Science.gov

Sample records for 300-mwe utility boiler

  1. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    PubMed

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency. PMID:20429548

  2. Application of multifuel reburn for NOx control on a 300 MWe boiler in Ukraine. Report for October 1994--December 1995

    SciTech Connect

    Hall, R.E.; Miller, C.A.; Payne, R.; Yakushin, E.; Mospan, J.

    1996-01-01

    The paper gives results of a program to design two reburn systems for operation on 300 MWe, coal-fired utility boilers operating in Ukraine. One is a natural-gas-fired system designed by ABB Combustion Engineering, installed in September 1992, and continuing to operate with a 50 percent nitrogen oxides (NOx) reduction. The paper summarizes the natural gas reburn test results. Emphasis is placed on the second demonstration, a multifuel (natural gas, oil, and/or coal) reburn system for which a conceptual design has been completed by Energy and Environmental Research Corp. Engineering drawings are being prepared by the Karkov Design Bureau in Ukraine.

  3. Operation Experience and Performance of the First 300MWe CFB Boiler Developed by DBC in China

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Zheng, X. S.; Zhou, Q.; Nie, L.; Liu, T. S.; Hu, X. K.; Lu, J. F.

    In this paper, general layout, design, operational experience and performance of the first 300MWe circulating fluidized bed (CFB) boiler that developed by Dongfang Boiler Group Co., Ltd China, are introduced. The furnace was with large width-depth ratio. The problems occurred during in commissioning were analyzed and the corresponding modifications were presented. Cold-state experiment and operation experience showed that both fluidization quality and circulating flow rate meet the designated value in the frunace. The imbalance of circulating material flow caused by asymmetric layout of three cyclones was very limited. Heating surfaces were safe except wing wall superheater located in upper part of the furnace was overheated at low load. After commissioning, the boiler was correspondingly modified and its performance was excellent.

  4. The heat transfer coefficients of the heating surface of 300 MWe CFB boiler

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai

    2012-08-01

    A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.

  5. Experience from the 300 MWe CFB Demontration Plant in China

    NASA Astrophysics Data System (ADS)

    Gauvillé, P.; Semedard, J.-C.; Darling, S.

    This paper will describe the background and current status of the 300MWe CFB Demonstration Project located at the Baima Power Plant in Sichuan Province. This project was the first 300MWe class CFB in China and the first project built under the Transfer of Technology from Alstom. The plant entered commercial operation in early 2006. The fuel is a high-ash anthracite which has presented significant challenges in terms of higher-than-expected ash content and top size. While this fuel has been problematic for the adjacent suspension-fired boilers, performance in the CFB boiler has been excellent, with low carbon content in the ash, low turndown and low emissions. Key boiler performance parameters will be described along with a comparison of design and actual performance and the operational experience will be addressed. Finally, the paper will describe Alstom's process for scaling the CFB technology from 300MWe to 600MWe, and our supercritical CFB design.

  6. THREE STAGE COMBUSTION (REBURNING) TEST RESULTS FROM A 300 MW BOILER IN THE UKRAINE

    EPA Science Inventory

    The paper gives results of a program to design, install, and test a natural gas three-stage combustion (reburn) system on a 300-MWe, opposed-wall, wetbottom (slagging) coal-fired utility boiler operating in the Ukraine. The U. S. EPA sponsored this-program in support of a working...

  7. Design of a large-scale CFB boiler

    SciTech Connect

    Darling, S.; Li, S.

    1997-12-31

    Many CFB boilers sized 100--150 MWe are in operation, and several others sized 150--250 MWe are in operation or under construction. The next step for CFB technology is the 300--400 MWe size range. This paper will describe Foster Wheeler`s large-scale CFB boiler experience and the design for a 300 MWe CFB boiler. The authors will show how the design incorporates Foster Wheeler`s unique combination of extensive utility experience and CFB boiler experience. All the benefits of CFB technology which include low emissions, fuel flexibility, low maintenance and competitive cost are now available in the 300--400 MWe size range.

  8. Design and experience with utility-scale CFB boilers

    SciTech Connect

    Darling, S.L.; Hennenfent, M.

    1995-12-31

    Circulating fluidized bed (CFB) boilers have been in operation for many years in industrial steam and power generation applications, primarily in the 50-100 MWe range. In the past few years, however, several utility-scale CFB boilers have entered service. The scale-up of the Foster Wheeler Pyropower, Inc. CFB boilers has proceeded smoothly, and today FWPI CFB boilers up to 180 MWe are in operation, two 235 MWe boilers are now under construction, and other large units are in the design stage.

  9. FABRIC FILTRATION ANALYSES FOR THREE UTILITY BOILER FLYASHES

    EPA Science Inventory

    The report gives results of fabric filter analyses of flyash from three utility boilers. A major aim of the program was to augment the present data base for modeling fabric filter systems designed to control inhalable particulate (IP) emissions from coal-fired boilers. Emphasis w...

  10. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  11. Utilization of silt as CFB boiler fuel

    SciTech Connect

    Herb, B.; Tsao, T.R.; Bickley, D.

    1994-12-31

    Bituminous silt represents an enormous source of discarded energy that is polluting the environment. Although bituminous silt is a potential opportunity fuel for circulating fluidized bed (CFB) boilers, handling problems and uncertainties about the impact of this fuel on CFB boiler performance and operating economics have prevented its use. Under sponsorship of the Pennsylvania Energy Development Authority, five different technologies having the potential to process silt into CFB boiler fuel were evaluated. The technologies evaluated include: washing, pelletizing, thermal drying, mulling and flaking. The desired goal was to process the silt into a form that can be fed to CFB boilers using conventional coal handling equipment and combusted in an environmentally acceptable manner. Criteria were developed for the product characteristics that are desired and tests were run to evaluate the technical feasibility of each silt processing technology. Based on these test results, the design and cost bases for a commercial silt processing facility were developed for each technology capable of achieving the desired product characteristics. As a result of considering both engineering and economic factors, the technology that best meets the objectives for use of processed silt as CFB boiler fuel was selected for further demonstration testing. This paper will present the results of this project up through the selection of the best silt processing technology.

  12. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect

    Hamid Farzan; Jennifer L. Sivy

    2005-07-30

    Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO

  13. BOILER SIMULATOR STUDIES ON SORBENT UTILIZATION FOR SO2 CONTROL

    EPA Science Inventory

    The report gives results of a program to provide process design information for sorbent utilization as applied to EPA's LIMB process. Specifically, the program was designed to investigate the role of boiler thermal history, sorbent injection location, Ca/S molar ratio, and SO2 pa...

  14. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  15. Pyroflow CFB boiler meets the dynamic challenges of utility operation

    SciTech Connect

    Chelian, P.K.; Hickey, M.; Utt, J.

    1995-12-31

    Large size CFB units supplied to utilities are required to respond rapidly and accurately to the system load demand signals. These units are designed to receive demand signals from load demand computers (economic dispatch systems), and by various types of feed forward controls to achieve the desired level of generation in a minimum amount of time, with minimum upset to the steam conditions. Pyropower Corporation supplied a 165 MWe net capacity CFB boiler to the Nova Scotia Power Inc., Point Aconi Station. This boiler was subjected to a number of tests to demonstrate the dynamic response of the boiler. The tests included minor and major load rejections as well as rapid increase and decrease of load. One of the tests was to demonstrate the ability to reject from full load to the house load and operate for eight hours. This report summarizes the experience of these tests, which leads to the conclusion that CFB boilers, when properly designed and tuned, are capable of meeting the present day challenges of dynamic response in dispatch mode of operation. This paper also draws references from other large size Pyroflow CFB units that are operating in cycling modes to address the capabilities of the CFB boilers related to rapid load variation.

  16. Bridging the experience gap: Burning tires in a utility boiler

    SciTech Connect

    Denhof, D.

    1993-03-01

    For many communities, a solution to waste tire management problems may be no farther than the nearest coal-fired utility or industrial boiler. Sending waste tires to be used as a fuel in existing boilers is one way communities can prevent tires from creating problems in landfills, or from growing into nuisances and potentially dangerous stockpiles while waiting for recycling markets to develop. For utilities, using tire-derived fuel can help control fuel costs and conserve coal. When the State of Wisconsin sought alternatives to disposing of waste tires in its landfills, Wisconsin Power & Light came forward to meet the challenge. Now, the electric utility is shredding and burning more than 1 million tires a year at its coal-fired generating station in southern Wisconsin.

  17. ANALYSIS OF LOW NOX OPERATION OF TWO PULVERIZED-COAL FIRED UTILITY BOILERS

    EPA Science Inventory

    The report gives results of a review of the operation of two pulverized-coal-fired utility boilers subject to the 1971 New Source Performance Standard, to determine if other boilers could adopt a similar mode of operation to reduce nitrogen oxide (NOx) emissions. These two boiler...

  18. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  19. Effect of chlorine on furnace wall corrosion in utility boilers

    SciTech Connect

    Kung, S.C.; Daniel, P.L.; Seeley, R.R.

    1996-08-01

    The corrosion resistance of several commercial alloys was investigated in laboratory retort tests under a reducing/sulfidizing mixed gas at 700 and 900 F (371 and 482 C) for 1,000 hours. The test conditions were designed to simulate the corrosion of furnace walls in the combustion zone of utility boilers burning sulfur/chlorine-bearing coal substoichiometrically. Corrosion rates of these alloys were determined and compared to those obtained from a previous study in which the same alloys were evaluated under chlorine-free substoichiometric combustion environments. Results of the two studies reveal that the presence of chlorine in the reducing/sulfidizing mixed gas has a negligible effect on the corrosion behavior of these alloys in this gas at 700 F (371 C), whereas a beneficial effect was observed at 900 F (482 C). The beneficial effect implies that the presence of HCl may impede the sulfidation attack by H{sub 2}S under certain substoichiometric combustion environments.

  20. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  1. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  2. CONTROL OF UTILITY BOILER AND GAS TURBINE POLLUTANT EMISSIONS BY COMBUSTION MODIFICATION - PHASE I

    EPA Science Inventory

    The report gives results of a field study to assess the applicability of combustion modification techniques to control NOx and other pollutant emissions from utility boilers and gas turbines without causing deleterious side effects. Comprehensive, statistically designed tests wer...

  3. ENVIRONMENTAL ASSESSMENT OF UTILITY BOILER COMBUSTION MODIFICATION NOX CONTROLS: VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of combustion modification techniques for coal-, oil-, and gas-fired utility boilers, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effect o...

  4. ENVIRONMENTAL ASSESSMENT OF UTILITY BOILER COMBUSTION MODIFICATION NOX CONTROLS: VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of an evaluation of combustion modification techniques for coal-, oil-, and gas-fired utility boilers, with repect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effect on...

  5. Nitrogen oxides emission control options for coal-fired electric utility boilers.

    PubMed

    Srivastava, Ravi K; Hall, Robert E; Khan, Sikander; Culligan, Kevin; Lani, Bruce W

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/10(6) Btu. PMID:16259432

  6. ENVIRONMENTAL ASSESSMENT OF A COAL-FIRED CONTROLLED UTILITY BOILER

    EPA Science Inventory

    The report gives results of a comprehensive multimedia emissions assessment of the cyclone-fired La Cygne No. 1 boiler, equipped with SO2 and particulate emission controls. Levels 1 and 2 procedures were used to characterize pollutant emissions in gaseous, liquid, and solid proce...

  7. DISPOSAL, RECYCLE, AND UTILIZATION OF MODIFIED FLY ASH FROM HYDRATED LIME INJECTION INTO COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The paper gives results of an assessment of the disposal, utilization, and recycle os a modified fly ash from the injection of hydrated lime into a coal-fired utility boiler. The process, developed as a low-cost alternative for achieving moderate degrees of SO2 control at coal-fi...

  8. Utilization of felled trees as supplemental boiler fuel

    SciTech Connect

    Lederer, C.C.; Schugar, S.

    1983-04-01

    A valuable natural resource, wood, is being generated in tremendous quantities every year in the City of Detroit as a result of the City's obligation to fell and remove dead trees, principally elms. The bulk of this resource, 115,000 tons of wood every year, is presently being burned at the City's public works facilities, serving only to fill the air with smoke. There are a number of ways to use this wood productively instead of wasting it. The purpose of our project was to explore the economic and technical feasibility of using the wood to supplement coal in a type of existing small industrial boiler that normally would not be considered as suitable for burning a coal/wood mixture, the boiler equipped with a single-retort, underfeed coal stoker. 4 figs.

  9. The use of pulse-jet baghouses on utility coal-fired boilers

    SciTech Connect

    Grubb, W.T. ); Chang, R.L. )

    1992-01-01

    Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial boiler applications and in utility and industrial boilers abroad. The recent success of PJFFs on large utility boilers overseas has stimulated the interest of U.S. utilities. These installations demonstrate that PJFFs can operate at sizes that are 50% smaller and at 30 to 40% lower capital costs than conventional reverse-gas baghouses, yet still achieve comparable reliability and particulate emissions. There are over 300 PJFFs installed on industrial and utility coal-fired boilers worldwide. This paper summarizes key findings of a survey involving site visits to over 30 full-scale installations representing over 70 individual units in the United States, Canada, Europe, Japan and Australia. The site visits were conducted to interview technical and plant personnel involved in the design, installation and day-to-day operation of the PJFFs. The results summarized in this paper characterize the pressure drop ({Delta}P), outlet emissions and bag life performance of these PJFFs, and verify the maintainability and suitability of PJFFs for application to large utility boilers in the U.S.

  10. Estimation of NO{sub x} emissions from pulverized coal-fired utility boilers

    SciTech Connect

    Wildman, D.J.; Smouse, S.M.

    1996-01-01

    The formation of nitrogen oxides (NO{sub x}) during pulverized-coal combustion in utility boilers is governed by many factors, including the boiler`s design characteristics and operating conditions, and coal properties. Presently, no simple, reliable method is publicly available to estimate NO{sub x} emissions from any coal-fired boiler. A neural network back-propagation algorithm was previously developed using a small data set of boiler design characteristics and operating conditions, and coal properties for tangentially fired boilers. This initial effort yielded sufficient confidence in the use of neural network data analysis techniques to expand the data base to other boiler firing modes. A new neural network-based algorithm has been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell, and tangential) that accurately predicts NO{sub x} emissions using eleven readily available data inputs. A sensitivity study was completed for all major input parameters, which yielded results that agree with conventional wisdom and practical experience. This new algorithm is being used by others, including the Electric Power Research Institute who has included it in its new software for making emissions compliance decisions, the Clean Air Technology Workstation.

  11. Estimation of NO{sub x} emissions from pulverized coal-fired utility boilers. Final report

    SciTech Connect

    Wildman, D.J.; Smouse, S.M.

    1995-05-01

    The formation of nitrogen oxides (NO{sub x}) during pulverized-coal combustion in utility boilers is governed by many factors, including the boiler`s design characteristics and operating conditions, and coal properties. Presently, no simple, reliable method is publicly available to estimate NO{sub x} emissions from any coal-fired boiler. A neural network back-propagation algorithm was previously developed using a small data set of boiler design characteristics and operating conditions, and coal properties for tangentially fired boilers. This initial effort yielded sufficient confidence in the use of neural network data analysis techniques to expand the data base to other boiler firing modes. A new neural network-based algorithm has been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell, and tangential) that accurately predicts NO{sub x} emissions using 11 readily available data inputs. A sensitivity study, which was completed for all major input parameters, yielded results that agree with conventional wisdom and practical experience. This new algorithm is being used by others, including the Electric Power Research Institute (EPRI). EPRI has included the algorithm in its new software for making emissions compliance decisions, the Clean Air Technology Workstation.

  12. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  13. Neural network predictions of slagging and fouling in pulverized coal-fired utility boilers

    SciTech Connect

    Wildman, D.; Smouse, S.; Chi, R.

    1996-12-31

    Feed-forward back-propagation neural networks were trained to relate the occurrence and characteristics of troublesome slagging and fouling deposits in utility boilers to coal properties, boiler design features, and boiler operating conditions. The data used in this effort were from a survey of utility boilers conducted by Battelle Columbus Laboratories in an Electric Power Research Institute project. Two networks were developed in this study, one for slagging and one for fouling, to predict ash deposition in various types of boilers (wall-, opposed wall-, tangentially, and cyclone-fired) that fire bituminous and sub-bituminous coals. Both networks predicted the frequency of deposition problems, physical nature (or state) of the deposit, and the thickness of the deposit. Since deposit characteristics vary with boiler location and operating conditions, the worst documented cases of ash deposition were used to train the neural networks. Comparison of actual and predicted deposition showed very good agreement in general. The relative importance of some of the input variables on the predicted deposit characteristics were assessed in a sensitivity analysis. Also, the slagging and fouling characteristics of a blend of two coals with significant different deposition characteristics were predicted to demonstrate a practical application of developed neural networks.

  14. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  15. Turndown studies for utility fluidized-bed boilers. Final report

    SciTech Connect

    Divilio, R.J.; Reed, R.R.

    1984-01-01

    This report contains a series of analyses that evaluate the turndown potential of the EPRI 6 x 6 test facility and the TVA 20 MW FBC pilot plant by variation of the fluidization velocity. The basis of the analyses is a heat balance program that incorporates basic principles of thermodynamics and fluidization. The heat balance program is used to explain the interrelationship of operating variables of a fluidized-bed boiler and to predict the steady state operating conditions of the boilers over a range of loads. Turndown analyses were performed on two tube bundle designs for the EPRI 6 x 6 test unit including a nine drawer tube bundle designed for 8 ft/sec operation and a twelve drawer bundle for operation up to 12 ft/sec. This twelve drawer bundle was found to have reasonable turndown characteristics between 4 and 12 ft/sec. At a 20 inch static bed depth, for example, this bundle should operate between 1545 and 1620/sup 0/F at 3.2% O/sub 2/ for loads from 4 to 12 ft/sec. In addition to the two bundles studies, a tube bundle capable of a 3:1 turndown range with a minimum temperature variation was designed for the 6 x 6 test facility. The tube bundle for the TVA 20 MW pilot plant was found to have excellent turndown characteristics between 4 and 8 ft/sec. For example, a 21 inch static bed should allow operation between 1541 and 1575/sup 0/F bed temperature at 3% O/sub 2/.

  16. DISTRIBUTED MIXING BURNER (DMB) ENGINEERING DESIGN FOR APPLICATION TO INDUSTRIAL AND UTILITY BOILERS

    EPA Science Inventory

    The report summarizes the design of two prototype distributed mixing burners (DMBs) for application to industrial and utility boilers. The DMB is a low-NOx pulverized-coal-fired burner in which: (1) mixing of the coal with combustion air is controlled to minimize NOx emissions, a...

  17. REVIEW OF CONCURRENT MASS EMISSION AND OPACITY MEASUREMENTS FOR COAL-BURNING UTILITY AND INDUSTRIAL BOILERS

    EPA Science Inventory

    The report gives results of concurrent particulate emissions and opacity measurements based on visual observations and/or in-stack transmissometry for more than 400 compliance, acceptance, or experimental tests on coal-fired utility and industrial boilers. The sampling, which inc...

  18. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  19. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME III. FIELD EVALUATION

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  20. UTILITY BOILER DESIGN/COST COMPARISON: FLUIDIZED-BED COMBUSTION VS. FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a conceptual design, performance, and cost comparison of utility scale (750-925 MWe) coal-burning power plants employing three alternative technologies: conventional boiler with a stack gas scrubber (CWS), atmospheric-pressure fluidized-bed combustion ...

  1. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME I: TANGENTIAL COAL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives results of an environmental assessment field testing program on a tangential-coal-fired utility boiler. The aim of the program was to measure multimedia emissions changes as a result of applying combustion modification NOx control. Emissions of trace elements, or...

  2. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  3. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  4. CONTROL OF UTILITY BOILER AND GAS TURBINE POLLUTANT EMISSIONS BY COMBUSTION MODIFICATION--PHASE II

    EPA Science Inventory

    The report gives results of Phase II of a field study to assess the applicability of combustion modification (CM) techniques to control NOx and other pollutant emissions from utility boilers and gas turbines without causing deleterious side effects. Comprehensive, statistically d...

  5. PRELIMINARY PERFORMANCE AND COST ESTIMATES OF MERCURY EMISSION CONTROL OPTIONS FOR ELECTRIC UTILITY BOILERS

    EPA Science Inventory


    The paper discusses preliminary performance and cost estimates of mercury emission control options for electric utility boilers. Under the Clean Air Act Amendments of 1990, EPA had to determine whether mercury emissions from coal-fired power plants should be regulated. To a...

  6. EVALUATION OF UTILITY BOILER RADIANT FURNACE RESIDENCE TIME/TEMPERATURE CHARACTERISTICS: FIELD TESTS AND HEAT TRANSFER MODELING

    EPA Science Inventory

    The report describes an investigation of the adequacy of a modeling approach in predicting the thermal environment and flow field of pulverized-coal-fired utility boilers. Two 420 MWe coal-fired boilers were evaluated: a single-wall-fired unit and a tangentially fired unit, repre...

  7. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  8. Development of mercury control techniques for utility boilers

    SciTech Connect

    Livengood, C.D.; Mendelsohn, M.H.; Huang, H.S.; Wu, J.M.

    1995-06-01

    This paper gives an overview of research being conducted at Argonne National Laboratory on the capture of mercury in flue gas by both dry sorbents and wet scrubbers. The emphasis in the research is on development of a better understanding of the key factors that control the capture of mercury. Future work is expected to utilize that information for the development of new or modified process concepts featuring enhanced mercury capture capabilities.

