropyrrolidine on quenching is investigated. Results suggested that the fluorescence intensity increased with increase in carbon chain length and the Stern-Volmer plot intercept values are indirectly proportional to the number of the carbons.

  1. Protective Fullerene (C60) Packaging System for Microelectromechanical Systems Applications

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor)

    2001-01-01

    The invention involves a method for locating the probe of a scanning tunneling micrograph a predetermined distance from its conducting surface, and specifically the deposition of a monolayer of fullerene C60 onto the conducting plate. The Fullerene C60 molecule is approximately spherical and a monolayer of fullerene has a thickness of one nanometer. By providing a monolayer of fullerene on the conducting surface and locating the probe on the surface of the monolayer, a distance of one nanometer can be established between the probe tip and the conducting surface.

  2. Effective medium theory for a system of C60 molecules

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-06-01

    An effective medium theory is developed to study the effective permittivity of a system of C60 molecules. We use a two-dimensional, spherical, two-fluid hydrodynamic model to describe the linear response of the π and σ electrons over the each C60 molecule. A general expression for the electromagnetic wave attenuation coefficient of the system is then deduced, and its functional dependence on the filling factor is presented. Furthermore, the dispersion characteristics of electromagnetic oscillations of the system are studied.

  3. Structure and dynamics of C60 molecules on Au(111)

    SciTech Connect

    Shin, Heekeun; Schwarze, A; Diehl, R D; Pussi, K; Colombier, A; Gaudry, E.; Ledieu, J; McGuirk, G M; Serkovic Loli, L N; Fournee, V; Wang, Lin-Lin; Schull, G; Berndt, R

    2014-06-01

    Earlier studies of C60 adsorption on Au(111) reported many interesting and complex features. We have performed coordinated low-energy electron diffraction, scanning tunneling microscopy (STM), and density functional theory studies to elucidate some of the details of the monolayer commensurate (2√3 × 2√3)R30° phase. We have identified the adsorption geometries of the two states that image as dim and bright in STM. These consist of a C60 molecule with a hexagon side down in a vacancy (hex-vac) and a C60 molecule with a carbon-carbon 6:6 bond down on a top site (6:6-top), respectively. We have studied the detailed geometries of these states and find that there is little distortion of the C60 molecules, but there is a rearrangement of the substrate near the C60 molecules. The two types of molecules differ in height, by about 0.7 Å, which accounts for most of the difference in their contrast in the STM images. The monolayer displays dynamical behavior, in which the molecules flip from bright to dim, and vice versa. We interpret this flipping as the result of the diffusion of vacancies in the surface layers of the substrate. Our measurements of the dynamics of this flipping from one state to the other indicate that the activation energy is 0.66 ± 0.03 eV for flips that involve nearest-neighbor C60 molecules, and 0.93 ± 0.03 for more distant flips. Based on calculated activation energies for vacancies diffusing in Au, we interpret these to be a result of surface vacancy diffusion and bulk vacancy diffusion. These results are compared to the similar system of Ag(111)-(2√3 × 2√3)R30°-C60. In both systems, the formation of the commensurate C60 monolayer produces a large number of vacancies in the top substrate layer that are highly mobile, effectively melting the interfacial metal layer at temperatures well below their normal melting temperatures.

  4. Experimental and theoretical determination of the magnetic susceptibility of C60 and C70

    NASA Astrophysics Data System (ADS)

    Haddon, R. C.; Schneemeyer, L. F.; Waszczak, J. V.; Glarum, S. H.; Tycko, R.; Dabbagh, G.; Kortan, A. R.; Muller, A. J.; Mujsce, A. M.; Rosseinsky, M. J.; Zahurak, S. M.; Makhija, A. V.; Thiel, F. A.; Raghavachari, K.; Cockayne, E.; Elser, V.

    1991-03-01

    THE magnetic susceptibility of C60 and the possibility of magnetic-field-induced π-electron ring currents in this carbon spheroid have been of interest since the initial experiments on carbon clusters1. If the molecule is regarded as a sphere with a radius of 3.5 Å, on which 60 electrons are free to move, the Pauling ring-current model predicts a ring-current diamagnetic susceptibility 41 times the π-electron ring-current magnetic susceptibility of benzene with the field normal to the plane of the six-membered ring2,3. London theory predicts, however, that the π-electron ring currents in C60 should be weakly paramagnetic or diamagnetic, depending on the relative bond strengths used in the calculation2,3. With the availability of macroscopic quantities of C60 (ref. 4), it is now possible to study experimentally the magnetic properties of the molecule. Here we report on such measurements. We find that the diamagnetism of C60 is small, a result that we attribute to excited-state paramagnetic contributions to the π-electron ring-current magnetic susceptibility. Thus C60 seems to be an aromatic molecule with a vanishingly small π-electron ring-current magnetic susceptibility. We have performed similar measurements on C70, which indicate an appreciable π-electron diamagnetism, consistent with theoretical calculations. We attribute the differences in magnetic properties of these two molecules to their different fractions of five-membered ring structures. The fullerenes may thus constitute a class of compounds of 'ambiguous' aromatic character, traditional measures of which will not provide an adequate classification.

  5. Electronic properties and phase transitions of RbC60 and CsC60: Investigation by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tycko, R.; Dabbagh, G.; Murphy, D. W.; Zhu, Q.; Fischer, J. E.

    1993-09-01

    We report the results of 133Cs, 87Rb, and 13C NMR measurements on the alkali-metal fullerides CsC60 and RbC60. Measurements of NMR spectra and spin-lattice relaxation rates provide clear evidence for phase transitions near 300 K in both compounds, with substantial changes in their electronic properties at the phase transitions. The high-temperature phases are paramagnets, with an exchange coupling of roughly 2 cm-1 between electron spins that are localized primarily on C-60 ions. The 133Cs and 87Rb NMR frequency shifts and relaxation rates are determined by Fermi contact hyperfine couplings to the electron spins. The 13C relaxation rates are determined by dipolar hyperfine couplings. The electron-spin susceptibility is greatly reduced in the low-temperature phases

  6. Protective Fullerene (C60) Packaging System for Microelectromechanical Systems Applications

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor)

    2004-01-01

    The invention involves tunneling tips to their conducting surface, and specifically the deposition of a monolayer of fullerene C60 onto the conducting plate surface to protect the tunneling tip from contact. The Fullerene C60 molecule is approximately spherical, and a monolayer of fullerene has a thickness of one nanometer, such that a monolayer thereby establishing the theoretical distance desired between the MEMS tunneling tip and the conducting plate. Exploiting the electrical conductivity of C60 the tip can be accurately positioned by simply monitoring conductivity between the fullerene and the tunneling tip. By monitoring the Conductivity between the tip and the fullerene layer as the tip is brought in proximity, the surfaces can be brought together without risk of contacting the underlying conducting surface. Once the tunneling tip is positioned at the one nanometer spacing, with only the monolayer of fullerene between the tunneling tip and the conducting plate, the monolayer of C60, can be broken down thermally and removed chemically leaving only the tunneling tip and the conducting plate at the ideal tunneling spacing. Alternatively, the properties of fullerene allow the tunneling process to occur directly across the fullerene monolayer.

  7. Electronically Excited C2 from Laser Photodissociated C60

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Scott, Carl D.; Nikolaev, Pavel; Smalley, Richard E.

    1999-01-01

    Spectral and transient emission measurements are made of radiation from products of laser excitation of buckminsterfullerene (C60) vapor diluted in argon at 973 K. The principal radiation is from the Swan band system of C2 and, at early times, also from a black body continuum. The C2 radiation is observed only when C60 is excited by green (532 nm) and not with IR (1064 nm) laser radiation at energy densities of about 1.5 J/square cm. Transient measurements indicate that there are two characteristic periods of decay of radiation. The first period, lasting about 2 micro seconds, has a characteristic decay time of about 0.3 micro seconds. The second period, lasting at least 50 micro seconds, has a characteristic decay time of about 5 micro seconds. These characteristic times are thought to be associated with cooling of C60 molecules or nanosized carbon particles during the early period; and with electronically excited C2 that is a decomposition product of laser excited C60, C58, ... molecules during the later period.

  8. Nitrogen-embedded buckybowl and its assembly with C60

    PubMed Central

    Yokoi, Hiroki; Hiraoka, Yuya; Hiroto, Satoru; Sakamaki, Daisuke; Seki, Shu; Shinokubo, Hiroshi

    2015-01-01

    Curved π-conjugated molecules have attracted considerable interest because of the unique properties originating from their curved π surface. However, the synthesis of such distorted molecules requires harsh conditions, which hamper easy access to heteroatom-containing curved π systems. Here we report the synthesis of a π-extended azacorannulene with nitrogen in its centre. The oxidation of 9-aminophenanthrene provides tetrabenzocarbazole, which is converted to the azabuckybowl through palladium-catalysed intramolecular coupling. The electron-donating nature and curved π surface of the azabuckybowl enable its tight association with C60 in solution and solid states. High charge mobility is observed for the azabuckybowl/C60 assembly. This compound may be of interest in the fields of curved π systems as fullerene hosts, anisotropic π donors and precursors to nitrogen-containing nanocarbon materials. PMID:26337912

  9. Quantum Bound States in a C-C60 System

    NASA Astrophysics Data System (ADS)

    Adam, R. M.; Sofianos, S. A.

    2015-03-01

    We investigate the quantum mechanical system of a carbon "test atom" in the proximity of a C60 molecule, both inside and outside the fullerene "cage". Two sets of bound states are found to exist, a deeply bound set inside the cage and another weakly bound set outside it. Tunnelling between these regions is highly unlikely to happen because of the extreme height and width of the potential barrier. However, we predict that a layer of atoms could be adsorbed onto C60 by forming a quantum mechanical bound state, with the adsorbed atoms being concentrated above the "panels" of the buckyball, consistent with "bucky onions" observed experimentally. Until now analysis of such fullerene systems has been via classical mechanics, but a quantum approach reveals new insights.

  10. Photoionization and photofragmentation of the C60+ molecular ion

    NASA Astrophysics Data System (ADS)

    Baral, K. K.; Aryal, N. B.; Esteves-Macaluso, D. A.; Thomas, C. M.; Hellhund, J.; Lomsadze, R.; Kilcoyne, A. L. D.; Müller, A.; Schippers, S.; Phaneuf, R. A.

    2016-03-01

    Cross-section measurements are reported for single and double photoionization of C60+ ions in the photon energy range 18-150 eV accompanied by the loss of zero to seven pairs of carbon atoms, as well as for fragmentation without ionization resulting in loss of two to eight pairs of C atoms in the photon energy range 18-65 eV. Absolute measurements were performed by merging a beam of C60+ molecular ions with a beam of monochromatized synchrotron radiation. Product channels involving dissociation yielding smaller fullerene fragment ions account for nearly half of the total measured oscillator strength in this energy range. The sum of cross sections for the measured product channels is compared to a published calculation of the total photoabsorption cross section of neutral C60 based on time-dependent density-functional theory. This comparison and an accounting of oscillator strengths indicate that with the exception of C58+, the most important product channels resulting from photoabsorption were accounted for in the experiment. Threshold energies for the successive removal of carbon atom pairs accompanying photoionization are also determined from the measurements.

  11. C60-derived nanobaskets: stability, vibrational signatures, and molecular trapping.

    PubMed

    dos Santos, S G; Pires, M S; Lemos, V; Freire, V N; Caetano, E W S; Galvão, D S; Sato, F; Albuquerque, E L

    2009-09-30

    C(60)-derived nanobaskets, with chemical formulae (symmetry point group) C(40)H(10) (C(5v)), C(39)H(12) (C(3v)), C(46)H(12) (C(2v)), were investigated. Molecular dynamic simulations (MDSs) indicate that the molecules preserve their bonding frame for temperatures up to 300 K (simulation time 100 ps), and maintain atomic cohesion for at least 4 ps at temperatures up to 3500 K. The infrared spectra of the C(60)-derived nanobaskets were simulated through density functional theory (DFT) calculations, allowing for the attribution of infrared signatures specific to each carbon nanobasket. The possibility of using C(60)-derived nanobaskets as molecular containers is demonstrated by performing a DFT study of their bonding to hydrogen, water, and L-alanine. The carbon nanostructures presented here show a higher bonding energy (approximately 1.0 eV), suggesting that a family of nanostructures, C(n)-derived (n = 60,70,76,80, etc) nanobaskets, could work as molecular containers, paving the way for future developments such as tunable traps for complex molecular systems. PMID:19724106

  12. The Environmental Fate of C60 Fullerenes: A Holistic Approach

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Filley, T. R.; Blanchette, R. A.; Jafvert, C.; Bolskar, R.

    2007-12-01

    The manufacture and use of carbon-based nanoparticles, for which C60 fullerenes can be considered a proxy, has grown exponentially in the past decade, and nanotechnology is now a multi-billion dollar industry, spanning disciplines such as cosmetics, biotechnology, and agriculture. Despite this, almost nothing is known of the fate of these compounds in the environment. Based upon the strong radical scavenging properties of many of these substances there are a variety of microbial and photochemical-mediated oxidative fates that will transform the physicochemical properties and control the residence time of these compounds in nature. It is essential that these fates, as well as the fates of the products of the degradation of carbon nanoparticles, are known. For instance, conversion of C60 fullerenes to hydroxylated or carboxylated analogs will shift the manner in which they partition between soils and sediments and water as well as how they interact with cell membranes. This paper combines our findings on the microbial activity of C60 fullerenes, one of the most common types of manufactured carbon nanoparticles, along with recent literature to develop potential chemical decay trajectories in oxidative environmental settings. We show what is known about the environmental fate of this type of nanomaterial and also areas where further research is needed.

  13. Blocking the passage: C60 geometrically clogs K(+) channels.

    PubMed

    Calvaresi, Matteo; Furini, Simone; Domene, Carmen; Bottoni, Andrea; Zerbetto, Francesco

    2015-05-26

    Classical molecular dynamics (MD) simulations combined with docking calculations, potential of mean force estimates with the umbrella sampling method, and molecular mechanic/Poisson-Boltzmann surface area (MM-PBSA) energy calculations reveal that C60 may block K(+) channels with two mechanisms: a low affinity blockage from the extracellular side, and an open-channel block from the intracellular side. The presence of a low affinity binding-site at the extracellular entrance of the channel is in agreement with the experimental results showing a fast and reversible block without use-dependence, from the extracellular compartment. Our simulation protocol suggests the existence of another binding site for C60 located in the channel cavity at the intracellular entrance of the selectivity filter. The escape barrier from this binding site is ∼21 kcal/mol making the corresponding kinetic rate of the order of minutes. The analysis of the change in solvent accessible surface area upon C60 binding shows that binding at this site is governed purely by shape complementarity, and that the molecular determinants of binding are conserved in the entire family of K(+) channels. The presence of this high-affinity binding site conserved among different K(+) channels may have serious implications for the toxicity of carbon nanomaterials. PMID:25873341

  14. In situ x-ray photoelectron spectroscopic and density-functional studies of Si atoms adsorbed on a C60 film.

    PubMed

    Onoe, Jun; Nakao, Aiko; Hara, Toshiki

    2004-12-01

    The interaction between C(60) and Si atoms has been investigated for Si atoms adsorbed on a C(60) film using in situ x-ray photoelectron spectroscopy (XPS) and density-functional (DFT) calculations. Analysis of the Si 2p core peak identified three kinds of Si atoms adsorbed on the film: silicon suboxides (SiO(x)), bulk Si crystal, and silicon atoms bound to C(60). Based on the atomic percent ratio of silicon to carbon, we estimated that there was approximately one Si atom bound to each C(60) molecule. The Si 2p peak due to the Si-C(60) interaction demonstrated that a charge transfer from the Si atom to the C(60) molecule takes place at room temperature, which is much lower than the temperature of 670 K at which the charge transfer was observed for C(60) adsorbed on Si(001) and (111) clean surfaces [Sakamoto et al., Phys. Rev. B 60, 2579 (1999)]. The number of electrons transferred between the C(60) molecule and Si atom was estimated to be 0.59 based on XPS results, which is in good agreement with the DFT result of 0.63 for a C(60)Si with C(2v) symmetry used as a model cluster. Furthermore, the shift in binding energy of both the Si 2p and C 1s core peaks before and after Si-atom deposition was experimentally obtained to be +2.0 and -0.4 eV, respectively. The C(60)Si model cluster provides the shift of +2.13 eV for the Si 2p core peak and of -0.28 eV for the C 1s core peak, which are well corresponding to those experimental results. The covalency of the Si-C(60) interaction was also discussed in terms of Mulliken overlap population between them. PMID:15634092

  15. Density functional calculation of superatomic molecular orbitals in C60: First truly converged results on a real grid mesh

    NASA Astrophysics Data System (ADS)

    Drake, Kyle; Bonacum, Jason; Zhang, Guo-Ping

    2014-03-01

    The molecular structure of Buckminster fullerene (C60) allows for electron delocalization in all of the pi-bonding electrons of the molecule. This coupled with the symmetry of the molecule allows for the formation of super-atomic molecular orbitals (SAMOs) similar to those observed in aluminum clusters. The SAMOs behave as if the molecule that they belong to is a single atom. We compute the eigenstates of C60 compulationally using density functional theory (DFT) and a grid mesh. Using larger radii also allows us to accurately describe SAMOs and test the convergence of our data. The results are interesting because for the first time, we can show the true converged super atomic orbitals in C60. Indiana State University SURE Program, Department of Energy, Indiana State University Department of Physics, and Indiana State University Center for Student Creativity and Research.

  16. Molecular dynamics and the phase transition in solid C60

    NASA Astrophysics Data System (ADS)

    Tycko, R.; Dabbagh, G.; Fleming, R. M.; Haddon, R. C.; Makhija, A. V.; Zahurak, S. M.

    1991-09-01

    The molecular reorientational dynamics in two phases of solid C60 with C-13 NMR measurements are characterized. A change in the nature of the dynamics, indicated by a change in kinetic parameters extracted from spin-lattice relaxation data, occurs at the phase transition at 260 K. Above the transition, the molecules appear to execute continuous rotational diffusion; below the transition, they appear to jump between symmetry-equivalent orientations. This interpretation is consistent with the X-ray-diffraction results of Heiney et al. (1991) as well as the NMR relaxation and spectral data.

  17. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  18. C60-dyad aggregates: Self-organized structures in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Guskova, O. A.; Varanasi, S. R.; Sommer, J.-U.

    2014-10-01

    Extensive full-atomistic molecular dynamics simulations are performed to study the self-organization of C60-fullerene dyad molecules in water, namely phenyl-C61-butyric acid methyl ester and fulleropyrrolidines, which have two elements of ordering, the hydrophobic fullerene cage and the hydrophilic/ionic group. While pristine fullerene or phenyl-C61-butyric acid methyl ester forms spherical droplets in order to minimize the surface tension, the amphiphilic nature of charged solute molecules leads to the formation of supramolecular assemblies having cylindrical shape driven by charge repulsion between the ionic groups located on the surface of the aggregates. We show that formation of non-spherical micelles is the geometrical consequence if the fullerene derivatives are considered as surfactants where the ionized groups are only hydrophilic unit. The agglomeration behavior of fullerenes is evaluated by determining sizes of the clusters, solvent accessible surface areas, and shape parameters. By changing the size of the counterions from chloride over iodide to perchlorate we find a thickening of the cylinder-like structures which can be explained by stronger condensation of larger ions and thus partial screening of the charge repulsion on the cluster surface. The reason for the size dependence of counterion condensation is the formation of a stronger hydration shell in case of small ions which in turn are repelled from the fullerene aggregates. Simulations are also in good agreement with the experimentally observed morphologies of decorated C60-nanoparticles.

  19. Theoretical study of the structures and first hyperpolarizabilities of C60Cl n and Li@C60Cl n (n = 4, 6, 8, 10).

    PubMed

    Song, Yao-Dong; Wang, Liang; Wu, Li-Ming

    2016-06-01

    We recently reported (Song Y-D et al., 2016, J Mol Model 22:50) that doping with Li greatly affects the static first hyperpolarizability of C60Cl2. In this work, with a view to creating nonlinear optical materials with high thermodynamic stability and wide transparent regions, a series of Li@C60Cl n (n = 4, 6, 8, 10) were designed. The structures, electrostatic potentials, electronic structures, absorption spectra, and linear and nonlinear optical properties of C60Cl n and Li@C60Cl n were systematically investigated using density functional theory (DFT) methods. The results of our calculations indicated that the stability of these molecules decreases in the order Li@C60Cl10 > Li@C60Cl8 > Li@C60Cl6 > Li@C60Cl4. It is clear that the number of Cl atoms greatly influences the stability of Li@C60Cl n . Li@C60Cl n showed greater thermodynamic stability than Li@C60Cl2. We also investigated the first hyperpolarizabilities of Li@C60Cl n and found them to be 2973, 3640, 4307, and 2627 au for n = 4, 6, 8, and 10, respectively-higher than that of Li@C60Cl2. Finally, we noted that the transparent region could be modulated by increasing the number of Cl atoms: Li@C60Cl n possess wider transparent regions than that of Li@C60Cl2. We therefore believe that this study has highlighted an effective method for designing nonlinear optical materials with high thermodynamic stability and wide transparent regions. PMID:27188724

  20. Two-dimensional van der Waals C60 molecular crystal

    PubMed Central

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-01-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55–100 GPa, 90–155 MPa, and 1.5–2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics. PMID:26183501

  1. Hot electron spin transport in C60 fullerene

    NASA Astrophysics Data System (ADS)

    Hueso, Luis Eduardo; Gobbi, Marco; Bedoya-Pinto, Amilcar; Golmar, Federico; Llopis, Roger; Casanova, Felix

    2012-02-01

    Carbon-based molecular materials are interesting for spin transport application mainly due to their small sources of spin relaxation [1]. However, spin coherence lengths reported in many molecular films do not exceed a few tens of nanometers [2]. In this work we will present results showing how hot spin-polarized electrons injected well above the Fermi level in C60 fullerene films travel coherently for hundreds of nanometers. We fabricated hot-electron vertical transistors, in which the current created across an Al/Al2O3 junction is polarized by a metallic Co/Cu/Py spin valve trilayer and subsequently injected in the molecular thin film. This geometry allows us to determine the energy level alignment at each interface between different materials. Moreover, the collector magnetocurrent excess 85%, even for C60 films thicknesses of 300 nm. We believe these results show the importance of hot spin-polarized electron injection and propagation in molecular materials. [1] V. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nature Mater. 8, 707 (2009) [2] M. Gobbi, F. Golmar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. 23, 1609 (2011)

  2. Two-dimensional van der Waals C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-07-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55-100 GPa, 90-155 MPa, and 1.5-2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics.

  3. Electronic and ionic conductivities in superionic Li4C60

    NASA Astrophysics Data System (ADS)

    Quintavalle, D.; Márkus, B. G.; Jánossy, A.; Simon, F.; Klupp, G.; Győri, M. A.; Kamarás, K.; Magnani, G.; Pontiroli, D.; Riccò, M.

    2016-05-01

    The 10 GHz microwave conductivity, σ (T ) and high field, 222 GHz electron spin resonance (HF-ESR) of Li4C60 fulleride is measured in a wide temperature range. We suggest that the majority of ESR active sites and at least some of the charge carriers for σ (T ) are electrons bound to a small concentration of surplus or vacancy ions in the polymer phase. Both σ (T ) and the ESR line shape depend on ionic motion. A change of the activation energy of σ (T ) at 125 K coincides with the onset of the ionic DC conductivity. The ESR line shape is determined mainly by Li ionic motion within octahedral voids below 150 K. At higher temperatures, fluctuations due to ionic diffusion change the environment of defects from axial to effectively isotropic on the ESR time scale. σ (T ) data up to 700 K through the depolymerization transition confirm that the monomeric phase of Li4C60 is a metal.

  4. Methoxylation of Singly Bonded 1,4-1',4'-BnC60-C60Bn Dimer: Preferential Formation of 1,4-C60 Adduct with Sterically Less Demanding Addends and Stability Difference between 1,2- and 1,4-OMe(Bn)C60.

    PubMed

    He, Fa-Gui; Li, Zong-Jun; Gao, Xiang

    2016-08-01

    Methoxylation of the singly bonded 1,4-1',4'-BnC60-C60Bn dimer afforded 1,4-OMe(Bn)C60, a 1,4-C60 adduct with sterically less demanding addends, as the major adduct. The situation was different from that of direct functionalization of C60, where 1,2-OMe(Bn)C60 was obtained as the major product. The reaction was studied with in situ vis-NIR spectroscopy and computational calculations to obtain a better understanding of this unusual regioselectivity. The stability difference between 1,2- and 1,4-OMe(Bn)C60 was studied. PMID:27387300

  5. Evidence for endohedral muonium in K(x) C60 and consequences for electronic structure

    NASA Technical Reports Server (NTRS)

    Kiefl, R. F.; Duty, T. L.; Schneider, J. W.; Macfarlane, A.; Chow, K.; Elzey, J. W.; Mendels, P.; Morris, G. D.; Brewer, J. H.; Ansaldo, E. J.

    1992-01-01

    Positive muons injected into solid C60, K4C60, and K6C60 form vacuumlike muonium with a (6-12) percent probability. Observation of coherent spin precession of muonium establishes that all three materials are nonmagnetic and nonconducting at low temperatures. From the temperature dependence of the signals we estimate the electronic band gaps in K4C60 and K6C60 to be considerably smaller than in C60. The similarity of the muonium centers supports a model in which a muonium atom is caged inside the C60 molecule in pure C60 or the C60 exp -x molecular ion in K(x)C60.

  6. On structural features of fullerene C60 dissolved in carbon disulfide: complementary study by small-angle neutron scattering and molecular dynamic simulations.

    PubMed

    Avdeev, M V; Tropin, T V; Bodnarchuk, I A; Yaradaikin, S P; Rosta, L; Aksenov, V L; Bulavin, L A

    2010-04-28

    The parameters of fullerene C(60) dissolved in carbon disulfide CS(2) are analyzed by small-angle neutron scattering (SANS) in a wide interval of momentum transfer. To exclude the influence of nonequilibrium conditions, the solutions are prepared without applying shaking, stirring or ultrasound. No indication of the equilibrium cluster state of C(60) (with the cluster size below 60 nm) in the final solutions is revealed. Molecular dynamic simulations are complementary used to find out the partial volume of C(60) in CS(2) and the scattering contribution of the solvent organization at the interface with the fullerene molecule, which is shown to be small. Among several approaches for describing SANS data the preference is given to the model, which takes into account the presence of stable C(60) dimers (comprising 10% of the total particle number density) in the solution. PMID:20441296

  7. Energetics and structural characterization of C60 polymerization in BN and carbon nanopeapods

    NASA Astrophysics Data System (ADS)

    Trave, Andrea; Ribeiro, Filipe J.; Louie, Steven G.; Cohen, Marvin L.

    2004-11-01

    As in the case of carbon nanotubes, also boron nitride nanotubes may host arrays of C60 molecules and form a nanopeapod (NPP). The observed separation between C60 molecules in BN NPP’s is consistently shorter than in carbon NPP’s, which influences their electronic properties. Here we report on total-energy pseudopotential density functional theory (DFT) calculations for polymerized and nonpolymerized C60 chains, and optimize their atomic structures to provide a description of their energetic landscape. A fully polymerized C60 chain and a C60 dimer are found to be more stable than nonpolymerized C60 , respectively, by 0.89 and 0.38eV/C60 . The geometry and energetics of an encapsulated C60 chain is not significantly different with respect to the isolated molecule. Encapsulation energies in BN and carbon NPP’s are, respectively, 1.56 and 1.67eV/C60 , which are significantly larger than the calculated activation energy for C60 polymerization, supporting the hypothesis that encapsulated C60 ’s in NPP’s are partially polymerized. Band structure analysis show that polymerization does not affect the gap width of the C60 chain. BN NPP’s are semiconductors with a gap width determined by the C60 . The lowest unoccupied C60 states lie just above the Fermi level in metallic carbon NPP’s and charge transfert could take place, affecting the C60 geometry.

  8. First-principles investigation of organic photovoltaic materials C60, C70, [C60]PCBM , and bis-[C60]PCBM using a many-body G0W0 -Lanczos approach

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Umari, Paolo; Marzari, Nicola

    2015-06-01

    We present a first-principles investigation of the excited-state properties of electron acceptors in organic photovoltaics including C60, C70, [6,6]-phenyl-C61-butyric-acid-methyl-ester ([C60]PCBM ), and bis-[C60]PCBM using many-body perturbation theory within the Hedin's G0W0 approximation and an efficient Lanczos approach. Calculated vertical ionization potentials (VIP) and vertical electron affinities (VEA) of C60 and C70 agree very well with experimental values measured in the gas phase. The density of states of all three molecules is also compared to photoemission and inverse photoemission spectra measured on thin films, and they exhibit a close agreement—a rigid energy-gap renormalization owing to intermolecular interactions in the thin films. In addition, it is shown that the low-lying unoccupied states of [C60]PCBM are all derived from the highest-occupied molecular orbitals and the lowest-unoccupied molecular orbitals of fullerene C60. The functional side group in [C60]PCBM introduces a slight electron transfer to the fullerene cage, resulting in small decreases of both VIP and VEA. This small change of VEA provides a solid justification for the increase of open-circuit voltage when replacing fullerene C60 with [C60]PCBM as the electron acceptor in bulk heterojunction polymer solar cells.

  9. Solubility of C60 and PCBM in Organic Solvents.

    PubMed

    Wang, Chun I; Hua, Chi C

    2015-11-12

    The ability to correlate fullerene solubility with experimentally or computationally accessible parameters can significantly facilitate nanotechnology nowadays for a wide range of applications, while providing crucial insight into optimum design of future fullerene species. To date, there has been no single relationship that satisfactorily describes the existing data clearly manifesting the effects of solvent species, system temperature, and isomer. Using atomistic molecular dynamics simulations on two standard fullerene species, C60 and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester), in a representative series of organic solvent media (i.e., chloroform, toluene, chlorobenzene, 1,3-dichlorobenzene, and 1,2-dichlorobenzene), we show that a single time constant characterizing the dynamic stability of a tiny (angstrom-sized) solvation shell encompassing the fullerene particle can be utilized to effectively capture the known trends of fullerene solubility as reported in the literature. The underlying physics differs substantially between the two fullerene species, however. Although C60 was previously shown to be dictated by a diffusion-limited aggregation mechanism, the side-chain-substituted PCBM is demonstrated herein to proceed with an analogous reaction-limited aggregation with the "reaction rate" set by the fullerene rotational diffusivity in the medium. The present results suggest that dynamic quantities-in contrast to the more often employed, static ones-may provide an excellent means to characterize the complex (entropic and enthalpic) interplay between fullerene species and the solvent medium, shed light on the factors determining the solvent quality of a nanoparticle solution, and, in particular, offer a practical pathway to foreseeing optimum fullerene design and fullerene-solvent interactions. PMID:26488132

  10. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    NASA Astrophysics Data System (ADS)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; Dews, A.; Jarvis, J. A.; Ray, M.; Schneider, B.; Smith, P. J. S.; Williamson, P. T. F.; Violi, A.; Philbert, M. A.

    2016-02-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern

  11. Preparation and characterisation of the C 60 charge transfer complex C 60-.[1,1',3,3'-tetramethyl-Δ 2,2'-bi(imidazolidine)] +.

    NASA Astrophysics Data System (ADS)

    Schilder, A.; Gotschy, B.; Seidl, A.; Gompper, R.

    1995-04-01

    Ferromagnetism in the C 60 charge transfer salt C 60-.[1,1',3,3'-tetramethyl-Δ 2,2'-bi(imidazolidine)] +. (C 60[TMBI]) with Curie temperatures Tc above 140 K and coercive forces Hc of about 1000 Oe were reported by Wang and Zhu (J. Phys. Chem. Solids 55 (1994) 437). This dramatic increase of Tc and Hc by a small variation of the counterion compared to the first C 60 ferromagnet C 60-.[tetrakis(dimethylamino)ethylene] +. (Allemand et al., Science 253 (1991) 301) triggered us to elucidate the charge transfer from TMBI to C 60 by absorption measurements in the VIS/NIR. We found that the reaction kinetics is much more complex than in C 60[TDAE]. Solid state investigations of C 60[TMBI] with EPR and microwave conductivity are in clear disagreement with the results published by Wang and Zhu. We found instead strong evidence that C 60[TMBI] is rather a diamagnetic C 60 CT complex with a lot of structural defects than a high temperature molecular ferromagnet.

  12. Multiscale Simulation and Modeling of Multilayer Heteroepitactic Growth of C60 on Pentacene.

    PubMed

    Acevedo, Yaset M; Cantrell, Rebecca A; Berard, Philip G; Koch, Donald L; Clancy, Paulette

    2016-03-29

    We apply multiscale methods to describe the strained growth of multiple layers of C60 on a thin film of pentacene. We study this growth in the presence of a monolayer pentacene step to compare our simulations to recent experimental studies by Breuer and Witte of submonolayer growth in the presence of monolayer steps. The molecular-level details of this organic semiconductor interface have ramifications on the macroscale structural and electronic behavior of this system and allow us to describe several unexplained experimental observations for this system. The growth of a C60 thin film on a pentacene surface is complicated by the differing crystal habits of the two component species, leading to heteroepitactical growth. In order to probe this growth, we use three computational methods that offer different approaches to coarse-graining the system and differing degrees of computational efficiency. We present a new, efficient reaction-diffusion continuum model for 2D systems whose results compare well with mesoscale kinetic Monte Carlo (KMC) results for submonolayer growth. KMC extends our ability to simulate multiple layers but requires a library of predefined rates for event transitions. Coarse-grained molecular dynamics (CGMD) circumvents KMC's need for predefined lattices, allowing defects and grain boundaries to provide a more realistic thin film morphology. For multilayer growth, in this particularly suitable candidate for coarse-graining, CGMD is a preferable approach to KMC. Combining the results from these three methods, we show that the lattice strain induced by heteroepitactical growth promotes 3D growth and the creation of defects in the first monolayer. The CGMD results are consistent with experimental results on the same system by Conrad et al. and by Breuer and Witte in which C60 aggregates change from a 2D structure at low temperature to 3D clusters along the pentacene step edges at higher temperatures. PMID:26937559

  13. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages.

    PubMed

    Russ, K A; Elvati, P; Parsonage, T L; Dews, A; Jarvis, J A; Ray, M; Schneider, B; Smith, P J S; Williamson, P T F; Violi, A; Philbert, M A

    2016-02-21

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis. PMID:26866469

  14. Prediction of superalkali@C60 endofullerenes, their enhanced stability and interesting properties

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Pandey, Sarvesh Kumar; Misra, Neeraj

    2016-07-01

    We introduce a new kind of endofullerenes by trapping superalkali (SA) species (the species possessing lower ionization energy than alkali metals) into C60. Employing density functional theory, we show that all SA@C60 are stable for SA = FLi2, OLi3 and NLi4. The DOS curves and HOMO-LUMO gaps of SA@C60 closely resemble those of Li@C60. The charge transfer from SA to C60 is larger than that of Li to C60 and consequently, the mean polarizability of SA@C60 and its depression increase. We, therefore, believe that SA@C60 endofullerenes might attract further attention for their possible applications, analogous to alkali metal doped C60.

  15. COLLISION DYNAMICS OF X@C60(X = He, Ne, Ar) AT LOW ENERGIES

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Feng-Shou; Zhou, Hong-Yu

    2013-12-01

    In this paper, a semi-empirical molecular dynamics model is developed. The central collisions of C60 + C60 and X@C60 + X@C60 (X = He, Ne, Ar) at various incident energy are investigated within this model. The fullerene dimers like a "dumbbell" can be formed by a self-assembly of C60 fullerene and X@C60 (X = He, Ne) endohedral fullerenes, and the new fullerene structure like "peanut" can be formed by a self-assembly of Ar@C60. It is found that Ar atom plays a great role in the collision of Ar@C60 + Ar@C60 because of its size effect. The energy effect is found that various incident energies cannot change the final structure at low energies if they are below a certain energy.

  16. Review of the progress in model theoretical studies of e + A @C60 electron scattering

    NASA Astrophysics Data System (ADS)

    Dolmatov, V.; Amusia, M.; Chernysheva, L.

    2016-05-01

    A series of recent semi-empirical theoretical studies of electron scattering off endohedral atoms A@ C60 have identified interesting measurements as well as more rigorous calculations of e + A @C60 scattering to perform. This report provides the interested researchers with a review of the most significant findings of works on e + A @C60 scattering. First, we demonstrate features of e + A @C60 elastic scattering of slow electrons and low-frequency bremsstrahlung when both the atom A and the cage C60 are ``frozen''. Then, we ``unfrozen'' the atom A but keep the C60 cage ``frozen'' and demonstrate novel effects of dynamical polarization of the atom A under the ``frozen'' C60 confinement on e + A @C60 scattering. Finally, we demonstrate the combined effect of both the dynamical polarization of the encapsulated atom and the static polarization of C60 on the scattering process. Supported by the NSF grant PHY-1305085.

  17. Variation of excited-state dynamics in trifluoromethyl functionalized C60 fullerenes.

    PubMed

    Park, Jaehong; Ramirez, Jessica J; Clikeman, Tyler T; Larson, Bryon W; Boltalina, Olga V; Strauss, Steven H; Rumbles, Garry

    2016-08-17

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1 → T1 intersystem crossing quantum yield (ΦISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1 → S0 relaxation mechanism and negligible ΦISC, therefore decreasing the average excited-state lifetime (τavg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (τavg ≈ 17 μs and 54 μs for C60/4-1 and C60/6-2, respectively, whereas τavg ≈ 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited-state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene. PMID:27485768

  18. Fullerene ion (C 60+) damage in Si at 25°C

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Brink, C.; Hvelplund, P.; Shiryaev, S.; Shi, PeiXiong; Davies, J. A.

    1997-07-01

    A series of low-dose (< 5 × 10 12 ions cm -2) fullerene ion implantations in silicon has been carried out at 25°C over the energy range 100-530 keV. The resulting damage was measured quantitatively by Rutherford backscattering (RBS), using 2.0 MeV helium ions. This is an extension of an earlier study [J.B. Mitchell, J.A. Davies, L.M. Howe, R.S. Walker, K.B. Winterbon, G. Foti and J.A. Moore, Proc. 4th Intl. Conf. on Ion Implantation in Semiconductors, (Plenum Press, New York, 1975), p. 493.] of cluster-ion damage in Si where we had observed a 15-fold increase in damage-creation efficiency — i.e., the number of displaced Si atoms per keV of deposited energy — in going from (8.8 keV) monatomic carbon to (53 keV) C 6+. Using the same 8.8 keV per carbon, we find that a 530 keV fullerene (C 60+) ion displaces 100 times more Si atoms than a 53 keV C 6+ ion; thus C 60+ exhibits an additional 10-fold increase in damage creation efficiency compared to C 6+. At 100 keV, the deposited (nuclear) energy density θ within the central core of each C 60+ cascade (˜ 1.5 ev per Si atom) is considerably larger than the Si heat of melting. Not surprisingly, the observed number of displaced Si atoms also exceeds the theoretical cascade volume, thus providing strong evidence for some sort of spike effect. Despite the high damage levels involved, scanning tunneling microscopy revealed no evidence of any anomalous surface structures or craters. Comparison of the present C 60+ data with earlier Si implantation studies, where a variety of ions (C, Ga, As, Sb, Te, Bi) and energies (10-60 keV) had been used, confirms the previous suggestion that room temperature damage in Si is governed mainly by the cascade energy density θ (eV/atom).

  19. Geochemistry and cosmochemistry of fullerenes 3: Reaction of C60 and C70 with ozone

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Chibante, L. P. F.

    1993-01-01

    C60 and C70 dissolved in toluene were treated with O2 gas containing 2.6 volume percent ozone and with O3-free oxygen. No reaction products were detected for 0.1 mole of O2 passed through the solution, but destruction of C60 was clearly detectable for a dose of 10(exp -6) moles of O3. C70 was destroyed more slowly than C60. Among the substances remaining in solution, we identified C60O, C70O, C60O2, C60O3, and C60O4. C60 crystals exposed to O3 at room temperature became less soluble in toluene in a matter of days, but oxides were apparently not formed.

  20. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation.

    PubMed

    Wang, Lilin; Fortner, John D; Hou, Lei; Zhang, Chengdong; Kan, Amy T; Tomson, Mason B; Chen, Wei

    2013-02-01

    Fullerene nanoparticles (nC(60)) in aqueous environments can significantly enhance the transport of hydrophobic organic contaminants by serving as a contaminant carrier. In the present study, the authors examine the effect of the solvent-exchange process on nC(60) aggregate formation and, subsequently, on nC(60) 's contaminant-mobilizing capability. A series of nC(60) samples were prepared using a modified toluene-water solvent-exchange method through the inclusion of a secondary organic solvent in the phase transfer of molecular C(60) in toluene to nC(60) in water. Two groups of solvents--a water-miscible group and a non-water-miscible group-of varied polarity were selected as secondary solvents. The involvement of a secondary solvent in the phase transfer process had only small effects on the particle size and distribution, ζ potential, and mobility of the nC(60) products but significantly influenced the capability of nC(60) to enhance the transport of 2,2',5,5'-polychlorinated biphenyl (PCB) in a saturated sandy soil column, regardless of whether the secondary solvent was water-miscible or non-water-miscible. The two groups of secondary solvents appear to affect the aggregation properties of nC(60) in water via different mechanisms. In general, nC(60) products made with a secondary water-miscible solvent have stronger capabilities to enhance PCB transport. Taken together, the results indicate that according to formation conditions and solvent constituents, nC(60) will vary significantly in its interactions with organic contaminants, specifically as related to adsorption or desorption as well as transport in porous media. PMID:23172734

  1. STM imagery and density functional calculations of C60 fullerene adsorption on the 6H-SiC(0001)-3×3 surface

    NASA Astrophysics Data System (ADS)

    Ovramenko, T.; Spillebout, F.; Bocquet, F. C.; Mayne, A. J.; Dujardin, G.; Sonnet, Ph.; Stauffer, L.; Ksari, Y.; Themlin, J.-M.

    2013-04-01

    Scanning tunneling microscopy (STM) studies of the fullerene C60 molecule adsorbed on the silicon carbide SiC(0001)-3×3 surface, combined with density functional theory (DFT) calculations, show that chemisorption of individual C60 molecules occurs through the formation of one bond to one silicon adatom only in contrast to multiple bond formation on other semiconducting surfaces. We observe three stable adsorption sites with respect to the Si adatoms of the surface unit cell. Comprehensive DFT calculations give different adsorption energies for the three most abundant sites showing that van der Waals forces between the C60 molecule and the neighboring surface atoms need to be considered. The C60 molecules are observed to form small clusters even at low coverage indicating the presence of a mobile molecular precursor state and nonnegligible intermolecular interactions.

  2. Assessment Of C60 As A Propellant Material For Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rapp, Don; Leifer, Stephanie D.

    1995-01-01

    Report presents analyses and data to support proposed use of C60 (buckminsterfullerene) as alternative to Xe, current propellent material of choice for use in ion thrusters. Concept of using C60 for this purpose described in "Electrostatic Propulsion Using C60 Molecules" (NPO-18526).

  3. C60 molecules grown on a Si-supported nanoporous supramolecular network: a DFT study.

    PubMed

    Boukari, Khaoula; Duverger, Eric; Stephan, Régis; Hanf, Marie-Christine; Sonnet, Philippe

    2014-07-28

    C60 fullerene assemblies on surfaces have attracted considerable attention because of their remarkable electronic properties. Now because of the competition between the molecules-substrate and the molecule-molecule interactions, an ordered C60 array is rather difficult to obtain on silicon surfaces. Here we present density functional theory simulations on C60 molecules deposited on a TBB (1,3,5-tri(1'-bromophenyl)benzene) monolayer lying on the Si(111)-boron surface (denoted SiB). The C60 molecules are located in the nanopores formed by the TBB network. Adsorption energy calculations show that the SiB surface governs the C60 vertical position, whereas the TBB network imposes the C60 lateral position, and stabilizes the molecule as well. The low charge density between the C60 and the SiB substrate on one hand, and on the other hand between the C60 and the TBB molecules, indicates that no covalent bond is formed between the C60 and its environment. However, according to charge density differences, a drastic charge reorganisation takes place between the Si adatoms and the C60 molecule, but also between the C60 and the surrounding TBB molecules. Finally, calculations show that a C60 array sandwiched between two TBB molecular layers is stable, which opens up the way to the growth of 3D supramolecular networks. PMID:24920165

  4. Electronic transitions and band offsets in C60:SubPc and C60:MgPc on MoO3 studied by modulated surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Fengler, S.; Dittrich, Th.; Rusu, M.