  9. Predicted fate and transport of mercury emitted from utility boilers in the local atmosphere

    SciTech Connect

    Rice, G.E.; Lyon, B.F.; Keating, M.

    1996-12-31

    In 1990 it was estimated that utility boilers accounted for approximately 21% of anthropogenic mercury emitted to the atmosphere in the US. To characterize the utility industry a series of model plants were developed. Using a modified version of the COMPDEP air model, the fate of the mercury emissions from the model plant developed to represent large coal-burning boilers was predicted. Estimated annual air concentrations at a hypothetical site 2.5 Km downwind from the model plant were 0.001 ng/m{sup 3} and the estimated annual mercury deposition rate was less than 10 ug/m{sup 2}/yr. Of the mercury emitted from this model plant, less than 5% percent is predicted to deposit within 50 Km of the emission source. The mercury remaining in the atmosphere is thought to become part of a regional and eventually global mass of atmospheric mercury.

  10. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    SciTech Connect

    Eskinazi, D.; Tavoulareas, E.S.

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  11. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  12. The potential of pulse-jet baghouses for utility boilers. Part 1: A worldwide survey of users

    SciTech Connect

    Belba, V.H. ); Grubb, W.T. ); Chang, R. )

    1992-02-01

    Pulse-jet fabric filters (PJFFs) are widely used in US industrial boiler applications and in utility and industrial boilers abroad. Their smaller size and reduced cost relative to more conventional baghouses make PJFFs appear to be a particularly attractive particulate control option for utility boilers. This paper summarizes the results of a survey co-funded by the Electric Power Research Institute and Canadian Electric Association to characterize the performance of and operating experiences with PJFFs applied to coal-fired boilers. The survey involved site visits to interview technical and plant personnel involved in the design, installation and day-to-day operation of PJFFs worldwide. Actual field experiences with PJFF performance in terms of outlet emissions, pressure drop and bag life for different types of pulse-jet cleaning methods, fabrics and boilers are compared.

  13. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  14. Evaluation of peat as a utility boiler fuel. Final report

    SciTech Connect

    Bongiorno, S.J.; Strianse, R.V.

    1983-03-01

    The objective of this study was to assess the technical and economic feasibility of the direct combustion of peat for electric power generation in the United States. The study includes a review of peat literature, selection of a region in the US to locate a hypothetical peat-harvesting operation, and an assessment of current practices for peat utilization in Europe, including peat harvesting, environmental control, and combustion technology. The conceptual design of a peat-harvesting facility supplying 1.4 million tons/yr of peat to a 2 x 150 MW power plant located in eastern North Carolina is developed for the purpose of estimating peat fuel costs. Environmental-control measures and peat transportation systems are identified. Budget capital and operating costs for a peat-fired power plant are estimated and the busbar cost of electricity compared to that for a 1 x 300 MW coal-fired power plant. Technical feasibility is demonstrated, although environmental acceptability of a large-scale peat harvesting operation must be confirmed on a site-specific basis. Peat fuel costs are found to be less than coal costs for a power plant located adjacent to the peat bogs in eastern North Carolina. The higher capital cost of a peat-fired power plant offsets to some extent the fuel cost advantage. Peat is found to have an electricity cost advantage of about 5 to 25% when compared to coal on a 30 year levelized basis depending on the peat escalation rate assumed.

  15. METHANE DE-NOX FOR UTILITY PC BOILERS

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2003-07-30

    During the current quarter, pilot-scale testing with the modified air nozzle version of the PC burner was completed with PRB coal at the Riley Power Inc. (RPI) test facility. A total of 8 different burner configurations were tested utilizing various burner air nozzle arrangements in place of the burner air channels. It was found that with the arrangements tested, a stable flame could not be maintained at coal feed rates above 100 lb/h. While it is felt that the air nozzle approach can ultimately be used effectively, in the interest of holding to the current project schedule it was decided to proceed with the balance of the project using the air channel design. The pilot-scale PC burner was therefore restored to the air-channel configuration and benchmark testing with PRB coal to confirmed previous operating results. A series of tests was then conducted with PRB and West Virginia caking coal to evaluate modifications to the gas combustor configuration and operation for improved performance with caking coal. Continuous operation was achieved with caking coal up to 50 lb/h vs. the full load target of 150 lb/h. Impingement and deposition of partially devolatilized coal occurred at various points within the combustor when the caking coal feed was increased above 50 lb/h. The 100 MMBtu/h commercial-scale prototype design was started with coal burner design input from both RPI and VTI. Based on typical burner installation layout considerations, it was that the preheat combustor should be oriented horizontally on the axial centerline of the coal burner. Accordingly, work was begun to relocate the pilot gas combustor to this orientation so that the pilot results with caking coal will be directly applicable to the preferred 100 MMBtu design. Inspection and repair of the 100 MMBtu/h Coal Burner Test Facility (CBTF) was initiated by RPI and as of 6/30, this activity was 70% complete.

  16. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2003-09-30

    During the current quarter, pilot-scale testing with the modified air nozzle version of the PC burner was completed with PRB coal at the Riley Power Inc. (RPI) test facility. A total of 8 different burner configurations were tested utilizing various burner air nozzle arrangements in place of the burner air channels. It was found that with the arrangements tested, a stable flame could not be maintained at coal feed rates above 100 lb/h. While it is felt that the air nozzle approach can ultimately be used effectively, in the interest of holding to the current project schedule it was decided to proceed with the balance of the project using the air channel design. The pilot-scale PC burner was therefore restored to the air-channel configuration and benchmark testing with PRB coal to confirmed previous operating results. A series of tests was then conducted with PRB and West Virginia caking coal to evaluate modifications to the gas combustor configuration and operation for improved performance with caking coal. Continuous operation was achieved with caking coal up to 50 lb/h vs. the full load target of 150 lb/h. Impingement and deposition of partially devolatilized coal occurred at various points within the combustor when the caking coal feed was increased above 50 lb/h. The 100 MMBtu/h commercial-scale prototype design was continued with coal burner design input from both RPI and VTI. Based on typical burner installation layout considerations, it was decided that the preheat combustor should be oriented horizontally on the axial centerline of the coal burner. Accordingly, the pilot gas combustor was changed to this orientation so that the pilot results with caking coal will be directly applicable to the preferred 100 MMBtu design. Testing with caking coal in the horizontal pilot combustor achieved feed rates up to 126 lb/h, although some deposition and LOI issues remain. Several promising approaches to further improve operation with caking coal were identified. NOx

  17. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  18. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. PMID:18505001

  19. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler

    SciTech Connect

    Changfu You; Xuchang Xu

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

  20. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  1. Selection of stainless steel tubes to minimize hot corrosion in utility boilers

    SciTech Connect

    Fujikawa, H.; Makiura, H.

    1982-12-01

    Austenitic stainless steel tubes of AISI 304, 316, 321, and 347 types are sometimes exposed to severe hot corrosion environments in superheaters and reheaters of utility boilers. Hot corrosion depends on the existence of V/sub 2/O/sub 5/ and Na/sub 2/SO/sub 4/ in the oil-fired boilers, and of Na/sub 2/SO/sub 4/ and K/sub 2/SO/sub 4/ in the coal-fired boilers. Among various kinds of ash corrosions, the alkali sulphate-side corrosion has been mainly studied. Type 347 steel better resistance to alkali sulphate-side corrosion than 304, 316, and 321 steels. Alloying with Nb was more effective than Mo or Ti. A (Cr, Fe, Ni)-spinel oxide layer with little ash content formed at the scale-metal interface in 347 steel. In field tests, 347 tubes have maintained good resistance to both fire-side and steam-side corrosion for five years. However, 321 tubes were removed after three years of service, because of severe fire-side corrosion.

  2. Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers

    NASA Astrophysics Data System (ADS)

    Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.

    2015-05-01

    Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.

  3. Simultaneous boiler optimization of efficiency, emission, and reliability utilizing neural network modeling

    SciTech Connect

    Chang, P.S.; Poston, J.

    1996-07-01

    Boiler performance optimization includes the preservation of efficiency, emission, capacity, and reliability. Competitive pressures require cost reduction and environmental compliance. It is a challenge for utility personnel to balance these requirements and to achieve specific company goals. Unfortunately, these requirements often demand tradeoffs. The Clean Air Act Amendment requires Utilities to reduce NO{sub x} emission. NO{sub x} emission reduction has often been accomplished by installation of new low NO{sub x} burners. Boiler tuning for NO{sub x} control can be used as an alternative to low NO{sub x} burner installation. A PC-based computer software program was developed to assist the tuning process. This software, System Optimization Analysis Program (SOAP), is a neural network based code which uses the self-adaptation learning process, with an adaptive filter added for data noise control. SOAP can use historical data as the knowledge base and it provides a fast optimal solution to adaptive control problems. SOAP was tested at several fossil plants. The tests were primarily for NO{sub x} reduction, but the performance parameters were optimized simultaneously.

  4. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect

    Lu, X.F.; Amano, R.S.

    2006-12-15

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  5. Three staged combustion for electric utility boiler NO{sub x} control in year 2003

    SciTech Connect

    Ashworth, R.A.; Murrell, F.J.

    1999-07-01

    The US EPA Federal Implementation Plan (FIP) for 22 states and the District of Columbia will reduce nitrogen oxide emissions during the May through September ozone season below that currently required under the Clean Air Act Amendments(CAAA) of 1990. New technologies will be needed for coal-fired boilers to meet this new limit ({le}0.15 lb NO{sub x}/10{sup 6} Btu) to be imposed in the Year 2003. Selective Catalytic Reduction (SCR) is the only commercially available technology that can meet such a low NO{sub x} emission limit. A three-stage combustion technique being developed by ClearStack Combustion Corporation, that uses the CAIRE{trademark} (acronym for Controlled AIR Emissions) combustor technology, in combination with overfire air (OFA); can also meet this new NO{sub x} limit. A unique three-stage technique offers the electric utility industry a low cost alternative to SCR. Besides, reducing NO{sub x} emissions, the CAIRE unit will also reduce sulfur dioxide and particulate emissions when applied to wall and tangentially fired boilers. A low cost three-stage technique may also be applied to cyclone-fired units. Here, the cyclone barrels will be used as the first stage of combustion rather than the CAIRE combustor. In this cyclone application only NO{sub x} emissions will be reduced.

  6. Tire-derived fuel cofiring test in a pulverized coal utility boiler. Final report

    SciTech Connect

    Joensen, A.W.

    1994-12-01

    In recent years, several states have enacted legislation that outlaws the landfilling of whole tires and forces the implementation of various integrated waste management alternatives to dispose of passenger car and truck tires. Alternate disposal options include source reduction, recycling, composting, incineration, and, as a last resort, landfilling of only shredded tires in conventional landfills or in lined monofills, as required by several states. The high energy content of scrap tires, 13,000-16,000 Btu/lb, has resulted in the use of processed tires as tire-derived fuel (TDF). Previous TDF applications include cement kilns, fluidized bed combustion, stoker, and cyclone-fired boilers. Up to now, no data have been reported for cofiring TDF with coal in pulverized coal boilers. This report presents the results of a Phase I feasibility test program conducted in a 65-MW Babcock and Wilcox pulverized coal steam generator at the City of Ames, Iowa, Municipal Power Plant. This unit currently cofires western coal with refuse-derived fuel (RDF) and utilizes a bottom dump grate to ensure the complete combustion of RDF in the furnace.

  7. Technical and economic feasibility of utilizing apple pomace as a boiler feedstock

    SciTech Connect

    Sargent, S.A.

    1983-01-01

    Apple pomace or presscake, was evaluated for suitability as a boiler feedstock for Michigan firms processing apple juice. Based upon the physical and chemical characteristics of pomace, handling/direct combustion systems were selected to conform with operating parameters typical of the industry. Fresh pomace flow rates of 29,030 and 88,998 kg/day (64,000 and 194,000 lb/day) were considered as representative of small and large processors, respectively, and the material was assumed to be dried to 15% moisture content (wet basis) prior to storage and combustion. Boilers utilizing pile-burning, fluidized-bed-combustion, and suspension-firing technologies were sized for each flow rate, resulting in energy production of 2930 and 8790 kW (10 and 30 million Btu/h), respectively. A life-cycle cost analysis was performed giving Average Annual Costs for the three handling/combustion system combinations (based on the Uniform Capital Recovery factor). An investment loan at 16% interest with a 5-year payback period was assumed. The break-even period for annual costs was calculated by anticipated savings incurred through reduction of fossil-fuel costs during a 5-month processing season. Large processors, producing more than 88,998 kg pomace/day, could economically convert to a suspension-fired system substituting for fuel oil, with break-even occurring after 4 months of operation of pomace per year. Small processors, producing less than 29,030 kg/day, could not currently convert to pomace combustion systems given these economic circumstances. A doubling of electrical-utility costs and changes in interest rates from 10 to 20% per year had only slight effects on the recovery of Average Annual Costs. Increases in fossil-fuel prices and the necessity to pay for pomace disposal reduced the cost-recovery period for all systems, making some systems feasible for small processors. 39 references, 13 figures, 10 tables.

  8. INTEGRATED AIR POLLUTION CONTROL FOR COAL-FIRED UTILITY BOILERS: A COMPUTER MODEL APPROACH FOR DESIGN AND COST-ESTIMATING

    EPA Science Inventory

    The paper describes the Integrated Air Pollution Control System (IAPCS), a computerized program that can be used to estimate the cost and performance of pre-combustion, in situ, and post-combustion air pollution control configurations in pulverized-coal-fired utility boilers of 1...

  9. FIELD EVALUATION OF A LOW-NO(SUB X) FIRING SYSTEM FOR TANGENTIALLY COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report gives results of a full-scale utility demonstration of Combustion Engineering's Low-NOx Concentric Firing System (LNCFS), conducted at Utah Power and Light's 400 MWe Hunter No. 2 boiler. This program was implemented to investigate and evaluate the effectiveness of usin...

  10. RETROFIT COSTS FOR LIME/LIMESTONE FGD AND LIME SPRAY DRYING AT COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The paper gives results of a research program the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying S02 controls to existing coal-fired utility boilers. he costs of retrofitting conventiona...

  11. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    EPA Science Inventory

    This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology costs and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO...

  12. ANALYSIS OF LONG-TERM NO EMISSION DATA FROM PULVERIZED COAL-FIRED UTILITY BOILERS. VOLUME II. APPENDICES

    EPA Science Inventory

    The report gives results of an analysis of long-term NO emission monitoring data from nine pulverized-coal-fired utility boilers. These data were in the form of hourly averaged NO, O2 (or CO2), and load: NO and O2/CO2 were measured with certified continuous emission analyzers. Th...

  13. ANALYSIS OF LONG-TERM NO EMISSION DATA FROM PULVERIZED COAL-FIRED UTILITY BOILERS. VOLUME I. TECHNICAL ANALYSIS

    EPA Science Inventory

    The report gives results of an analysis of long-term NO emission monitoring data from nine pulverized-coal-fired utility boilers. These data were in the form of hourly averaged NO, O2 (or CO2), and load: NO and O2/CO2 were measured with certified continuous emission analyzers. Th...

  14. Fossil-Fired Boilers

    Energy Science and Technology Software Center (ESTSC)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  15. Combining support vector regression and ant colony optimization to reduce NOx emissions in coal-fired utility boilers

    SciTech Connect

    Ligang Zheng; Hao Zhou; Chunlin Wang; Kefa Cen

    2008-03-15

    Combustion optimization has recently demonstrated its potential to reduce NOx emissions in high capacity coal-fired utility boilers. In the present study, support vector regression (SVR), as well as artificial neural networks (ANN), was proposed to model the relationship between NOx emissions and operating parameters of a 300 MW coal-fired utility boiler. The predicted NOx emissions from the SVR model, by comparing with that of the ANN-based model, showed better agreement with the values obtained in the experimental tests on this boiler operated at different loads and various other operating parameters. The mean modeling error and the correlation factor were 1.58% and 0.94, respectively. Then, the combination of the SVR model with ant colony optimization (ACO) to reduce NOx emissions was presented in detail. The experimental results showed that the proposed approach can effectively reduce NOx emissions from the coal-fired utility boiler by about 18.69% (65 ppm). A time period of less than 6 min was required for NOx emissions modeling, and 2 min was required for a run of optimization under a PC system. The computing times are suitable for the online application of the proposed method to actual power plants. 37 refs., 8 figs., 3 tabs.

  16. Structure and Performance of a 600MWe Supercritical CFB Boiler with Water Cooled Panels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Nie, L.; Hu, X. K.; Yue, G. X.; Li, W. K.; We, Y. X.; Lu, J. F.; Che, D. F.

    The circulating fluidized bed (CFB) combustion technology is one of the approved clean combustion technologies, and the power supply efficiency can be improved combining with the supercritical technology. A 600MWe supercritical CFB boiler is introduced in this paper. This boiler is designed based on the success of 300 MWe CFB boilers, which has a single furnace with three cyclones without external heat exchangers. There are twin furnaces and twin air distributors in the boiler. The water walls of the twin furnace above dense bed combines to a common fence wall with some channels to balance the pressure of the two furnaces. The smooth tubes are adopted in membrane water wall with mixing header. Six cyclones are located beside the furnace as well as six loopseals and six external heat exchangers. The hydrodynamic characteristic of water wall is available with the modeling prediction. And the performance of the 600MWe supercritical CFB boiler is also investigated.

  17. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  18. ANALYSIS TEST DATA FOR NOX CONTROL IN COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report describes the analyses of a large quantity of emissions, operating conditions, and boiler configuration data from full-scale, multiple-burner, electric-generating boilers firing coal fuel. Objectives of the study include: (1) evaluation of the effects of combustion mod...

  19. Computational model for microstructure and effective thermal conductivity of ash deposits in utility boilers

    NASA Astrophysics Data System (ADS)

    Kweon, Soon-Cheol

    The ash deposits formed in pulverized-coal fired power plants reduce heat transfer rate to furnace wall, super heater tubes, and other heat transfer surfaces. The thermal properties that influence strongly on this heat transfer depend mainly on the microstructure of the ash deposit. This dissertation examines three issues associated with the ash deposits in utility boilers: (1) the three-dimensional model for characterization of the ash deposit microstructures from the sample ash deposits, (2) the computational model for effective thermal conductivity of sintered packed beds with low conductive stagnant fluids, and (3) the application of thermal resistor network model for the effective thermal conductivity of ash deposits in utility boilers. The SEM image analysis was conducted on two sample ash deposits to characterize three-dimensional microstructure of the ash deposit with several structural parameters using stereology. A ballistic deposition model was adopted to simulate the deposit structure defined by the structural parameters. The inputs for the deposition model were chosen from the predicted and measured physical parameters, such as the size distribution, the probability of the particle rolling, and the degree of the particle sintering. The difference between the microstructure of the sample deposits and the simulated deposits was investigated and compared quantitatively based on the structural parameters defined. Both the sample and the simulated deposits agree in terms of the structural parameters. The computational model for predicting the effective thermal conductivity of sintered packed beds with low conductive stagnant fluid was built and the heat conduction through the contact area among sintered particles is the dominant mode of heat transfer. A thermal resistor network is used to model the heat conduction among the sintered particles and the thermal resistance among the contacting particles is estimated from both the contact area and the contact

  20. Corrosion/erosion detection of boiler tubes utilizing pulsed infrared imaging

    NASA Astrophysics Data System (ADS)

    Bales, Maurice J.; Bishop, Chip C.

    1995-05-01

    This paper discusses a new technique for locating and detecting wall thickness reduction in boiler tubes caused by erosion/corrosion. Traditional means for this type of defect detection utilizes ultrasonics (UT) to perform a point by point measurement at given intervals of the tube length, which requires extensive and costly shutdown or `outage' time to complete the inspection, and has led to thin areas going undetected simply because they were located in between the sampling points. Pulsed infrared imaging (PII) can provide nearly 100% inspection of the tubes in a fraction of the time needed for UT. The IR system and heat source used in this study do not require any special access or fixed scaffolding, and can be remotely operated from a distance of up to 100 feet. This technique has been tried experimentally in a laboratory environment and verified in an actual field application. Since PII is a non-contact technique, considerable time and cost savings should be realized as well as the ability to predict failures rather than repairing them once they have occurred.

  1. A model for coburning of power plant waste materials in utility boilers

    SciTech Connect

    Stadler, S.P.; Shea, S.C.; Quinn, A.; Murarka, I.

    1994-12-31

    A software package, the Coburning Feed Rate Simulator (COFERS), has been developed which will enable utility environmental specialists and plant engineers to evaluate the impacts of coburning power plant waste materials in coal-fired power plants. Examples of the wastes considered include contaminated soils and low-volume waste materials such as spent solvents, boiler cleaning fluids, waste paints, etc. The impacts considered are trace element and organic compound concentrations in solid waste streams. The program uses data from various EPRI research projects that examine the distribution of trace elements and organic compounds within solid waste streams The program is designed to allow users easily to modify or update the partitioning information as it becomes available in the future. COFERS calculates the maximum coburned waste feed rate possible given a coal feed rate and user-specified limits on the composition of the waste materials being processed. Also, plant waste stream compositions can be determined for specified coal and waste feed rates. Sensitivity analyses can be performed on a variety of parameters. Results are presented in graphical and text formats. The benefits of using this program include assuring a desired chemical composition of the solid wastes generated by coburning, allowing the development of coburning plans based on sensitivity analysis of alternate scenarios, and simplified preparation of coburning plan documents. The Coburning Feed Rate Simulator (COFERS) runs under Microsoft Windows and will be available from the EPRI Product Distribution Center in the fall of 1994.