    2015-07-01

    Electronic transitions at interfaces between MoO3 layers and organic layers of C60, SubPc, MgPc, and nano-composite layers of SubPc:C60 and MgPc:C60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO3/organic layer interfaces with a separation of holes towards MoO3. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (EHL) of C60, SubPc, and MgPc and the effective EHL of SubPc:C60 and MgPc:C60 were measured. The offsets between the LUMO (ΔEL) or HOMO (ΔEH) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C60, respectively, and to -0.33 or 0.67 eV for MgPc:C60, respectively. Exponential tails below EHL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states.

  5. Molecular-dynamics simulations of energetic C60 impacts on (2×1)-(100) silicon

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyuan; Albe, Karsten; Averback, Robert S.

    2000-07-01

    Single impacts of energetic C60 clusters on (2×1)-(100) silicon substrates are studied by molecular-dynamics simulations. The role of impact energies and internal cluster energy are investigated in detail. Six different energy regimes can be identified at the end of the ballistic phase: At thermal energies below 20 eV the fullerene cages undergo elastic deformation, while impinging on the surface, and are mostly chemisorpted on top of the (2×1)-dimer rows. Between 20 and 100 eV the cage structure is preserved after the collision, but the cluster comes to rest within a few monolayers of the silicon surface. At energies of 100-500 eV the cluster partially decomposes and small coherent carbon caps are embedded in the surface. At higher energies up to 1.5 keV complete decomposition of the fullerene cluster occurs and an amorphous zone is formed in the subsurface area. At energies greater than approximately 1.5 keV craters form and above 6 keV sputtering becomes significant. In all cases the substrate temperature is of minor influence on the final result, but the projectile temperature is important for impacts at lower energies (<1.5 keV). For high energy impacts the ballistics resemble that of single atom impacts. Nearly 1:1 stoichiometry is obtained for impact energies around 1 keV. These results reveal an interesting possibility for controlled implantation of C in Si at high local concentrations, which might allow the formation of silicon carbide.

  6. Spatially mapping the spectral density of a single C60 molecule

    SciTech Connect

    Lu, Xinghua; Grobis, M.; Khoo, K.H.; Louie, Steve G.; Crommie, M.F.

    2002-07-01

    We have used scanning tunneling spectroscopy to spatially map the energy-resolved local density of states of individual C60 molecules on the Ag(100) surface. Spectral maps were obtained for molecular states derived from the C60 HOMO, LUMO, and LUMO + 1 orbitals, revealing new details of the spatially inhomogeneous C60 local electronic structure. Spatial inhomogeneities are explained using ab initio pseudopotential density functional calculations. These calculations emphasize the need for explicitly including the C60-Ag interaction and STM tip trajectory to understand the observed C60 local electronic structure.

  7. Structural and magnetic properties of Co films on highly textured and randomly oriented C60 layers

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ok; Choi, Jun Woo; Lee, Dong Ryeol

    2016-03-01

    The structural and magnetic properties of Co/C60/pentacene and Co/C60 thin film structures were investigated. Atomic force microscopy and x-ray reflectivity analysis show that the presence or absence of a pentacene buffer layer leads to a highly textured or randomly oriented C60 layer, respectively. A Co film deposited on a randomly oriented C60 layer penetrates into the C60 layer when it is deposited at a slow deposition rate. The Co penetration can be minimized, regardless of the Co deposition rate, by growth on a highly textured and nanostructured C60/pentacene layer. Vibrating sample magnetometry measurements show that the saturation magnetization of Co/C60/pentacene is significantly reduced compared to that of Co/C60. On the other hand, the Co penetration does not seem to have an effect on the magnetic properties, suggesting that the structural properties of the Co and C60 layer, rather than the Co penetration into the organic C60 layer, are critical to the magnetic properties of the Co/C60.

  8. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60.

    PubMed

    Fu, Hongbo; Xu, Tongguang; Zhu, Shengbao; Zhu, Yongfa

    2008-11-01

    C60 molecules with monomolecular layer state dispersed on the surface of ZnO and formed the hybridized interaction between ZnO and C60. C60-hybridized ZnO photocatalyst showed enhanced photocatalytic activity for the degradation of the organic dye and the photocorrosion of ZnO was successfully inhibited bythe hybridization of C60 molecules. The photocorrosion inhibition of ZnO by C60 molecule could be attributed to the reduced activation of surface oxygen atom. The enhanced photocatalytic activity for C60-hybridized ZnO was originated from the high migration efficiency of photoinduced electrons on the interface of C60 and ZnO, which was produced by the interaction of C60 and ZnO with a conjugative pi-system. The enhancement degree of photocatalytic activity was strongly depended on the coverage of C60 molecules on the surface of ZnO nanoparticles, and the optimum hybridization effect was found at a weight ratio of 1.5% (C60/ZnO). The hybridization of C60 with semiconductors could be used to improve the photocatalytic activity as well as the photostability. PMID:19031903

  9. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles

    NASA Astrophysics Data System (ADS)

    Trpkovic, Andreja; Todorovic-Markovic, Biljana; Kleut, Duska; Misirkic, Maja; Janjetovic, Kristina; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanovic, Svetlana; Dramicanin, Miroslav; Markovic, Zoran; Trajkovic, Vladimir

    2010-09-01

    The present study investigated the hemolytic properties of fullerene (C60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC60THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC60CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC60EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC60THF, but not nC60CDX or nC60EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC60THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC60THF. The nC60THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC60THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.

  10. On observing C60+ and C602+ in laboratory and space

    NASA Astrophysics Data System (ADS)

    Strelnikov, D.; Kern, B.; Kappes, M. M.

    2015-12-01

    Recently, we have measured the IR absorptions of C60+, C60-, and C602+ in neon matrixes. Many previously unknown absorptions were established. Here we compare our laboratory IR absorption spectra for C60+ and C602+ to the IR emission spectra of several astronomical objects that show C60 emission. We find that IR bands of C60+ are possibly present in the objects Tc1, SMP SMC 16, NGC 7023, NGC 2244, and SMP LMC 02. Infrared emission features possibly due to C602+ were identified in NGC 7023. To help with future observations of fullerene-related DIBs, we also revisited the oscillator strengths of the NIR absorptions of C60+, and report significantly revised values. Additionally, we report the UV oscillator strengths of C60+.

  11. Radical reactions of C 60Ph 5Cl: EPR study and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kalina, O. G.; Tumanskii, B. L.; Chistyakov, A. L.; Stankevich, I. V.; Birkett, P. R.; Taylor, R.

    2003-10-01

    UV-irradiation of a toluene solution of C 60Ph 5Cl leads to the formation of the stable rad C 60Ph 5 cyclopentadienyl-type fullerenyl radical. Under UV-irradiation of a toluene solution of C 60Ph 5Cl containing Hg[P(O)(OPr i) 2] 2 (Pr i=CH(CH 3) 2), three isomers of the adducts of phosphoryl radicals with C 60Ph 5Cl are formed. Density functional (DFT) approach with the B3LYP functional was used for estimating of the enthalpies of the formation and hyperfine coupling constants for all possible adducts of phosphoryl radicals with C 60Ph 5Cl. Biradical particles rad C 60Ph 5[P(O)(OPr i) 2]- rad C 60Ph 5[P(O)(OPr i) 2] with a distance between unpaired electrons of about 10.5 Å, are also obtained.

  12. Synthesis of poly(vinyl alcohol)/C(60) and poly(N-vinylpyrrolidone)/C(60) nanohybrids as potential photodynamic cancer therapy agents.

    PubMed

    Hurtgen, Marie; Debuigne, Antoine; Mouithys-Mickalad, Ange; Jérôme, Robert; Jérôme, Christine; Detrembleur, Christophe

    2010-04-01

    Well-defined poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone)-co-poly(vinyl acetate) (PNVP-co-PVAc) chains end-capped by Co(acac)(2) (acac=acetylacetonate) and prepared by cobalt-mediated radical polymerization (CMRP) are grafted onto a fullerene. Homolytic Co-C bond cleavage of the polymer chain ends at 30 degrees C releases the polymeric radicals that add onto C(60), thereby leading to the corresponding PVAc/C(60) and PNVP-co-PVAc/C(60) nanohybrids. The [polymer-Co(acac)(2)]/[C(60)] molar ratio was varied to adjust the structure of the nanohybrids, and more particularly the number of grafted arms. Finally, the potential of the hydrosoluble PVOH/C(60) nanohybrids, which result from the methanolysis of the ester groups of PVAc/C(60), and of the PNVP-co-PVAc/C(60) nanohybrids as photosensitizers for photodynamic therapy (PDT), was approached. First, photobleaching tests demonstrated the ability of these nanohybrids to produce singlet oxygen upon irradiation, which can play a role in cell damage. Second, cell viability assays demonstrated that both types of nanohybrids are deprived of intrinsic cytotoxicity in the dark, whereas they promoted significant cell mortality when subjected to light treatment. The selective response of these materials to irradiation makes them promising compounds for PDT. PMID:20140908

  13. Hierarchical aqueous self-assembly of C60 nano-whiskers and C60-silver nano-hybrids under continuous flow.

    PubMed

    Iyer, K Swaminathan; Raston, Colin L; Saunders, Martin

    2007-09-01

    The ubiquitous starch-iodine complex can be used to organize hydrophobic fullerene C(60) in water into nano-whiskers shrouded by the biopolymer, and are approximately 5-8 nm in cross section, and 250-350 nm in length, as a hierarchical self assembly process. The preformed starch-iodine complex reacts with solid pristine C(60) affording nano-whiskers with iodine surrounding the fullerene array, the iodine then being removed on treatment with ascorbic acid. The hydrophobic surface of the nano-whiskers of C(60) can be coated with silver metal in a controlled way using 'soft energy' spinning disc processing. PMID:17713609

  14. Photoinduced Charge Separation in the Carbon Nano-Onion C60@C240.

    PubMed

    Voityuk, Alexander A; Solà, Miquel

    2016-07-28

    The double-shell fullerene C60@C240 formed by inclusion of C60 into C240 is the smallest stable carbon nano-onion. In this article, we analyze in detail the character of the excited states of C60@C240 in terms of exciton localization and charge transfer between the inner and outer shells. The unique structure of the buckyonion leads to a large electrostatic stabilization of charge-separated (CS) states in the C60@C240. As a result, the CS states C60(+)@C240(-) lie in the same region of the electronic spectrum (2.4-2.6 eV) as strongly absorbing locally excited states and, therefore, can be effectively populated. The CS states C60(-)@C240(+) are found to be 0.5 eV higher in energy than the CS states C60(+)@C240(-). Unlike the situation observed in donor-acceptor systems, the energies of the CS states in C60@C240 do not practically depend on the environment polarity. This leads to exceptionally small reorganization energies for electron transfer between the shells. Electronic couplings for photoinduced charge-separation and charge-recombination processes are calculated. The absolute rate of the formation of the CS state C60(+)@C240(-) is estimated at ∼4 ps(-1). The electronic features found in C60@C240 are likely to be shared by other carbon nano-onions. PMID:27383921

  15. Ortho-para conversion of endohedral water in the fullerene C60 at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Shugai, Anna; Nagel, U.; Rõõm, T.; Mamone, S.; Concistrè, M.; Meier, B.; Krachmalnicoff, A.; Whitby, R. J.; Levitt, M. H.; Lei, Xuegong; Li, Yongjun; Turro, N. J.

    2015-03-01

    Water displays the phenomenon of spin isomerism in which the two proton spins either couple to form a triplet (ortho water, I = 1) or a singlet nuclear spin state (para water, I = 0). Here we study the interconversion of para and ortho water. The exact mechanism of this process is still not fully understood. In order to minimize interactions between molecules we use a sample where a single H2O is trapped in the C60 molecular cage (H2O@C60)andH2O@C60iscrystallized.H2O@C60 has long-lived ortho state and ortho-para conversion kinetics is non-exponential at LHeT. We studied mixtures of H2O@C60, D2O@C60 and C60 using IR absorption, NMR and dielectric measurements. We saw the speeding up of the interconversion with the growth of H2O@C60 concentration in C60 or when D2O@C60 was added. At some temperatures the kinetics is exponential. Models are discussed in order to explain the T and concentration dependence of ortho-para interconversion kinetics. This work was supported by institutional research funding IUT23-3 of the Estonian Ministry of Education and Research.

  16. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  17. Study of the interaction of C60 fullerene with human serum albumin in aqueous solution

    SciTech Connect

    Li, Song; Zhao, Xiongce; Mo, Yiming; Cummings, Peter T; Heller, William T

    2013-01-01

    Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C60 fullerene, continues to grow. While evidence continues to mount that C60 and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. To better understand the interaction of C60 with proteins, the protein human serum albumin (HSA) was studied in solution with C60 at C60:HSA molar ratios ranging from 1:2 to 4:1. HSA is the major protein component of blood plasma and plays a role in a variety of functions, such as the maintenance of blood pH and pressure. The C60-HSA interaction was probed by a combination of circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS) and atomistic molecular dynamics (MD) simulations to understand C60-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in -helical content in response to the presence of C60. Similarly, C60 produces subtle changes in the solution conformation of HSA, as evidenced by the SANS data and MD. The data do not indicate that C60 is causing a change in the oligomerization state of the protein. Taken together results demonstrate that C60 interacts with HSA, but it does not strongly perturb the structure of the protein by unfolding it or inducing aggregation, suggesting a mechanism for transporting C60 throughout the body to accumulate in various tissues.

  18. A Novel Matrix for Immobilizing Protein: Supported Hybrid Nano C60-Lipid Membrane.

    PubMed

    He, Lulu; Yue, Qiulin; Zhang, Lele; Zhang, Xin

    2016-06-01

    Supported hybrid nano C60-lipid membrane based on cysteamine monolayer was made on gold electrode. Hemoglobin (Hb) could be immobilized in the membrane firmly because the membrane can supply a biological environment for Hb. The electrochemical behavior of Hb in the membrane was investigated by cyclic voltammetry. As a good electron mediator, C60 could make the electron transfer of the protein in hybrid C60-lipid membrane more accessible. PMID:27427649

  19. Hybridization-Induced Carrier Localization at the C60 /ZnO Interface.

    PubMed

    Kelly, Leah L; Racke, David A; Kim, Hyungchul; Ndione, Paul; Sigdel, Ajaya K; Berry, Joseph J; Graham, Samuel; Nordlund, Dennis; Monti, Oliver L A

    2016-05-01

    Electronic coupling and ground-state charge transfer at the C60 /ZnO hybrid interface is shown to localize carriers in the C60 phase. This effect, revealed by resonant X-ray photoemission, arises from interfacial hybridization between C60 and ZnO. Such localization at carrier-selective electrodes and interlayers may lead to severely reduced carrier harvesting efficiencies and increased recombination rates in organic electronic devices. PMID:26596518

  20. Solid-phase C60 in the peculiar binary XX Oph?

    NASA Astrophysics Data System (ADS)

    Evans, A.; van Loon, J. Th.; Woodward, C. E.; Gehrz, R. D.; Clayton, G. C.; Helton, L. A.; Rushton, M. T.; Eyres, S. P. S.; Krautter, J.; Starrfield, S.; Wagner, R. M.

    2012-03-01

    We present infrared spectra of the binary XX Oph obtained with the Infrared Spectrograph on the Spitzer Space Telescope. The data show some evidence for the presence of solid C60- the first detection of C60 in the solid phase - together with the well-known 'unidentified infrared' emission features. We suggest that, in the case of XX Oph, the C60 is located close to the hot component, and that in general it is preferentially excited by stars having effective temperatures in the range 15 000-30 000 K. C60 may be common in circumstellar environments, but unnoticed in the absence of a suitable exciting source.

  1. Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils.

    PubMed

    Navarro, Divina A; Kookana, Rai S; Kirby, Jason K; Martin, Sheridan M; Shareef, Ali; Du, Jun; McLaughlin, Mike J

    2013-11-15

    Owing of their wide-range of commercial applications, fullerene (C60) nanoparticles, are likely to reach environments through the application of treated sludge (biosolids) from wastewater treatment plants to soils. We examined the release behaviour of C60 from contaminated biosolids added to soils with varying physicochemical characteristics. Incubation studies were carried out in the dark for up to 24 weeks, by adding biosolids spiked (1.5mg/kg) with three forms of C60 (suspended in water, in humic acid, and precipitated/particulate) to six contrasting soils. Leaching of different biosolids+soil systems showed that only small fractions of C60 (<5% of applied amount) were released, depending on incubation time and soil properties (particularly dissolved organic carbon content). Release of C60 from unamended soils was greater (at least twice as much) than from biosolids-amended soils. The form of C60 used to spike the biosolids had no significant effect on the release of C60 from the different systems. Contact time of C60 in these systems only slightly increased the apparent release up to 8 weeks, followed by a decrease to 24 weeks. Mass balance analysis at the completion of the experiment revealed that 20-60% of the initial C60 applied could not be accounted for in these systems; the reasons for this are discussed. PMID:24076573

  2. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy

    NASA Astrophysics Data System (ADS)

    Wei, Pengfei; Zhang, Li; Lu, Yang; Man, Na; Wen, Longping

    2010-12-01

    Autophagy, an evolutionally conserved intracellular process degrading cytoplasmic proteins and organelles for recycling, has become one of the most remarkable strategies applied in cancer research. The fullerene C60 nanoparticle (nC60) has been shown to induce autophagy and sensitize chemotherapeutic killing of cancer cells, but the details still remain unknown. Here we show that a water-dispersed nanoparticle solution of derivatized fullerene C60, C60(Nd) nanoparticles (nC60(Nd)), has greater potential in inducing autophagy and sensitizing chemotherapeutic killing of both normal and drug-resistant cancer cells than nC60 does in an autophagy-dependent fashion. Additionally we further demonstrated that autophagy induced by nC60/C60(Nd) and Rapamycin had completely different roles in cancer chemotherapy. Our results, for the first time, revealed a novel and more potent derivative of the C60 nanoparticle in enhancing the cytotoxicity of chemotherapeutic agents and reducing drug resistance through autophagy modulation, which may ultimately lead to novel therapeutic strategies in cancer therapy.

  3. Transparent conducting C60:LiF nanocomposite thin films for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Q.; Huang, C. J.; Ogundimu, T.; Lu, Z. H.

    2007-09-01

    C60:LiF nanocomposite thin films were synthesized by physical vapor coevaporation. It is found that the nano-composite films are extremely conductive even at high LiF concentrations of up to 75wt% and that the films form Ohmic contacts with Al electrodes. IR measurements showed evidence of charge transfer from LiF to C60. Scanning electron microscope studies showed that C60:LiF (75wt%) nanocomposite forms uniform films. Compared with an archetypical tris(8-hydroxyquinolinato)alumina based device, OLEDs with the C60:LiF composite electron transport materials have lower driving voltages and higher power efficiencies.

  4. Electrochemically produced films and polycrystalline salts of C60n-: Their physical characterization

    SciTech Connect

    Jones, M.T.; Subramanian, R.; Boulas, P.

    1994-12-31

    The discovery of C60 and its anionic salts C60{sup n-} (n = 1, 2, or 3) has provided a series of new materials with a wide range of very interesting chemical and physical properties such as ferromagnetism, nonlinear optical activity, semiconductivity and superconductivity. To date, relatively few salts of the anions of C60 have been studied because until recently a simple synthesis procedure did not exist. The authors recently developed simple and efficient methods for preparing thin films (prepared electrochemically) of both C60 and C60n- (n = 1, 2, or 3) and for preparing anion salts of C60 (prepared electrochemically and chemically). The authors now report the spectroscopic characterization of some of these materials. For example, studies of the temperature dependence of the Raman spectra of selected films (such as C60 and Cs3C60) are discussed. Also discussed are the ESR studies of a series of polycrystalline C60 anion salts derived from films as well as from the facile chemical preparation methods which are presented. The results of these spectroscopic studies are discussed as are results from other physical methods of characterization.

  5. Preparation and structure of the alkali-metal fulleride A4C60

    NASA Astrophysics Data System (ADS)

    Fleming, R. M.; Rosseinsky, M. J.; Ramirez, A. P.; Murphy, D. W.; Tully, J. C.; Haddon, R. C.; Siegrist, T.; Tycko, R.; Glarum, S. H.; Marsh, P.; Dabbagh, G.; Zahurak, S. M.; Makhija, A. V.; Hampton, C.

    1991-08-01

    SUPERCONDUCTING K3C60 (ref. 1) has been shown2 to have an intercalated face-centred cubic (f.c.c.) structure, and other A3C60 compounds (where A is K, Rb or mixtures of K, Rb and/or Cs) form an isostructural series with superconducting transition temperatures up to 31.3 K (ref. 3). Recently we reported4 13C NMR studies of K x C60 for x<3, and concluded that the system contained two phases (x = 0 and x = 3) for 0C60 in the range 3C60 (refs 2, 3) and body-centred cubic A6C60 (ref. 5), A4C60 (where A is K, Rb, Cs) has a body-centred tetragonal structure. We show that all of the experimentally observed phases of A x C60 can be predicted solely on the basis of electrostatic considerations. We have found no evidence for superconductivity in A4C60.

  6. Transport properties of the H2O@C60-dimer-based junction.

    PubMed

    Zhu, Chengbo; Wang, Xiaolin

    2015-09-23

    Theoretical predictions play an important role in finding potential applications in molecular electronics. Fullerenes have a number of potential applications, and the charge flow from a single C60 molecule to another becomes more versatile and more interesting after doping. Here, we report the conductance of two H2O@C60 molecules in series order and how the number of encapsulated water molecules influences the transport properties of the junction. Encapsulating an H2O molecule into one of the C60 cages increases the conductance of the dimer. Negative differential resistance is found in the dimer systems, and its peak-to-valley current ratio depends on the number of encapsulated H2O molecules. The conductance of the C60 dimer and the H2O@C60 dimer is two orders of magnitude smaller than that of the C60 monomer. Furthermore, we demonstrate that the conductance of the molecular junctions based on the H2O@C60 dimer can be tuned by moving the encapsulated H2O molecules. The conductance is H2O-position dependent. Our findings indicate that H2O@C60 can be used as a building block in C60-based molecular electronic devices and sensors. PMID:26325223

  7. Transport properties of the H2O@C60-dimer-based junction

    NASA Astrophysics Data System (ADS)

    Zhu, Chengbo; Wang, Xiaolin

    2015-09-01

    Theoretical predictions play an important role in finding potential applications in molecular electronics. Fullerenes have a number of potential applications, and the charge flow from a single C60 molecule to another becomes more versatile and more interesting after doping. Here, we report the conductance of two H2O@C60 molecules in series order and how the number of encapsulated water molecules influences the transport properties of the junction. Encapsulating an H2O molecule into one of the C60 cages increases the conductance of the dimer. Negative differential resistance is found in the dimer systems, and its peak-to-valley current ratio depends on the number of encapsulated H2O molecules. The conductance of the C60 dimer and the H2O@C60 dimer is two orders of magnitude smaller than that of the C60 monomer. Furthermore, we demonstrate that the conductance of the molecular junctions based on the H2O@C60 dimer can be tuned by moving the encapsulated H2O molecules. The conductance is H2O-position dependent. Our findings indicate that H2O@C60 can be used as a building block in C60-based molecular electronic devices and sensors.

  8. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish

    PubMed Central

    Usenko, Crystal Y.; Harper, Stacey L.; Tanguay, Robert L.

    2008-01-01

    Due to its unique physicochemical and optical properties, C60 has raised interest in commercialization for a variety of products. While several reports have determined this nanomaterial to act as a powerful antioxidant, many other studies have demonstrated a strong oxidative potential through photoactivation. To directly address the oxidative potential of C60, the effects of light and chemical supplementation and depletion of glutathione (GSH) on C60-induced toxicity were evaluated. Embryonic zebrafish were used as a model organism to examine the potential of C60 to elicit oxidative stress responses. Reduced light during C60 exposure significantly decreased mortality and the incidence of fin malformations and pericardial edema at 200 and 300 ppb C60. Embryos co-exposed to the glutathione precursor, N-acetylcysteine (NAC), also showed reduced mortality and pericardial edema; however, fin malformations were not reduced. Conversely, co-exposure to the GSH synthesis inhibitors, butathionine sulfoximine (BSO) and diethyl maleate (DEM), increased the sensitivity of zebrafish to C60 exposure. Co-exposure of C60 or its hydroxylated derivative, C60(OH)24, with H2O2 resulted in increased mortality along the concentration gradient of H2O2 for both materials. Microarrays were used to examine the effects of C60 on the global gene expression at two time points, 36 and 48 hours post fertilization (hpf). At both life stages there were alterations in the expression of several key stress response genes including glutathione-S-transferase, glutamate cysteine ligase, ferritin, α-tocopherol transport protein and heat shock protein 70. These results support the hypothesis that C60 induces oxidative stress in this model system. PMID:18299140

  9. Transport and retention of fullerene (C60) nanoparticles in natural soils

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, Y.; Abriola, L. M.; Pennell, K. D.

    2008-12-01

    Although several column studies have investigated the transport and deposition of fullerene (C60) nanoparticles in ideal porous media, such as washed quartz sands and glass beads, far less attention has been directed toward natural soils. To address this issue, a series of column experiments was performed to quantify the transport and retention of C60 nanoparticles in a borosilicate glass column (10 cm length x 2.5 cm dia.) packed with either Appling soil or Webster soil. Introduction of a C60 suspension containing 1 mM calcium chloride as background electrolyte for up to 65 pore volumes resulted in 100 percent retention of injected mass. Retained C60 nanoparticles were concentrated within 6 cm of the column from inlet, with solid phase concentrations approaching 130 μg/g. The presence of Suwannee River humic acid (20 mg/L) in the C60 suspension slightly enhanced mobility of nC60, although effluent breakthrough was not observed. However, when mixed with 1,000 mg/L polyethoxylate (20) sorbitan monooleate (Tween 80), C60 nanoparticles were readily transported through Appling soil, with less than 40 percent of injected mass retained. Retentions profiles of nC60 exhibited gradual ascent and descent, but not symmetrically, with distance from inlet. A mathematic transport model incorporating classical filtration theory, non-linear sorption process, and straining was utilized to capture C60 effluent breakthrough curves and retention profiles observed in the column experiments. These findings indicate that Appling soil and Webster soil exhibit large retention capacity for C60 nanoparticle, and that transport of C60 is greatly enhanced in the presence of stabilizing agents.

  10. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx)

    PubMed Central

    Lovern, Sarah B.; Strickler, J. Rudi; Klaper, Rebecca

    2008-01-01

    Little is known about the impact manufactured nanoparticles will have on aquatic organisms. Previously, we demonstrated that toxicity differs with nanoparticle type and preparation and observed behavioral changes upon exposure to the more lethal nanoparticle suspensions. In this experiment, we quantified these behavioral and physiological responses of Daphnia at sublethal nanoparticle concentrations. Titanium dioxide (TiO2) and fullerenes (nano-C60) were chosen for their potential use in technology. Other studies suggest that addition of functional groups to particles can affect their toxicity to cell cultures, but it is unknown if the same is true at the whole organism level. Therefore, a fullerene derivative, C60HxC70Hx, was also used to examine how functional groups affect Daphnia response. Using a high-speed camera, we quantified several behavior and physiological parameters including hopping frequency, feeding appendage and postabdominal curling movement, and heart rate. Nano-C60 was the only suspension to cause a significant change in heart rate. Both exposure to nano-C60 and C60HxC70Hx suspensions caused hopping frequency and appendage movement to increase. These results are associated with increased risk of predation and reproductive decline. They indicate that certain nanoparticle types may have impacts on population and food web dynamics in aquatic systems. PMID:17626453

  11. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx).

    PubMed

    Lovern, Sarah B; Strickler, J Rudi; Klaper, Rebecca

    2007-06-15

    Little is known aboutthe impact manufactured nanoparticles will have on aquatic organisms. Previously, we demonstrated that toxicity differs with nanoparticle type and preparation and observed behavioral changes upon exposure to the more lethal nanoparticle suspensions. In this experiment, we quantified these behavioral and physiological responses of Daphnia magna at sublethal nanoparticle concentrations. Titanium dioxide (TiO2) and fullerenes (nano-C60) were chosen for their potential use in technology. Other studies suggest that addition of functional groups to particles can affect their toxicity to cell cultures, but it is unknown if the same is true at the whole organism level. Therefore, a fullerene derivative, C60HxC70Hx, was also used to examine how functional groups affect Daphnia response. Using a high-speed camera, we quantified several behavior and physiological parameters including hopping frequency, feeding appendage and postabdominal curling movement, and heart rate. Nano-C60 was the only suspension to cause a significant change in heart rate. Exposure to both nano-C60 and C60HxC70Hx suspensions caused hopping frequency and appendage movement to increase. These results are associated with increased risk of predation and reproductive decline. They indicate that certain nanoparticle types may have impacts on population and food web dynamics in aquatic systems. PMID:17626453

  12. Molecular Depth Profiling of Buried Lipid Bilayers Using C60-SIMS

    PubMed Central

    Lu, Caiyan; Wucher, Andreas; Winograd, Nicholas

    2010-01-01

    An organic delta layer system made of alternating Langmuir Blodgett multilayers of barium arachidate (AA) and barium dimyristoyl phosphatidate (DMPA) was constructed to elucidate the factors that control depth resolution in molecular depth profile experiments. More specifically, one or several bilayers of DMPA (4.4 nm) were embedded in relatively thick (51 to 105 nm) multilayer stacks of AA, resulting in a well-defined delta-layer model system closely resembling a biological membrane. 3-D imaging ToF-SIMS depth profile analysis was performed on this system using a focused buckminsterfullerene (C60) cluster ion beam. The delta layer depth response function measured in these experiments exhibits similar features as those determined in inorganic depth profiling, namely an asymmetric shape with quasi-exponential leading and trailing edges and a central Gaussian peak. The effects of sample temperature, primary ion kinetic energy and incident angle on the depth resolution were investigated. While the information depth of the acquired SIMS spectra was found to be temperature independent, the depth resolution was found to be significantly improved at low temperature. Ion induced mixing is proposed to be largely responsible for the broadening, rather than topography, as determined by AFM, therefore depth resolution can be optimized using lower kinetic energy, glancing angle and liquid nitrogen temperature. PMID:21121691

  13. Electronic and optical properties of superhard nanocomposite films obtained from C60 ion beam

    NASA Astrophysics Data System (ADS)

    Pukha, V. E.; Karbovskii, V. L.; Rudchenko, S. O.; Drozdov, A. N.; Maleyev, M. V.; Starikov, V. V.; Pugachov, A. T.

    2014-09-01

    The study of electronic and transport properties of amorphous and nanocomposite superhard carbon films deposited from the mass-separated beam of accelerated C60 ions with an energy of 5 keV onto a substrate with temperatures (Ts) ranging from 373 K to 773 K is present. The films demonstrate a transition from the amorphous state with sp2 2D clusters to nanocomposite one with 3D graphite nanocrystals at Ts ˜ 573 K. That is accompanied by the registration of two phases with optical gaps of 3.6 eV and <1 eV. The narrow optical gap (<1 eV) is shown to attribute to the graphite nanocrystals, and a wide one (3.6 eV) to the amorphous diamond-like matrix. Measurement of the electrical conductivity of films at low temperatures showed a gradual transition at Ts increasing from hopping conductivity with variable length of jump in amorphous films to the tunnel one with power-law dependence from temperature for the nanocomposite and further to the percolation conductivity at direct contact of graphite nanocrystals. The role of intergranular insulator at tunneling conductivity of nanocomposite is played by amorphous carbon matrix which has an electronic structure close to amorphous diamond.

  14. Synthesis, Structure, and Properties of the Fullerene C60 Salt of Crystal Violet, (CV(+) )(C60 (.-) )⋅0.5 C6 H4 Cl2 , which Contained Closely Packed Zigzagged C60 (.-) Chains.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Ishikawa, Manabu; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2016-06-01

    The reduction of fullerene C60 by zinc dust in the presence of crystal violet cations (CV(+) ) yielded a deep-blue solution, from which crystals of (CV(+) )(C60 (.-) )⋅0.5 C6 H4 Cl2 (1) were obtained by slow mixing with n-hexane. The salt contained isolated, closely packed zigzagged chains that were composed of C60 (.-) radical anions with a uniform interfullerene center-to-center distance of 9.98 Å. In spite of the close proximity of the fullerenes, they did not dimerize, owing to spatial separation by the phenyl substituents of CV(+) . The room-temperature conductivity of compound 1 was 3×10(-2)  S cm(-1) along the fullerene chains. The salt exhibited semiconducting behavior, with an activation energy of Ea =167 meV. Spins localized on C60 (.-) were antiferromagnetically coupled within the fullerene chains, with a Weiss temperature of -19 K without long-range magnetic ordering down to 1.9 K. PMID:27062654

  15. Conducting films of C60 and C70 by alkali-metal doping

    NASA Astrophysics Data System (ADS)

    Haddon, R. C.; Hebard, A. F.; Rosseinsky, M. J.; Murphy, D. W.; Duclos, S. J.

    1991-03-01

    The preparation is reported of alkali-metal-doped films of C60 and C70 which have electrical conductivities at room temperature comparable to those attained by n-type doped polyacetylene. The highest conductivities observed in the doped films are: 4 S/cm (Cs/C60), 100 (Rb/C60), 500 (K/C60), 20 (Na/C60), 10 (Li/C60), 2 (K/C70). The doping process is reversed on exposure of the films to the atmosphere. At high doping level, the films become more resistive. The conductivity induced in these films is attributed to the formation of energy bands from the pi orbitals of C60 or C70, which become partially filled with carriers on doping. The smaller alkali metal ions should be able to fit into the interstices in the lattice without disrupting the network of contacts between the carbon spheroids. In the case of C60, this would allow the development of an isotropic band structure, and it is proposed that these materials may constitute the first three-dimensional 'organic' conductors.

  16. Electron elastic scattering off A @C60 : The role of atomic polarization under confinement

    NASA Astrophysics Data System (ADS)

    Dolmatov, V. K.; Amusia, M. Ya.; Chernysheva, L. V.

    2015-10-01

    The present paper explores possible features of electron elastic scattering off endohedral fullerenes A @C60 . It focuses on how dynamical polarization of the encapsulated atom A by an incident electron might alter scattering off A @C60 compared to the static-atom-A case, as well as how the C60 confinement modifies the impact of atomic polarization on electron scattering compared to the free-atom case. The aim is to provide researchers with a "relative frame of reference" for understanding which part of the scattering processes could be due to electron scattering off the encapsulated atom and which could be due to scattering off the C60 cage. To meet the goal, the C60 cage is modeled by an attractive spherical potential of a certain inner radius, thickness, and depth which is a model used frequently in a great variety of fullerene studies to date. Then, the Dyson equation for the self-energy part of the Green's function of an incident electron moving in the combined field of an encapsulated atom A and C60 is solved in order to account for the impact of dynamical polarization of the encaged atom upon e +A @C60 scattering. The Ba@C60 endohedral is chosen as the case study. The impact is found to be significant, and its utterly different role compared to that in e +Ba scattering is unraveled.

  17. 40 CFR 721.10267 - [5,6]Fullerene-C60-Ih.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fullerene-C60-Ih. 721.10267 Section 721.10267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10267 Fullerene-C60-Ih. (a)...

  18. Complex of C60 Fullerene with Doxorubicin as a Promising Agent in Antitumor Therapy

    NASA Astrophysics Data System (ADS)

    Prylutska, Svitlana V.; Skivka, Larysa M.; Didenko, Gennadiy V.; Prylutskyy, Yuriy I.; Evstigneev, Maxim P.; Potebnya, Grygoriy P.; Panchuk, Rostyslav R.; Stoika, Rostyslav S.; Ritter, Uwe; Scharff, Peter

    2015-12-01

    The main aim of this work was to evaluate the effect of doxorubicin in complex with C60 fullerene (C60 + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C60 + Dox complex action. We found that volume of tumor from mice treated with the C60 + Dox complex was 1.4 times less than that in control untreated animals. The number of metastatic foci in lungs of animals treated with C60 + Dox complex was two times less than that in control untreated animals. Western blot analysis of tumor lysates revealed a significant decrease in the level of heat-shock protein 70 in animals treated with C60 + Dox complex. Moreover, the treatment of tumor-bearing mice was accompanied by the increase of cytotoxic activity of immune cells. Thus, the potential mechanisms of antitumor effect of C60 + Dox complex include both its direct action on tumor cells by inducing cell death and increasing of stress sensitivity and an immunomodulating effect. The obtained results provide a scientific basis for further application of C60 + Dox nanocomplexes as treatment agents in cancer chemotherapy.

  19. Growth of large, defect-free pure C60 single crystals

    NASA Technical Reports Server (NTRS)

    Meng, R. L.; Ramirez, D.; Jiang, X.; Chow, P. C.; Diaz, C.; Matsuishi, K.; Moss, S. C.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Millimeter-sized single crystals of C60 were grown by sublimation of C60 powder in a vacuum for 6-24 h. The crystals had excellent facets, were free of C70 or solvent, and showed face-centered cubic symmetry with a very small mosaic spread down to 0.01 deg.

  20. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    EPA Science Inventory

    The fate and transport of colloidal fullerenes (n-C60) in the environment is likely to be guided by electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of n-C60 nanoparticles. Although the ef...

  1. Nucleation ahead of a C 60 crystal growing from the vapor

    NASA Astrophysics Data System (ADS)

    Schönherr, E.; Matsumoto, K.

    1997-07-01

    Single crystals of the fullerene C 60 are grown by the Pizzarello method in an argon atmosphere. A C 60 nucleus is formed ahead of the growing crystal when a drive rate greater than the limited mass-transfer rate is used. The analysis of the crystal growth rates and temperature distribution reveals a constitutional supersaturation which causes this particular type of nucleation.

  2. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-05-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (Δ Ψm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

  3. Complex of C60 Fullerene with Doxorubicin as a Promising Agent in Antitumor Therapy.

    PubMed

    Prylutska, Svitlana V; Skivka, Larysa M; Didenko, Gennadiy V; Prylutskyy, Yuriy I; Evstigneev, Maxim P; Potebnya, Grygoriy P; Panchuk, Rostyslav R; Stoika, Rostyslav S; Ritter, Uwe; Scharff, Peter

    2015-12-01

    The main aim of this work was to evaluate the effect of doxorubicin in complex with C60 fullerene (C60 + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C60 + Dox complex action. We found that volume of tumor from mice treated with the C60 + Dox complex was 1.4 times less than that in control untreated animals. The number of metastatic foci in lungs of animals treated with C60 + Dox complex was two times less than that in control untreated animals. Western blot analysis of tumor lysates revealed a significant decrease in the level of heat-shock protein 70 in animals treated with C60 + Dox complex. Moreover, the treatment of tumor-bearing mice was accompanied by the increase of cytotoxic activity of immune cells. Thus, the potential mechanisms of antitumor effect of C60 + Dox complex include both its direct action on tumor cells by inducing cell death and increasing of stress sensitivity and an immunomodulating effect. The obtained results provide a scientific basis for further application of C60 + Dox nanocomplexes as treatment agents in cancer chemotherapy. PMID:26714861

  4. Surface Energy of C60 and the Interfacial Interactions in Aqueous Systems

    EPA Science Inventory

    The surface free energy components of C60 powder in the form of compressed pellets were determined by sessile drop contact angle measurements. Based on van Oss-Chaudhury-Good model to Young-Dupre equation, the surface energy of C60 and the contributions of the apolar (Lifshitz-v...

  5. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles

    EPA Science Inventory

    Aggregation of fullerene nanoparticles (nC60) is a fundamental process influencing its environmental fate and transport, and toxicity. Using time-resolved dynamic light scattering we systematically investigated aggregation kinetics of nC60 generated from extended mixing in water ...

  6. Photochemistry of Aqueous C60 Clusters: Wavelength Dependency and Product Characterization

    EPA Science Inventory

    To construct accurate risk assessment models for engineered nanomaterials, there is urgent need for information on the reactivity (or conversely, persistence) and transformation pathways of these materials in the natural environment. As an important step toward addressing this is...

  7. Heterostructures based on graphene and MoS2 layers decorated by C60 fullerenes

    NASA Astrophysics Data System (ADS)

    Chernozatonskii, Leonid A.; Kvashnin, Alexander G.; Sorokin, Pavel B.

    2016-09-01

    Here we present a comprehensive investigation of various novel composite structures based on graphene (G) and molybdenum disulphide (MoS2) monolayers decorated by C60 fullerenes, which can be successfully applied in photovoltaics as a solar cell unit. Theoretical studies of the atomic structure, stability and electronic properties of the proposed G/C60, MoS2/C60 and G/MoS2/C60/G nanostructures were carried out. We show that making the G/MoS2/C60/G heterostructure from the 2D films considered here will lead to the appearance of particular properties suitable for application in photovoltaics due to the broad energetic region of high electronic density of states.

  8. Orientational and magnetic ordering of buckyballs in TDAE-C60

    SciTech Connect

    Mihailovic, D.; Arcon, D.; Venturini, P.; Blinc, R.; Omerzu, A.; Cevc, P.

    1995-04-01

    Spin ordering in the low-temperature magnetic phase is directly linked to the orientational ordering of C60 molecules in organically doped fullerene derivatives. Electron spin resonance and alternating current susceptometry measurements on tetrakis (dimethylamino) ethylene-C60 (TDAE-C60) (Curie temperature T(sub c) = 16 kelvin) show a direct coupling between spin and merohedral degrees of freedom. This coupling was experimentally demonstrated by showing that ordering the spins in the magnetic phase imprints a merohedral order on the solid or, conversely, that merohedrally ordering the C60 molecules influences the spin order at low temperature. The merohedral disorder gives rise to a distribution of pi-electron exchange interactions between spins on neighboring C60 molecules, suggesting a microscopic origin for the observed spin-glass behavior of the magnetic state. 18 refs.

  9. Heterostructures based on graphene and MoS2 layers decorated by C60 fullerenes.

    PubMed

    Chernozatonskii, Leonid A; Kvashnin, Alexander G; Sorokin, Pavel B

    2016-09-01

    Here we present a comprehensive investigation of various novel composite structures based on graphene (G) and molybdenum disulphide (MoS2) monolayers decorated by C60 fullerenes, which can be successfully applied in photovoltaics as a solar cell unit. Theoretical studies of the atomic structure, stability and electronic properties of the proposed G/C60, MoS2/C60 and G/MoS2/C60/G nanostructures were carried out. We show that making the G/MoS2/C60/G heterostructure from the 2D films considered here will lead to the appearance of particular properties suitable for application in photovoltaics due to the broad energetic region of high electronic density of states. PMID:27478999

  10. Energetics and Electronic Structures of C60 Included Within [n]Cyclacene Molecules

    NASA Astrophysics Data System (ADS)

    Kigure, Shota; Okada, Susumu

    2013-09-01

    We report the geometric and electronic structures of C60 included within cyclic hydrocarbon molecules, i.e., [n]cyclacene molecules. We found that the C60 included within the [n]cyclacene molecules ([n]cyclacene\\supsetC60) are energetically stable and that the inclusion reactions are exothermic for the [n]cyclacene molecules where n is larger than 16. Because of quantum confinement of the electronic states of the guest C60 molecule by the host [n]cyclacene, the electronic structure of [n]cyclacene\\supsetC60 is complex. The energy gap between the highest occupied states and the lowest unoccupied states is opened between the electronic states of the guest and host molecules.

  11. Raman study on a bulk-heterojunction film of pentacene and C60

    NASA Astrophysics Data System (ADS)

    Iwasawa, Yasuhiro; Furukawa, Yukio

    2015-09-01

    We measured the 785-nm excited Raman spectrum of a pentacene:C60 blend film. The 1462-, 492-, and 268-cm-1 bands of C60 showed broadening in bandwidth and downward shifts in peak wavenumbers, whereas such broadening and downward shifts were not observed for pentacene. These results indicate that there are pentacene crystallites among the amorphous C60. The intensity ratio of the 1598-cm-1 (B3g) and the 1534-cm-1 (Ag) bands indicates that pentacene molecules have standing orientations. The appearance of a 514-cm-1 band (F1u) and the splitting of the Hg bands of C60 indicate symmetry lowering induced by the interaction between pentacene and C60 molecules.

  12. From Planar to Cage in 15 Easy Steps: Resolving the C60H21F9(-) → C60(-) Transformation by Ion Mobility Mass Spectrometry.

    PubMed

    Greisch, Jean-François; Amsharov, Konstantin Yu; Weippert, Jürgen; Weis, Patrick; Böttcher, Artur; Kappes, Manfred M

    2016-09-01

    A combination of mass spectrometry, collision-induced dissociation, ion mobility mass spectrometry (IM-MS), and density functional theory (DFT) has been used to study the evolution of anionic species generated by laser-desorption of the near-planar, fluorinated polycyclic aromatic hydrocarbon (PAH), C60H21F9 (s). The dominant decay process for isolated, thermally activated C60H21F9(-) species comprises a sequence of multiple regioselective cyclodehydrofluorination and cyclodehydrogenation reactions (eliminating HF and H2, respectively, while forming additional pentagons and/or hexagons). The DFT calculations allow us to set narrow bounds on the structures of the resulting fragment ions by fitting structural models to experimentally determined collision cross sections. These show that the transformation of the precursor anion proceeds via a series of intermediate structures characterized by increasing curvature, ultimately leading to the closed-shell fullerene cage C60(-) as preprogrammed by the precursor structure. PMID:27501376

  13. The Curators of the University of Missouri Modeling the Infrared Emission of C_60 in Space

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    Fullerenes are cage-like molecules of pure carbon, such as C_60, C_70, C_76, and C_84. C_60, also known as buckminsterfullerene, is the most stable fullerene and has a soccer- ball like structure. The presence of fullerenes in space has been suggested and observationally explored since their first synthesis in the laboratory in 1985 by Harry Kroto and his colleagues which earned them the 1996 Nobel prize in chemistry. C_60 (as well as C_70) has recently been detected in reflection nebulae, post-AGB stars, protoplanetary nebulae, planetary nebulae, Herbig Ae/Be stars, and young stellar objects through their characteristic infrared emission bands. The formation of C_60 in interstellar and circumstellar environments is not firmly established. Experimental studies have shown that C_60 can be made by gas-phase condensation (e.g. through vaporization of graphite) in a hydrogen-poor environment. In view of the simultaneous detection of C_60 and PAHs in hydrogen-rich interstellar and circumstellar regions, it has also been suggested that C_60 could be generated by the decomposition of hydrogenated amorphous carbon, or the destruction of PAHs, both induced by shocks and/or UV photoprocessing. The phase (gas or solid) and excitation mechanism of C_60 in interstellar and circumstellar conditions are also hotly debated in the literature. One model suggests that C_60 is attached to dust and emits in solid-phase at the equilibrium temperature of the dust. Another model suggests that C_60 is stochastically excited by UV photons and emits in the gas-phase. We prefer the latter model as in interstellar and circumstellar conditions the energy content of a C_60 molecule is often smaller than the energy of a single starlight photon and C_60 is expected to undergo stochastical heating. We propose a two-year project to model the vibrational excitation of C_60 and calculate its infrared emission spectra in a wide variety of regions (e.g. reflection nebulae excited by stars of a range of

  14. Spectroscopical study on C 60 and C 70 fullerene solutions in superacids

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco

    1995-03-01

    The electronic spectra of solutions of C 60 fullerene in superacids of comparable strength have been studied. A similar study has been conducted over solutions of decacyclene, a polycyclic aromatic, used as model compound. In oleum, C 60 initially forms a charge transfer complex probably with free SO 3 present in the medium as indicated by a new band which arises at 827 nm. Then this band decreases and two new maxima at 930 and 1005 nm indicate the formation of C 60 radical cation as a result of oxidation of fullerene. In CF 3SO 3H, C 60 do not show any charge-transfer interaction with solvent and only when it is treated with an oxidizing agent like K 2S 2O 8, a new band develops at 965 nm with a shoulder at 1046 nm, indicating the formation of a cation radical. The spectra of C 60 radical cation are in agreement with previous observations in frozen matrix and with theoretical predictions; moreover these spectra are also similar to that of C 60 radical anion. The behavior in oleum of graphite and photochlorinated C 60 has also been studied. The spectrum of C 70 radical cation has been observed in oleum and is characterized by a new band in the 600-650 nm spectral region.

  15. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions.

    PubMed

    Dowgiallo, Anne-Marie; Mistry, Kevin S; Johnson, Justin C; Reid, Obadiah G; Blackburn, Jeffrey L

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT "reporter layer". In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm. PMID:27127916

  16. Polyamide 12/ fullerene C60 composites: Investigation on their mechanical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Zuev, Vjacheslav V.

    2014-05-01

    The effect of fullerene C60 on mechanical properties of polymer nanocomposites based on PA12 was investigated. The nanocomposites were prepared by in situ polymerization. The Young's modulus and tensile strength of the polymer nanocomposites are improved by about 20% with loading of 0.02-0.08 wt.% the fullerene C60. Dielectric spectroscopy was used to investigate the influence of nanoparticles on the relaxation processes in polymer matrix. The segmental relaxation processes become faster with the fullerene C60 addition, an effect associated with a decrease of the glass transition temperature. In contrast, the secondary or γ relaxation process of PA12/ fullerene C60 nanocomposites was observed to slow down with addition of fullerene C60. These observations indicate that fullerene C60 as filler has an effect opposite to antiplasticizing that slow down the secondary relaxation (stiffening the material) in the glass state, while at the same time reducing the alpha relaxation time associated with cooperative segmental motions. It behaviour can be connected with inclusion complex formation between PA12 and fullerene C60.

  17. Polymeric fullerene chains in RbC60 and KC60

    NASA Astrophysics Data System (ADS)

    Stephens, Peter W.; Bortel, G.; Faigel, G.; Tegze, M.; Jánossy, A.; Pekker, S.; Oszlanyi, G.; Forró, L.

    1994-08-01

    NEARLY all of the molecular crystals containing C60, formed at ambient pressure1,2 have inter-fullerene separations of the order of 10 Å - the expected distance based on the molecular van der Waals radii. The sole exceptions are the room-temperature phases of AC60 (where A denotes K, Rb or Cs), which are formed by reversible solid-state transformation from high-temperature (>150 °C) phases3. These phases have lattice parameters about 9% shorter in one direction, and in addition RbC60 has magnetic properties suggestive of a one-dimensional metal4. We suggested in ref. 4 that this short distance may be due to covalent bonding between neighbouring C60 molecules. Here we provide direct evidence for such bonding from powder X-ray diffraction studies of RbC60 and KC60 . The linkage is through a [2+2] cycloaddition, which has been hypothesized to take place during photopolymerization of solid C60 (ref. 5), and which has also been proposed6 for RbC60. Such inter-fullerene linkages are calculated7,8 to be the preferred mode of dimerization of C60. The AC60 phases thus provide an example of a thermal phase transition driven by the reversible formation and breaking of covalent bonds.

  18. STM study of C60F18 high dipole moment molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.

    2015-11-01

    Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.

  19. Theoretical study of the charge transport through C60-based single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Bilan, S.; Zotti, L. A.; Pauly, F.; Cuevas, J. C.

    2012-05-01

    We present a theoretical study of the conductance and thermopower of single-molecule junctions based on C60 and C60-terminated molecules. We first analyze the transport properties of gold-C60-gold junctions and show that these junctions can be highly conductive (with conductances above 0.1G0, where G0=2e2/h is the quantum of conductance). Moreover, we find that the thermopower in these junctions is negative due to the fact that the lowest unoccupied molecular orbital dominates the charge transport, and its magnitude can reach several tens of microvolts per kelvin, depending on the contact geometry. On the other hand, we study the suitability of C60 as an anchoring group in single-molecule junctions. For this purpose, we analyze the transport through several dumbbell derivatives using C60 as anchors, and we compare the results with those obtained with thiol and amine groups. Our results show that the conductance of C60-terminated molecules is rather sensitive to the binding geometry. Moreover, the conductance of the molecules is typically reduced by the presence of the C60 anchors, which in turn makes the junctions more sensitive to the functionalization of the molecular core with appropriate side groups.

  20. Effects of screening of the final-state A^+ ion static potential within the C60 on A@C60 photoionization.

    NASA Astrophysics Data System (ADS)

    Dolmatov, Valeriy; Guler, Emre; Manson, Steven

    2010-03-01

    We perform a novel, trial study of photoionization of an atom A in the A@C60 endohedral fullerene within the framework of the model [1] which regards C60 as a conducting sphere, approximated by an attractive square-well potential VC60(r) of a given inner radius, depth, and thickness. In the present study, we explore the possible shielding, both partial and complete, of the Coulomb potential of the final-state A^+ ion by the C60 in the region between the inner and outer radii of VC60(r). This effect has not been studied previously and its significance remained unknown. Using the example of Ne@C60, we find that, fortunately, the effect of the shielding on the photoionization of endohedral atoms is relatively small; no more than 20% near threshold for a complete screening, and much less at higher energies. Thus, the results and predictions of earlier studies are not significantly impacted by this shielding and future studies may ignore the shielding effect, to a good approximation. [4pt] [1] V. K. Dolmatov. In: Theory of Confined Quantum Systems: Part Two, edited by J. R. Sabin and E. Brändas, Advances in Quantum Chemistry (Academic Press, New York, 2009), Vol. 58, pp. 13-68.

  1. James C. McGroddy Prize Talk: What Was New About C60

    NASA Astrophysics Data System (ADS)

    Haddon, Robert

    2008-03-01

    C60 was named molecule of the year by Science in 1991, and in this talk I will discuss what I consider to be the most novel features of the molecule. In some ways C60 is truly unique and the discovery of the molecule in 1985 and its subsequent synthesis in 1990 blazed a trail of new chemical and physical properties that is unlikely to be surpassed by any other molecule. I will discuss the electronic structure of C60, its magnetism, and the conductivity and superconductivity shown by the alkali metal-doped phases.

  2. Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hyun; Jang, Jyongsik; Lee, Jun Yeob

    2006-12-01

    The effect of indium tin oxide (ITO) surface treatment on hole injection in organic light-emitting diode with C60 as a buffer layer on ITO was studied. Double surface dipole layer was induced on oxygen plasma treated ITO surface, while no dipole formation was observed on ITO without surface treatment. Interfacial energy barrier between ITO and hole transport layer was reduced by 0.4eV by C60 modification on oxygen plasma treated ITO surface, while there was no change of interfacial energy barrier by C60 on ITO without surface treatment.

  3. Orientation-Dependent C60 Electronic Structures Revealed byPhotoemission Spectroscopy

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Choi, H.J.; Louie, S.G.; Cohen, M.L.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z.X.

    2004-11-05

    We observe, with angle-resolved photoemission, a dramatic change in the electronic structure of two C60 monolayers, deposited,respectively, on Ag (111) and (100) substrates, and similarly doped with potassium to half filling of the C60 lowest unoccupied molecular orbital.The Fermi surface symmetry, the bandwidth, and the curvature of the dispersion at Gamma point are different. Orientations of the C60molecules on the two substrates are known to be the main structural difference between the two monolayers, and we present new band-structure calculations for some of these orientations. We conclude that orientations play a key role in the electronic structure of fullerides.

  4. Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60.

    PubMed

    Piotrovskiy, L B; Litasova, E V; Dumpis, M A; Nikolaev, D N; Yakovleva, E E; Dravolina, O A; Bespalov, A Yu

    2016-05-01

    The present report describes development of hexamethonium complexes based on fullerene C60. Hexamethonium has a limited penetration into CNS and therefore can antagonize central effects of nicotine only when given at high doses. In the present studies conducted in laboratory rodents, intraperitoneal administration of hexamethonium-fullerene complexes blocked effects of nicotine (convulsions and locomotor stimulation). When compared to equimolar doses of hexamethonium, complexes of hexamethonium with derivatives of fullerene C60 were 40 times more potent indicating an enhanced ability to interact with central nicotine receptors. Thus, fullerene C60 derivatives should be explored further as potential carrier systems for polar drug delivery into CNS. PMID:27417712

  5. Electronic pair binding and Hund's rule violations in doped C60

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Chen; Kivelson, Steven

    2016-04-01

    We calculate the electronic properties of the t -J model on a C60 molecule using the density-matrix renormalization group and show that Hund's first rule is violated and that for an average of three added electrons per molecule, an effective attraction (pair binding) arises for intermediate values of t /J . Specifically, it is energetically favorable to put four electrons on one C60 and two on a second rather than putting three on each. Our results show that a dominantly electronic mechanism of superconductivity is possible in doped C60.

  6. Preparation of C60 by Detonation a Mixture of Trinitrotoluene and Graphite

    NASA Astrophysics Data System (ADS)

    Wei, Xianfeng; Han, Yong; Liu, Liu; Long, Xinping

    2013-01-01

    To explore the practicability of C60 synthesis under extreme conditions (high pressure and high temperature), trinitrotoluene (TNT), trinitramine (RDX) and graphite mixtures of different proportions were detonated in a vacuum container, and the detonation products were collected for detecting. The results of mass spectroscopy, high performance liquid chromatography showed significant signals of C60, which proved that C60 could be synthesized by detonating the mixture of TNT and graphite (in 6:4 and 7:3 mass ratio, respectively), the detonation pressure and temperature were calculated around 13 GPa and 2000 K, respectively. Both experiment results and theoretical analysis showed the importance of detonation pressure and cooling temperature in detonation synthesis of C60.

  7. Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111).

    PubMed

    Geng, Feng; Zhang, Yang; Yu, Yunjie; Kuang, Yanmin; Liao, Yuan; Dong, Zhenchao; Hou, Jianguo

    2012-11-19

    We investigate the modulation of C60 monolayers on the nanocavity plasmonic (NCP) emission on Au(111) by tunneling electron excitation from a scanning tunneling microscope (STM) tip. STM induced luminescence spectra show not only suppressed emission, but also significant redshift of NCP emission bands on the C60 molecules relative to the bare metal surface. The redshift, together with the bias- and coverage-dependent emission feature, indicates that the C60 molecules act beyond a pure dielectric spacer, their electronic states are heavily involved in the inelastic tunneling process for plasmonic emission. A modified quantum cutoff relation is proposed to explain qualitatively the observed emission feature at both bias polarities. We also demonstrate molecularly resolved optical contrast on the C60 monolayer and discuss the contrast mechanism briefly. PMID:23187525

  8. Progress in the Development of a C60 Plasma Gun for Disruption Mitigation

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Case, A.; Messer, S. J.; Brockington, S.; Witherspoon, F. D.

    2010-11-01

    We present the status of a C60-fullerene plasma gun prototype proposed to be used for disruption mitigation with high-density, hyper-velocity plasma jets on ITER. The key element is the TiH2/C60 pulsed power, solid state cartridge source. We performed modeling and simulations of the processes critical to the cartridge design. Transient heating of TiH2 packed grains, explosive sublimation of C60 micron size powder, high pressure buildup, ejection of the molecular gas mixture through nozzles, adiabatic expansion of the plasma jet upon ejection from a plasma gun muzzle, and plasma jet penetration through transverse magnetic field were investigated. We show how we incorporated the results into the design of the TiH2/C60 cartridge source. Measurements characterizing the molecular gas jet produced by the cartridge source will be presented.

  9. Optimization of the Thermoelectric Figure of Merit in Crystalline C60 with Intercalation Chemistry.

    PubMed

    Kim, Jeong Yun; Grossman, Jeffrey C

    2016-07-13

    Crystalline C60 is an appealing candidate material for thermoelectric (TE) applications due to its extremely low thermal conductivity and potentially high electrical conductivity with metal atom intercalation. We investigate the TE properties of crystalline C60 intercalated with alkali and alkaline earth metals using both classical and quantum mechanical calculations. For the electronic structure, our results show that variation of intercalated metal atoms has a large impact on energy dispersions, which leads to broad tunability of the power factor. For the thermal transport, we show that dopants introduce strong phonon scattering into crystalline C60, leading to considerably lower thermal conductivity. Taking both into account, our calculations suggest that appropriate choice of metal atom intercalation in crystalline C60 could yield figures of merit near 1 at room temperature. PMID:27322341

  10. Electron propagator calculations on the ground and excited states of C60(-).

    PubMed

    Zakrzewski, V G; Dolgounitcheva, O; Ortiz, J V

    2014-09-01

    Electron propagator calculations in two approximations—the third-order algebraic, diagrammatic construction and the outer valence Green’s function (OVGF)—have been performed on the vertical electron affinities of C60 and the vertical electron detachment energies of several states of C60(–) with a variety of basis sets. These calculations predict bound (2)T1u and (2)T1g anions, but fail to produce (2)T2u or (2)Hg anionic states that are more stable than ground-state C60. The electron affinity for the (2)Ag state is close to zero, but no definitive result on its sign has been obtained. This state may be a resonance or marginally bound anion. The OVGF prediction for the vertical electron detachment energy of (2)T1u C60(–), 2.63 eV, is in excellent agreement with recent anion photoelectron spectra. PMID:24813804

  11. Preparation and surface enhanced Raman scattering behavior of Ag-coated C60 nanoclusters

    NASA Astrophysics Data System (ADS)

    Kang, Shi-Zhao; Yin, Die-er; Li, Xiangqing; Mu, Jin

    2013-12-01

    Ag-coated C60 nanoclusters were prepared and characterized with X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption isotherm measurement. The Ag-coated C60 nanoclusters were assembled on the glass substrate to form a thin film using the layer-by-layer technique. Meanwhile, the surface enhanced Raman scattering (SERS) of musk xylene adsorbed on the film of Ag-coated C60 nanoclusters was explored. The results indicated that the film of Ag-coated C60 nanoclusters was a unique SERS-active substrate with a detection limit of 10-9 mol L-1 for musk xylene. Furthermore, the surface enhanced mechanisms were discussed preliminarily.

  12. Energetics and Electronic Structure of Na-Doped Rhombohedral C60 Polymers

    NASA Astrophysics Data System (ADS)

    Tasuku Chiba,; Susumu Okada,

    2010-08-01

    Based on a first-principles total-energy calculation, we studied the energetics and electronic structure of a Na-doped rhombohedral C60 polymer. The intercalation of Na atoms into the interstitial sites of the C60 polymer studied here is an exothermic process with an energy gain of about 1 eV per Na atom. A detailed analysis of the polymer energetics revealed that the tetrahedral interstitial site is favorable as an intercalation site because of the strong Coulombic interaction between Na and C60. The electronic structure of the NaxC60 polymers are metallic in nature with a partially filled electronic energy band at the Fermi level.

  13. Structural transitions of SWNT filled with C60 under high pressure

    NASA Astrophysics Data System (ADS)

    Yong-gang, Zou; Li, Xu; Kun, Tian; He, Zhang; Xiao-hui, Ma; Ming-guang, Yao

    2016-05-01

    Raman spectra of C60 filled single-walled carbon nanotubes (C60@SWNTs) with diameters of 1.3–1.5 nm have been studied under high pressure. A plateau in the pressure dependence of the G-band frequency at around 10 GPa was observed in both experiments with 514 nm and 830 nm excitation lasers, which is similar to the high pressure behaviors of pristine SWNTs. This structural transition has been assigned to the transformation into a peanut-like structure of the nanotubes. At pressure below 2 GPa, no obvious Raman signature related to the structural transition of nanotubes was observed, unlike what has been reported for C70 filled nanotubes. We discussed this point in terms of the arrangement differences of C60 and C70 molecules inside the nanotubes. At higher pressure up to 15 GPa, a graphite-like pressure evolution was observed in our C60@SWNTs.

  14. Transport characteristics of a single C60-molecule junction revealed by multiple Andreev reflections

    NASA Astrophysics Data System (ADS)

    Hiraoka, Ryoichi; Arafune, Ryuichi; Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki

    2014-12-01

    We have determined the number of transport channels and the value of the transmission coefficients of a single molecular junction by measuring the multiple Andreev reflections (MARs) with a scanning tunneling microscope (STM). By precisely positioning a Nb STM tip to a single C60 molecule on Pb(111), a single molecular junction was fabricated in which the C60 molecule connects with the two superconducting electrodes. From the subharmonic gap structures arising from MARs in the current-voltage characteristics together with the tunneling spectrum of the C60 molecule, we found that unoccupied molecular orbitals of C60 extending to the Fermi level provide three electronic transport channels in the molecular junction. We also found that the transmission coefficients depend on the contact geometry of the molecule. These results demonstrate that the combination of the STM imaging with the MARs measurement provides an effective path for investigating the electronic transport properties through a single molecule sandwiched by two superconducting electrodes.

  15. A 2:1 receptor/C60 complex as a nanosized universal joint.

    PubMed

    Yanney, Michael; Fronczek, Frank R; Sygula, Andrzej

    2015-09-14

    Buckycatcher II, a C51 H24 hydrocarbon with two corannulene pincers on a dibenzonorbornadiene tether, exhibits an affinity toward C60 in organic solvents that is dramatically higher than the original buckycatcher C60 H28 and other corannulene-based molecular receptors for fullerenes. In addition to the formation of an usual 1:1 C60 @catcher inclusion complex, a trimeric C60 @(catcher)2 assembly is detected in solutions and in the solid state. X-ray structure determination reveals a remarkable "universal joint" solvent-free crystal arrangement of the trimer, with a single fullerene cage wrapped by four corannulene subunits of two cooperating catcher receptors. PMID:26352025

  16. Photoelectric properties of unsymmetrical metal-free phthalocyanine and C60 complex thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zhigang; Shen, Yue; Zhang, Jiancheng

    2004-12-01

    In this paper, novel one amino-group substituted unsymmetrical metal-free phthalocyanine (AUMPc) was synthesized, then the complex of AUMPc with C60 (The Complex) was obtained in the mixed solvents. Ultraviolet-visible (Uv-vis) spectrophotometer, fluorescence spectrophotometer and home-made photoconductivity meter were used to study the photoelectric properties of AUMPc and the complex. It was found that the absorbance of The Complex was larger than that of the total of AUMPc and C60 in the B belt (333nm), the absorbance of The Complex in the Q belt (693nm) where C60 had no absorbance was also increased. C60 took the role as annihilation in AUMPc, the photoconductivity of the Complex thin film was clearly increased when the film was exposed in the light.

  17. Development of a C 60+ ion gun for static SIMS and chemical imaging

    NASA Astrophysics Data System (ADS)

    Wong, S. C. C.; Hill, R.; Blenkinsopp, P.; Lockyer, N. P.; Weibel, D. E.; Vickerman, J. C.

    2003-01-01

    This paper reports initial data from the application of the first dedicated buckminsterfullerene ion beam system developed for routine use on existing ToF-SIMS instruments for static SIMS and chemical imaging. The ion gun provides a selectable beam of C 60+ and C 602+ primary ions, producing a nA beam of C 60+ focusable to 1 μm spot size. The results of comparative studies of bulk polymers and thin films using C 60+ and Ga + ions are presented. Compared to Ga +, C 60+ provides a very substantial increase in real ion yields, especially at high mass, with no concomitant increase in the relative yield of low mass fragments.

  18. Tuning the molecular order of C60 functionalized phosphonic acid monolayers.

    PubMed

    Rumpel, Armin; Novak, Michael; Walter, Johannes; Braunschweig, Björn; Halik, Marcus; Peukert, Wolfgang

    2011-12-20

    Mixed self-assembled monolayers (SAM) of alkyl phosphonic acids and C(60) functionalized octadecyl phosphonic acids (C(60)C(18)-PA) are deposited on alumina substrates from solution and are shown to form well-ordered structures with an insulating layer of alkyl chains and a semiconducting layer that comprises mainly C(60). Such an ordered structure is a necessity for the application of SAMs in organic transistors but is difficult to obtain since C(60)C(18)-PA without additional support do self-assemble in dense packaging but not in a well-ordered fashion. To avoid disordering of the SAM and to gain a better control of the interfacial properties we have investigated the stabilizing effects of fluorinated dodecyl phosphonic acids (FC(12)-PA) on the C(60)C(18)-PA monolayer. Vibrational sum-frequency (SFG) spectroscopy, ellipsometry, X-ray photoelectron spectroscopy, and electrical measurements were applied to study the mixed monolayers. Here, we make use of the differently labeled PA to determine surface coverages and molecular properties of the two species independently. Adsorption of FC(12)-PA gives rise to vibrational bands at 1344 cm(-1) and 1376 cm(-1) in SFG spectra, while a pronounced vibrational band centered at 1465 cm(-1) is attributable to C(60) vibrations. The coexistence of the bands is indicative for the presence of a mixed monolayer that is composed of both molecular species. Furthermore, a pronounced maximum in SFG intensity of the C(60) band is observed for SAMs, which are deposited from solutions with ~75% C(60)C(18)-PA and ~25% FC(12)-PA. The intensity maximum originates from successful stabilization of C(60) modified C(60)C(18)-PA by FC(12)-PA and a significantly improved molecular order. Conclusions from SFG spectra are corroborated by electric measurements that show best performance at these concentrations. Our results provide new information on the morphology and composition of C(60) modified SAMs and establish a route to fabricate well

  19. Experimental evidence of a dynamic Jahn-Teller effect in C-60(+)

    SciTech Connect

    Canton, S.E.; Yencha, A.J.; Kukk, E.; Bozek, J.D.; Lopes, M.C.A.; Snell, G.; Berrah, N.

    2002-05-20

    Detailed analysis of the HOMO bandshape in the photoelectron spectrum of gaseous C60 reveals a dynamic Jahn-Teller effect in the ground state of C60+. The direct observation of three tunneling states asserts a D3d geometry for the isolated cation, originating from a strong vibronic coupling. These results show that the ionic motion of the ions plays an important role in the electron-phonon interaction.

  20. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    NASA Astrophysics Data System (ADS)

    Mukherjee, B.; Weaver, J. W.

    2009-12-01

    The fate and transport of colloidal fullerenes (n-C60) in the environment are likely to be guided by their electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of dispersed n-C60. Although the effects of cations on the behavior of n-C60 have been studied extensively; studies on the effect of anions are relatively few and thus were the focus of our investigation. The effects of anions (e.g., Cl- , SO42-) on average aggregate size (DH) and zeta potential (ZP) of n-C60 were found to be absent in presence of monovalent cations (e.g., Na+) over the tested range of pH (3-to-12) and ionic strength (0-to-20 mM). Similar observations were noted in the presence of multivalent cations (e.g., Mg2+) near acidic and neutral pH conditions. However, under alkaline conditions (pH~10) a strong anion-dependent reversal of surface charge was noted. The ZP of n-C60 changed from -65 mV, when dispersed in DI water, to +4 mV and +40 mV in the presence of SO42- and Cl-, respectively in a 10mM salt concentration (i.e., MgCl2 and MgSO4). The corresponding DH of the dispersed n-C60 changed simultaneously from 115 nm, in DI water, to 1450 nm and 225 nm for the MgSO4 and MgCl2 electrolytes. These findings provide a better understanding of interfacial interaction characteristics of n-C60 NPs, and may lead to remediation strategies for n-C60 NPs in the environment.

  1. Enhanced association for C70 over C60 with a metal complex with corannulene derivate ligands.

    PubMed

    Álvarez, Celedonio M; García-Escudero, Luis A; García-Rodríguez, Raúl; Martín-Álvarez, Jose M; Miguel, Daniel; Rayón, Víctor M

    2014-11-14

    The geometry imposed by the coordination sphere around the metal, together with the choice of the "arms" can be advantageously used to build corannulene-based molecular tweezers, which show great affinities for C60 and C70, as revealed by NMR titration experiments, mass spectroscopy, DFT calculations and the single crystal X-ray structural analysis of the compound C60 ⊂1. PMID:25181755

  2. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research

    PubMed Central

    Liu, Qihai; Cui, Quanjun; Li, Xudong Joshua; Jin, Li

    2014-01-01

    Buckminsterfullerene C60 and derivatives have been extensively explored in biomedical research due to their unique structure and unparalleled physicochemical properties. C60 is characterized as a “free radical sponge” with an anti-oxidant efficacy several hundred-fold higher than conventional anti-oxidants. Also, the C60 core has a strong electron-attracting ability and numerous functional compounds with widely different properties can be added to this fullerene cage. This review focused on the applications of C60 and derivatives in orthopaedic research, such as the treatment of cartilage degeneration, bone destruction, intervertebral disc degeneration (IVDD), vertebral bone marrow disorder, radiculopathy, etc., as well as their toxicity in vitro and in vivo. We suggest that C60 and derivatives, especially the C60 cores coupled with functional groups presenting new biological and pharmacological activities, are advantageous in orthopaedic research and will be promising in clinical performance for musculoskeletal disorders treatment; however, the pharmacokinetics and toxicology of these agents as local/systemic administration need to be carefully determined. PMID:24409811

  3. Non-detection of C60 fullerene at two mass extinction horizons

    NASA Astrophysics Data System (ADS)

    Carrasquillo, Anthony J.; Cao, Changqun; Erwin, Douglas H.; Summons, Roger E.

    2016-03-01

    Fullerene (C60) have been reported in a number of geologic samples and, in some cases, attributed to carbonaceous materials delivered during bolide impact events. The extraction and detection of C60 poses significant analytical challenges, and some studies have been called into question due to the possibility of C60 forming in situ. Here, we extracted samples taken from the Permian-Triassic boundary section in Meishan, South China and the Cretaceous-Paleogene boundary exposed at Stevns Klint, Denmark, and analyzed the residues using a fast and reliable method for quantifying C60. Extraction of both whole rock and completely demineralized samples were completed under conditions that previously yielded C60 as well as using an optimized approach based on recent literature reports. These extracts were analyzed using mass spectrometry with the soft-ionization techniques, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), which have not been shown to form fullerenes in-situ. In no case were we able to detect C60, nor could we corroborate previous reports of its occurrence in these sediments, thereby challenging the utility of fullerene as a proxy for bolide impacts or mass extinction events.

  4. Exploration and characterization of new synthesis methods for C60 colloidal suspensions in water

    NASA Astrophysics Data System (ADS)

    Hilburn, Martha E.

    Buckminsterfullerene, C60, has been used in the production of several commercial products from badminton racquets and lubricants for their mechanical properties to cosmetics and even dietary supplements for their "antioxidant" properties. Multi-ton production of C60 began in 2003 encouraging serious consideration of its fate in the environment in the case of an accidental release or improper disposal. Although C60 is practically insoluble in water, it readily forms stable aqueous colloidal suspensions (termed nC60) through solvent exchange methods or long-term vigorous stirring in water. Two new solvent exchange methods for synthesizing nC60 are presented. These methods combine key advantages of multiple existing synthesis methods including high yield, narrow particle size distribution, short synthesis time, and an absence of solvents such as tetrahydrofuran that have historically caused problems in laboratory synthesized aggregates. The resulting samples are attractive candidates for use in controlled environmental impact, biological, and toxicity studies. An improved method for quantifying residual solvents in nC60 samples utilizing solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) is also discussed.

  5. Confinement and correlation effects in the Xe@C60 generalized oscillator strengths

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.; Dolmatov, V. K.

    2011-12-01

    The impact of both confinement and electron correlation on generalized oscillator strengths (GOS's) of endohedral atoms, A@C60, is theoretically studied choosing the Xe@C60 4d, 5s, and 5p fast electron impact ionization as the case study. Calculations are performed in the transferred to the atom energy region beyond the 4d threshold, ω=75-175 eV. The calculation methodology combines the plane-wave Born approximation, Hartree-Fock approximation, and random-phase approximation with exchange in the presence of the C60 confinement. The confinement is modeled by a spherical δ-function-like potential as well as by a square well potential to evaluate the effect of the finite thickness of the C60 cage on the Xe@C60 GOS's. Dramatic distortion of the 4d, 5p, and 5s GOS's by the confinement is demonstrated, compared to the free atom. Considerable contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are revealed, in some instances. The vitality of accounting for electron correlation in calculation of the Xe@C60 5s and 5p GOS's is shown.

  6. Film growth and surface reactions of C60 on Si(100)H(2×1)

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Hunt, M. R. C.; Miao, P.; Palmer, R. E.

    1997-10-01

    High-resolution electron-energy-loss spectroscopy (HREELS) has been used to characterize C60 films up to 4 monolayers thick grown at room temperature on hydrogen-terminated Si(100). Our results show that compared with C60 films on clean Si(100) surfaces a considerably higher degree of order in the as-deposited films is achieved. At low coverages the observed C60 vibrational modes and the Si-H vibrations of the substrate are essentially unshifted, indicating a van der Waals-type interaction between C60 and Si(100)H(2×1). After annealing at 450 K the film order is substantially increased. Annealing at 600 K results in desorption of the C60 multilayers and a hydrogen-transfer reaction from the surface to the adsorbed monolayer molecules. When annealing the sample at 800 K, the remaining surface terminating hydrogen desorbs and evidence for a change in the C60 bonding configuration is found. Finally, flashing the sample at 1300 K leads to the formation of silicon carbide.

  7. Transmission properties of C60 ions through micro- and nano-capillaries

    NASA Astrophysics Data System (ADS)

    Tsuchida, Hidetsugu; Majima, Takuya; Tomita, Shigeo; Sasa, Kimikazu; Narumi, Kazumasa; Saitoh, Yuichi; Chiba, Atsuya; Yamada, Keisuke; Hirata, Koichi; Shibata, Hiromi; Itoh, Akio

    2013-11-01

    We apply the capillary beam-focusing method for the C60 fullerene projectiles in the velocity range between 0.14 and 0.2 a.u. We study the C60 transmission properties through two different types of capillaries: (1) borosilicate glass microcapillary with an outlet diameter of 5.5 μm, and (2) Al2O3 multi-capillary foil with a pore size of about 70 nm and a high aspect ratio of about 750. We measured the transmitted particle composition by using the electrostatic deflection method combined with the microchannel plate imaging technique. For the experiments with the single microcapillary, the main transmission component is found to be primary C60 beams that are focused in the area equal to the capillary outlet diameter. Minor components are charge-exchanged C60 ions and charged or neutral fragments (fullerene-like C60-2m and small Cn particles), and their fractions decrease with decreasing the projectile velocity. It is concluded that the C60 transmission fraction is considerably high for both types of the capillaries in the present velocity range.

  8. Electrical Transport Properties of C60 Single Crystals Doped with Alkali Metals

    NASA Astrophysics Data System (ADS)

    Ogata, Hironori; Maruyama, Yusei; Inabe, Tamotsu; Achiba, Yohji; Suzuki, Sinzo; Kikuchi, Koichi; Ikemoto, Isao

    Electronic structures of various kinds of alkali metal (Na, K, Rb or Cs)-doped C60 solids are studied by electrical resistivity and thermoelectric power measurements by using C60 single crystals prepared from a CS2 solution as a starting material. For K-or Rb-doped C60, metallic conducting behaviors in the normal conducting state and relatively sharp superconducting transitions are observed by the electrical resistivity measurements. Nearly linear-temperature dependences with the negative sign are observed in the thermoelectric power measurements at the normal conducting states for K-or Rb-doped C60. From electron diffusion term of the thermoelectric power, the values of Fermi energy and the density of states at the Fermi energy are estimated by assuming the three-dimensional free electron model, which are in substantial agreement with the results of other experiments and calculations. "Metal-semiconductor transition" is observed in both the electrical resistivity and the thermoelectric power measurements for Na-doped C60. Existence of metallic phase is confirmed by the thermoelectric power measurement in Cs-doped C60.

  9. Preparation of C60 Nanowhiskers-SnO2 Nanocomposites and Photocatalytic Degradation of Organic Dyes.

    PubMed

    Park, Hae Soo; Ko, Weon Bae

    2015-10-01

    C60 nanowhiskers were prepared using a liquid-liquid interfacial precipitation (LLIP) method. Tin oxide (SnO2) nanoparticles were synthesized by a reaction of tin (IV) chloride pentahydrate with ammonium nitrate in an electric furnace. The C60 nanowhiskers-SnO2 nanocomposites were calcined in an electric furnace at 700 °C under an inert argon gas atmosphere for 2 h. The crystallinity, morphology and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and UV-vis spectrophotometry. The photocatalytic activity of the C60 nanowhiskers-SnO2 nanocomposites in the degradation of the organic dyes, such as methylene blue, methyl orange, rhodamine B, and brilliant green, under ultraviolet light at 254 nm by UV-vis spectrophotometry was evaluated and compared with that of C60 nanowhiskers and SnO2 nanoparticles. The experimental results showed that C60 nanowhiskers-SnO2 nanocomposites exhibited remarkably higher photocatalytic degradation of organic dyes compared to C60 nanowhiskers and SnO2 nanoparticles. PMID:26726474

  10. Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C60 projectiles

    PubMed Central

    Paruch, R.; Rzeznik, L.; Czerwinski, B.; Garrison, B. J.; Winograd, N.; Postawa, Z.

    2009-01-01

    Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C60 projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs. a more isotropic solid are discussed. The results indicate that the trajectories of projectile fragments and, consequently, the primary energy can be channeled by the geometrical structure of the overlayer. Although, a similar process is known from sputtering of single crystals by atomic projectiles, it has not been anticipated to occur during C60 bombardment due to the large size of the projectile. An open and ordered molecular structure of LB films is responsible for such behavior. Both the extent of damage and the efficiency of sputtering depend on the kinetic energy, the impact angle, and the layer thickness. The results indicate that the best depth profiling conditions can be achieved with low-energy cluster projectiles irradiating the organic overlayer at large off-normal angles. PMID:20174461

  11. A striking mobility improvement of C60 OFET by inserting diindenoperylene layer between C60 and SiO2 gate insulator

    NASA Astrophysics Data System (ADS)

    Yang, Jin-peng; Yonezawa, Keiichiro; Hinderhofer, Alexander; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2014-09-01

    Gap states in organic semiconductors play a crucial role in determining Energy-Level Alignment and in many cases they act as charge trapping centers to result in serious lowering of charge mobility. Thus origin of gap states has gained increasing attention in order to realize higher mobility organic devises [1-4]. Bussolotti et al. have demonstrated recently that gap states in a pentacene thin film increase even by exposing the film to inert gas and confirmed that the gas exposure mediates structural defects in the film thus gap states [4]. The results have also indicated that preparation of highly-ordered organic thin film is necessary to improve the device performance, namely to decrease trapping states. To improve the ordering of molecule in the film, deposition of a template molecular underlayer is one of the simplest methods to increase the domain size of overlayer film and its crystallinity, and thus we expect improvement of the charge mobility [5]. Hinderhofer et al. reported recently that diindenoperylene (DIP; Figure 1a) could be used as a template layer to grow highly ordered and oriented C60 film with its (111) plane parallel to the SiO2 substrate [6]. Considering the hole mobility of DIP single crystal, which is quite low (~0.005 cm2 V-1S-1 at room temperature [7]), it is expected for the DIP template C60 thin film system that lower drain current would be achieved to improve the on/off ratios based on n type C60 transistor and its electron mobility (especially on the negative Vgs region, compared to PEN modified C60 transistors [8]).

  12. Role of electron energy loss in modification of C60 thin films by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Bajwa, Navdeep; Ingale, Alka; Avasthi, D. K.; Kumar, Ravi; Tripathi, A.; Dharamvir, Keya; Jindal, V. K.

    2008-09-01

    This paper presents a comparative study of the effects of irradiation by swift heavy ions (SHIs) with Se values ranging from 80 to 1270 eV/Å and fluence ranges varying between 1010 and 1014 ions/cm2 incident on thin films of C60. The control over Se is exercised through the choice of ion species for irradiation (O, Ni, and Au). Structural changes in C60 were investigated quantitatively using Raman spectroscopy. The results indicate that at low fluences polymer formation takes place whereas at high fluences there is complete fragmentation of C60, resulting in amorphous carbon formation. Measured values of band gap and in situ resistivity decrease with fluence. This result is consistent with the structural modifications observed by Raman spectroscopy. The composition of the polymer fraction formed (e.g., the content of two dimensional polymerized network of C60 molecules) as well as that of a-C (e.g., the content of nanographite) also vary with Se of the ion used. A phenomenological model, taking into account the ion track, enables us to explain the trend of polymer formation as well as fragmentation of C60, with increasing fluence of SHI. The cross section for damage (fragmentation of C60 molecules) has two values—one effective at low fluences and the other at high fluences. By arriving at a quantitative formula giving the fraction of polymer/damaged C60 molecules at any given fluence, we are able to predict the fluence and ion species required for a given amount of polymerization/damage or vice versa. Effort has been made to correlate Se and Sn values to the damage cross sections using data from this work along with those from other experiments using keV and MeV ions.

  13. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    SciTech Connect

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  14. Metal-oxide-semiconductor diodes containing C60 fullerenes for non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Beckmeier, Daniel; Baumgärtner, Hermann

    2013-01-01

    For non-volatile memories, silicon-oxide-nitride-oxide-silicon or floating gate structures are used to store information by charging and discharging electronic states reversibly. In this article, we propose to replace the floating gate by C60 molecules. This would allow more defined programming voltages because of the discrete molecular energy levels and a higher resistance to tunneling oxide defects because of the weak electrical connection between the single molecules. Such C60 MOS diode structures are produced and their electrical properties are analyzed regarding current transport and charging mechanism of the molecules. To create the MOS structures, C60 molecules (5% of a monolayer) are evaporated onto a part of a clean silicon wafer and covered by amorphous silicon in situ in an ultra high vacuum system. Then the wafer is oxidized in wet atmosphere at just 710 °C through the C60 layer. The goal is to produce a clean oxide above and under the molecules without destroying them. Aluminum gate contacts are defined on top of these layers to perform complementary capacitance voltage (CV) and current voltage (IV) measurements. First, the gate voltage is swept to analyze the injection current, then CV measurements are performed after each sweep to analyze the charge state of the C60 layer and the oxide quality. Reference diodes without C60 on the same wafer show an identical Fowler-Nordheim (FN) tunneling behavior for currents injected from silicon or from aluminum, respectively. In the CV curves, no pronounced flatband voltage shift is observable. In diodes with C60, for negative gate voltages, a classical FN tunneling is observed and compared to theory. The electron injection from silicon shows a different tunneling current behavior. It starts at a lower electric field and has a smaller slope then a FN current would have. It is identified as a trap-assisted tunneling (TAT) current caused by oxidation-induced traps under the C60 layer. It is modeled by an

  15. Addition reaction of alkyl radical to C60 fullerene: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-02-01

    Functionalized fullerenes are known as a high-performance molecules. In this study, the alkyl-functionalized fullerenes (denoted by R-C60) have been investigated by means of the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of fullerene. Also, the reaction mechanism of alkyl radicals with C60 was investigated. The methyl, ethyl, propyl, and butyl radicals (denoted by n = 1-4, where n means the number of carbon atoms in the alkyl radical) were examined as alkyl radicals. The DFT calculation showed that the alkyl radical binds to the carbon atom of C60 at the on-top site, and a strong C-C single bond is formed. The binding energies of alkyl radicals to C60 were distributed in the range of 31.8-35.1 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists before alkyl addition, the barrier heights were calculated to be 2.1-2.8 kcal mol-1. The electronic states of R-C60 complexes were discussed on the basis of the theoretical results.

  16. Laboratory confirmation of C60(+) as the carrier of two diffuse interstellar bands.

    PubMed

    Campbell, E K; Holz, M; Gerlich, D; Maier, J P

    2015-07-16

    The diffuse interstellar bands are absorption lines seen towards reddened stars. None of the molecules responsible for these bands have been conclusively identified. Two bands at 9,632 ångströms and 9,577 ångströms were reported in 1994, and were suggested to arise from C60(+) molecules (ref. 3), on the basis of the proximity of these wavelengths to the absorption bands of C60(+) measured in a neon matrix. Confirmation of this assignment requires the gas-phase spectrum of C60(+). Here we report laboratory spectroscopy of C60(+) in the gas phase, cooled to 5.8 kelvin. The absorption spectrum has maxima at 9,632.7 ± 0.1 ångströms and 9,577.5 ± 0.1 ångströms, and the full widths at half-maximum of these bands are 2.2 ± 0.2 ångströms and 2.5 ± 0.2 ångströms, respectively. We conclude that we have positively identified the diffuse interstellar bands at 9,632 ångströms and 9,577 ångströms as arising from C60(+) in the interstellar medium. PMID:26178962

  17. Characterization of the intercalate C60(CO2)x by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    James, M.; Kennedy, S. J.; Elcombe, M. M.; Gadd, G. E.

    1998-12-01

    The intercalate compound C60(CO2)x has been synthesized by hot isostatically pressing C60 under 170 MPa of CO2 and 350 °C. Neutron powder diffraction studies conducted on C60(CO2)x between room temperature and 5 K have been analyzed using Rietveld techniques and reveal a structural transition between a high-temperature (>~250 K) face-centered cubic phase [Fm3¯m, a=14.224(2) Å (293 K)] and a low-temperature (<~150 K) monoclinic phase [P21/n, a=9.7438(9) Å, b=9.7473(9) Å, c=14.6121(11) Å, β=90.390(6)° (5 K)]. The CO2 molecules occupy the octahedral interstices between the C60 molecules and are oriented along the body diagonal of the high-temperature phase. In the low-temperature phase they are tilted slightly away from the c axis so as to place the oxygen atoms adjacent to the center of a pentagonal face on the C60 molecules.