  2. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  3. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    PubMed

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+. PMID:20480850

  4. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  5. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  6. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    SciTech Connect

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  7. Urea injection NO sub X removal on a 325 MW brown coal-fired electric utility boiler in West Germany

    SciTech Connect

    Negrea, S.; Jones, D.G. ); Rose, G. ); Smith, R.A.; Shimoto, G.H. )

    1990-01-01

    An advanced urea injection system for NO{sub x} control has been installed and is providing compliance with 200 mg/Nm3 (i.e., about 100 ppm) regulatory requirements on a 325 MW brown coal-fired Block C Offleben boiler operated by Braunschweigische Kohlen-Bergwerke AG (BKB), a Wester German electric utility company. The boiler is part of BKB's Offleben plant, located near Hannover on the border with East Germany. This paper concludes that proper urea injection system design (i.e., injection nozzle parameters and nozzle locations), combined with proper operation and adjustment of automatic load-following control, has provided BKB with a reliable means of compliance with NO{sub x} control regulations. Of particular importance in this application was achieving low levels of NH{sub 3} slip, which would have otherwise combined with sulfur oxides, causing deposits and/or air preheater fouling.

  8. [The utility boiler low NOx combustion optimization based on ANN and simulated annealing algorithm].

    PubMed

    Zhou, Hao; Qian, Xinping; Zheng, Ligang; Weng, Anxin; Cen, Kefa

    2003-11-01

    With the developing restrict environmental protection demand, more attention was paid on the low NOx combustion optimizing technology for its cheap and easy property. In this work, field experiments on the NOx emissions characteristics of a 600 MW coal-fired boiler were carried out, on the base of the artificial neural network (ANN) modeling, the simulated annealing (SA) algorithm was employed to optimize the boiler combustion to achieve a low NOx emissions concentration, and the combustion scheme was obtained. Two sets of SA parameters were adopted to find a better SA scheme, the result show that the parameters of T0 = 50 K, alpha = 0.6 can lead to a better optimizing process. This work can give the foundation of the boiler low NOx combustion on-line control technology. PMID:14768567

  9. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    NASA Astrophysics Data System (ADS)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  10. OVERFIRE AIR TECHNOLOGY FOR TANGENTIALLY FIRED UTILITY BOILERS BURNING WESTERN U.S. COAL

    EPA Science Inventory

    The report gives results of an investigation and evaluation of the effectiveness of overfire air in reducing NOx emissions from tangentially fired boilers burning Western U.S. coal. Results are compared with those obtained during phase II, 'Program for Reduction of NOx from Tange...

  11. Demonstration of Orimulsion{reg{underscore}sign} reburning on a coal-fired utility boiler

    SciTech Connect

    Rostorfer, C.R.; Krueger, S.; Payne, R.

    1998-07-01

    This paper provides a summary of the Orimulsion Reburn Demonstration Project recently conducted at Illinois Power's Hennepin Power Station during September through November 1997. The demonstration consisted of three major activities: Modify the Hennepin Station Unit 1 boiler for Orimulsion reburn; Deliver Orimulsion fuel to the Station on the Illinois River via double-hulled barge; and Conduct the demonstration through a series of parametric and duration tests. Hennepin Station Unit 1 was selected to host the demonstration because it had been the site of a US DOE Clean Coal Technology (CCT) Program involving natural gas reburn in the early 1990s. Consequently, the modifications required for the Orimulsion reburn system were relatively minor since penetrations in the boiler walls existed and overfire air and flue gas recirculation fans and ducts were still in place. The reburn fuel system was designed and installed to transfer the Orimulsion from the barge and inject it into the boiler. A double-hulled barge was used to transport about 16,500 barrels of Orimulsion to the plant on the Mississippi and Illinois Rivers and served as the storage facility during the testing. Illinois bituminous coal provided approximately 80% of the unit's heat input, with Orimulsion providing approximately 20%. The objective of the project was to demonstrate NO{sub x} reductions of up to 65% from the original baseline levels with no unexpected impacts on boiler performance or operation.

  12. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    EPA Science Inventory

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  13. Assessment of control technologies for reducing emissions of SO sub 2 and NOx from existing coal-fired utility boilers. Final report, January 1987-December 1989

    SciTech Connect

    White, D.M.; Maibodi, M.

    1990-09-01

    The report reviews available information and estimated costs on 15 emission control technology categories applicable to existing coal-fired electric utility boilers. The categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies still undergoing pilot scale and commercial demonstration. The status of each technology is reviewed relative to four elements: Description--how the technology works; Applicability--its applicability to existing plants; Performance--the expected emissions reduction; and Costs--the capital cost, busbar cost, and cost per ton of SO2 and NOx removed. Costs are estimated for new and retrofit applications for various boiler sizes, operating characteristics, fuel qualities, and boiler retrofit difficulties.

  14. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    NASA Astrophysics Data System (ADS)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  15. Economic comparison of fabric filters and electrostatic precipitators for particulate control on coal-fired utility boilers

    NASA Technical Reports Server (NTRS)

    Cukor, P. M.; Chapman, R. A.

    1978-01-01

    The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.

  16. Combined incineration of industrial wastes with in-plant residues in fluidized-bed utility boilers--decision relevant factors.

    PubMed

    Ragossnig, Arne M; Lorber, Karl E

    2005-10-01

    In Austria more than 50% of the high-calorific industrial residues and wastes generated are utilized for energy recovery in industrial utility boilers. This study investigated full-scale trials of combined incineration of in-plant residues with various industrial wastes. These trials were carried out in order to learn how the alternatively used fuel influences the incineration process itself as well as the quantity and quality of the various incineration products. The currently used fuel, which consisted of in-plant residues as well as externally acquired waste wood and the refuse-derived fuel (RDF) mixtures used during the full-scale trials are characterized in terms of material composition as well as chemical and physical parameters. An input-output mass balance for the incineration plant (two fluidized bed combustion units, 20 and 30 MW, respectively) has been established, based on the data collected during the full-scale incineration trials. Furthermore, pollutant concentrations in the off-gas as well as the solid incineration residue are reported. It is not only the pollutant content but also a variety of other internal as well as external factors that have to be considered if a company is to decide whether or not to thermally utilize specific waste types. Therefore a strengths and weaknesses profile for several types of waste and the specific industrial boiler is also presented. PMID:16273953

  17. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    C. Jean Bustard

    2003-12-01

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  18. Fundamental studies of the mechanisms of slag deposit formation: Studies on initiation, growth and sintering in the formation of utility boiler deposits: Topical technical report

    SciTech Connect

    Tangsathitkulchai, M.; Austin, L.G.

    1986-03-01

    Three laboratory-scale devices were utilized to investigate the mechanisms of the initiation, growth and sintering process involved in the formation of boiler deposits. Sticking apparatus investigations were conducted to study deposit initiation by comparing the adhesion behavior of the ash drops on four types of steel-based heat exchanger materials under the conditions found in a utility boiler and an entrained slagging gasifier. In addition, the adhesion behavior of the ash drops on a reduced steel surface were investigated. All the ash drops studied in this investigation were produced from bituminous coals.

  19. Rehabilitation of a 410-MW utility boiler at Costa Sur, Puerto Rico

    SciTech Connect

    Rosado, R.; Salmeron, M.

    1995-12-31

    To increase unit reliability and availability and to meet the current and future electric power demands in Puerto Rico, the Puerto Rico Electric Power Authority (PREPA) recently performed a scheduled outage rehabilitation of Costa Sur Power Station Unit 5. This major rehabilitation of a 23-year-old, 410 MW, oil-fired boiler was accompanied by the upgrading of the low-pressure turbine with new rotors. The boiler rehabilitation included the replacement of all waterwall floor panels from just below the burner windbox, down to the lower drum. Temporary support was provided for the lower drum and its structural system during the panel replacement. The steam drum internals were completely rehabilitated, with the installation of a new liner and cleaning and repair of other internals as required. The superheater and reheater desuperheater liners were also replaced. In addition, all major components of both the firing system and the air preheaters were replaced. The gas recirculation fan was rehabilitated, and its discharge duct was replaced.

  20. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  1. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces.

    PubMed

    Wang, Xi-fen; Zhou, Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions. PMID:16295911

  2. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  3. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-01-01

    LNS Burner design effort during this period focussed on the analysis of LNS Burner heat transfer, review and approval of fabrication drawings, completion of LNS Burner boiler flow modelling and the continued development of the slag screen model. Balance of plant engineering indude d the finalization of roof and wall details for the Fuel Preparation Building, structural checks associated with installation of equipment in the existing plant, the design of the fire fighting and ventilation systems for the Fuel Preparation Building and the preparation of P ID's for the materials handling facilities. Work continued on the preparation of P ED's for the fuel oil system and the instrument air and service air systems, the preparation of equipment lists and system descriptions, detailed design documentation for powering and control of major electrical components and preparation of the instrument index. Work on electrical design details for the instrumentation and minor control devices has been started.

  4. Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201

    SciTech Connect

    Bhattacharya, C.

    2008-09-15

    Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

  5. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-01-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the third reporting quarter, the electrostatic tensiometer for laboratory determination of flyash cohesivity was completed. Modifications were made to this method to improve repeatability. In addition, a new multi-cell laboratory flyash resistivity furnace was completed. Also during this quarter an agreement was reached for the initial field trial of the new additives at the City of Ames, Iowa Municipal Power Plant.

  6. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

  7. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  8. Retrofit costs for lime/limestone FGD and lime spray drying at coal-fired utility boilers

    SciTech Connect

    Emmel, T.E.; Jones, J.W.

    1990-01-01

    The paper gives results of a research program the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 controls to existing coal-fired utility boilers. The costs of retrofitting conventional lime/limestone wet flue gas desulfurization (L/LS FGD) and lime spray drying (LSD) FGD at 100-200 coal-fired power plants are being estimated under this program. The retrofit capital cost estimating procedures used for L/LS FGD and LSD FGD make two cost adjustments to current procedures used to estimate FGD costs: cost adders (for items not normally included in FGD system costs; e.g., demolition and relocation of existing facilities) and cost multipliers (to adjust capital costs for site access, congestion, and underground obstructions).

  9. BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS; VOLUME 2. TESTING IN A 100 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The report givesresults of100 million Btu/hr (29 MWt) experimental furnace to explore methods for achieving effective S02 removal in a coalfired utility boiler using calcium-based sorbents, through appropriate selection of injection location and injector design/operating paramete...

  10. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  11. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  12. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  13. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  14. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM Pt. 76, App. A Appendix A to Part...

  15. PROCEEDINGS OF THE STATIONARY SOURCE COMBUSTION SYMPOSIUM (2ND) HELD IN NEW ORLEANS, LA. ON AUGUST 29-SEPTEMBER 1, 1977. VOLUME II. UTILITY AND LARGE INDUSTRIAL BOILERS

    EPA Science Inventory

    ;Contents: Field testing--application of combustion modification to power generating combustion sources; Analysis of NOx control in stationary sources; Overfire air technology for tangentially fired utility boilers burning western U.S. coal; The EPRI program on NOx control using ...

  16. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  17. Pulse-jet fabric filters for coal-fired utility and industrial boilers: Final report

    SciTech Connect

    Dean, A.H.; Cushing, K.M.

    1987-09-01

    Pulse-jet fabric filters rely on the filtration of dirty flue gas by the outside surface of the bags, which are then cleaned by a shock wave from an air pulse entering each bag from the top. The shock wave travels down each bag, flexing the bag and dislodging dustcake as it travels the length of the bag downward and then upward. A venturi may or may not be used to enhance the pulse, and cleaning may be on-line or off-line. This study provides a convenient and versatile information base about pulse-jet fabric filters on coal-fired boilers. Features include an overview of the pulse-jet concept, a discussion of the advantages and disadvantages of pulse-jet cleaning, a survey of vendors and design and hardware features of pulse-jet installations, discussion of these design and hardware characteristics for several vendors, case histories of a wide variety of installations as examples, and a list of pertinent references. The most important part of the study is an exhaustive table of pulse-jet installations and their features, sorted several different ways for accessibility. Predominant features of the installations in the list are analyzed and presented in graphic form.

  18. Preliminary estimates of performance and cost of mercury emission control technology applications on electric utility boilers: An update

    SciTech Connect

    Srivastava, R.K.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    The Environmental Protection Agency has recently proposed a reduction in mercury emissions from coal-fired power plants. There are two broad approaches under development to controlling mercury emissions from coal-fired electric utility boilers. (1) powdered activated carbon (PAC) injection; and (2) multipollutant control, in which Hg capture is enhanced in existing and new sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), and particulate matter (PM) control devices. To help inform the recent EPA rulemaking proposal, estimates of performance levels and related costs associated with the above mercury control approaches were developed. This work presents these estimates. Estimates of cost for PAC injection range from 0.003 to 3.096 mills/kWb. In general, the higher costs are associated with the plants using spray dryers and electrostatic precipitators (ESPs) or plants using hot-side ESPs, which represent a minority of power plants. Excluding these plants, cost estimates range between 0.003 and 1.903 mills/kWh. At the low end of the cost ranges, 0.003 mills/kWb, it is assumed that no additional control technologies are needed, but mercury monitoring will be necessary. In these cases, high mercury removal may be the result of the type of NOx and SO{sub 2} control measures currently used, such as combinations of selective catalytic reduction and wet flue gas desulfurization or spray drier absorbers with fabric filters on bituminous coal-fired boilers. Because mercury control approaches are under development at present, cost and performance estimates are preliminary and are expected to be refined as mercury control technologies are matured to commercial status. Factors that may affect the performance of these technologies include speciation of mercury in flue gas, the characteristics of the sorbent, and the type(s) of PM, NOx, and SO, controls used.

  19. Low NO{sub x} burner retrofits to 240 MW, 300 MW and 400 MW oil/gas fired utility boilers; Final performance results and lessons learned

    SciTech Connect

    Kuretski, J.J. Jr.; Price, J.V.; Schindler, E.S.; Guarco, J.P.

    1996-12-31

    Low NO{sub x} burners (LNBs) and new windbox baffles were retrofitted to eight residual oil/gas fired boilers totaling 2,680 MW of generating capacity in the Florida Power and Light Co. (FPL) system. These TODD Combustion designed LNBs were installed, from 1992 to 1995, to comply with a NO{sub x} Reasonably Available Control Technology (R.A.C.T.) determination associated with a moderate ozone non-attainment area in south Florida. LNBs were the primary means of NO{sub x} emission rate reduction, with an objective to achieve the maximum NO{sub x} reduction possible through burner hardware changes. Accordingly, the full focus of the project was on the capabilities of state-of-the-art LNB technology. These LNB retrofits were deemed successful based on the significant NO{sub x} reductions that were achieved. FPL`s contract requirements included consideration of unit performance and boiler component life impacts in addition to the traditional emission parameter guarantees. In striving to simultaneously meet all contract requirements, various burner design adjustments were implemented. As the project progressed, much was learned about LNBs and their effects on utility boilers as well as the effects of boiler equipment design and boiler conditions on NO{sub x} emission rates.

  20. Guidelines for cofiring refuse-derived fuel in electric utility boilers: Volume 1, Executive summary: Final report

    SciTech Connect

    Fiscus, D.E.; Wolfs, K.E.; Ege, H.D.; Kimber, A.; Joensen, A.W.; Savage, G.M.

    1988-06-01

    The quidelines address the procedures for evaluting proposed RDF (refuse-derived fuel) cofiring projects, RDF specifications and preparation, impact of RDF cofiring on power plant performance and operation, design criteria for RDF handling and other equipment, environmental control systems, capital and O and M cost estimates, economic analysis, and the breakeven RDF value to the utility. The economic analysis examples suggest that the value of RDF to the utility is only a fraction of the value of the fuel being replaced. This is because the incremental fuel savings derived from RDF cofiring are at least partially offset by the incremental capital and O and M costs. In order to maximize RDF value, it is important to select units for RDF cofiring that have at least 15 years of remaining life, operate at high capacity factor, are of sufficient size to consume the available RDF stream, and do not exihibit boiler slagging and fouling, electricstatic precipitator, or unit derating problems while burning coal or oil. 1 ref., 18 figs., 4 tabs.

  1. CWS co-firing on two cyclone-fired electric utility boilers

    SciTech Connect

    Ashworth, R.A.; Carson, W.R.; DeSollar, R.; Brown, R.A.

    1997-07-01

    Coal water slurry (CWS) Co-firing is of interest to electric utilities for several reasons. Studies have shown that there are some two billion tons of coal in coal pond impoundments throughout the Eastern/Midwestern United States with an additional 50 million tons being added each year. The use of such coal pond fines can provide utilities with a fuel that is potentially lower in cost than currently contracted supply coal. A CWS fuel used for co-firing in a cyclone-fired unit requires only minimal processing for this type of unit can handle high ash coals. CWS Co-firing in a cyclone might also be done in such a way to reduce NO{sub x} emissions. Further, certain utilities operate their own coal preparation plants. By removing coal fines from preparation plant impoundments, more landfill volume becomes available. This paper describes a demonstration of CWS combustion on a 33 MWe cyclone-fired unit.

  2. BOILER PERF MODEL

    SciTech Connect

    Winslow, J.C. )

    1988-01-01

    The BOILER PERFORMANCE MODEL is a package of eleven programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  3. IAPCS: A COMPUTER MODEL THAT EVALUATES POLLUTION CONTROL SYSTEMS FOR UTILITY BOILERS

    EPA Science Inventory

    The IAPCS model, developed by U.S. EPA`s Air and Energy Engineering Research Laboratory and made available to the public through the National Technical Information Service, can be used by utility companies, architectural and engineering companies, and regulatory agencies at all l...

  4. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    EPA Science Inventory

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  5. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1991-12-23

    Energy and Environmental Research Corporation (EER) is currently conducting a test program to develop an advanced NO{sub x} control method utilizing reburning, promoted selective noncatalytic agent injection. The study will consist of fundamental and process testing over a large enough range of operating parameters to significantly reduce the risk of a full scale demonstration project. The test plan for the fundamental testing phase of the program is presented here.

  6. Monitoring the service-induced damage in utility boiler pressure vessels and piping systems

    SciTech Connect

    Harh, G.H.; Sherlock, T.P.

    1985-08-01

    Electric utilities are becoming more concerned about extending the life of older fossil-fueled power plants. Of particular interest are methods for estimating the remaining useful life of steam headers and main steam piping. This paper discusses different methodologies for determining exhausted and remaining life of these components. An example of a header which was found to have exhausted its useful life is also presented.

  7. The design of circulating fluid bed boilers for utility power generation

    SciTech Connect

    Maitland, J.; Skowyra, R.

    1997-12-31

    Fluid bed combustion technology has been utilized in a broad range of industries to produce steam and electricity. The advantages of circulating fluid bed technology, including the ability to use both conventional and waste fuels in an environmentally sound combustion process, have been the driving forces for the selection of CFB by numerous companies. An important trend in the market development for CFB has been increased interest in the scale-up of units to larger, utility size applications. The environmental and fuel flexibility features are also of strong interest for companies looking for 150--400 MW output. The worldwide private power industry has utilized fluidized bed combustion as one of its options for power development. ABB Combustion Engineering has been a leader in the design of these larger units. This paper will provide specific details on the design and operation of large scale fluidized bed for power generation, along with a review of the impact of different fuels on unit design. The authors will include their perspective on the future for advanced CFB designs also.

  8. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-09-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  9. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-07-30

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  10. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-05-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the fourth reporting quarter, laboratory-screening tests of more than 20 potential additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of flyash cohesivity. Resistivity was measured for each screening test with a new multi-cell laboratory flyash resistivity furnace constructed for this project. An initial field trial of three additive formulations was also conducted at the City of Ames, Iowa Municipal Power Plant.

  11. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    SciTech Connect

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  12. The potential of pulse-jet baghouses for utility boilers part 3: Comparative economics of pulse-jet baghouse, precipitators and reverse-gas baghouses

    SciTech Connect

    Sloat, D.G.; Gaikwad, R.P. ); Chang, R.L. )

    1993-01-01

    Pulse-jet fabric filters (PJFFs) are widely used in US industrial applications, and in both utility and industrial boilers abroad. Their smaller size and reduced cost relative to more conventional baghouses make PJFFs an attractive particulate control option for utility boilers. This article which is the third in a three-part series, compares the cost of PJFFs with electrostatic precipitators (ESPs) and reverse-gas baghouses (RGBs). This article presents the capital, operating and maintenance (O M), and levelized costs for ESPs, RGBs and PJFFs. The particulate control equipment design and pricing are supplied by manufacturers of the control equipment. A comparison of costs for a base case 250-MW boiler indicates that the PJFF capital cost is 22 percent lower than the cost of an ESP with 400 SCA and 12-inch plate spacing; in addition the PJFF is 35 percent lower than the cost of an RGB. The levelized cost for a PJFF is about equal to the cost of the ESP but 14 percent lower than the cost of the RGB. Overall, the attractiveness of a PJFF versus an ESP depends on the coal type and the outlet emissions limit required. PJFF is favored when low-sulfur coal is fired due to the high-resistivity fly ash. Also, PJFF is favored as more stringent outlet emission rates are required. 11 refs., 10 figs., 6 tabs.

  13. Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler.

    PubMed

    Li, Zhengqi; Zhao, Wei; Li, Ruiyang; Wang, Zhenwang; Li, Yuan; Zhao, Guangbo

    2009-04-01

    Measurements were taken for a 35-ton-per-hour biomass-fired travelling grate boiler. Local mean concentrations of O(2), CO, SO(2) and NO gas species and gas temperatures were determined in the region above the grate. For a 28-ton-per-hour load, the mass ratios of biomass fly ash and boiler slag were 42% and 58%, the boiler efficiency was 81.56%, and the concentrations of NO(x) and SO(2) at 6% O(2) were 257 and 84 mg/m(3). For an 18-ton-per-hour load, the fuel burning zone was nearer to the inlet than it was for the 28-ton-per-hour load, and the contents of CO and NO in the fuel burning zone above the grate were lower. PMID:19091555

  14. Basic design studies for a 600 MWe CFB boiler (270b, 2 x 600 C)

    SciTech Connect

    Bursi, J.M.; Lafanechere, L.; Jestin, L.

    1999-07-01

    Commercial CFB boilers are currently available in the 300 MWe equivalent range for use with international coal. Retrofitting of Provence 4 with a 250 MWe CFB boiler was an important step in CFB development. In light of the results obtained from two large French units--Emile Huchet 4 (125 MWe) and Provence 4 (250 MWe)--this paper focuses on the main technical points which are currently being studied in relation to the basic design of a 600 MWe CFB boiler, a project that has been undertaken by EDF. The general aim of this project is to demonstrate the competitiveness of a CFB boiler compared with a PF boiler. The main areas of focus in the design of this large CFB boiler with advanced steam conditions are described. These points are subjected to particular analysis from a design standpoint. The objective is to prepare the precise specifications needed to ensure a product which is optimized in terms of quality/cost or service/cost. Due to the present lack of theoretical understanding of the refined and complex two-phase flow, design is a challenge which has to be based on reliable and comprehensive data obtained from large plants in commercial operation. This will ensure that the advantages of CFB which arise from the hydrodynamics within the circulation loop are maintained. The major goals of maintaining good particle residence time and concentration in the furnace are described. Misunderstanding of CFB furnace bottom conditions is also pointed out, with cost reduction and better NO{sub x} capture certainly among the major new targets in relation to bottom furnace design. General problems associated with the heat exchanger arrangement, principally those linked to high steam conditions and, especially, the vaporization system, are discussed. Once again, comparison with PF in this area showed that CFB boilers appear more competitive. Finally, the main area in which there is a need for sharing of CFB experience among CFB users is pointed out.

  15. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs.

    PubMed

    Wang, Ruwei; Liu, Guijian; Zhang, Jiamei

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM10- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM10 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM10 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM10 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. PMID:26298851

  16. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.

    PubMed

    Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi

    2011-04-15

    Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash. PMID:21428379

  17. Design and research of retrofitting PC boiler into CFB boiler

    SciTech Connect

    Chen, H.P.; Lu, J.D.; Huang, L.; Liu, H.; Lin, Z.; Liu, D.C.

    1997-12-31

    In China, there are a large number of aged pulverized coal (PC) boilers at aging utility power plants. Many of them are beyond their reasonable working life or in a condition of unreliable operation, low combustion efficiency, and serious air pollution. It is very important and urgent to retrofit the aged PC boilers, and repower the aging utility power plants in China. Circulating fluidized bed (CFB) boilers have been developed rapidly, and paid great attention to in China. There are many striking advantages to retrofit an aged boiler with a CFB boiler. The retrofitting is suitable to meet the needs of effective utilization of low-grade coal, reducing SO{sub 2} and NO{sub x} emissions and repowering an aging power plant. The cost is much lower than that of building a new CFB unit. The National Laboratory of Coal Combustion (NLCC) has always paid great attention to studying and developing CFB combustion technology in connection with Chinese national conditions, and has evolved distinguishing technology features of its own. This paper introduces a new design concept of retrofitting PC boiler into Pi ({Pi}-shaped) CFB boiler with downward exhaust cyclone, and relevant research work and results of design and calculation.

  18. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS; VOLUME 2. TESTING IN A 100 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The report givesresults of100 million Btu/hr (29 MWt) experimental furnace to explore methods for achieving effective S02 removal in a coalfired utility boiler using calcium-based sorbents, through appropriate selection of injection location and injector design/operating paramete...

  19. Integrating low-NO{sub x} burners, overfire air, and selective non-catalytic reduction on a utility coal-fired boiler

    SciTech Connect

    Hunt, T.; Muzio, L.; Smith, R.

    1995-05-01

    Public Service Company of Colorado (PSCo), in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI), is testing the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control system. This system combines low-NO{sub x} burners, overfire air, selective non-catalytic reduction (SNCR), and dry sorbent injection with humidification to reduce by up to 70% both NO{sub x} and SO{sub 2} emissions from a 100 MW coal-fired utility boiler. The project is being conducted at PSCo`s Arapahoe Unit 4 located in Denver, Colorado as part of the DOE`s Clean Coal Technology Round 3 program. The urea-based SNCR system, supplied by Noell, Inc., was installed in late 1991 and was tested with the unmodified boiler in 1992. At full load, it reduced NO{sub x} emissions by about 35% with an associated ammonia slip limit of 10 ppm. Babcock & Wilcox XLS{reg_sign} burners and a dual-zone overfire air system were retrofit to the top-fired boiler in mid-1992 and demonstrated a NO{sub x} reduction of nearly 70% across the load range. Integrated testing of the combustion modifications and the SNCR system were conducted in 1993 and showed that the SNCR system could reduce NO{sub x} emissions by an additional 45% while maintaining 10 ppm of ammonia slip limit at full load. Lower than expect4ed flue-gas temperatures caused low-load operation to be less effective than at high loads. NO{sub x} reduction decreased to as low as 11% at 60 MWe at an ammonia slip limit of 10 ppm. An ammonia conversion system was installed to improve performance at low loads. Other improvements to increase NO{sub x} removal at low-loads are planned. The combined system of combustion modifications and SNCR reduced NO{sub x} emissions by over 80% from the original full-load baseline. 11 figs.

  20. Large scale CWM utilization experiences in 600 MW Nakoso No. 8 boiler of Joban Joint Power Company

    SciTech Connect

    Ishibashi, Yoshitaka; Abe, Nobuyuki; Morimitsu, Keimei

    1994-12-31

    Japanese Electric power companies recognized the importance of utilizing coal in 1973 when the oil crisis occurred and the early introduction of coal for power generation began to be studied. Tokyo Electric Power Co., Inc. aimed at the utilization of COM (coal oil mixture) to begin with and put into the commercial operation of No. 1 and 2 COM-fired units (each 265MW) of Yokosuka Thermal Power Station in 1985. Both units have been in favorable operation with an annual consumption of approximately 600,000 tons of COM.

  1. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  2. SECOND SYMPOSIUM OF THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY: VOLUME I. CONTROL OF EMISSIONS FROM COAL FIRED BOILERS

    EPA Science Inventory

    The proceedings document the approximately 120 presentations at the EPA/IERL-RTP-sponsored symposium, attended by nearly 800 representatives of a wide variety of companies (including 17 utilities). The keynote speech for the 4-day meeting was by EPA's Frank Princiotta. This volum...

  3. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT (EPA/600/SR-01/109)

    EPA Science Inventory

    The report provides additional information on mercury (Hg) emissions control, following release of Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units
    Final Report to Congress, in February 1998. Chapters 1-3 describe EPAs December 2000 deci...

  4. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT (EPA/600/R-01/109)

    EPA Science Inventory

    In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. This report, produced by EPA fs Office of Research and Development (ORD), National Risk Management Resea...

  5. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    PubMed

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-01

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%. PMID:26452156

  6. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers. PMID:20050661

  7. 16 CFR Appendix G7 to Part 305 - Boilers (Oil)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Oil) G7 Appendix G7 to Part 305... RULEâ) Appendix G7 to Part 305—Boilers (Oil) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Oil Boilers Manufactured Before the Compliance Date of DOE Regional Standards for...

  8. 16 CFR Appendix G8 to Part 305 - Boilers (Electric)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Electric) G8 Appendix G8 to Part... LABELING RULEâ) Appendix G8 to Part 305—Boilers (Electric) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Electric Boilers 100 100...

  9. 16 CFR Appendix G6 to Part 305 - Boilers (Gas)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Gas) G6 Appendix G6 to Part 305... RULEâ) Appendix G6 to Part 305—Boilers (Gas) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Gas (Except Steam) Boilers Manufactured Before the Compliance Date of DOE Regional...

  10. CFB boiler at Gardanne (France)

    SciTech Connect

    Jaud, P.; Jacquet, L.; Delot, P.; Bayle, F.

    1995-06-01

    Among the new Clean Coal Technologies, {open_quotes}Circulating Fluidized Bed{close_quotes} is one of the most promising. Today, the largest project in commissioning`s the 250 MWe Provence CFB boiler, located near MARSEILLE in the south of France. At such a size, the CFB technique has now reached a capacity corresponding to thermal power plants operated by utilities. This new unit is a very important step towards larger size i.e. 400 MWe and greater. The SO{sub 2} emissions of this CFB boiler are guaranteed to be less than 400 mg / Nm{sup 3} at 6% O{sub 2} with the ratio of Ca/S lower than 3 while total sulfur in local coal used can reach 3.68 %. The purpose of the Provence project was to replace the existing pulverized coal boiler unit 4, commissioned in 1967, of the Provence power plant, with a new CFB boiler while reusing most of the existing equipment. The new boiler has been ordered from GEC ALSTHOM STEIN INDUSTREE (GASI) by Electricite de France (EDF) on behalf of the SOPROLIF consortium. Architect Engineering and construction management was performed by EDF jointly with Charbonnages de France (CdF: the French Coal Board). The 250 MWe CFB boiler is of the superheat-reheat type. The first firing of the boiler is due in April 1995. The poster session will describe the progress in the construction of the plant and provides technical details of the new boiler and auxiliaries.

  11. Exploiting the On-Campus Boiler House.

    ERIC Educational Resources Information Center

    Woods, Donald R.; And Others

    1986-01-01

    Shows how a university utility building ("boiler house") is used in a chemical engineering course for computer simulations, mathematical modeling and process problem exercises. Student projects involving the facility are also discussed. (JN)

  12. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.

    PubMed

    Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui

    2010-08-15

    Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio. PMID:20666359

  13. Design considerations of B&W internal circulation CFB boilers

    SciTech Connect

    Kavidass, S.; Belin, F.; James, D.E.

    1995-12-31

    Worldwide, the use of Circulating Fluidized-Bed (CFB) boiler technology is rapidly increasing due to the ability to burn low grade fuels while meeting the required NO{sub x}, SO{sub 2}, CO, VOC, and particulate emissions requirements. The CFB boiler can produce steam economically for process and electric power generation. This paper discusses various aspects of Babcock & Wilcox (B&W) internal recirculation circulating fluidized-bed (IR-CFB) boiler design including fuel, boiler process parameters, and emissions. The B&W CFB boiler is unique in design. It utilizes proven impact-type particle separators (U-beams) with in-furnace solids recirculation recirculation. The paper describes the methodology for setting up process parameters, heat duty, boiler design, including auxiliary equipment selection and advantages. The paper also updates the ongoing IR-CFB boiler contracts.

  14. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, January--March 1991

    SciTech Connect

    Not Available

    1991-12-31

    LNS Burner design effort during this period focussed on the analysis of LNS Burner heat transfer, review and approval of fabrication drawings, completion of LNS Burner boiler flow modelling and the continued development of the slag screen model. Balance of plant engineering indude d the finalization of roof and wall details for the Fuel Preparation Building, structural checks associated with installation of equipment in the existing plant, the design of the fire fighting and ventilation systems for the Fuel Preparation Building and the preparation of P&ID`s for the materials handling facilities. Work continued on the preparation of P&ED`s for the fuel oil system and the instrument air and service air systems, the preparation of equipment lists and system descriptions, detailed design documentation for powering and control of major electrical components and preparation of the instrument index. Work on electrical design details for the instrumentation and minor control devices has been started.

  15. 33. BOILER HOUSE FURNACE AND BOILER Close view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BOILER HOUSE - FURNACE AND BOILER Close view of the Dorward Engineering Company furnace and boiler which provided steam to the cooking retorts in the adjacent room. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  16. 51. BOILER ROOM. SMALL BOILER ON LEFT OF UNKNOWN MANUFACTURE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. BOILER ROOM. SMALL BOILER ON LEFT OF UNKNOWN MANUFACTURE, WITH INDUCTION MOTORS. HARTLEY BOILER, MONTGOMERY, ALABAMA, ON RIGHT. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  17. Boiler saves pollution problem

    SciTech Connect

    Kaiser, J.A.

    1981-02-01

    Monarch Furniture Industries, High Point, N.C. replaced their old locomotive-type boiler in 1978 with a multifuel boiler system from Energy Systems, Inc. of Chattanooga. The system burns the company's wood wastes, supplemented with low-cost coal in winter. It generates 17,250 lbs. per hour of steam, gives a much cleaner burn than the old boiler, and has a calculated payback period of 1.67 years.

  18. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or...

  19. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or...

  20. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or...

  1. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or...

  2. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or...

  3. Design of a 350 MWe CFB boiler

    SciTech Connect

    Darling, S.L.; Li, X.

    1997-12-31

    Circulating fluidized bed (CFB) boilers have been in operation for many years in industrial steam and power generation applications, primarily in the 50--100 MWe size range. Recently, several utility-scale CFB boilers have entered service and several others are under construction, in the 150--250 MWe size range. The next step for CFB technology is the 350 MWe size range. This paper will describe Foster Wheeler`s utility CFB experience, scale-up philosophy and the major design features of the 350 MWe CFB design.

  4. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO{sub x}, process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayed in Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO{sub x}, by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0{sub 2}. Assuming that 85 percent of the newly formed N0{sub 2} can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO{sub x}, process has been shown capable of reducing NO{sub 2}, by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0{sub 2} formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  5. Design considerations of B&W internal circulation CFB boilers

    SciTech Connect

    Kavidass, S.; Alexander, K.C.

    1995-12-31

    Worldwide, the use of Circulating Fluidized-Bed (CFB) boiler technology is rapidly increasing due to the ability to burn low grade fuels while meeting the required NO{sub x}, SO{sub 2}, CO, VOC, and particulate emissions requirements. The CFB boiler can produce steam economically for process and electric power generation. This paper discusses various aspects of Babcock & Wilcox (B&W) internal recirculation circulating fluidized-bed (IR-CFB) boiler design including fuel, boiler process parameters, and emissions. The B&W CFB boiler is unique in design. It utilizes proven impact-type particle separators (U-beams) with in-furnace solids recirculation. The paper describes the methodology for setting up process parameters, heat duty, boiler design, including auxiliary equipment selection and advantages.

  6. Compartment B3, boiler room; showing boiler facing of boiler #5 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Compartment B-3, boiler room; showing boiler facing of boiler #5 aft to forward from passing room B-25. (030A) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  7. Fluidized-bed-fired industrial boilers

    SciTech Connect

    Leon, A.M.; McCoy, D.E.

    1981-01-01

    E. Keeler Company and Dorr-Oliver, Inc. have joined to design, market and manufacture atmospheric fluidized-bed-fired boilers. The first contract, called Shamokin, was a 23,400 lb/hr unit fired with anthracite culm having a heating value of 4000 Btu/lb and 67% ash. The Department of Energy sponsored this plant as a demonstration project. Boiler erection is nearly complete and start-up is scheduled for mid-1981. In conjunction with the Shamokin project, a line of fluidized-bed-fired boilers to 250,000 lb/hr has been developed for conventional solid fuels. The development of fluidized-bed-fired, industrial boilers is in its very early stages. At this point, it is not possible for any manufacturer to claim extensive operating experience with any particular design under the varied applications normal to industrial watertube boilers. Many different designs and approaches will develop over the next few years and until there has been some operating experience, it is not possible to evaluate just what share of the future industrial boiler market will utilize fluidized-bed firing.

  8. Assessment of physical workload in boiler operations.

    PubMed

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions. PMID:22316759

  9. BPM2.0. Fossil-Fired Boilers

    SciTech Connect

    Winslow, J.C.

    1988-01-01

    BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  10. BPM3.0. Fossil-Fired Boilers

    SciTech Connect

    Winslow, J.C.

    1992-03-01

    The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  11. Improving boiler efficiency

    SciTech Connect

    Yost, L.

    1982-06-24

    Boilers and burners are designed to operate most efficiently at, or near, full load. This fact seems to indicate that on/off operation is more efficient; however, standby losses must be considered. This article examines various types of industrial boiler heat losses that reduce efficiency and discusses methods for improving operation.

  12. SYMPOSIUM ON THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY (3RD): VOLUME I. CONTROL OF EMISSIONS FROM COAL FIRED BOILERS

    EPA Science Inventory

    The proceedings document the Third Symposium on the Transfer and Utilization of Particulate Control Technology, in Orlando, FL, March 9-13, 1981, sponsored by the Particulate Technology Branch of EPA's Industrial Environmental Research Laboratory, Research Triangle Park, NC. The ...

  13. 39. (Credit JTL) Interior of boiler room looking east; boiler ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. (Credit JTL) Interior of boiler room looking east; boiler casing in background, boiler feedwater pumps and feedwater heater in middle ground; hot well on columns in left foreground. Steam lines from boilers to high service engines pass overhead. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  14. 68. 1911 BOILER HOUSE LOOKING SOUTH. BOILERS ARE CA. 1945. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. 1911 BOILER HOUSE LOOKING SOUTH. BOILERS ARE CA. 1945. SPACE HEATING BOILER S REPLACED ORIGINAL 8 VERTICAL HIGH PRESSURE STEAM POWER BOILERS. THE ORIGINAL SHEET METAL FLUE IS IN THE UPPER CENTER. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  15. Drying Milk With Boiler Exhaust

    NASA Technical Reports Server (NTRS)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  16. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. South and west elevations of Bright Angel boiler house. Red ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South and west elevations of Bright Angel boiler house. Red Horse log cabin visible in background. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  18. Natural gas use for pollution control: Review of data bases for utility and industrial boilers. Topical report, October 1986-May 1987

    SciTech Connect

    Szabo, M.F.; Meyer, C.J.

    1987-07-01

    The purpose of this report is to review a number of publicly available data bases for identifying potential utility and industrial candidates for gas combustion technologies. Examples are provided to show that this information might be useful when combined with a specific set of existing or proposed combustion sources control programs for SO2, NOx, and particulate matter. Section 2 reviews a number of data bases that can be used to identify specific utility/industrial candidates for gas technologies; Section 3 provides examples of how data bases can be used in regional analyses of opportunities for gas technologies in air quality management programs. Example listings are provided in the appendices to this report.

  19. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 2, January 1--March 31, 1991

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1991-12-23

    Energy and Environmental Research Corporation (EER) is currently conducting a test program to develop an advanced NO{sub x} control method utilizing reburning, promoted selective noncatalytic agent injection. The study will consist of fundamental and process testing over a large enough range of operating parameters to significantly reduce the risk of a full scale demonstration project. The test plan for the fundamental testing phase of the program is presented here.

  20. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Haggard, R.W. Jr.

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  1. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  2. 42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS (SEE DRAWING Nos. 10 & 11 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  3. Interior view of boiler house looking south. Boiler units are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of boiler house looking south. Boiler units are on left. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  4. 4. INTERIOR, CENTRAL BOILER ROOM, LOWER LEVEL, BOILERS, FROM SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR, CENTRAL BOILER ROOM, LOWER LEVEL, BOILERS, FROM SOUTHWEST CORNER OF ROOM, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Heating Plant, North of B Street & West of Third Street, Oakland, Alameda County, CA

  5. BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW-NOX BURNERS: NEW UNIT APPLICATIONS

    EPA Science Inventory

    The report describes a study to define boiler modifications required to achieve 70% SO2 removal with sorbent injection on a large tangentially fired utility boiler without supplemental spray drying. The study is a follow on to a recently completed broader evaluation of boiler des...

  6. 1. EXTERIOR VIEW OF BOILER HOUSE FROM SOUTHWEST. THE BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF BOILER HOUSE FROM SOUTHWEST. THE BOILER HOUSE WAS USED FOR HEATING THE MILL; HYDRO-ELECTRIC POWER FOR PRODUCTION WAS PURCHASED FROM THE COLUMBUS LIGHT & POWER COMPANY. NORTH END OF 1924 MILL TO RIGHT, c. 1970 WINDOWLESS WEAVE ROOM ADDITION TO LEFT. - Stark Mill, Boiler House, 117 Corinth Road, Hogansville, Troup County, GA

  7. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  8. Old boilers to profitable use with local biofuels

    SciTech Connect

    Hankala, J.

    1998-07-01

    To convert an old plant is often an economically advantageous alternative for a new boiler. The most important sources of biomass in industrial countries are residues from forestry, industry and agriculture. Sludges and wastes from industry, communities and households also contain useful energy. Still in many places there are existing power plants which can be converted to burn biofuels with low investment costs. An efficient and proven way is to convert an existing boiler to fluidized bed combustion (FBC) or use atmospheric circulating fluidized bed biofuel gasification connected to an existing boiler. Modern Fluidized Bed Combustion and Gasification gives us a possibility to burn biomass, sludges and many kinds of wastes in an efficient way with low emissions. Fluidized bed technologies are divided into bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) solutions. When making a boiler conversion to fluidized bed combustion, lower furnace of an existing boiler is converted and fuel receiving, handling and transportation system is installed. In many cases most of the existing boiler heating surfaces and a majority of the existing auxiliary equipment can be utilized. The circulating fluidized bed gasifier consists of the inside refractory-lined steel vessel, where fuel is gasified in a hot fluidized gas solid particle suspension. In the gasifier, the biofuels will be converted to combustible gas at atmospheric pressure at the temperature 800--900 C. The hot gas from the gasifier will be cooled down to 650--750 C in the air preheater. The hot gas is led directly to separate burners, which are located in the existing boiler furnace. The gas is burned in the boiler and replaces a part of the coal used in the boiler. Typical fuels for the FBC-boilers are wet fuels such as bark, wood waste, peat and sludges. These fuels normally contain 40--70% water.