  18. The Adsorption of C60 fullerene molecules on Nanostructured Au (111)

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Guo, Quanmin; Palmer, Richard

    2009-03-01

    The sub-monolayer growth of C60 molecules on the Au (111) surface has been studied using STM in ultra high vacuum. The C60 molecules tend to form close-packed layers due to a strong inter-molecular interaction. However, within the close-packed layer, there are finer, secondary structures that are specific to each of all the three C60/Au interfacial structures ((23x23)R30 , in-phase (R0 ) and R14 ) observed [1]. This is a consequence of the molecule-substrate interaction and our findings demonstrate a much more complex structural variation at the molecule-substrate interface than previously assumed. Furthermore, within the R14 C60 layer, slightly darker molecules (30 pm lower) aligned along the ã11-2õdirection with a ˜6 nm spacing are observed and these molecules are arranged in a reasonably well-ordered two-dimensional lattice. C60 molecules are also found to decorate the elbow sites of the herringbone reconstructed Au(111) even at room, and when fullerenes are deposited to arrays of fabricated monolayer gold stripes (gold-fingers) [2], the molecules show step-specific attachment where the step edges with the (111) micro-facet are preferentially populated.[0pt] [1] X. Zhang, F. Yin, R. E. Palmer and Q. Guo, Surf. Sci. 602 (2008) 885-892.[0pt] [2] Q. Guo, F. Yin and R. E. Palmer, Small 1 (2005) 76-79.

  19. Charge Transfer and Surface Scattering at Cu/C_60 Planar Interfaces

    NASA Astrophysics Data System (ADS)

    Hebard, A. F.; Ruel, R. R.; Eom, C. B.

    1996-03-01

    Thin films of Cu and C_60 have been sequentially deposited onto insulating substrates in high vacuum and studied using in situ resistivity measurements during deposition. Different regimes of behavior, which manifest the transfer of electrons from the Cu metal across the planar interface to the C_60, are identified. For example, in the continuous film limit, in which the Cu is thick enough to have a size-effect resistivity proportional to the reciprocal of the film thickness, the presence of an adjacent C_60 monolayer gives rise to an increase in resistance. This resistance increase is quantitatively described by a scattering model in which the interfacial diffuse scattering cross section is found to be 5Åthe approximate area of a face of the molecular cage. In a second regime of behavior, in which the ultra-thin Cu films have a morphology of coalescing islands, the presence of an adjacent C_60 monolayer, doped by charge transfer from the metal, creates a shunting path with sheet resistance ~8000Ω/Box accompanied by a pronounced decrease in resistance. The inferred room-temperature resistivity is more than a factor of two less than that of the 3-dimensional alkali-metal-doped compounds, A_3C_60 (A=K,Rb).

  20. When a nanoparticle meets a superhalogen: a case study with C60 fullerene.

    PubMed

    Sikorska, Celina

    2016-07-28

    The ability of a selected nanoparticle to form stable systems with superhalogens (i.e. AlF4, AlCl4, MgF3, MgCl3, LiF2, LiCl2, and LiI2) is examined on the basis of theoretical considerations supported by ab initio calculations. It is demonstrated that the C60 fullerene molecule should form stable and strongly bound (C60)˙(+)(superhalogen)(-) radical cation salts when combined with an appropriately chosen superhalogen radical (acting as an oxidizing agent). The conclusion is supported by providing: (i) the structural deformation of superhalogens and C60 nanoparticles upon ionization, (ii) predicted charge flow between the fullerene and each superhalogen (which allows estimating the amount of electron density withdrawn from the C60 molecule during the ionization process), (iii) the localization of the spin density distribution, and (iv) the interaction energies for the compounds obtained both at the B3LYP/6-31+G(d) level and at the B3LYP-D3/6-31+G(d) level. Solvent effects have been considered in the present study by means of the polarizable continuum model. It is found that the stability of C60/superhalogen species can be improved in solvents. We believe that the results provided in this contribution may likely be of prospective relevance in the future studies on the issue of binding and removal of this potentially risky nanoparticle. PMID:27346461

  1. C60-Fullerene Hyper-Velocity High-Density Plasma Jets for MIF and Disruption Mitigation

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2009-06-01

    We present an innovative idea to use hyper-velocity (>30 km/s) high-density (>1017 cm-3) plasma jets of D-T/H and C60-fullerene for magneto-inertial fusion (MIF), high energy density laboratory plasma (HEDLP), and disruption mitigation in magnetic fusion plasma devices. The mass (~1-2 g) of sublimated C60 and hydrogen (or D-T fuel) produced in a pulsed power source is ionized and accelerated as a plasma slug in a coaxial plasma accelerator. For MIF/HEDLP we propose to create a magnetized plasma target by injecting two high-Mach number high-density jets with fuel (D-T) and liner (C60/C) structure along the axis of a pulsed magnetic mirror. The magnetized target fusion (MTF) plasma created by head-on collision and stagnation of jets is compressed radially by a metallic liner (Z-pinch) and axially by the C60/C liner. For disruption mitigation, the C60 plasma jets were shown to be able to provide the required impurity mass (J Fusion Energy 27:6, 2008).

  2. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer. PMID:27061365

  3. First Production of C60 Nanoparticle Plasma Jet for Study of Disruption Mitigation for ITER

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Brockington, S.; Case, A.; Messer, S. J.; Witherspoon, F. D.

    2012-10-01

    Unique fast response and large mass-velocity delivery of nanoparticle plasma jets (NPPJs) provide a novel application for ITER disruption mitigation, runaway electrons diagnostics and deep fueling. NPPJs carry a much larger mass than usual gases. An electromagnetic plasma gun provides a very high injection velocity (many km/s). NPPJ has much higher ram pressure than any standard gas injection method and penetrates the tokamak confining magnetic field. Assimilation is enhanced due to the NP large surface-to-volume ratio. Radially expanding NPPJs help achieving toroidal uniformity of radiation power. FAR-TECH's NPPJ system was successfully tested: a coaxial plasma gun prototype (˜35 cm length, 96 kJ energy) using a solid state TiH2/C60 pulsed power cartridge injector produced a hyper-velocity (>4 km/s), high-density (>10^23 m-3), C60 plasma jet in ˜0.5 ms, with ˜1-2 ms overall response-delivery time. We present the TiH2/C60 cartridge injector output characterization (˜180 mg of sublimated C60 gas) and first production results of a high momentum C60 plasma jet (˜0.6 g.km/s).

  4. Predicting efficient C(60) epoxidation and viable multiple oxide formation by theoretical study

    PubMed

    Manoharan

    2000-02-25

    The epoxidation of C(60) by various oxidizing agents such as dimethyldioxirane (DMD), methyl(trifluoromethyl)dioxirane (MTMD), and bis(trifluoromethyl)dioxirane (BTMD) has been probed computationally by the AM1 method. The computations have revealed that for the reaction forming C(60)O through a concerted "spiro" transition state, the currently used DMD involves its HOMO lone-pair and the LUMO (pi) of fullerene in an inverse electron demand fashion. This is distinct from the DMD reaction with ethylene. On the other hand, the addition of CF(3) groups lowers the LUMO (peroxide sigma) of MTMD and BTMD by virtue of negative hyperconjugation; the oxidants can then attack the fullerene nucleophilically at an increased rate to the maximum extent. These estimations have thus established that the strong electrophilic oxidizing agents remarkably enhance the fullerene epoxidation. DMD further produces C(60)O(2) and C(60)O(3) via multiple epoxidations, as C(60)O might best be produced quantitatively by MTMD and BTMD. The regiochemistry of the multiple oxidation products in which the subsequent oxidations take place at the adjacent sites is consistent with the increased nucleophilicity of the nearest double bonds attached to the prevailing epoxide function. PMID:10814058

  5. Temporal Changes in Aqu/C60 Physical-Chemical, Deposition, and Transport Characteristics in Aqueous Systems

    EPA Science Inventory

    Little is known about how temporal changes in the physical–chemical properties of C60 aggregates formed in aqueous systems (termed aqu/C60) can impact transport pathways contributing to ecological exposures. In this study three aqu/C60 suspensions of short-term (100 days), interm...

  6. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  7. Carbon Nanotubes Investigated by N@C60 and N@C70 Spin Probes

    NASA Astrophysics Data System (ADS)

    Corzilius, B.; Gembus, A.; Dinse, K.-P.; Simon, F.; Kuzmany, H.

    2005-09-01

    Nitrogen atoms encapsulated in C60 can be used to detect small deviations from spherical symmetry via deformation-induced non-vanishing Zero-Field-Splitting (ZFS). In this context, experiments were performed by using these electronic quartet spin probes to investigate single wall carbon nanotubes. Time-fluctuating ZFS interaction would be indicative for rotational and/or translational degrees of freedom. Using pulsed EPR techniques, spin relaxation rates of N@C60 and also of N@C70 molecules with inherent static ZFS were measured. The analysis of their temperature dependence gave information about the dynamics of N@C60 and N@C70 molecules confined to the inside of the tubes.

  8. Fullerene C60 as a multifunctional system for drug and gene delivery

    NASA Astrophysics Data System (ADS)

    Montellano, Alejandro; da Ros, Tatiana; Bianco, Alberto; Prato, Maurizio

    2011-10-01

    The fullerene family, and especially C60, has delighted the scientific community during the last 25 years with perspective applications in a wide variety of fields, including the biological and the biomedical domains. Several biomedical uses have been explored using water-soluble C60-derivatives. However, the employment of fullerenes for drug delivery is still at an early stage of development. The design and synthesis of multifunctionalized and multimodal C60 systems able to cross the cell membranes and efficiently deliver active molecules is an attracting challenge that involves multidisciplinary strategies. Promising results have emerged in the last years, bringing fullerenes again to the front of interest. Herein, the state of the art of this emerging field is presented and illustrated with some of the most representative examples.

  9. Disclinations in C60 molecular layers on WO2/W (110 ) surfaces

    NASA Astrophysics Data System (ADS)

    Bozhko, S. I.; Taupin, V.; Lebyodkin, M.; Fressengeas, C.; Levchenko, E. A.; Radikan, K.; Lübben, O.; Semenov, V. N.; Shvets, I. V.

    2014-12-01

    A scanning tunneling microscopy study of a planar close-packed C60 hexagonal molecular layer on a WO2/W (110 ) substrate reveals the existence of C60 domains exhibiting two preferred orientations at an angle with an underlying periodic groove structure in the substrate. An analysis of the van der Waals interactions between substrate and layer retrieves the observed misorientations as those corresponding to minima in the interaction energy of the substrate-layer system. The misorientation between two C60 domains is accommodated in a tilt boundary by a linear array of molecular structural units identified as disclination dipoles, i.e., rotational defects in the hexagonal structure of the layer. A field theory of disclinations and dislocations is used to construct maps of the elastic energy, strains, curvatures, and stresses induced by the lattice defects over the layer. The predicted regions of high compression are found to overlap with those where the fullerene molecules do not undergo rotation.

  10. Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60

    NASA Astrophysics Data System (ADS)

    Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.

    2011-07-01

    A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.

  11. Features of self-aggregation of C60 molecules in toluene prepared by different methods

    NASA Astrophysics Data System (ADS)

    Makhmanov, Urol; Ismailova, Oksana; Kokhkharov, Abdulmutallib; Zakhidov, Erkin; Bakhramov, Sagdilla

    2016-05-01

    Structural and dimensional features of C60 aggregates in toluene solution prepared in two different ways - equilibrium and strongly non-equilibrium - were studied by high-resolution transmission electron microscopy and atomic-force microscopy methods. It was found that in solutions prepared by the non-equilibrium method (stirring of solution of C60 by a mechanical rotator), large quasispherical aggregates (with a diameter of up to ∼ 380 ± 20 nm) of nanoporous structure with fractal size D ≈ 2.13 were synthesized. In the case of solutions C60, which were prepared by the equilibrium method (without the use of external mechanical influences on solution), the formation of densely packed monomolecular fullerene aggregates with a diameter of not more than 50 nm was observed.

  12. Interfacial and intermolecular interactions determining the rotational orientation of C60 adsorbed on Au(111)

    NASA Astrophysics Data System (ADS)

    Paßens, Michael; Karthäuser, Silvia

    2015-12-01

    Close-packed monolayers of fullerenes on metallic substrates are very rich systems with respect to their rotational degrees of freedom and possible interactions with different adsorption sites or next neighbours. In this connection, we report in detail on the (2√3 × 2√3)R30°-superstructure of C60 with respect to the Au(111)-surface. We use molecular orbital imaging in systematic UHV-STM studies to reveal the delicate balance of interfacial and intermolecular interactions in this system. Thus, bright C60-molecules in 5:6-top and 6:6-top geometries are observed depending on the respective next neighbours. Moreover, tiny changes in the appearance of the unoccupied molecular orbitals of dim C60-molecules in hex-vac positions are identified which are caused by the respective interaction with the facets surrounding the Au-vacancy.

  13. Computational study of molecular properties of aggregates of C 60 and (16, 0) zigzag nanotube

    NASA Astrophysics Data System (ADS)

    Witek, Henryk A.; Trzaskowski, Bartosz; Małolepsza, Edyta; Morokuma, Keiji; Adamowicz, Ludwik

    2007-09-01

    Molecular properties for two aggregates of C 60 and a (16, 0) zigzag nanotube: (a) C 60 encapsulated in the nanotube, (b) C 60 attached to the outer wall of the nanotube, are studied using the self-consistent charge density-functional tight-binding method with additional dispersion correction. The binding energy for the encapsulated fullerene is -108.3 kcal/mol and for the attached fullerene, only -20.3 kcal/mol. The harmonic vibrational frequencies of the aggregates are found to be almost identical to those obtained for the non-interacting system. Very small extent of the changes upon interaction may pose a challenge to study the aggregated structures using experimental spectroscopic methods.

  14. Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60.

    PubMed

    Kotelnikova, R A; Kotelnikov, A I; Bogdanov, G N; Romanova, V S; Kuleshova, E F; Parnes, Z N; Vol'pin, M E

    1996-07-01

    The modifying effects of the products of the equimolar addition Of DL-alanine and DL-alanyl-DL-alanine to fullerene C60 on the structure and permeability of the lipid bilayer of phosphatidylcholine liposomes has been studied using the luminescence probe technique. It is shown that these water soluble amino acid and dipeptide derivatives of fullerene (C60-AD) are quenchers of pyrene fluorescence and erythrosine phosphorescence of in both a water solution and liposomes. To study the permeability of the lipid bilayer a procedure based on the triplet probe technique has been developed. It has been found that the C60-AD derivatives under study are able to localize inside the artificial membrane, to penetrate into the liposomes through the lipid bilayer and to perform activated transmembrane transport of bivalent metal ions. PMID:8766810

  15. Self-healing phenomenon and dynamic hardness of C60-based nanocomposite coatings.

    PubMed

    Penkov, Oleksiy V; Pukha, Volodymyr E; Devizenko, Alexander Yu; Kim, Hae-Jin; Kim, Dae-Eun

    2014-05-14

    The phenomenon of surface self-healing in C60-based polymer coatings deposited by ion-beam assisted physical vapor deposition was investigated. Nanoindentation of the coatings led to the formation of a protrusion rather than an indent. This protrusion was accompanied by an abnormal shape of the force-distance curve, where the unloading curve lies above the loading curve due to an additional force applied in pulling the indenter out of the media. The coatings exhibited a nanocomposite structure that was strongly affected by the ratio of C60 ion and C60 molecular beam intensities during deposition. The coatings also demonstrated the dynamic hardness effect, where the effective value of the hardness depends significantly on the indentation speed. PMID:24697539

  16. Electrochemical quartz crystal microbalance study of redox active C60/Pd polymer films

    NASA Astrophysics Data System (ADS)

    Winkler, K.; Noworyta, K.; Kutner, W.; Balch, A. L.

    2000-11-01

    Properties of conductive C60/Pd polymer films were investigated by simultaneous cyclic voltammetry and piezoelectric microgravimetry at an electrochemical quartz crystal microbalance (EQCM). The films were deposited onto Au electrodes of the EQCM quartz vibrators by concomitant electroreduction of C60 and [PdII(CH3COO)2]3 from a 0.1 M tetra(n-alkyl)ammonium perchlorate [alkyl=ethyl (TEA+), butyl (TBA+) or hexyl (THxA+)], acetonitrile/toluene (1:4, v/v) solution. The composition of this solution significantly influenced the pattern of the film growth. The size of the counter cation is a major factor determining both the electrochemical properties of the C60/Pd films and their stability with respect to dissolution. The fraction of the film reversibly reduced depends mainly on size of the supporting electrolyte cation and increases in the order: THxA+

  17. Attosecond time delay and confinement resonances in photoionization of endohedral atoms: Xe@C60

    NASA Astrophysics Data System (ADS)

    Deshmukh, P. C.; Mandal, A.; Saha, S.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2014-05-01

    A theoretical study of Wigner time delay has been applied to the investigation of confinement resonances that occur generally in the photoionization of confined atoms. Calculations have been performed on the 4d subshell of Xe@C60 where the existence of confinement resonances has recently been verified experimentally. The random phase approximation in both the nonrelativistic and relativistic versions, which include significant initial and final state correlation, have been employed in the study. The influence of the C60 cage on the atom is represented by a spherical annular well, which should be good for inner atomic shells at energies significantly higher than the C60 plasmons. The results show that the confinement resonances exhibit significant time delay, as compared to the free atom, confirming the interpretation in terms of multiple scattering of the photoelectron off the walls of the confining shell.

  18. Electronic Pair-Binding and Hund's Rule Violations in Doped C60

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Chen; Kivelson, Steven

    We calculate the electronic properties of the t-J model on a C60 molecule using the density-matrix renormalization group and show that Hund's first rule is violated and that for an average of three added electron per molecule, an effective attraction (pair-binding) arises for intermediate values of t=J. Specifically, it is energetically favorable to put four electrons on one C60 and two on a second rather than putting three on each. Our results show that a dominantly electronic mechanism of superconductivity is possible in doped C60. HCJ and SAK were supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  19. Charge transfer and surface scattering at Cu-C60 planar interfaces

    NASA Astrophysics Data System (ADS)

    Hebard, A. F.; Ruel, R. R.; Eom, C. B.

    1996-11-01

    Thin-film planar structures of Cu and C60 have been sequentially deposited onto sapphire substrates in high vacuum and studied using in situ resistivity measurements during deposition together with ex situ atomic force microscopy characterization of surface topography. Two different regimes of behavior are identified. In the first of these, the thin-film limit in which the Cu is thin enough to be in the coalescence regime with an islanded morphology, the presence of an adjacent C60 monolayer, doped by charge transfer from the metal, creates a shunting path and a corresponding pronounced decrease in resistance. The sheet resistance of overlying doped monolayers is found to be ~8000 Ω, with a corresponding room-temperature resistivity that is a factor of 2 less than that of the three-dimensional alkali-metal-doped compounds A3C60 (A=K, Rb). The enhanced conductivity of an underlying monolayer of C60 is sufficient to reduce the critical thickness at which an overlying Cu film becomes conducting by almost a factor of 2 even though the roughness of such films is enhanced over that of Cu films deposited directly on the substrate. In the second regime of behavior, the continuous film limit in which the Cu is thick enough to have a size-effect resistivity proportional to the reciprocal of the film thickness, the presence of an adjacent C60 monolayer gives rise to an increase in resistance. Measurements on a number of samples with different thicknesses reveal that this resistance increase is best described by diffuse surface scattering. A scattering cross section of 5 AṦ resulting from a fit to this model represents the contact area under each C60 molecule.

  20. Gate-tunable large negative tunnel magnetoresistance in Ni-C60-Ni single molecule transistors.

    PubMed

    Yoshida, Kenji; Hamada, Ikutaro; Sakata, Shuichi; Umeno, Akinori; Tsukada, Masaru; Hirakawa, Kazuhiko

    2013-02-13

    We have fabricated single C(60) molecule transistors with ferromagnetic Ni leads (FM-SMTs) by using an electrical break junction method and investigated their magnetotransport. The FM-SMTs exhibited clear gate-dependent hysteretic tunnel magnetoresistance (TMR) and the TMR values reached as high as -80%. The polarity of the TMR was found to be always negative over the entire bias range studied here. Density functional theory calculations show that hybridization between the Ni substrate states and the C(60) molecular orbitals generates an antiferromagnetic configuration in the local density of states near the Fermi level, which gives a reasonable explanation for the observed negative TMR. PMID:23327475

  1. Stochastic analysis of movements on surfaces: The case of C60 on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Sändig, Nadja; Bakalis, Evangelos; Zerbetto, Francesco

    2015-07-01

    Molecular dynamics simulations of C60 on Au(1 1 1) reveal that the molecular diffusion consists of random sequences of stick, slide, and stick and slip periods. Stochastic analysis of forty trajectories shows that initially C60 follows a superdiffusive-sub-ballistic-like motion, which then turns into super-diffusive. Individual trajectories present a variety of diffusive motions that even include subdiffusion. The analysis of the displacement moments indicates Fractional Brownian motion (FBM), as underlying stochastic mechanism, a finding further supported by the analysis of the velocity correlation function.

  2. C60 rotation in the solid state - Dynamics of a faceted spherical top

    NASA Astrophysics Data System (ADS)

    Johnson, Robert D.; Yannoni, Costantino S.; Dorn, Harry C.; Salem, Jesse R.; Bethune, Donald S.

    1992-03-01

    The C-13 NMR technique is presently used to ascertain the solid-state rotational dynamics of C60. The 283 K molecular reorientation correlation time tau, at 9.1 picosecs, implies a rotational-diffusion constant of 1.8 x 10 exp 10/sec; this is only three times longer than the calculated tau value for free rotation, and is shorter than the value measured for C60 in solution. Below 260 K, a second phase with much longer reorientation time is noted. In both phases, tau exhibits Arrhenius behavior. These results are noted to parallel those established for adamantane.

  3. Photon, Electron and Secondary Ion Emission from Single C60 keV Impacts

    PubMed Central

    Fernandez-Lima, F. A.; Eller, M. J.; Verkhoturov, S. V.; Della-Negra, S.; Schweikert, E. A.

    2010-01-01

    This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C60 keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C60 projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution. PMID:21218166

  4. Pseudotenfold symmetry in pentane-solvated C60 and C70

    NASA Astrophysics Data System (ADS)

    Fleming, R. M.; Kortan, A. R.; Hessen, B.; Siegrist, T.; Thiel, F. A.; Marsh, P.; Haddon, R. C.; Tycko, R.; Dabbagh, G.; Kaplan, M. L.; Mujsce, A. M.

    1991-07-01

    Crystals of C60 or C70 cocrystallized with n-pentane grow as elongated, ten-sided columns. X-ray diffraction shows ordering of C60 or C70 molecules along the column and a remarkable tenfold symmetry normal to the column. The ratio of the x-ray-diffraction vectors of the two lowest-order diffraction spots is nearly equal to the ``golden ratio,'' τ. Despite these similarities with decagonal, quasicrystalline order, the diffraction indicates crystalline order with a twinned unit cell.

  5. Study of a novel C60 - 2,6-bis(2,2-bicyanovinyl)pyridine complex thin film

    NASA Astrophysics Data System (ADS)

    Ouyang, M.; Wang, K. Z.; Zhang, H. X.; Xue, Z. Q.; Huang, C. H.; Qiang, D.

    1996-04-01

    A novel complex thin film of 2,6-bis(2,2-bicyanovinyl)pyridine (BDCP) and C60 has been fabricated by vacuum coevaporation of BDCP and C60 from two different evaporation sources. The C60-BDCP thin films have shown totally different optical and electronic properties from the films of both the BDCP and C60. Stable and reproducible electric bistable properties have been observed in sandwichlike device Ag/C60-BDCP/Ag. The films are characterized by several methods including high-resolution scanning electron microscopy, x-ray diffraction, UV-visible absorption and infrared transmission spectroscopy.

  6. Evidence for Jahn-Teller Coupling and Fano Resonance of Lower Hg Modes in K3C60 and Rb3C60 Films from Raman Scattering

    NASA Astrophysics Data System (ADS)

    Denisov, V. N.; Zakhidov, A. A.; Danieli, R.; Ruani, G.; Zamboni, R.; Taliani, C.; Imaeda, K.; Yakushi, K.; Inokuchi, H.; Achiba, Y.

    The Raman scattering study of superconducting thin films of A3C60 (A=K,Rb) carried out upon laser excitations at 1.16 and 2.41 eV have revealed the significant broadening and Fano-lineshapes of several low energy Hg intramolecular modes with relative intensities and widths depending on excitation energies. The most interesting feature of the 1.16 eV excited spectrum is the wide asymmetric band at 400 cm-1 which can be assigned by Fano-shape fitting to enormously broadened Hg(2) mode red shifted compared to its bare frequency of 408 cm-1. The narrowing of all lower Hg modes in insulating A6C60 phase indicates strong electron-phonon coupling of this Jahn-Teller modes in x=3 phase and suggests that this low energy vibrations are contributing to superconducting pairing. However the possibility to interpret the wide band at 400 cm-1 as the maximum of electronic background can not be ruled out yet and is supported by our preliminary observations of its disappearance at low temperature below Tc.

  7. Mechanism for doping induced p type C60 using thermally evaporated molybdenum trioxide (MoO3) as a dopant

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Peng; Wang, Wen-Qing; Cheng, Li-Wen; Li, Yan-Qing; Tang, Jian-Xin; Kera, Satoshi; Ueno, Nobuo; Zeng, Xiang-hua

    2016-05-01

    Thermally evaporated molybdenum trioxide (MoO3) doped C60 films, which could change n type features of pristine C60 to form a p type mixed C60 layer, are investigated by x-ray and ultraviolet photoelectron spectroscopy. It is found that C60 HOMO progressively shifts closer to the Fermi level after increased MoO3 doping concentration, and final onset of C60 HOMO is pinned at binding energy of 0.20 eV, indicating the formation of p type C60 films. It is proposed that in charge transfer induced p type C60 formation, due to large electron affinity of MoO3 (6.37 eV), electrons from HOMO of C60 could easily transfer to MoO3 to form cations and therefore increase hole concentration, which could gradually push C60 HOMO to the Fermi level and finally form p type C60 films. Moreover, clear different types of C60 species have been confirmed from UPS spectra in highly doped films.

  8. Mechanism for doping induced p type C60 using thermally evaporated molybdenum trioxide (MoO3) as a dopant.

    PubMed

    Yang, Jin-Peng; Wang, Wen-Qing; Cheng, Li-Wen; Li, Yan-Qing; Tang, Jian-Xin; Kera, Satoshi; Ueno, Nobuo; Zeng, Xiang-Hua

    2016-05-11

    Thermally evaporated molybdenum trioxide (MoO3) doped C60 films, which could change n type features of pristine C60 to form a p type mixed C60 layer, are investigated by x-ray and ultraviolet photoelectron spectroscopy. It is found that C60 HOMO progressively shifts closer to the Fermi level after increased MoO3 doping concentration, and final onset of C60 HOMO is pinned at binding energy of 0.20 eV, indicating the formation of p type C60 films. It is proposed that in charge transfer induced p type C60 formation, due to large electron affinity of MoO3 (6.37 eV), electrons from HOMO of C60 could easily transfer to MoO3 to form cations and therefore increase hole concentration, which could gradually push C60 HOMO to the Fermi level and finally form p type C60 films. Moreover, clear different types of C60 species have been confirmed from UPS spectra in highly doped films. PMID:27058225

  9. C-13 NMR spectroscopy of K(x)C60 - Phase separation, molecular dynamics, and metallic properties

    NASA Astrophysics Data System (ADS)

    Tycko, R.; Dabbagh, G.; Rosseinsky, M. J.; Murphy, D. W.; Fleming, R. M.; Ramirez, A. P.; Tully, J. C.

    1991-08-01

    The results of C-13 NMR measurements on alkali fullerides K(x)C60 are reported. The NMR spectra demonstrate that material with x of 0-3 is in fact a two-phase system at equilibrium, with x = 0 and x = 3. NMR lineshapes indicate that C60(3-) ions rotate rapidly in the K3C60 phase at 300 K, while C60(6-) ions in the insulating K6C60 phase are static on the time scale of the lineshape measurement. The temperature dependence of the C-13 spin-lattice relaxation rate in the normal state of K3C60 is found to be characteristic of a metal, indicating the important role of the C60(3-) ions in the conductivity. From the relaxation measurements, an estimate of the density of electronic states at the Fermi level is derived.

  10. EPR, FTIR, and FAB mass spectrometric investigation of reaction of H atoms with C 60 in a cyclohexane matrix

    NASA Astrophysics Data System (ADS)

    Howard, J. A.

    1993-03-01

    Hydrogen atoms have been reacted with C 60 in a cyclohexane matrix at 77 K in a rotating cryostat. Species HC 60, H 2 n + 1 C 60, and H 2 nC 60 have been identified by EPR, FTIR and FAB mass spectrometry. HC 60 has the magnetic parameters aH(1) = 92.9 ± 0.5 MHz and g = 2.00218 ± 0.00004. These values are compared to the deuterium and muonium analogs. Reasons for the isotope effect in the hydrogen and muon hyperfine interactions of HC 60 and MuC 60 are discussed. The narrow line widths of the EPR transitions of H 2 n + 1C 60 may be associated with globe-trotting hydrogen atoms. C 60 acts as a H atom sponge at high atom fluxes and H 2 nC 60s with n as large as 17 have been identified.

  11. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    NASA Astrophysics Data System (ADS)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  12. A new way to synthesize superconducting metal-intercalated C60 and FeSe

    PubMed Central

    Takahei, Yuuki; Tomita, Keitaro; Itoh, Yugo; Ashida, Keishi; Lee, Ji-Hyun; Nishimoto, Naoki; Kimura, Takumi; Kudo, Kazutaka; Nohara, Minoru; Kubozono, Yoshihiro; Kambe, Takashi

    2016-01-01

    Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc’s, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors. PMID:26732250

  13. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    PubMed

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot. PMID:25746811

  14. A new way to synthesize superconducting metal-intercalated C60 and FeSe.

    PubMed

    Takahei, Yuuki; Tomita, Keitaro; Itoh, Yugo; Ashida, Keishi; Lee, Ji-Hyun; Nishimoto, Naoki; Kimura, Takumi; Kudo, Kazutaka; Nohara, Minoru; Kubozono, Yoshihiro; Kambe, Takashi

    2016-01-01

    Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc's, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors. PMID:26732250

  15. A new way to synthesize superconducting metal-intercalated C60 and FeSe

    NASA Astrophysics Data System (ADS)

    Takahei, Yuuki; Tomita, Keitaro; Itoh, Yugo; Ashida, Keishi; Lee, Ji-Hyun; Nishimoto, Naoki; Kimura, Takumi; Kudo, Kazutaka; Nohara, Minoru; Kubozono, Yoshihiro; Kambe, Takashi

    2016-01-01

    Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc’s, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors.

  16. Trends in correlation and confinement impacts on the e-Xe@C60 generalized oscillator strengths

    NASA Astrophysics Data System (ADS)

    Dolmatov, Valeriy; Amusia, Miron; Chernysheva, Larissa

    2012-06-01

    The response of endohedral Xe@C60 to fast electron impact ionization is theoretically studied by calculating its 4d, 5s and 5p generalized oscillators strengths (GOS). The calculation methodology combines the plane wave Born approximation, single-electron Hartree-Fock approximation, and multi-electron random phase approximation with exchange, all in the presence of the C60 confinement. The confinement is accounted for in the framework of both a spherical δ-potential [1] and square-well-potential [2] models to evaluate the effect of the finite thickness of the C60 cage on said GOS's. Impressive confinement brought impact on the latter is revealed. Vitality of accounting for electron correlation in calculations of the Xe@C60 5s and 5p GOS's is demonstrated. Trends in contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are unraveled. We challenge experimentalists to conduct corresponding measurements.[4pt] [1] M.Ya. Amusia, A. S. Baltenkov, and B. G. Krakov, Phys. Lett. A, 243, 99 (1998).[0pt] [2] V. K. Dolmatov, Adv. Quant. Chem. 58, 13 (2009).

  17. OPTICAL ABSORPTION AND PHOTOLUMINESCENCE IN PRISTINE AND PHOTOPOLYMERIZED C60 SOLID FILMS

    EPA Science Inventory

    The optical absorption (OA) and photoluminescence (PL) spectra of pristine, oxygen-free C60 films in the vicinity of the absorption edge across the highest-occupied-molecular-orbital to lowest-unoccupied-molecular-orbital (HOMO-LUMO) gap are studied to elucidate the nature of the...

  18. Location of the lowest exciton in C 60 single crystal by two-photon excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Muccini, M.; Danieli, R.; Zamboni, R.; Taliani, C.; Mohn, H.; Müller, W.; ter Meer, H. U.

    1995-10-01

    Two-photon excitation of C 60 single crystal at 4 K shows a sharp band at 1.846 eV which is assigned to the lowest forbidden Frenkel singlet exciton of T 1g symmetry. This assignment is supported by the analysis of Herzberg-Teller induced photoluminescence.

  19. Colloidal Behavior of Fullerenes (nC60): Role of Coions

    EPA Science Inventory

    Effects of coions on the average initial aggregate size (DH) and zeta potential (ZP) of nC60 in mono and divalent counterion (10 mM) systems were investigated at pH 3, 5.8, and 10. Differences in the effects of SO42-and Cl- could not be established, in presence of Na+, for all pH...

  20. Effect of Humic Acid and Sunlight on the Generation of aqu/C60

    EPA Science Inventory

    Little is known about the effect of sunlight and natural organic matter, such as humic acid, on the aqueous suspension of fullerene C60. This knowledge gap limits our ability to determine the environmental impact of potential environmental releases of these materials. Aqueous sus...

  1. A BPTTF-based self-assembled electron-donating triangle capable of C60 binding.

    PubMed

    Goeb, Sébastien; Bivaud, Sébastien; Dron, Paul Ionut; Balandier, Jean-Yves; Chas, Marcos; Sallé, Marc

    2012-03-25

    A kinetically stable self-assembled redox-active triangle is isolated. The resulting electron-donating cavity, which incorporates three BPTTF units, exhibits a remarkable binding ability for electron-deficient C(60), supported by a favorable combination of structural and electronic features. PMID:22344044

  2. 12 CFR 5.64 - Earnings limitation under 12 U.S.C. 60.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Earnings limitation under 12 U.S.C. 60. 5.64 Section 5.64 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Payment of Dividends § 5.64 Earnings limitation under 12...

  3. 12 CFR 5.64 - Earnings limitation under 12 U.S.C. 60.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Earnings limitation under 12 U.S.C. 60. 5.64 Section 5.64 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Payment of Dividends § 5.64 Earnings limitation under 12...

  4. The Nature of the Noncovalent Interactions between Benzene and C60 Fullerene.

    PubMed

    Li, Ming-Ming; Wang, Yi-Bo; Zhang, Yu; Wang, Weizhou

    2016-07-21

    Noncovalent interactions between aromatic compounds and fullerenes have received considerable attention in various fields of science and technology. Employing benzene (C6H6) and C60 fullerene as model molecules, we theoretically explored in the present study the nature of this kind of noncovalent interaction. Our results clearly show that the π···π stacking configurations of the complex C6H6···C60 are more strongly bound than in the C-H···π analogues, and the C-H···π interactions in the C-H···π configurations of C6H6···C60 are not of the hydrogen bonds. According to symmetry adapted perturbation theory analyses, all of the configurations of C6H6···C60 are dominated by dispersion forces. The percentage of the dispersion components in the overall attractive interactions for the π···π stacking configurations is smaller than the percentage of the dispersion components in the overall attractive interactions for the C-H···π configurations, whereas the percentage of the electrostatic terms in the overall attractive interactions for the π···π stacking configurations is larger than the percentage of the electrostatic terms in the overall attractive interactions for the C-H···π configurations. This is distinctly different from the case of the benzene dimer. PMID:27366821

  5. Suspension and Characterization of Aqueous C60 Nanomaterials in Natural and Engineered Waters

    EPA Science Inventory

    Many current studies on the aqueous suspension of fullerene (aqu/C60) have used deionized water or simple salt solutions, and as a result little is know about the suspension of fullerene nanomatierals under environmentally relevant conditions, such as solutions that contain organ...

  6. Preparation, surface characteristics and electrochemical properties of electrophoretically deposited C60 films

    SciTech Connect

    Kutner, Wlodzimierz; Pieta, Piotr; Nowakowski, Robert; Sobczak, Janusz W.; Kaszkur, Zbigniew

    2005-09-27

    Thin fullerene films of controlled roughness were electrophoretically deposited from C60 suspensions formed in mixed toluene-ethanol solutions. Mass of the deposited films, determined by piezoelectric microgravimetry (PM) with the use of an electrochemical quartz crystal microbalance, exponentially increased with time. Size of the AFM imaged C60 grains in the films depended both on time of C60 aggregation in bulk solution prior to deposition and strength of the electric field applied. In the accessible potential range, cyclic voltammetry (CV) curves for the films in 0.1 M (TBA)PF6, in acetonitrile, featured four main cathodic peaks formed during the negative potential excursion. These peaks corresponded to four one-electron reductions. Simultaneously recorded PM and CV curves showed an overall mass decrease, corresponding to stepwise C60 electroreduction and the complete dissolution of the C{sub 60}{sup 3-} film. The CV, XPS and XRD analyses indicated the film swelling and reversible ingress of both TBA+ counter- and PF{sub 6}{sup -} co-ion into the C{sub 60}{sup -} film.

  7. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    NASA Astrophysics Data System (ADS)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  8. Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems

    EPA Science Inventory

    The underlying mechanisms of fullerene−fullerene, fullerene−water, and fullerene−soil surface interactions in aqueous systems are not well understood. To advance our understanding of these interfacial interactions, the surface properties of Buckminsterfullerene (C60) and quartz s...

  9. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  10. Detection of fullerenes (C60 and C70) in commercial cosmetics

    PubMed Central

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27–42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. PMID:21300421

  11. Computer simulations of the Adsorption of Xenon onto a C60 monolayer on Ag (111)

    NASA Astrophysics Data System (ADS)

    Gatica, Silvina; Cole, Milton; Diehl, Renee

    2007-03-01

    We performed Grand Canonical Monte Carlo simulations to study the adsorption of Xenon on a substrate composed of C60 molecules placed on top of a Ag(111) surface. The C60 molecules form a commensurate structure at a distance of 0.227 nm above the Ag surface. The interaction potential between the Xe atoms and the substrate has two contributions: from the C60 molecules and from the Ag atoms. In the simulations, the interaction with the Ag surface was computed using an ab initio van der Waals potential, varying as 1/d^3. The interaction between the Xe atoms and each C60 molecule was computed using a potential previously developed by Hernandez et.al. (E. S. Hernandez, M. W. Cole and M. Boninsegni, ``Wetting of spherical surfaces by quantum fluids'', J. Low Temp. Phys. 134, 309-314 (2004)), who integrated the Lennard Jones interaction over the surface of a spherical buckyball. The total potential has especially attractive 3-fold sites, positioned 0.4 nm above the point between each three buckyballs. The low coverage uptake populates those sites, and then continues forming a monolayer. The adsorption isotherms show several steps, typical of substrates that have distinct adsorption sites. We compare the results with the experimental data.

  12. Modulation of the photophysical properties of C60 by electronic confinement effect.

    PubMed

    Márquez, F; Sabater, M J

    2005-03-01

    This research work reports on the incorporation of fullerene C60 in diverse inorganic and organic matrixes and how these different environments induce changes on the photophysical properties of the molecule depending on the cavity dimensions of the host. Indeed the fluorescence emission band of C60 experiences a progressive bathochromic shift with respect to C60 in solution as the cavity dimensions of the host decrease in going from the mesoporous material MCM41 to UTD-1 and Na-Y zeolites. This experimental observation, which has been documentarily confirmed by theoretical predictions and recent experimental results, is a reflection of the confinement effect imposed by the host. However, the most striking result reported in this work is that the fluorescence range accessible to this occluded species can be extraordinarily extended by confinement inside the neutral cages of a "dendritic box". The ability of the dendritic shell to create a microenvironment, modifying the properties of its functional core, allows the emission bands of C60 incorporated into a dendrimer to be effectively red-shifted with respect to their emission in solution, and, contrarily to other confined spaces of considerable hardness such as zeolites or the high surface material MCM41, the magnitude of this shifting is maximum and can be modulated under appropriate experimental conditions. This phenomenon has an enormous relevance since it can be exploited in future technological applications. PMID:16833477

  13. Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass

    PubMed Central

    Oberdörster, Eva

    2004-01-01

    Although nanotechnology has vast potential in uses such as fuel cells, microreactors, drug delivery devices, and personal care products, it is prudent to determine possible toxicity of nanotechnology-derived products before widespread use. It is likely that nanomaterials can affect wildlife if they are accidentally released into the environment. The fullerenes are one type of manufactured nanoparticle that is being produced by tons each year, and initially uncoated fullerenes can be modified with biocompatible coatings. Fullerenes are lipophilic and localize into lipid-rich regions such as cell membranes in vitro, and they are redox active. Other nano-sized particles and soluble metals have been shown to selectively translocate into the brain via the olfactory bulb in mammals and fish. Fullerenes (C60) can form aqueous suspended colloids (nC60); the question arises of whether a redox-active, lipophilic molecule could cause oxidative damage in an aquatic species. The goal of this study was to investigate oxyradical-induced lipid and protein damage, as well as impacts on total glutathione (GSH) levels, in largemouth bass exposed to nC60. Significant lipid peroxidation was found in brains of largemouth bass after 48 hr of exposure to 0.5 ppm uncoated nC60. GSH was also marginally depleted in gills of fish, and nC60 increased water clarity, possibly due to bactericidal activity. This is the first study showing that uncoated fullerenes can cause oxidative damage and depletion of GSH in vivo in an aquatic species. Further research needs to be done to evaluate the potential toxicity of manufactured nanomaterials, especially with respect to translocation into the brain. PMID:15238277

  14. Hydrogen-Driven Cage Unzipping of C60 into Nano-Graphenes

    PubMed Central

    2014-01-01

    Annealing of C60 in hydrogen at temperatures above the stability limit of C–H bonds in C60Hx (500–550 °C) is found to result in direct collapse of the cage structure, evaporation of light hydrocarbons, and formation of solid mixture composed of larger hydrocarbons and few-layered graphene sheets. Only a minor part of this mixture is soluble; this was analyzed using matrix-assisted laser desorption/ionization MS, Fourier transform infrared (FTIR), and nuclear magnetic resonance spectroscopy and found to be a rather complex mixture of hydrocarbon molecules composed of at least tens of different compounds. The sequence of most abundant peaks observed in MS, which corresponds to C2H2 mass difference, suggests a stepwise breakup of the fullerene cage into progressively smaller molecular fragments edge-terminated by hydrogen. A simple model of hydrogen-driven C60 unzipping is proposed to explain the observed sequence of fragmentation products. The insoluble part of the product mixture consists of large planar polycyclic aromatic hydrocarbons, as evidenced by FTIR and Raman spectroscopy, and some larger sheets composed of few-layered graphene, as observed by transmission electron microscopy. Hydrogen annealing of C60 thin films showed a thickness-dependent results with reaction products significantly different for the thinnest films compared to bulk powders. Hydrogen annealing of C60 films with the thickness below 10 nm was found to result in formation of nanosized islands with Raman spectra very similar to the spectra of coronene oligomers and conductivity typical for graphene. PMID:24695911

  15. Binary short-range colloidal assembly of magnetic iron oxides nanoparticles and fullerene (nC60) in environmental media.

    PubMed

    Ghosh, Saikat; Pradhan, Nihar R; Mashayekhi, Hamid; Dickert, Stefan; Thantirige, Rukshan; Tuominen, Mark T; Tao, Shu; Xing, Baoshan

    2014-10-21

    Colloidal assembly of nC60 fullerene with naturally abundant magnetic iron oxide NPs will affect their fate and transformation in environmental media. In solution, fullerene association to aggregating iron oxide NPs/clusters greatly enhanced the overall colloidal stability. Development of depletion-mediated structured fullerene layers between pure and surface modified γFe2O3 NPs possibly resulted in such stabilization. Here, we also report that on air-water interface, association of fullerene to pure and humic acid (HA7) coated γFe2O3 NPs led to the formation of ordered assemblies, e.g., binary wires and closed-packed "crystalline" and "glassy" structures in the presence and absence of electrolytes suggesting immobilization of the former. The interaction of fullerene to Fe3O4 NPs and clusters also produced ordered assemblies along with amorphous aggregates. Fullerene interaction with Fe3O4 NPs in low concentration of HA1 and Na(+) at pH 6 formed dendritic growth and polycrystalline circular assemblies on air-water interface. HRTEM study further revealed that the monolayer circular assemblies were highly ordered but structural degeneracy was evident in multilayers. Therefore, interfacial assemblies of fullerene with iron oxide NPs resulted in short-range periodic structures with concomitant immobilization and reduction in availability of the former, especially in soils or sediments rich in the latter. PMID:25222921

  16. Step-terrace morphology and reactivity to C60 of the five-fold icosahedral Ag-In-Yb quasicrystal

    NASA Astrophysics Data System (ADS)

    Nugent, P. J.; Smerdon, J. A.; McGrath, R.; Shimoda, M.; Cui, C.; Tsai, A. P.; Sharma, H. R.