  9. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  10. Update of operating experience of B and W IR-CFB coal-fired boilers

    SciTech Connect

    Belin, F.; Kavidass, S.; Maryamchik, M.; Walker, D.J.; Mandal, A.K.; Price, C.E.

    1999-07-01

    This paper updates the operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois, USA, and is designed for 35 MW{sub th} output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries in Renukoot, India, and is designed for 81 MW{sub th} output for captive power requirement, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W Ltd., a joint venture company of B and W and Thermax of India. The choice of CFB technology was based on its fuel flexibility, cost effectiveness and environmental benefits for solid fuels. Based on the broad experience in designing utility and industrial boilers for operation worldwide, B and W has developed a cost effective and compact atmospheric pressure IR-CFB boiler. The B and W IR-CFB boiler design is distinctive in its use of U-beam particle separators. Worldwide, B and W offers IF-CFB boilers up to 175 MW{sub th}, both reheat and non-reheat, and is pursuing units up to 350 MW{sub th}. This paper reviews the general description of each IR-CFB boiler, design and performance aspects, as well as overall operating experiences. The boiler availabilities including maintenance aspects and emissions data will be presented.

  11. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  12. Optimising boiler performance.

    PubMed

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings. PMID:19192603

  13. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  14. Upgrades and enhancements for competitive coal-fired boiler systems

    SciTech Connect

    Kitto, J.B. Jr.; Bryk, S.A.; Piepho, J.M.

    1996-12-31

    Deregulation of the electric utility industry is resulting in significant opportunities and challenges for US power generators. Existing coal-fired capacity potentially offers the lowest variable cost power production option if these units are upgraded to optimize capacity, operating cost (including fuel), efficiency, and availability while also meeting today`s stringent emissions control requirements. This paper highlights a variety of boiler system upgrades and enhancements which are being utilized to make aging coal-fired boilers low cost competitors in the 1990s.

  15. Interior view of boiler house looking north. Boiler units are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of boiler house looking north. Boiler units are on right. HAER Engineer/Historian Donald C. Jackson on right is interviewing Garry Dobbins concerning operation of the facility. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  16. Small boiler uses waste coal

    SciTech Connect

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  17. Boiler tube corrosion characterization with a scanning thermal line

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Jacobstein, A. Ronald; Reilly, Thomas L.

    2001-03-01

    Wall thinning due to corrosion in utility boiler waterwall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler waterwalls.

  18. Biomass cofiring in full-sized coal-fired boilers

    SciTech Connect

    Plasynski, S.I.; Costello, R.; Hughes, E.; Tillman, D.

    1999-07-01

    Biomass cofiring represents one alternative for reducing greenhouse gas emissions of carbon dioxide from fossil sources. Realizing this opportunity, the Federal Energy Technology Center (FETC), a field site of the Department of Energy (DOE), along with the EPRI, initiated a Program around two-years ago to research the feasibility of coal-fired boilers in cofiring of biomass and other waste-derived fuels. The cooperative agreement between FETC and EPRI includes cofiring at six different electric utility sites and one steam generation site. Boilers include wall-fired, tangential, cyclone, and stokers ranging in size from 15 to 500 MWe. Biomass consisting of wood (usually) and switchgrass (in two cases) will be the fuel, and pulp and plastics may be used in some waste-derived fuels cofiring tests. This paper will focus only on the biomass cofired tests in electric utility boilers.

  19. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  20. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  1. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  2. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  3. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  4. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  5. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  6. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  7. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  8. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  9. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    SciTech Connect

    Not Available

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  10. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    NASA Astrophysics Data System (ADS)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  11. Keep out of hot water when remotely monitoring boilers

    SciTech Connect

    Kolbus, J.W.

    1994-11-01

    Everyone recognizes the importance of maintaining the proper water level in boilers and other steam equipment. Operators have long relied on devices such as water-level gages, mounted directly to boiler drums or to safety water columns attached to the drums, to show the level of the water, thus enabling them to keep it at a safe level, and assuring optimum fuel utilization. Advances in monitoring and control systems have made it possible to do the job more easily and efficiently, with accurate water-level readings clearly on display to operators who may be up to 1,000 ft away from the steam equipment. Today, there are a number of types of remote level-indicating devices in the marketplace--including electric, fiber-optic, manometric, and mechanical systems. In this article, the author describes the advantages and disadvantages of each. But to put their use in context, the paper first considers the requirements of the ASME Boiler Code.

  12. Dry bottom ash removal -- Ash cooling vs. boiler efficiency effects

    SciTech Connect

    Carrea, E.; Scavizzi, G.C.; Barsin, J.

    1998-07-01

    The current wet method of removing boiler bottom ash from coal fired utility boilers quenches the ash which in turn heats the water, evaporates a portion of it adding to the gas weights moved through the steam generator. The newer dry ash removal systems use a portion of the combustion air to cool ash and thus return some of the otherwise lost latent heat back to the furnace. There has been some debate concerning the overall effect upon boiler efficiency. For example when a large quantity of ash cooling air is required and the resulting decrease in air side air heater mass flow could result in an elevate stack gas temperature thus negating the efficiency enhancing dry bottom ash effect expected. The presentation will present actual data form operating units and provide various heat balances to demonstrate the actual performance conditions that have been achieved.

  13. The heat exchanger of small pellet boiler for phytomass

    NASA Astrophysics Data System (ADS)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  14. Chemical corrosion potential in boilers

    SciTech Connect

    Bairr, D.L.; McDonough, C.J.

    1998-12-31

    Misuse or abuse of chelants has long been recognized as a potential corrosion problem in boilers. In recent years all polymer chemical treatment programs have been introduced and although they are much more benign even all polymer programs must be properly designed and controlled. Under extreme conditions a similar corrosion potential exists. This paper discusses the potential for chelant or polymer corrosion in boilers and the proper safeguards. Case histories are presented.

  15. Boiler-turbine life extension

    SciTech Connect

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  16. Plasma-supported coal combustion in boiler furnace

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  17. Startup, shutdown and malfunction plans coming for large industrial boilers

    SciTech Connect

    Kasarabada, A.N.

    2007-08-15

    The US Boiler MACT (maximum achievable control technology) regulations (codified under 40 CFR Part 63) in its current form requires existing large coal-fired industrial and utility boilers (under 25 MW) to meet emission limits for particulate matter or total selected metals, mercury and hydrogen chloride, as well as other operational limits. The MACT provision also requires affected facilities to develop startup, shutdown and malfunction plans (SSMP). The original date for Boiler MACT compliance for existing units had been 13 September 2007. However, on 8 June the US Court of Appeals for the District of Columbia issued an order effectively killing all existing MACT rules for industrial boilers. The Court instructed the US EPA to rewrite two sets of regulations. (Prior to April 2006 the MACT general provisions said the SSMPs needed to be 'developed and implemented'.) It seems unlikely that any new revision of the Boiler MACT by the EPA will take effect before mid-2008. Regardless of which direction the MACT rule is headed, now is the time to be prepared to comply with the SSMP requirements. The article sets out recommended steps for developing an effective SSMP.

  18. Study on Combustion Characteristics of Lignite in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Leng, J.; Zou, T. S.; Wu, J. X.; Jiang, C.; Gao, J. L.; Wu, J.; Su, D.; Song, D. Y.

    The shortage of coal promotes the lignite utility in power plant because of the rapid economy development recently. However, lignite is high in moisture content as well as volatile content and low in calorific value. It is very difficult to burn in traditional pulverized coal fired boiler. Circulating fluidized bed (CFB) boiler is an alternative with low pollutant emission. Some CFB boilers are built and put into commercial operation in Northeast China and East Inner Mongolia where lignite is abundant. The operation experiences of these boilers are introduced in this paper. The effect of coal particle size on bottom ash ratio, combustion efficiency, thermal efficiency, pollution emission, and ash deposits in convective heating surface were investigated. It was found that for the lignite fired CFB boiler, the largest coal particle size should be 20 to 40mm to maintain bed material balance. But the bottom ash only shares less than 10% of the total ash. Due to high volatile content in the lignite, the combustion efficiency could achieve more than 99%. Meanwhile, NOx emission was relative low and satisfied national environment protection requirement. It is suggested that flue gas velocity in convective heating surface should be ranged in a certain scope to prevent ash deposit and erosion.

  19. USA B and W`s IR-CFB coal-fired boiler operating experiences

    SciTech Connect

    Kavidass, S.; Maryamchik, M.; Kanoria, M.; Price, C.S.

    1998-12-31

    This paper updates operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois and is designed for 35 MWt output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries Ltd. (KCIL) in Renukoot, India and is designed for 81 MWt output for captive power requirements, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W (TBW) Ltd., a joint venture company of B and W and Thermax in India. The CFB technology is selected for these two units based on the fuel and environmental considerations. This paper discusses the various aspects of the two IR-CFB boilers` design features, performance, and operating experience including emissions.

  20. Forced-flow once-through boilers. [structural design criteria/aerospace environments

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gray, V. H.; Gutierrez, O. A.

    1975-01-01

    A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.

  1. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  2. Controlling boiler emissions

    SciTech Connect

    Katzel, J.

    1992-10-22

    This paper reports that if you are confused about how to interpret the Clean Air Act Amendments of 1990, you are not alone. The massive document runs several hundred pages and consists of 11 titles, each addressing a different aspect of air quality. In some cases, specific emissions levels are established; in others, they are left to the discretion of state and local governments. In many ways, the impact of the CAAA right now is no impact. But now is not the time for plant engineers to play any waiting games. The annual cost of complying with the comprehensive environmental legislation is estimated at $4 to $7 billion. Despite the ambiguity and uncertainty, one conclusion appears clear: control of emissions, especially nitrogen oxides, from all types of boilers and process units can be expected to become more stringent. More and more equipment and industries will fall under the regulations as they are implemented by the Environmental Protection Agency (EPA). An newly available and improved strategies and technologies will make it more and more difficult to circumvent the law. As the general concepts of the legislation are molded into specifics, plant engineers are well advised to take an active role in shaping the attainment and control programs being formed by their state sand in understanding and applying available control technologies.

  3. Technology assessment: Municipal solid waste as a utility fuel

    NASA Astrophysics Data System (ADS)

    Neparstek, M. I.; Cymny, G. A.

    1982-05-01

    This study updates a 1974 EPRI technology assessment of municipal solid waste (MSW) as a utility fuel. An independent and consistent assessment of the development status and conceptual design and economics is presented for the following refuse-to-electricity technologies; mass burning of MSW in a dedicated boiler; preparation of coarse RDF and firing in a dedicated boiler; preparation of wet RDF and firing in a dedicated boiler; preparation of fluff RDF and cofiring with coal in a utility boiler; and preparation of dust RDF and cofiring with coal in a utility boiler. The generated steam is used to drive a turbine-generator and produce electricity. Utility ownership and financing are assumed for the coal-fired power plant used for RDF cofiring and the turbine generators driven by refuse-generated steam. Municipal ownership is assumed for the RDF preparation facilities and the MSW mass burning and RDF-fired dedicated boilers.

  4. New controls spark boiler efficiency

    SciTech Connect

    Engels, T. )

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  5. Program to Train Boiler Operators Developed

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    This program initiated by Nalco Chemical, a major supplier of chemicals for boiler feedwater treatment, uses texts, audiovisual aids, and hands-on experience and is designed to boost the efficiency of boiler operators. (BB)

  6. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  7. Boiler Tube Corrosion Characterization with a Scanning Thermal Line

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas

    2001-01-01

    Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall

  8. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  9. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... employees are working in the boilers shall be hung in a conspicuous location in the engine room. This...

  10. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... that employees are working in the boilers shall be hung in a conspicuous location in the engine...

  11. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... that employees are working in the boilers shall be hung in a conspicuous location in the engine...

  12. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... employees are working in the boilers shall be hung in a conspicuous location in the engine room. This...

  13. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... that employees are working in the boilers shall be hung in a conspicuous location in the engine...

  14. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  15. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  16. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... American Society of Mechanical Engineers to protect against hazards from overpressure, flameouts, fuel...) The ASME Boiler and Pressure Vessel Code, 1977, published by the American Society of Mechanical... VIIRecommended Rules for Care of Power Boilers (2) The National Board Inspection Code, a Manual for Boiler...

  17. Combustion control in boilers. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning utility and industrial boiler combustion control systems and methods. Topics include methods to meet emission standards, energy savings, and safety. The use of microcomputers, mathematical models, algorithms, artificial intelligence, and fuzzy logic is considered. Citations on boilers and furnaces fueled by coal, oil, gas, refuse, and multiple fuels are included. (Contains a minimum of 123 citations and includes a subject term index and title list.)

  18. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  19. SNAP-8 refractory boiler development program

    NASA Technical Reports Server (NTRS)

    Fuller, R. A.

    1974-01-01

    Performance and endurance tests of the SNAP-8, SN-1 refractory metal boiler are described. The tests were successful and indicated that the boiler heat transfer area could be reduced significantly primarily because of the wetting characteristics of mercury on tantalum in a contaminant-free environment. A continuous endurance test of more than 10,000 hours was conducted without noticeable change in the thermal performance of the boiler. A conclusion of the metallographic examination of the boiler following the endurance test was that expected boiler life would be of the order of 40,000 hours at observed corrosion rates.

  20. Development of a reburning boiler process model

    SciTech Connect

    Wu, K.T.

    1992-01-30

    The overall objective of this program is to integrate EER's expertise in boiler reburning performance evaluation into a package of analytical computer tools. Specific objectives of the program are to develop a computational capability with the following features: (1) can be used to predict the impact of gas reburning application on thermal conditions in the boiler radiant furnace, and on overall boiler performance; (2) can estimate gas reburning NO{sub x} reduction effectiveness based on specific reburning configurations and furnace/boiler configurations; (3) can be used as an analytical tool to evaluate the impact of boiler process parameters (e.g., fuel switching and changes in boiler operating conditions) on boiler thermal performance; (4) is adaptable to most boiler designs (tangential and wall fire boilers) and a variety of fuels (solid, liquid, gaseous and slurried fuels); (5) is sufficiently user friendly to be exercisable by engineers with a reasonable knowledge of boilers, and with reasonable computer skills. Here, user friendly'' means that the user will be guided by computer codes during the course of setting up individual input files for the boiler performance model.

  1. Steam conservation and boiler plant efficiency advancements

    SciTech Connect

    Fiorino, D.P.

    1999-07-01

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. They were: (1) Reheating of dehumidified clean room makeup air with heat extracted during precooling; (2) Preheating of deionization feedwater with refrigerant heat of condensation; (3) Preheating of boiler combustion air with heat extracted from boiler flue gas; (4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust; (5) Variable-speed operation of boiler feedwater pumps and forced-draft fans; and (6) Preheating of boiler makeup water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) saved about $1,010,000 per year by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the cost of steam produced by about 13%, or $293,500 per year, by reducing use of natural gas and electricity at the steam boiler plant. These advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

  2. Overview and status of first 25 MW(e) IR-CFB boiler in India

    SciTech Connect

    Kavidass, S.; Bakshi, V.K.; Diwakar, K.K.

    1997-12-31

    The Babcock and Wilcox (B and W) internal recirculation CFB (IR-CFB) boiler is unique in design. Worldwide, B and W offers IR-CFB boilers up to 150 MW(e) both reheat and non-reheat, and is pursuing units up to 300 MW(e). This paper discusses an overview and status of the construction, commissioning, initial start-up operation and milestones of the ongoing 25 MW(e) IR-CFB boiler project at Kanoria Chemicals and Industries Ltd., Renukoot, India. This IR-CFB boiler is designed, supplied and installed by Thermax Babcock and Wilcox Ltd. (TBW), a joint venture company of the B and W and Thermax in India. The boiler parameters are, steam flow of 29.2 kg/s (23,420 lbs/hr), 6.4 MPa (925 psig), and 485 C (905 F) with feedwater temperature of 180 C (356 F). The boiler will utilize high-ash content (> 45%), subbituminous coal with a heating value of 3,500 KCal/kg (6,300 Btu/lb). This paper also discusses the various aspects of the boiler design, performance, auxiliary equipment, advantages and initial start-up operating performance.

  3. Predictive modelling of boiler fouling

    SciTech Connect

    Not Available

    1992-01-01

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5[mu]m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5[mu]m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10[mu]m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  4. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  5. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS: VOLUME 1. TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  6. New source performance standards for industrial boilers. Volume 1. Analysis of fuel use implications

    SciTech Connect

    Placet, M.; Heller, J.N.

    1981-01-01

    A review of the Industrial Fuel Choice Analysis Model (IFCAM) led to several concerns: first, the retirement rate used in the model seems to overestimate retirement levels, thus overstating the potential for coal penetration in the industrial sector. Also, the coal transportation rate is assumed to increase by 15% between 1978 and 1985 and remain constant thereafter. In light of recent rate increase approvals the expected price escalation of labor and materials used in railroad expansion, the currently assumed rail rate escalators seem too low. Additionally, the model does not deal with the issue of substitution of small boiler combinations for large boilers. Both promulgation and enforcement may provide incentives for installation of small boiler combinations. For IFCAM to reflect this phenomenon, alternative assumptions and model modifications are suggested. Fuel price projections, the capacity utilization distribution, boiler size distribution, and translation of costs into model algorithms are considered.

  7. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  8. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  9. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  10. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  11. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  12. WATER BOILER REACTOR

    DOEpatents

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  13. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 7, October, November, and December 1991

    SciTech Connect

    Haggard, R.W. Jr.

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  14. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    SciTech Connect

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  15. Burning wastes in steam boiler

    SciTech Connect

    Feeley, F.G.

    1984-01-01

    A review of the advantages and precautions in the burning of a wide variety of industrial wastes is presented. The reasons for burning industrial wastes are economics and pollution control. The incineration of the following industrial wastes is discussed: pulp cooking liquors, wood wastes, coffee grounds and other biomass, pitch and tars, gases, and miscellaneous solid fuels. Boiler cycles and types are also discussed. (RCK)

  16. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  17. Energy storage-boiler tank

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  18. APPLICATION OF LIMB TO PULVERIZED COAL BOILERS - A SYSTEMS ANALYSIS: LIMESTONE FEED AND BOILER SYSTEMS

    EPA Science Inventory

    The report gives results of a systems analysis of the application of Limestone Injection Multistaged Burner (LIMB) technology to pulverized-coal boilers. It evaluates alternative limestone handling, preparation, and injection methods and boiler system impacts associated with LIMB...

  19. 5. North/northwest elevations of boiler stack and boiler room. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. North/northwest elevations of boiler stack and boiler room. Note tires on roof to reduce impact of brick work falling from stack. - Lowe Mill, Eighth Avenue, Southwest, Huntsville, Madison County, AL

  20. Unmanned boiler operation a reality in Europe

    SciTech Connect

    Ilg, E.

    1996-08-01

    With the rise in liquid level technology in Europe comes new standards for boiler operation. SMART technology for level probes and auxiliary equipment, means many European countries allow a boiler to operate completely unmanned (without operators) for up to 72 hours at a time. It is not just a level control system, but a total boiler control scheme. This incorporates level control, continuous TDS monitoring with blowdown, automatic timed bottom blowdown, feed water control, contamination detection systems for monitoring of incoming feed water, monitoring of exhaust stack temperatures, over pressure alarms and timed automatic blowdown of level pots. One of the main reasons for the development of the SMART equipment and the new boiler codes was to increase reliability of boiler operation. Surveys in Germany and England showed that almost 90 percent of boiler failures was due to operator error, this has almost been eliminated through the use of new equipment based on the new codes.

  1. Intelligent Control System of Stack-boiler

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jingxia, Niu; Jianhua, Lang; Shaofeng, Li; Zhi, Li

    Boiler combustion control system's basic task is to make fuel burn calories adapt to the needs of the water temperature and ensure the economical combustion and the safe operation. In the foundations which have analyzed the stack-boiler's work process and control system structure, the system designed by using the self-learning and self-optimizing fuzzy control system of the PC to make air/coal ratio achieve the best and realize the optimized combustion; through PLC to accelerate the speed of response to the boiler, and speed up the PC to optimize the speed and realize the double loop control system for stack-boiler. The control system in premise of the stack-boiler reaches the goal of the load to achieve the highest efficiency of the boiler combustion.

  2. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  3. Industrials fear new boiler-pollution regs

    SciTech Connect

    Betts, M.