    2011-07-01

    The surface of the icosahedral i-Ag-In-Yb quasicrystal provides one of the first non-Al-based aperiodic surfaces that is suitable for study under ultra-high vacuum conditions. We present a scanning tunnelling microscopy (STM) study of the five-fold surface of this new quasicrystal demonstrating detailed structure of the terraces and steps. The analysis of the autocorrelation functions of STM images at opposite bias polarities and of the in-plane structure of the bulk model of i-Cd-Yb, which is isostructural to i-Ag-In-Yb, reveals that the surface terminations occur at the centres of the rhombic triacontrahedral (RTH) clusters, which are the basic building blocks of this material. The study further confirms that the unoccupied electronic states are located on Yb sites. Step edges display a Fibonacci sequence of truncated clusters, which can also be explained in terms of the model structure. Occasionally, a single terrace is found to display different structures at negative bias, whereas the same terrace shows a uniform structure at positive bias. Depositing C60 creates a disordered overlayer on the surface with no resulting FFT or LEED patterns.

  17. A theoretical study of the ozonolysis of C60: primary ozonide formation, dissociation, and multiple ozone additions.

    PubMed

    Chapleski, Robert C; Morris, John R; Troya, Diego

    2014-04-01

    We present an investigation of the reaction of ozone with C60 fullerene using electronic structure methods. Motivated by recent experiments of ozone exposure to a C60 film, we have characterized stationary points in the potential energy surface for the reactions of O3 with C60 that include both the formation of primary ozonide and subsequent dissociation reactions of this intermediate that lead to C-C bond cleavage. We have also investigated the addition of multiple O3 molecules to the C60 cage to explore potential reaction pathways under the high ozone flux conditions used in recent experiments. The lowest-energy product of the reaction of a single ozone molecule with C60 that results in C-C bond breakage corresponds to an open-cage C60O3 structure that contains ester and ketone moieties at the seam. This open-cage product is of much lower energy than the C60O + O2 products identified in prior work, and it is consistent with IR experimental spectra. Subsequent reaction of the open-cage C60O3 product with a second ozone molecule opens a low-energy reaction pathway that results in cage degradation via the loss of a CO2 molecule. Our calculations also reveal that, while full ozonation of all bonds between hexagons in C60 is unlikely even under high ozone concentration, the addition of a few ozone molecules to the C60 cage is favorable at room temperature. PMID:24549406

  18. C60 as an Active Smart Spacer Material on Silver Thin Film Substrates for Enhanced Surface Plasmon Coupled Emission

    PubMed Central

    Mulpur, Pradyumna; Podila, Ramakrishna; Ramamurthy, Sai Sathish; Kamisetti, Venkataramaniah; Rao, Apparao M.

    2015-01-01

    In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of 30-fold enhancement in the emission intensity of rhodamine b (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes. PMID:25785916

  19. The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C60(OH)24 isomers: DFT study.

    PubMed

    Dawid, A; Górny, K; Gburski, Z

    2015-02-01

    The infrared and Raman spectra of C60(OH)24 molecule with uniform and non-uniform distribution of hydroxyl groups have been investigated using first principle DFT calculations at the B3LYP/6-31G(d,p) level of theory. The important features of the obtained geometries have been measured and compared to experimental results. The reference calculations of C60 molecule geometry and vibrational spectra have been made and compared to available experimental data. The striking differences of infrared spectra between C60(OH)24 molecule with uniform and non-uniform distribution of hydroxyl groups have been shown and discussed. The OH modes have been identified as the most sensitive to C60(OH)24 isomer configuration. The C-C stretching modes in the Raman spectra of the C60(OH)24 molecule have been found as a potential sensor of OH groups distribution over fullerene C60 surface. PMID:25223813

  20. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    PubMed

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact. PMID:27171402

  1. MAPLE preparation and characterization of mixed arylenevinylene based oligomers:C60 layers

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Socol, G.; Vacareanu, L.; Socol, M.; Rasoga, O.; Breazu, C.; Girtan, M.; Stanculescu, F.

    2016-06-01

    This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) of mixed layers based on two arylenevinylene oligomers, 1,4-bis [4-(N,N‧-diphenylamino)phenylvinyl] benzene (L78) and 3,3‧-bis(N-hexylcarbazole)vinylbenzene (L13) as donor and buckminsterfullerene (C60) as acceptor, blended in three different weight ratios: 1:1, 1:2 and 1:3. The optical, morphological, structural and electrical properties of these mixed layers have been investigated emphasizing the effect of the layer composition and of the significant degree of disorder. I-V characteristics have revealed typically solar cell behaviour for the heterostructures prepared with mixed layers containing L78 (L13) and fullerene blended in a weight ratio of 1:2. The solar cell structure glass/ITO/L13:C60/Al has shown the best parameters.

  2. C60 Cheese Sticks: Supramolecular Architecture of an Amphiphilic Fullerene Pentapod.

    PubMed

    Samal, Monica; Acharya, Sandhyarani; Yi, Dong Kee; Lee, Jae-Suk; Samal, Shashadhar

    2015-09-01

    An amphiphillic fullerene pentaphenol derivative, C60(4-HOC6H4)5H, in an aprotic solvent N-methyl-2-pyrrolidone (NMP), spontaneously self-assembles to a hitherto unknown cheese stick-like (CS) structure. This fascinating structure is observed only for C60(4-HOC6H4)5H and only in dry NMP solvent. The reason for such unique self-assembly behavior is ascribed to solvating power typical of NMP. The CS structure is observed in a narrow concentration range of the solution. This indicates that there exists between the solute and the solvent an optimal interaction condition for CS to remain stable. PMID:26716255

  3. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms

    PubMed Central

    Pilehvar, Sanaz; De Wael, Karolien

    2015-01-01

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. PMID:26610583

  4. Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets

    PubMed Central

    Ozmaian, Masoumeh; Fathizadeh, Arman; Jalalvand, Morteza; Ejtehadi, Mohammad Reza; Allaei, S. Mehdi Vaez

    2016-01-01

    The motion of a fullerene (C60) on 5 different types of graphyne is studied by all-atom molecular dynamics simulations and compared with former studies on the motion of C60 on graphene. The motion shows a diffusive behavior which consists of either a continuous motion or discrete movements between trapping sites depending on the type of the graphyne sheet. For graphyne-4 and graphyne-5, fullerenes could detach from the surface of the graphyne sheet at room temperature which was not reported for similar cases on graphene sheets. Collective motion of a group of fullerenes interacting with a graphyne studied and it is shown that fullerenes exhibit stable assemblies. Depending on the type of graphyne, these assemblies can have either single or double layers. The mobility of the assembled structures is also dependent on the type of the graphyne sheet. The observed properties of the motion suggests novel applications for the complexes of fullerene and monolayer graphynes. PMID:26912386

  5. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers.

    PubMed

    Rao, Akshay; Wilson, Mark W B; Hodgkiss, Justin M; Albert-Seifried, Sebastian; Bässler, Heinz; Friend, Richard H

    2010-09-15

    Organic photovoltaic devices are currently studied due to their potential suitability for flexible and large-area applications, though efficiencies are presently low. Here we study pentacene/C(60) bilayers using transient optical absorption spectroscopy; such structures exhibit anomalously high quantum efficiencies. We show that charge generation primarily occurs 2-10 ns after photoexcitation. This supports a model where charge is generated following the slow diffusion of triplet excitons to the heterojunction. These triplets are shown to be present from early times (<200 fs) and result from the fission of a spin-singlet exciton to form two spin-triplet excitons. These results elucidate exciton and charge generation dynamics in the pentacene/C(60) system and demonstrate that the tuning of the energetic levels of organic molecules to take advantages of singlet fission could lead to greatly enhanced photocurrent in future OPVs. PMID:20735067

  6. The effect of glass transition in fullerite C60 on Ar impurity diffusion

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Esel'son, V. B.; Gavrilko, V. G.; Manzhelii, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.

    2013-04-01

    The kinetics of sorption and subsequent desorption of argon gas by powdered fullerite C60 has been investigated in the temperature interval 58-290 K. The temperature dependence of the Ar diffusion coefficients in fullerite has been obtained using measured characteristic times of sorption. The diffusion coefficients for Ar decrease monotonically with decreasing temperature in the entire temperature range, which corresponds to the thermally activated diffusion of Ar atoms in fullerite. The glass transition in fullerite induces an order-of magnitude decrease in the activation energy of Ar diffusion in fullerite. This appears to be due to new paths that appeared as a result of the glass transition, in which the barriers separating the interstitial voids in the C60 lattice are significantly lower.

  7. Cyclotetrahalo-p-phenylenes: simulations of halogen substituted cycloparaphenylenes and their interaction with C60.

    PubMed

    Rio, J; Erbahar, D; Rayson, M; Briddon, P; Ewels, C P

    2016-08-17

    Density functional calculations are used to study the role of edge-functionalization on the structure and electronic properties of cycloparaphenylene (CPPs) containing from six to twenty benzenoid rings. We substitute hydrogen by the halogens fluorine, chlorine and bromine. The resultant Cyclotetrahalo-p-phenylenes are compared with their hydrogenated equivalents, related linear paraphenyl and fluoro-paraphenyl polymers, and functionalised armchair edges in graphene nanoribbons. Notably we consider both structural and electronic evolution. Finally we examine C60@[10]CPP, i.e. C60 encapsulated within [10]CPP, with the various ring terminations. The effect of halogenation on electronic level position around the gap strongly affects their capacity to form donor-acceptor pairs with fullerenes. PMID:27498723

  8. Photodegradation of the electronic structure of PCBM and C60 films in air

    NASA Astrophysics Data System (ADS)

    Anselmo, Ana S.; Dzwilewski, Andrzej; Svensson, Krister; Moons, Ellen

    2016-05-01

    Fullerenes are common electron acceptors in organic solar cells. Here the photostability in air of the electronic structures of spin-coated PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) and evaporated C60 films are studied using ultraviolet photoelectron spectroscopy (UPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. After exposing these materials in air to simulated sunlight, the filled and empty molecular orbitals are strongly altered, indicating that the conjugated π-system of the C60-cage has degraded. Even a few minutes in normal lab light induces changes. These results stress the importance of protecting fullerene-based films from light and air during processing, operation, and storage.

  9. Unravelling the multilayer growth of the fullerene C60 in real time

    PubMed Central

    Bommel, S.; Kleppmann, N.; Weber, C.; Spranger, H.; Schäfer, P.; Novak, J.; Roth, S.V.; Schreiber, F.; Klapp, S.H.L.; Kowarik, S.

    2014-01-01

    Molecular semiconductors are increasingly used in devices, but understanding of elementary nanoscopic processes in molecular film growth is in its infancy. Here we use real-time in situ specular and diffuse X-ray scattering in combination with kinetic Monte Carlo simulations to study C60 nucleation and multilayer growth. We determine a self-consistent set of energy parameters describing both intra- and interlayer diffusion processes in C60 growth. This approach yields an effective Ehrlich–Schwoebel barrier of EES=110 meV, diffusion barrier of ED=540 meV and binding energy of EB=130 meV. Analysing the particle-resolved dynamics, we find that the lateral diffusion is similar to colloids, but characterized by an atom-like Schwoebel barrier. Our results contribute to a fundamental understanding of molecular growth processes in a system, which forms an important intermediate case between atoms and colloids. PMID:25369851

  10. Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes.

    PubMed

    Lee, See Kei; Ohto, Tatsuhiko; Yamada, Ryo; Tada, Hirokazu

    2014-09-10

    We have performed thermoelectric measurements of benzenedithiol (BDT) and C60 molecules with Ni and Au electrodes using a home-built scanning tunneling microscope. The thermopower of C60 was negative for both Ni and Au electrodes, indicating the transport of carriers through the lowest unoccupied molecular orbital in both cases, as was expected from the work functions. On the other hand, the Ni-BDT-Ni junctions exhibited a negative thermopower, whereas the Au-BDT-Au junctions exhibited a positive thermopower. First-principle calculations revealed that the negative thermopower of Ni-BDT-Ni junctions is due to the spin-split hybridized states generated by the highest occupied molecular orbital of BDT coupled with s- and d-states of the Ni electrode. PMID:25141337

  11. Vibronic coupling in C60- anion revisited: Derivations from photoelectron spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Iwahara, Naoya; Sato, Tohru; Tanaka, Kazuyoshi; Chibotaru, Liviu F.

    2010-12-01

    The vibronic coupling constants of C60- are derived from the photoelectron spectrum measured by Wang [J. Chem. Phys. 123, 051106 (2005)]10.1063/1.1998787 at low temperature with high resolutions. We find that the couplings of the Jahn-Teller modes of C60- are weaker than the couplings reported by Gunnarsson [Phys. Rev. Lett. 74, 1875 (1995)10.1103/PhysRevLett.74.1875]. The total stabilization energy after hg and ag modes is reduced with respect to the previous derivation of Gunnarsson by 30%. The computed vibronic coupling constants using density-functional theory with B3LYP functional agree well with the new experimental constants, so the discrepancy between theory and experiment persistent in the previous studies is basically solved.

  12. Regio-, Stereo-, and Atropselective Synthesis of C60 Fullerene Bisadducts by Supramolecular-Directed Functionalization.

    PubMed

    Bottari, Giovanni; Trukhina, Olga; Kahnt, Axel; Frunzi, Michael; Murata, Yasujiro; Rodríguez-Fortea, Antonio; Poblet, Josep M; Guldi, Dirk M; Torres, Tomás

    2016-09-01

    The regio- and stereocontrolled synthesis of fullerene bisadducts is a topic of increasing interest in fullerene chemistry and a key point for the full exploitation of these derivatives in materials science. In this context, while the tether-directed remote functionalization strategy offers a valid approach to this synthetic challenge, no examples of such control have yet been reported using nontethered species. Presented here is a conceptually novel, supramolecular-directed functionalization approach in which noncovalent interactions between untethered residues have been used, for the first time, to amplify (>2800-fold) the regio-, stereo-, and atropselective formation of a C60 fullerene bisadduct racemate from a complex mixture of 130 bisadducts. Remarkably, both enantiomers, which present a sterically demanding cis-1 C60 addition pattern, represent the first examples of fullerene derivatives which combine central, axial, and helical chirality. PMID:27159570

  13. Novel facile method for obtaining CdSe/polyaniline/C60 composite materials.

    PubMed

    Rusen, Edina; Diacon, Aurel; Mocanu, Alexandra; Nistor, Leona Cristina

    2016-01-01

    This study presents a novel method for the oxidative polymerization of aniline (ANI) by employing fullerene C60/cadmium selenide (CdSe) quantum dots, as promoting agent of the polymerization system. The polymerization initiation mechanism is based on the difference between the HOMO-LUMO energy levels of the components which permits the formation of a continuous donor-acceptor exchange. Both the polymerization reaction evolution and the molecular weights of the obtained polymers have been characterized. The novelty of the paper consists in the synthesis of a novel nano-composite material through a novel polymerization technique. The resulting material containing PANI, CdSe quantum dots and C60 has been characterized by UV-Vis, NIR, fluorescence, TEM and GPC analyses. PMID:27572228

  14. Band structure and Fermi surface of electron-doped C60 monolayers.

    PubMed

    Yang, W L; Brouet, V; Zhou, X J; Choi, Hyoung J; Louie, Steven G; Cohen, Marvin L; Kellar, S A; Bogdanov, P V; Lanzara, A; Goldoni, A; Parmigiani, F; Hussain, Z; Shen, Z-X

    2003-04-11

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali-doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions. PMID:12690192

  15. Relative Photoionization Cross Sections of Super-Atom Molecular Orbitals (SAMOs) in C60.

    PubMed

    Bohl, Elvira; Sokół, Katarzyna P; Mignolet, Benoit; Thompson, James O F; Johansson, J Olof; Remacle, Francoise; Campbell, Eleanor E B

    2015-11-25

    The electronic structure and photoinduced dynamics of fullerenes, especially C60, is of great interest because these molecules are model systems for more complex molecules and nanomaterials. In this work we have used Rydberg Fingerprint Spectroscopy to determine the relative ionization intensities from excited SAMO (Rydberg-like) states in C60 as a function of laser wavelength. The relative ionization intensities are then compared to the ratio of the photoionization widths of the Rydberg-like states, computed in time-dependent density functional theory (TD-DFT). The agreement is remarkably good when the same photon order is required to energetically access the excited states. This illustrates the predictive potential of quantum chemistry for studying photoionization of large, complex molecules as well as confirming the assumption that is often made concerning the multiphoton excitation and rapid energy redistribution in the fullerenes. PMID:26551039

  16. Novel facile method for obtaining CdSe/polyaniline/C60 composite materials

    PubMed Central

    Rusen, Edina; Diacon, Aurel; Mocanu, Alexandra; Nistor, Leona Cristina

    2016-01-01

    This study presents a novel method for the oxidative polymerization of aniline (ANI) by employing fullerene C60/cadmium selenide (CdSe) quantum dots, as promoting agent of the polymerization system. The polymerization initiation mechanism is based on the difference between the HOMO-LUMO energy levels of the components which permits the formation of a continuous donor-acceptor exchange. Both the polymerization reaction evolution and the molecular weights of the obtained polymers have been characterized. The novelty of the paper consists in the synthesis of a novel nano-composite material through a novel polymerization technique. The resulting material containing PANI, CdSe quantum dots and C60 has been characterized by UV-Vis, NIR, fluorescence, TEM and GPC analyses. PMID:27572228

  17. Microscopic ESR study of N@C60 using a Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Pelekhov, D. V.; Fong, K. C.; Lee, I. H.; Hammel, P. C.; Harneit, W.

    2007-03-01

    We report electron spin resonance studies of the endohedral fullerene N@C60 using the novel technique of magnetic resonance force microscopy (MRFM). These studies are performed at temperatures down to 1 K on both thin films of N@C60 and in samples where the endohedral fullerene is incorporated into a bulk crystalline matrix. Utilizing the large magnetic field gradients (˜ 10^5 Tesla/meter) in the vicinity of our micromagnetic probe tip, we are able to selectively probe the electron spins in sub--micron volumes. Further, our schemes for spin manipulation allow us to measure the spin--lattice relaxation rate (T1-1) with a spatial resolution in one dimension of approximately 20 nanometers. We will also discuss our efforts to improve the sensitivity of our microscope for detecting individual electronic spins. B. Naydenov, C. Spudat, W. Harneit, H. I. Suss, J. Hullinger, J. Nuss, M. Jansen, Chem. Phys. Lett., 424, 327 (2006).

  18. Icosahedral symmetry breaking: C(60) to C(84), C(108) and to related nanotubes.

    PubMed

    Bodner, Mark; Bourret, Emmanuel; Patera, Jiri; Szajewska, Marzena

    2015-05-01

    This paper completes the series of three independent articles [Bodner et al. (2013). Acta Cryst. A69, 583-591, (2014), PLOS ONE, 10.1371/journal.pone.0084079] describing the breaking of icosahedral symmetry to subgroups generated by reflections in three-dimensional Euclidean space {\\bb R}^3 as a mechanism of generating higher fullerenes from C60. The icosahedral symmetry of C60 can be seen as the junction of 17 orbits of a symmetric subgroup of order 4 of the icosahedral group of order 120. This subgroup is noted by A1 × A1, because it is isomorphic to the Weyl group of the semi-simple Lie algebra A1 × A1. Thirteen of the A1 × A1 orbits are rectangles and four are line segments. The orbits form a stack of parallel layers centered on the axis of C60 passing through the centers of two opposite edges between two hexagons on the surface of C60. These two edges are the only two line segment layers to appear on the surface shell. Among the 24 convex polytopes with shell formed by hexagons and 12 pentagons, having 84 vertices [Fowler & Manolopoulos (1992). Nature (London), 355, 428-430; Fowler & Manolopoulos (2007). An Atlas of Fullerenes. Dover Publications Inc.; Zhang et al. (1993). J. Chem. Phys. 98, 3095-3102], there are only two that can be identified with breaking of the H3 symmetry to A1 × A1. The remaining ones are just convex shells formed by regular hexagons and 12 pentagons without the involvement of the icosahedral symmetry. PMID:25921498

  19. Phase diagrams of model C60 and C70 fullerenes from short-range attractive potentials.

    PubMed

    Orea, Pedro

    2009-03-14

    We report a computer-simulation study of six model fluids interacting through short-range attractive potentials in order to calculate the vapor-liquid (VL) diagrams using canonical Monte Carlo simulation. It is found that the binodal curves of these systems correctly reproduce those reported in the literature for C(60) and C(70) Girifalco potentials. Besides, we found that all coexistence curves collapse into a master curve when we rescale with their respective critical points. PMID:19292545

  20. Electron transfer mediation by aqueous C60 aggregates in H2O2/UV advanced oxidation of indigo carmine

    NASA Astrophysics Data System (ADS)

    Ge, Ling; Moor, Kyle; Zhang, Bo; He, Yiliang; Kim, Jae-Hong

    2014-10-01

    C60 fullerene has long been known to exhibit favorable electron accepting and shuttling properties, but little is known about the possibility of electron transfer mediation by fullerene aggregates (nC60) in water. In this study, we investigated the electron shuttling capabilities of nC60 using UV/H2O2 as a model oxidation process in the presence of an electron donor, indigo carmine (IC). nC60 addition to the IC/H2O2 system was found to drastically increase IC degradation and shift the reactive oxygen species (ROS) balance, favoring the formation of superoxide and perhydroxyl radical species compared to hydroxyl radicals. Results indicate that nC60 can act as an electron mediator, where the adsorbed IC donates an electron to nC60, which is subsequently transferred to H2O2 or perhydroxyl radical.C60 fullerene has long been known to exhibit favorable electron accepting and shuttling properties, but little is known about the possibility of electron transfer mediation by fullerene aggregates (nC60) in water. In this study, we investigated the electron shuttling capabilities of nC60 using UV/H2O2 as a model oxidation process in the presence of an electron donor, indigo carmine (IC). nC60 addition to the IC/H2O2 system was found to drastically increase IC degradation and shift the reactive oxygen species (ROS) balance, favoring the formation of superoxide and perhydroxyl radical species compared to hydroxyl radicals. Results indicate that nC60 can act as an electron mediator, where the adsorbed IC donates an electron to nC60, which is subsequently transferred to H2O2 or perhydroxyl radical. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03647f

  1. A liquid crystalline supramolecular complex of C60 with a cyclotriveratrylene derivative

    PubMed

    Felder; Heinrich; Guillon; Nicoud; Nierengarten

    2000-10-01

    Cyclotriveratrylene (CTV) derivatives substituted with 9 (1) or 18 (2) long alkyl chains have been prepared. Whereas no liquid crystalline behavior has been observed for 1, the CTV derivative 2 has mesomorphic properties. Indeed, at room temperature compound 2 exhibits a nematic phase characterized by cybotactic groups with a local lamello-columnar order. Both CTV derivatives 1 and 2 are able to form supramolecular complexes with C60 in the solid state. In both cases, the 2:1 host-guest species have been obtained as brown compounds. No liquid crystalline behavior was observed for the supramolecular complex [C60 is included in (1)2]. In contrast, observation of the brown product obtained from C60 and the CTV derivative 2 directly after preparation by polarized optical microscopy revealed a fluid birefringent phase at room temperature. When the sample is heated above 70 degrees C, the birefringence of the texture under the microscope disappears and the X-ray diffraction pattern is transformed into a pattern characteristic of a cubic phase. For the first time in thermotropic liquid crystals, the space group of this cubic phase can be assigned as I4(1)32. PMID:11072814

  2. Morphology Change of C60 Islands on Organic Crystals Observed by Atomic Force Microscopy.

    PubMed

    Freund, Sara; Hinaut, Antoine; Pawlak, Rémy; Liu, Shi-Xia; Decurtins, Silvio; Meyer, Ernst; Glatzel, Thilo

    2016-06-28

    Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process. PMID:27219352

  3. Adsorption of helium on isolated C60 and C70 anions

    NASA Astrophysics Data System (ADS)

    Harnisch, Martina; Weinberger, Nikolaus; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2015-08-01

    Adsorption of helium on free, negatively charged fullerenes is studied in this work. Helium nanodroplets have been doped with fullerenes and ionised by electron attachment. For suitable experimental conditions, C-60 and C-70 anions are found to be complexed with a large number of helium atoms. Prominent anomalies in the ion abundances indicate the high stability of the commensurate 1×1 phase in which all hollow adsorption sites are occupied by one atom each. The adsorption energy for an additional helium atom is about 40% less than for atoms in the commensurate layer, similar to our previous findings for fullerene cations and in agreement with theoretical dissociation energies. Similarly, an anomaly in the adsorption energy occurs when 60 helium atoms are attached to C-60 or 65 to C-70. For C60, the anomaly coincides with the one observed for cationic complexes but for C70 it does not. Implications of these features are discussed in light of several theoretical studies of neutral and positively charged helium-fullerene complexes.

  4. Possible light-induced superconductivity in K3C60 at high temperature.

    PubMed

    Mitrano, M; Cantaluppi, A; Nicoletti, D; Kaiser, S; Perucchi, A; Lupi, S; Di Pietro, P; Pontiroli, D; Riccò, M; Clark, S R; Jaksch, D; Cavalleri, A

    2016-02-25

    The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc (refs 4-6). This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. These same signatures are observed at equilibrium when cooling metallic K3C60 below Tc (20 kelvin). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this as a possible explanation of our results. PMID:26855424

  5. Photoelectron Spectroscopy and Electronic Structures of Fullerene Oxides: C60Ox- (x=1-3)

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Kiran, Boggavarapu; Wang, Lai S.

    2005-12-15

    We report a photoelectron spectroscopy (PES) study on a series of fullerene oxides, C600x- (x = 1-3). The PES spectra reveal one isomer for C600x-, two isomers for C6002-, and multiple isomers for C6003-. Compared to C60, the electronic structures of C600x are only slightly perturbed, resulting in similar anion photoelectron spectra. The electron affinity of C600x was observed to increase only marginally with the number of oxygen atoms, x, from 2.683 eV for C60, to 2.745 eV for C600, and 2.785 eV/2.820 eV for C6002 (two isomers). We also carried out theoretical calculations, which confirmed the observed isomers and showed that all the fullerene oxides are in the form of epoxide. The PES and theoretical calculations, as well as molecular orbital analysis, indicate that addition of oxygen atoms to the C60 cage only modifies the local carbon network and leave the rest of the fullerene cage largely intact geometrically and electronically.

  6. Growth and study of superconducting C60 compounds. Final report, October 1992-September 1995

    SciTech Connect

    Liu, J.Z.; Shelton, R.N.; Klavins, P.; Irons, S.H.; Chang, I.C.

    1995-12-01

    A home made semi-automatic feeding plasma arc reactor was used for the mass production fullerenes. Large, high quality single crystals of C60 up to 3mm in length have been grown by both the open-end and sealed vapor transport techniques. Millimeter-sized superconducting single crystals of K3C60 were successfully produced by a sophisticated vacuum doping method. Magnetic and superconducting properties were obtained. Information on the field and temperature dependences of the critical current density J(sub c) and the H(c1) have been reported. New compounds of Yb(x) C60 with x=1-6 were synthesized using a liquid ammonia route at low T and in an inert atmosphere. It turns out that these compounds are amorphous and have a spin glass behavior at a temperature T<15K. Finally, new superconductors with T(sub c) of 134K were found in the system of Tl(1-x)HgBa2Ca2Cu3O(8+y).

  7. Transformation-deformation bands in C60 after the treatment in a shear diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Kulnitskiy, B. A.; Blank, V. D.; Levitas, V. I.; Perezhogin, I. A.; Popov, M. Yu; Kirichenko, A. N.; Tyukalova, E. V.

    2016-04-01

    The C60 fullerene has been investigated by high-resolution transmission electron microscopy and electron energy loss spectroscopy in a shear diamond anvil cell after applying pressure and shear deformation treatment of fcc phase. Shear transformation-deformation bands are revealed consisting of shear-strain-induced nanocrystals of linearly polymerized fullerene and polytypes, the triclinic, monoclinic, and hcp C60, fragments of amorphous structures, and voids. Consequently, after pressure release, the plastic strain retains five high pressure phases, which is potentially important for their engineering applications. Localized shear deformation initially seems contradictory because high pressure phases of C60 are stronger than the initial low pressure phase. However, this was explained by transformation-induced plasticity during localized phase transformations. It occurs due to a combination of applied stresses and internal stresses from a volume reduction during phase transformations. Localized phase transformations and plastic shear deformation promote each other, which produce positive mechanochemical feedback and cascading transformation-deformation processes. Since the plastic shear in a band is much larger than is expected based on the torsion angle, five phase transformations occur in the same region with no transformation outside the band. The results demonstrate that transformation kinetics cannot be analyzed in terms of prescribed shear, and methods to measure local shear should be developed.

  8. C60 rotation in the solid state: dynamics of a faceted spherical top.

    PubMed

    Johnson, R D; Yannoni, C S; Dorn, H C; Salem, J R; Bethune, D S

    1992-03-01

    The rotational dynamics of C(60) in the solid state have been investigated with carbon-13 nuclear magnetic resonance ((13)C NMR). The relaxation rate due to chemical shift anisotropy (1/9T1(CSA)(1)) was precisely measured from the magnetic field dependence of T(1), allowing the molecular reorientational correlation time, tau, to be determined. At 283 kelvin, tau = 9.1 picoseconds; with the assumption of diffusional reorientation this implies a rotational diffusion constant D = 1.8 x 10(10) per second. This reorientation time is only three times as long as the calculated tau for free rotation and is shorter than the value measured for C(60) in solution (15.5 picoseconds). Below 260 kelvin a second phase with a much longer reorientation time was observed, consistent with recent reports of an orientational phase transition in solid C(60). In both phases tau showed Arrhenius behavior, with apparent activation energies of 1.4 and 4.2 kilocalories per mole for the high-temperature (rotator) and low-temperature (ratchet) phases, respectively. The results parallel those found for adamantane. PMID:17816831

  9. Rotation, translation, charge transfer, and electronic structure of C60 on Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Lin; Cheng, Hai-Ping

    2004-01-01

    The energetics and electronic structure of a C60 monolayer on Cu(111) surfaces have been investigated thoroughly via large-scale first-principles density functional theory. The calculated adsorption site and orientation of the molecule, and the work function are in excellent agreement with experimental observations. We find that the translational motion of C60 across Cu-Cu bonds can be barrierless, while a 360°, on-site rotational motion is subject to a barrier of 0.3 eV. A close to 0.8e- charge transfer per molecule from the surface to the C60 monolayer is determined, which provides important insights into a number of experimental measurements. Our analysis also indicates that the transferred electrons are localized in a plane between the molecule and surface, and that the bands near the Fermi level are highly hybrid between the surface and the molecule, reflecting a strong metal-fullerene coupling. Furthermore, an analysis of the dipole moment clarifies the puzzling phenomenon regarding the work function.

  10. Theoretical study of C60 as catalyst for dehydrogenation in LiBH4.

    PubMed

    Scheicher, Ralph H; Li, Sa; Araujo, C Moyses; Blomqvist, Andreas; Ahuja, Rajeev; Jena, Puru

    2011-08-19

    Complex light metal hydrides possess many properties which make them attractive as a storage medium for hydrogen, but typically catalysts are required to lower the hydrogen desorption temperature and to facilitate hydrogen uptake in the form of a reversible reaction. The overwhelming focus in the search for catalysing agents has been on compounds containing titanium, but the precise mechanism of their actions remains somewhat obscure. A recent experiment has now shown that fullerenes (C(60)) can also act as catalysts for both hydrogen uptake and release in lithium borohydride (LiBH(4)). In an effort to understand the involved mechanism, we have employed density functional theory to carry out a detailed study of the interaction between this complex metal hydride and the carbon nanomaterial. Considering a stepwise reduction of the hydrogen content in LiBH(4), we find that the presence of C(60) can lead to a substantial reduction of the involved H-removal energies. This effect is explained as a consequence of the interaction between the BH(x)( - ) complex and the C(60) entity. PMID:21788688

  11. Molecular Calculations of the Photoionization of Endohedral Atoms: Ar@C60

    NASA Astrophysics Data System (ADS)

    Ponzi, A.; Stener, M.; Decleva, P.; Manson, S. T.

    2014-05-01

    Endohedral fullerenes represent a particularly clean case of quantum confinement where the electronic properties of the guest atom or molecule are strongly modified by the encapsulating host.. Many theoretical studies, e.g, have been performed both on free C60 and endohedral systems, and the predicted confinement resonances have been confirmed by recent experiment. Most calculations have employed jellium models for the C60 moiety, allowing the treatment of electron response effects and interchannel coupling, while the few molecular calculations have been limited to a static description, either at the DFT or static-exchange level, giving, however, some conflicting evidence with interpretations based on jellium treatments. The development of large scale TDDFT codes allows full treatment of nonspherical and response effects, and this methods is applied to Ar@C60, to compare with results and assess the modifications brought about by the full inclusion of the ionic cores. It is found that molecular effects increase hybridization of the atomic orbitals with the cage and reduces the role of response effects, due to the stronger localization of the electron cloud.

  12. First prediction of inter-Coulombic decay of C60 inner vacancies through the continuum of confined atoms

    NASA Astrophysics Data System (ADS)

    De, Ruma; Magrakvelidze, Maia; Madjet, Mohamed E.; Manson, Steven T.; Chakraborty, Himadri S.

    2016-06-01

    Considering the photoionization of Ar@{{{C}}}60 and Kr@{{{C}}}60 endofullerenes, the decay of {{{C}}}60 innershell excitations through the outershell continuum of the confined atom via the inter-Coulombic decay (ICD) pathway is detailed. Excitations to atom-{{{C}}}60 hybrid states, when these states exist, can induce coherence between ICD and electron-transfer mediated decay (ETMD). This should be the dominant above-threshold decay process for a variety of confined systems, and the strength of these resonances is such that they should be amenable for study by photoelectron spectroscopy.

  13. Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach

    PubMed Central

    Liu, Junjun; Zhang, Houjin

    2016-01-01

    Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery. PMID:26829126

  14. New type of redox nanoprobe: C60-based nanomaterial and its application in electrochemical immunoassay for doping detection.

    PubMed

    Han, Jing; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-02-01

    Carbon nanomaterials were usually exploited as nanocarriers in an electrochemical immunosensor but rarely acted as redox nanoprobes. Herein, our motivation is to adequately utilize the inner redox activity of fullerene (C60) to obtain a new type of redox nanoprobe based on a hydrophilic C60 nanomaterial. First, C60 nanoparticles (C60NPs) were prepared by phase-transfer method and functionalized with amino-terminated polyamidoamine (PAMAM) to obtain the PAMAM decorated C60NPs (PAMAM-C60NPs) which have better hydrophilicity compared to that of unmodified C60NPs and possesses abundant amine groups for further modification. Following that, gold nanoparticles (nano-Au) were absorbed on the PAMAM-C60NPs surface, and the resultant Au-PAMAM-C60NPs were employed as a new type of redox nanoprobe and nanocarrier to label detection antibodies (Ab2). Doping control has become the biggest problem facing international sport. Erythropoietin (EPO) as a blood doping agent has been a hotspot in doping control. After sandwich-type immunoreaction between EPO (as a model) and Ab2-labeled Au-PAMAM-C60NPs, the resultant immunosensor was further incubated with a drop of tetraoctylammonium bromide (TOAB) which acts as booster to arouse the inner redox activity of Au-PAMAM-C60NPs, thus a pair of reversible redox peaks is observed. As a result, the proposed immunosensor shows a wide linear range and a relatively low detection limit for EPO. This strategy paves a new avenue for exploring the redox nanoprobe based on carbon nanomaterials in the electrochemical biosensor field. PMID:25547661

  15. Self-assembling of C60-imidazole and C60-pyridine adducts in the Langmuir and Langmuir-Blodgett films via complex formation with water-soluble zinc porphyrins

    NASA Astrophysics Data System (ADS)

    Marczak, Renata; Noworyta, Krzysztof; Kutner, Wlodzimierz; Gadde, Suresh; D'Souza, Francis

    2003-10-01

    The C60-pyridine, C60py, and C60-imidazole, C60im, adducts were found to self-assemble in films floating onto aqueous solutions of zinc tetrakis (N-methylpyridinium)porphyrin cation, Zn(TMPyP), or zinc tetrakis (4-sulfonatophenyl)porphyrin anion, Zn(TPPS). This self assembling was due to axial ligation of the C60 adducts (acceptors) by Zn porphyrins (donors), which lead to the formation of relatively stable donor-acceptor dyads in the water-air interfaces. The films were compressed in a Langmuir trough and characterized by isotherms of surface pressure vs. area per molecule as well as by the Brewster angle microscopy imaging. All systems formed stable aggregated Langmuir films of the "expanded liquid" type. Extensive compression of the films resulted in two-dimensional phase transitions. The area per molecule at infinite dilution of the adducts in films increased in the order: water<0.1 mM Zn(TPPS)<0.1 mM Zn(TPMyP). Comparison of the determined and calculated values of area per molecule indicated that orientation of porphyrins in the complexes was parallel with respect to the interface plane. The Langmuir films were transferred, by using the Langmuir-Blodgett technique, onto quartz slides. The UV-vis spectroscopic study of these films revealed that Zn porphyrins were transferred together with the C60 adducts and that the transfer efficiency increased in the order: C60py-Zn(TPPS)<C60py-Zn(TMPyP)<C60im-Zn(TPPS)<C60im-Zn(TMPyP), i.e., in accord with the increase of stability of the respective dyads in solutions.

  16. Effects of Humic Acid and Sunlight on the Generation and Aggregation State of Aqu/C60 Nanoparticles

    EPA Science Inventory

    Aqueous suspensions of nanoscale C60 aggregates (aqu/C60) were produced by stirring in water with Suwanee River Humic Acid (humic acid) and water from Call’s Creek, a small stream near Athens, GA. Time course experiments were conducted to determine the effects of sunlight and sol...

  17. C60 chain phases on ZnPc/Ag(111) surfaces: Supramolecular organization driven by competing interactions.

    PubMed

    Jin, W; Liu, Q; Dougherty, D B; Cullen, W G; Reutt-Robey, J E; Weeks, J; Robey, S W

    2015-03-14

    Serpentine chain C60 phases were observed in scanning tunneling microscopy (STM) images of C60 layers on zinc phthalocyanine (ZnPc) or pentacene covered Ag(111) and Au(111) surfaces. This low-density, quasi-one-dimensional organization contrasts starkly with the close-packed hexagonal phases observed for C60 layers on bare metal substrates. STM was employed to perform a detailed investigation of these chain structures for C60/ZnPc/Ag(111) heterolayers. Motivated by the similarity of these chain phases, and the chain and stripe organization occurring in dipole-fluid systems, we investigated a model based on competing van der Waals attractions and electrostatic repulsions between C60 molecules as an explanation for the driving force behind these monolayer phases. Density functional theory (DFT) calculations revealed significant charge transfer to C60 from the Ag(111) substrate, through the intervening ZnPc layer, inducing electrostatic interactions between C60 molecules. Molecular dynamics simulations performed with attractive van der Waals interactions plus repulsive dipole-dipole interactions reproduced the C60 chain phases with dipole magnitudes consistent with DFT calculations. PMID:25770499

  18. C60 chain phases on ZnPc/Ag(111) surfaces: Supramolecular organization driven by competing interactions

    NASA Astrophysics Data System (ADS)

    Jin, W.; Liu, Q.; Dougherty, D. B.; Cullen, W. G.; Reutt-Robey, J. E.; Weeks, J.; Robey, S. W.

    2015-03-01

    Serpentine chain C60 phases were observed in scanning tunneling microscopy (STM) images of C60 layers on zinc phthalocyanine (ZnPc) or pentacene covered Ag(111) and Au(111) surfaces. This low-density, quasi-one-dimensional organization contrasts starkly with the close-packed hexagonal phases observed for C60 layers on bare metal substrates. STM was employed to perform a detailed investigation of these chain structures for C60/ZnPc/Ag(111) heterolayers. Motivated by the similarity of these chain phases, and the chain and stripe organization occurring in dipole-fluid systems, we investigated a model based on competing van der Waals attractions and electrostatic repulsions between C60 molecules as an explanation for the driving force behind these monolayer phases. Density functional theory (DFT) calculations revealed significant charge transfer to C60 from the Ag(111) substrate, through the intervening ZnPc layer, inducing electrostatic interactions between C60 molecules. Molecular dynamics simulations performed with attractive van der Waals interactions plus repulsive dipole-dipole interactions reproduced the C60 chain phases with dipole magnitudes consistent with DFT calculations.

  19. Confinement-correlation impact upon electron elastic scattering off endohedral atoms: the e + Ne @C60 case

    NASA Astrophysics Data System (ADS)

    Dolmatov, Valeriy; Amusia, Miron; Chernysheva, Larissa

    2015-05-01

    A recent work has provided the initial insight into electron elastic scattering off endohedral atoms A @C60 . There, the atom A and C60 cage were regraded as non-polarizable targets. A question of how lifting the rigid- A-rigid-C60 constrain can affect e + A @C60 scattering has remained open. The present study provides a partial insight into the problem. It accounts for polarization of the atom by incoming electrons in the presence of rigid C60. This is an interesting in itself topic of study from the point of view of basic science. The Dyson theory for the self-energy part of the Green function Σe(ɛ) of an electron moving in the field of A confined inside of rigid C60 is employed in the study. The function Σe(ɛ) is regarded in the framework of the RPAE theory. The e + Ne @C60 elastic scattering is chosen as a case study. The s, p, d, f, g, and h phase shifts and partial (and total) electron elastic-scattering cross sections are calculated with and without accounting for Σe(ɛ) . Calculated results provide the first insight into the confinement-correlation impact upon e + A @C60 elastic scattering. Supported by the NSF grant PHY-1305085.

  20. C(60) reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network.

    PubMed

    Song, Ping'an; Zhu, Yan; Tong, Lifang; Fang, Zhengping

    2008-06-01

    The thermal and flame retardancy properties of polypropylene/fullerene (PP/C(60)) nanocomposites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cone calorimetry with the C(60) loading varied from 0.5 to 2% by weight. Dispersion of C(60) in the PP matrix was characterized by transmission electron microscopy (TEM) and optical microscopy (OM). TGA and DSC results showed that the presence of C(60) could remarkably enhance the thermal property and cone calorimeter measurements suggested that C(60) could to some extent reduce the flammability of PP, with a significant reduction in peak heat release rate and a much longer time to ignition. Furthermore, the larger the loading level of C(60), the better the flame retardancy property of PP/C(60) nanocomposites. The flame retardation mechanism and corresponding model were proposed with the help of rheological measurements, TEM and x-ray diffraction. C(60) reduced the flammability of PP by trapping free radicals in the gas phase and in situ forming a gelled-ball crosslink network to improve the flame retardancy of PP in the condensed phase. Finally, this suggested mechanism was supported by the results of advanced rheological extended systems (ARES), gel content, infrared spectrum, OM, and atomic force microscopy (AFM) measurements. PMID:21825774

  1. C60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network

    NASA Astrophysics Data System (ADS)

    Song, Ping'an; Zhu, Yan; Tong, Lifang; Fang, Zhengping

    2008-06-01

    The thermal and flame retardancy properties of polypropylene/fullerene (PP/C60) nanocomposites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cone calorimetry with the C60 loading varied from 0.5 to 2% by weight. Dispersion of C60 in the PP matrix was characterized by transmission electron microscopy (TEM) and optical microscopy (OM). TGA and DSC results showed that the presence of C60 could remarkably enhance the thermal property and cone calorimeter measurements suggested that C60 could to some extent reduce the flammability of PP, with a significant reduction in peak heat release rate and a much longer time to ignition. Furthermore, the larger the loading level of C60, the better the flame retardancy property of PP/C60 nanocomposites. The flame retardation mechanism and corresponding model were proposed with the help of rheological measurements, TEM and x-ray diffraction. C60 reduced the flammability of PP by trapping free radicals in the gas phase and in situ forming a gelled-ball crosslink network to improve the flame retardancy of PP in the condensed phase. Finally, this suggested mechanism was supported by the results of advanced rheological extended systems (ARES), gel content, infrared spectrum, OM, and atomic force microscopy (AFM) measurements.

  2. Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells.