    1982-07-12

    The Council of Industrial Boiler Owners (CIBO) claims that new Environmental Protection Agency (EPA) regulations requiring costly pollution-control equipment on coal- and waste-fueled boilers conflict with national fuel-substitution goals. EPA counters that capital and annual costs will each increase only 2%, but CIBO considers that a financial barrier during the current recession. Fuel choices determined on the basis of environmental regulations could delay conversion to more-efficient boilers and alternative fuels. CIBO concerns focus on the New Source performance Standards applying to emissions from new, modified, and reconstructed industrial boilers larger than 100 million Btus per hour. (DCK)

  4. 6. VIEW WESTINTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST-INTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  5. 2. VIEW SOUTHWESTNORTH ELEVATION OF BOILER SHOP SECTION OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST-NORTH ELEVATION OF BOILER SHOP SECTION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  6. Looking east at the boiler water treatment tank located off ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the boiler water treatment tank located off the west wall of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  7. 7. VIEW EASTINTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW EAST-INTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  8. 12. Forward end of Boiler Room showing open firing doors ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Forward end of Boiler Room showing open firing doors for boilers. Note ladderway retracted overhead by which firemen entered and left Boiler Room. Coal ejectors shown at extreme left of view. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  9. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  10. New form of calcium carbonate improves SO{sub 2} removal from boilers

    SciTech Connect

    1996-11-01

    As acid rain control regulations take effect, some utility companies are considering or have installed flue gas desulfurization (FGD) systems using lime-based sorbents. With one type of FGD system, called furnace sorbent injection (FSI), sorbents are injected directly into the combustion chamber of a coal-fired boiler. Such systems have proven effective at reducing sulfur dioxide (SO{sub 2}) emissions from some types of boilers, especially those that operate at relatively low temperatures. However, FSI systems have generally not performed well with most types of conventional boilers. A New York company has patented a new FGD sorbent called thermally active marble (TAM). TAMs tend to fracture and expose new reaction surfaces - much like ice cubes in hot water. This enables such materials to neutralize SO{sub 2} more efficiently and at much higher temperatures than limestone. In fact, TAMs have shown the ability to neutralize SO{sub 2} even when injected into the hottest portion of many conventional boilers. TAMs have also been shown to reduce nitrogen oxide (NO{sub x}) formation and improve boiler efficiency by promoting more complete carbon combustion. Pilot- and full-scale tests of TAMs in several types of boilers are described in this paper. 3 refs., 1 fig., 1 tab.

  11. [Predicting low NOx combustion property of a coal-fired boiler].

    PubMed

    Zhou, Hao; Mao, Jianbo; Chi, Zuohe; Jiang, Xiao; Wang, Zhenhua; Cen, Kefa

    2002-03-01

    More attention was paid to the low NOx combustion property of the high capacity tangential firing boiler, but the NOx emission and unburned carbon content in fly ash of coal burned boiler were complicated, they were affected by many factors, such as coal character, boiler's load, air distribution, boiler style, burner style, furnace temperature, excess air ratio, pulverized coal fineness and the uniformity of the air and coal distribution, etc. In this paper, the NOx emission property and unburned carbon content in fly ash of a 600 MW utility tangentially firing coal burned boiler was experimentally investigated, and taking advantage of the nonlinear dynamics characteristics and self-learning characteristics of artificial neural network, an artificial neural network model on low NOx combustion property of the high capacity boiler was developed and verified. The results illustrated that such a model can predicate the NOx emission concentration and unburned carbon content under various operating conditions, if combined with the optimization algorithm, the operator can find the best operation condition of the low NOx combustion. PMID:12048812

  12. Assessment of combustion of oil shale refinery by-products in a TP-101 boiler

    NASA Astrophysics Data System (ADS)

    Sidorkin, V. T.; Tugov, A. N.; Vereshchetin, V. A.; Mel'nikov, D. A.

    2015-04-01

    The most cost-efficient method for utilization of the oil shale refinery by-products, viz., the retort gas and the shale gasoline, for power generation is combustion of these products in power-generating oil shale-fired boilers. Calculation studies carried out at the Estonian electric power plant in Narva, an enterprise of EESTI ENERGIA, have shown that recycling of the flue gases in the furnace of a TP-101 boiler enables an increase in the portion of the oil shale refinery by-products burned in the boiler from the current 7% to 40%. Recycling of the flue gases is aimed at maintaining the temperatures in the furnace at a level characteristic of combustion of oil shale and reducing the nitric oxide concentration in the retort gas burners' flame. The degree of the flue gas recycling depends on the percentage of the burnt oil shale refinery by-products in the total heat generation and increases with the increasing percentage. For the threshold value of 40% under the rated conditions, the flue gas recycling accounts for 10%. A complete changeover of the boiler to combustion of only the retort gas in place of the oil shale does not seem to be possible, since this will necessitate major modification to the TP-101 boiler heating surfaces. Considering the obtained results, as a pilot project, one boiler furnace was modified by installing six retort gas burners and a flue gas recycling system.

  13. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  14. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  15. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  16. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  17. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  18. Baghouse cleans flyash from boiler exhaust

    SciTech Connect

    Not Available

    1981-02-01

    A large baghouse installation recently started up on the boilerhouse of the Avtex Fibers Inc. rayon plant in Front Royal, Virginia. The baghouse removes 99.7% of the flyash particulate from the combustion fumes of five coal-fired boilers. The boilers have a combined capacity of one million lb/h of steam. Emissions from the plant are well below EPA limitations.

  19. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., automatic pressure-relief valves, blowdown piping, and other safety devices approved by the American Society... and Pressure Vessel Code, 1977, Published by the American Society of Mechanical Engineers. Section and... Care of Power Boilers (2) The National Board Inspection Code, a Manual for Boiler and Pressure...

  20. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS

    SciTech Connect

    Jeffrey J. Sweterlitsch; Robert C. Brown

    2002-07-01

    This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

  1. PAH emission from the industrial boilers.

    PubMed

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler. PMID:10502602

  2. Condensing economizers for small coal-fired boilers and furnaces

    SciTech Connect

    Butcher, T.A.; Litzke, W.

    1994-01-01

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  3. Looking east at the west wall of the boiler house, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the west wall of the boiler house, boiler water treatment tank, and waste gas stack. Water tower is to the left of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  4. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  5. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  6. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  7. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  8. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, Charles L.; Foote, John P.

    1995-01-01

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  9. 46 CFR 63.25-7 - Exhaust gas boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a)...

  10. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  11. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  12. 24. VIEW OF FIRING AISLE OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF FIRING AISLE OF EAST BOILER ROOM LOOKING SOUTH. BOILERS 900 AND 901 ARE ON THE RIGHT, BOILERS 902, 903, AND 904 ARE ON THE LEFT. NOTE REMAINS OF THE LARRY CAR TRACK SYSTEM FOR TRANSFERRING COAL TO BOILER HOPPERS ABOVE THE AISLE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  13. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  14. Cost effective NOx reduction for tangentially fired boilers

    SciTech Connect

    Hager, M.; Camody, G.; Lewis, R.D.; Maney, C.Q.; Towle, D.P.

    1998-07-01

    Deregulation of the utility industry as well as lower capacity factors on many boilers regulated under Title IV Phase II has mandated ever-tighter vigilance on the costs of NOx compliance. ABB C-E services has responded to this customer need with the development of an in-windbox low NOx firing system. The LNCFS{trademark}-P2 NOx reduction system recently developed by ABB C-E Services represents a significant advancement in coal combustion technology for tangentially fired units. This system was developed to offer the advantages of significant NOx emissions reduction through simple nozzle tip replacements, thereby minimizing costs.

  15. WALL-FIRED BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW NOX BURNERS

    EPA Science Inventory

    The report assesses the impact of Limestone Injection Multistage Burner (LIMB) technology on wall-fired utility boilers for both new and retrofit designs. Recent attention has focused on dry sorbent sulfur dioxide (SO2) control technology which, in conjunction with low-nitrogen-o...

  16. CALCINATION OF CALCIUM-BASED SORBENTS FOR CONTROL OF SO2 EMISSIONS FROM COAL FIRED BOILERS

    EPA Science Inventory

    The paper summarizes the results of an experimental study that focused on the production of high surface area materials from various sorbents. (NOTE: Injecting calcium-based sorbents into coal burning utility boilers to control SO2 emissions is being considered by the EPA as an a...

  17. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  18. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    EPA Science Inventory

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  19. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  20. FY95 limited energy study for the area `a` package boiler. Holston Army Ammunition Plant, Kingsport, Tennessee. Final report

    SciTech Connect

    1995-11-03

    Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area `A11 and Area 11B`. Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements. The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area 11A11 industrial complex. The following items were specifically requested to be evaluated. Evaluate the use of two new gas-fired packaged boilers sized to meet the requirements of the industrial complex. The new boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system. Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites. Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements. Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, generators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards.

  1. Boiler efficiency methodology for solar heat applications

    NASA Astrophysics Data System (ADS)

    Maples, D.; Conwell, J. C.; Pacheco, J. E.

    1992-08-01

    This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

  2. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect

    Adams, Bradley R.; Fry, Andrew R.; Senior, Constance L.; Shim, Hong Shig; Otten, Brydger Van; Wendt, Jost; Shaddix, Christopher; Tree, Dale

    2010-06-01

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget.

  3. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    SciTech Connect

    Wesnor, J.D.

    1993-10-26

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessment of Toxic By-Product Control Technologies; and Test Protocol Definition.

  4. METHANE DE-NOX FOR UTILITY PC BOILERS

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2004-02-06

    The primary focus for the project continues to be on developing a PC PREHEAT system design suitable for use with caking coals and readying the 100 MMBtu/h CBTF for testing with noncaking PRB coal. During the current quarter, twenty-two pilot tests were conducted with Central Appalachian (CA) caking coal. The objective for these tests was to achieve continuous operation of the pilot system at its design coal feed rate of 156 lb/h, without plugging or agglomeration in the combustor. One combustor air distribution method tested achieved continuous operation at 110 lb/hr, and inspection of the combustor afterward indicated that this method has potential to solve the caking problem. The NOx results from the pilot caking coal runs indicate that even greater NOx reduction is possible with CA coal than with the PRB coal tested, to levels near 100 ppmv or lower at 4-6% exit oxygen. It was therefore decided to conduct additional pilot tests of the air distribution method to determine how to incorporate this into a workable CA combustor design. Based on current weather and manpower restrictions at the site, this pilot testing is expected to be started in February. The design for the 100 MMBtu/h unit for PRB testing in the CBTF was completed and fabrication and installation started during the quarter. While significant progress has been made in the installation of the unit, weather and combustor fabrication delays are expected to move the start of large-scale testing with PRB coal into February, which will push the project completion date beyond the current 3/30/04 end date. GTI is in the process of developing a revised project schedule and estimated cost to complete.

  5. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2005-06-30

    Large-scale combustion tests with caking bituminous coal has stopped. This stoppage has come about due to limitations in current funding available to continue large scale research and development activities at Riley's Commercial Burner Test Facility (CBTF) of the PC Preheat technology. The CBTF was secured and decommissioned in the previous quarter; work this quarter has focused on disposition of PC Preheat experimental equipment at the CBTF as well as methods for disposal of about 100 tons of residual PRB test coal in storage. GTI was granted a no-cost time extension through September 2005; a final report is due in December 2005.

  6. METHANE de-NOX FOR UTILITY PC BOILERS

    SciTech Connect

    Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

    2003-04-01

    During the current quarter, pilot scale testing was continued with the modified combustor and modified channel burner using the new PRB coal delivered in late December. Testing included benchmark testing to determine whether the system performance was comparable to that with the previous batch of PRB coal, baseline testing to characterize performance of the PC Burner without coal preheating, and parametric testing to evaluate the effect of various preheat combustor and PC burner operating variables, including reduced gas usage in the preheat combustor. A second version of the PC burner in which the secondary air channels were closed and replaced with six air nozzles was then tested with PRB coal. Plans were developed with RPI for the next phase of testing at the 100 million Btu/h scale using RPI's Coal Burner Test Facility (CBTF). A cost estimate for preparation of the CBTF and preheat burner system design, installation and testing was then prepared by RPI.

  7. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2004-09-30

    Large-scale PRB testing during the current quarter was cut short due to the inability of the coal mill to meet the 85 MMBtu/h design firing rate. The project was therefore redirected toward design, installation and testing of the 85-million Btu/h preheater for bituminous coal. Based on extensive pilot-scale testing completed earlier in the project, 2-D modeling and preliminary design activities were started based on the use of staged, annular protective air films to control temperature and prevent deposition on the preheater walls. A total of 14 2-D modeling cases were completed for the modified preheater for bituminous coal. The preheater concept modeled was based on an expanding preheater chamber where the diameter of the chamber is increased in steps along its length and annular cooling/protective air is introduced at each step. A process flow diagram for the bituminous coal preheating system and a preliminary preheater design drawing were developed based on the modeling results. A project schedule to complete design, installation and testing of the 85 MMBtu/h bituminous coal preheating system before the end of December was also developed.

  8. Methane de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2005-03-31

    Large-scale combustion tests with caking bituminous coal was on hold this quarter mainly due to Riley's Commercial Burner Test Facility (CBTF) not having adequate weatherproofing to support operation under freezing conditions. The CBTF was secured and decommissioned for the winter season. CBTF bituminous coal tests shall continue to remain on hold now as a result of project funding limitations, however. No further modifications at the CBTF are planned until needed support is obtained. Activities this quarter have concentrated on finding additional support for the project. Currently, GTI has been granted a no-cost time extension through September 2005 and efforts to secure more support will continue in hopes that large-scale preheat caking bituminous combustion tests will be carried out as planned.

  9. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2004-12-31

    Preparations for conducting large-scale combustion tests with caking bituminous coal continued during the start of this quarter. Major project accomplishments related to bituminous coal testing included: a CFD preheat model and evaluation, an update of the process flow diagram and a detailed preheat burner mechanical design (suitable for construction) for firing bituminous coal. Installation and testing of the 85 MMBtu/h bituminous coal preheating system was planned to take place before the end of December. Based on the inability to conduct testing in Riley's Commercial Burner Test Facility (CBTF) during freezing weather, a schedule review indicated required site work for testing bituminous coal at the CBTF could not be completed before freezing weather set in at the site. Further bituminous preheat modification work was put on hold and efforts turned to securing the test facility over the winter season. Bituminous coal tests are therefore delayed; April-May 2005 is earliest estimate of when testing can resume. A request for a time extension was submitted to DOE to extend the project through September 2005 to allow time to secure additional funding and complete the bituminous coal testing. Removal of the PRB PC Preheater from the CBTF burner deck was completed. Decommissioning of the CBTF for the winter was also completed.

  10. PHYSICAL COAL CLEANING FOR UTILITY BOILER SO2 EMISSION CONTROL

    EPA Science Inventory

    The report examines physical coal cleaning as a control technique for sulfur oxides emissions. It includes an analysis of the availability of low-sulfur coal and of coal cleanable to compliance levels for alternate New Source Performance Standards (NSPS). Various alternatives to ...

  11. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser Serguei Nester; Stan Wohadlo

    2004-06-30

    The primary focus for the project during the quarter was shakedown testing of the large-scale coal preheater prototype in the CBTF with non-caking PRB coal. Additional pilot-scale tests were conducted in the PSCF in support of developing a preheating system design suitable for use with caking coals. Thirty-two additional pilot tests were conducted during the quarter with caking coal. These tests further evaluated the use of the air-bleed and indirect air-cooled liner designs to reduce or eliminate combustor plugging with caking coal. The air-bleed configurations tested used air injection holes perpendicular to the liner's longitudinal axis with the number, size and air flow though the air-bleed holes varied to determine the effect on combustor plugging. The indirect cooling configurations tested included a stainless steel liner with spiral fins in the annular space between the liner and the combustor wall, and a silicon carbide liner without fins. Continuous pilot operation was maintained for up to 30 minutes at a coal feed rate of 50 lb/h with the air-bleed liner. The best result achieved was for the stainless steel indirect air-cooled liner with 20 minutes of continuous operation at 126 lb/h of coal followed by an additional 20 minutes at 150 lb/h. The NOx results from these continue to indicate that even greater NOx reduction is possible with caking coal than with the PRB coal tested. The installation of the large-scale prototype coal preheater for PRB testing in the CBTF was completed and shakedown testing with natural gas and PRB coal started during the quarter. Stable operation of the coal system, combustor and burner were achieved at coal feed rates up to 6000 lb/h (50 MMBtu/h).

  12. Experiences with hydrazine substitutes in boiler systems

    SciTech Connect

    Costa, S.T.; Dilcer, S.B.; Walker, J.L. )

    1990-07-01

    Several case histories are given to show the improved results obtained when strong passivating agents replace hydrazine in load-following boilers. Feedwater iron and copper levels obtained with hydrazine and with the new stronger reducing agents are compared.

  13. Boiler scale prevention employing an organic chelant

    DOEpatents

    Wallace, Steven L.; Griffin, Jr., Freddie; Tvedt, Jr., Thorwald J.

    1984-01-01

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  14. Model-based control rescues boiler from steam-temperature excursions

    SciTech Connect

    Hanson, K.; Werre, J.; Chloupek, J.; Richerson, J.

    1995-05-01

    This article describes how, after operators of a lignite-fired boiler wrestled for years to control its main steam temperature, a switch to model-based control resolved the problem. Decoupling of control loops was essential. Montana Dakota Utilities (MDU) is the operator of the Coyote station, a 450-MW unit located at Beulah, ND, in the heart of lignite country. Owners of the plant are MDU, Northern Municipal Power Agency, Northwestern Public Service Co., and Otter Tail Power Co. The unit, a Babcock and Wilcox Co. (Barberton, Ohio) drum-boiler design, came on line in 1981. It burns lignite with a heating value of 6,900 Btu/lb using 12 cyclones. Because of unique boiler characteristics and controls implementation using several different control systems, the Coyote station had experienced significant steam-temperature excursions over the years.

  15. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit

    SciTech Connect

    D'Aciermo, J.; Richards, H.; Spindler, F.

    1983-10-01

    A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bed boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.

  16. Gas-fired boiler and turbine air toxics summary report. Final report, January-September 1995

    SciTech Connect

    Rossi-Lane, C.; Stein, D.; Himes, R.

    1996-08-01

    The objective of the report is to provide a summary of the criteria pollutants and hazardous air pollutants (HAPs) emitted from a variety of gas-fired stationary sources including utility boilers, utility turbines, and turbines used for natural gas transmission. The report provides emission factors for each compound measured as a function of load to support general use during the preparation of Title V permit applications.

  17. Boiler burden reduced at Bedford site.

    PubMed

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation. PMID:22049674

  18. Design report: Low NOx burners for package boilers. Final report, May 1985-March 1989

    SciTech Connect

    Brown, R.A.; Dehne, H.; Eaton, S.; Mason, H.B.; Torbov, S.

    1990-01-01

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The burner utilizes two-stage combustion in a deep staging mode in which a precombustor firing substoichiometrically is retrofitted to the front of the boiler. The completion of the combustion in the second stage is achieved through sidefire air ports to be retrofitted to the boiler. The precombustor is a cylindrical shell of 2.1 m internal diameter fabricated of lightweight refractory blocks with a Saffil based coating. This material gives a lightweight, non-regenerative precombustor which can adapt to the start-up, shutdown, and load following transients typical of industrial boilers. The precombustor is designed for the capacity range of 15-29 MW heat input. A modular design using annular spool sections adapts to different design loads within this range. For larger loads, a geometric scale-up is required. Design data are also given for 59 MW capacity.

  19. Using closed-loop dynamic optimization to improve boiler efficiency at Chemopetrol's Litvinov Plant

    SciTech Connect

    Jarc, C.A.; Lang, R.

    1998-07-01

    Due to ever increasing demands by shareholders, environmental and governmental agencies, and customers, power generation and co-generating companies are looking more and more into advanced technologies to help them gain an edge on their competitors. Intelligent empirical optimization is a promising family of technologies to tune boilers for maximum efficiency and/or minimum emissions. A recent project teamed the Ultramax Corporation and Honeywell to install an on-line, closed-loop optimization solution on four new boilers at the Chemopetrol plant in Litvinov, Czech Republic, Honeywell has created an engineered solution called Individual Boiler Optimization (IBO) which utilizes the Ultramax Method and Dynamic Optimization, known as ULTRAMAX{reg{underscore}sign}, to optimize combustion of the boilers which are controlled by Honeywell's TotalPlant{reg{underscore}sign} solutions (TPS) System. IBO provides a real-time shell providing for automatic Ultramax operation in either open or closed-loop. With this system, Chemopetrol will be able to improve their boiler efficiency and NO{sub x} emissions on-line with little operator intervention. It can safely maintain best operating settings and compensate for changes that could potentially cause poor performance. The integrated dynamic solution enables greater emissions control fuel savings, and the ability to respond rapidly and flexibly to changes in operating conditions, compliance regulations and plant demands.

  20. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not

  2. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  3. 33. VIEW OF BASEMENT UNDER EAST BOILER ROOM LOOKING TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF BASEMENT UNDER EAST BOILER ROOM LOOKING TOWARD WEST BOILER ROOM BASEMENT THROUGH THE ASH TRANSFER TUNNEL. ASH HOPPER FOR BOILER 900 IS ON THE RIGHT. NOTE THE TRACKS ALONG THE FLOOR OF THE TUNNEL. A SMALL ELECTRIC LOCOMOTIVE HAULED CARS FOR TRANSFERRING ASH FROM BOILERS TO DISPOSAL SITES OUTSIDE THE BUILDING. THIS SYSTEM BECAME OBSOLETE IN 1938 WHEN BOILERS IN THE WEST BOILER ROOM WERE REMOVED AND PULVERIZED COAL WAS ADOPTED AS THE FUEL. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  4. {open_quotes}The next generations of Tampella Power`s CFB boilers{close_quotes}

    SciTech Connect

    Alliston, M.G.

    1995-12-31

    The next generation of Tampella Power Corporation`s CFB boilers is discussed in outline form. The following topics are outlined: CFB boiler advantages, CFB boiler fuel flexibility and CYMIC boiler construction.

  5. Fuel sulfur and boiler fouling

    SciTech Connect

    Litzke, W.; Celebi, Y.; Butcher, T.

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  6. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  7. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  8. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  9. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  10. Boiler wood ash as a soil amendment

    SciTech Connect

    Mitchell, C.C.

    1996-12-31

    Each of the 88 pulp and paper mills in the southeastern United States produces an average of 43 t of boiler ash daily (47 US tons). Forty percent is wood ash, 5% is coal ash, and the remaining is a combination ash. An analysis of boiler ash from 14 Alabama pulp and paper mills averaged 38% CaCO3 equivalent with a dry density of 500 kg m{sup -3}. Most agricultural soils in the southeastern US require periodic application of ground limestone in order to maintain productivity. Using boiler wood ash and combination ash as an alternative to ground limestone is agronomically productive, environmentally safe, and fiscally sound for both the ash producer and the landowner/ farmer. While plant, nutrient content of ash is variable, it should be considered as an incidental source of plant nutrients for field crops. Metals and phytotoxic components are very low. Extensive research has been reported on the value and safety of wood-fired boiler ashes. Nevertheless, research and development projects continue in efforts to assure safe use of boiler wood ash as an alternative soil liming material.

  11. Boiler house modernization through shared savings program

    SciTech Connect

    Breault, R.W.

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  12. Boiler MACT Technical Assistance (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

  13. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  14. Looking north at the stokers for boilers numbers 1 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north at the stokers for boilers numbers 1 through 4. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  15. Looking south at the ash disposal hoppers for boilers numbers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at the ash disposal hoppers for boilers numbers 1 through 6. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  16. View of the rear of the electrical department & boiler ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the rear of the electrical department & boiler house, behind the upper shops - Johnson Steel Street Rail Company, Electrical Department & Boiler House, 525 Central Avenue, Johnstown, Cambria County, PA

  17. 1. VIEW OS SOUTH FRONT OF BOILER HOUSE, WITH SCALE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OS SOUTH FRONT OF BOILER HOUSE, WITH SCALE STICK, SHOWING HEAVY SCALES OFFICE TO LEFT, LOOKING NORTH - Marvine Colliery, Boiler House No. 2, West side Boulevard Avenue, between East Parker Street & Route 380, Scranton, Lackawanna County, PA

  18. 1. VIEW TO EAST, WITH BOILER HOUSE TO LEFT, FILTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO EAST, WITH BOILER HOUSE TO LEFT, FILTH HOIST HOUSE TO RIGHT, WITH ENGINE HOUSE AT RIGHT REAR. - Providence Sewage Treatment System, Ernest Street Pumping Station, Boiler House, Ernest Street & Allens Avenue, Providence, Providence County, RI

  19. 3. NORTH ELEVATION OF BOILER HOUSE; PARTIAL NORTH ELEVATION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH ELEVATION OF BOILER HOUSE; PARTIAL NORTH ELEVATION OF ENGINE HOUSE, LEFT REAR. - Providence Sewage Treatment System, Ernest Street Pumping Station, Boiler House, Ernest Street & Allens Avenue, Providence, Providence County, RI

  20. BOILER SHOP, NORTH END, WITH DROP PIT IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILER SHOP, NORTH END, WITH DROP PIT IN FOREGROUND AND SP 2902 PASSENGER CAR UNDER RESTORATION, LOOKING SOUTHEAST. - Southern Pacific, Sacramento Shops, Boiler Shop, 111 I Street, Sacramento, Sacramento County, CA

  1. 32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT TURBINE DRIVEN FORCED DRAFT FAN FOR BOILER 904. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  2. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  3. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  4. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  5. BOILERS COFIRING HAZARDOUS WASTE: EFFECTS OF HYSTERESIS ON PERFORMANCE MEASUREMENTS

    EPA Science Inventory

    The Hazardous Waste Engineering Research Laboratory (HWERL) has conducted full scale and pilot scale boiler testing to determine hazardous waste destruction and removal efficiencies (DRE's) and other associated boiler performance parameters during the last five years. The effort ...

  6. Corrosion fatigue boiler tube failures in waterwalls and economizers

    SciTech Connect

    McNabb, D.; Sidey, D. )

    1992-04-01

    Corrosion fatigue is a cracking mechanism initiating on the inside surface of water-touched boiler tubing at locations subject to high fatigue stresses, usually at pressure/nonpressure attachments. The mechanism is considered one of the last major sources of boiler tube failures in subcritical drum-type boilers without a root cause solution. The Electric Power Research Institute initiated a study to derive solutions to corrosion fatigue for in-service boilers and guidelines for the design of new boilers. The study consisted of a number of tasks including a survey of industry experience, field testing, theoretical stress analysis, and laboratory testing. The present volume summarizes the survey results. Ten subcritical drum-type boilers participated in the survey. The procedure involved a review of maintenance and boiler water chemistry history, and a detailed inspection of the boiler.

  7. Looking northwest at central boiler house, with 16" skelp mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northwest at central boiler house, with 16" skelp mill furnace building in foreground. - U.S. Steel National Tube Works, Central Boiler House, Along Monongahela River, McKeesport, Allegheny County, PA

  8. 3. Partial view of SE sides of Boiler Building (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Partial view of SE sides of Boiler Building (left), Incineration Building (to right of stack) and Machine Shop (right). - Pacific Creosoting Plant, Boiler Building, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  9. 6. View along E wall of Engine Room, Boiler House ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View along E wall of Engine Room, Boiler House and Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  10. 14. Door leading from Boiler Room to Pattern Room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Door leading from Boiler Room to Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  11. 5. N elevation of Engine Room, Boiler House and Pattern ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. N elevation of Engine Room, Boiler House and Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  12. 11. Interior view of Engine Room and Boiler House showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of Engine Room and Boiler House showing wall buttress. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  13. 2. S. elevation of Engine Room, Boiler House and Pattern ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. S. elevation of Engine Room, Boiler House and Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  14. EVALUATION OF LIME PRECIPITATION FOR TREATING BOILER TUBE CLEANING WASTES

    EPA Science Inventory

    The report gives results of an evaluation of lime precipitation for treating boiler tube cleaning wastes. In this project, wastewater samples were collected from six boiler tubeside chemical cleanings, using complexing and chelating agents. The samples represented: (1) ammoniacal...

  15. 36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  16. 3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL AT CENTER; BOXLIKE, RIVETED HOUSING AT TOP CENTER CONTAINED AUGER FOR COAL DISTRIBUTION SYSTEM - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  17. 2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO TANK AT RIGHT, THEN DROPPED INTO RAIL CARS FOR REMOVAL - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  18. Black liquor combustion validated recovery boiler modeling, five-year report

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  19. Computer simulation of the fire-tube boiler hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  20. Development of clad boiler tubes extruded from bimetallic centrifugal castings

    SciTech Connect

    Sponseller, D.L.; Bakker, W.T.; Timmons, G.A.

    1998-04-01

    Wrought tubes of T-11 steel, externally clad with SS310, have been produced by a new method. The alloys were united directly from the molten state by centrifugal casting. In the optimum process, temperatures were controlled to prevent meltback of the SS310 outer layer by the higher melting T-11 stream. Hollow extrusion billets were prepared from the heavy-walled cast bimetallic tubes and successfully hot extruded to 84-mm OD x 64-mm ID tubes, and to 51-mm OD x 38-mm ID tubes. For the most part, thicknesses of the cladding and of the tube wall are rather uniform around the circumference and from end to end of the tubes. Hardness and tensile properties of annealed 51-mm tubes are uniform from end to end of a tube, and between tubes, and readily conform to ASTM A 213; tubes satisfy the flattening and flaring requirements of ASTM A 450. The cladding is metallurgically bonded to be base metal, as revealed by metallography, and by two tests developed for this study: a bond shear strength test and a twist test. In the latter test, rings 3.1 mm in thickness are slotted and severely twisted with a special tool. In tubes made by the optimum process, minute fissures that form adjacent to some of the pressure points during twist testing occupy just 3% of the bond-line length. Cost estimates for commercial production of 51-mm tubes via the centrifugal casting route suggest that such tubes should be considerably less expensive than conventionally clad tubes (extruded from composite billets assembled from heavy-walled wrought tubes). Such tubes should be attractive for the following applications in utility boilers: high-corrosion areas of existing coal-fired boilers, in both steam-generating tubes and superheaters; water walls, screen tubes, and superheater tubes of municipal waste-incineration boilers; future ultra super-critical boilers operating a higher temperatures and pressures; and steam-generating tubes of Syngas coolers of integrated coal gasification power plants.

  1. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  2. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  3. Condensing heat exchangers for maximum boiler efficiency

    SciTech Connect

    Johnson, D.W.; DiVitto, J.G.; Rakocy, M.E.

    1994-12-31

    Until now, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected for every 40 F (4.5 C) reduction in flue gas stack temperature. In the CHX{reg_sign} condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon{reg_sign}. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces.

  4. Evaluation of thermal overload in boiler operators.

    PubMed

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload. PMID:22316768

  5. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  6. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators. PMID:16082787

  7. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  8. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  9. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  10. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  11. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  12. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  13. 23. VIEW FROM CATWALK OF EAST BOILER ROOM LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW FROM CATWALK OF EAST BOILER ROOM LOOKING NORTH. BOILERS 900 AND 901 ARE ON THE LEFT, BOILERS 902 AND 903 ARE ON THE RIGHT. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  14. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  15. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter...

  16. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  17. 26. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING EAST AT BOILER 904. BOILER 904 WAS MANUFACTURED BY RILEY STOKER AND INSTALLED IN 1944. ORIGINALLY FUELED BY PULVERIZED COAL, IT WAS CONVERTED TO GAS/OIL OPERATION IN 1978 AND OPERATED UNTIL THE PLANT CLOSED. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  19. Overview of Boiler House and Sheet Metal and Electrical Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Boiler House and Sheet Metal and Electrical Shops Building (center - with single large chimney), note the monitor on the original section of the Boiler House Building, view facing north - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  20. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  1. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  2. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  3. 35. VIEW LOOKING EAST IN SOUTH END OF EAST BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW LOOKING EAST IN SOUTH END OF EAST BOILER ROOM. CYLINDRICAL TANKS ARE WORTHINGTON DEAERATORS. THESE REMOVED AIR FROM BOILER FEED WATER TO MINIMIZE CORROSION AND PITTING OF THE BOILER TUBES. AIR REMOVAL ALSO HELPED AVOID THE FORMATION OF FOAM IN THE SYSTEM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  4. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  5. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  6. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter....

  7. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  8. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  9. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Boilers and process heaters....

  10. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  11. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Boilers and process heaters....

  12. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Boilers and process heaters....

  13. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Boilers and process heaters....

  14. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  15. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  16. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters....

  17. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  18. Field experience and performance summary using the EPRI EMAT-based gaging system for boiler tubing

    SciTech Connect

    Schlader, D.; Stevens, D.; Nakoneczny, G.; Tilley, R.

    1996-07-01

    The Electric Power Research Institute (EPRI) and the Babcock & Wilcox (B&W) Company have developed a boiler tube thickness gage using EMATs (Electromagnetic Acoustic Transducers) which can be used in either a spot measuring or a scanning mode to identify localized wall thinning due to corrosion or erosion. A field-hardened, prototype version has been constructed and tested in a wide range of utility boilers. The prototype has been refined into a commercial grade system that is being utilized by B&W to supply services to utilities. This paper describes the EMAT gaging system and presents results of field applications in utility boilers. The EMAT system in its current configuration is capable of measuring tube wall thickness as thin as 0.070 inches with an accuracy comparable to conventional ultrasonic measurements, {+-}0.005 inches. Thickness readings can be obtained on tube wall surfaces which have been sandblasted or ground free of scale, and on tube wall surfaces which have uniform layers of scale. The presence of scale, in some instances, can greatly enhance the ultrasonic signal strength, allowing thickness measurements on tubes without any surface preparation as long as the scale layer is uniform.

  19. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  20. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  1. Neural network boiler optimization of efficiency, emission, and reliability with TVA Kingston Unit 3 low NOx optimization test results

    SciTech Connect

    Chang, P.S.; Poston, J.M.; Schroech, K.A.; Hou, H.S.

    1995-12-31

    Boiler performance optimization includes the preservation of efficiency, emission, capacity, and reliability. Competitive pressures require cost reduction and environmental compliance. It is a challenge for utility personnel to balance these requirements often demand tradeoffs. The Clean Air Act Amendment requires utilities to reduce NOx emission. NOx emission reduction has often been accomplished by installation of new low NOx burners. Boiler tuning for NOx control can be used as an alternative to low NOx burner installation. Specifically in tangentially-fired boilers, boiler tuning can be very effective in NOx reduction. A PC-based computer software program was developed to assist the tuning process. This software, System Optimization Analysis Program (SOAP), is a neural network based code which uses the self-adaptation learning process, with an adaptive filter added for data noise control. SOAP can use historical data as the knowledge base and provides a fast optimal solution to adaptive control problems. SOAP was tested at TVA`s Kingston Unit 3 tangentially coal-fired furnace for NOx reduction. With a well-organized test plan, the optimized solution was reached with 16 tests at each test series load level. SOAP will be used for other plant equipment or system optimization, such as pulverizer performance, combustion system optimization, compared thermal performance design, and boiler tube leak detection and allocation.

  2. GUIDELINES FOR INDUSTRIAL BOILER PERFORMANCE IMPROVEMENT. (BOILER ADJUSTMENT PROCEDURES TO MINIMIZE AIR POLLUTION AND TO ACHIEVE EFFICIENT USE OF FUEL)

    EPA Science Inventory

    Recommended procedures for improving industrial boiler performance to minimize air pollution and to achieve efficient use of fuel are given. It is intended for use by industrial boiler operators to perform an efficiency and emissions tune-up on boilers firing gas, oil, or coal. P...

  3. New source performance standards for industrial boilers. Volume 5. Analysis of solid waste impacts

    SciTech Connect

    Boldt, K.; Davis, H.; Delaney, B.; Grundahl, N.; Hyde, R.; Malloch, R.; Tusa, W.

    1980-09-01

    This study provides an analysis of the impacts of emission controls on disposal of solid wastes from coal-fired industrial boilers. Examination is made of boiler systems, coal types, emission control alternatives, waste streams, waste disposal and utilization alternatives, and pertinent Federal regulations. Twenty-four representative model case scenarios are studied in detail. Expected disposal/utilization alternatives and disposal costs are developed. Comparison of the systems studied indicates that the most cost-effective SO/sub 2/ control technologies from the perspective of waste disposal cost per unit SO/sub 2/ control are, in decreasing order: physically cleaned coal/double alkali combination; double alkali; lime/limestone; spray drying; fluidized-bed combustion; and sodium throwaway.

  4. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to

  5. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    SciTech Connect

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  6. REBURN TECHNOLOGY FOR BOILER NOX CONTROL

    EPA Science Inventory

    The paper reports the progress principally of design-relate phases of a demonstration of reburning on a large cyclone-fired boiler, for which coal is the primary fuel and natural gas, the reburn fuel. Reburn system design criteria are presented, as well as the methodology and res...

  7. Digital radiographic systems detect boiler tube cracks

    SciTech Connect

    Walker, S.

    2008-06-15

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  8. Micronized coal solves mushroom grower's boiler headaches

    SciTech Connect

    Reason, J.

    1984-03-01

    A brief account is given of a Utah mushroom grower who has replaced two underfeed stoker-fired boilers requiring 7 attendants by an ultra-fine pulverised coal-fired system. The coal is ground in a proprietary rotary grinder to 80% through a 325-mesh screen. Information is presented on the mill and the special refractory burners required.

  9. REBURNING APPLICATION TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The report gives results of pilot-scale experimental research that examined the physical and chemical phenomena associated with the NOx control technology of reburning applied to gas- and liquid-fired firetube package boilers. Reburning (staged fuel combustion) diverts some of th...

  10. Microphone Detects Boiler-Tube Leaks

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1985-01-01

    Unit simple, sensitive, rugged, and reliable. Diaphragmless microphone detects leaks from small boiler tubes. Porous plug retains carbon granules in tube while allowing pressure changes to penetrate to granules. Has greater life expectancy than previous controllers and used in variety of hot corrosive atmospheres.

  11. Is That Boiler Ready To Blow?

    ERIC Educational Resources Information Center

    Robinson, Glenn S.; Trombley, Robert E.

    2001-01-01

    Discusses implementation of a thorough assessment program to determine the condition of boilers, pressure vessels and other plant equipment to determine the feasibility of part or entire system replacement. Assessment basics are examined as are tips for selecting the right inspection and engineering contractor for assessments. (GR)

  12. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  13. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  14. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  15. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  16. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  17. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  18. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  19. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  20. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction. PMID:18822819

  1. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  2. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  3. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    SciTech Connect

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  4. Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application fo a Moving Line Heat Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used lor inspection of these tubes. This technique has proved to be very labor intensive and slow. This has resulted in a "spot check" approach to inspections, making thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source, coupled with this analysis technique, represents a significant improvement in the inspection speed for large structures such as boiler waterwalls while still providing high-resolution thickness measurements. A theoretical basis for the technique will be presented thus demonstrating the quantitative nature of the technique. Further, results of laboratory experiments on flat Panel specimens with fabricated material loss regions will be presented.

  5. EFFECTS OF SORBENT INJECTION FOR SULFUR DIOXIDE REMOVAL ON PARTICULATE CONTROL SYSTEMS FOR COAL-FIRED BOILERS

    EPA Science Inventory

    The report describes studies undertaken to quantify the effects of dry SO2 sorbent injection on electrostatic precipitator (ESP) operation with a coal-burning utility boiler. The specific operation of interest was EPA's limestone injection, multistage burners (LIMB) process. The ...

  6. Infrared imaging of fossil fuel power plant boiler interiors

    NASA Astrophysics Data System (ADS)

    Howard, James W.; Cranton, Brian W.; Armstrong, Karen L.; Hammaker, Robert G.

    1997-08-01

    Fossil fuel power plant boilers operate continuously for months at a time, typically shutting down only for routine maintenance or to address serious equipment failures. These shutdowns are very costly, and diagnostic tools and techniques which could be used to minimize shutdown duration and frequency are highly desirable. Due to the extremely hostile environment in these boilers, few tools exist to inspect and monitor operating boiler interiors. This paper presents the design of a passively cooled, infrared borescope used to inspect the interior of operating boilers. The borescope operates at 3.9 micrometer, where flame is partially transparent. The primary obstacles overcome in the instrument design were the harsh industrial environment surrounding the boilers and the high temperatures encountered inside the boilers. A portable yet durable lens system and enclosure was developed to work with a scanning radiometer to address these two problems by both shielding the radiometer from the environment and by extending the optical train into a snout designed to be inserted into access ports on the sides of the boiler. In this manner, interior images of the boiler can be made while keeping the radiometer safely outside the boiler. The lens views a 40 degree field of view through any 2.5' or larger opening in a foot thick boiler wall. Three of these borescopes have been built, and high resolution images of boiler interiors have been obtained.

  7. The next generation of oxy-fuel boiler systems

    SciTech Connect

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  8. Design and experience with large-size CFB boilers

    SciTech Connect

    Darling, S.L.

    1994-12-31

    CFB boilers have been in operation for many years in industrial steam and power generation applications demonstrating the low SO{sub x}/NO{sub x} emissions and fuel flexibility of the technology. In the past few years, several large-size CFB boilers (over 100 MWe) have entered service and are operating successfully. On the basis of this experience, CFB boilers up to 400 MWe in size are now being offered with full commercial guarantees. Such large CFB boilers will be of interest to countries with strict emission regulations or the need to reduce emissions, and to countries with both a large need for additional power and low grade indigenous solid fuel. This paper will describe Ahlstrom Pyropower`s scale-up of the AHLSTROM PYROFLOW CFB boiler, experience with large-size CFB boilers and the design features of CFB boilers in the 400 MWe size range.

  9. Stress Assisted Corrosion in Boiler Tubes - Failure Analysis

    SciTech Connect

    Singh, Preet M; Pawel, Steven J; Yang, Dong; Mahmood, Jamshad

    2007-01-01

    Stress assisted corrosion (SAC) of carbon steel boiler tubes is one of the major causes of waterside failure in industrial boilers. SAC is a major concern for kraft recovery boilers in the pulp and paper industry as any water leak into the furnace can cause a smelt-water explosion in the boiler. Failed carbon steel boiler tubes from different kraft recovery boilers were examined to understand the role of carbon steel microstructure on crack initiation and SAC crack morphology. A number of carbon steel tubes showed a deep decarburized layer on the inner surface (water-touched) and also an unusually large grain size at the inner tube surface. SAC cracks were found to initiate in these areas with large-graineddecarburized microstructure. Tubes without such microstructure were also found to have SAC cracks. It was found that the decarburization and large grained microstructure may facilitate initiation and growth but is not necessary for SAC of carbon steel boiler tubes.

  10. COMMERCIAL UTILITY FLUE GAS DESULFURIZATION SYSTEMS

    EPA Science Inventory

    The article discusses the current status of commercial flue gas desulfurization (FGD) processes applied to coal-fired utility boilers in the U.S. Major objectives of the work were to examine the impacts of the 1979 New Source Performance Standards on FGD system design and operati...

  11. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  12. Oxy-Combustion Boiler Material Development

    SciTech Connect

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  13. Oxy-Combustion Boiler Material Development

    SciTech Connect

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  14. Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Yu, Wugao; Bo, Shi

    The first 100MW CFB boiler, designed by the Thermal Power Research Institute and manufactured by Harbin Boiler Company Limited, has been successfully running in Jiangxi Fenyi Power Plant since 2003. Local high ash content anthracite and lean coal that are very difficult to burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and startup with two under bed burners, and the boiler efficiency higher than 88% can be got after the combustion modification test. The CFB boiler can be operated with full load and reaches design parameters. The emissions of NO, N2O and CO are less than 7Omg/m3, 30mg/m3, and 125mg/m3, respectively, and SO2 less than 400mg/m3 after limestone injection. The bottom ash temperature from bed ash coolers is less than 120°C after its modification. Coal blockage at the coal storage silo is the main problem influencing the CFB boiler continuous operation. The running experiences for 5 years proved that the CFB boiler performance is successful, and the results were applied in 210 MW and 330 MW CFB Boiler design of Fenyi Power Plant.