    PubMed

    Huang, Jin; Zhou, Chi; He, Jun; Hu, Zheng; Guan, Wen-Chao; Liu, Sheng-Hong

    2016-06-01

    Hydrogen peroxide (H2O2) and free radicals cause oxidative stress, which induces cellular injuries, metabolic dysfunction, and even cell death in various clinical abnormalities. Fullerene (C60) is critical for scavenging oxygen free radicals originated from cell metabolism, and reduced glutathione (GSH) is another important endogenous antioxidant. In this study, a novel water-soluble reduced glutathione fullerene derivative (C60-GSH) was successfully synthesized, and its beneficial roles in protecting against H2O2-induced oxidative stress and apoptosis in cultured HEK 293T cells were investigated. Fourier Transform infrared spectroscopy and (1)H nuclear magnetic resonance were used to confirm the chemical structure of C60-GSH. Our results demonstrated that C60-GSH prevented the reactive oxygen species (ROS)-mediated cell damage. Additionally, C60-GSH pretreatment significantly attenuated H2O2-induced superoxide dismutase (SOD) consumption and malondialdehyde (MDA) elevation. Furthermore, C60-GSH inhibited intracellular calcium mobilization, and subsequent cell apoptosis via bcl-2/bax-caspase-3 signaling pathway induced by H2O2 stimulation in HEK 293T cells. Importantly, these protective effects of C60-GSH were superior to those of GSH. In conclusion, these results suggested that C60-GSH has potential to protect against H2O2-induced cell apoptosis by scavenging free radicals and maintaining intracellular calcium homeostasis without evident toxicity. PMID:27376803

  3. Growth and Potential Damage of Human Bone-Derived Cells Cultured on Fresh and Aged C60/Ti Films

    PubMed Central

    Kopova, Ivana; Lavrentiev, Vasily; Vacik, Jiri; Bacakova, Lucie

    2015-01-01

    Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation. PMID:25875338

  4. Continuum modeling investigation of gigahertz oscillators based on a C60 fullerene inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-02-01

    Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.

  5. Tuning the conductance of H2O@C60 by position of the encapsulated H2O.

    PubMed

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green's function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  6. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  7. Electronic properties of Mn-phthalocyanine-C60 bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Herzig, Melanie; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Knupfer, Martin; Eberhardt, Wolfgang

    2015-11-01

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C60 (MnPc:C60) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C60. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C60 bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C60 to MnPc thin films.

  8. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    NASA Astrophysics Data System (ADS)

    Zhu, Chengbo; Wang, Xiaolin

    2015-12-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors.

  9. Singlet oxygen production by amphiphilic C60 derivatives and its correlation to cell cytotoxicity in vitro

    NASA Astrophysics Data System (ADS)

    So, Grace; Karotki, Aliaksandr; Verma, Sarika; Hauck, Tanya S.; Wilson, Brian; Pritzker, Kenneth P. H.; Chiang, Long

    2005-09-01

    Fullerene derivatives have appealing properties that can potentially be used in materials science and medical applications. In particular, fullerenes are known to produce reactive oxygen species upon their excitation with light. This makes them particularly attractive as photosensitizers for photodynamic therapy (PDT). Photodynamic therapy is a new modality of treatment of cancer as well as some non-cancerous conditions. It involves the combined actions of a drug (photosensitizer) and light to produce a cytotoxic effect. Water-soluble hexa(sulfo-n-butyl)[60]fullerenes (FC4S) was reported recently to generate singlet oxygen (1O2) and superoxide radical (O2-.) upon its excitation with light, making it a promising candidate for PDT treatments. Recently, we synthesized new amphiphilic fullerene derivatives, namely, [60]fullerene-diphenylaminofluorene-oligo(ethylene glycol) conjugates, C60(>DPAF-PEG600) and C60(>DPAF-PEG2000), as potential photosensitizers. In this paper we compare FC4S to PEG-based fullerenes in terms of their singlet oxygen photosensitization ability. We measured time-resolved kinetics of singlet oxygen luminescence photosensitized by excitation of fullerenes via a 10 ns pulsed laser at 523 nm. For FC4S we observed "normal" kinetics with a monoexponential decay profile giving a time constant 3.8 us in water. In contrast, for the case of C60(>DPAF-PEG600) and C60(>DPAF-PEG2000), a non-monoexponential decay profile with a long tail (~ 102 μs) in water was observed. We hypothesize that this is due to formation of vesicles by PEG fullerenes in aqueous solution. To investigate photodynamic activity of these fullerene derivatives in vitro, we used HeLa human adenocarcinoma and B16 mouse melanoma cell lines. FC4S showed clear photodynamic effects in both cell lines. The total fluence required to kill 50% of the cells at the drug concentration of 20 μM was 36 Jcm-2 for HeLa cells and 72 Jcm-2 for B16 cells. Neither PEG-based fullerene derivatives showed any

  10. Effect of incorporated PVP/Ag nanoparticles on ZnPc/C60 organic solar cells.

    PubMed

    Heo, Ilsu; Kim, Jinhyun; Yim, Sanggyu

    2013-06-01

    Various sizes of PVP-capped Ag nanoparticles were incorporated in the PEDOT:PSS layer of ZnPc/C60-based small-molecule organic solar cells. The incorporated nanoparticles partially block the incident light, but this was offset by the scattering effect and consequent increase in path lengths through the active organic layers. As a result, the overall power conversion efficiency of the cell increased by approximately 15% when nanoparticles with an average diameter of 24 nm were used. PMID:23862493

  11. Dominating recombination mechanisms in organic solar cells based on ZnPc and C60

    NASA Astrophysics Data System (ADS)

    Tress, Wolfgang; Leo, Karl; Riede, Moritz

    2013-04-01

    We investigate the dominating recombination mechanisms in bulk heterojunction solar cells, using a blend of ZnPc and C60 as model system. Analyzing the open-circuit voltage (Voc) as a function of illumination intensity, we find that trap-assisted recombination dominates for low light intensities, whereas at 1 sun, direct/bimolecular recombination becomes important. The recombination parameters are not significantly influenced by the blend mixing ratio and are also valid for injected charges. By changing the hole transport layer, recombination at the contact is separately identified as further mechanism reducing Voc at higher light intensities.

  12. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    NASA Technical Reports Server (NTRS)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  13. Effects of partial hydrogenation on electronic transport properties in C60 molecular devices

    NASA Astrophysics Data System (ADS)

    Chen, L. N.; Cao, C.; Wu, X. Z.; Ma, S. S.; Huang, W. R.; Xu, H.

    2012-12-01

    By using nonequilibrium Green's functions in combination with the density-function theory, we investigate electronic transport properties of molecular devices with pristine and partial hydrogenation. The calculated results show that the electronic transport properties of molecular devices can be modulated by partial hydrogenation. Interestingly, our results exhibit negative differential resistance behavior in the case of the imbalance H-adsorption in C60 molecular devices under low bias. However, negative differential resistance behavior cannot be observed in the case of the balance H-adsorption. A mechanism is proposed for the hydrogenation and negative differential resistance behavior.

  14. Resonant electron heating and molecular phonon cooling in single C60 junctions.

    PubMed

    Schulze, G; Franke, K J; Gagliardi, A; Romano, G; Lin, C S; Rosa, A L; Niehaus, T A; Frauenheim, Th; Di Carlo, A; Pecchia, A; Pascual, J I

    2008-04-01

    We study heating and heat dissipation of a single C(60) molecule in the junction of a scanning tunneling microscope by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the scanning tunneling microscope tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon coupling and molecular cooling by vibrational decay into the tip upon contact formation. PMID:18517981

  15. An electrogenerated chemiluminescence sensor based on gold nanoparticles@C60 hybrid for the determination of phenolic compounds.

    PubMed

    Lu, Qiyi; Hu, Hongxiang; Wu, Yuanya; Chen, Shihong; Yuan, Dehua; Yuan, Ruo

    2014-10-15

    This paper described a novel strategy for the construction of an electrogenerated chemiluminescence (ECL) sensor based on gold nanoparticles@C60 (AuNPs@C60) hybrid for detecting phenolic compounds. First, C60 was functionalized with l-cysteine. Subsequently, with C60 as the core, gold nanoparticles (AuNPs) are synthesized and grown through an in situ reduction method in the presence of ascorbic acid (AA). The resulted flowerlike AuNPs@C60 nanoparticles were modified onto the glassy carbon electrode to achieve the sensor (AuNPs@C60/GCE). Here, l-cysteine not only can improve the biocompatibility and hydrophilicity of C60 but also can enhance the electrogenerated chemiluminescence (ECL) of peroxydisulfate system. Furthermore, both AuNPs and C60 are also beneficial to the ECL of the peroxydisulfate system. Due to the combination of l-cysteine, AuNPs and C60, the proposed ECL sensor exhibited an excellent analytical performance. Under an optimum condition, the ECL intensity increased linearly with phenolic compounds. The linear ranges of 6.2 × 10(-8)-1.2 × 10(-4)M, 5.0 × 10(-8)-1.1 × 10(-4)M and 5.0 × 10(-8)-1.1 × 10(-4)M were obtained for catechol (CC), hydroquinone (HQ) and p-cresol (PC), respectively, and the detection limits were 2.1 × 10(-8)M, 1.5 × 10(-8)M and 1.7 × 10(-8)M, respectively. The AuNPs@C60 hybrid might hold a new opportunity to develop an ECL sensor. PMID:24836015

  16. Extraction and HPLC- UV Analysis of C60, C70, and [6,6]-phenyl C61-butyric acid methyl ester in Synthetic and Natural Waters

    EPA Science Inventory

    Studies have shown that C60 fullerene can form stable colloidal suspensions in water that result in C60 aqueous concentrations many orders of magnitude above C60's aqueous solubility; however, quantitative methods for the analysis of C60 and other fullerenes in environmental medi...

  17. Density Functional Calculations of Surface States in Field-Effect-Doped C_60

    NASA Astrophysics Data System (ADS)

    Mozos, J. L.; Ordejón, P.; Martin, Richard M.

    2002-03-01

    We present density functional calculations using the SIESTA package[1] to determine the nature of the electron or hole states in the 2D metallic layers at the interface of C_60 crystals by field-effect doping. The purpose is to make realistic predictions for the nature of the states created in recent experiments[2], in which a continuous range of carrier densities has been created, leading to metallic behavior and superconductivity with transition temperatures reaching Tc ~ 117 K. Our conclusions are: 1) in C_60 the doped carriers are confined to the interface in an extremely thin layer; 2) the states are highly distorted from bulk-like states due to the high applied field; and 3) states near the Fermi energy are greatly affected by local molecular orientation. As a consequence of the localization and orientation dependence, we expect large effects of disorder and electron-electron interactions. [1] D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. Journ. of Quant. Chem. 65, 453 (1999). [2] J. H. Schon, C. Kloc, and B. Batlogg, Nature 408, 549 (2000); Science 293, 2432 (2001).

  18. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules.

    PubMed

    Pederson, Mark R; Baruah, Tunna; Kao, Der-You; Basurto, Luis

    2016-04-28

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement. PMID:27131541

  19. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60.

    PubMed

    Dowgiallo, Anne-Marie; Mistry, Kevin S; Johnson, Justin C; Blackburn, Jeffrey L

    2014-08-26

    The time scales for interfacial charge separation and recombination play crucial roles in determining efficiencies of excitonic photovoltaics. Near-infrared photons are harvested efficiently by semiconducting single-walled carbon nanotubes (SWCNTs) paired with appropriate electron acceptors, such as fullerenes (e.g., C60). However, little is known about crucial photochemical events that occur on femtosecond to nanosecond time scales at such heterojunctions. Here, we present transient absorbance measurements that utilize a distinct spectroscopic signature of charges within SWCNTs, the absorbance of a trion quasiparticle, to measure both the ultrafast photoinduced electron transfer time (τpet) and yield (ϕpet) in photoexcited SWCNT–C60 bilayer films. The rise time of the trion-induced absorbance enables the determination of the photoinduced electron transfer (PET) time of τpet ≤ 120 fs, while an experimentally determined trion absorbance cross section reveals the yield of charge transfer (ϕpet ≈ 38 ± 3%). The extremely fast electron transfer times observed here are on par with some of the best donor:acceptor pairs in excitonic photovoltaics and underscore the potential for efficient energy harvesting in SWCNT-based devices. PMID:25019648

  20. Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60

    NASA Astrophysics Data System (ADS)

    Yang, Dezhi; Xu, Kai; Zhou, Xiaokang; Wang, Yanping; Ma, Dongge

    2014-06-01

    We studied the transient response characteristics of organic photodetectors composing of high mobility materials of rubrene and C60, respectively, as donor and acceptor. It was found that the response speed was limited by the delay time of both exciton diffusion and transit, and an anomalous phenomenon that the bandwidth decreases as the reverse bias increases was found for the first time. The investigation of frequency dependence at different device structures and light excitations demonstrated that the light absorption of rubrene prevents the photodetector from obtaining a fast response. With the help of magnetic field effect study, it was clearly elucidated that the slow diffusion time of the long lifetime triplet excitons generated from singlet fission in rubrene limited the bandwidth of the device. Moreover, the simulation of the response of photodetector under transient and steady state by exciton transport-diffusion equation showed that the exciton dissociation efficiency in rubrene increases more quickly than that in C60, which should account for the negative dependence of bandwidth on the reverse bias in rubrene-based device.

  1. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.

    PubMed

    Lovern, Sarah B; Klaper, Rebecca

    2006-04-01

    Nanoparticles (1-100 nm) comprise the latest technological advances designed to do everything from absorb environmental toxins to deliver drugs to a target organ. Recently, however, they have come under scrutiny for the potential to cause environmental damage. Because compounds in this miniature size range have chemical properties that differ from those of their larger counterparts, nanoparticles deserve special attention. Our main objective was to assess the potential impact that nanoparticles may have on release into aquatic environments. We prepared titanium dioxide (TiO2) and fullerene (C60) nanoparticles by filtration in tetrahydrofuran or by sonication. Daphnia magna were exposed to the four solutions using U.S. Environmental Protection Agency 48-h acute toxicity tests. Images of the particle solutions were recorded using transmission-electron microscopy, and the median lethal concentration, lowest-observable-effect concentration, and no-observable-effect concentration were determined. Exposure to filtered C60 and filtered TiO2 caused an increase in mortality with an increase in concentration, whereas fullerenes show higher levels of toxicity at lower concentrations. Exposure to the sonicated solutions caused varied mortality. Understanding the potential impacts of nanoparticles will help to identify the most appropriate nanotechnology to preserve the aquatic environment while advancing medical and environmental technology. PMID:16629153

  2. The strength of electron electron correlation in Cs3C60.

    PubMed

    Baldassarre, L; Perucchi, A; Mitrano, M; Nicoletti, D; Marini, C; Pontiroli, D; Mazzani, M; Aramini, M; Riccó, M; Giovannetti, G; Capone, M; Lupi, S

    2015-01-01

    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below Tc = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations. PMID:26468959

  3. Voltammetric determination of adenosine and guanosine using fullerene-C(60)-modified glassy carbon electrode.

    PubMed

    Goyal, Rajendra N; Gupta, Vinod K; Oyama, Munetaka; Bachheti, Neeta

    2007-02-28

    A fullerene-C(60)-modified glassy carbon electrode (GCE) is used for the simultaneous determination of adenosine and guanosine by differential pulse voltammetry. Compared to a bare glassy carbon electrode, the modified electrode exhibits an apparent shift of the oxidation potentials in the cathodic direction and a marked enhancement in the voltammetric peak current response for both the biomolecules. Linear calibration curves are obtained over the concentration range 0.5muM-1.0mM in 0.1M phosphate buffer solution at pH 7.2 with a detection limit of 3.02x10(-7)M and 1.45x10(-7)M for individual determination of adenosine and guanosine, respectively. The interference studies showed that the fullerene-C(60)-modified glassy carbon electrode exhibited excellent selectivity in the presence of hypoxanthine, xanthine, uric acid and ascorbic acid. The proposed procedure was successfully applied to detect adenosine and guanosine in human blood plasma and urine, without any preliminary pre-treatment. PMID:19071420

  4. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Baruah, Tunna; Kao, Der-you; Basurto, Luis

    2016-04-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  5. Symmetry-selected spin-split hybrid states in C60/ferromagnetic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Repain, Vincent; Smogunov, Alexander

    2016-02-01

    The understanding of orbital hybridization and spin polarization at the organic-ferromagnetic interface is essential in the search for efficient hybrid spintronic devices. Here, using first-principles calculations, we report a systematic study of spin-split hybrid states of C60 deposited on various ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001), and hcp-Co(0001). We show that the adsorption geometry of the molecule with respect to the surface crystallographic orientation of the magnetic substrate as well as the strength of the interaction play a crucial role in the spin polarization of the hybrid orbitals. We find that a large spin polarization in vacuum above the buckyball can only be achieved if the molecule is adsorbed upon a bcc-(001) surface by its pentagonal ring. Therefore, bcc-Cr(001), bcc-Fe(001), and bcc-Co(001) are the optimal candidates. Spin-polarized scanning tunneling spectroscopy measurements on single C60 adsorbed on Cr(001) and Co/Pt(111) also confirm that the symmetry both of the substrate and of the molecular conformation has a strong influence on the induced spin polarization. Our finding may give valuable insights for further engineering of spin filtering devices through single molecular orbitals.

  6. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells.

    PubMed

    Guillot, Sarah L; Mistry, Kevin S; Avery, Azure D; Richard, Jonah; Dowgiallo, Anne-Marie; Ndione, Paul F; van de Lagemaat, Jao; Reese, Matthew O; Blackburn, Jeffrey L

    2015-04-21

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells. PMID:25790468

  7. A memory/adder model based on single C60 molecular transistors

    NASA Astrophysics Data System (ADS)

    Stadler, R.; Ami, S.; Forshaw, M.; Joachim, C.

    2001-09-01

    A recent proposal, in which 1-bit memory cells and simple logic gates such as NOT and NOR gates were based on C60 molecules in an electromechanical grid acting as transistors, is extended to larger architectures. In order to meet the requirements of standard digital circuit architectures, some modifications have to be made compared to the original model. For example, the number of transistors has to be increased from two to thirteen for a single NOR gate to guarantee balanced logical levels. In the scheme employed to achieve this in the current work, all two-input gates, namely OR, AND and XOR gates, can be easily constructed using the same concept. These gates are then used to design a 1-bit full-adder and a clocked D-latch, which are then combined with the earlier proposed 1-bit memory cell as the basic constituents of a memory/adder model. Clocked signal transmissions, corresponding to the read process of two 2-bit words from memory cells, their movement through registers and finally their addition and passing the output through another register, are simulated using the electrical circuit software SPICE. For the design of this memory/adder circuit, 464 single C60 transistors are used.

  8. Photoionization of Au+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Bogolub, Kyren; Macaluso, David; Mueller, Allison; Johnson, Andrea; Müller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Anders, Andre; Aguilar, Alex; Kilcoyne, A. L. David

    2014-05-01

    Single photoionization of Au+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The relative single photoionization yield was measured as a function of photon energy in the 45 eV to 120 eV energy range. These measurements were made in preparation for future photoionization studies of the endohedral metallofullerene Au@C60, the production of which was also investigated. In proof-of-principle measurements a mass-resolved beam of Au@C60+was produced with a primary ion beam current in the single picoamp range without optimization of the ion source or synthesis parameters. Plans are presented for improved metallofullere production yield to be used in photoionization measurements of the endohedral fullerene ions in conjunction with the continuing study of pure Au. We would like to acknowledge the generous sharing of equipment vital to this work by Andre Anders, the Plasma Applications group leader at the Advanced Light Source, LBNL.

  9. Probing confinement resonances by photoionizing Xe inside a C60+ molecular cage

    NASA Astrophysics Data System (ADS)

    Phaneuf, R. A.; Kilcoyne, A. L. D.; Aryal, N. B.; Baral, K. K.; Thomas, C. M.; Esteves-Macaluso, D. A.; Lomsadze, R.; Gorczyca, T. W.; Ballance, C. P.; Manson, S. T.; Hasoglu, M. F.; Hellhund, J.; Schippers, S.; Müller, A.

    2014-05-01

    Double photoionization accompanied by loss of n C atoms (n = 0 , 2 , 4 , 6) was investigated by merging beams of Xe@C60+ ions and synchrotron radiation and measuring the yields of product ions. The giant 4 d dipole resonance of the caged Xe atom has a prominent signature in the cross section for these product channels, which together account for 6 . 2 +/- 1 . 4 of the total Xe 4 d oscillator strength of 10. Compared to that for a free Xe atom, the oscillator strength is redistributed in photon energy due to multipath interference of outgoing Xe 4 d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The data are compared with an earlier measurement and with theoretical predictions for this single-molecule photoelectron interferometer system. Relativistic R-matrix calculations for the Xe atom in a spherical potential shell representing the fullerene cage show the sensitivity of the interference pattern to the molecular geometry.

  10. Giant THz photoconductivity and possible non-equilibrium superconductivity in metallic K3C60

    PubMed Central

    Mitrano, M.; Cantaluppi, A.; Nicoletti, D.; Kaiser, S.; Perucchi, A.; Lupi, S.; Di Pietro, P.; Pontiroli, D.; Riccò, M.; Clark, S. R.; Jaksch, D.; Cavalleri, A.

    2015-01-01

    The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects like the optical enhancement of superconductivity 1 . Recently, nonlinear excitation 2 , 3 of certain phonons in bilayer cuprates was shown to induce superconducting-like optical properties at temperatures far above Tc 4,5,6. This effect was accompanied by the disruption of competing charge-density-wave correlations7,8, which explained some but not all of the experimental results. Here, we report a similar phenomenon in a very different compound. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. Strikingly, these same signatures are observed at equilibrium when cooling metallic K3C60 below the superconducting transition temperature (Tc = 20 K). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this scenario as a possible explanation of our results. PMID:26855424

  11. The strength of electron electron correlation in Cs3C60

    PubMed Central

    Baldassarre, L.; Perucchi, A.; Mitrano, M.; Nicoletti, D.; Marini, C.; Pontiroli, D.; Mazzani, M.; Aramini, M.; Riccó, M.; Giovannetti, G.; Capone, M.; Lupi, S.

    2015-01-01

    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below Tc = 38 K. The superconducting dome present in the T − P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations. PMID:26468959

  12. Generation of fullerenyl cation (EtO)2P+(OH)CH2-C60+ from RC60-H and from RC60-C60R (R = CH2P(O)(OEt)2).

    PubMed

    Murata, Yasujiro; Cheng, Fuyong; Kitagawa, Toshikazu; Komatsu, Koichi

    2004-07-28

    A novel fullerenyl cation (EtO)2P+(OH)CH2-C60+ was generated by simply dissolving the monofunctionalized hydrofullerene RC60-H or singly bonded dimer RC60-C60R (R = CH2P(O)(OEt)2) in oxidizing acids such as H2SO4 and FSO3H. The cation was also formed in CH2Cl2 by one-electron oxidation with aminium radical cation and was used for further functionalization of C60. PMID:15264800

  13. Specific features of the glass transition in C60 fullerite saturated with carbon monoxide molecules: Photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Zinoviev, P. V.; Zoryansky, V. N.; Stetsenko, Yu. E.; Danchuk, V. V.

    2016-02-01

    Low temperature (20-230 K) spectral-luminescence studies were conducted on C60 fullerite saturated with carbon monoxide in a physisorption regime. Substantial changes in the photoluminescence characteristics of C60-CO solutions with different impurity concentrations were found already for short intercalation times. Strong dependence of the CO solubility on the saturation temperature was revealed by analyzing the contribution of "deep X-traps" to the luminescence. Furthermore, it was found that filling of the octahedral voids by CO molecules occurs with a lower gradient of the impurity distribution into the bulk C60 crystals as compared with N2. The temperature dependences of the integral emission intensity for the samples with different concentrations of carbon monoxide were studied. For the first time, using the spectral-luminescence method, it was revealed that CO molecules, in contrast to H2 and N2, exhibit a significant effect on the formation of the orientational glass and the rotational dynamics of C60 molecules. Within the model of the transfer of electronic excitation in C60 crystals, the effect of polar CO molecules on the reorientation of C60 molecules and the change in the nature of their rotation in concentrated C60-CO solutions, leading to the observed strong shift of the temperatures of orientational Tc and glass Tg transitions to lower temperatures accompanied by "blurring" of the transition boundaries, were explained.

  14. [Effect of Natural Organic Matter and Electrolytes on the Aggregation of C60 Nanoparticles in Aquatic Systems].

    PubMed

    Fang, Hua; Jing, Jie; Yu, Jiang-hua; Wang, Yu-ting

    2015-10-01

    The ettect of natural organic matter (NOM) and electrolytes on the aggregation of G60 nanoparticles in aquatic systems was studied by using dynamic light scattering. The results showed that the concentration of C60 stable suspension prepared by toluene solvent-exchange method was about 20 mg x L(-1). The C60 nanoparticles in the suspension showed a high zeta potential and particle diameter was around 120 nm. Addition of simple electrolytes induced aggregation of C60 nanoparticles through acompressing electric double layer, which was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. The critical coagulation concentration (CCC) values of MgCl2 and CaCl2 were 9.6 and 6.7 mmol x L(-1). In presence of humic acid, the addition of NaCl and MgCl2 reduced the attachment efficiency and aggregation rate of C60 and increased CCCs. Humic acid enhanced the stability of C60 in water due to steric repulsion. However, the complexation reaction between Ca2+ and humic acid caused adsorption bridging with C60, which increased the aggregation rate and led to enhanced aggregation. This was identified as the primary mechanism of such enhanced aggregation behaviour. The aggregation and dispersion of C60 in water was influenced by the characteristics of organic matters, electrolyte species and other complex factors. PMID:26841603

  15. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.

    PubMed

    Zhang, Lunliang; Hou, Lei; Wang, Lilin; Kan, Amy T; Chen, Wei; Tomson, Mason B

    2012-07-01

    Understanding subsurface transport of fullerene nanoparticles (nC(60)) is of critical importance for the benign use and risk management of C(60). We examined the effects of several important environmental factors on nC(60) transport in saturated porous media. Decreasing flow velocity from approximately 10 to 1 m/d had little effect on nC(60) transport in Ottawa sand (mainly pure quartz), but significantly inhibited the transport in Lula soil (a sandy, low-organic-matter soil). The difference was attributable to the smaller grain size, more irregular and rougher shape, and greater heterogeneity of Lula soil. Increasing ionic strength and switching background solution from NaCl to CaCl(2) enhanced the deposition of nC(60) in both sand and soil columns, but the effects were more significant for soil. This was likely because the clay minerals (and possibly soil organic matter) in soil responded to changes of ionic strength and species differently than quartz. Anions in the mobile phase had little effect on nC(60) transport, and fulvic acid in the mobile phase (5.0 mg/L) had a small effect in the presence of 0.5 mM Ca(2+). A two-site transport model that takes into account both the blocking-affected attachment process and straining effects can effectively model the breakthrough of nC(60). PMID:22681192

  16. Molecular self-healing mechanisms between C60-fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy.

    PubMed

    Geitner, R; Kötteritzsch, J; Siegmann, M; Fritzsch, R; Bocklitz, T W; Hager, M D; Schubert, U S; Gräfe, S; Dietzek, B; Schmitt, M; Popp, J

    2016-07-21

    The self-healing polymer P(LMA-co-MeAMMA) crosslinked with C60-fullerene has been studied by FT-Raman spectroscopy in combination with two-dimensional (2D) correlation analysis and density functional theory calculations. To unveil the molecular changes during the self-healing process mediated by the Diels-Alder equilibrium between 10-methyl-9-anthracenyl groups and C60-fullerene different anthracene-C60-fullerene adducts have been synthesized and characterized by time-, concentration- and temperature-dependent FT-Raman measurements. The self-healing process could be monitored via the C60-fullerene vibrations at 270, 432 and 1469 cm(-1). Furthermore, the detailed analysis of the concentration-dependent FT-Raman spectra point towards the formation of anthracene-C60-fullerene adducts with an unusual high amount of anthracene bound to C60-fullerene in the polymer film, while the 2D correlation analysis of the temperature-dependent Raman spectra suggests a stepwise dissociation of anthracene-C60-fullerene adducts, which are responsible for the self-healing of the polymer. PMID:27327116

  17. PVP formulated Fullerene (C60) increases Rho-kinase dependent Vascular Tissue Contractility in Pregnant Sprague Dawley Rats

    PubMed Central

    Vidanapathirana, Achini K.; Thompson, Leslie C.; Mann, Erin. E.; Odom, Jillian T.; Holland, Nathan A.; Sumner, Susan J.; Han, Li; Lewin, Anita H.; Fennell, Timothy R.; Brown, Jared M.; Wingard, Christopher J.

    2014-01-01

    Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that, polyvinylpyrorrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant and non-pregnant female Sprague Dawley rats. Vascular responses were assessed using wire myography 24 hours post-exposure. Increased stress generation was observed in uterine artery, thoracic aorta and umbilical vein. Rho-Rho-kinase mediated force maintenance was increased in arterial segments from C60/PVP exposed pregnant rats when compared to PVP exposed rats. Our findings suggest that intravenous exposure to C60/PVP during pregnancy increases vascular tissue contractility of the uterine artery through elements of Rho-Rho-kinase signaling during late stages of pregnancy. PMID:25088243

  18. Dependence of the band structure of C-60 monolayers on molecularorientations and doping observed by angle resolved photoemission

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Shen, Z.X.

    2008-01-17

    We present angle resolved photoemission studies of C60monolayers deposited on Ag surfaces. The electronic structure of thesemonolayers is derived from the partial filling of the narrow, 6-folddegenerated, C60 conduction band. By comparing the band structure in twomonolayers deposited, respectively, on Ag(111) and Ag(100), we show thatthe molecular degree of freedom, in this case the relative orientationsbetween C60 molecules, is essential to describe the band structure. Wefurther show that the evolution of the band as a function of doping doesnot follow a rigid band-filling picture. Phase separation is observedbetween a metallic and an insulating phase, which might be a result ofstrong correlations.

  19. Fabrication of C60 Tri-Diethyl Malonate Membrane via an Electrospinning Method and Its Antibacterial Property.

    PubMed

    Li, Hui; Chen, Shou; Peng, Xiaohua; Sun, Jiangning; Shu, Chunying; Jiang, Li; Wang, Chunru

    2016-03-01

    A homogeneous C60 tri-diethyl malonate membrane was fabricated by a facile electro-spinning method. Comprehensive characterizations of its assembling structure, such as SEM, TEM, TGA, UV-vis, and FTIR, were carried out. Different fullerene derivatives show different assembling characters during the electrospining process. Notably, C60 tri-diethyl malonate with close-knite structures can form a stable structure after removing the assistant polymer of PVP. The antibacterial experiments of C60 tri-diethyl malonate membrane were performed, and the results revealed that this membrane owns excellent antibacterial activity. PMID:27455662

  20. Photosynthetic antenna-reaction center mimicry with a covalently linked monostyryl boron-dipyrromethene-aza-boron-dipyrromethene-C60 triad.

    PubMed

    Shi, Wen-Jing; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P

    2013-08-19

    An efficient functional mimic of the photosynthetic antenna-reaction center has been designed and synthesized. The model contains a near-infrared-absorbing aza-boron-dipyrromethene (ADP) that is connected to a monostyryl boron-dipyrromethene (BDP) by a click reaction and to a fullerene (C60 ) using the Prato reaction. The intramolecular photoinduced energy and electron-transfer processes of this triad as well as the corresponding dyads BDP-ADP and ADP-C60 have been studied with steady-state and time-resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge-separated states. Such calculations show that electron transfer from the singlet excited ADP ((1) ADP*) to C60 yielding ADP(.+) -C60 (.-) is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from (1) BDP* to ADP in the dyad BDP-ADP and electron transfer from (1) ADP* to C60 in the dyad ADP-C60 . Sequential energy and electron transfer have also been clearly observed in the triad BDP-ADP-C60 . By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈10(11)  s(-1) ). The dynamics of electron transfer through (1) ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge-separation process from (1) ADP* to C60 has been detected, which gives the relatively long-lived BDP-ADP(.+) C60 (.-) with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge-separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state

  1. Heat of formation for C60 by means of the G4(MP2) thermochemical protocol through reactions in which C60 is broken down into corannulene and sumanene

    NASA Astrophysics Data System (ADS)

    Wan, Wenchao; Karton, Amir

    2016-01-01

    High-level heats of formation for C60 are obtained through the use of reactions in which C60 is broken down into its fundamental bowl-shaped aromatic fragments (corannulene and sumanene). The reaction enthalpies are obtained by means of the high-level G4(MP2) thermochemical protocol and reliable experimental (from the Active Thermochemical Tables, ATcT) or theoretical (from W1h theory) heats of formation are used for the molecules involved in these reactions. Our best theoretical estimate, ΔfH°298[C60(g)] = 2511.7 kJ mol-1, suggests that the experimental value adopted by the NIST thermochemical database (ΔfH°298[C60(g)] = 2560 ± 100 kJ mol-1) should be revised downwards.

  2. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent.

    PubMed

    Bolskar, Robert D; Benedetto, Angelo F; Husebo, Lars O; Price, Roger E; Jackson, Edward F; Wallace, Sidney; Wilson, Lon J; Alford, J Michael

    2003-05-01

    M@C(60) and related endohedral metallofullerenes comprise a significant portion of the metallofullerene yield in the traditional arc synthesis, but their chemistry and potential applications have been largely overlooked because of their sparse solubility. In this work, procedures are described to solublize Gd@C(60) species for the first time by forming the derivative, Gd@C(60)[C(COOCH(2)CH(3))(2)](10), and its hydrolyzed water-soluble form, Gd@C(60)[C(COOH)(2)](10). Imparting water solubility to Gd@C(60) permits its evaluation as a magnetic resonance imaging (MRI) contrast agent. Relaxometry measurements for Gd@C(60)[C(COOH)(2)](10) reveal it to possess a relaxivity (4.6 mM(-1) s(-1) at 20 MHz and 40 degrees C) comparable to that of commercially available Gd(III) chelate-based MRI agents. An in vivo MRI biodistribution study in a rodent model reveals Gd@C(60)[C(COOH)(2)](10) to possess the first non-reticuloendothelial system (RES) localizing behavior for a water-soluble endohedral metallofullerene species, consistent with its lack of intermolecular aggregation in solution as determined by light-scattering measurements. This first derivatization and use of a M@C(60) species suggests new potential for metallofullerene technologies by reducing reliance on the chromatographic purification procedures normally employed for the far less abundant M@C(82) and related endohedrals. The recognition that water-soluble fullerene derivatives can be designed to avoid high levels of RES uptake is an important step toward fullerene-based pharmaceutical development. PMID:12720461

  3. Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60

    NASA Astrophysics Data System (ADS)

    Yoo, Seunghyup; Domercq, Benoit; Kippelen, Bernard

    2005-05-01

    We present studies of the current-voltage characteristics of organic solar cells based on heterojunctions of pentacene and C60 as a function of illumination intensity. The photovoltaic response at a given illumination level is parameterized and modeled using the equivalent circuit model developed for inorganic pn-junction solar cells. Reduction in shunt resistance and increase in diode reverse saturation current density are observed upon increase of the light intensity. We demonstrate that this effect can be modeled by a refined equivalent circuit model that contains an additional shunt resistance and an additional diode the properties of which are functions of the light intensity. The effects of these additional components on the overall photovoltaic performance are discussed.

  4. High mobility, low voltage operating C(60) based n-type organic field effect transistors.

    PubMed

    Schwabegger, G; Ullah, Mujeeb; Irimia-Vladu, M; Baumgartner, M; Kanbur, Y; Ahmed, R; Stadler, P; Bauer, S; Sariciftci, N S; Sitter, H

    2011-10-01

    We report on C(60) based organic field effect transistors (OFETs) that are well optimized for low voltage operation. By replacing commonly used dielectric layers by thin parylene films or by utilizing different organic materials like divinyltetramethyldisiloxane-bis(benzocyclo-butene) (BCB), low density polyethylene (PE) or adenine in combination with aluminum oxide (AlOx) to form a bilayer gate dielectric, it was possible to significantly increase the capacitance per unit area (up to two orders of magnitude). The assembly of metal-oxide and organic passivation layer combines the properties of the high dielectric constant of the metal oxide and the good organic-organic interface between semiconductor and insulator provided by a thin capping layer on top of the AlOx film. This results in OFETs that operate with voltages lower than 500 mV, while exhibiting field effect mobilities exceeding 3 cm(2) V(-1) s(-1). PMID:22049252

  5. Efficient zinc phthalocyanine/C60 heterojunction photovoltaic devices employing tetracene anode interfacial layers.

    PubMed

    Fleetham, Tyler B; Mudrick, John P; Cao, Weiran; Klimes, Kody; Xue, Jiangeng; Li, Jian

    2014-05-28

    We report the development of efficient small molecular organic photovoltaic devices incorporating tetracene anode interfacial layers. Planar heterojunction devices employing the tetracene anode interfacial layer achieved an EQE enhancement of 150% in the spectral region corresponding to ZnPc absorption. We demonstrate that this enhancement is due to the combined effect of the tetracene layer providing exciton-blocking at the anode/donor interface and potentially an increase in the exciton diffusion length in the ZnPc layer due to increased crystallinity and more preferred molecular stacking orientation. A power conversion efficiency of 4.7% was achieved for a planar heterojunction of a modified zinc phthalocyanine based material and C60 when employing the tetracene anode interfacial layer. By utilizing a planar-mixed heterojunction structure a peak EQE of nearly 70% and a power conversion efficiency of 5.8% was achieved. PMID:24708488

  6. Preparation and EPR characterization of N@C60 and N@C70 based peapods

    NASA Astrophysics Data System (ADS)

    Corzilius, B.; Gembus, A.; Weiden, N.; Dinse, K.-P.

    2005-09-01

    Using the quartet spin of encased nitrogen atoms as an electron paramagnetic resonance (EPR) probe, it is possible to examine the fullerene/nanotube interactions in a peapod. A purification method is developed which allows low temperature filling of nanotubes with endohedral fullerenes. The paramagnetic impurities of undoped single wall carbon nanotubes (SWNT) are characterized via EPR resulting in a broad superparamagnetic signal of the remaining catalyst particles and a rather narrow signal of carbonaceous material. Comparison of EPR spectra of several nitrogen endohedral doped peapods with their analogues obtained in a solid fullerene matrix shows a significant broadening of N@C60 and N@C70 EPR signals. This broadening is related to a non-vanishing zero-field splitting caused by deformation of the fullerene cage upon encapsulation.

  7. Wave-dispersed third-order nonlinear optical properties of C 60 thin films

    NASA Astrophysics Data System (ADS)

    Kajzar, F.; Taliani, C.; Danieli, R.; Rossini, S.; Zamboni, R.

    1994-01-01

    Results of wave-dispersed third harmonic generation measurements in sublimed C 60 thin films are reported and discussed within a three-level model. Two strong resonant enhancements in cubic susceptibility χ (3)(-3ω; ω, ω, ω) are observed. The first one, occurring at a fundamental wavelength of 1.3 μm with a χ (3)(-3ω; ω, ω, ω) maximum value of 6.1×10 -11 esu, is interpreted in terms of a two-photon resonance with the one-photon forbidden electronic T 1g level. The second resonance at 1.064 μm, with a maximum value of χ (3)(-3ω; ω, ω, ω)=8.2×10 -11 esu is interpreted as a three-photon resonance with the lowest one-photon allowed T 1u electronic level.

  8. Detection of C60 and C70 in a young planetary nebula.

    PubMed

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-01

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space. PMID:20651118

  9. Quenching C60 fullerene into diamond in the Fe-C alloy system by laser treatment

    NASA Astrophysics Data System (ADS)

    Li, Changping; Wei, Bingqing; Liu, Wenjin; Liang, Ji; Gao, Zhidong; Zhang, Jihong; Wu, Dehai

    1996-08-01

    Diamond particles dispersed in the Fe-C alloy system were obtained by CO2 continuous laser-induced quenching of C60/C70 coatings on 45# carbon steel (C content: 0.45 pct). Rockwell hardness, electron microscopy, and selected area electron diffraction methods had been used to analyze the products (namely, fullerite). The results indicated that the so-made fullerite, which reached average Rockwell hardness of 65.4, contained a great deal of polygonal crystallites on the order of 0.1 (μm). Most of them were well-faceted cubic diamond. Other new phases were also formed in the process. The possible transition mechanism was discussed.

  10. Tight-binding molecular dynamics simulations of radiation-induced fragmentation of C60

    NASA Astrophysics Data System (ADS)

    Horváth, Lóránd; Beu, Titus A.

    2008-02-01

    The fragmentation of the C60 fullerene was investigated using tight-binding molecular dynamics simulations based on the parametrization of Papaconstantopoulos [MRS Symposia Proceedings No. 491 (Materials Research Society, Pittsburgh, 1998), p. 221]. Averaged fragment size distributions over random sets of initial configurations were obtained from simulations of radiation-induced fragmentation in the 50-500eV excitation energy range. The excitation caused by the radiation was simulated simply by ascribing suddenly random velocities to each atom of the fullerene cage. For low excitation energies, the size distributions are peaked for dimers (reflecting a preferential C2 emission) and a bimodal size dependence characterizes the distributions of the complementary small and large fragments. For high excitation energies, predominantly multifragmentation occurs, but a genuine power-law dependence of small fragments is not yet observable. A phase transition is found for rather low excitation energies (100-120eV) .

  11. C2 Fragmentation Energy of C60 Revisited: Theory Disagrees with Most Experiments

    NASA Technical Reports Server (NTRS)

    Boese, A. Daniel; Scuseria, Gustavo E.

    1998-01-01

    Following our earlier work on the subject, we have carried out density functional theory (DFT) and second-order Moller-Plesset perturbation theory (MP2) calculations of the dissociation energy of the reaction C60 yields C58 + C2 using polarized basis sets and geometries optimized with DFT methods. The present theoretical results support an electronic fragmentation energy D(sub e) around 10-11 eV in disagreement with most experimental results that place the dissociation energy D(sub o) (including zero point energy) around 7-8 eV. The plausible errors remaining in the theoretical calculations are unlikely to account for this big difference (2-4 eV).

  12. Direct Observation of a Gas Molecule (H2, Ar) Swallowed by C60

    SciTech Connect

    Sawa, H.; Kakiuchi, T.; Wakabayashi, Y.; Murata, Y.; Murata, M.; Komatsu, K.; Yakigaya, K.; Takagi, H.; Dragoe, N.

    2007-01-19

    Various types of endohedral fullerene complexes are known to date. The well known metallofullerenes are generally produced by arc-discharge method, but the use of such extremely drastic conditions is apparently not suitable for encapsulation of unstable molecules or gases. We recently succeeded in incorporation of a H2 molecule or an Ar atom in 100% into a C60. In order to observe the endohedral gas molecule directly, the X-ray diffraction analysis using synchrotron radiation were carried out. We observed a gas molecule encapsulated in each fullerene cage using structure analysis and the maximum entropy method. These gas molecules are floating inside of the hollow cavities and are completely isolated from the outside.

  13. Stereodivergent Synthesis of Chiral Fullerenes by [3 + 2] Cycloadditions to C60

    PubMed Central

    2013-01-01

    A wide range of new dipoles and catalysts have been used in 1,3-dipolar cycloadditions of N-metalated azomethine ylides onto C60 yielding a full stereodivergent synthesis of pyrrolidino[60]fullerenes with complete diastereoselectivities and very high enantioselectivities. The use of less-explored chiral α-iminoamides as starting 1,3-dipoles leads to an interesting double asymmetric induction resulting in a matching/mismatching effect depending upon the absolute configuration of the stereocenter in the starting α-iminoamide. An enantioselective process was also found in the retrocycloaddition reaction as revealed by mass spectrometry analysis on quasi-enantiomeric pyrrolidino[60]fullerenes. Theoretical DFT calculations are in very good agreement with the experimental data. On the basis of this agreement, a plausible reaction mechanism is proposed. PMID:24359021

  14. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  15. Logic gates and memory cells based on single C60 electromechanical transistors

    NASA Astrophysics Data System (ADS)

    Ami, S.; Joachim, C.

    2001-03-01

    The equivalent electrical circuit of a single C60 electromechanical transistor in a planar lay-out is presented using its experimental STM characteristics. This circuit is used to demonstrate that such a hybrid molecular electronic device can be used as a class A amplifier, a NOT or NOR gate and to implement an SRAM memory point. All the devices are simulated using the SPICE routine to find their optimum load resistance and cantilever grid size. The class A amplifier can operate with a cut-off frequency of a few gigahertz while the logic gate and memory are limited to a few tens of megahertz, but for a very small power design in the picowatt range.

  16. Peas in a pod: quasi-one-dimensional C60 molecules in a nanotube

    NASA Astrophysics Data System (ADS)

    Gatica, Silvina M.; Mercedes Calbi, M.; Cole, Milton W.

    2003-03-01

    We evaluate the equation of state of the quasi-one-dimensional phase of C60 molecules in small carbon nanotubes, nicknamed "peas in a pod"[1,2]. The pressure and chemical potential are evaluated as functions of the temperature and density, within the approximation of nearest neighbor interactions and classical statistical mechanics. A phase transition to a 3D anisotropic condensed phase is predicted as a result of the interaction between molecules in adjacent tubes. [1] B.W. Smith, M. Monthioux and D.E. Luzzi, Nature 296, 323 (1998). [2] M. Hodak, L.A. Girifalco, Phys. Rev. B 64, 035407 (2001), Chem. Phys. Lett. 350, 405 (2001); L.A. Girifalco and M. Hodak, App. Phys. A, in press.

  17. Effect of natural organic matter on aggregation behavior of C60 fullerene in water.

    PubMed

    Mashayekhi, Hamid; Ghosh, Saikat; Du, Peng; Xing, Baoshan

    2012-05-15

    The stability of C(60) fullerene particles in water affects its mobility, bioavailability, and toxicity to organisms. Natural organic matters (NOMs) have pronounced effects on the aggregation behavior of C(60) fullerene. This study was to examine the effects of NOM structural properties on the aggregation behavior of fullerene water suspension (FWS). Fulvic acid (FA), tannic acid (TA), and two structurally different humic acids (HA1 and HA7) were studied. HA1 and HA7 were sequentially extracted HAs, where HA7 was more hydrophobic than HA1 and had a higher molecular weight. Aggregation was induced by addition of varying amounts of Ca(2+) to the FWS with 2 mg/L of each NOM. The absolute value of zeta potential |ζ| of pure FWS increased after addition of any type of NOM. Addition of Ca(2+) to the FWS+NOM system decreased |ζ| of fullerene almost uniformly for all types of NOM. FWS critical coagulation concentration (CCC) was equal to 14.5, 6.5, 5.4, and 3.7 mM Ca(2+) for HA7, HA1, FA, and TA, respectively. The order of increasing CCCs was positively correlated to the NOMs molecular weight and negatively to their polarity. A nearly constant ζ for FWS+NOM system at a wide range of Ca(2+) concentrations suggested the steric stability rather than electrostatic one. This study highlighted the role of NOM in the fate of manufactured nanoparticles in the environment and linked the structural properties of NOM to their interaction with manufactured nanoparticles. PMID:22365633

  18. Dynamic solvation shell and solubility of C60 in organic solvents.

    PubMed

    Wang, Chun I; Hua, Chi C; Chen, Show A

    2014-08-21

    The notion of (static) solvation shells has recently proved fruitful in revealing key molecular factors that dictate the solubility and aggregation properties of fullerene species in polar or ionic solvent media. Using molecular dynamics schemes with carefully evaluated force fields, we have scrutinized both the static and the dynamic features of the solvation shells of single C60 particle for three nonpolar organic solvents (i.e., chloroform, toluene, and chlorobenzene) and a range of system temperatures (i.e., T = 250-330 K). The central findings have been that, while the static structures of the solvation shell remain, in general, insensitive to the effects of changing solvent type or system temperature, the dynamic behavior of solvent molecules within the shell exhibits prominent dependence on both factors. Detailed analyses led us to propose the notion of dynamically stable solvation shell, effectiveness of which can be characterized by a new physical parameter defined as the ratio of two fundamental time constants representing, respectively, the solvent relaxation (or residence) time within the first solvation shell and the characteristic time required for the fullerene particle to diffuse a distance comparable to the shell thickness. We show that, for the five (two from the literature) different solvent media and the range of system temperatures examined herein, this parameter bears a value around unity and, in particular, correlates intimately with known trends of solubility for C60 solutions. We also provide evidence revealing that, in addition to fullerene-solvent interactions, solvent-solvent interactions play an important role, too, in shaping the dynamic solvation shell, as implied by recent experimental trends. PMID:25084556

  19. Extraterrestrial Helium (He@C60) Trapped in Fullerenes in the Sudbury Impact Structure

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bada, J. L.; Poreda, R. J.; Bunch, T. E.

    1997-01-01

    Fullerenes (C60 and C70) have recently been identified in a shock-produced breccia (Onaping Formation) associated with the 1.85-Ga Sudbury Impact Crater. The presence of parts-per-million levels of fullerenes in this impact structure raises interesting questions about the processes that led to the formation of fullerenes and the potential for delivery of intact organic material to the Earth by a large bolide (e.g., asteroid or comet). Two possible scenarios for the presence of fullerenes in the Sudbury impact deposits are that (1) fullerenes are synthesized within the impact plume from the C contained in the bolide; or (2) fullerenes are already present in the bolide and survived the impact event. The correlation of C and trapped noble gas atoms in meteorites is well established. Primitive meteorites contain several trapped noble gas components that have anomalous isotopic compositions, some of which may have a presolar origin. Several C-bearing phases, including SiC, graphite, and diamond, have been recognized as carriers of trapped noble gases. It has also been suggested that fullerenes (C60 and C70) might be a carrier of noble gas components in carbonaceous chondrites. Recently, fullerenes have been detected in separate samples in the Allende meteorite. Carbon-60 is large enough to enclose the noble gases He, Ne, Ar, Kr, and Xe, but it is too small to contain diatomic gases such as N2 or triatomic gases such as CO2. Recent experimental work has demonstrated that noble gases of a specific isotopic composition can be introduced into synthetic fullerenes at high temperatures and pressures; these encapsulated gases can then be released by the breaking of one or more C bonds during step-heating under vacuum. These thermal-release patterns for He encapsulated within the C60 molecule (He@C60) are similar to the patterns for acid residues of carbonaceous chondrites, suggesting that fullerenes could be an additional carrier of trapped noble gases in acid residues of

  20. Analysis of the interface and its position in C60(n+) secondary ion mass spectrometry depth profiling.

    PubMed

    Green, F M; Shard, A G; Gilmore, I S; Seah, M P

    2009-01-01

    C60(n+) ions have been shown to be extremely successful for SIMS depth profiling of a wide range of organic materials, causing significantly less degradation of the molecular information than more traditional primary ions. This work focuses on examining the definition of the interface in a C60(n+) SIMS depth profile for an organic overlayer on a wafer substrate. First it investigates the optimum method to define the organic/inorganic interface position. Variations of up to 8 nm in the interface position can arise from different definitions of the interface position in the samples investigated here. Second, it looks into the reasons behind large interfacial widths, i.e., poor depth resolution, seen in C60(n+) depth profiling. This work confirms that, for Irganox 1010 deposited on a wafer, the depth resolution at the Irganox 1010/substrate interface is directly correlated to the roughening of material. C60n+ PMID:19117445

  1. Reaction Probability and Infrared Detection of the Primary Ozonide in Collisions of O3 with Surface-Bound C60.

    PubMed

    Davis, Erin Durke; Wagner, Alec; McEntee, Monica; Kaur, Manpreet; Troya, Diego; Morris, John R

    2012-11-01

    The kinetics and mechanism of reactions between gas-phase ozone and surface-bound C60 have been investigated by monitoring changes to reflection-absorption infrared spectra within a well-characterized film of C60 during exposure to a controlled flux of pure ozone. These ultrahigh vacuum studies provide direct infrared spectroscopic evidence for the formation and decomposition of a primary ozonide of C60. The spectral assignments of this highly unstable intermediate have been verified using electronic structure calculations. Theory and experiment revealed that C60 oxidized nearly exclusively via addition of ozone across the double bond that links two six-carbon-containing rings of the molecule. Following spectral characterization, the initial probability for ozone to react with the surface was found to be 5.8 ± 0.2 × 10(-4). Once formed, the ozonide quickly thermally decomposed to a variety of carbonyl-containing products. PMID:26296028

  2. Synthesis of C60(O)3: an open-cage fullerene with a ketolactone moiety on the orifice.

    PubMed

    Xin, Nana; Yang, Xiaobing; Zhou, Zishuo; Zhang, Jianxin; Zhang, Showxin; Gan, Liangbing

    2013-02-01

    Four isomers are currently known for the trioxygenated fullerene derivative C(60)(O)(3), three regioisomers with all of the oxygen addends as epoxy groups and the unstable ozonide isomer with a 1,2,3-trioxlane ring. Here we report the synthesis of an open-cage isomer for C(60)(O)(3) with a ketolactone moiety embedded into the fullerene skeleton through a three-step procedure mediated by fullerene peroxide chemistry. Two fullerene skeleton carbon-carbon bonds are cleaved in the process. The open-cage derivative C(60)(O)(3) can be converted back to C(60) through deoxygenation with PPh(3). Single crystal X-ray structure confirmed the open-cage structure. PMID:23311689

  3. Establishment of structure-conductivity relationship for tris(2,2'-bipyridine) ruthenium ionic C(60) salts.

    PubMed

    Hong, Jie; Shores, Matthew P; Elliott, C Michael

    2010-12-20

    Three ionic C(60) salts with [Ru(bpy)(3)](m+) (bpy = 2,2'-bipyridine) as cations were synthesized. The UV-vis-NIR spectra, XPS spectra, and elemental analysis have demonstrated their compositions: [Ru(bpy)(3)](2)(C(60)) (1), [Ru(bpy)(3)](C(60)) (2), and [Ru(bpy)(3)](C(60))(2) (3). Single crystals of polycrystalline compounds 1 and 2 were obtained as solvates. At room temperature, all three salts are semiconducting with the highest four-probe conductivity observed for compound 1 at ∼10 S m(-1). The electronic conduction mechanisms can be described appropriately by an electron hopping model in this immobilized polyvalent redox system. PMID:21070047

  4. Anomalous enhancement in the infrared phonon intensity of a one-dimensional uneven peanut-shaped C60 polymer

    NASA Astrophysics Data System (ADS)

    Onoe, J.; Takashima, A.; Ono, S.; Shima, H.; Nishii, T.

    2012-05-01

    A one-dimensional (1D) uneven peanut-shaped C60 polymer formed from electron-beam (EB)-induced polymerization of C60 molecules showed an anomalous increase in two characteristic infrared (IR) peak intensities, which are respectively due to the radial and tangential motion of the 1D polymer, when compared to the IR peaks of pristine C60 films. This anomaly was analyzed on the basis of the vibrational van Hove singularity (VHS), using an extended thin-shell elastic model fully considering the effects of periodic radius modulation inherent to the 1D uneven peanut-shaped C60 polymer. We succeeded in explaining the enhancement in the tangential peak intensity by VHS, whereas the origin to cause that in the radial peak intensity is still unclear.

  5. X-ray radiation influence on photoluminescence spectra of composite thin films based on C60

    NASA Astrophysics Data System (ADS)

    Elistratova, M. A.; Zakharova, I. B.; Romanov, N. M.

    2015-01-01

    Photoluminescence spectra of composite thin films based on C60 before and after X-ray irradiation, as well as the results of quantum-chemical calculations of corresponding molecular complexes are presented. Fullerene films doped by CdTe with various concentrations were obtained by means of vacuum co-evaporation in a Knudsen cell. Composition and surface morphology were measured by secondary electron microscopy and energy-dispersive X-ray spectroscopy. X-ray irradiated films were considered, and additional peaks in photoluminescence spectra were detected. These peaks appear as a result of molecular complexes formation from C60CdTe mixture and dimerization of the films. Density functional B3LYP quantum-chemical calculations for C60CdTe, molecular complexes, (C60)2 and C120O dimers were performed to elucidate some experimental results.

  6. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells.

    PubMed

    Prylutskyy, Yu; Bychko, A; Sokolova, V; Prylutska, S; Evstigneev, M; Rybalchenko, V; Epple, M; Scharff, P

    2016-02-01

    With an aim to elucidate the effects of C60 fullerene complexed with antibiotic doxorubicin (Dox) on model bilipid membranes (BLM), the investigation of the electrical properties of BLM under the action of Dox and C60 fullerene, and of their complex, C60+Dox,was performed. The complex as well as its components exert a clearly detectable influence on BLM, which is concentration-dependent and also depends on phospholipid composition. The mechanism of this effect originates either from intermolecular interaction of the drug with fatty-acid residues of phospholipids, or from membranotropic effects of the drug-induced lipid peroxidation, or from the sum of these two effects. By fluorescence microscopy the entering of C60 + Dox complex into HeLa cells was directly shown. PMID:26652389

  7. Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance.

    PubMed

    Bastos, João P; Voroshazi, Eszter; Fron, Eduard; Brammertz, Guy; Vangerven, Tim; Van der Auweraer, Mark; Poortmans, Jef; Cheyns, David

    2016-04-20

    Fullerene-based molecules are the archetypical electron-accepting materials for organic photovoltaic devices. A detailed knowledge of the degradation mechanisms that occur in C60 layers will aid in the development of more stable organic solar cells. Here, the impact of storage in air on the optical and electrical properties of C60 is studied in thin films and in devices. Atmospheric exposure induces oxygen-trap states that are 0.19 eV below the LUMO of the fullerene C60. Moreover, oxygen causes a 4-fold decrease of the exciton lifetime in C60 layers, resulting in a 40% drop of short-circuit current from optimized planar heterojunction solar cells. The presence of oxygen-trap states increases the saturation current of the device, resulting in a 20% loss of open-circuit voltage. Design guidelines are outlined to improve air stability for fullerene-containing devices. PMID:27065475

  8. Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

    PubMed

    Kawashima, Yuki; Ohkubo, Kei; Blas-Ferrando, Vicente Manuel; Sakai, Hayato; Font-Sanchis, Enrique; Ortíz, Javier; Fernández-Lázaro, Fernando; Hasobe, Taku; Sastre-Santos, Ángela; Fukuzumi, Shunichi

    2015-06-18

    Two phthalocyanines possessing carboxylate groups ((TBA)4H2Pc·1 and (TBA)4H2Pc·2) form 1:2 supramolecular complexes with lithium cation-encapsulated C60 (Li(+)@C60) [H2Pc·1(4-)/(Li(+)@C60)2 and H2Pc·2(4-)/(Li(+)@C60)2] in a polar mixed solvent. From the UV-vis spectral changes, the binding constants (K) were estimated as ca. 10(12) M(-2). Upon the photoexcitation of constructed supramolecular complexes, photoinduced electron transfer occurred to form the charge-separated (CS) state. The lifetime of the CS state was determined to be 1.2 ms for H2Pc·2(4-)/(Li(+)@C60)2, which is the longest CS lifetime among the porphyrinoid/fullerene supramolecular complexes. H2Pc·1(4-)/(Li(+)@C60)2 also afforded the long-lived CS state of 1.0 ms. The spin state of the long-lived CS states was determined to be a triplet, as indicated by the EPR signal at g = 4. The reorganization energy (λ) and the electronic coupling term were determined to be λ = 1.70 eV, V = 0.15 cm(-1) from the temperature dependence of the rate constant for the charge recombination of the CS state of H2Pc·1(4-)/(Li(+)@C60)2. The energy of the CS state (0.49 eV) is much smaller than the reorganization energy, indicating that the back-electron-transfer process is located in the Marcus normal region. The small electronic coupling term results from the spin-forbidden back electron transfer due to the triplet CS state. Supramolecular complexes of anionic zinc phthalocyanines with Li(+)@C60 were also prepared and investigated. The ZnPc·4(4-)/Li(+)@C60 supramolecular nanoclusters were assembled on the optically transparent electrode (OTE) of nanostructured SnO2 (OTE/SnO2) to construct the dye-sensitized solar cell. The IPCE (incident photon-to-photocurrent efficiency) values of OTE/SnO2/(ZnPc·4(4-)/Li(+)@C60)n were much higher than the sum of the two IPCE values of the individual systems OTE/SnO2/(Li(+)@C60)n and OTE/SnO2/(ZnPc·4(4-))n, covering the near-infrared region. PMID:25615010

  9. Application of C60 Fullerene-Doxorubicin Complex for Tumor Cell Treatment In Vitro and In Vivo.

    PubMed

    Panchuk, R R; Prylutska, S V; Chumakl, V V; Skorokhyd, N R; Lehka, L V; Evstigneev, M P; Prylutskyy, Yu I; Berger, W; Heffeter, P; Scharff, P; Ritter, U; Stoika, R S

    2015-07-01

    Development of nanocarriers for effective drug delivery to molecular targets in tumor cells is a real problem in modern pharmaceutical chemistry. In the present work we used pristine C60 fullerene as a platform for delivery of anticancer drug doxorubicin (Dox) to its biological targets. The formation of a complex of C60 fullerene with Dox (C60 + Dox) is described and physico-chemical characteristics of such complex are presented. It was found that Dox conjugation with C60 fullerene leads to 1.5-2-fold increase in Dox toxicity towards various human tumor cell lines, compared with such effect when the drug is used alone. Cytotoxic activity of C60 + Dox complex is accompanied by an increased level of cell produced hydrogen peroxide at early time point (3 h) after its addition to cultured cells. At the same time, cellular production of superoxide radicals does not change in comparison with the effect of Dox alone. Cytomorphological studies have demonstrated that C60 + Dox complexes kill tumor cells by apoptosis induction. The results of in vivo experiments using Lewis lung carcinoma in mice confirmed the enhancement of the Dox toxicity towards tumor cells after drug complexation with C60 fullerene. The effect of such complex towards tumor-bearing mice was even more pronounced than that in the in vitro experiment with targeting human tumor cells. The tumor volume decreased by 2.5 times compared with the control, and an average life span of treated animals increased by 63% compared with control. The obtained results suggest a great perspective of application of C60 + Dox complexes for chemotherapy of malignant tumors. PMID:26307837

  10. Fullerene (C60)-based tumor-targeting nanoparticles with "off-on" state for enhanced treatment of cancer.

    PubMed

    Shi, Jinjin; Wang, Binghua; Wang, Lei; Lu, Tingting; Fu, Yu; Zhang, Hongling; Zhang, Zhenzhong

    2016-08-10

    The traditional drug delivery systems always suffer from the unexpected drug release during circulation and the sluggish release of drug in target site. To address the problem, an "off-on" type drug delivery system with precise control was developed in this study. Doxorubicin (DOX) was covalently conjugated to fullerene (C60) nanoaggregates via a reactive oxygen species (ROS)-sensitive thioketal linker (C60-DOX NPs), and then the hydrophilic shell (Distearoyl-sn-glycero-3-phosphoethanolamine-PEG-CNGRCK2HK3HK11, DSPE-PEG-NGR) was attached to the outer surface of C60-DOX, giving it (C60-DOX-NGR NP) excellent stability in physiological solutions and active tumor-targeting capacity. C60-DOX-NGR NPs were able to entrap DOX efficiently even at acidic environment (pH5.5) when they were "off" state. In sharp contrast, when the NPs were "on" state, a large number of ROS were generated by C60, leading to the breaking of ROS-sensitive linker, thereby enabling the burst release of DOX. The "off" or "on" state of C60-DOX-NGR NPs could be precisely remote-controlled by a 532nm laser (at a low power density) with a high spatial/temporal resolution. In the in vivo and in vitro studies, the C60-based drug delivery system with "off-on" state exhibited a high antitumor efficacy and a low toxicity to normal tissues due to its tumor-targeting ability, remote-controlled drug release property and combined therapeutic effect (photodynamic therapy combined with chemotherapy). PMID:27276066

  11. Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine-functionalized C60 derivative.

    PubMed

    Cho, Min; Lee, Jaesang; Mackeyev, Yuri; Wilson, Lon J; Alvarez, Pedro J J; Hughes, Joseph B; Kim, Jae-Hong

    2010-09-01

    Recently, we reported the successful synthesis of various hexakis C60 derivatives (i.e., C60 with six functional groups containing NH3+-, CO2H-, or OH-terminals) with enhanced stability in water for aqueous phase application (Lee et al., Environ. Sci. Technol. 2009, 43, pp 6604-6610). Among these newly synthesized C60 derivatives, the cationic hexakis C60 derivative with amine functionality, C60(CR2)6 (R=CO2(CH2)2NH3+CF3CO2-), was found to exhibit remarkable efficiency to inactivate Escherichia coli and MS-2 bacteriophage under UVA irradiation. Herein, we report that this amine-functionalized C60 derivative is also photoactive in response to visible light from both commercial fluorescence lamps and sunlight. Efficient production of 1O2, facile reaction of 1O2 with proteins in MS-2 phage capsid and electrostatic attraction between positively charged C60 derivative and negatively charged MS-2 phage collectively contributed to high efficiency of MS-2 phage inactivation in this photocatalytic disinfection system. The rate of 1O2 production was evaluated using a probe compound, furfuryl alcohol, and 1O2 CT (the product of 1O2 concentration and exposure time) required to achieve a target level of virus inactivation was quantitatively analyzed. The unique visible-light sensitized virucidal property makes this C60 derivative highly desirable for the development of sustainable disinfection strategies that do not require continuous chemical addition nor an external energy source other than ambient light. PMID:20687548

  12. β-Cyclodextrin functionalized carbon quantum dots as sensors for determination of water-soluble C60 fullerenes in water.

    PubMed

    Cayuela, Angelina; Laura Soriano, M; Valcárcel, Miguel

    2016-04-25

    A selective photoluminescence method based on Carbon Quantum Dots (CQDs) functionalized with carboxymethyl-β-cyclodextrin for the direct determination of water-soluble C60 fullerene has been developed. CQDs were synthesized using a top-down methodology from multiwall carbon nanotubes (MWCNTs) and further functionalized with N-Boc-ethylenediamine to confer monoprotected amine groups onto their surface. Once amine-functionalized CQDs were obtained after deprotection, an amidation reaction with carboxymethyl-β-cyclodextrin cavitands was achieved and the obtained fluorescent β-cyclodextrin functionalized Carbon Quantum Dots (cd-CQDs) were investigated for the inclusion complexation of water-soluble C60. Quenching of their fluorescence was observed owing to the non-covalent self-assembly of cd-CQDs and C60, making possible the quantification of C60. A method to determine water-soluble C60 is then proposed with detection and quantification limits of 0.525 and 1.751 μg mL(-1), respectively. The method was validated by determining soluble C60 fullerene in spiked river water. One added value of the paper is the fact that it can be ascribed to the "Third Way in Analytical Nanoscience and Nanotechnology". PMID:26870854

  13. Immunostimulatory properties and enhanced TNF- α mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Jiao, Fang; Qiu, Yang; Li, Wei; Qu, Ying; Tian, Chixia; Li, Yufeng; Bai, Ru; Lao, Fang; Zhao, Yuliang; Chai, Zhifang; Chen, Chunying

    2009-10-01

    Publications concerning the mechanism of biological activity, especially the immunological mechanism of C60(OH)20 nanoparticles, are relatively limited. However, the structure and characteristics of this carbon allotrope have been widely investigated. In this paper, we have demonstrated that water-soluble C60(OH)20 nanoparticles have an efficient anti-tumor activity in vivo, and show specific immunomodulatory effects to the immune cells, such as T cells and macrophages, both in vivo and in vitro. For example, C60(OH)20 nanoparticles can increase the production of T-helper cell type 1 (Th1) cytokines (IL-2, IFN- γ and TNF-α), and decrease the production of Th2 cytokines (IL-4, IL-5 and IL-6) in serum samples. On the other hand, C60(OH)20 nanoparticles show almost no adverse effect to the viability of immune cells in vitro but stimulate the immune cells to release more cytokines, in particular TNF- α, which plays a key role in the cellular immune process to help eliminate abnormal cells. TNF- α production increased almost three-fold in treated T lymphocytes and macrophages. Accordingly, we conclude that C60(OH)20 nanoparticles have an efficient anti-tumor activity and this effect is associated with an increased CD4+/CD8+ lymphocyte ratio and the enhancement of TNF- α production. The data suggest that C60(OH)20 nanoparticles can improve the immune response to help to scavenge and kill tumor cells.

  14. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben

    2016-02-01

    Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMOD-LUMOA) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMOD-LUMOA offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMOD-LUMOA offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films.

  15. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects

    PubMed Central

    Tong, Zhong-Hua; Bischoff, Marianne; Nies, Loring F.; Carroll, Natalie J.; Applegate, Bruce; Turco, Ronald F.

    2016-01-01

    Fullerene C60 nanoparticles are being used in broad range of applications. It is important to assess their potential impacts in the environment. We evaluated the effects of C60 introduced as aqueous suspensions of nC60 aggregates of different particle size or via organic solvents on soils with different organic matter contents in this study. Impacts of the application were evaluated by measuring total microbial biomass, metabolic activity and bacterial community structure. Results show that nC60 aggregates, introduced as an aqueous suspension, had size-dependent effects on soil bacterial community composition in the low organic matter system, but induced minimal change in the microbial biomass and metabolic activity in soils with both high and low organic matter contents. Fullerene C60, co-introduced via an organic solvent, did not influence the response of soil microbes to the organic solvents. Our results suggest that nC60 aggregates of smaller size may have negative impact on soil biota and soil organic matter may play a key role in modulating the environmental effect of nanomaterials. PMID:27306076

  16. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects.

    PubMed

    Tong, Zhong-Hua; Bischoff, Marianne; Nies, Loring F; Carroll, Natalie J; Applegate, Bruce; Turco, Ronald F

    2016-01-01

    Fullerene C60 nanoparticles are being used in broad range of applications. It is important to assess their potential impacts in the environment. We evaluated the effects of C60 introduced as aqueous suspensions of nC60 aggregates of different particle size or via organic solvents on soils with different organic matter contents in this study. Impacts of the application were evaluated by measuring total microbial biomass, metabolic activity and bacterial community structure. Results show that nC60 aggregates, introduced as an aqueous suspension, had size-dependent effects on soil bacterial community composition in the low organic matter system, but induced minimal change in the microbial biomass and metabolic activity in soils with both high and low organic matter contents. Fullerene C60, co-introduced via an organic solvent, did not influence the response of soil microbes to the organic solvents. Our results suggest that nC60 aggregates of smaller size may have negative impact on soil biota and soil organic matter may play a key role in modulating the environmental effect of nanomaterials. PMID:27306076

  17. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects

    NASA Astrophysics Data System (ADS)

    Tong, Zhong-Hua; Bischoff, Marianne; Nies, Loring F.; Carroll, Natalie J.; Applegate, Bruce; Turco, Ronald F.

    2016-06-01

    Fullerene C60 nanoparticles are being used in broad range of applications. It is important to assess their potential impacts in the environment. We evaluated the effects of C60 introduced as aqueous suspensions of nC60 aggregates of different particle size or via organic solvents on soils with different organic matter contents in this study. Impacts of the application were evaluated by measuring total microbial biomass, metabolic activity and bacterial community structure. Results show that nC60 aggregates, introduced as an aqueous suspension, had size-dependent effects on soil bacterial community composition in the low organic matter system, but induced minimal change in the microbial biomass and metabolic activity in soils with both high and low organic matter contents. Fullerene C60, co-introduced via an organic solvent, did not influence the response of soil microbes to the organic solvents. Our results suggest that nC60 aggregates of smaller size may have negative impact on soil biota and soil organic matter may play a key role in modulating the environmental effect of nanomaterials.

  18. A detailed Auger electron spectroscopy study of the first stages of the growth of C60 thin films

    NASA Astrophysics Data System (ADS)

    Vidal, R. A.; Ferrón, J.

    2015-11-01

    In this work we take advantage of the large sensitivity and in-depth resolution of Auger electron spectroscopy (AES) to study in a detailed way the growth of C60 over different substrates, namely Cu(1 1 1), Si(1 0 0) and graphene. The ability of AES, as compared to more local probes like STM or AFM, to follow the process in a dynamic way, allows us to study the growth of C60 below and over one ML, including the change of C60 over either Si or Cu to the growth of C60 over a C60 film. We found that the growth always proceeds layer by layer. This result shows that differences in diffusion barriers are not as important as one may think following the idea of diffusion by a jumping mechanism. We propose that the sticking coefficient, governed by the adsorption energy, is responsible for the differences observed between Cu and Si. Our results also point to a different charge transfer among fullerene molecules and these surfaces. The same result is suggested in the case of C60 over graphene, but in this case our conclusion comes from the variable temperature experiments.

  19. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Converting amine-rich compounds into highly effective carbon dioxide (CO2 ) sorbents requires a better understanding and control of their properties. The reaction of fullerene C60 with polyethyleneimine converts the polymer into a high-performance CO2 sorbent. In this study, experimental evidence is reported for the activation effect of C60 on the amine moieties of the polymer. To do so, polypropylenimine (PPI) dendrimers that allowed for a systematic comparison of molecular composition and CO2 absorption were used. The addition of C60 to PPI to form PPI-C60 results in a reduction of the energy barrier of CO2 absorption, but also in a parallel decrease in the frequency of successful collisions between CO2 and PPI-C60 due to a possible disruption of the hydrogen-bonding network of amino groups and bound water in PPI. This finding supports the existence of a non-affinity "repulsive" effect between hydrophobic C60 and hydrophilic amines that forces them to be actively exposed to CO2. PMID:26223905

  20. Characterization of Plasma Gun with TiH2/C60 Cartridge for Disruption Mitigation in Tokamaks

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; HyperV Technologies Corp. Team

    2011-10-01

    Impurity injection for disruption mitigation in tokamaks must be faster than growth time of plasma instabilities, requires sufficient mass to get critical electron density, high penetrability, and large assimilation fraction in the core plasma, with rapid impurity redistribution over the whole plasma. FAR-TECH, Inc. proposed the innovative idea to use hyper-velocity (>30 km/s), high-density (>1023 m-3) C60/C plasma jets with high ram pressure to deliver the impurity mass in <1 ms. For this purpose C60 powder explosively sublimated into molecular gas, from a solid state, pulsed power driven TiH2/C60 injector cartridge is ionized and accelerated in a plasma accelerator. We report the complete characterization of the TiH2/C60 cartridge with 5 kJ capacitive driver which demonstrated the capability of producing >30 mg of C60 gas in <0.5 ms. In addition we present the construction and testing status of a 100 kJ coaxial plasma gun (~35 cm length) prototype with TiH2/C60 cartridge for a small scale, proof-of-principle experiment on a tokamak. Work supported by the US DOE DE-FG02-08ER85196 grant.

  1. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.

    PubMed

    Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben

    2016-02-28

    Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMO(D)-LUMO(A)) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMO(D)-LUMO(A) offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMO(D)-LUMO(A) offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films. PMID:26931717

  2. Effect of surfactants on the removal and acute toxicity of aqueous nC60 aggregates in water treatment process.

    PubMed

    Ge, Ling; Kirumba, George; Zhang, Bo; Pal, Amrita; He, Yiliang

    2015-07-01

    This work aimed to evaluate the effect of surfactants on the removal of aqueous nC60 aggregates by coagulation-filtration process and assess the acute toxicity of filtrates by Microtox test. Three surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Triton X-100 (TX100) were selected representing cationic, anionic, and nonionic types, respectively. Results showed that the change of physicochemical properties of nC60 associating with different types of surfactants determined nC60's removal efficiency and acute toxicity. CTAB increased the number of large particles. It also changed the zeta potential of nC60 from negative to positive, leading to the low removal rates (17.3-50.2%) when CTAB concentration was designed in the range of 0.03-1 g/L, and the filtrates showed acute toxicity to bioluminescent bacteria (inhibition rate > 80%). On the contrary, TX100 obviously increased the proportion of small particles, and it is noteworthy that even less than 1 mg/L of nC60 (20% of the initial concentration) with TX100 remaining in filtrates could evoke phototoxicity due to reactive oxygen species (ROS) generation under UV irradiation. Compared to CTAB and TX100, SDS exerted an effect on the removal process and toxicity of nC60 only when concentration was beyond the critical micelle concentration (CMC; 2.5 g/L). These findings collectively suggest that characteristics of nC60 are flexible and strongly dependent on surfactant modification, as a result of which these particles could potentially find their way through water treatment route and exert a potential toxicity risk. PMID:25631739

  3. On the thermodynamic properties of the Rb3C60 superconductor

    NASA Astrophysics Data System (ADS)

    Szcze&şacute; niak, R.; Durajski, A. P.; Pach, P. W.

    2014-05-01

    The thermodynamic properties of the superconducting state in Rb3C60 fulleride have been studied in the framework of the Migdal-Eliashberg approach. In the first step, the high physical value of the Coulomb pseudopotential has been predicted (μC★=0.33), which corresponds to the screened Coulomb potential UC=0.61 eV. Next, the temperature dependence of the order parameter and the wave function renormalization factor has been calculated. On the basis of the obtained results, the ratio of the energy gap to the critical temperature (RΔ≡2Δ(0)/kBTC), the ratio of the specific heat jump to the normal state specific heat (RC≡ΔCTC/CNTC), and the parameter connected with the thermodynamic critical field (RH≡TCCNTC/HC2(0)) have been estimated. It has been shown that the above parameters significantly differ from the BCS predictions: RΔ=4.06,RC=2.15, and RH=0.145. Finally, the temperature dependence of the electron effective mass (me★) has been presented; me★ assumes maximum at the critical temperature: 2.27me, where me denotes the electron band mass. In the paper, the obtained theoretical results have been also compared with the experimental data.

  4. Multislit interference patterns in high-order harmonic generation in C60

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Becker, A.; Jaroń-Becker, A.

    2007-12-01

    We study high-order harmonic generation in C60 molecules interacting with a linearly polarized intense short laser pulse at near- and mid-infrared wavelengths, using an extension of the so-called three-step or Lewenstein model to the molecular case. The results exhibit modulations in the plateaus of the spectra at the longer wavelengths, which are present for ensembles of aligned as well as randomly oriented fullerenes. The analysis of the results show that the minima can be explained by a multislit interference effect arising from the contributions of the 60 atomic centers to the dipole moment. Good agreement between the positions of the minima in the spectra obtained in the length gauge are found with those of the recombination matrix element, but not for those in the velocity gauge calculations. We further use a simple spherical model to analyze how geometrical information, such as the radius of the fullerene cage, can be obtained from the interference pattern in the harmonic spectra.

  5. Trap states in ZnPc:C60 small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Burtone, Lorenzo; Fischer, Janine; Leo, Karl; Riede, Moritz

    2013-01-01

    Trap states are known to be one of the key parameters limiting charge transport in organic semiconductors and hence the performance of organic solar cells. Here, small-molecule organic solar cells based on a bulk heterojunction between zinc-phtalocyanine (ZnPc) and the fullerene C60 are characterized according to their trapping nature by noninvasive methods and under ambient conditions. We show how impedance spectroscopy, applied to systematically varied device structures, reveals the trap localization as well as its occupation mechanisms. Further insight is given from investigations of different device working points and illumination intensities. Thus, we find the traps to be bulk states in the active layer with an electron-trapping nature. They can be described by a Gaussian energy distribution of 55 meV width, centered at 0.46 eV below the electron transport level and with a concentration of 3.5 × 1016 cm-3. Moreover, the trap states act as recombination centers in the presence of injected or photogenerated charge carriers. The results are confirmed by electrical simulations.

  6. QM(DFT) and MD studies on formation mechanisms of C60 fullerenes

    NASA Astrophysics Data System (ADS)

    Hua, Xinlei; Cagin, Tahir; Che, Jianwei; Goddard, William A., III

    2000-06-01

    One of the most puzzling aspects of fullerenes is how such complicated symmetric molecules are formed from a gas of atomic carbons, namely, the atomistic or chemical mechanisms. Are the atoms added one by one or as molecules (C2, C3)? Is there a critical nucleus beyond which formation proceeds at gas kinetic rates? What determines the balance between forming buckyballs, buckytubes, graphite and soot? The answer to these questions is extremely important in manipulating the systems to achieve particular products. A difficulty in current experiments is that the products can only be detected on time scales of microseconds long after many of the important formation steps have been completed. Consequently, it is necessary to use simulations, quantum mechanics and molecular dynamics, to determine these initial states. Experiments serve to provide the boundary conditions that severely limit the possibilities. Using quantum mechanical methods (density functional theory (DFT)) we derived a force field (MSXX FF) to describe one-dimensional (rings) and two-dimensional (fullerene) carbon molecules. Combining DFT with the MSXX FF, we calculated the energetics for the ring fusion spiral zipper (RFSZ) mechanism for formation of C60 fullerenes. Our results shows that the RFSZ mechanism is consistent with the quantum mechanics (with a slight modification for some of the intermediates).

  7. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface.

    PubMed

    Akimov, Alexey V; Prezhdo, Oleg V

    2014-01-29

    Charge carrier multiplication in organic heterojunction systems, a process known as singlet fission (SF), holds promise for development of solar cells with enhanced photon-to-electron yields, and therefore it is of substantial fundamental interest. The efficiency of photovoltaic devices based on this principle is determined by complex dynamics involving key electronic states coupled to particular nuclear motions. Extensive experimental and theoretical studies are dedicated to this topic, generating multiple opinions on the nature of such states and motions, their properties, and mechanisms of the competing processes, including electron-phonon relaxation, SF, and charge separation. Using nonadiabatic molecular dynamics, we identify the key steps and mechanisms involved in the SF and subsequent charge separation, and build a comprehensive kinetic scheme that is consistent with the existing experimental and theoretical results. The ensuing model provides time scales that are in excellent agreement with the experimental observations. We demonstrate that SF competes with the traditional photoinduced electron transfer between pentacene and C60. Efficient SF relies on the presence of intermediate dark states within the pentacene subsystem. Having multiexciton and charge transfer character, these states play critical roles in the dynamics, and should be considered explicitly when explaining the entire process from the photoexcitation to the final charge separation. PMID:24397723

  8. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    PubMed Central

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  9. Tight-binding molecular dynamics simulations of radiation-induced C60 fragmentation

    NASA Astrophysics Data System (ADS)

    Beu, Titus A.; Horváth, Lóránd; Ghişoiu, Ioan

    2009-02-01

    The radiation-induced fragmentation of the C60 fullerene was investigated by tight-binding molecular dynamics simulations based on the parametrization of Papaconstantopoulos [Tight-Binding Approach to Computational Materials Science, edited by P.E.A. Turchi, A. Gonis, and L. Colombo, M.R.S. Symposia Proceedings No. 491 (Materials Research Society, Pittsburgh, 1998), p. 221] and employing novel models for nonadiabatic excitation and charge redistribution. The resulted fragment size and fragment charge distributions, averaged over large ensembles of trajectories corresponding to total ionization states up to +24e and excitation energies up to 1000 eV, have been used to analyze the fragmentation statistics in terms of several derived quantities. For moderate excitation energies, the fragment size profiles reproduce the experimentally observed U shape and bimodal dependence. Even though for high excitation energies and high total charges, predominantly multifragmentation occurs, a genuine power-law dependence sets in only beyond 1000 eV. A well-defined phase-transition region is found in the total charge-excitation energy plane, which appears to be delimited by a roughly parabolic critical line. The overall average critical excitation energy estimated from the simulations amounts to 55 eV and agrees with the experimental findings.

  10. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-05-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT) however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices.

  11. Non-fullerene acceptors: exciton dissociation with PTCDA versus C60.

    PubMed

    Dutton, Gregory J; Robey, Steven W

    2015-06-28

    Extensive development of new polymer and small molecule donors has helped produce a steady increase in the efficiency of organic photovoltaic (OPV) devices. However, OPV technology would also benefit from the introduction of non-fullerene acceptors. Unfortunately, efforts to replace fullerenes have typically led to significantly reduced efficiencies. A number of possible explanations for reduced efficiencies with non-fullerene acceptors compared to fullerene acceptors have been suggested, including the formation of unfavorable morphologies in non-fullerene systems and/or favorable excitation/carrier delocalization in fullerenes. In addition, enhanced exciton dissociation associated with fundamental characteristics of the fullerene molecular electronic states has also been suggested. We used time-resolved two-photon photoemission (TR-2PPE) to directly compare exciton dissociation at interfaces between zinc phthalocyanine (ZnPc) interfaces and the non-fullerene acceptor, perylene tetracarboxylic dianhydride (PTCDA) versus dissociation measured at the analogous interface with C60, and thus help discriminate between these potential explanations. Exciton dissociation rates are comparable for phthalocyanine interfaces with both acceptors, allowing us to suggest a hierarchy for the importance of various effects producing higher efficiencies with fullerene acceptors. PMID:26027544

  12. The performance of selected semi-empirical and DFT methods in studying C60 fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Sikorska, Celina; Puzyn, Tomasz

    2015-11-01

    The capability of reproducing the open circuit voltages (V oc) of 15 representative C60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V oc), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C61-buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E HOMO). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications.

  13. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices.

    PubMed

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  14. Effect of Water Hydrogen Bonding on the Solvent-Mediated "Oscillatory" Repulsion of C60 Fullerenes in Water.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-05-01

    The solvent-mediated interaction of C60 fullerenes in liquid water is examined by using the combination of the probabilistic hydrogen bond model with the density functional theory. This combination allows one to take into account the effect of hydrogen bonding between water molecules on their interaction with fullerenes and to construct an approximation for the distribution of water molecules in the system, which provides an efficient foundation for studying hydrophobic phenomena. Our numerical evaluations predict the solvent-induced interaction of two C60 fullerenes in water at 293 K to have an oscillatory-repulsive character (previously observed in molecular dynamics simulations) only when the vicinal water-water hydrogen bonds are slightly weaker than bulk ones. Besides indicating the direction of the energetic alteration of water-water hydrogen bonds near C60 fullerenes, our model also suggests that the hydrogen bonding ability of water plays a defining role in the solvent-mediated C60-C60 repulsion. PMID:26263346

  15. Charge separated states and singlet oxygen generation of mono and bis adducts of C60 and C70

    NASA Astrophysics Data System (ADS)

    Dallas, Panagiotis; Rogers, Gregory; Reid, Ben; Taylor, Robert A.; Shinohara, Hisanori; Briggs, G. Andrew D.; Porfyrakis, Kyriakos

    2016-02-01

    We present a series of fullerene derivatives and a study on their photoluminescence properties, complete with their efficiency as singlet oxygen generation photosensitizers. We demonstrate the intramolecular charge transfer between pyrene donor and fullerene acceptor. The opposite effect in decay lifetime measurements is observed for the mono and bis adducts of C60 and C70 for the first time, indicating an interplay between charge-separation and locally excited states. A monoexponential decay was observed for the mono adduct of C60 and the bis adduct of C70, while a biexponential decay was observed for the bis adduct of C60 and the mono adduct of C70. The effect of these molecules as sensitizers of the singlet oxygen radical was tested using detailed 3D excitation photoluminescence maps. A quenching of the singlet oxygen for the C60-mono and C70-bis adducts was observed while a strong photosensitizing effect was observed for the C60-bis and C70-mono adducts.

  16. Molecular simulation of C 60 adsorption onto a TiO 2 rutile (1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Carvalho, A. J. Palace; Ramalho, J. P. Prates

    2010-06-01

    A Monte Carlo molecular simulation study is presented on the adsorption and growth of C 60 films on the surface of the (1 1 0) face of rutile. Simulations are performed for a temperature of 600 K using atomistic models both for the fullerene molecules and the TiO 2 surface. It is found in this work that C 60 is adsorbed preferably in an ordered arrangement along the surface depressions over the exposed undercoordinated Ti cations. At low densities adsorption occurs preferably at alternate rows, with locations in consecutive rows being occupied appreciably only at higher C 60 densities. At low densities, the fullerene molecules tend to aggregate into islands in the surface plane. Additional layers of C 60 form only as the density increases, and do so before a monolayer is completed in all consecutive rows. Full monolayer capacity obtained at the highest densities is about 0.9 C 60 molecules per nm 2, but this is only achieved by completing the packing of molecules in interstices at a slightly upper level. The fraction of the molecules that lie closest to the surface only amounts to 0.6 molecules per nm 2.

  17. Rotations and vibrations of water molecule inside the fullerene cage: infrared study of H2O@C60

    NASA Astrophysics Data System (ADS)

    Room, Toomas; Shugai, A.; Nagel, U.; Mamone, S.; Krachmalnicoff, A.; Whitby, R. J.; Levitt, M. H.; Nishida, T.; Murata, Y.; Lei, Xuegong; Li, Yongjun; Turro, N. J.

    2015-03-01

    Water is the second molecule after hydrogen what has been trapped inside the cage of a C60 molecule by the molucular surgery method. We studied isolated water molecule isotopologs H2O, D2O, and HDO in the solid phase at cryogenic temperatures using IR spectroscopy. The water molecule rotation transitions were observed in the THz and vibration-rotation transitions in the mid-IR range. The slow conversion between para and ortho water allowed us to record the time evolution of spectra and to separate ortho and para absorption lines of water. The similarity of the rotation spectrum of caged water to water in the gas phase indicates that water is free to rotate in the C60 cage even at temperature as low as 3 K. However, spectral lines show a splitting of about 0.5 meV what is not compatible with the icosahedral symmetry of C60. Different models (e.g. crystal field effects in solid C60, C60 cage distortions) will be discussed. This work was supported by institutional research funding IUT23-3 of the Estonian Ministry of Education and Research.

  18. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60.

    PubMed

    Felker, Peter M; Bačić, Zlatko

    2016-05-28

    We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H2O@C60. They provide a comprehensive description of the dynamical behavior of H2O inside the fullerene having icosahedral (Ih) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H2O@C60, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H2O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allow tentative assignments of a number of transitions in the recent experimental INS spectra of H2O@C60 that have not been assigned previously. PMID:27250272

  19. Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Taima, Tetsuya; Miyadera, Tetsuhiko; Yamanari, Toshihiro; Kitamura, Michinori; Nakatsu, Kazuhiro; Yoshida, Yuji

    2012-06-01

    We demonstrate phase separation of co-evaporated zinc phthalocyanine (ZnPc) and fullerene (C60) for efficient organic photovoltaic cells. With introducing a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and a crystalline copper iodide film on indium tin oxide, 20-nm-thick ZnPc film adopts a lying-down crystalline geometry with grain sizes of about 50 nm. This surface distributed with strong interaction areas and weak interaction areas enables the selective growth of ZnPc and C60 molecules during following co-evaporation, which not only results in a phase separation but also improve the crystalline growth of C60. This blend film greatly enhances the efficiencies in photocurrent generation and carrier transport, resulting in a high power conversion efficiency of 4.56% under 1 sun.

  20. Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices.

    PubMed

    Allen, Christopher S; Liu, Guoquan; Chen, Yabin; Robertson, Alex W; He, Kuang; Porfyrakis, Kyriakos; Zhang, Jin; Briggs, G Andrew D; Warner, Jamie H

    2014-01-01

    In this article we probe the nature of electronic interactions between the components of hybrid C60-carbon nanotube structures. Utilizing an aromatic mediator we selectively attach C60 molecules to carbon nanotube field-effect transistor devices. Structural characterization via atomic force and transmission electron microscopy confirm the selectivity of this attachment. Charge transfer from the carbon nanotube to the C60 molecules is evidenced by a blue shift of the Raman G(+) peak position and increased threshold voltage of the transistor transfer characteristics. We estimate this charge transfer to increase the device density of holes per unit length by up to 0.85 nm(-1) and demonstrate further optically enhanced charge transfer which increases the hole density by an additional 0.16 nm(-1). PMID:24241690

  1. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60

    NASA Astrophysics Data System (ADS)

    Felker, Peter M.; Bačić, Zlatko

    2016-05-01

    We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H2O@C60. They provide a comprehensive description of the dynamical behavior of H2O inside the fullerene having icosahedral (Ih) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H2O@C60, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H2O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allow tentative assignments of a number of transitions in the recent experimental INS spectra of H2O@C60 that have not been assigned previously.

  2. Trap-assisted large gain in Cu2O/C60 hybrid ultraviolet/visible photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Lan; Su, Zisheng; Xi, Qiaoyue; Gao, Ge; Yang, Wei; Zhao, Yongxia; Wu, Cunqi; Wang, Lidan; Xu, Jingwei

    2016-04-01

    Photomultiplication-type ultraviolet (UV)/visible photodetectors (PDs) are demonstrated in an electrodeposited Cu2O/C60 hybrid structure. These simple organic/inorganic hybrid PDs exhibit external quantum efficiencies (EQEs) of 1.1 × 104% under illumination of 365 nm UV light at -3 V, indicating a large gain of photocurrent for these devices. Such an EQE is one of the highest values among the reported organic/inorganic hybrid PDs at the same voltage. Cu2O and C60 are found to play different roles in realizing the photomultiplication. Copper vacancies are proposed as the defects in the electrodeposited Cu2O layers, which can trap photogenerated holes. Such trapped holes will trigger the injection of multiple electrons and hence result in the photocurrent gain of the devices while C60 primarily acts as a light absorption media to provide free holes.

  3. Synthesis and characterization of fullerene nanowhiskers by liquid-liquid interfacial precipitation: influence of C60 solubility.

    PubMed

    Sathish, Marappan; Miyazawa, Kun'ichi

    2012-01-01

    Fullerene nanowhiskers (FNWs) composed of C(60) fullerene molecules were prepared using the liquid-liquid interfacial precipitation (LLIP) method in the carbon-disulfide (CS(2)) and isopropyl alcohol (IPA) system. The electron microscopic images reveal the formation of non-tubular FNWs. The X-ray diffraction (XRD) pattern studies indicate the presence of fcc crystalline structure and unusual triclinic structure in the FNWs. The selected area electron diffraction pattern (SAED) analysis demonstrates the existence of triclinic and electron beam assisted fcc to tetragonal crystalline phase transformation. The formation of triclinic structure might be validated due to the partial polymerization of FNWs at C(60) saturated CS(2)-IPA interface. The high solubility of C(60) in CS(2) solvent system results in partial polymerization of FNWs. The polymerization of fullerene molecules in the FNWs has been further confirmed using Raman spectroscopy. PMID:22456616

  4. A promising strategy for two-photon absorption materials by novel dicarbazole-conjugated C 60/C 70 fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Zeng, Gong-chang; Ouyang, Xin-hua; Yang, Ding-qiao; Zeng, He-ping

    2010-03-01

    Two novel fullerene dyads C 60-CBP (3) and C 70-CBP (4) containing an electron donor 4,4'-dicarbazole-1,1'-biphenyl (CBP) unit have been prepared through 1,3-dipolar cycloaddition reactions in situ. Their structures are characterized by 1H NMR, 13C NMR, FTIR, and MALDI-TOF-MS. Spectroscopic and electrochemical properties of 3 and 4 are studied in detailed by UV-vis, fluorescence, and cyclic voltammetric analysis, which present diminutive electronic interactions between the C 60/C 70 and CBP units, and the half wave potentials of 3 and 4 are more negative than those of C 60/C 70. The two-photon absorption (TPA) properties are determined for them by Z-scan method. Their geometric were optimized by the DFT calculations on the level at 6-31G (d,p) basis set.

  5. Decay of C60 by delayed ionization and C2 emission: Experiment and statistical modeling of kinetic energy release

    NASA Astrophysics Data System (ADS)

    Lebeault, M.-A.; Baguenard, B.; Concina, B.; Calvo, F.; Climen, B.; Lépine, F.; Bordas, C.

    2012-08-01

    C60 molecules highly excited in the nanosecond regime decay following ionization and dissociation by emitting a series of carbon dimers, as well as other small fragments if excitation is strong enough. The fragmentation mass spectrum and kinetic energy release of all charged fragments obtained in these experiments are interpreted within the framework of the Weisskopf theory, using a realistic Monte Carlo procedure in which the rates of all relevant decay channels are modeled using Arrhenius expressions. Comparison between the measurements and the simulated spectra allows the distribution of deposited energy to be accurately estimated. The dependence of the fragment kinetic energies on the laser fluence, found in the simulation but not observed in the experimental results, indicates that the small fragments are not necessarily emitted from small fullerenes resulting from C60 by sequential decay. Rather, direct multifragmentation of C60 is invoked to interpret the observed patterns. The possible role of post-ionization of neutral emitted fragments is discussed.

  6. Solubility of [C60(=C(COOH)2)3] in the [C60(=C(COOH)2)3]-SmCl3-H2O ternary system at 25°C

    NASA Astrophysics Data System (ADS)

    Pestov, I. A.; Keskinov, V. A.; Semenov, K. N.; Charykov, N. A.; Letenko, D. G.; Nikitin, V. A.

    2015-06-01

    The solubility diagram for the C60(=C(COOH)2)3-SmCl3-H2O ternary system at 25°C is studied by means of isothermal saturation in sealed vials. The compositions of saturated solutions are determined by a combination of the methods of titrimetric (chelatometric) and spectrophotometric (from electronic absorption spectra) chemical analysis. It is established that the solubility diagram of the specified system is a simple eutonic and consists of two branches that correspond to the crystallization of C60(=C(COOH)2)3·3H2O and SmCl3·6H2O crystalline hydrates and contains one invariant point: the eutonic point corresponding to the joint crystallization of both solid phases of constant composition. It is found that the eutonic mixture is strongly enriched by one of the components, SmCl3, while on the C60(=C(COOH)2)3·3H2O crystallization branch, which occupies an overwhelming part of the ternary diagram, the express salting-out of C60(=C(COOH)2)3 is observed upon an increase in the concentration of the salt component, i.e., SmCl3.

  7. Effect of the cooling rate on dimerization of C60(•-) in fullerene salt (DMI+)2·(C60(•-))·{Cd(Et2NCS2)2I-}.

    PubMed

    Konarev, Dmitri V; Khasanov, Salavat S; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2012-03-19

    The salt (DMI(+))(2)·(C(60)(•-))·{Cd(Et(2)NCS(2))(2)I(-)} (1) containing fullerene radical anions, the anions of cadmium diethyldithiocarbamate iodide, and N,N'-dimethylimidazolium cations was obtained. Fullerenes are monomeric in 1 at 250 K and form three-dimensional packing in which each fullerene has nearly tetrahedral surroundings from neighboring fullerenes. Fullerenes with a shorter interfullerene center-to-center distance of 10.031(2) Å form spiral chains arranged along the lattice c axis. The convolution consists of four fullerene molecules. Dimerization realized in 1 within the spiral chains below 135 K manifests a strong dependence on the cooling rate. The "frozen" monomeric phase was obtained upon instant quenching of 1. This phase is stable below 95 K for a long time but slowly converted to the dimeric phase at T > 95 K. It exhibits a weak antiferromagnetic interaction of spins below 95 K (the Weiss temperature is -4 K), which results in the splitting of the electron paramagnetic resonance (EPR) signal into two components below 10 K. A disordered phase containing both C(60)(•-) monomers and singly bonded (C(60)(-))(2) dimers with approximately 0.5/0.5 occupancies is formed at an intermediate cooling rate (for 20 min). The position of each fullerene in this phase is split into three positions slightly shifted relative to each other. The central position corresponds to nonbonded fullerenes with interfullerene center-to-center distances of 9.94-10.00 Å. Two other positions are coincided to dimeric fullerenes formed with the right and left fullerene neighbors within the spiral chain. This intermediate phase is paramagnetic with nearly zero Weiss temperature due to isolation of C(60)(•-) by diamagnetic species and exhibits a strongly asymmetric EPR signal below 20 K. A diamagnetic phase containing ordered singly bonded (C(60)(-))(2) dimers can be obtained only upon slow cooling of the crystal for 6 h. PMID:22376157

  8. In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors.

    PubMed

    Zhong, Xia; Yuan, Ruo; Chai, Yaqin

    2012-01-14

    Novel spherical Pd@Cys-C(60) nanoparticles were synthesized using an in situ spontaneous reduction process without any other reducing agent. A nonenzymatic electrochemical biosensor was developed for the detection of glucose based on the spherical nanoparticles film. PMID:22113340

  9. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants.

    PubMed

    De La Torre-Roche, Roberto; Hawthorne, Joseph; Deng, Yingqing; Xing, Baoshan; Cai, Wenjun; Newman, Lee A; Wang, Qiang; Ma, Xingmao; Hamdi, Helmi; White, Jason C

    2013-01-01

    The effect of multiwalled carbon nanotubes (MWCNT) or C60 fullerenes on the uptake of weathered chlordane or DDx (DDT + metabolites) by Cucurbita pepo (zucchini), Zea mays (corn), Solanum lycopersicum (tomato), and Glycine max (soybean) was investigated. The plants were grown in 50 g of soil with weathered chlordane (2150 ng/g) and DDx (118 ng/g) that was amended with 0, 500, 1000, or 5000 mg/kg MWCNT or C60. After 28 d, the root and shoot content of chlordane components and DDx was determined by GC-MS. Zucchini and tomato growth were unaffected by carbon nanomaterial coexposure, although C60 at 500 mg/kg reduced corn and soybean biomass by 36.5-45.0%. Total chlordane content ranged from 1490 (tomato) to 4780 (zucchini) ng; DDx amounts ranged from 77.8 (corn) to 395 ng (zucchini). MWCNT coexposure decreased chlordane and DDx accumulation 21-80% across all crops, depending on species and nanotube concentration. Conversely, C60 had species- and contaminant-specific effects on pesticide uptake, ranging from complete suppression of DDx uptake (corn/tomato) to 34.9% increases in chlordane accumulation (tomato/soybean). The data show that pesticide accumulation varies greatly with crop species and carbon nanomaterial type/concentration. These findings have implications for food safety and for the use of engineered nanomaterials in agriculture. PMID:24079803

  10. Fullerene "Superhalogen" Radicals: The Substituent Effect on Electronic Properties of 1,7,11,24,27-C60X5

    SciTech Connect

    Clikeman, Tyler T.; Deng, Shihu; Avdoshenko, Stanislav; Wang, Xue B.; Popov, Alexey A.; Strauss, Steven H.; Boltalina, Olga V.

    2013-11-04

    Hexasubstituted fullerenes with the skew pentagonal pyramid (SPP) addition pattern are predominantly formed in many types of reactions and represent important and versatile building blocks for supramolecular chemistry, biomedical and optoelectronic applications. Regioselective synthesis and characterization of the new SPP derivative, C60(CF3)4(CN)H, in this work led us to the experimental identification of the new family of "superhalogen fullerene radicals", species with the gas-phase electron affinity higher than that of the most electronegative halogens, F and Cl. Low-temperature photoelectron spectroscopy and DFT studies of different C60X5 radicals reveal a profound effect of X groups on their electron affinities (EA), which vary from 2.76 eV (X = CH3) to 4.47 eV (X= CN). The measured gas-phase EA of the newly synthesized C60(CF3)4CN equals 4.28 (1) eV, which is ca. 1 eV higher than the EA of Cl atom. An observed remarkable stability of C60(CF3)4CN– in solution under ambient conditions opens new venues for design of air-stable molecular complexes and salts for supramolecular structures of electroactive functional materials.

  11. Synthesis of C60-Fused Tetrahydrocarbazole/Dibenzothiophene/Benzothiophene and Dibenzofuran Derivatives via Metal-Free Oxidative Dehydrogenative Carboannulation.

    PubMed

    Liu, Tong-Xin; Ma, Jinliang; Chao, Di; Zhang, Pengling; Ma, Nana; Liu, Qingfeng; Shi, Lei; Zhang, Zhiguo; Zhang, Guisheng

    2016-08-19

    A transition-metal-free oxidative dehydrogenative coupling reaction has been developed for the direct construction of novel C60-fused tetrahydrocarbazoles, dibenzothiophenes, benzothiophenes, and dibenzofurans. This new carboannulation reaction features high atom economy, operational simplicity, broad substrate scope, and excellent functional-group tolerance and provides a convenient access to a scarce class of fullerene derivatives. PMID:27487008

  12. Total synthesis of buckminsterfullerene (C60) and endohedral metal complexes. Final report, 1 March 1994-28 February 1997

    SciTech Connect

    Rubin, Y.F.

    1997-08-11

    A summary of our work aimed at the synthesis of a variety of endohedral metal complexes of fullerenes is presented. The completion of the synthesis of suitable highly unsaturated macrocyclic precursors containing 60 carbon atoms is described. These compounds were required to study their rearrangement to a fullerene framework in a process analogous to the gas-phase rearrangement of mono- and polycyclic polyynes (acetylenic rings) in the formation of C60 and higher fullerenes. Three types of synthetic acetylenic precursors were targeted, namely triply-linked bis-benzene-cyclophanes with octayne linking units, sextuply-linked bis-benzene-cyclophanes with tetrayne linkers, and deca-alkynylated metallocenes which include a metal in their structure early in the synthesis. The rearrangement to C60 of the first examples of these compounds has been studied in the gas phase by LDMS and in solution by various chemical reactions. Another aspect of our work was initiated by the successful opening of the largest orifice on the framework of C60 known to date in the form of a cobalt(III) complex of ethenobisfulleroid C64H4. This strategy is being applied in a double fashion on adjacent sites of the surface of C60 to form an even larger opening, aimed at eventual metal insertion inside the cage.

  13. Facile stabilization of cyclodextrin metal-organic frameworks under aqueous conditions via the incorporation of C60 in their matrices.

    PubMed

    Li, Haiqing; Hill, Matthew R; Huang, Runhong; Doblin, Christian; Lim, Seng; Hill, Anita J; Babarao, Ravichandar; Falcaro, Paolo

    2016-05-21

    A facile method to improve the stability of γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) in an aqueous environment has been developed through the incorporation of hydrophobic C60 in their matrices, and the resulting hybrid materials were exploited for drug delivery applications. PMID:27055670

  14. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Invited for this month's cover are Dr. Enrico Andreoli and Prof. Andrew R. Barron from the Energy Safety Research Institute (ESRI) of Swansea University. The image shows how fullerene C60 can activate amine-rich polymers toward CO2 capture for clean energy production. The Full Paper itself is available at 10.1002/cssc.201500605. PMID:26259624

  15. Electrochemistry of tert-Butylcalix[8]arene-C(60) Films Using a Scanning Electrochemical Microscope-Quartz Crystal Microbalance.

    PubMed

    Cliffel, D E; Bard, A J; Shinkai, S

    1998-10-01

    The electrochemical reduction of tert-butylcalix[8]arene-C(60) particle films was studied using the scanning electrochemical microscope combined with a quartz crystal microbalance (QCM) for several electrolytes in MeCN. Complexation of the fullerene within the film results in a negative shift of the peak potential of the first cathodic wave by about 400 mV compared to the reduction of a pure C(60) film. The QCM indicates a mass loss during reduction of the film. Even in electrolytes where C(60) anions normally remain in the surface film, a loss of fullerene electrochemical activity occurs. The complex breaks apart upon reduction of the fullerene center, with the fullerene escaping from the calixarene basket into the MeCN solution, leaving the calixarene as an insoluble film on the electrode surface. These results show that the π electron sharing of the complex is decreased by the additional electron density added to the fullerene by reduction to C(60)(-). PMID:21651251

  16. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  17. Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60

    NASA Astrophysics Data System (ADS)

    Schünemann, Christoph; Wynands, David; Wilde, Lutz; Hein, Moritz Philipp; Pfützner, Steffen; Elschner, Chris; Eichhorn, Klaus-Jochen; Leo, Karl; Riede, Moritz

    2012-06-01

    To achieve efficient organic solar cells, donor and acceptor molecules are mixed in the photoactive layer to form a so-called bulk heterojunction. Due to molecular interactions, a certain degree of phase separation between donor and acceptor domains arises, which is necessary to achieve efficient charge extraction within the absorber layer. However, the mechanism that induces the phase separation is not fully understood and gaining detailed information about the molecular arrangement within these blend layers is quite challenging. We show that grazing incidence x-ray diffraction, combined with variable angle spectroscopic ellipsometry is a suitable way to investigate the molecular structure of blend layers in detail, consisting of a mixture of zinc-phthalocyanine (ZnPc) and C60. The degree of phase separation within the blend layer is influenced by substrate heating during the co-evaporation of ZnPc and C60 and by a variation of the mixing ratio. The effect of different blend layer morphologies on optical and electrical device performance is investigated by solar cell characterization and mobility measurements. We find that the molecular arrangement of C60 provides the essential driving force for efficient phase separation. Whereas spherical C60 molecules are able to form crystalline domains when deposited at elevated substrate temperatures, no ZnPc crystallites are observed, although the planar ZnPc molecules are not randomly oriented but standing upright within its domains. Comparing specular and grazing incidence x-ray diffraction, we find that only the latter method is able to detect nanocrystalline C60 in thin films due to its polycrystalline nature and small sized nanocrystallites. Solar cell measurements show an increase in fill factor and external quantum efficiency signal for blends with enhanced phase separation, induced by higher substrate temperatures. However, grazing incidence x-ray diffraction measurements reveal that ZnPc and C60 already form

  18. Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices

    NASA Astrophysics Data System (ADS)

    Allen, Christopher S.; Liu, Guoquan; Chen, Yabin; Robertson, Alex W.; He, Kuang; Porfyrakis, Kyriakos; Zhang, Jin; Briggs, G. Andrew D.; Warner, Jamie H.

    2013-12-01

    In this article we probe the nature of electronic interactions between the components of hybrid C60-carbon nanotube structures. Utilizing an aromatic mediator we selectively attach C60 molecules to carbon nanotube field-effect transistor devices. Structural characterization via atomic force and transmission electron microscopy confirm the selectivity of this attachment. Charge transfer from the carbon nanotube to the C60 molecules is evidenced by a blue shift of the Raman G+ peak position and increased threshold voltage of the transistor transfer characteristics. We estimate this charge transfer to increase the device density of holes per unit length by up to 0.85 nm-1 and demonstrate further optically enhanced charge transfer which increases the hole density by an additional 0.16 nm-1.In this article we probe the nature of electronic interactions between the components of hybrid C60-carbon nanotube structures. Utilizing an aromatic mediator we selectively attach C60 molecules to carbon nanotube field-effect transistor devices. Structural characterization via atomic force and transmission electron microscopy confirm the selectivity of this attachment. Charge transfer from the carbon nanotube to the C60 molecules is evidenced by a blue shift of the Raman G+ peak position and increased threshold voltage of the transistor transfer characteristics. We estimate this charge transfer to increase the device density of holes per unit length by up to 0.85 nm-1 and demonstrate further optically enhanced charge transfer which increases the hole density by an additional 0.16 nm-1. Electronic supplementary information (ESI) available: AFM line scans of the substrate before and after functionalization; scheme for measuring amorphous carbon coverage from TEM images; diameter comparisons of ac-TEM image and simulation of C60 molecule; Raman spectra D peak comparison; optical response of transfer properties of pristine devices; comparison between swept and pulsed Vg measurements

  19. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000–8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada‑France‑Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  20. Ultrafast Photoinduced Charge Separation Leading to High-Energy Radical Ion-Pairs in Directly Linked Corrole-C60 and Triphenylamine-Corrole-C60 Donor-Acceptor Conjugates.

    PubMed

    Sudhakar, Kolanu; Gokulnath, Sabapathi; Giribabu, Lingamallu; Lim, Gary N; Trâm, Tạ; D'Souza, Francis

    2015-12-01

    Closely positioned donor-acceptor pairs facilitate electron- and energy-transfer events, relevant to light energy conversion. Here, a triad system TPACor-C60 , possessing a free-base corrole as central unit that linked the energy donor triphenylamine (TPA) at the meso position and an electron acceptor fullerene (C60) at the β-pyrrole position was newly synthesized, as were the component dyads TPA-Cor and Cor-C60. Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady-state fluorescence studies showed efficient energy transfer from (1) TPA* to the corrole and subsequent electron transfer from (1) corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron-transfer products, the corrole radical cation (Cor(⋅+) in Cor-C60 and TPA-Cor(⋅+) in TPACor-C60) and fullerene radical anion (C60(⋅-)), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS , was found to be about 10(11)  s(-1), suggesting the occurrence of an ultrafast charge-separation process. Interestingly, although an order of magnitude slower than kCS , the rate of charge recombination, kCR , was also found to be rapid (kCR ≈10(10)  s(-1)), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge-separated species relaxed directly to the ground state in polar solvents while in toluene, formation of (3) corrole* was observed, thus implying that the energy of the charge-separated state in a nonpolar solvent is higher than the energy of (3) corrole* being about 1.52 eV. That is, ultrafast formation of a high-energy charge-separated state in toluene has been achieved in these closely spaced corrole

  1. Improvement in Hole-Transport Property of Fullerene Materials by Hydrogenation: A Density Functional Theory Study on Fullerene Hydride C60H4

    NASA Astrophysics Data System (ADS)

    Tokunaga, Ken; Kawabata, Hiroshi; Matsushige, Kazumi

    2008-05-01

    The novel and convenient method for improving the hole-transport property of fullerene C60 [K. Tokunaga et al.: Jpn. J. Appl. Phys. 47 (2008) 1089], that is the hydrogenation of C60, was extended to fullerene hydride C60H4. On the basis of Marcus theory, the reorganization energy (λ) and the hole-transfer rate constant (kht) of nine isomers were calculated by the density functional theory [B3LYP/6-311G(d)], assuming that the electronic coupling (HAB) was the same as that of C60. Almost all isomers of C60H4 have smaller λ and larger kht than C60. This originates from the fact that the hydrogenation results in the localization of a part of the injected carrier on the added H atoms. Remarkably, isomer 1, the major product of C60H4, has the smallest λ (83 meV) which is over 50% less than C60, and its kht is 3.28 times as large as that of C60. It was also found that isomers with the delocalized distribution of the highest occupied molecular orbital (HOMO) tend to have smaller λ, so that the hydrogenation which leaves the uniformity of the HOMO distribution of the original C60 is very effective for the improvement. It gives a clear guideline for the theoretical design of useful materials, and could open a way to the engineering of organic devices.

  2. Spectroscopic and structural insights on molecular assembly consisting high potential zinc phthalocyanine photosensitizer attached to PyC60 through non-covalent interaction

    NASA Astrophysics Data System (ADS)

    Ray, Anamika; Santhosh, Kotni; Bhattacharya, Sumanta

    2015-01-01

    Efforts to improve the ease of self-assembly formation through non-covalent interaction has led to the development of zinc phthalocyanine (zinc-2,9,16,23-tetra-tert-butyl phthalocyanine, i.e., ZnPc) as a high potential photosensitizer molecule towards C60 pyrrolidine tris-acid ethyl ester (PyC60) in toluene and 1,2-dichlorobenzene (DCB). Steady state fluorescence experiment elicits efficient quenching of the fluorescence intensity of both H2- and ZnPc in presence of PyC60. The average value of binding constant for PyC60/H2-Pc and PyC60/ZnPc systems in toluene (DCB) are determined to be 9910 (13,460) and 12,710 (24,060) dm3 mol-1, respectively. Lifetime experiment yields ∼3 times larger magnitude of charge separated rate constant for the PyC60/ZnPc system compared to PyC60/H2-Pc in toluene. Photoinduced energy transfer between PyC60 and H2- (/ZnPc) has been evidenced with nanosecond laser photolysis method; transient absorption studies establish that energy transfer from TPyC60∗ to H2- and ZnPc occurs predominantly, as confirmed by the consecutive appearance of the triplet states of PyC60.

  3. Spectroscopic and structural insights on molecular assembly consisting high potential zinc phthalocyanine photosensitizer attached to PyC60 through non-covalent interaction.

    PubMed

    Ray, Anamika; Santhosh, Kotni; Bhattacharya, Sumanta

    2015-01-25

    Efforts to improve the ease of self-assembly formation through non-covalent interaction has led to the development of zinc phthalocyanine (zinc-2,9,16,23-tetra-tert-butyl phthalocyanine, i.e., ZnPc) as a high potential photosensitizer molecule towards C60 pyrrolidine tris-acid ethyl ester (PyC60) in toluene and 1,2-dichlorobenzene (DCB). Steady state fluorescence experiment elicits efficient quenching of the fluorescence intensity of both H2- and ZnPc in presence of PyC60. The average value of binding constant for PyC60/H2-Pc and PyC60/ZnPc systems in toluene (DCB) are determined to be 9910 (13,460) and 12,710 (24,060) dm(3) mol(-1), respectively. Lifetime experiment yields ∼3 times larger magnitude of charge separated rate constant for the PyC60/ZnPc system compared to PyC60/H2-Pc in toluene. Photoinduced energy transfer between PyC60 and H2- (/ZnPc) has been evidenced with nanosecond laser photolysis method; transient absorption studies establish that energy transfer from (T)PyC60(∗) to H2- and ZnPc occurs predominantly, as confirmed by the consecutive appearance of the triplet states of PyC60. PMID:25104284

  4. Observation of fullerenes (C60-C70) associated with LDEF crater number 31

    NASA Technical Reports Server (NTRS)

    Radicatidibrozolo, Filippo; Fleming, R. H.; Bunch, T. E.

    1992-01-01

    The presence of fullerenes in and around the LDEF crater number 31 is reported. This crater has a high C level associated with it, and is interpreted as having been produced by the impact of a C-rich micrometeoroid. Fullerenes are large 3-D C structures, among which the species C sub 60 (MW 720) and C sub 70 (MW 840) are preeminent. Fullerenes have several UV absorption bands, hence fullerenes should be detectable using UV laser ionization time-of-flight mass spectrometry. We use a LIMA-2A instrument with pulsed UV laser (266 nm) to search for high mass C species associated with LDEF crater number 31. The mass range was 0 to 1200 amu. Low ablating laser power levels were used (less than or = 5 x 10 exp 7 W/sq. cm); 200 mass spectra were acquired and summed. We observed high mass signals near m/z 720, exhibiting 24 amu separation, which is characteristic of fullerenes. Alkali ion signals were also observed. Little or no C clusters of intermediate mass were observed. We interpret the signals around m/z 720 as fullerenes, mainly C sub 60+ with lower levels of C sub 70+. We propose that the mechanism that produces these signals is resonant multiphoton ionization (REMPI). This selective mechanism explains why low mass C cluster ions are not observed along with the fullerenes, since they have much higher ionization potentials. This finding is unexpected, since up to now the search for fullerenes in extraterrestrial materials has not been successful. We conclude that the fullerenes became associated with crater number 31 in space. Two alternative (and exciting) scenarios are being considered at this time: either the fullerenes were carried by the C-rich projectile that formed crater number 31, or the fullerenes formed upon impact with the LDEF. We show the results of experiments at the ARC Vertical Gun Facility, which may establish some constraints on the origin of the fullerenes.

  5. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems.

    PubMed

    Santos, Sandra M A; Dinis, Augusto M; Rodrigues, David M F; Peixoto, Francisco; Videira, Romeu A; Jurado, Amália S

    2013-10-15

    The increasing use of C60 nanoparticles and the diversity of their applications in industry and medicine has led to their production in a large scale. C60 release into wastewaters and the possible accumulation in the environment has raised concerns about their ecotoxicological impact. In the present study, an aqueous suspension of C60 nanoparticles was prepared and its potential toxicity studied in laboratory, using a bacterium (Bacillus stearothermophilus) and an aquatic plant (Lemna gibba) as model systems. C60 nanoparticles inhibited the growth of L. gibba, in contrast to that of the bacterium. Consistently, the ultrastructure and respiratory activity of bacterial cells were not affected by C60, but the contents of chlorophylls a and b and chloroplast oxygen production decreased considerably in L. gibba. Altogether, our results suggest that C60 aqueous dispersions must be viewed as an environmental pollutant, potentially endangering the equilibrium of aquatic ecosystems. PMID:24084257

  6. Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mitra, Ratul; Chattopadhyay, Subrata; Bhattacharya, Sumanta

    2012-04-01

    The present article reports for the first time on supramolecular interaction between fullerenes (C60 and C70) and a designed monoporphyrin in solution, e.g., 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine (1), in absence and presence of silver nanoparticles (AgNp) having varying diameter of range between 3 and 7 nm. Ground state electronic interaction between fullerenes and 1 has been evidenced from the observation of decrease in the intensity of the Soret absorption band of 1 after complexation with C60 and C70 in toluene. However, in presence of AgNp, extent of decrease in the intensity of Soret absorption band of 1 has been reduced following its complexation with fullerenes. Steady state fluorescence measurements establish quenching of fluorescence of 1 by fullerenes and the most interesting aspect of the present work is that quenching efficiencies of C60 and C70 are found to be less in presence of AgNp. Steady state fluorescence measurement reveals reduction in the binding constant (K) value for both C60-1 (K-1=2355 dm mol) and C70-1 complex (K-1=11,980 dm mol) in presence of AgNp (K-1=340   and   K-1=7380 dm mol). The new physical insight of the present studies is that 1 acts as excellent discriminator molecule for C70 in presence of AgNp as selectivity in binding is estimated to be ˜21.7 in presence of AgNp compared to the situation when fullerene-1 mixture does not contain any AgNp (i.e., selectivity in binding = ˜5.0) in solution. Time-resolved fluorescence studies establish the role of static quenching mechanism behind fluorescence decay of 1 by fullerenes in absence and presence of AgNp. Magnitude of rate constant for charge separation and quantum yield of charge separation indicates that C70-1 complex exhibits highest value of such parameters in absence of AgNp compared to the situation when AgNp particles are present in the composite mixture of C70 and 1. Dynamic light scattering (DLS) measurement reveals while particle size of AgNp is

  7. Dielectric properties of liquid-crystal azomethine polymer with a side alkyl-substituted chain, doped with fullerene C60

    NASA Astrophysics Data System (ADS)

    Kovalev, D. S.; Kostromin, S. V.; Musteaţa, V.; Cozan, V.; Bronnikov, S. V.

    2016-04-01

    We studied the actual and imaginary components of the dielectric constant of liquid-crystal azomethine polymer with a side chain, doped with 0.5 wt % of fullerene C60, over a wide range of temperatures and frequencies; measurements were made by means of dielectric spectroscopy. By analyzing the frequency dependence of the dielectric constant, we detected the relaxation processes (α, β1, and β2) in the nanocomposite, corresponding to certain modes of molecular motion and described them by the Arrhenius equations (β1- and β2-processes) and the Vogel-Fulcher-Tamman equation (α-process). An antiplasticization effect is discovered after doping the polymer with fullerene C60, which manifests itself in increasing the glass transition temperature of the nanocomposite compared to this parameter typical of pure polymer.

  8. Theoretical estimation of the rate of photoinduced charge transfer reactions in triphenylamine C60 donor-acceptor conjugate.

    PubMed

    Martínez, Juan Pablo; Solà, Miquel; Voityuk, Alexander A

    2016-06-01

    Fullerene-based molecular heterojunctions such as the [6,6]-pyrrolidine-C60 donor-acceptor conjugate containing triphenylamine (TPA) are potential materials for high-efficient dye-sensitized solar cells. In this work, we estimate the rate constants for the photoinduced charge separation and charge recombination processes in TPA-C60 using the unrestricted and time-dependent DFT methods. Different schemes are applied to evaluate excited state properties and electron transfer parameters (reorganization energies, electronic couplings, and Gibbs energies). The use of open-shell singlet or triplet states, several density functionals, and continuum solvation models is discussed. Strengths and limitations of the computational approaches are highlighted. The present benchmark study provides an overview of the expected performance of DFT-based methodologies in the description of photoinduced charge transfer reactions in fullerene heterojunctions. © 2016 Wiley Periodicals, Inc. PMID:26992355

  9. Mercator maps of orientations of a C60 molecule in single-walled nanotubes with distinct radii

    SciTech Connect

    Michel, K.H.; Verberck, B.; Nikolaev, A.V.

    2005-09-27

    We study the confinement of a C60 molecule encapsulated in a cylindrical nanotube as a function of the tube radius. Drawing the Mercator maps of the potential, we find two distinct molecular orientations; for tubes with small radii, RT < or approx. 7 A, a fivefold axis of the molecule coincides with the tube long axis, for larger radii, RT > or approx. 8 A, a threefold axis of the molecule coincides with the tube long axis. These different orientations are caused by the relative importance of the repulsive and the attractive parts of the van der Waals potentials of the molecule with the tube wall for small and large tubes respectively. Experimental evidence is provided by the apparent splitting of Ag modes of the C60 molecule in resonant Raman scattering.

  10. Endohedral metallofullerenes, M@C60 (M = Ca, Na, Sr): selective adsorption and sensing of open-shell NOx gases.

    PubMed

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2016-08-21

    Based on density-functional theory and non-equilibrium Green's function calculations, we demonstrate that endohedral metallofullerenes (EMFs) are reactive to open-shell gases, and therefore have the potential application as selective open-shell gas sensors. The adsorption of eight gas species (CO, H2O, H2S, NO2, NO, SO2, O2 and NH3) on three EMFs (M@C60, M = Ca, Na and Sr) shows that the adsorption energies of the EMFs towards NO2 and NO are significantly higher than the closed-shell species. Moreover, the high selectivity appears relatively insensitive to the inserted metal atoms. The calculated current-voltage characteristics of gold-M@C60-gold structures (M = Ca, Na) show that the adsorption of NO2 leads to significant change in conductivity, suggesting a potential application as an EMF gas resistive sensing device. PMID:27426253

  11. [Generation of active oxygen forms in rat thymocytes under action of hydrogen peroxide and fullerene C60].

    PubMed

    Hrebinyk, S M; Hryniuk, I I; Pryluts'ka, S V; Matyshevs'ka, O P

    2012-01-01

    The dynamics of active oxygen forms (AOF) generation in rat thymocytes 50 min after treatment with 0.1 and 0.5 mM H2O2 was estimated with the use of fluorescent probe DCFDA. Both enhanced AOF generation, which was dependent on H2O2 concentration, and glutathione peroxidase and superoxide dismutase activation, followed by a decrease of thymocytes viability were demonstrated. Preincubation of cells with 10(-5) M fullerene C60 was shown not only to prevent H2O2--induced AOF generation but to increase viability of H2O2-treated thymocytes at more prolonged time period. The data obtained indicate to fullerene C60 ability to prevent oxidative stress in thymocytes. PMID:22642121

  12. Intermolecular Overlap Geometry Gives Two Classes of Fulleride Superconductor: Electronic Structure of 38K Tc Cs3C60

    NASA Astrophysics Data System (ADS)

    Darling, G. R.; Ganin, A. Y.; Rosseinsky, M. J.; Takabayashi, Y.; Prassides, K.

    2008-09-01

    Superconductivity emerges for the A15 polymorph of the fulleride Cs3C60 upon compression to a pressure of ˜4kbar. Using density functional theory we study the bonding in the A15 phase as a function of unit cell volume comparing it to that in the fcc polymorph. We find that, despite its smaller packing density, the bcc-derived A15 phase has both a substantially wider bandwidth for the partially occupied t1u band and a higher density of states at the Fermi level. This result can be traced to the striking differences in the nature of the interanion overlap in the A15 and fcc structures showing that the A15 Cs3C60 phase is not simply yet another superconducting fulleride albeit with a very high Tc—the two sphere packings (body centered versus face centered) observed experimentally produce two electronically distinct classes of fulleride superconductors.

  13. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device

    NASA Astrophysics Data System (ADS)

    Cuberes, M. T.; Schlittler, R. R.; Gimzewski, J. K.

    1996-11-01

    C60 molecules absorbed on a monoatomic Cu step have been reversibly repositioned at room temperature with the tip of a scanning tunneling microscope by performing controlled displacements along the step direction. We demonstrate the feasibility of building an abacus on the nanometer scale using single molecules as ``counters,'' Cu monoatomic steps as ``rods'' that constrain the molecular motion to one dimension, and the scanning tunneling microscope as an ``actuator'' for counting operations.

  14. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna.

    PubMed

    Tao, Xianji; He, Yiliang; Fortner, John D; Chen, Yongsheng; Hughes, Joseph B

    2013-08-01

    Our focus herein is to evaluate the potential interaction between nC60 and copper, a trace necessary metal, in light of the impact on toxicity. The non-observable effects concentration (NOEC) of nC60 was confirmed as 100μgL(-1) before. When Daphnia magna was exposed to the mixture of copper solution and nC60 suspension (100μgL(-1)), LC50 of 48h was lower than that when they were exposed to copper solution alone. This result clearly showed the decrease in NOEC of copper at the presence of nC60. Cu(2+)-ATPase activity was enhanced at the presence of nC60, indicating that copper transport involved with the uptake, distribution and depuration in body was increased. We further conducted experiments on accumulation of copper in D. magna. The observed equilibrium copper concentration in D. magna in the mixture of 100μgL(-1) nC60 and 1μgL(-1) copper solution reached 131μg (kg wet weight)(-1), which was more than twice that in copper solution only: 60μg (kg wet weight)(-1). This result demonstrated that the accumulation of copper in D. magna was significantly enhanced at the presence of even low nC60 concentration. Experiments also showed that copper was quickly adsorbed onto nC60. The absorption of copper onto D. magna was statistically correlated to the absorption of nC60 onto D. magna; this might be caused by nC60 facilitating the transfer of copper into D. magna. The absorption and desorption of copper to nC60 (pH=5.0) reached equilibrium quickly, which may be involved with the co-bioaccumulation and decrease in NOEC of Cu(2+) and nC60. PMID:23755985

  15. No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio).

    PubMed

    Park, June-Woo; Henry, Theodore B; Menn, Fu-Min; Compton, Robert N; Sayler, Gary

    2010-11-01

    The C(60) fullerene is a manufactured carbon nanoparticle (CNP) that could pose a risk to humans and other organisms after release into the environment. In surface waters, C(60) is likely to be present as aggregates of nC(60) and these aggregates can associate with other substances that are toxic. Our goal was to evaluate the association of a model contaminant [17α-ethinylestradiol (EE2)] with nC(60) and determine bioavailability of EE2 after accumulation by a filter feeding organism [Brine shrimp (BS) Artemia sp.] and subsequent dietary exposure in zebrafish. Aqueous suspensions of nC(60) were prepared (600 mg C(60)/900 mL, 6-month water stirred method) with/without EE2 (1 μg/L) and BS were exposed to these preparations. Accumulation of nC(60) in gut of BS was assessed by light microscopy, and C(60) were extracted from BS and concentration analyzed by HPLC. Adult male zebrafish were fed (5d) live BS according to the following treatments: BS (control); BS containing nC(60); BS containing nC(60)+EE2; or BS containing EE2. Liver was excised from exposed fish and total RNA was extracted for assessment of vitellogenin gene (vtg1A/B) expression. The vtg1A/B was highly up-regulated in fish exposed to BS containing EE2, but expression of vtg1A/B did not differ from controls in other treatments. The EE2 associated with nC(60) did not become bioavailable in zebrafish during passage through the intestinal tract of zebrafish. Results have implications on the effect of nC(60) on the bioavailability of co-contaminants in organisms during dietary exposure. PMID:20937515

  16. Solvent-free functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with aromatic amines

    NASA Astrophysics Data System (ADS)

    Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Chávez-Uribe, Ma. Isabel; Basiuk, Vladimir A.; Basiuk, Elena V.

    2015-02-01

    We employed a direct one-step solvent-free covalent functionalization of solid fullerene C60 and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180-250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, 13C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C60 molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C60, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  17. Properties of K,Rb-intercalated C60 encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mahfouz, R.; Bouhrara, M.; Kim, Y.; Wâgberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2015-09-01

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C60 encapsulated inside carbon nanotubes called peapods can be derived from 13C nuclear magnetic resonance investigations. Ring currents do play a basic role in those systems; in particular, the inner cavities of nanotubes offer an ideal environment to investigate the magnetism at the nanoscale. We report the largest diamagnetic shifts down to -68.3 ppm ever observed in carbon allotropes, which is connected to the enhancement of the aromaticity of the nanotube envelope upon intercalation. The metallization of intercalated peapods is evidenced from the chemical shift anisotropy and spin-lattice relaxation (T1) measurements. The observed relaxation curves signal a three-component model with two slow and one fast relaxing components. We assigned the fast component to the unpaired electrons charged C60 that show a phase transition near 100 K. The two slow components can be rationalized by the two types of charged C60 at two different positions with a linear regime following Korringa behavior, which is typical for metallic system and allow us to estimate the density of sate at Fermi level n(EF).

  18. Solvent-Free Covalent Functionalization of Fullerene C60 and Pristine Multi-Walled Carbon Nanotubes with Crown Ethers.

    PubMed

    Henao-Holguín, Laura V; Meza-Laguna, Victor; Gromovoy, Taras Yu; Basiuk, Elena V; Rivera, Margarita; Basiuk, Vladimir A

    2016-06-01

    The goal of the present work was to test the feasibility of simple, one-step and solvent-free covalent functionalization of pristine multi-walled carbon nanotubes (MWNTs) and fullerene C60 (as a model system) with amino-substituted crown ethers, namely, 4'-aminobenzo-15-crown-5 and 4'-aminobenzo-1 8-crown-6. The attachment technique proposed is based on thermal instead of chemical activation, and can be considered as ecologically friendly. The suggested covalent binding mechanism is the nucleophilic addition of amino functionalities of crown ethers to the 6,6 bonds of pyracylene units in the case of C60, and to pentagonal (and probably other) defects of similar nature in the case of pristine MWNTs. The hybrids of crown ethers with MWNTs were characterized by means of scanning and transmission electron microscopy, Fourier-transform infrared and Raman spectroscopy, as well as thermogravimetric analysis. The functionalized C60 samples were additionally studied by means of 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and laser desorption/ionization time-of-flight mass spectrometry. The approach proposed allows for a facile preparation of crown ether-functionalized pristine MWNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications ranging from nanoelectronics to nanomedicine. PMID:27427687

  19. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios.

    PubMed

    Bai, Chunmei; Li, Yusong

    2012-08-01

    The escalating production and consumption of engineered nanomaterials may lead to their increased release into groundwater. A number of studies have revealed the potential human health effects and aquatic toxicity of nanomaterials. Understanding the fate and transport of engineered nanomaterials is very important for evaluating their potential risks to human and ecological health. While there has been a great deal of research effort focused on the potential risks of nanomaterials, a limited amount of work has evaluated the transport of engineered nanomaterials under different release scenarios in a typical layered geological field setting. In this work, we simulated the transport of fullerene aggregates (nC(60)), a widely used engineered nanomaterial, in a multi-dimensional environment. A Modular Three-Dimensional Multispecies Transport Model (MT3DMS) was modified to evaluate the transport and retention of nC(60) nanoparticles. Hypothetical scenarios for the introduction of nanomaterials into the subsurface environment were investigated, including the release from an injection well and the release from a waste site. Under the conditions evaluated, the mobility of nC(60) nanoparticles was found to be very sensitive to the release scenario, release concentration, aggregate size, collision efficiency factor, and dispersivity of the nanomaterial. PMID:22683828

  20. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes.

    PubMed

    Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril D

    2012-01-30

    As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. Under environmentally relevant NM loadings and biomass concentrations, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). Carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO(2) (>95% removal) or aqueous fullerenes (nC(60); >95% removal). Experiments conducted over 4 months with daily loadings of nC(60) showed that nC(60) removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. PMID:22154869