  15. Design for a 350 MWe class CFB boiler

    SciTech Connect

    Darling, S.L.

    1998-07-01

    This paper describes Foster Wheeler's design for a 350 MWe Class boiler. Foster Wheeler's experience with large CFB boilers and with large suspension fired boilers is summarized. A reference 350 MWe CFB boiler design is presented and major design features are described along with expected performance. Areas in the CFB boiler design which benefit from suspension from boiler experience are highlighted. CFB boilers are now proven in the 150--250 MWe size range, with several in operation and many others scheduled to begin operation this year. The next step for CFB boiler technology is the 300 - 400 MWe size range. This paper will describe Foster Wheeler's design for a 350 MWe class CFB boiler, including the major design features and anticipated performance. The authors will demonstrate how Foster Wheeler's experience in designing large suspension-fired boilers in sizes over 900 MWe has been applied to the 350 MWe class CFB, in order to minimize scale-up risk and ensure high reliability. This design will bring the benefits of CFB technology, which include flexibility and low emissions, to the 350 MWe size range.

  16. Guide to Low-Emission Boiler and Combustion Equipment Selection

    SciTech Connect

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  17. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  18. 32. (Credit CBF) Boilers in the McNeil Street Station, November ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. (Credit CBF) Boilers in the McNeil Street Station, November 1911: two 100 hp Atlas boilers and one Chattanooga boiler. The Atlas boilers were installed c1892, the Chattanooga boiler c1897. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  19. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  20. Classification and quantification for boiler dust

    NASA Astrophysics Data System (ADS)

    Zeng, Zhoumo; Liang, Yi; Yang, Qing; Jin, Shijiu

    2002-09-01

    A non-intrusive optical technique for the study of moving particles and their statistics, laser phase Doppler anemometry (PDA), is used in on-line inspecting and quantifying boiler dusty. PDA collects and processes Doppler signals from moving scattering particles and provides a deterministic measure of particle velocity and statistical information about particles" size and size distribution. Furthermore, PDA is superior to the traditional intensity based optical particle analyzer, as Doppler frequency or phase shift is less susceptible to electronic noise than intensity. These features are important for reliable results, especially at in-situ application. The present system operated successfully in inspecting soot letting of coal-fired boiler, which leads to an active structure that can be applied in the conditions of limited optical access. The measuring results of soot parameters, as well as the statistics of soot are presented in this paper.

  1. Recycle device for circulating fluidized bed boilers

    SciTech Connect

    Wang, Q.; Luo, Z.Y.; Li, X.T.; Cheng, F.; Ni, M.J.; Cen, K.

    1997-12-31

    Because the pressure at the outlet of a separator is lower than that at an inlet of a furnace, a recycle device is one of the most important components of circulating fluidized bed boilers for handling circulating ash. Although it has been extensively used in circulating fluidized bed boilers, its properties have not yet been well understood. Many experiments have been conducted for a kind of recycle device and the operational properties were obtained. The experimental results show that the structure of the recycle device and aeration conditions have a strong influence on the solid flow rate and operational stability of the recycle device. The authors will discuss the effect of the major parameters, such as opening and aeration air at different locations, on solids flow rate. The operational considerations will be given in this paper.

  2. Particulate Emission Abatement for Krakow Boiler Houses

    SciTech Connect

    1998-09-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which currently comprises over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low- capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  3. Maximising safety in the boiler house.

    PubMed

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation. PMID:23573684

  4. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    The author describes a fluidised-bed boiler that has been designed by FluiDyne Engineering Corp. for the combustion of anthracite culm, a material containing about 40% ash and consisting of coal particles embedded in mineral matter. There are some 900 million tons of anthracite culm in northeast Pennsylvania within easy reach of many large metropolitan areas. It is estimated that the material can be used economically within a distance of 200 miles.

  5. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1996-12-31

    This publication contains technical papers published as they were presented at a recent specialty conference sponsored by the Air & Waste Management Association, titled Waste Combustion in Boilers and Industrial Furnaces, held March 26-27, 1996, in Kansas City, Missouri. Papers touch on compilance concerns for air pollution, air monitoring methodologies, risk assessment, and problems related to public anxiety. Separate abstracts have been indexed into the database from this proceedings.

  6. Predictive modelling of boiler fouling

    SciTech Connect

    Not Available

    1991-01-01

    The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is a complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry. 11 figs.

  7. Predictive modelling of boiler fouling

    SciTech Connect

    Not Available

    1992-01-01

    The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.

  8. Predictive modelling of boiler fouling

    SciTech Connect

    Not Available

    1991-01-01

    The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is a complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.

  9. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  12. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  13. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  14. Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications

    SciTech Connect

    Shingledecker, John P

    2008-01-01

    Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  15. Advanced coal-fired slagging combustor for the low-emission boiler system

    SciTech Connect

    Diehl, R.C.; Eppich, H.M.; Stankevics, J.O.A.; Reich, J.E.; Beittel, R.; Ake, T.R.

    1994-12-31

    The Department of Energy, Pittsburgh Energy Technology Center has recently initiated a major engineering development program called {open_quotes}Combustion 2000{close_quotes} which is geared toward advanced coal-fired electric utility plants. The Riley Stoker Corp. is leading one of three teams developing a Low-Emission coal-fired Boiler System (LEBS), which will be commercial by the end of this decade. The Riley team includes Textron Defense Systems, Reaction Engineering, International, Sargent & Lundy Engineers, Research Cottrell, and Tecogen. In LEBS advanced pollution control goals will lower SOx and NOx emissions to 1/3 current New Source Performance Standards (NSPS) and particulate emissions to 1/2 current NSPS. Riley`s LEBS has selected the 4500 psi 1100{degrees}F double reheat cycle, which will include a high efficiency, once through supercritical Benson boiler.

  16. NO sub x reduction by combustion in PC-fired boilers

    SciTech Connect

    LaRue, A.D. . Fossil Power Generation Div.)

    1990-01-01

    The dual register burner (DRB) was developed to reduce NO{sub x} emissions from PC-fired boilers, to satisfy federal New Source Performance Standards. Some of the initial applications were also equipped with NO{sub x} ports as a contingency; the ports however, usually proved to be unnecessary and were eliminated. Continuing burner development through the 1980's has resulted in the DRB-type XCL. The XCL is configured to also facilitate use in retrofit applications, in preparation for acid rain NO{sub x} restrictions for existing utility boilers. NO{sub x} emissions for the DRB have proved to be low, but vary with coal properties. NO{sub x} emissions around 0.3 lb/10{sup 6} Btu* are typical for units firing high volatile, free burning coals, but can be twice this value with some bituminous coals.

  17. 36. VIEW OF SOUTH END OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF SOUTH END OF EAST BOILER ROOM LOOKING SOUTHWEST. THE CYLINDRICAL TANKS IN THE FOREGROUND CONTAIN AN ION-EXCHANGE RESIN FOR REMOVING CALCIUM FROM THE BOILER FEED TO REDUCE WATER "HARDNESS". THE SHALLOW TANK IN THE RIGHT BACKGROUND IS A DIATOMACEOUS EARTH FILTER TO REMOVE PARTICULATE MATTER FROM THE BOILER FEED. THE ION-EXCHANGE WATER SOFTENING SYSTEM WAS INSTALLED IN 1977. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. 33. 20HORSE POWER VERTICAL BOILER WAS MANUFACTURED BY ORR & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. 20-HORSE POWER VERTICAL BOILER WAS MANUFACTURED BY ORR & SEMBOWER, FROM READING, PA. IT WAS INSTALLED IN 1929 TO REPLACE THE ORIGINAL BOILER. THE BOILER PROVIDED STEAM TO THE STEAM ENGINE. TO LUBRICATING THE DIE OF THE BRICK AUGER, AND TO THE STEAM PIPES OF THE DRYING ROOM ON THE FLOOR ABOVE. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  19. 16. View into interior steam spaces of boiler above fireboxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View into interior steam spaces of boiler above fireboxes through manhole (see photo VT-14-16 for manhole location). Tops-or crown sheets--of fireboxes show below. Vertical and inclined bars are stays used to hold boiler together and reinforce flat plates under pressure. Note water level used in boilers indicated by scale encrustation on stays. (Threaded stud in extreme foreground belongs to manhole cover opened for purposed of photography.) - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  20. 27. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING EAST AT UPPER PORTION BOILER 904. BOILER 904 WAS MANUFACTURED BY RILEY STOKER AND INSTALLED IN 1944. ORIGINALLY FUELED BY PULVERIZED COAL, IT WAS CONVERTED TO GAS/OIL OPERATION IN 1978 AND OPERATED UNTIL THE PLANT CLOSED. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  1. 22. (Credit JTL) Detail, south elevation of boiler room; view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. (Credit JTL) Detail, south elevation of boiler room; view looking NNW at Adolphous Custodis stack base (1900), boiler room doors, boiler backheads and edge of old high service pump room. Note joint in bricks to right of Poller room doors showing extent of wall replacement when doors were installed. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  2. Contributions to the use of macrosounds for boiler decrusting

    NASA Technical Reports Server (NTRS)

    Bradeteanu, C.

    1974-01-01

    The results of an investigation indicate the following: (1) The deposition of incrustations on the heating surfaces of steam boilers can be prevented by inserting between heating surface and water an insulating layer on which the boiler incrustation will be deposited. (2) The insulating layer reduces the coefficient of heat transmission by 2%. (3) The insulating layer can be removed by macrosounds with a frequency of about 20 kHz, after any interval of boiler operation.

  3. Mining wavelet transformed boiler data sets

    NASA Astrophysics Data System (ADS)

    Letsche, Terry Lee

    Accurate combustion models provide information that allows increased boiler efficiency optimization, saving money and resources while reducing waste. Boiler combustion processes are noted for being complex, nonstationary and nonlinear. While numerous methods have been used to model boiler processes, data driven approaches reflect actual operating conditions within a particular boiler and do not depend on idealized, complex, or expensive empirical models. Boiler and combustion processes vary in time, requiring a denoising technique that preserves the temporal and frequency nature of the data. Moving average, a common technique, smoothes data---low frequency noise is not removed. This dissertation examines models built with wavelet denoising techniques that remove low and high frequency noise in both time and frequency domains. The denoising process has a number of parameters, including choice of wavelet, threshold value, level of wavelet decomposition, and disposition of attributes that appear to be significant at multiple thresholds. A process is developed to experimentally evaluate the predictive accuracy of these models and compares this result against two benchmarks. The first research hypothesis compares the performance of these wavelet denoised models to the model generated from the original data. The second research hypothesis compares the performance of the models generated with this denoising approach to the most effective model generated from a moving average process. In both experiments it was determined that the Daubechies 4 wavelet was a better choice than the more typically chosen Haar wavelet, wavelet packet decomposition outperforms other levels of wavelet decomposition, and discarding all but the lowest threshold repeating attributes produces superior results. The third research hypothesis examined using a two-dimensional wavelet transform on the data. Another parameter for handling the boundary condition was introduced. In the two-dimensional case

  4. 13. RW Meyer Sugar Mill: 18761889. Engine and boiler house, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RW Meyer Sugar Mill: 1876-1889. Engine and boiler house, ca. 1881. Locomotive-type, fire-tube, portable boiler, no. I model. Manufactured by Ames Iron Works, Oswego, New York, 1879. 120 lbs./sq. in. working pressure, 66 sq. ft. heating surface in tubes. View: Historical view, 1934, from T.T. Waterman Collection, Hawaiian Sugar Planters' Association. View shows engine and boiler house structure intact. The water and pressure gauge to the right of the boiler are in more complete condition than in 1978 views. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. Cost and performance of Group 2 boiler NOx controls

    SciTech Connect

    Khan, S.; Maibodi, M.; Srivastava, R.

    1997-12-31

    This paper presents the results of a study conducted to assist EPA in developing the Phase II NO{sub x} rule under Title IV of the Clean Air Act Amendment of 1990 (the Act). The specific purpose of this study was to assess the performance and capital and total levelized costs of NO{sub x} controls pertinent to Group 2 boilers. Group 2 boilers are all coal-fired boilers that are not dry-bottom wall-fired and tangentially fired and include cell burner-fired, cyclone-fired, wet-bottom, vertically fired, stoker-fired, and fluidized-bed boilers.

  6. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  7. Application of Boiler Op for combustion optimization at PEPCO

    SciTech Connect

    Maines, P.; Williams, S.; Levy, E.

    1997-09-01

    Title IV requires the reduction of NOx at all stations within the PEPCO system. To assist PEPCO plant personnel in achieving low heat rates while meeting NOx targets, Lehigh University`s Energy Research Center and PEPCO developed a new combustion optimization software package called Boiler Op. The Boiler Op code contains an expert system, neural networks and an optimization algorithm. The expert system guides the plant engineer through a series of parametric boiler tests, required for the development of a comprehensive boiler database. The data are then analyzed by the neural networks and optimization algorithm to provide results on the boiler control settings which result in the best possible heat rate at a target NOx level or produce minimum NOx. Boiler Op has been used at both Potomac River and Morgantown Stations to help PEPCO engineers optimize combustion. With the use of Boiler Op, Morgantown Station operates under low NOx restrictions and continues to achieve record heat rate values, similar to pre-retrofit conditions. Potomac River Station achieves the regulatory NOx limit through the use of Boiler Op recommended control settings and without NOx burners. Importantly, any software like Boiler Op cannot be used alone. Its application must be in concert with human intelligence to ensure unit safety, reliability and accurate data collection.

  8. CFB boiler for Southern Illinois University: Planning and design

    SciTech Connect

    Silvey, M.; Roth, N.; Haake, A.

    1995-12-31

    Southern Illinois University (SIU) is in the process of installing a Babcock and Wilcox (B and W) coal fired circulating fluidized bed (CFB) boiler at its Carbondale, Illinois campus. The CFB boiler will be used for cogeneration. Funding for this project was made possible by the State of Illinois Capital Development Board. Illinois coal will be fired in this CFB boiler. This paper provides a description of the planning process and design of the CFB boiler and related equipment with specific emphasis on particulate removal and recirculation. The startup of this new installation is scheduled for the summer of 1996, with commercial operation by fall of 1996.

  9. Residual Strain Distribution in Bent Composite Boiler Tubes

    SciTech Connect

    Hubbard, Camden R; Gorti, Sarma B; Tang, Fei

    2006-01-01

    Kraft recovery boilers are typically constructed of carbon steel boiler tubes clad with a corrosion resistant layer, and these composite tubes are bent and welded together to form air port panels which enable the combustion air to enter the boiler. In this paper, the through-thickness residual strain in the carbon steel layer of non-heat-treated and heat-treated composite bent tubes were measured by neutron diffraction techniques and modeled by finite element modeling. The results can be used to optimize material selection and manufacturing processes to prevent stress corrosion and corrosion fatigue cracking in the boiler tubes.

  10. POLLUTANT CONTROL TECHNIQUES FOR PACKAGE BOILERS: HARDWARE MODIFICATIONS AND ALTERNATE FUELS

    EPA Science Inventory

    The report gives results of investigations of four ways to control nitrogen oxide (NOx) emissions from package boilers (both field operating boilers and boiler simulators): (1) variations in combustor operating procedure; (2) combustion modification (flue gas recirculation and st...

  11. Utility FGD Survey, January--December 1989

    SciTech Connect

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  12. Mechanism of CaO sulfation in boiler limestone injection

    SciTech Connect

    Stouffer, M.R.; Yoon, H.; Burke, F.P.

    1987-01-01

    Pilot and industrial-scale tests of boiler limestone injection (BLI) have demonstrated flue gas SO/sub 2/ reductions of around 50% at sorbent utilization efficiencies of 15-20%. The objective of the laboratory research program described in this paper was to improve BLI sorbent utilization through an understanding of the limestone calcination and CaO sulfation reaction mechanisms. This paper describes the laboratory sulfation studies. The laboratory work used a differential reactor operated at 700-1000/degree/C and lab-produced calcines from limestones, dolomites, and hydrated limes, having particle sizes in a range applicable to BLI. The lab work determined the intrinsic sulfation reaction rate and rate-controlling steps over this temperature range. The intrinsic rate increased with the square of calcine surface area and was rate controlling only at temperatures below 800/degree/C. At the higher temperatures more applicable to BLI, the sulfation rate was limited by pore diffusion of SO/sub 2/ and pore plugging by the sulfate product. Therefore, the reaction rate and the saturated sorbent efficiency depended strongly on particle size and calcine pore structure. The lab data indicate that an optimum calcine pore structure can be obtained by appropriately evaluating sorbents, controlling calcination conditions and incorporating alkali additives in the sorbent.

  13. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  14. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    PubMed

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent. PMID:23552243

  15. Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-02-28

    The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

  16. Biogas utilization

    SciTech Connect

    Moser, M.A.

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  17. Biogas utilization

    SciTech Connect

    Moser, M.A.

    1995-11-01

    Options for successfully using biomass depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine generators to produce electricity. If engines or boilers as selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specification is very costly, and energy economics preclude this level of treatment.

  18. Materials development for ultra-supercritical boilers

    SciTech Connect

    2005-09-30

    Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

  19. Coal reburning application on a Cyclone boiler

    SciTech Connect

    Maringo, G.J.; Yagiela, A.S.; Newell, R.J.; Farzan, H.

    1994-12-31

    Cyclone reburn involves the injection of a supplemental fuel (natural gas, oil or coal) into the main furnace of a Cyclone-fired boiler to produce locally reducing conditions which convert NO{sub x}, generated in the main combustion zone, to molecular nitrogen, thereby reducing overall NO{sub x} emissions. The world`s only application of the Cyclone reburn technology using pulverized coal as the reburn fuel was installed at Wisconsin Power & Light`s Nelson Dewey Generating Station, Unit 2. The project was selected for demonstration under the US Department of Energy`s Clean Coal Technology Demonstration Program, Round II.

  20. Flame spectral analysis for boiler control

    SciTech Connect

    Metcalfe, C.I.; Cole, W.E.; Batra, S.K.

    1987-09-01

    An instrument has been developed by Tecogen, Inc., to determine the combustion characteristics of individual burners in multiburner installations. The technology is based on measuring the emissions in the ultraviolet (uv) and infrared (ir) spectral range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and a Polaroid facility, and their performance has been evaluated. These instruments provide data relating to the variations in the ir and uv spectrum with a change in the combustion condition in individual burners. This paper describes the instrument's operation and these tests. 2 refs.

  1. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde. PMID:16053116

  2. Sulfur capture in combination bark boilers

    SciTech Connect

    Someshwar, A.V.; Jain, A.K. )

    1993-07-01

    A review of sulfur dioxide emission data for eight combination bark boilers in conjunction with the sulfur contents of the fuels reveals significant sulfur capture ranging from 10% to over 80% within the solid ash phase. Wood ash characteristics similar to activated carbon as well as the significant wood ash alkali oxide and carbonate fractions are believed responsible for the sulfur capture. Sulfur emissions from combination bark-fossil fuel firing are correlated to the sulfur input per ton of bark or wood residue fired.

  3. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler... designed, constructed, inspected, tested and stamped in accordance with the applicable provisions in this part. The design temperature of parts exposed to the exhaust gas must be the maximum temperature...

  4. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler... designed, constructed, inspected, tested and stamped in accordance with the applicable provisions in this part. The design temperature of parts exposed to the exhaust gas must be the maximum temperature...

  5. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler... designed, constructed, inspected, tested and stamped in accordance with the applicable provisions in this part. The design temperature of parts exposed to the exhaust gas must be the maximum temperature...

  6. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler... designed, constructed, inspected, tested and stamped in accordance with the applicable provisions in this part. The design temperature of parts exposed to the exhaust gas must be the maximum temperature...

  7. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler... designed, constructed, inspected, tested and stamped in accordance with the applicable provisions in this part. The design temperature of parts exposed to the exhaust gas must be the maximum temperature...

  8. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  9. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  10. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  11. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  12. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  13. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  14. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  15. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  16. TECHNOLOGY ASSESSMENT REPORT FOR INDUSTRIAL BOILER APPLICATIONS: SYNTHETIC FUELS

    EPA Science Inventory

    The report, part of a series to aid in determining the technological basis for New Source Performance Standards for Industrial Boilers, addresses the use of synthetic fuels produced from coal as a precombustion emission control for new industrial boilers. The synthetic fuels tech...

  17. 34. TOP O THE BOILER SHOWING CONSTRUCTION DETAILS. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. TOP O THE BOILER SHOWING CONSTRUCTION DETAILS. NOTE THE 1/2-INCH ROUND IRON REINFORCING ROD AND GALVANIZED FARM FENCING IN THE RIGHT FOREGROUND. AND THE EXPANDED METAL LATH WITH CEMENT COATING IN THE CEILING ABOVE THE BOILER. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  18. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  19. NOX EMISSION FACTORS FOR WOOD-FIRED BOILERS

    EPA Science Inventory

    The report gives results of a review of NOx emission data from 14 wood-fired boilers. Types of wood used as fuel included sawdust, chips, shavings, edgings, bark, and other processing residues. Boilers tested ranged in size from 1.5 to 67 MW (4,500 to 200,000 lb steam/hr). The ma...

  20. 18. Internal view of boiler in steam space above return ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Internal view of boiler in steam space above return flues, looking aft in ship toward return chamber. Inclined and vertical stays are used to reinforce flat boiler plates against distortion under pressure. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT