Science.gov

Sample records for 300mwe pwr npp

  1. Experience from the 300 MWe CFB Demontration Plant in China

    NASA Astrophysics Data System (ADS)

    Gauvillé, P.; Semedard, J.-C.; Darling, S.

    This paper will describe the background and current status of the 300MWe CFB Demonstration Project located at the Baima Power Plant in Sichuan Province. This project was the first 300MWe class CFB in China and the first project built under the Transfer of Technology from Alstom. The plant entered commercial operation in early 2006. The fuel is a high-ash anthracite which has presented significant challenges in terms of higher-than-expected ash content and top size. While this fuel has been problematic for the adjacent suspension-fired boilers, performance in the CFB boiler has been excellent, with low carbon content in the ash, low turndown and low emissions. Key boiler performance parameters will be described along with a comparison of design and actual performance and the operational experience will be addressed. Finally, the paper will describe Alstom's process for scaling the CFB technology from 300MWe to 600MWe, and our supercritical CFB design.

  2. Operation Experience and Performance of the First 300MWe CFB Boiler Developed by DBC in China

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Zheng, X. S.; Zhou, Q.; Nie, L.; Liu, T. S.; Hu, X. K.; Lu, J. F.

    In this paper, general layout, design, operational experience and performance of the first 300MWe circulating fluidized bed (CFB) boiler that developed by Dongfang Boiler Group Co., Ltd China, are introduced. The furnace was with large width-depth ratio. The problems occurred during in commissioning were analyzed and the corresponding modifications were presented. Cold-state experiment and operation experience showed that both fluidization quality and circulating flow rate meet the designated value in the frunace. The imbalance of circulating material flow caused by asymmetric layout of three cyclones was very limited. Heating surfaces were safe except wing wall superheater located in upper part of the furnace was overheated at low load. After commissioning, the boiler was correspondingly modified and its performance was excellent.

  3. The heat transfer coefficients of the heating surface of 300 MWe CFB boiler

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai

    2012-08-01

    A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.

  4. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    PubMed

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency. PMID:20429548

  5. Application of multifuel reburn for NOx control on a 300 MWe boiler in Ukraine. Report for October 1994--December 1995

    SciTech Connect

    Hall, R.E.; Miller, C.A.; Payne, R.; Yakushin, E.; Mospan, J.

    1996-01-01

    The paper gives results of a program to design two reburn systems for operation on 300 MWe, coal-fired utility boilers operating in Ukraine. One is a natural-gas-fired system designed by ABB Combustion Engineering, installed in September 1992, and continuing to operate with a 50 percent nitrogen oxides (NOx) reduction. The paper summarizes the natural gas reburn test results. Emphasis is placed on the second demonstration, a multifuel (natural gas, oil, and/or coal) reburn system for which a conceptual design has been completed by Energy and Environmental Research Corp. Engineering drawings are being prepared by the Karkov Design Bureau in Ukraine.

  6. NPP Launch

    NASA Video Gallery

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  7. NPP Prelaunch Webcast

    NASA Video Gallery

    The NPP Pre-Launch Webcast looks at NASA’s upcoming NPOESS Preparatory Project (NPP) mission. NPP represents a critical first step in building the next-generation of Earth-observing satellites. T...

  8. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect

    Wang, S.-J.; Chiang, K.-S.; Chiang, S.-C.

    2004-05-15

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  9. NPP: The Five Instruments

    NASA Video Gallery

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  10. NPP Beauty Pass Animation

    NASA Video Gallery

    An animator's conception shows the NPOESS Preparatory Project (NPP) satellite orbiting the earth and interpreting weather data through it's myriad sensors. The Satellite is part of a bridge mission...

  11. NPP and the Earth System

    NASA Video Gallery

    NPP is a continuation of the existing Earth-observing satellites and it builds on the legacy of multi decades of critical data. NPP will continue to deliver data to all users on Earth who will use ...

  12. Suomi Npp Products Performance

    NASA Astrophysics Data System (ADS)

    Zhou, L.

    2014-12-01

    A suite of Sensor Data Records (SDRs) and Environment Data Records (EDRs) is generated from the Joint Polar Satellite System (JPSS) operational environmental satellite system. The products include atmospheric, ocean, land surface and cryospheric products from the Visible Infrared Imaging Radiometer Suite (VIIRS); atmospheric sounding products from the Cross-track Infrared Sounder (CrIS) and the Advance Technology Microwave Sounder (ATMS); and ozone products from the Ozone Mapping and Profiler Suite (OMPS). These EDRs undergo a rigorous validation process and algorithm updates to achieve a product maturity needed for end user applications. Since the successful launch of Suomi National Polar Partnership (SNPP) satellite in October 2011, significant progresses have been made on calibration and validation of the SNPP data products. By far all products were publicly available and most products were ready for operational evaluation. Most products also are expected to meet requirements and work is underway to reach validated maturity status and fully operational use. Further developments and improvements of the algorithms for J1 have been planned based on the JPSS requirements and lessons learned from SNPP. Sensitivity and impact studies are performed as sensor test data become available. For the majority of data products, no significant changes in sensor input and corresponding sensor degradation are expected. However, the J1 products will undergo the same rigorous calibration and validation process as the S-NPP products once the on-orbit data are available. The schedule for the maturity of the J1 data products however is expected to be accelerated compared to that for S-NPP as lessons learned from the S-NPP mission will be applied to the J1 satellite data. In the presentation, we will provide an overview of the latest SNPP data products' quality status and the plan forward for JPSS-1 algorithm updates.

  13. Technology for NPP decantate treatment realized at Kola NPP

    SciTech Connect

    Stakhiv, Michael; Avezniyazov, Slava; Savkin, Alexander; Fedorov, Denis; Dmitriev, Sergei; Kornev, Vladimir

    2007-07-01

    At Moscow SIA 'Radon' jointly with JSC 'Alliance Gamma', the technology for NPP Decantate Treatment was developed, tested and realized at Kola NPP. This technology consists of dissolving the salt residue and subsequent treatment by ozonization, separation of the deposits formed from ozonization and selective cleaning by ferro-cyanide sorbents. The nonactive salt solution goes to an industrial waste disposal site or a repository specially developed at NPP sites for 'exempt waste' products by IAEA classification. This technology was realized at Kola NPP in December 2006 year. At this time more than 1000 m{sup 3} of decantates log time stored are treated. It allows solving very old problem to empty decantates' tanks at NPPs in environmentally safe manner and with high volume reduction factor. (authors)

  14. NPOESS Preparatory Project (NPP) Science Overview

    NASA Technical Reports Server (NTRS)

    Butler, James J.

    2011-01-01

    NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.

  15. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  16. NPP: Why Another Earth-Observing Satellite?

    NASA Video Gallery

    NPP will soon be NASA's newest Earth-observing satellite. To showcase how NPP will be used for both understanding the health of our planet now -- as well as how things might change in the future --...

  17. PWR fuel behavior: lessons learned from LOFT. [PWR

    SciTech Connect

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior.

  18. Analysis of a rod withdrawal in a PWR core with the neutronic- thermalhydraulic coupled code RELAP/PARCS and RELAP/VALKIN

    SciTech Connect

    Miro, R.; Maggini, F.; Barrachina, T.; Verdu, G.; Gomez, A.; Ortego, A.; Murillo, J. C.

    2006-07-01

    The Reactor Ejection Accident (REA) belongs to the Reactor Initiated Accidents (RIA) category of accidents and it is part of the licensing basis accident analyses required for pressure water reactors (PWR). The REA at hot zero power (HZP) is characterized by a single rod ejection from a core position with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main feature limiting the consequences of the accident in a PWR is the Doppler Effect. To check the performance of the coupled code RELAP5/PARCS2.5 and RELAP5/VALKIN a REA in Trillo NPP is simulated. These analyses will allow knowing more accurately the PWR real plant phenomenology in the RIA most limiting conditions. (authors)

  19. FEASIBILITY AND EXPEDIENCE TO VITRIFY NPP OPERATIONAL WASTE

    SciTech Connect

    LIFANOV, F.A.; OJOVAN, M.I.; STEFANOVSKY, S.V.; BURCL, R.

    2003-02-27

    Operational radioactive waste is generated during routine operation of NPP. Process waste is mainly generated by treatment of water from reactor or ancillaries including spent fuel storage pools and some decontamination operations. Typical process wastes of pressurized water reactors (PWR or WWER) are borated water concentrates, whereas typical process wastes of boiling and RBMK type reactors are water concentrates with no boron content. NPP operational wastes are classified as low and intermediate level waste (LILW). NPP operational waste must be solidified in order to ensure safe conditions of storage and disposal. Currently the most promising solidification method for this waste is the vitrification technology. Vitrification of NPP operational waste is a relative new option being developed for last years. Nevertheless there is already accumulated operational experience on vitrifying low and intermediate level waste in Russian Federation at Moscow SIA ''Radon'' vitrification plant. This plant uses the most advanced type induction high frequency melters that facilitate the melting process and significantly reduce the generation of secondary waste and henceforth the overall cost. The plant was put into operation by the end of 1999. It has three operating cold crucible melters with the overall capacity up to 75 kg/h. The vitrification technology comprises a few stages, starting with evaporation of excess water from liquid radioactive waste, followed by batch preparation, glass melting, and ending with vitrified waste blocks and some relative small amounts of secondary waste. First of all since the original waste contain as main component water, this water is removed from waste through evaporation. Then the remaining salt concentrate is mixed with necessary technological additives, thus a glass-forming batch is formed. The batch is fed into melters where the glass melting occurs. From here there are two streams: one is the glass melt containing the most part of

  20. Does climate directly influence NPP globally?

    PubMed

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. PMID:26442433

  1. Suomi NPP VIIRS Imagery evaluation

    NASA Astrophysics Data System (ADS)

    Hillger, Donald; Seaman, Curtis; Liang, Calvin; Miller, Steven; Lindsey, Daniel; Kopp, Thomas

    2014-06-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) combines the best aspects of both civilian and military heritage instrumentation. VIIRS has improved capabilities over its predecessors: a wider swath width and much higher spatial resolution at swath edge. The VIIRS day-night band (DNB) is sensitive to very low levels of visible light and is capable of detecting low clouds, land surface features, and sea ice at night, in addition to light emissions from both man-made and natural sources. Imagery from the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite has been in the checkout process since its launch on 28 October 2011. The ongoing evaluation of VIIRS Imagery helped resolve several imagery-related issues, including missing radiance measurements. In particular, near-constant contrast imagery, derived from the DNB, had a large number of issues to overcome, including numerous missing or blank-fill images and a stray light leakage problem that was only recently resolved via software fixes. In spite of various sensor issues, the VIIRS DNB has added tremendous operational and research value to Suomi NPP. Remarkably, it has been discovered to be sensitive enough to identify clouds even in very low light new moon conditions, using reflected light from the Earth's airglow layer. Impressive examples of the multispectral imaging capabilities are shown to demonstrate its applications for a wide range of operational users. Future members of the Joint Polar Satellite System constellation will also carry and extend the use of VIIRS. Imagery evaluation will continue with these satellites to ensure the quality of imagery for end users.

  2. Suomi NPP Ground System Performance

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Bergeron, C.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, was launched on 28 October 2011, and is currently undergoing product calibration and validation activities. As products reach a beta level of maturity, they are made available to the community through NOAA's Comprehensive Large Array-data Stewardship System (CLASS). CGS's data processing capability processes the satellite data from the Joint Polar Satellite System satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to NOAA and Department of Defense (DoD) processing centers operated by the United States government. CGS is currently processing and delivering SDRs and EDRs for Suomi NPP and will continue through the lifetime of the Joint Polar Satellite System programs. Following the launch and sensor activation phase of the Suomi NPP mission, full volume data traffic is now flowing from the satellite through CGS's C3, data processing, and data delivery systems. Ground system performance is critical for this operational system. As part of early system checkout, Raytheon measured all aspects of data acquisition, routing, processing, and delivery to ensure operational performance requirements are met, and will continue to be met throughout the mission. Raytheon developed a tool to measure, categorize, and

  3. NPP VIIRS Geometric Performance Status

    NASA Technical Reports Server (NTRS)

    Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro

    2011-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.

  4. NPP VIIRS geometric performance status

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro

    2011-10-01

    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.

  5. Changing NPP consumption patterns in the Holocene: from Megafauna "liberated" NPP to "ecological bankruptcy"

    NASA Astrophysics Data System (ADS)

    Doughty, C.

    2015-12-01

    There have been vast changes in how net primary production (NPP) is consumed by humans and animals during the Holocene beginning with a potential increase in availability following the Pleistocene megafauna extinctions. This was followed by the development of agriculture which began to gradually restrict availability of NPP for wild animals. Finally, humans entered the industrial era using non-plant based energies to power societies. Here I ask the following questions about these three energy transitions: 1. How much NPP energy may have become available following the megafauna extinctions? 2. When did humans, through agriculture and domestic animals, consume more NPP than wild mammals in each country? 3. When did humans and wild mammals use more energy than was available in total NPP in each country? To answer this last question I calculate NPP consumed by wild animals, crops, livestock, and energy use (all converted to units of MJ) and compare this with the total potential NPP (also in MJ) for each country. We develop the term "ecological bankruptcy" to refer to the level of consumption where not all energy needs can be met by the country's NPP. Currently, 82 countries and a net population of 5.4 billion are in the state of ecologically bankruptcy, crossing this threshold at various times over the past 40 years. By contrast, only 52 countries with a net population of 1.2 billion remain ecologically solvent. Overall, the Holocene has seen remarkable changes in consumption patterns of NPP, passing through three distinct phases. Humans began in a world where there was 1.6-4.1% unclaimed NPP to consume. From 1700-1850, humans began to consume more than wild animals (globally averaged). At present, >82% of people live in countries where not even all available plant matter could satisfy our energy demands.

  6. Simulator experiments: effects of NPP operator experience on performance

    SciTech Connect

    Beare, A.N.; Gray, L.H.

    1984-01-01

    During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE Boiling Water Reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of senior reactor operator (SRO) experience, operating crew augmentation with an STA and practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. Sixteen two-man crews of licensed operators were employed in a 2 x 2 factorial design. The SROs leading the crews were split into high and low experience groups on the basis of their years of experience as an SRO. One half of the high- and low-SRO experience groups were assisted by an STA. The crews responded to four simulated plant casualties. A five-variable set of content-referenced performance measures was derived from task analyses of the procedurally correct responses to the four casualties. System parameters and control manipulations were recorded by the computer controlling the simulator. Data on communications and procedure use were obtained from analysis of videotapes of the exercises. Questionnaires were used to collect subject biographical information and data on subjective workload during each simulated casualty. For four of the five performance measures, no significant differences were found between groups led by high (25 to 114 months) and low (1 to 17 months as an SRO) experience SROs. However, crews led by low experience SROs tended to have significantly shorter task performance times than crews led by high experience SROs. The presence of the STA had no significant effect on overall team performance in responding to the four simulated casualties. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator.

  7. NPP After Launch: Characterizing ATMS Performance

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn

    2011-01-01

    The NPOESS Preparatory Project (NPP) mission is scheduled to launch in the fall of 2011. Although several teams from the government and the instrument contractor will be assessing and characterizing the performance of the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) sounding suite, the NASA NPP Science Team will be paying particular attention to the aspects of these sensors that affect their utility for atmospheric and climate research. In this talk we discuss relevant aspects of ATMS and our post launch analysis approach.

  8. Horizontal Drop of 21- PWR Waste Package

    SciTech Connect

    A.K. Scheider

    2007-01-31

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  9. PWR secondary water chemistry guidelines: Revision 3. Final report

    SciTech Connect

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239).

  10. NPOESS Preparatory Project (NPP) Environmental Products

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Hughes, R.; Andreas, N. S.

    2010-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. Northrop Grumman Aerospace Systems Algorithms and Data Products (A&DP) organization is responsible for the algorithms that produce the EDRs, including their quality aspects. Given a launch date for the NPP spacecraft on the near horizon and the need for users to become familiar with NPP environmental products, this paper will provide an overview of all the products generated by the IDPS and provided to NOAA’s Comprehensive Large Array-data Stewardship System (CLASS) for public distribution. It will discuss each of the 25 NPP EDRs in detail, including a description of the EDR, its size, coverage, measurement range, and expected uses.

  11. Challenges for Lithuania: Ignalina NPP Early Closure

    SciTech Connect

    Teskeviciene, Birute

    2008-01-15

    As a condition of accession into the European Union (EU), Lithuania is committed to the closure and decommissioning of Ignalina NPP comprising two RBMK-1500 reactor units (Fig. 1). It was agreed in a special protocol to the Accession Treaty that, in return for adequate EU financial assistance, Unit 1 would be closed before 2005 and Unit 2 by the end of 2009. The first unit was duly shut down on December 31, 2004. Lithuania, which has borders with Russia (Kaliningrad territory), Poland, Latvia and Belarus, spent fifty years as part of the Soviet Union and was deeply integrated into its economy and electrical infrastructure. At the break-up of the USSR, Lithuania inherited electricity generating capacity designed to supply the north-west region including ownership of Ignalina NPP located in the north-east of the country. Ignalina NPP Unit 1 was commissioned in 1983, Unit 2 in 1987; the planned lifespan of each unit was 30 years. Construction of a third unit was started but never completed. Since Lithuania became independent in 1990, Ignalina NPP has typically contributed more than 70% of national power supply. The town of Visaginas (population approx. 30,000) was purpose built to serve the plant and staff were brought in from throughout the USSR. With 3200 direct employees, Ignalina NPP remains by far the largest employer. Although there are pockets of Russian-language speakers in communities throughout Lithuania, Visaginas is the only example on a whole-town scale. Thus closure of Ignalina NPP within the restricted timescale required by the EU Accession Treaty commitment set an exceptional challenge to Lithuania. However, since the preparatory phase of decommissioning started in 2000, notable progress has been made, experience gained and lessons learnt. At present Unit 1 remains partially fueled in a state of care and maintenance. Partly burnt fuel is being transferred from Unit 1 to Unit 2 for further irradiation in order to minimize the commitment of new fuel

  12. Zebra: An advanced PWR lattice code

    SciTech Connect

    Cao, L.; Wu, H.; Zheng, Y.

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  13. Development of the preliminary procedure for a national nuclear safety authority staff acting during the PWR NPP accident

    SciTech Connect

    Kostadinov, V.

    1997-12-01

    We present the development of the new preliminary procedure for a National Nuclear Safety Authority staff preparedness for action in the case of a Pressurized Water Reactor Nuclear Power Plant accident. The procedures are generic and equally applicable for advanced nuclear plants. The basic goal of the procedure is systematic determination of the responsibilities of the staff expert group(s) members for accident analysis and consequences prediction. Moreover, the procedure describes anticipated practices of an expert group acting during a plant accident. Different sources will define the state(s) of the plant as: the plant form for initial notification of an accident, the particular form for specific plant information, etc. By this procedure we propose three expert groups successively to work up to eight hours each, in the circumstances of an accident. We suppose the expert group to have mostly five members each. The members should have different tasks for resolution, defined by the procedure. The head of the group will coordinate group members work during an accident. Group members have to be qualified and acquainted with all adequate references. In the paper we present a newly devised agenda with presumed duties of each member of the group. Furthermore, we also composed a special form for information exchange between the utility and regulatory staff member during an accident. 8 refs., 1 fig.

  14. Post-PKS Tailoring Steps of a Disaccharide-Containing Polyene NPP in Pseudonocardia autotrophica

    PubMed Central

    Kim, Hye-Jin; Kim, Min-Kyung; Lee, Mi-Jin; Won, Hyung-Jin; Choi, Si-Sun; Kim, Eung-Soo

    2015-01-01

    A novel polyene compound NPP identified in a rare actinomycetes, Pseudonocardia autotrophica KCTC9441, was shown to contain an aglycone identical to nystatin but to harbor a unique di-sugar moiety, mycosaminyl-(α1-4)-N-acetyl-glucosamine, which led to higher solubility and reduced hemolytic activity. Although the nppDI was proved to be responsible for the transfer of first polyene sugar, mycosamine in NPP biosynthesis, the gene responsible for the second sugar extending glycosyltransferase (GT) as well as NPP post-PKS tailoring mechanism remained unknown. Here, we identified a NPP-specific second sugar extending GT gene named nppY, located at the edge of the NPP biosynthetic gene cluster. Targeted nppY gene deletion and its complementation proved that nppY is indeed responsible for the transfer of second sugar, N-acetyl-glucosamine in NPP biosynthesis. Site-directed mutagenesis on nppY also revealed several amino acid residues critical for NppY GT function. Moreover, a combination of deletions and complementations of two GT genes (nppDI and nppY) and one P450 hydroxylase gene (nppL) involved in the NPP post-PKS biosynthesis revealed that NPP aglycone is sequentially modified by the two different GTs encoded by nppDI and nppY, respectively, followed by the nppL-driven regio-specific hydroxylation at the NPP C10 position. These results set the stage for the biotechnological application of sugar diversification for the biosynthesis of novel polyene compounds in actinomycetes. PMID:25849545

  15. [Plutonium at the ecosystems of impact zone the Beloyarsk NPP].

    PubMed

    Mikhaĭlovskaia, L N; Molchanova, I V; Karavaeva, E N

    2007-01-01

    The distribution of the plutonium at the ecosystems of impact zone the Beloyarsk NPP was studied. Higher quantity of Pu (to 500 Bq/m2) was revealed in the bottom sediments of the Olkhovsk bog where low-level radioactive water of the Beloyarsk NPP have been discharged. The total amount of the radionuclide in a soil cover did not exceed 140 Bq/m2. The contribution of the Beloyarsk NPP to contamination of the investigated ecosystems was accounted with using ratio 238Pu/239.240Pu. It was 64.1-99.3% both in the bottom sediments and soils. PMID:17953434

  16. N-16 monitors: Almaraz NPP experience

    SciTech Connect

    Adrada, J.

    1997-02-01

    Almaraz Nuclear Power Plant has installed N-16 monitors - one per steam generator - to control the leakage rate through the steam generator tubes after the application of leak before break (LBB) criteria for the top tube sheet (TTS). After several years of operation with the N-16 monitors, Almaraz NPP experience may be summarized as follows: N-16 monitors are very useful to follow the steam generator leak rate trend and to detect an incipient tube rupture; but they do not provide an exact absolute leak rate value, mainly when there are small leaks. The evolution of the measured N-16 leak rates varies along the fuel cycle, with the same trend for the 3 steam generators. This behaviour is associated with the primary water chemistry evolution along the cycle.

  17. Environmental Impact Assessment (EIA) Process of V1 NPP Decommissioning

    SciTech Connect

    Matejovic, Igor; Polak, Vincent

    2007-07-01

    Through the adoption of Governmental Resolution No. 801/99 the Slovak Republic undertook a commitment to shutdown units 1 and 2 of Jaslovske Bohunice V 1 NPP (WWER 230 reactor type) in 2006 and 2008 respectively. Therefore the more intensive preparation of a decommissioning documentation has been commenced. Namely, the VI NPP Conceptual Decommissioning Plan and subsequently the Environmental Impact Assessment Report of VI NPP Decommissioning were developed. Thus, the standard environmental impact assessment process was performed and the most suitable alternative of V1 NPP decommissioning was selected as a basis for development of further decommissioning documents. The status and main results of the environmental impact assessment process and EIA report are discussed in more detail in this paper. (authors)

  18. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  19. Interannual Variability in FPAR and NPP across California's Ecosystems

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Goulden, M. L.; Randerson, J. T.

    2005-12-01

    Quantifying the response of ecosystems to climate is particularly important for understanding California's regional carbon budget because of large year-to-year changes in precipitation and because of large changes in temperature and precipitation that are predicted to occur across the western U.S. during the 21st century. Here, we examined how net primary production (NPP) varies with precipitation and how this ecosystem process contributes to the changes in carbon storage on interannual timescales. We used FPAR derived from NOAA AVHRR satellite observations during 1982-2003 and from MODIS observations during 2000-2005 as inputs to the CASA biogeochemical model. We found that mean annual integrals of NDVI, FPAR, and NPP were closely linked with mean annual precipitation levels across the state. The sensitivity of NPP to interannual variability in precipitation depended on ecosystem type. Desert shrub and grassland ecosystems responded the most to interannual changes in precipitation, whereas forests showed little or no response. In semiarid ecosystems, the site-level temporal sensitivity of NPP to variations in precipitation was found to be lower than the sensitivity of NPP to precipitation derived from a spatial model, suggesting that other constraints such as plant structure or nitrogen availability may limit NPP responses to short-term precipitation transients.

  20. Influence Of Low Boron Core Design On PWR Transient Behavior

    SciTech Connect

    Aleksandrov Papukchiev, Angel; Yubo Liu; Schaefer, Anselm

    2006-07-01

    In conventional pressurized water reactor (PWR) designs, the concentration of boron in primary coolant is limited by the requirement of having a negative moderator density coefficient. As high boron concentrations have significant impact on reactivity feedback properties, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In the framework of an investigation into the feasibility of low boron design, a PWR core configuration based on fuel with higher gadolinium (Gd) content has been developed which permits to reduce the natural boron concentration at begin of cycle (BOC) by approx. 50% compared to current German PWR technology. For the assessment of the potential safety advantages, a Loss-of-Feedwater Anticipated Transient Without Scram (ATWS LOFW) has been simulated with the system code ATHLET for two PWR core designs: a low boron design and a standard core design. The most significant difference in the transient performance of both designs is the total primary fluid mass released through the pressurizer (PRZ) valves. It is reduced by a factor of four for the low boron reactor, indicating its improved density reactivity feedback. (authors)

  1. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    This report discusses research conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PF1/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design burnup. Using peaking factors commensurate with actual burnups would result in longer intervals for both reactor designs. This document provides appendices K and L of this report which provide plots for the timing analysis of PWR fuel pin failures for Oconee and Seabrook respectively.

  2. Fire Risk Analysis for Armenian NPP Confinement

    SciTech Connect

    Poghosyan, Shahen; Malkhasyan, Albert; Bznuni, Surik; Amirjanyan, Armen

    2006-07-01

    Major fire occurred at Armenian NPP (ANPP) in October 1982 showed that fire-induced initiating events (IE) can have dominant contribution in overall risk of core damage. Probabilistic Safety Assessment study for fire-induced initiating events for ANPP was initiated in 2002. Analysis was performed for compartments fires in which could result in failure of components which are necessary for reactor cold shutdown. Analysis shows that main risk from fire at ANPP is conditioned by fire in cable tunnels 61-64. Meanwhile fire in confinement compartments don't have significant contribution to overall risk of core damage. The exception is so called 'confinement valves compartment' (room no.A-013/2) fire (more than 7.5% of CDF) in which fire could result in the loss of coolant accident with unavailability of primary makeup system, which directly leads to core damage. Detailed analysis of this problem that is common for typical WWER-440/230 reactors with no hermetic MCPs and recommendations for solution are presented in this paper. (authors)

  3. Lessons learnt from Ignalina NPP decommissioning project

    SciTech Connect

    NAISSE, Jean-Claude

    2007-07-01

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  4. Moisture Separator Reheater for NPP Turbines

    NASA Astrophysics Data System (ADS)

    Manabe, Jun; Kasahara, Jiro

    This paper introduces the development of the current model Moisture Separator Reheater (MSR) for nuclear power plant (NPP) turbines, commercially placed in service in the period 1984-1997, focusing on the mist separation performance of the MSR along with drainage from heat exchanger tubes. A method of predicting the mist separation performance was devised first based on the observation of mist separation behaviors under an air-water test. Then the method was developed for the application to predict under the steam conditions, followed by the verification in comparison with the actual results of a steam condition test. The instability of tube drainage associated with both sub-cooling and temperature oscillation might adversely affect the seal welding of tubes to tube sheet due to thermal fatigue. The instability was measured on an existing unit to clarify behaviors and the development of a method to suppress them. Both methods were applied to newly constructed units and the effectiveness of the methods was demonstrated.

  5. Leak before break application in French PWR plants under operation

    SciTech Connect

    Faidy, C.

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  6. Sensitivity of risk parameters to human errors for a PWR

    SciTech Connect

    Samanta, P.; Hall, R. E.; Kerr, W.

    1980-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study.

  7. Enriched boric acid for PWR application: Cost evaluation study for a twin-unit PWR

    SciTech Connect

    Battaglia, J.A.; Waters, R.M.; von Hollen, J.M.; Lamatia, L.A.; Bergmann, C.A.; Ditommaso, S.M. . Nuclear and Advanced Technology Div.)

    1989-09-01

    In the nuclear industry boric acid dissolved in the reactor coolant is used as a soluble reactivity control agent. Reactivity control in nuclear plants is also provided by neutron absorbing control rods. This neutron absorbing duty is distributed between the control rods and soluble boric acid in such a way as to provide the most economical split. Typically, the control rods take care of rapid reactivity changes and the boric acid handles the slower long term control of reactivity by varying the boric acid concentrations within the reactor coolant. In PWR reactor plants the dissolved boric acid is referred to as a soluble poison or chemical shim due to the high capacity for thermal neutron capture exhibited by the boron-10 isotope contained in the boric acid molecule. This slow reactivity change or chemical shim control would otherwise have to be performed using control rods, a much more expensive proposition. Reactivity changes are controlled by the B-10 isotope by virtue of its very high cross section (3837 barns) for thermal neutron absorption. However, natural boron contains only 20 atom percent of the B-10 isotope and essentially all the remaining 80 percent as the B-11 isotope. The B-11 isotope of cross section .005 barns is essentially of no use as a neutron absorber. Since B-11 makes up the bulk of the total boron present and contributes little to the nuclear operation it would seem logical to eliminate this isotope of boron from the boric acid molecule. In so doing boric acid concentration in operating PWR plants need only be a fraction of that existing to accomplish identical nuclear operations. However, to achieve the elimination of B-11 from NBA (Natural Boric Acid) an isotope separation must be performed. 4 refs., 25 figs., 17 tabs.

  8. Method of characteristics - Based sensitivity calculations for international PWR benchmark

    SciTech Connect

    Suslov, I. R.; Tormyshev, I. V.; Komlev, O. G.

    2013-07-01

    Method to calculate sensitivity of fractional-linear neutron flux functionals to transport equation coefficients is proposed. Implementation of the method on the basis of MOC code MCCG3D is developed. Sensitivity calculations for fission intensity for international PWR benchmark are performed. (authors)

  9. Comparison of Removed Fuel Compositions of CANDLE, PWR, and FBR

    SciTech Connect

    Nagata, Akito; Sekimoto, Hiroshi

    2007-07-01

    A new reactor burnup strategy CANDLE was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replaced fresh fuels. About 40% of natural or depleted uranium undergoes fission. In this paper, spent fuels of PWR, FBR and CANDLE reactor are compared. Fresh fuels of PWR, FBR and CANDLE reactor are 4.1% enriched uranium (UO{sub 2}), MOX with 18.5% plutonium enrichment and natural uranium nitride (natural-UN), respectively. In once-through fuel cycle point of view, low disposal amount for high energy is better and CANDLE reactor can decrease this amount more than other reactors, especially it is only one-tenth of PWR fuel. Also, it can decrease MA and this amount is 0.4 times of PWR. Total FP amount of each reactor is nearly same. However, LLFP amount of CANDLE reactor is the largest. (authors)

  10. Modeling and statistical analysis of feedback between NPP (MODIS NPP) and temperature for forest area Yenisei River

    NASA Astrophysics Data System (ADS)

    Kukoba, Nikolay; Ivanova, Yulia; Saltykov, Mikhail

    Assimilation of carbon by green plants or net primary production (NPP) is one of the most important processes. It provide qualitative and quantitative estimates of the events occurring in the biosphere. Carbon assimilated by plants is used by them to increase their biomass and is a main process of food chains on Earth. NPP is highly variable in time and space. It may depend on physical factors such as temperature, humidity and concentration of nutrients in the soil, etc. And also depends on the types of vegetation (woody, herbaceous, coniferous, and deciduous, etc.). In this regard, it is very important to understand what kind of climate factor is a limiting factor of NPP in the given time and place. For this aim a statistical analysis of the feedback between NPP (MODIS NPP) and the temperature of the forest zone Yenisey River has been performed. We used the time series of NPP for studied territory between 2000 and 2012. The time series of temperature were calculated using the data from the satellite measurements (MODISTERRA) and the global network of weather stations. The considered territory is situated in the Yenisey River basin with diverse natural landscapes - from forest-tundra in the North to alpine meadows in the West Sayan Mountains in the South. This territory extends along the Yenisey River from north to south for about 2000 km. Plains and mountainous areas have been investigated separately. Mountain forests are located in the West Sayan and altitudinal zonation varies from 500 to 2000 m a.s.l. In order to investigate the causal relationships between temperature and NPP we applied the method of Convergent Cross-Mapping (CCM) (Sugihara et al., Science. 2012. V. 338. P. 496-500). This method in some case allows to determine what is a reason and what is consequence, that cannot be definded by simple correlation. It has been shown that the best results are obtained for the 8 -day composite satellite data during the growing season (MOD17A2, MOD11A2). By means

  11. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  12. Multi-scale evaluation of ISIMIP biome models against NDVI and MODIS NPP data

    NASA Astrophysics Data System (ADS)

    Rafique, Rashad; Zhao, Fang; Zeng, Ning; Asrar, Ghassem; Reyer, Christopher; Ostberg, Sebastian; Francois, Louis; Tian, Hanqin; Chnag, Jinfeng; Nishina, Kazuya

    2016-04-01

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. The global NPP, highly variable over space and time, cannot be directly observed, therefore, satellite based observations of Normalized Difference Vegetation Index (NDVI) are used as a proxy to understand and monitor the NPP dynamics. In this study, we used a combination of most recent NDVI and modeled NPP data for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that in general there is good agreement between the spatial patterns and global seasonal cycles between observed NDVI and modeled NPP values. Simulated NPP values also generally agree with MODIS NPP spatially, and temporally, MODIS NPP falls within the model spread of NPP values. Despite of the general agreement in the trends of global total NDVI, MODIS NPP and modeled NPP, considerable spatial differences are found, and the ensemble mean of the models often agrees better with the spatial patterns of observed NDVI and MODIS NPP than individual models.

  13. Suomi NPP VIIRS Ocean Color Data Product Early Mission Assessment

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Robinson, Wayne D.; Franz, Bryan A.; Eplee, Robert E., Jr.; Meister, Gerhard; Fireman, Gwyn F.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.

    2013-01-01

    Following the launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (NPP) spacecraft, the NASA NPP VIIRS Ocean Science Team (VOST) began an evaluation of ocean color data products to determine whether they could continue the existing NASA ocean color climate data record (CDR). The VOST developed an independent evaluation product based on NASA algorithms with a reprocessing capability. Here we present a preliminary assessment of both the operational ocean color data products and the NASA evaluation data products regarding their applicability to NASA science objectives.

  14. NPOESS Preparatory Project (NPP) Environmental Products

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Smith, D. C.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both POES and the Defense Meteorological Satellite Program (DMSP) replacement, known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The Joint Polar Satellite System satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for the Joint Polar Satellite System is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS). Both are developed by Raytheon Intelligence and Information Systems (IIS). The Interface Data Processing Segment will process Joint Polar Satellite System and Defense Weather Satellite System satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to the National Oceanic and Atmospheric Administration and Department of Defense processing centers operated by the United States government. The Interface Data Processing Segment will process Environmental Data Records beginning with the NPOESS Preparatory Project (NPP) and continue through the lifetime of the Joint Polar Satellite System and Defense Weather Satellite System programs. Under the National Polar-orbiting Operational Environmental

  15. Radioactive Spent Ion-Exchange Resins Conditioning by the Hot Supercompaction Process at Tihange NPP - Early Experience - 12200

    SciTech Connect

    Braet, Johan; Charpentier, David; Centner, Baudouin; Vanderperre, Serge

    2012-07-01

    Spent ion-exchange resins are considered to be problematic waste that, in many cases, requires special approaches and precautions during their conditioning to meet the acceptance criteria for disposal. In Belgium, for economical reasons, the Volume Reduction Factor is a key criterion. After Tractebel Engineering performed a technical and economical comparison of the industrially available systems, Tihange NPP decided to install a spent ion-exchange resins hot supercompaction unit with Tractebel Engineering in the role of architect-engineer. The treatment and conditioning unit processes the spent ion-exchange resins through the following steps: dewatering of the resins, drying the resins under deep vacuum, discharging the dried resins into compactable drums, super-compacting the drums to generate pellets, grouting the pellets into standard 400 litres waste drums (overpacks) licensed for final disposal in the near-surface repository in Belgium. Several developments were required to adapt the reference process and equipment to PWR spent ion-exchange bead resins and Belgian radioactive waste acceptance criteria. In order to avoid cracks on the compacted drum, and external surface contamination from resin leaks, some improvements were achieved to minimize spring-back as well as the risk of cracking the drum wall. Placing the compactable drum inside a second, slightly larger drum, guarantees clean and reproducible pellets. Currently the commissioning phase is on-going. Numerous process validation tests have been completed. An acceptance file was transmitted to the Belgian Waste Management Authority recently. This will be followed by demonstration tests necessary to obtain their final acceptance of the installation. More than 3 800 drums of mixed powdered and bead resins have been processed by the reference Hot Compaction process, achieving a Volume Reduction Factor (VRF) of 2.5. The equipment has been proven to be a reliable technology with low operation and maintenance

  16. The Chernobyl NPP decommissioning: Current status and alternatives

    SciTech Connect

    Mikolaitchouk, H.; Steinberg, N.

    1996-08-01

    After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations.

  17. Software to Compare NPP HDF5 Data Files

    NASA Technical Reports Server (NTRS)

    Wiegand, Chiu P.; LeMoigne-Stewart, Jacqueline; Ruley, LaMont T.

    2013-01-01

    This software was developed for the NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project (NPP) Science Data Segment. The purpose of this software is to compare HDF5 (Hierarchical Data Format) files specific to NPP and report whether the HDF5 files are identical. If the HDF5 files are different, users have the option of printing out the list of differences in the HDF5 data files. The user provides paths to two directories containing a list of HDF5 files to compare. The tool would select matching HDF5 file names from the two directories and run the comparison on each file. The user can also select from three levels of detail. Level 0 is the basic level, which simply states whether the files match or not. Level 1 is the intermediate level, which lists the differences between the files. Level 2 lists all the details regarding the comparison, such as which objects were compared, and how and where they are different. The HDF5 tool is written specifically for the NPP project. As such, it ignores certain attributes (such as creation_date, creation_ time, etc.) in the HDF5 files. This is because even though two HDF5 files could represent exactly the same granule, if they are created at different times, the creation date and time would be different. This tool is smart enough to ignore differences that are not relevant to NPP users.

  18. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  19. Nonhydrolyzable ATP analogues as selective inhibitors of human NPP1: a combined computational/experimental study.

    PubMed

    Lecka, Joanna; Ben-David, Gal; Simhaev, Luba; Eliahu, Shay; Oscar, Jocelyn; Luyindula, Patrick; Pelletier, Julie; Fischer, Bilha; Senderowitz, Hanoch; Sévigny, Jean

    2013-11-14

    Elevated nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is implicated in health disorders including pathological calcification. Specific NPP1 inhibitors would therefore be valuable for studying this enzyme and as potential therapeutic agents. Here we present a combined computational/experimental study characterizing 13 nonhydrolyzable ATP analogues as selective human NPP1 inhibitors. All analogues at 100 μM inhibited (66-99%) the hydrolysis of pnp-TMP by both recombinant NPP1 and cell surface NPP1 activity of osteocarcinoma (HTB-85) cells. These analogues only slightly altered the activity of other ectonucleotidases, NPP3 and NTPDases. The Ki,app values of the seven most potent and selective inhibitors were in the range of 0.5-56 μM, all with mixed type inhibition, predominantly competitive. Those molecules were docked into a newly developed homology model of human NPP1. All adopted ATP-like binding modes, suggesting competitive inhibition with the endogenous ligand. NPP1 selectivity versus NPP3 could be explained in terms of the electrostatic potential of the two proteins that of NPP1 favoring negatively charged ligands. Inhibitor 2 that had the lowest Ki,app (0.5 μM) was also inactive toward P2Y receptors. Overall, analogue 2 is the most potent and selective NPP1 inhibitor described so far. PMID:24083941

  20. Robotic inspection of PWR coolant pump casing welds

    SciTech Connect

    Pratt, W.R.; Alford, J.W.; Davis, J.B.

    1997-12-01

    As of January 1, 1995, the Swedish Nuclear Inspectorate began requiring more thorough inspections of cast stainless-steel components in nuclear power plants, including pressurized water reactor (PWR) reactor coolant pump (RCP) casings. The examination requirements are established by fracture mechanics analyses of component weldments and demonstrated test system detection capabilities. This may include full volumetric inspection or some portion thereof. Ringhals station is a four-unit nuclear power plant, owned and operated by the Swedish State Power Board, Vattenfall. Unit 1 is a boiling water reactor. Units 2, 3, and 4 are Westinghouse-designed PWRs, ranging in size from 795 to 925 MW. The RCP casings at the PWR units are made of cast stainless steel and contain four circumferential welds that require inspection. Due to the thickness of the casings at the weld locations and configuration and surface conditions on the outside diameter of the casings, remote inspection from the inside diameter of the pump casing was mandated.

  1. Design study of long-life PWR using thorium cycle

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-01

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that 231Pa better than 237Np as burnable poisons in thorium fuel system. Thorium oxide system with 8% 233U enrichment and 7.6˜ 8% 231Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1% Δk/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53% Δk/k and reduced power peaking during its operation.

  2. Design study of long-life PWR using thorium cycle

    SciTech Connect

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  3. PWR Cross Section Libraries for ORIGEN-ARP

    SciTech Connect

    McGraw, Carolyn; Ilas, Germina

    2012-01-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% 235U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time.

  4. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    NASA Astrophysics Data System (ADS)

    Thiollay, Nicolas; Di Salvo, Jacques; Sandrin, Charlotte; Soldevila, Michel; Bourganel, Stéphane; Fausser, Clément; Destouches, Christophe; Blaise, Patrick; Domergue, Christophe; Philibert, Hervé; Bonora, Jonathan; Gruel, Adrien; Geslot, Benoit; Lamirand, Vincent; Pepino, Alexandra; Roche, Alain; Méplan, Olivier; Ramdhane, Mourad

    2016-02-01

    FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10-2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006-2007 in a geometry representative of 1300 MWe PWR.

  5. Mapping and analysing cropland use intensity from a NPP perspective

    NASA Astrophysics Data System (ADS)

    Niedertscheider, Maria; Kastner, Thomas; Fetzel, Tamara; Haberl, Helmut; Kroisleitner, Christine; Plutzar, Christoph; Erb, Karl-Heinz

    2016-01-01

    Meeting expected surges in global biomass demand while protecting pristine ecosystems likely requires intensification of current croplands. Yet many uncertainties relate to the potentials for cropland intensification, mainly because conceptualizing and measuring land use intensity is intricate, particularly at the global scale. We present a spatially explicit analysis of global cropland use intensity, following an ecological energy flow perspective. We analyze (a) changes of net primary production (NPP) from the potential system (i.e. assuming undisturbed vegetation) to croplands around 2000 and relate these changes to (b) inputs of (N) fertilizer and irrigation and (c) to biomass outputs, allowing for a three dimensional focus on intensification. Globally the actual NPP of croplands, expressed as per cent of their potential NPP (NPPact%), amounts to 77%. A mix of socio-economic and natural factors explains the high spatial variation which ranges from 22.6% to 416.0% within the inner 95 percentiles. NPPact% is well below NPPpot in many developing, (Sub-) Tropical regions, while it massively surpasses NPPpot on irrigated drylands and in many industrialized temperate regions. The interrelations of NPP losses (i.e. the difference between NPPact and NPPpot), agricultural inputs and biomass harvest differ substantially between biogeographical regions. Maintaining NPPpot was particularly N-intensive in forest biomes, as compared to cropland in natural grassland biomes. However, much higher levels of biomass harvest occur in forest biomes. We show that fertilization loads correlate with NPPact% linearly, but the relation gets increasingly blurred beyond a level of 125 kgN ha-1. Thus, large potentials exist to improve N-efficiency at the global scale, as only 10% of global croplands are above this level. Reallocating surplus N could substantially reduce NPP losses by up to 80% below current levels and at the same time increase biomass harvest by almost 30%. However, we

  6. Performance of the NPP CrIS Sensor

    NASA Astrophysics Data System (ADS)

    Emch, P. G.; Farrow, S. V.; Gu, D.; Wang, C.; Hagan, D. E.; Sabet-Peyman, F.

    2009-12-01

    This paper discusses the performance of the first Cross-track Infrared Sounder (CrIS) flight instrument and its data product performance. Together with ATMS, the CrIS sensor is a critical payload for National Polar-orbiting Operational Environmental Satellite System (NPOESS) providing temperature and moisture profiles, and will first fly on the NPOESS Preparatory Project (NPP) mission, the risk reduction flight for NPOESS. NPOESS is the next generation weather and climate monitoring system for the Department of Defense and National Oceanic and Atmospheric Administration (NOAA), being developed under contract by Northrop Grumman Aerospace Systems. The NPP flight sensor has recently completed thermal vacuum, electro-magnetic interference, and vibration testing. By the time of the presentation, the sensor sell-off is expected to have been completed as well. An overview of the sensor, the FM1 measurement performance, and details of the retrieval algorithms will be provided in this presentation.

  7. Novel technology for hydrothermal treatment of NPP evaporator concentrates

    SciTech Connect

    Avramenko, Valentin; Dobrzhansky, Vitaly; Marinin, Dmitry; Sergienko, Valentin; Shmatko, Sergey

    2007-07-01

    A novel technology was developed for treatment of evaporator concentrates produced as a result of operation of evaporation devices comprising the main component of special water purification systems of nuclear power plants (NPP). The developed technology includes a hydrothermal (T=250-300 deg. C and P=80-120 bar) processing of evaporator concentrates in oxidation medium in order to destruct stable organic complexes of cobalt radionuclides and remove these radionuclides by oxide materials formed during such a processing. The cesium radionuclides contained in evaporator concentrates are removed by a conventional method-through application of one of the developed composite sorbents with ferrocyanides of transition metals used as active agents. Extensive laboratory studies of the processes occurring in evaporator concentrates under hydrothermal conditions were performed. It was shown that hydrothermal oxidation of evaporator concentrates has a number of advantages as compared to traditional oxidation methods (ozonization, photo-catalytic, electrochemical and plasma oxidation). A laboratory installation was built for the flow-type hydrothermal oxidation of NPP evaporator concentrates. The obtained experimental results showed good prospects for the developed method application. On the basis of the results obtained, a pilot installation of productivity up to 15 l/hour was developed and built in order to work out the technology of evaporator concentrates hydrothermal treatment. The pilot tests of the hydrothermal technology for evaporator concentrates hydrothermal treatment were performed for 6 months in 2006 at the 1. reactor unit of the Novovoronezhskaya NPP (Voronezh Region, Russia). Optimal technological regimes were determined, and estimations of the economic soundness of the technology were made. The advantages of the presented technology in terms of management of concentrated liquid radioactive wastes (LRW) at nuclear cycle facilities, as compared to other methods

  8. Radioecological Investigations of the Area around the Belene NPP

    SciTech Connect

    Hristov, Hr.; Balabanov, N.; Marinova, S.; Zaprianova, P.; Nedeva, P.; Blagoeva, E.; Philipov, M.; Gustova, M.; Maslov, O.

    2010-01-21

    The report presents the results from research of contents of U and Th in soil samples from the region of the Belene Nuclear Power Plant (NPP). The report presents the investigations for sorption of U in the system soil-water from region. The report presents similarly the results for the natural radiation background--about 0,14 muSv/h, for the investigated region.

  9. Modular vault dry storage at Paks NPP technology and experience

    SciTech Connect

    Bower, C.C.F.; Szabo, B.

    1995-12-31

    Paks NPP in Hungary, with its four VVER440 reactors, generates 50% of Hungary`s electricity. In 1990, it was faced with an uncertain future due to the changing political situation in Eastern Europe. The fuel storage ponds were rapidly filling up, with no secure route for disposal. The paper outlines the Paks approach to resolving the problem and the background to its chosen solution, concluding with a review of the experience of other applications of the system.

  10. Preparation for Early Termination of Ignalina NPP Operation

    SciTech Connect

    Poskas, P.; Poskas, R.

    2003-02-26

    Seimas (Parliament of Lithuania) approved updated National Energy strategy where it is indicated that first Unit will be shutdown before the year 2005 and second Unit in 2009 if funding for decommissioning is available from EU and other donors. In accordance to Ignalina NPP Unit 1 Closure Law the Government of Lithuania approved the Ignalina NPP Unit 1 Decommissioning Program until year 2005. For enforcement of this program, the plan of measures for implementation of the program was prepared and approved by the Minister of Economy. The plan consists of two parts, namely technical- environmental and social-economic. Technical-environmental measures are mostly oriented to the safe management of spent nuclear fuel and operational radioactive waste stored at the plant and preparation of licensing documents for Unit 1 decommissioning. Social-economic measures are oriented to mitigate negative social and economic impact on Lithuania, inhabitants of the region, and, particularly, o n the staff of Ignalina NPP by means of creating favorable conditions for a balanced social and economic development of the region. In this paper analysis of planned activities, licensing requirements for decommissioning, progress in preparation of the Final Decommissioning Plan is discussed.

  11. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    SciTech Connect

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in

  12. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    Energy Science and Technology Software Center (ESTSC)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These maymore » be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section

  13. 21-PWR WASTE PACKAGE WITH ABSORBER PLATES LOADING CURVE EVALUATION

    SciTech Connect

    J.M. Scaglione

    2004-12-17

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of spent nuclear fuel into the 21 PWR waste package with absorber plates design as provided in Attachment IV. This calculation is an example of the application of the methodology presented in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent U-235, and a burnup range of 0 through 45 GWd/MTU. Higher burnups were not necessary because 45 GWd/MTU was high enough for the loading curve determination. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing PWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials. This calculation is subject to the ''Quality Assurance Requirements and Description'' (QARD) (DOE 2004) because it concerns engineered barriers that are included in the ''Q-List'' (BSC 2004k, Appendix A) as items important to safety and waste isolation.

  14. Integrating the Clearance in NPP Residual Material Management

    SciTech Connect

    Garcia-Bermejo, R.; Lamela, B.

    2008-01-15

    Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could

  15. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes

    USGS Publications Warehouse

    Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; McGuire, A.D.

    1999-01-01

    Annual and seasonal net primary productivity estimates (NPP) of 15 global models across latitudinal zones and biomes are compared. The models simulated NPP for contemporary climate using common, spatially explicit data sets for climate, soil texture, and normalized difference vegetation index (NDVI). Differences among NPP estimates varied over space and time. The largest differences occur during the summer months in boreal forests (50??to 60??N) and during the dry seasons of tropical evergreen forests. Differences in NPP estimates are related to model assumptions about vegetation structure, model parameterizations, and input data sets.

  16. RIA Limits Based On Commercial PWR Core Response To RIA

    SciTech Connect

    Beard, Charles L.; Mitchell, David B.; Slagle, William H.

    2006-07-01

    Reactivity insertion accident (RIA) limits have been under intense review by regulators since 1993 with respect to what should be the proper limit as a function of burnup. Some national regulators have imposed new lower limits while in the United States the limits are still under review. The data being evaluated with respect to RIA limits come from specialized test reactors. However, the use of test reactor data needs to be balanced against the response of a commercial PWR core in setting reasonable limits to insure the health and safety of the public without unnecessary restrictions on core design and operation. The energy deposition limits for a RIA were set in the 1970's based on testing in CDC (SPERT), TREAT, PBF and NSRR test reactors. The US limits given in radially averaged enthalpy are 170 cal/gm for fuel cladding failure and 280 cal/gm for coolability. Testing conducted in the 1990's in the CABRI, NSRR and IGR test reactors have demonstrated that the cladding failure threshold is reduced with burnup, with the primary impact due to hydrogen pickup for in-reactor corrosion. Based on a review of this data very low enthalpy limits have been proposed. In reviewing proposed limits from RIL-0401(1) it was observed that much of the data used to anchor the low allowable energy deposition levels was from recent NSRR tests which do not represent commercial PWR reactor conditions. The particular characteristics of the NSRR test compared to commercial PWR reactor characteristics are: - Short pulse width: 4.5 ms vs > 8 ms; - Low temperature conditions: < 100 deg. F vs 532 deg. F. - Low pressure environment: atmospheric vs {approx} 2200 psi. A review of the historical RIA database indicates that some of the key NSRR data used to support the RIL was atypical compared to the overall RIA database. Based on this detailed review of the RIA database and the response of commercial PWR core, the following view points are proposed. - The Failure limit should reflect local fuel

  17. Electropolishing process development for PWR steam generator channel heads

    SciTech Connect

    Asay, R.H.; Graves, P.; Guastaferro, C.T.; Spalaris, C.N. )

    1991-04-01

    A broad range of process parameters was established to smoothen the surface of 309 L weld clad overlay, prototypic of surfaces common is channel heads of replacement PWR (pressurized water reactor) steam generators. Mechanical and electropolishing steps were studied to explore process boundaries, which result in acceptable degree of surface smoothness, without compromising metallurgical properties. Recommended processes and acceptance criteria established in this work, can be applied to electropolish steam generator channel heads. Smooth surfaces are less likely to retain radioactive species, and potentially develop lower radiation fields when these components are placed into service. 7 refs., 11 figs., 12 tabs.

  18. Estimating probable flaw distributions in PWR steam generator tubes

    SciTech Connect

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  19. PWR systems transient analysis: a reactor-safety perspective

    SciTech Connect

    Kennedy, M.F.; Abramson, P.B.; McDonald, T.A.

    1982-01-01

    In the simulation of transient events in large PWR reactor systems for reactor safety studies, the plant model is quite detailed and must include most of the plant components and control systems to adequately analyze the range of transients. The results discussed were calculated with the RELAP4/MOD6 code and reveal the need for the analysis to carefully review and understand the results to assure that they are not being adversely affected by the improper solution techniques or changes in models during the calculation.

  20. Key Features of the Deployed NPP/NPOESS Ground System

    NASA Astrophysics Data System (ADS)

    Heckmann, G.; Grant, K. D.; Mulligan, J. E.

    2010-12-01

    The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics & Space Administration (NASA) are jointly acquiring the next-generation weather/environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and DoD Defense Meteorological Satellite Program (DMSP). NPOESS satellites carry sensors to collect meteorological, oceanographic, climatological, and solar-geophysical data of the earth, atmosphere, and space. The ground data processing segment is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence & Information Systems (IIS). The IDPS processes NPOESS Preparatory Project (NPP)/NPOESS satellite data to provide environmental data products/records (EDRs) to NOAA and DoD processing centers operated by the US government. The IDPS will process EDRs beginning with NPP and continuing through the lifetime of the NPOESS system. The command & telemetry segment is the Command, Control & Communications Segment (C3S), also developed by Raytheon IIS. C3S is responsible for managing the overall NPP/NPOESS missions from control & status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment to IDPS for processing. In addition, the C3S provides the globally-distributed ground assets needed to collect and transport mission, telemetry, and command data between the satellites and processing locations. The C3S provides all functions required for day-to-day satellite commanding & state-of-health monitoring, and delivery of Stored Mission Data to each Central IDP for data products development and transfer to system subscribers. The C3S also monitors and reports system-wide health & status and data communications with external systems and between the segments. The C3S & IDPS segments were delivered & transitioned to

  1. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    SciTech Connect

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  2. Beta and gamma dose calculations for PWR and BWR containments

    SciTech Connect

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  3. VERA Core Simulator Methodology for PWR Cycle Depletion

    SciTech Connect

    Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel; Kim, Kang Seog; Graham, Aaron; Stimpson, Shane; Wieselquist, William A; Clarno, Kevin T; Palmtag, Scott; Downar, Thomas; Gehin, Jess C

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclear reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.

  4. NPP/NPOESS Tools for Rapid Algorithm Updates

    NASA Astrophysics Data System (ADS)

    Route, G.; Grant, K. D.; Hughes, R.

    2010-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS Preparatory Project (NPP) and NPOESS satellites will carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes both NPP and NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. The Northrop Grumman Aerospace Systems (NGAS) Algorithms and Data Products (A&DP) organization is responsible for the algorithms that produce the Environmental Data Records (EDRs), including their quality aspects. As the Calibration and Validation (Cal/Val) activities move forward following both the NPP launch and subsequent NPOESS launches, rapid algorithm updates may be required. Raytheon and Northrop Grumman have developed tools and processes to enable changes to be evaluated, tested, and moved into the operational baseline in a rapid and efficient manner. This presentation will provide an overview of the tools available to the Cal/Val teams to ensure rapid and accurate assessment of algorithm changes, along with the processes in place to ensure baseline integrity.

  5. Suomi NPP VIIRS spectral characterization: understanding multiple RSR releases

    NASA Astrophysics Data System (ADS)

    Moeller, Chris; McIntire, Jeff; Schwarting, Tom; Moyer, Dave; Costa, Juliette

    2012-09-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite was successfully launched on October 28, 2011, beginning the on-orbit era of the Visible Infrared Imager Radiometer Suite (VIIRS). In support of atlaunch readiness, VIIRS underwent a rigorous pre-launch test program to characterize its spatial, radiometric, and spectral performance. Spectral measurements, the subject of this paper, were collected during instrument level testing at Raytheon Corp. (summer 2009), and then again in a special spectral test for VisNIR bands during spacecraft level testing at Ball Aerospace and Technologies Corp. (spring 2010). These spectral performance measurements were analyzed by industry (Northrop Grumman, NG) and by the Relative Spectral Response (RSR) subgroup of the Government team, (NASA, Aerospace Corp., MIT/Lincoln Lab, Univ. Wisconsin) leading to releases of the S-NPP VIIRS RSR characterization by both NG and the Government team. The NG RSR analysis was planned to populate the Look-Up-Tables (LUTs) that support the various VIIRS operational products, while the Government team analysis was initially intended as a verification of the NG RSR product as well as an early release RSR characterization for the science community's pre-launch application. While the Government team deemed the NG December 2010 RSR release as acceptable for the "at-launch" RSR characterization during the pre-launch phase, the Government team has now (post-launch checkout phase) recommended for using the NG October 2011 RSR release as an update for the LUTs used in VIIRS SDR and EDR operational processing. Meanwhile the Government team RSR releases remain available to the community for their investigative interests, and may evolve if new understanding of VIIRS spectral performance is revealed in the S-NPP post-launch era.

  6. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    SciTech Connect

    Cepcek, S.

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  7. NPP4 is a procoagulant enzyme on the surface of vascular endothelium

    PubMed Central

    Albright, Ronald A.; Chang, William C.; Robert, Donna; Ornstein, Deborah L.; Cao, Wenxiang; Liu, Lynn; Redick, Meredith E.; Young, J. Isaac; De La Cruz, Enrique M.

    2012-01-01

    Ap3A is a platelet-dense granule component released into the extracellular space during the second wave of platelet aggregation on activation. Here, we identify an uncharacterized enzyme, nucleotide pyrophosphatase/phosphodiesterase-4 (NPP4), as a potent hydrolase of Ap3A capable of stimulating platelet aggregation and secretion. We demonstrate that NPP4 is present on the surface of vascular endothelium, where it hydrolyzes Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Platelet aggregation assays with citrated platelet-rich plasma reveal that the primary and secondary waves of aggregation and dense granule release are strongly induced by nanomolar NPP4 in a concentration-dependent manner in the presence of Ap3A, while Ap3A alone initiates a primary wave of aggregation followed by rapid disaggregation. NPP2 and an active site NPP4 mutant, neither of which appreciably hydrolyzes Ap3A, have no effect on platelet aggregation and secretion. Finally, by using ADP receptor blockade we confirm that NPP4 mediates platelet aggregation via release of ADP from Ap3A and activation of ADP receptors. Collectively, these studies define the biologic and enzymatic basis for NPP4 and Ap3A activity in platelet aggregation in vitro and suggest that NPP4 promotes hemostasis in vivo by augmenting ADP-mediated platelet aggregation at the site of vascular injury. PMID:22995898

  8. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    SciTech Connect

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-07-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  9. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS.

    SciTech Connect

    A. K. MAJI; B. MARSHALL; ET AL

    2000-10-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  10. Multilevel modeling of NPP change and impacts of water resources in the Lower Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Yan, Haiming; Zhan, Jinyan; Jiang, Qun'ou; Yuan, Yongwei; Li, Zhihui

    Net primary productivity (NPP) lays the foundation for provision of various ecosystem services, and understanding the impacts of potential influencing factors on NPP is of great significance to formulating appropriate management measures to guarantee the sustainable provision of essential ecosystem services. This study analyzed the impacts of potential influencing factors on NPP in the lower Heihe River Basin, a typical arid and semi-arid region in China. First, NPP was estimated with the C-FIX model, and then the multilevel model was used to analyze the impacts of potential influencing factors on NPP during 2000-2008. Finally decomposition analysis was used to further analyze the contribution of influencing factors to NPP change during 2000-2008. The average NPP increased by approximately 9.07% during 2000-2008, and results of the multilevel model indicate that both the socioeconomic variables and demographic variables are useful in explaining NPP change. In particular, coefficients of rainfall and evapotranspiration which represent the water availability reached 0.0456 and 0.2956, respectively. Results of decomposition analysis suggested that the water availability played an important role in increasing NPP, with a contribution rate of 44.17%, and it is necessary to carry out some policies that can promote the water use efficiency to increase NPP under the background of climate change and intensified human activities. There are some uncertainties in the results of this study, but these results still can provide valuable reference information for the water resource management to increase the ecosystem service supply in the lower Heihe River Basin.

  11. Comparison of S-NPP VIIRS and PLEIADES lunar observations

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Lachérade, Sophie; Aznay, Ouahid; Fougnie, Bertrand; Fulbright, Jon; Wang, Zhipeng

    2015-10-01

    The first VIIRS instrument was launched on-board the S-NPP satellite in October 2011. It has a total of 15 reflective solar bands (RSB), which include a day-night band (DNB). The VIIRS RSB are calibrated each orbit by an on-board solar diffuser and regularly scheduled lunar observations. With a few exceptions, regularly scheduled lunar observations have been made with the same phase angles from -51.5° to -50.5°. The PLEIADES system consists of two satellites, PLEIADES-1A and PLEIADES-1B, which were launched in December of 2011 and December of 2012, respectively. Each instrument has 5 RSB: four (blue, green, red and near-infrared) bands with a 2.8 m spatial resolution and one panchromatic band with a 70 cm vertical viewing resolution. PLEIADES RSB are calibrated using observations of Pseudo Invariant Calibration Sites (PICS) and the Moon. Both PLEIADES-1A and PLEIADES-1B lunar observations have been made over a wide range of phase angles. In this paper we provide an overview of S-NPP VIIRS and PLEIADES lunar observations and an analysis to qualify their lunar calibration differences. Results derived from different inter-comparison methodologies (or approaches) are illustrated. Also discussed in this paper are the challenging issues, lessons, and future effort to further improve sensor lunar calibration inter-comparisons.

  12. Possible satellite oceanography on coastal waters during the NPP stage

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Asanuma, I.; Zhao, C.; Huang, B.

    2007-09-01

    Ocean color monitoring on the coastal water is still under study because of an incomplete atmospheric correction over the turbid water like over the coastal water along the China main land. Currently available sensors for science as MODIS on Terra or Aqua will terminate their service in the near future and the NPOESS Preparatory Project (NPP) will be the next satellite to support the satellite oceanography on the coastal water. The Tokyo University of Information Sciences (TUIS) has updated the MODIS receiving system to capture and ingest the Visible/Infrared Imager/Radiometer Suite (VIIRS) data from NPP, which will be launched in 2008. Data processing software from the Direct Readout Laboratory (DRL), such as the Real-time Software Telemetry Processing (RT-STPS), Simulcast, and DB algorithms, will be core programs in our system. VIIRS has seven bands in VIS&NIR, which are for ocean color research. The spatial resolution is 0.742×0.259 meters at nadir. While the MODIS spatial resolution of the nine ocean color bands is 1000m. The higher spatial resolution MODIS data (250 meters) is used to illustrate the advantage of the higher spatial resolution remote sensing data, such as data from VIIRS. In this study, we propose to combine the higher spatial resolution data with the traditional products of chlorophyll-a and sea surface temperature in the low resolution so as to extract further information on the coastal ocean.

  13. Lessons Learned in Decommissioning of NPP A-1 After Accident

    SciTech Connect

    Prazska, M.; Rezbarik, J.; Majersky, D.; Sekely, S.; Solcanyi, S.

    2002-02-25

    Decommissioning of the NPP A-1 in Jaslovske Bohunice is encountered with great variation of the problems connected primarily with the high radiation fields and the high activity of the contaminated materials. Decontamination of the contaminated objects and the thorough radiological protection of decontamination workers are therefore the tasks of top priority. The successful realization of these jobs is based on the experience, good working practice and the utilization of all proven methods together with the newly developed ones. Since 1996, AllDeco Ltd. has applied the decontamination methods and processes in a wide scale in the decommissioning and dismantling of the NPP A-1 in the cooperation with SE-VYZ Inc. The monitoring of the radiation situation and the investigation of the type and character of the radioactive waste were first steps in the decontamination of all objects. For this works, remote controlled mechanical manipulators and remote controlled electrical carriage equipped with instruments recording the levels of dose rates and with telemetric data transmission system were used. The recorded data were used for the modeling and 3D visualization of the radiation fields and for following planning and preparation of the decontamination projects or ''working programs'' based on the ALARA principle. The minimization of the radioactive waste was also taken into consideration. A lot of time and energy was spent on the preparation and training of the staff including non-active trials of planned procedures. The gained experience was evaluated and lessons learned were given in the final reports.

  14. Pump and valve fastener serviceability in PWR nuclear facilities

    SciTech Connect

    Moisidis, N.T.; Ratiu, M.D.

    1996-02-01

    The results of several studies conducted on corrosion of carbon and low-alloy steels in borated water have shown that impingement of borated steam on ferritic steels or contact with a moist paste of boric acid can lead to high corrosion rates due to high local concentrations of boric acid on the surface. The corrosion process of the flange fasteners of pumps and valves is considered a material compatibility and equipment maintenance problem. Therefore, the nuclear utilities of pressurized water reactor (PWR) power plants can prevent this damage by implementing appropriate fastener steel replacement and extended inspections to detect and correct the cause of leakage. A 3-phase corrosion protection program is presented for implementation based on system operability, outage-related accessibility, and cost of fastener replacement versus maintenance frequency increase. A selection criterion for fastener material is indicated based on service limitation: preloading and metal temperature.

  15. Ultrasonic Backscattering in Polycrystalline Materials of Pwr Components

    NASA Astrophysics Data System (ADS)

    Chassignole, B.; Dupond, O.; Fouquet, T.; Rupin, F.

    2011-06-01

    The ultrasonic examination of metallic components of Pressurized Water Reactors (PWR) is an important challenge for the nuclear industry. During the past decades, EDF R&D has undertaken numerous studies in order to improve the NDT process on these applications and to help to their qualification. The present paper deals with the problem of the structural noise which can potentially disturbs the ultrasonic inspection. In particular, this study proposes a modeling approach to simulate the ultrasonic scattering due to coarse grain structures of polycrystalline materials. The methodology is based on the mixing of a grain scale description of the material and a 2D finite element code (ATHENA) developed by EDF to simulate the ultrasonic propagation in isotropic and anisotropic elastic media. The modeling results are compared to experimental acquisitions on mock-ups containing artificial defects.

  16. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  17. Modeling local chemistry in PWR steam generator crevices

    SciTech Connect

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  18. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGESBeta

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  19. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    SciTech Connect

    Kavaklioglu, K.; Ikonomopoulos, A. )

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.

  20. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    SciTech Connect

    M. Krug; R. Shogan; A. Fero; M. Snyder

    2004-11-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR.

  1. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    SciTech Connect

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  2. Evaluation of thermal mixing data from a model cold leg and downcomer. [PWR

    SciTech Connect

    Rothe, P.H.; Fanning, M.W.

    1982-12-01

    This report describes an evaluation of thermal mixing data obtained in a 1/5-scale, transparent model of the cold leg and downcomer of a Pressurized Water Reactor (PWR). The data are relevant to the phenomenon of fluid and thermal mixing following HPI (High Pressure Injection) of coolant water in a PWR loop. The data are reduced, correlated and compared with theoretically derived values and scaling approaches.

  3. Identification and evaluation of PWR in-vessel severe accident management strategies

    SciTech Connect

    Dukelow, J S; Harrison, D G; Morgenstern, M

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents.

  4. Degradation and Failure Characteristics of NPP Containment Protective Coating Systems

    SciTech Connect

    Sindelar, R.L.

    2001-04-10

    Nuclear power plants (NPPs) must ensure that the emergency core cooling system (ECCS) or safety-related containment spray system (CSS) remains capable of performing its design safety function throughout the life of the plant. This requires ensuring that long-term core cooling can be maintained following a postulated loss-of-coolant accident (LOCA). Adequate safety operation can be impaired if the protective coatings which have been applied to the concrete and steel structures within the primary containment fail, producing transportable debris which could then accumulate on BWR ECCS suction strainers or PWR ECCS sump debris screens located within the containment. This document will present the data collected during the investigation of coating specimens from plants.

  5. Small Break LOCA Analysis of ACR-700 NPP

    SciTech Connect

    Limin Zheng; Sen Shen; Wright, David

    2006-07-01

    A small break loss of coolant accident (SB-LOCA) analysis to assess a preliminary conceptual design of the ACR-700 PHWR nuclear power plant (NPP) developed by AECL has been performed with CATHENA MOD 3.5d, a PHWR system thermal-hydraulic analysis code. The limiting break size has been found by performing a sensitivity study for three different break locations [i.e. reactor inlet header (RIH), HTS pump suction (PS) pipe and reactor outlet head (ROH)] under the limiting case (i.e. SB-LOCA with subsequent loss of class IV power with all safety systems available). The analysis results indicate that the SB-LOCA acceptance criteria are satisfied. (authors)

  6. Near Real Time Processing Chain for Suomi NPP Satellite Data

    NASA Astrophysics Data System (ADS)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  7. Degradation and Failure Characteristics of NPP Containment Protective Coating Systems

    SciTech Connect

    Sindelar, R.L.

    2001-02-22

    A research program to investigate the performance and potential for debris formation of Service Level I coating systems used in nuclear power plant containment is being performed at the Savannah River Technology Center. The research activities are aligned to address phenomena important to cause coating disbondment as identified by the Industry Coatings Expert Panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are described in this report and the application of these elements to evaluate the performance of the specific coating system of Phenoline 305 epoxy-phenolic topcoat over Carbozinc 11 primer on a steel substrate. This system is one of the predominant coating systems present on steel substrates in NPP containment.

  8. NPP VIIRS Early On-Orbit Geometric Performance

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna; Montano, Enrique

    2012-01-01

    The NASA/NOAA Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the Suomi National Polar-orbiting Partnership (NPP) satellite was launched in October, 2011. The instrument geometric performance includes sensor spatial response, band-to-band co-registration (BBR), and geolocation accuracy and precision. The geometric performance is an important aspect of sensor data record (SDR) calibration and validation. In this paper we will discuss geometric performance parameter characterization using the first seven-month of VIIRS' earth and lunar data, and compare with the at-launch performance using ground testing data and analysis of numerical modeling results as the first step in on-orbit geometric calibration and validation.

  9. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    SciTech Connect

    Rempe, J. L.; Knudson, D. L.; Lutz, R. J.

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  10. An Overview of NPP VIIRS Pre-Launch and On-Orbit Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Butler, Jim; Gleason, Jim; Xiong, Jack; Chang, Vincent; Lee, Shih Yan

    2011-01-01

    NPP Visible Infrared Imaging Radiometer Suite (VIIRS) test program at the instrument and observatory level is complete and has provided an extensive amount of high quality data to enable the assessment of sensor performance.

  11. The dry season intensity as a key driver of NPP trends

    NASA Astrophysics Data System (ADS)

    Murray-Tortarolo, Guillermo; Friedlingstein, Pierre; Sitch, Stephen; Seneviratne, Sonia I.; Fletcher, Imogen; Mueller, Brigitte; Greve, Peter; Anav, Alessandro; Liu, Yi; Ahlström, Anders; Huntingford, Chris; Levis, Sam; Levy, Peter; Lomas, Mark; Poulter, Benjamin; Viovy, Nicholas; Zaehle, Sonke; Zeng, Ning

    2016-03-01

    We analyze the impacts of changing dry season length and intensity on vegetation productivity and biomass. Our results show a wetness asymmetry in dry ecosystems, with dry seasons becoming drier and wet seasons becoming wetter, likely caused by climate change. The increasingly intense dry seasons were consistently correlated with a decreasing trend in net primary productivity (NPP) and biomass from different products and could potentially mean a reduction of 10-13% in NPP by 2100. We found that annual NPP in dry ecosystems is particularly sensitive to the intensity of the dry season, whereas an increase in precipitation during the wet season has a smaller effect. We conclude that changes in water availability over the dry season affect vegetation throughout the whole year, driving changes in regional NPP. Moreover, these results suggest that usage of seasonal water fluxes is necessary to improve our understanding of the link between water availability and the land carbon cycle.

  12. Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.

    2010-01-01

    For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.

  13. The kinetics of aerosol particle formation and removal in NPP severe accidents

    NASA Astrophysics Data System (ADS)

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  14. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    SciTech Connect

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-07-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  15. Consistency of CERES Radiances and Fluxes from Aqua and Suomi-NPP

    NASA Technical Reports Server (NTRS)

    Liang, Lusheng; Miller, Walter; Su, Wenying; Loeb, Norman

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments on board Terra, Aqua, and Suomi-NPP have been providing data products critical to advancing our understanding of the effects of clouds and aerosols on radiative energy within the Earth-atmosphere system. The CERES instrument consists of a threechannel broadband scanning radiometer. The scanning radiometer measures radiances in shortwave (SW, 0.3-5 micron), window (WN, 8-12 micron), and total (0.3-200 micron) channels. The longwave (LW) component is derived as the difference between total and SW channels. These measured radiances at a given sun-Earthsatellite geometry are converted to outgoing reflected solar and emitted thermal TOA radiative fluxes by using CERES scene-type dependent angular distribution models (ADMs). The CERES instruments must remain radiometrically stable and correctly inter-calibrated to accurately capture changes in Earth"s radiation budget from interannual to decadal timescales. This presentation will focus on comparisons between collocated radiance measurements from CERES instruments on Aqua and on Suomi-NPP. As we do not have a set of ADMs that is constructed specifically for the CERES instrument on Suomi-NPP, CERES Aqua ADMs are used to invert fluxes from radiance measurements on Suomi-NPP. But the CERES Aqua footprint size is smaller than the CERES Suomi-NPP footprint size and the scene identifications provided by MODIS and VIIRS can also be different from each other. Will using Aqua ADMs for Suomi-NPP flux inversion increase the flux uncertainty? We will examine the deseasonalized flux anomaly time series using Aqua data alone and using combined Aqua and Suomi-NPP data. We will also present a simulation study to assess the Suomi-NPP flux uncertainty from using Aqua ADMs for the flux inversion.

  16. Parameterization of Buoyancy Effects in Generic PWR Boron Dilution Scenarios

    SciTech Connect

    Galindo-Garcia, Ivan F.; Cotton, Mark A.; Axcell, Brian P.

    2006-07-01

    A computational investigation is undertaken into the role of buoyancy in a PWR boron dilution transient following a postulated Small Break Loss of Coolant Accident (SB-LOCA). In the scenario envisaged there is flow of de-borated and relatively high temperature water from a single cold leg into the downcomer; flow rates are typical of natural circulation conditions. The study focuses upon the development of boron concentration distributions in the downcomer and adopts a 3D-unsteady formulation of the mean flow equations in combination with the standard high-Reynolds-number k-{epsilon} turbulence model. It is found that the Richardson number (Ri = Gr/Re{sup 2}) is the most important group parameterizing the course of a concentration transient. At Ri values characterizing a 'baseline' scenario the results indicate that there is a stable, circumferentially-uniform, descent through the downcomer of a stratified region of low-borated fluid. Qualitatively the same behaviour is found at higher Richardson number, although at Ri values of approximately one-fifth the baseline level there is evidence of large-scale mixing and a consequent absence of concentration stratification. (authors)

  17. Containment integrity of SEP plants under combined loads. [PWR; BWR

    SciTech Connect

    Lo, T.; Nelson, T.A.; Chen, P.Y.; Persinko, D.; Grimes, C.

    1984-06-01

    Because the containment structure is the last barrier against the release of radioactivity, an assessment was undertaken to identify the design weaknesses and estimate the margins of safety for the SEP containments under the postulated, combined loading conditions of a safe shutdown earthquake (SSE) and a design basis accident (DBA). The design basis accident is either a loss-of-coolant accident (LOCA) or a main steam line break (MSLB). The containment designs analyzed consisted of three inverted light-bulb shaped drywells used in boiling water reactor (BWR) systems, and three steel-lined concrete containments and a spherical steel shell used in pressurized water reactor (PWR) systems. These designs cover a majority of the containment types used in domestic operating plants. The results indicate that five of the seven designs are adequate even under current design standards. For the remaining two designs, the possible design weaknesses identified were buckling of the spherical steel shell and over-stress in both the radial and tangential directions in one of the concrete containments near its base.

  18. Integrity of PWR pressure vessels during overcooling accidents

    SciTech Connect

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation.

  19. Integrity of PWR pressure vessels during overcooling accidents

    SciTech Connect

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation.

  20. Experience in PWR and BWR mixed-oxide fuel management

    SciTech Connect

    Schlosser, G.J.; Krebs, W.; Urban, P. )

    1993-04-01

    Germany has adopted the strategy of a closed fuel cycle using reprocessing and recycling. The central issue today is plutonium recycling by the use of U-Pu mixed oxide (MOX) in pressurized water reactors (PWRs) and boiling water reactors (BWRs). The design of MOX fuel assemblies and fuel management in MOX-containing cores are strongly influenced by the nuclear properties of the plutonium isotopes. Optimized MOX fuel assembly designs for PWRs currently use up to three types of MOX fuel rods having different plutonium contents with natural uranium or uranium tailings as carrier material but without burnable absorbers. The MOX fuel assembly designs for BWRs use four to six rod types with different plutonium contents and Gd[sub 2]O[sub 3]/UO[sub 2] burnable absorber rods. Both the PWR and the BWR designs attain good burnup equivalence and compatibility with uranium fuel assemblies. High flexibility exists in the loading schemes relative to the position and number of MOX fuel assemblies in the reloads and in the core as a whole. The Siemens experience with MOX fuel assemblies is based on the insertion of 318 MOX fuel assemblies in eight PWRs and 168 in BWRs and pressurized heavy water reactors so far. The primary operating results include information on the cycle length, power distribution, reactivity coefficients, and control rod worth of cores containing MOX fuel assemblies.

  1. MODIS GPP/NPP for complex land use area: a case study of comparison between MODIS GPP/NPP and ground-based measurements over Korea

    NASA Astrophysics Data System (ADS)

    Shim, C.

    2013-12-01

    The Moderate Resolution Imaging Radiometer (MODIS) Gross Primary Productivity (GPP)/Net Primary Productivity (NPP) has been widely used for the study on global terrestrial ecosystem and carbon cycle. The current MODIS product with ~ 1 km spatial resolution, however, has limitation on the information on local scale environment (< 1km), particularly on the regions with complex land-use types. Here we try to test the performance of MODIS annual GPP/NPP for a case of Korea, where the vegetation types are mostly heterogeneous within a size of MODIS products (~1km). We selected the sites where the ground/tower flux measurements and MODIS retrievals were simultaneously available and the land classification of sites agreed the forest type map (~71m) (1 site over Gwangneung flux tower (GDK) for 2006-2008 and 2 sites of ground measurements over Cheongju (CJ1 and CJ2) for 2011). The MODIS GPP are comparable to that of GDK (largely deciduous forest) within -6.3 ~ +2.3% of bias (-104.5 - 37.9 gCm-2yr-1). While the MODIS NPP of CJ1 at Cheongju (largely Larix leptolepis) underestimated NPP by 34% (-224.5 gCm-2yr-1), the MODIS NPP of CJ2 (largely Pinus densiflora) agreed well with -0.2% of bias (1.6 gCm-2yr-1). The fairly comparable values of the MODIS here however, cannot assure the quality of the MOD17 over the complex vegetation area of Korea since the ground measurements except the eddy covariance tower flux measurements are highly inconsistent. Therefore, the comprehensive experiments to represents GPP/NPP over diverse vegetation types for a comparable scale of MODIS with a consistent measurement technique are necessary in order to evaluate the MODIS vegetation productivity data over Korea, which contains a large portion of highly heterogeneous vegetation area.

  2. Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation.

    PubMed

    Navarro, M N V; Jourdan, C; Sileye, T; Braconnier, S; Mialet-Serra, I; Saint-Andre, L; Dauzat, J; Nouvellon, Y; Epron, D; Bonnefond, J M; Berbigier, P; Rouziere, A; Bouillet, J P; Roupsard, O

    2008-11-01

    We monitored seasonal variations in net primary production (NPP), estimated by allometric equations from organ dimensions, gross primary production (GPP), estimated by the eddy covariance method, autotrophic respiration (R(a)), estimated by a model, and fruit production in a coconut (Cocos nucifera L.) plantation located in the sub-tropical South Pacific archipelago of Vanuatu. Net primary production of the vegetative compartments of the trees accumulated steadily throughout the year. Fruits accounted for 46% of tree NPP and showed large seasonal variations. On an annual basis, the sum of estimated NPP (16.1 Mg C ha(-1) year(-1)) and R(a) (24.0 Mg C ha(-1) year(-1)) for the ecosystem (coconut trees and herbaceous understory) closely matched GPP (39.0 Mg C ha(-1) year(-1)), suggesting adequate cross-validation of annual C budget methods. However, seasonal variations in NPP + R(a) were smaller than the seasonal variations in GPP, and maximum tree NPP occurred 6 months after the midsummer peak in GPP and solar radiation. We propose that this discrepancy reflects seasonal variation in the allocation of dry mass to carbon reserves and new plant tissue, thus affecting the allometric relationships used for estimating NPP. PMID:18765371

  3. A comparison of HLW-glass and PWR-borate waste glass

    NASA Astrophysics Data System (ADS)

    Luo, Shanggeng; Sheng, Jiawei; Tang, Baolong

    2001-09-01

    Glass can incorporate a wide variety of wastes ranging from high level wastes (HLW) to low and intermediate level wastes (LILW). A comparison of HLW-Glass and PWR-borate waste glass is given in this paper. The HLW glass formulation named GC-12/9B and 90-19/U can incorporate 16-20 wt% HLW at 1100°C or 1150°C. The borate waste glass named SL-1 can incorporate 45 wt% borate waste generated from PWR. Their physical properties, characteristic temperatures, chemical durability and leach behavior are summarized here. The comparison indicates: the PWR-glass SL-1 can incorporate up to 45 wt% waste oxides at lower melting temperature (1000°C) in agreement with minimum additive waste stabilization (MAWS) approach; owing to the PWR-borate glass contain less Si and more B and Na, its mass loss is higher than HWR-glass; both HLW-glass and PWR-borate glass have favorable chemical durability and the same leaching phenomena, i.e., Na is mostly depleted, but Ca, Mg, Al and Ti are enriched in the leached surface layer.

  4. Operational Applications from the Suomi Npp and Jpss Satellites

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Furgerson, J.; Sjoberg, W.; Weng, F.; Csiszar, I. A.; Kilcoyne, H.; Gleason, J. F.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. Data collection - JPSS satellites continue the POES data collection instruments that relay in situ data and observations from remote transmitters. These instruments relay data from remote, unmanned stations including wind, temperature and salinity readings from ocean buoys, which allow for the monitoring of the ocean. These instruments are also used to track wildlife. Search and rescue - JPSS will continue the search and rescue instruments on POES that

  5. Initial Assessment of NPP/VIIRS Aerosol Environmental Data

    NASA Astrophysics Data System (ADS)

    Laszlo, I.; Kondragunta, S.; Remer, L. A.

    2012-12-01

    The aerosol environment data records (EDR) derived from the measurements of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite are the aerosol optical thickness (AOT), aerosol particle size parameter (APSP, characterized in terms of the Angstrom Exponent, AE), and suspended matter (SM). These EDRs go through various evaluations to assess their level of maturity, which are defined by a set of criteria. This presentation provides an overview of the work and results the NPP/JPSS Calibration/Validation Team has performed for the first of the maturity levels, Beta. For this level, the VIIRS AOT and APSP products have been compared with aerosol products derived from MODIS observations onboard the NASA Earth Observing System (EOS) satellite (Aqua), and with AERONET products and observations. SM has been compared with CALIPSO products. All comparisons have been applied to a uniform time sample (2 May 2012 to 2 June 2012). Qualitative and quantitative analysis of the VIIRS aerosol EDRs indicate that AOT both over land and ocean, and APSP over ocean have reached Beta maturity. However, neither APSP over land, nor SM qualifies for Beta level at this time. Qualitatively, one standard deviation of VIIRS AOT EDR products fall within ±0.09 ±10% of collocated MODIS retrievals over land and ±0.02 ±10% over ocean. The same VIIRS product falls within ±0.13 ±15% of collocated AERONET over land and ±0.04 ±5% over ocean. In all cases, the VIIRS AOT over land product is biased high (0.07 to 0.15) against comparable products in a global sense. The VIIRS Angstrom Exponent EDR product over ocean shows correlation when compared with MODIS, but is biased high. Preliminary AERONET analysis at coastal stations shows APSP falling within approximately ±0.40 of AERONET. Preliminary AERONET analysis at coastal stations shows APSP falling within approximately ±0.40 of AERONET. VIIRS Angstrom Exponent

  6. Modeling of temporal and spatial coherency of net primary production (MODIS NPP) in the mountain forests of South Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, Yulia; Soukhovolsky, Vlad

    Net primary production (NPP) of mountain forest is very variable and depends on a variety of external modifying factors such as intensity and spectrum of solar radiation, climatic conditions in the area. Less studied are features of long-term NPP dynamics associated with self-regulation processes of tree growth in a forest. Mountain forests are a convenient object for analysis and modeling of long-term NPP changes that do not depend on climatic factors, since in mountain forests climatic conditions are uniquely determined by altitude Temporal and spatial coherence of mean annual NPP time series (Yrs. 2000 - 2012) was studied according to data from satellite observations of MODIS/TERRA. Mean annual NPP estimates' series were examined for different altitudinal zones in the Sayan Mountains (South of Central Siberia). Altitudes ranged from 600 to 1.800 meters above sea level. This area is lengthful vertically and has well-marked mountain-belt vegetation complexes, where mixed forests, fir and pine coniferous forests, alpine meadows and alpine tundra successively come one after another. Spatial and temporal coherence of NPP time series for different habitats is analyzed. The analysis showed that variations in annual NPP values of the fir (Abies sibirica) at different altitudes (450-1700 m) are synchronized. These variations in NPP values are described by the AR(2) model. Such behavior of studied NPP time series suggests a lag in growth of woody plants. In this case, the current NPP is influenced by the NPP values of the two previous years. At higher altitudes, where the density of the trees decreases and herbaceous plants become dominant, the range and synchronization of NPP variations decrease.

  7. Materials Reliability Program: Fracture Toughness Testing of Decommissioned PWR Core Internals Material Samples (MRP-160) Non-Proprietary Version

    SciTech Connect

    M. E. Krug; R. P. Shogan

    2005-09-30

    Pressurised water reactor (PWR) cores operate under extreme envrionmental conditions due to coolant chemistry, operating temperature and neutron exposure. Extending the life of PWRs requires detailed knowledge of teh changes in mechanical and corrosion properties of teh structural austenitic stainless steel components adjacent to the fuel. This report contains results of fracture toughness testing of samples machined from decommissioned PWR reactor internals.

  8. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-22

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  9. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    SciTech Connect

    Putney, J.M.; Preece, R.J.

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

  10. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    NASA Astrophysics Data System (ADS)

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-01

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required 233U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium & uranium confinement in PWR.

  11. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    SciTech Connect

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G; Salko, Robert K; Evans, Thomas M; Turner, John A; Belcourt, Kenneth; Hooper, Russell; Schmidt, Rodney

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly cases are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.

  12. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    SciTech Connect

    Norby, Richard J; Warren, Jeffrey; Iversen, Colleen M; Medlyn, Belinda; McMurtrie, Ross; Hoffman, Forrest M

    2008-01-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  13. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Warren, J. M.; Iversen, C. M.; Medlyn, B. E.; McMurtrie, R. E.; Hoffman, F. M.

    2008-12-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  14. Estimating cropland NPP using national crop inventory and MODIS derived crop specific parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; West, T. O.; Ricciuto, D. M.

    2011-12-01

    Estimates of cropland net primary production (NPP) are needed as input for estimates of carbon flux and carbon stock changes. Cropland NPP is currently estimated using terrestrial ecosystem models, satellite remote sensing, or inventory data. All three of these methods have benefits and problems. Terrestrial ecosystem models are often better suited for prognostic estimates rather than diagnostic estimates. Satellite-based NPP estimates often underestimate productivity on intensely managed croplands and are also limited to a few broad crop categories. Inventory-based estimates are consistent with nationally collected data on crop yields, but they lack sub-county spatial resolution. Integrating these methods will allow for spatial resolution consistent with current land cover and land use, while also maintaining total biomass quantities recorded in national inventory data. The main objective of this study was to improve cropland NPP estimates by using a modification of the CASA NPP model with individual crop biophysical parameters partly derived from inventory data and MODIS 8day 250m EVI product. The study was conducted for corn and soybean crops in Iowa and Illinois for years 2006 and 2007. We used EVI as a linear function for fPAR, and used crop land cover data (56m spatial resolution) to extract individual crop EVI pixels. First, we separated mixed pixels of both corn and soybean that occur when MODIS 250m pixel contains more than one crop. Second, we substituted mixed EVI pixels with nearest pure pixel values of the same crop within 1km radius. To get more accurate photosynthetic active radiation (PAR), we applied the Mountain Climate Simulator (MTCLIM) algorithm with the use of temperature and precipitation data from the North American Land Data Assimilation System (NLDAS-2) to generate shortwave radiation data. Finally, county specific light use efficiency (LUE) values of each crop for years 2006 to 2007 were determined by application of mean county inventory

  15. Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Cao, C.

    2015-12-01

    Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.

  16. S-NPP OMPS Nadir In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Pan, S.; Flynn, L. E.; Niu, J.; Grotenhuis, M.; Beck, C. T.; Beach, E.; Zhang, Z.; Tolea, A.

    2014-12-01

    This presentation describes the results of in-flight characterization of the S-NPP Ozone Mapping Profiler Suite (OMPS) charge-coupled device (CCD) performance during the first nearly three years of the OMPS mission in orbit. Data from OMPS's three two-dimension CCD arrays have been collected to characterize in-flight detector behaviors. Our results show that offset, gain, and dark current rate trends remain within sensor requirement limits. System linearity performance trends are stable. The distribution of individual pixel dark rates is slowly growing as expected from pre-launch analyses. The current in-flight dark and linearity calibration corrections provide Sensor Data Records (SDRs) with insignificant error after correction of less than an average of ~0.1% in the Earth radiance retrieval. The instrument optics is less stable than predicted leading to intra-orbit wavelength scale variations as the temperature gradients vary across the instrument. Measurement-based estimates of these effects are as large a ±0.02 nm and are used to make corrections to within +-0.005 nm on a granule by granule basis. Examination of reflectivity, aerosol and ozone EDRs provide evidence of absolute calibration errors with a significant cross track variation. A soft calibration adjustment is under development to remove them.

  17. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  18. Impact of climate aggregation over different scales on regional NPP modelling

    NASA Astrophysics Data System (ADS)

    Kuhnert, Matthias

    2016-04-01

    Model input data aggregation methods and data aggregation across spatial scales affect various model outputs, e.g. Net Primary Productivity (NPP). The scale at which data is collected is of great importance. In ecosystem modelling studies we often see soil and climate data collected at coarse scale being used in models to predict ecosystem responses e.g. NPP in dependency of these parameters at finer scale. Outputs of these models are impacted by the way the data is aggregated or dis-aggregated to the spatial scale. Up to know there are very few studies which quantified the impact of scaling on the simulation results. In this study, we quantify the impact of climate data aggregation using five different resolutions, to simulate NPP by 11 different crop and biogeochemical models for the same study area. The aggregation effect is investigated for wheat and maize cropping systems in the state of North Rhine-Westphalia, Germany. The simulation results are analysed for NPP averaged over growing seasons of a 30 year period at different spatial resolutions as well as for annual NPP during growing season. While there is only a minor impact of input data aggregation on NPP on 30 year averages, the annual data show differences in NPP up to 9.4 % and 13.6 % between the different resolutions for wheat and maize, respectively. The scale effect differ between the models and shows higher impacts for extreme years. This is tested by selecting years with extreme dry conditions based on a drought index, which showed stronger scale effects of up to 12.8 % and 15.5 % for wheat and maize, respectively.

  19. PWR containment structures license renewal industry report: Revision 1. Final report

    SciTech Connect

    Deng, D.; Renfro, J.; Statton, J.

    1994-07-01

    Reinforced concrete, prestressed concrete, and freestanding steel PWR containment structures and components have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits, inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these structures and components can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR containment structures and components for license renewal.

  20. Switching from deferred dismantling to immediate dismantling: the example of Chooz A, a French PWR

    SciTech Connect

    Grenouillet, Jean-Jacques

    2007-07-01

    Located in the north of France, close to Belgian border, Chooz A is the first PWR that was built in France from 1962 to 1967. When it was shutdown in 1991, a deferred dismantling strategy was selected. Further to an evolution of EDF decommissioning strategy in 2001, the decommissioning of the plant was accelerated by reducing the safe enclosure period to only a few years. Thus Chooz A will be the first PWR to be fully dismantled in France and it gives a good insight of what is needed to reactivate a plant for final dismantling after a safe enclosure period. (author)

  1. A GeoServices Infrastructure for Near-Real-Time Access to Suomi NPP Satellite Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.; Hao, W.; Chettri, S.

    2012-12-01

    The new Suomi National Polar-orbiting Partnership (NPP) satellite extends NASA's moderate-resolution, multispectral observations with a suite of powerful imagers and sounders to support a broad array of research and applications. However, NPP data products consist of a complex set of data and metadata files in highly specialized formats; which NPP's operational ground segment delivers to users only with several hours' delay. This severely limits their use in critical applications such as weather forecasting, emergency / disaster response, search and rescue, and other activities that require near-real-time access to satellite observations. Alternative approaches, based on distributed Direct Broadcast facilities, can reduce the delay in NPP data delivery from hours to minutes, and can make products more directly usable by practitioners in the field. To assess and fulfill this potential, we are developing a suite of software that couples Direct Broadcast data feeds with a streamlined, scalable processing chain and geospatial Web services, so as to permit many more time-sensitive applications to use NPP data. The resulting geoservices infrastructure links a variety of end-user tools and applications to NPP data from different sources, and to other rapidly-changing geospatial data. By using well-known, standard software interfaces (such as OGC Web Services or OPeNDAP), this infrastructure serves a variety of end-user analysis and visualization tools, giving them access into datasets of arbitrary size and resolution and allowing them to request and receive tailored products on demand. The standards-based approach may also streamline data sharing among independent satellite receiving facilities, thus helping them to interoperate in providing frequent, composite views of continent-scale or global regions. To enable others to build similar or derived systems, the service components we are developing (based in part on the Community Satellite Processing Package (CSPP) from

  2. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Gielen, B.; Göckede, M.; Papale, D.; Bouriaud, O.; Granier, A.

    2011-09-01

    The allocation of carbon (C) taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years) and seasonal (for 1 year) scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique. The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr-1, 29% yr-1 and 39% yr-1, respectively) was significant among years with up to 12% yr-1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the contribution of previous-year reserves to stem growth, as well as reduction

  3. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    SciTech Connect

    Klute, Stefan; Kupke, Peter

    2013-07-01

    In February 2009, Siempelkamp Nukleartechnik GmbH was awarded the contract for the design, manufacture, delivery and construction of a new Decontamination Facility in the controlled area for Kruemmel NPP. The new decontamination equipment has been installed according to the state of art of Kruemmel NPP. The existing space required the following modification, retrofitting and reconstruction works: - Demounting of the existing installation: to create space for the new facility it was necessary to dismantle the old facility. The concrete walls and ceilings were cut into sizes of no more than 400 kg for ease of handling. This enabled decontamination so largest possible amount could be released for recycling. All steel parts were cut into sizes fitting for iron-barred boxes, respecting the requirement to render the parts decontaminable and releasable. - Reconstructing a decontamination facility: Reconstruction of a decontamination box with separate air lock as access area for the decontamination of components and assemblies was conducted using pressurized air with abrasives (glass beads or steel shots). The walls were equipped with sound protection, the inner walls were welded gap-free to prevent the emergence of interstices and were equipped with changeable wear and tear curtains. Abrasive processing unit positioned underneath the dry blasting box adjacent to the two discharge hoppers. A switch has been installed for the separation of the glass beads and the steel shot. The glass beads are directed into a 200 l drum for the disposal. The steel shot was cleaned using a separator. The cleaned steel shot was routed via transportation devices to the storage container, making it available for further blasting operations. A decontamination box with separate air lock as access area for the decontamination of components and assemblies using high pressure water technology was provided by new construction. Water pressures between 160 bar and 800 bar can be selected. The inner

  4. An Overview of Suomi NPP VIIRS Calibration Maneuvers

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-01-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  5. Radiation exposure to marine biota around the Fukushima Daiichi NPP.

    PubMed

    Keum, Dong-Kwon; Kim, Byeong-Ho; Lim, Kwang-Muk; Choi, Yong-Ho

    2014-05-01

    The dose rates for six marine organisms, pelagic fish, benthic fish, mollusks, crustaceans, macroalgae, and polychaete worms, representative in marine ecosystems, have been predicted by the equilibrium model with the measured seawater activity concentrations at three locations around the Fukushima Daiich nuclear power plant after the accident on March 11, 2011. Model prediction showed that total dose rates for the biota in the costal sea reached 4.8E4 μGy/d for pelagic fish, 3.6E6 μGy/d for crustaceans, 3.8E6 μGy/d for benthic fish, 5.2E6 μGy/d for macroalgae, 6.6E6 μGy/d for mollusks, and 8.0E6 μGy/d for polychaete worms. The predicted total dose rates remained above the UNSCEAR's (United Nations Scientific Committee on the Effect of Atomic Radiation) benchmark level (1.0E4 μGy/d for an individual aquatic organism), for only the initial short period, which seems to be insufficiently long to bring about any detrimental effect on the marine biota at the population level. Furthermore, the total dose rates for benthic fish and crustaceans approximated using the measured activity concentration of the biota and bottom sediment was well below the benchmark level. From these results, it may be concluded that the impact of the ionizing radiation on the marine biota around the Fukushima NPP as a consequence of the accident would be insignificant. PMID:24374805

  6. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y.; Stepanyan, A.

    2012-07-01

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal

  7. Satellite EDR Evaluation with First Suomi NPP Cal/Val Campaign

    NASA Astrophysics Data System (ADS)

    Zhou, D. K.; Liu, X.; Larar, A. M.; Tian, J.; Smith, W. L.; Wu, W.; Kizer, S.; Goldberg, M.; Liu, Q.

    2015-12-01

    Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (NPP) satellite Environmental Data Records (EDRs) are retrieved from calibrated ultraspectral radiance or Sensor Data Records (SDRs). Understand the accuracy of retrieved EDRs is critical. The first Suomi NPP Calibration/Validation Campaign was conducted during May 2013. The NASA high-altitude ER-2 aircraft carrying ultraspectral interferometer sounders such as the National Airborne Sounder Testbed-Interferometer (NAST-I) flew under the Suomi NPP satellite that carries the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). Here, we inter-compare the EDRs produced with different retrieval algorithms from SDRs measured from satellite and aircraft. The available dropsonde and radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis are used to assess the results of this experiment.

  8. Decreased expression of ectonucleotidase E-NPP1 in leukocytes from subjects with severe asthma exacerbation.

    PubMed

    Montaño, L M; Vargas, M H; Díaz-Hernández, V; De Ita, M; Kazakova, R; Barajas-López, C

    2016-01-01

    Several studies suggest that ATP and related nucleotides play a role in the pathophysiology of asthma. However, the functionality of ectonucleotidases in this disease has been scantly investigated. We studied total ectonucleotidase activity in leukocytes from patients suffering from asthma exacerbation and explored the expression of E-NTPDase 1, 2, 3, and 8, and E-NPP1, 2, and 3, in their polymorphonuclear cells by immunofluorescence and qPCR. Leukocytes from patients with mild or moderate asthma exacerbation had similar ectonucleotidase activity than leukocytes from healthy subjects, while in patients with severe asthma exacerbation, this activity was lower. Of the ectonucleotidases studied, only E-NPP1 displayed diminished immunofluorescence and a significant decrease in its mRNA expression, both in patients with severe asthma exacerbation. This reduced E-NPP1 expression could be responsible for increased amounts of ATP or other nucleotides, capable of worsening asthma exacerbation, and warranting further investigation. PMID:26405014

  9. Nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    SciTech Connect

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1981-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date.

  10. On the majority carrier collection in p+pn+ and n+pp+ silicon solar cells

    NASA Astrophysics Data System (ADS)

    Singh, S. N.; Kotnala, R. K.; Jain, G. C.

    The spectral responses of a few bifacial n+pp+ silicon solar cells of different thicknesses were measured to investigate the possibility of majority carrier collection in n+pp+ back surface field (BSF) and p+pn+ front surface field (FSF) silicon solar cells. It has been found out that under low level conditions, any appreciable collection of photogenerated majority carriers has to be field aided. Therefore, under low level conditions, a substantial contribution of hole collection to the photocurrent density of a p+pn+ or n+pp+ cell may come from the p+ or p region provided not only the concentration of photogenerated holes in that region is substantially large but there also exists an aiding built in electric field due to an impurity gradient. For high level conditions, however, holes can be collected from the uniformly doped p-base region with or without the help of an aiding electric field.

  11. Assessment of void swelling in austenitic stainless steel PWR core internals.

    SciTech Connect

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  12. Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis.

    PubMed

    Zweifler, Laura E; Patel, Mudita K; Nociti, Francisco H; Wimer, Helen F; Millán, Jose L; Somerman, Martha J; Foster, Brian L

    2015-03-01

    Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enpp1 null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enpp1 gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected. PMID:25504209

  13. Comparing the impacts of 2003 and 2010 heatwaves in NPP over Europe

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; Trigo, R. M.; Running, S. W.

    2013-10-01

    In the last decade, Europe was stricken by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Russia. Both extreme events were characterised by record-breaking temperatures, and widespread socio-economic impacts, including significant increments on mortality rates, decreases in crop production and in hydroelectric production. This work aims to assess the influence of both mega-heatwaves on vegetation carbon uptake, using yearly Net Primary Production (NPP) and monthly Net Photosynthesis (PsN) data derived from satellite imagery obtained from MODIS for the period 2000-2011. In 2010, markedly low productivity was observed over a very large area in Russia, at monthly, seasonal and yearly scales, falling below 50% of average NPP. This decrease in NPP in 2010 was far more intense than the one affecting Western Europe in 2003, which corresponded to 20-30% of the average, and affected a~much larger extent. Total NPP anomalies reached -19 Tg C for the selected regions in France during 2003 and -94 Tg C for western Russia in 2010, which corresponds almost to the magnitude of total NPP anomaly during 2010 for the whole Europe. Overall, the widespread negative PsN anomalies in both regions match the patterns of very high temperature values preceded by a long period of below-average precipitation, leading to strong soil moisture deficits, stressing the role of soil-atmosphere coupling. In the case of 2003 heatwave, results indicate a strong influence of moisture deficits coupled with high temperatures in the response of vegetation, while for the 2010 event very high temperatures appear to be the main driver of very low NPP.

  14. Crack growth rates of nickel alloy welds in a PWR environment.

    SciTech Connect

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  15. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  16. Improvement of Radwaste Management System at Bilibinskaya NPP in the Far North Conditions - 13456

    SciTech Connect

    Fedorov, Denis; Adamovich, Dmitry; Savkin, Alexander

    2013-07-01

    Since 2009 Bilibinskaya NPP is getting started to prepare to the decommissioning in the Far North conditions. Bilibinskaya NPP is located in the Far North of Russian Federation in Chukotka region. Since 1974 it operates 4 units EGP-6 with the capacity of 48 MW each. According to the contract, SIA Radon has performed the following works: - LLRW disposal safety analysis, - The technology of spent ion-exchanger and salt residue solidification is proposed, - Expected radwaste (till 2027) management economical analysis, - Technical proposals for LLRW and IRW management. (authors)

  17. The change of global terrestrial ecosystem net primary productivity (NPP) and its response to climate change in CMIP5

    NASA Astrophysics Data System (ADS)

    Li, Suosuo; Lü, Shihua; Zhang, Yongjun; Liu, Yuanpu; Gao, Yanhong; Ao, Yinhuan

    2015-07-01

    Using global terrestrial ecosystem observation and proxy data for net primary productivity (NPP), leaf area index (LAI), and climate data, we compared simulated NPP, LAI, and major climatic factors and explored the relationship between their variations in historical scenarios of ten Coupled Model Intercomparison Project (CMIP5) models. The results showed that global spatial patterns of the simulated terrestrial ecosystem and climate are consistent with proxy data, but the values have some differences for each model. Based on statistical analysis, the simulated climatic factors were found to be better than terrestrial ecosystem NPP and LAI, and the multi-model ensemble (MME) results were better than every single model. For the terrestrial ecosystem, air temperature (Ta) was found to be the major affecting factor, followed by precipitation, meaning the terrestrial ecosystem NPP and LAI are more related to Ta than precipitation. Meanwhile, surface downwelling shortwave radiation (Rsds) was found to inhibit the terrestrial ecosystem in almost all regions of the world. Between 1976 and 2005, precipitation had a slight increasing trend, Ta an obvious increasing trend, and Rsds a slight decreasing trend. The changes of precipitation, air temperature, and Rsds were favorable for the terrestrial ecosystem and for plant growth. Therefore, LAI and NPP showed an obvious increasing temporal trend, and the terrestrial ecosystem showed a positive response to climate change. All the model results showed NPP had an increasing temporal trend in the past 150 years, which also indicated that the terrestrial ecosystem has shown a positive response to climate change in that time period. In terms of the global average, the simulated NPP varied from 21.5 to 69.3 Pg C year-1, and the MME NPP is about 50.6, which was almost consistent with the International Geosphere Biosphere Program (IGBP) NPP result of 55.1 and Moderate Resolution Imaging Spectroradiometer (MODIS) NPP results of 60.5 Pg

  18. Artificial radionuclides in Russia due to the Fukushima NPP accident

    NASA Astrophysics Data System (ADS)

    Polianskaia, Olga; Vakulovsky, Sergey; Kim, Vera; Yahryushin, Valery; Volokitin, Andrey

    2013-04-01

    Radioactive emission into the atmosphere from the damaged reactors of the Fukushima Daiichi nuclear power plant (NPP) started on March 12th, 2011. The network of Federal Hydrometeorology and Environmental Monitoring Service (Rosgydromet) carries out supervision over a radiation situation on the territory of Russia. In Russia, the first radionuclides from Fukushima were detected on March 20th in the Far East by network. From March 20th to April 30th I-131 (particulate form), Cs-137 and Cs-134 were detected in samples of atmospheric aerosols at the 30 stations of networks and the same ones were detected in fallout at the 25 stations of networks. The first detection of I-131 in the European territory of Russia (ETR) occurred on March 23rd; and in the South and the North of Siberia - on March 26th. The volumetric activities of I-131 in the ETR sharply increased from March 28th to 30th. Along with the increasing content of I-131 cesium isotopes appeared in the air. The maximum values of radionuclides volume activity were observed between April 3rd and 4th: for I-131 - 4,0 mBq/m3, for Cs-137 - 1,15 mBq/m3, for Cs-134 - 1,04 mBq/m3. Observed in the Far East, the maximum values for I-131 were 2-4 times lower than in the ETR. The maximum values for I-131 in the Asian territory of Russia (ATR) were 2 - 8 times lower, than in the ETR. The Cs-137/Cs-134 ratio in samples of atmospheric aerosols was about 1. The ratio I-131/Cs-137 in air changed in a wide range. From March 23rd to April 5th the ratio fluctuated within 11 to 34, from April 5th to 20th of the ratio decreased and varied within 1,5 to 7,7, further it became less than 1. The value of cesium isotopes in second quarter of 2011 in fallout was lower than 2 Bq/m2. The addition to the density of soil contamination by Cs-137 by 2 to 3 orders of magnitude less than the decrease of the density of contamination with this isotope of the global origin due to radioactive decay. Based on the obtained experimental data we can

  19. Ageing management of french NPP civil work structures

    NASA Astrophysics Data System (ADS)

    Gallitre, E.; Dauffer, D.

    2011-04-01

    This paper presents EDF practice about concrete structure ageing management, from the mechanisms analysis to the formal procedure which allows the French company to increase 900 MWe NPP lifetime until 40 years; it will also introduce its action plan for 60 years lifetime extension. This practice is based on a methodology which identifies every ageing mechanism; both plants feedback and state of the art are screened and conclusions are drawn up into an "ageing analysis data sheet". That leads at first to a collection of 57 data sheets which give the mechanism identification, the components that are concerned and an analysis grid which is designed to assess the safety risk. This analysis screens the reference documents describing the mechanism, the design lifetime hypotheses, the associated regulation or codification, the feedback experiences, the accessibility, the maintenance actions, the repair possibility and so one. This analysis has to lead to a conclusion about the risk taking into account monitoring and maintenance. If the data sheet conclusion is not clear enough, then a more detailed report is launched. The technical document which is needed, is a formal detailed report which summarizes every theoretical knowledge and monitoring data: its objective is to propose a solution for ageing management: this solution can include more inspections or specific research development, or additional maintenance. After a first stage on the 900 MWe units, only two generic ageing management detailed reports have been needed for the civil engineering part: one about reactor building containment, and one about other structures which focuses on concrete inflating reactions. The second stage consists on deriving this generic analysis (ageing mechanism and detailed reports) to every plant where a complete ageing report is required (one report for all equipments and structures of the plant, but specific for each reactor). This ageing management is a continuous process because the

  20. Current Status of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, S.; Laszlo, I.; Liu, H.; Zhang, H.; Huang, J.; Remer, L. A.; Ciren, P.; Huang, H.

    2013-12-01

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR). The VIIRS AOT is expected to provide continuity to the 10-km Aqua and Terra MODIS (Moderate resolution Imaging Spectroradiometer) AOT products that the air quality and public health community has been using. The VIIRS aerosol product suite also includes less mature products such as Suspended Matter (SM) and Aerosol Particle Size Parameter (APSP). An extensive validation of VIIRS best quality aerosol products with ground based L1.5 AERONET data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. Analysis of SM shows that the algorithm predominantly picks smoke both over land and ocean which is not in agreement with retrievals from Multi-angle Imaging SpectroRadiometer (MISR) and Cloud Aerosol Lidar and Infrared Pathfinder Space Observations (CALIPSO). Similarly, the Angstrom Exponent (AE) retrieval used as a proxy for particle size has no skill over land and only a marginal skill over ocean when compared to AERONET; although a bias of ~0.2 for over ocean retrievals meets specification (0.3), the correlation is low and the standard deviation is ~0.6 and does not meet specification (0.3). This evaluation places the VIIRS AOT product at the provisional maturity level (product is validated, may contain some errors, and ready for operational evaluation). However, several algorithm updates which include a better approach to retrieve surface reflectance are forthcoming. Current status of the aerosol

  1. Proceedings: 1983 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect

    1986-03-01

    Participants in this international workshop discussed research investigating mechanisms and propagation rates of intergranular corrosion in PWR steam generators. Laboratory test results, which have been consistent with power plant experience, permitted preliminary definition of corrosion rates in alloy 600 tubing.

  2. Post-Launch Calibration Support for VIIRS Onboard NASA NPP Spacecraft

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxion; Chiang, Kwo-Fu; McIntire, Jeffrey; Schwaller, Matthew; Butler, James

    2011-01-01

    The NPP Instrument Calibration Support Element (NICSE) is one of the elements within the NASA NPP Science Data Segment (SDS). The primary responsibility of NICSE is to independently monitor and evaluate on-orbit radiometric and geometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument and to validate its Sensor Data Record (SDR) [1]. The NICSE interacts and works closely with other SDS Product Evaluation and Analysis Tools Elements (PEATE) and the NPP Science Team (ST) and supports their on-orbit data product calibration and validation efforts. The NICSE also works closely with the NPP Instrument Calibration Support Team (NICST) during sensor pre-launch testing in ambient and thermal vacuum environment [2]. This paper provides an overview of NICSE VIIRS sensor post-launch calibration support with a focus on the use of sensor on-board calibrators (OBC) for the radiometric calibration and characterization. It presents the current status of NICSE post-launch radiometric calibration tool development effort based on its design requirements

  3. [Specific Features of Scots Pine Seeds Formation in the Remote Period after the Chernobyl NPP Accident].

    PubMed

    Geras'kin, S A; Vasiliev, D V; Kuzmenkov, A G

    2015-01-01

    The results of long-term (2007-2011) observations on the quality of seed progeny in Scots pine populations inhabiting the sites within the Bryansk region contaminated as a result of the Chernobyl NPP accident are presented. Formed under the chronic exposure seeds are characterized by a high interannual variability, which is largely determined by weather conditions. PMID:26863784

  4. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy; Schmieman, Eric

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  5. Deficiency of the bone mineralization inhibitor NPP1 protects mice against obesity and diabetes

    PubMed Central

    Huesa, Carmen; Zhu, Dongxing; Glover, James D.; Ferron, Mathieu; Karsenty, Gerard; Milne, Elspeth M.; Millan, José Luis; Ahmed, S. Faisal; Farquharson, Colin; Morton, Nicholas M.; MacRae, Vicky E.

    2014-01-01

    The emergence of bone as an endocrine regulator has prompted a re-evaluation of the role of bone mineralization factors in the development of metabolic disease. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) controls bone mineralization through the generation of pyrophosphate, and levels of NPP1 are elevated both in dermal fibroblast cultures and muscle of individuals with insulin resistance. We investigated the metabolic phenotype associated with impaired bone metabolism in mice lacking the gene that encodes NPP1 (Enpp1−/− mice). Enpp1−/− mice exhibited mildly improved glucose homeostasis on a normal diet but showed a pronounced resistance to obesity and insulin resistance in response to chronic high-fat feeding. Enpp1−/− mice had increased levels of the insulin-sensitizing bone-derived hormone osteocalcin but unchanged insulin signalling within osteoblasts. A fuller understanding of the pathways of NPP1 could inform the development of novel therapeutic strategies for treating insulin resistance. PMID:25368121

  6. Simulation of Hydrogen Distribution in Ignalina NPP ALS Compartments During BDBA

    SciTech Connect

    Babilas, Egidijus; Urbonavicius, Egidijus; Rimkevicius, Sigitas

    2006-07-01

    Accident Localisation System (ALS) of Ignalina NPP is a 'pressure suppression' type confinement, which protects the population, employees and environment from the radiation hazards. According to the Safety Analysis Report for Ignalina NPP {approx}110 m{sup 3} of hydrogen is released to ALS compartments during the Maximum Design Basis Accident. However in case of beyond design basis accident, when the oxidation of zirconium starts, the amount of generated hydrogen could be significantly higher. If the volume concentration of hydrogen in the compartment reaches 4%, there is a possibility for a combustible mixture to appear. To prevent the possible hydrogen accumulation in the ALS of the Ignalina NPP during an accident the H{sub 2} control system is installed. The results of the performed analysis derived the places of the possible H{sub 2} accumulation in the ALS compartments during the transient processes and assessed the mixture combustibility in these places for a beyond design basis accident scenario. Such analysis of H{sub 2} distribution in the ALS of Ignalina NPP in case of BDBA was not performed before. (authors)

  7. Local network deployed around the Kozloduy NPP - a useful tool for seismological monitoring

    NASA Astrophysics Data System (ADS)

    Solakov, Dimcho; Simeonova, Stela; Dimitrova, Liliya; Slavcheva, Krasimira; Raykova, Plamena; Popova, Maria; Georgiev, Ivan

    2015-04-01

    Radiation risks may transcend national borders, and international cooperation serves to promote and enhance safety globally by exchanging experience and by improving capabilities to control hazards, to prevent accidents, to respond to emergencies and to mitigate any harmful consequences. International safety standards provide support for states in meeting their obligations under general principles of international law, such as those relating to environmental protection. Seismic safety is a key element of NPP safe operation. Safety and security measures have in common the aim of protecting human life and health and the environment. The Kozloduy NPP site is located in the stable part of the Moesian platform (area of about 50000 km2). From seismological point of view the Moesian platform is the most quite area on the territory of Bulgaria. There are neither historical nor instrumental earthquakes with M>4.5 occurred within the platform. The near region (area with radial extent of 30 km) of the NPP site is characterized with very low seismic activity. The strongest recorded quake is the 1987 earthquake МS=3.6, localized 22 km northwest of the Kozloduy NPP site on the territory of Romania. In line with international practice, the geological, geophysical and seismological characteristics of the region around the site have been investigated for the purpose of evaluating the seismic hazards at the NPP site. A local network (LSN) of sensitive seismographs having a recording capability for micro-earthquakes have been installed around Kozloduy NPP and operated since 1997. The operation and data processing, data interpretation, and reporting of the local micro-earthquake network are linked to the national seismic network (NOTSSI). A real-time data transfer from stations to National Data Center (in Sofia) was implemented using the VPN and MAN networks of the Bulgarian Telecommunication. Real-time and interactive data processing are performed by the Seismic Network Data

  8. The sensitivity of NPP to climate controls in northern China estimated by CLM model coupled with RS and GIS technology

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei; Slusser, James R.; Pan, Xiaoling; Ma, Yingjun

    2003-07-01

    The continuing rise in atmospheric CO2 is considered as a main cause of the future changes in global climate. Predicted climate changes include an increase in mean annual air temperature and alterations in precipitation pattern and cloud cover. Net primary productivity (NPP) measures products of major economic and social importance, such as agricultural crop yield and forest production. It is important to understand the response of vegetation to the possible climate changes. While the Global NPP is hard to be measured directly, its global spatial and temporal dynamics can be investigated by a combination of ecosystem process modeling and monitoring by remote sensing (RS). NPP has been linked to climatic patterns by approaches ranging from simple correlations to sophisticated simulation models. This study was conducted in a range where the productivity and climate exist along an east-west transect in northern China. We used modified Common Land Surface Model (CLM) to simulate the NPP combined with satellite data and assessed the response of NPP under different climate change controls with different land surface vegetation types in study areas. The feasibility of the CLM model was tested and parameterized based on the ecological characteristics. The response of NPP to increased temperature was more sensitive to the doubled CO2 climate because the temperature is the limited factor to vegetation growth in study areas. The responses of NPP to different climate controls were also influenced by different vegetation types and ecological characteristics.

  9. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  10. Decontamination of the Shaft no.1 and cleaning container of 2. block NPP Paks

    SciTech Connect

    Bolcha, Jan; Mala, Zuzana; Tilky, Peter

    2007-07-01

    Available in abstract form only. Full text of publication follows: Meanwhile cleaning fuel assemblies on Paks NPP Unit 2. in 2003 year, the fuel assemblies were damaged, followed by contamination of cleaning container and operating shaft No. 1., in which was the container. As a part of the task - to restore operation NPP Paks, Unit 2, VUJE and.. realized decontamination of the wall of shaft prior to withdrawal of the defected fuel, decontamination of cleaning tank and in consequence decontamination of full shaft No. 1. Solution rest at finished conceptual decontamination proposal, fabrication of special purpose furnished, necessary documentation according to national legislative exigency. Real facilities on decontamination were examined on the stand and on shaft No. 1 in real conditions. This paper describes access method decontaminating procedure, applied facilities assigned on decontamination and present achievement results from decontamination shaft No. 1 realized in August 2006 and February 2007, respectively. Decontamination procedures were chosen on the base of experiments realized in laboratories VUJE and in Paks NPP. Laboratory experiments were realized on the sample of tube used for measurement of neutron flow, from NPP Paks, located in the shaft No.1 in time of event (INES-3). In NPP Paks were realized experiments on cover of cleaning container, which was in time of event situated on cleaning container. To compare decontaminated factors, the chemical and electrochemical procedures for decontamination were tested, and most effective practices were selected. Equipment ROS-740 can be used for the top part of the shaft decontamination. It allows high-pressure admission, rinse and chemical decontamination. Manipulator MAOS-170 is assigned for high-pressure admission of central part of the shaft. (authors)

  11. Thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives: Structure-activity relationships of selective nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors.

    PubMed

    Lee, Sang-Yong; Perotti, Arianna; De Jonghe, Steven; Herdewijn, Piet; Hanck, Theodor; Müller, Christa E

    2016-07-15

    Ecto-nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) is the most important member of the NPP family, which consists of seven closely related proteins (NPP1-NPP7). This glycoprotein is a membrane-associated or secreted enzyme, which catalyzes the hydrolysis of a wide range of phosphodiester bonds, e.g., in nucleoside triphosphates, dinucleotides and nucleotide sugars. NPP1 plays a crucial role in various physiological functions including bone mineralization, soft-tissue calcification, and insulin receptor signaling. Recently, an upregulated expression of NPP1 has been observed in astrocytic brain cancers. Therefore, NPP1 has been proposed as a novel drug target for the treatment of glioblastoma. Despite their therapeutic potential, only few NPP1 inhibitors have been reported to date, which are in most cases non- or only moderately selective. The best investigated NPP1 inhibitors so far are nucleotide derivatives and analogs, however they are not orally bioavailable due to their high polarity. We identified thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives as a new class of NPP1 inhibitors with drug-like properties. Among the 25 derivatives investigated in the present study, 2-[(5-iodo-2-furanyl)methylene]thiazolo[3,2-a]benzimidazol-3(2H)-one (17) was found to be the most potent NPP1 inhibitor with a Ki value of 467nM versus ATP as a substrate and an un-competitive mechanism of inhibition. Compound 17 did not inhibit other human ecto-nucleotidases, including NTPDase1 (CD39), NTPDases2-3, NPP2, NPP3, tissue-nonspecific alkaline phosphatase (TNAP), and ecto-5'-nucleotidase (eN, CD73), and is thus highly selective for NPP1. PMID:27265686

  12. Optimization of small long-life PWR based on thorium fuel

    SciTech Connect

    Subkhi, Moh Nurul; Suud, Zaki Waris, Abdul; Permana, Sidik

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {sup 231}Pa give low excess reactivity.

  13. Conceptual design study of small long-life PWR based on thorium cycle fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higer conversion ratio in thermal region compared to uranium cycle produce some significant of 233U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  14. Optimization of small long-life PWR based on thorium fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  15. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  16. DOMINO: A fast 3D cartesian discrete ordinates solver for reference PWR simulations and SPN validation

    SciTech Connect

    Courau, T.; Moustafa, S.; Plagne, L.; Poncot, A.

    2013-07-01

    As part of its activity, EDF R and D is developing a new nuclear core simulation code named COCAGNE. This code relies on DIABOLO, a Simplified PN (SPN) method to compute the neutron flux inside the core for eigenvalue calculations. In order to assess the accuracy of SPN calculations, we have developed DOMINO, a new 3D Cartesian SN solver. The parallel implementation of DOMINO is very efficient and allows to complete an eigenvalue calculation involving around 300 x 10{sup 9} degrees of freedom within a few hours on a single shared-memory supercomputing node. This computation corresponds to a 26-group S{sub 8} 3D PWR core model used to assess the SPN accuracy. At the pin level, the maximal error for the SP{sub 5} DIABOLO fission production rate is lower than 0.2% compared to the S{sub 8} DOMINO reference for this 3D PWR core model. (authors)

  17. Preliminary assessment of PWR Steam Generator modelling in RELAP5/MOD3. International Agreeement Report

    SciTech Connect

    Preece, R.J.; Putney, J.M.

    1993-07-01

    A preliminary assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD3 is presented. The study is based on calculations against a series of steady-state commissioning tests carried out on the Wolf Creek PWR over a range of load conditions. Data from the tests are used to assess the modelling of primary to secondary side heat transfer and, in particular, to examine the effect of reverting to the standard form of the Chen heat transfer correlation in place of the modified form applied in RELAP5/MOD2. Comparisons between the two versions of the code are also used to show how the new interphase drag model in RELAP5/MOD3 affects the calculation of SG liquid inventory and the void fraction profile in the riser.

  18. The electrochemistry in 316SS crevices exposed to PWR-relevant conditions

    NASA Astrophysics Data System (ADS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Henshaw, J.; Deconinck, J.

    2009-04-01

    The chemical and electrochemical conditions within a crevice of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions were modelled with a computational electrochemistry code. The influence of various variables: dissolved hydrogen, boric acid, lithium hydroxide concentration, crevice length, and radiation dose rate was studied. It was found with the model that 25 ccH 2/kg (STP) was sufficient to remain below an electrode potential of -230 mV she, commonly accepted sufficient to prevent stress corrosion cracking under BWR conditions. In a PWR plant various operational B-Li cycles are possible but it was found that the choice of the cycle did not significantly influence the model results. It was also found that a hydrogen level of 50 ccH 2/kg (STP) would be needed to avoid substantial lowering of the pH inside a crevice.

  19. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  20. Pressure-vessel-damage fluence reduction by low-leakage fuel management. [PWR

    SciTech Connect

    Cokinos, D.; Aronson, A.L.; Carew, J.F.; Kohut, P.; Todosow, M.; Lois, L.

    1983-01-01

    As a result of neutron-induced radiation damage to the pressure vessel and of an increased concern that in a PWR transient the pressure vessel may be subjected to pressurized thermal shock (PTS), detailed analyses have been undertaken to determine the levels of neutron fluence accumulation at the pressure vessels of selected PWR's. In addition, various methods intended to limit vessel damage by reducing the vessel fluence have been investigated. This paper presents results of the fluence analysis and the evaluation of the low-leakage fuel management fluence reduction method. The calculations were performed with DOT-3.5 in an octant of the core/shield/vessel configuration using a 120 x 43 (r, theta) mesh structure.

  1. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    SciTech Connect

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has also been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)

  2. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  3. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  4. PWR ENDF/B-VII cross-section libraries for ORIGEN-ARP

    SciTech Connect

    McGraw, C.; Ilas, G.

    2012-07-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% {sup 235}U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time. (authors)

  5. A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison

    NASA Astrophysics Data System (ADS)

    Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.

    2014-06-01

    Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.

  6. Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568

    SciTech Connect

    Fedorov, Denis; Adamovich, Dmitry; Klimenko, I.; Taranenko, L.

    2012-07-01

    Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWS tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the

  7. [The main radionuclides and dose formation in fish of the Chernobyl NPP exclusion zone].

    PubMed

    Gudkov, D I; Kaglian, A E; Kireev, S I; Nazarov, A B; Klenus, V G

    2008-01-01

    The results of the researches of spices-specificity, accumulation dynamics and distribution of 90Sr, of 137Cs and of transuranic elements in fish of the Chernobyl NPP exclusion zone are analysed. The data of estimations of absorbed doze rate from incorporated radionuclides for pray fish and predatory species are given. For the fish from the lake of the left-bank floodplain of the Pripyat River the increase of 90Sr specific activity is registered which is presumably connected with the dynamics of the physical-chemical forms of the radionuclide in soils and their wash out in water bodies from the catchment basin. Now about 90% of internal dose rate of fish from closed aquatic ecosystems within the Chernobyl NPP exclusion zone is caused by 90Sr incorporation. PMID:18666579

  8. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    NASA Astrophysics Data System (ADS)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  9. SEISMIC RESPONSE PREDICTION OF NUPEC'S FIELD MODEL TESTS OF NPP STRUCTURES WITH ADJACENT BUILDING EFFECT.

    SciTech Connect

    XU,J.COSTANTINO,C.HOFMAYER,C.ALI,S.

    2004-03-04

    As part of a verification test program for seismic analysis computer codes for Nuclear Power Plant (NPP) structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model tests to address the dynamic cross interaction (DCI) effect on the seismic response of NPP structures built in close proximity to each other. The program provided field data to study the methodologies commonly associated with seismic analyses considering the DCI effect. As part of a collaborative program between the United States and Japan on seismic issues related to NPP applications, the U.S. Nuclear Regulatory Commission sponsored a program at Brookhaven National Laboratory (BNL) to perform independent seismic analyses which applied common analysis procedures to predict the building response to recorded earthquake events for the test models with DCI effect. In this study, two large-scale DCI test model configurations were analyzed: (1) twin reactor buildings in close proximity and (2) adjacent reactor and turbine buildings. This paper describes the NUPEC DCI test models, the BNL analysis using the SASSI 2000 program, and comparisons between the BNL analysis results and recorded field responses. To account for large variability in the soil properties, the conventional approach of computing seismic responses with the mean, mean plus and minus one-standard deviation soil profiles is adopted in the BNL analysis and the three sets of analysis results were used in the comparisons with the test data. A discussion is also provided in the paper to address (1) the capability of the analysis methods to capture the DCI effect, and (2) the conservatism of the practice for considering soil variability in seismic response analysis for adjacent NPP structures.

  10. Managing the equipment service life in rendering engineering support to NPP operation

    NASA Astrophysics Data System (ADS)

    Ryasnyy, S. I.

    2015-05-01

    Apart from subjecting metal to nondestructive testing and determining its actual state, which are the traditional methods used for managing the service life of NPP equipment during its operation, other approaches closely linked with rendering engineering support to NPP operation have emerged in recent decades, which, however, have been covered in publications to a lesser extent. Service life management matters occupy the central place in the structure of engineering support measures. Application of the concept of repairing NPP equipment based on assessing its technical state and the risk of its failure makes it possible to achieve significantly smaller costs for maintenance and repairs and produce a larger amount of electricity due to shorter planned outages. Decreasing the occurrence probability of a process-related abnormality through its prediction is a further development of techniques for monitoring the technical state of equipment and systems. The proposed and implemented procedure for predicting the occurrence of process-related deviations from normal NPP operation opens the possibility to record in the online mode the trends in changes of process parameters that are likely to lead to malfunctions in equipment operation and to reduce the probability of power unit unloading when an abnormal technical state of equipment occurs and develops by recording changes in the state at an early stage and taking timely corrective measures. The article presents the structure of interconnections between the objectives and conditions of adjustment and commissioning tests, in which the management of equipment service life (saving and optimizing the service life) occupies the central place. Special attention is paid to differences in resource saving and optimization measures.

  11. Characterization and Performance of the Suomi-NPP VIIRS Solar Diffuser Stability Monitor

    NASA Technical Reports Server (NTRS)

    Fulbright, Jon P.; Ning, Lei; Kwofu, Chiang; Xiaoxiong, Xiong

    2012-01-01

    We describe the on-orbit characterization and performance of the Solar Diffuser Stability Monitor (SDSM) on-board Suomi-NPP/VIIRS. This description includes the observing procedure of each SDSM event, the algorithms used to generate the Solar Diffuser degradation corrective factors, and the results for the mission to date. We will also compare the performance of the VIIRS SDSM and SD to the similar components operating on the MODIS instrument on the EOS Terra and Aqua satellites

  12. Land, Cryosphere, and Nighttime Environmental Products from Suomi NPP VIIRS: Overview and Status

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Justice, Chris; Csiszar, Ivan

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-orbiting Partnership (S-NPP: http://npp.gsfc.nasa.gov/). VIIRS was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provide observation continuity with NASA's Earth Observing System's (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA and NOAA funded scientists have been working to evaluate the instrument performance and derived products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the former National Polar-orbiting Environmental Satellite System (NPOESS). The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs and providing MODIS data product continuity. This paper will present to-date findings of the NASA Science Team's evaluation of the VIIRS Land and Cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization (http://viirsland.gsfc.nasa.gov/index.html). The paper will also discuss new capabilities being developed at NASA's Land Product Evaluation and Test Element (http://landweb.nascom.nasa.gov/NPP_QA/); including downstream data and products derived from the VIIRS Day/Night Band (DNB).

  13. An overview of the ENEA activities in the field of coupled codes NPP simulation

    SciTech Connect

    Parisi, C.; Negrenti, E.; Sepielli, M.; Del Nevo, A.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark and the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)

  14. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats.

    PubMed

    Kim, Ju Myung; Yoon, Ji Na; Jung, Ji Won; Choi, Hye Duck; Shin, Young June; Han, Chang Kyun; Lee, Hye Suk; Kang, Hee Eun

    2013-11-01

    1. Hederacoside C (HDC) is one of the active ingredients in Hedera helix leaf extract (Ivy Ex.) and AG NPP709, a new botanical drug to treat acute respiratory infection and chronic inflammatory bronchitis. However, information regarding its pharmacokinetic properties remains limited. 2. Here, we report the pharmacokinetics of HDC in rats after intravenous administration of HDC (3, 12.5, and 25 mg/kg) and after oral administration of HDC, Ivy Ex., and AG NPP709 (equivalent to 12.5, 25, and 50 mg/kg HDC). 3. Linear pharmacokinetics of HDC were identified upon its intravenous administration at doses of 3-25 mg/kg. Intravenous administration of HDC results in relatively slow clearance (1.46-2.08 mL/min/kg) and a small volume of distribution at steady state (138-222 mL/kg), while oral administration results in a low absolute oral bioavailability (F) of 0.118-0.250%. The extremely low F of HDC may be due to poor absorption of HDC from the gastrointestinal (GI) tract and/or its decomposition therein. 4. The oral pharmacokinetics of HDC did not differ significantly among pure HDC, Ivy Ex., and AG NPP709. PMID:23607546

  15. Principles on Radiological Characterization of the Unit 1 at Ignalina NPP for Decommissioning Purposes

    SciTech Connect

    Poskas, P.; Zujus, R.; Drumstas, G.; Poskas, R.; Simonis, V.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (INPP). The INPP operated two similar units with installed capacity of 1500 MW(each). They were commissioned in 12/1983 and 08/1987, and the original design lifetime was projected out to 2010 and 2015 respectively. But the first Unit of Ignalina NPP was shutdown December 31, 2004, and second Unit will be closed down before 2010 taking into consideration substantial long-term financial assistance from the EU, G7 and other states as well as international institutions. Implementation of dismantling activities requires detailed knowledge of the radiological situation at the Unit 1. General Programme of Radiological Survey for Ignalina NPP Unit 1 based on NUREG-1575 was prepared in 2005- 2006 by Consortium led by Lithuanian Energy Institute and approved by Regulatory Bodies. It includes such main steps as historical site assessment, scoping, characterization, remedial actions/decontamination support surveys and final status surveys. General Programme of Radiological Survey defines content and principles of the surveys, and preliminary survey considerations, including identification of the contaminants, establishment of the free release levels, principles on areas classification depending on contamination potential, identification of the final survey units, criteria for selection survey instrumentation, techniques and methods etc. So, in the paper information on these principles and the content of the different stages in General Programme of Radiological Survey is presented. (authors)

  16. Conformity Between LR0 Mock-Ups and Vvers Npp Rpv Neutron Flux Attenuation

    NASA Astrophysics Data System (ADS)

    Belousov, Sergey; Ilieva, Krassimira; Kirilova, Desislava

    2009-08-01

    The conformity of the mock-up results and those for reactor pressure vessel (RPV) of nuclear power plants (NPP) has been evaluated in order to qualify if the mock-ups data could be used for benchmark's purpose only, or/and for simulating of the NPP irradiation conditions. Neutron transport through the vessel has been calculated by the three-dimensional discrete ordinate code TORT with problem oriented multigroup energy neutron cross-section library BGL. Neutron flux/fluence and spectrum shape represented by normalized group neutron fluxes in the multigroup energy structure, for neutrons with energy above 0.5 MeV, have been used for conformity analysis. It has been demonstrated that the relative difference of the attenuation factor as well as the group neutron fluxes did not exceed 10% at all considered positions for VVER-440. For VVER-1000, it has been obtained the same consistency, except for the location behind the RPV. The neutron flux attenuation behind the RPV is 18% higher than the mock-up attenuation. It has been shown that this difference arises from the dissimilarity of the biological shielding. The obtained results have demonstrated that the VVERs' mock-ups are appropriate for simulating the NPP irradiation conditions. The mock-up results for VVER-1000 have to be applied more carefully i.e. taking into account the existing peculiarity of the biological shielding and RPV attenuation azimuthal dependence.

  17. NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wu, A.

    2012-01-01

    Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.

  18. Monitoring NPP VIIRS on-orbit radiometric performance from TOA reflectance time series

    NASA Astrophysics Data System (ADS)

    Wu, A.; Xiong, X.; Cao, C.; Sun, C.

    2013-09-01

    The recently launched (October 28, 2011) Suomi NPP (National Polar-orbiting Partnership) satellite has been operating nominally to daily collect global data. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor onboard the spacecraft. Similar to the heritage sensor MODIS, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background. This study examines VIIRS reflective solar bands (RSB) calibration stability and performance using observed top-of-atmosphere (TOA) reflectance time series collected from two approaches. The first is from comparison with a well-calibrated Aqua MODIS and the second is from overpasses over the widely used Liby-4 desert site. The VIIRS and MODIS comparison data is obtained from simultaneous nadir overpasses (SNO) for their spectrally matched bands. The reflectance trends over the Libya-4 site are extracted from 16-day repeatable orbits so each data point has the same viewing geometry relative to the site. The impact due to the band spectral differences between the two instruments is corrected based on MODTRAN5 simulations. Results of this study provide useful information on NPP VIIRS post-launch calibration assessment and preliminary analysis of its calibration stability and consistency for the first 1.5 years.

  19. Assessing Forest NPP: BIOME-BGC Predictions versus BEF Derived Estimates

    NASA Astrophysics Data System (ADS)

    Hasenauer, H.; Pietsch, S. A.; Petritsch, R.

    2007-05-01

    Forest productivity has always been a major issue within sustainable forest management. While in the past terrestrial forest inventory data have been the major source for assessing forest productivity, recent developments in ecosystem modeling offer an alternative approach using ecosystem models such as Biome-BGC to estimate Net Primary Production (NPP). In this study we compare two terrestrial driven approaches for assessing NPP: (i) estimates from a species specific adaptation of the biogeochemical ecosystem model BIOME-BGC calibrated for Alpine conditions; and (ii) NPP estimates derived from inventory data using biomass expansion factors (BEF). The forest inventory data come from 624 sample plots across Austria and consist of repeated individual tree observations and include growth as well as soil and humus information. These locations are covered with spruce, beech, oak, pine and larch stands, thus addressing the main Austrian forest types. 144 locations were previously used in a validating effort to produce species-specific parameter estimates of the ecosystem model. The remaining 480 sites are from the Austrian National Forest Soil Survey carried out at the Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW). By using diameter at breast height (dbh) and height (h) volume and subsequently biomass of individual trees were calculated, aggregated for the whole forest stand and compared with the model output. Regression analyses were performed for both volume and biomass estimates.

  20. Assessment of core damage frequency owing to possible fires at NPP with RBMK type reactors

    SciTech Connect

    Vinnikov, B.

    2012-07-01

    According to Scientific and Technical Cooperation between the USA and Russia in the field of nuclear engineering the Idaho National Laboratory has transferred to the possession of the National Research Center ' Kurchatov Inst. ' the SAPHIRE software without any fee. With the help of the software Kurchatov Inst. developed a Pilot Living PSA- Model of Leningrad NPP Unit 1. Computations of core damage frequencies were carried out for additional Initiating Events. In the submitted paper such additional Initiating Events are fires in various compartments of the NPP. During the computations of each fire, structure of the PSA - Model was not changed, but Fault Trees for the appropriate systems, which are removed from service during the fire, were changed. It follows from the computations, that for ten fires Core Damaged Frequencies (CDF) are not changed. Other six fires will cause additional core damage. On the basis of the calculated results it is possible to determine a degree of importance of these fires and to establish sequence of performance of fire-prevention measures in various places of the NPP. (authors)

  1. NPP VIIRS and Aqua MODIS RSB comparison using observations from simultaneous nadir overpasses (SNO)

    NASA Astrophysics Data System (ADS)

    Wu, Aisheng; Xiong, Xiaoxiong

    2012-09-01

    Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door's opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (~0.4 μm) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.

  2. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Performance for Suomi NPP

    NASA Astrophysics Data System (ADS)

    Idol, J.; Grant, K. D.; Waas, W.; Austin, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The Suomi NPP launched on October 28, 2011. Launch was followed by a phase of sensor activation, and full volume data traffic is now flowing from the

  3. Suomi Npp and Jpss Pre-Launch Test Data Collection and Archive

    NASA Astrophysics Data System (ADS)

    Denning, M.; Ullman, R.; Guenther, B.; Kilcoyne, H.; Chandler, C.; Adameck, J.

    2012-12-01

    During the development of each Suomi National Polar-orbiting Partnership (Suomi NPP) instrument, significant testing was performed, both in ambient and simulated orbital (thermal-vacuum) conditions, at the instrument factory, and again after integration with the spacecraft. The NPOESS Integrated Program Office (IPO), and later the NASA Joint Polar Satellite System (JPSS) Program Office, defined two primary objectives with respect to capturing instrument and spacecraft test data during these test events. The first objective was to disseminate test data and auxiliary documentation to an often distributed network of scientists to permit timely production of independent assessments of instrument performance, calibration, data quality, and test progress. The second goal was to preserve the data and documentation in a catalogued government archive for the life of the mission, to aid in the resolution of anomalies and to facilitate the comparison of on-orbit instrument operating characteristics to those observed prior to launch. In order to meet these objectives, Suomi NPP pre-launch test data collection, distribution, processing, and archive methods included adaptable support infrastructures to quickly and completely transfer test data and documentation from the instrument and spacecraft factories to sensor scientist teams on-site at the factory and around the country. These methods were unique, effective, and low in cost. These efforts supporting pre-launch instrument calibration permitted timely data quality assessments and technical feedback from contributing organizations within the government, academia, and industry, and were critical in supporting timely sensor development. Second, in parallel to data distribution to the sensor science teams, pre-launch test data were transferred and ingested into the central Suomi NPP calibration and validation (cal/val) system, known as the Government Resource for Algorithm Verification, Independent Testing, and Evaluation

  4. A Study on the Conceptual Design of a 1,500 MWe Passive PWR with Annular Fuel

    SciTech Connect

    Kwi Lim Lee; Soon Heung Chang

    2004-07-01

    In this study, the preliminary conceptual design of a 1500 MWe pressurized water reactor (PWR) with annular fuel has been performed. This design is derived from the AP1000 which is a 1000 MWe PWR with two-loop. However, the present design is a 1500 MWe PWR with three-loop, passive safety features and extensive plant simplifications to enhance the construction, operation, and maintenance. The preliminary design parameters of this reactor have been determined through simple relation to those of AP1000 for reactor, reactor coolant system, and passive safety injection system. Using the MATRA code, we analyze the core designs for two alternatives on fuel assembly types: solid fuel and annular fuel. The performance of reactor cooling systems is evaluated through the accident of the cold leg break in the core makeup tank loop by using MARS2.1 code. This study presents the developmental strategy, preliminary design parameters and safety analysis results. (authors)

  5. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    SciTech Connect

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  6. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    SciTech Connect

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C; Murphy, Brian D; Mueller, Don

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  7. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    SciTech Connect

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)

  8. MELCOR analyses of severe accident scenarios in Oconee, a B&W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S.; Foulds, R.

    1993-03-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock & Wilcox (B&W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  9. MELCOR analyses of severe accident scenarios in Oconee, a B W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S. ); Foulds, R. )

    1993-01-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock Wilcox (B W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  10. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  11. Nuclear data uncertainties by the PWR MOX/UO{sub 2} core rod ejection benchmark

    SciTech Connect

    Pasichnyk, I.; Klein, M.; Velkov, K.; Zwermann, W.; Pautz, A.

    2012-07-01

    Rod ejection transient of the OECD/NEA and U.S. NRC PWR MOX/UO{sub 2} core benchmark is considered under the influence of nuclear data uncertainties. Using the GRS uncertainty and sensitivity software package XSUSA the propagation of the uncertainties in nuclear data up to the transient calculations are considered. A statistically representative set of transient calculations is analyzed and both integral as well as local output quantities are compared with the benchmark results of different participants. It is shown that the uncertainties in nuclear data play a crucial role in the interpretation of the results of the simulation. (authors)

  12. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  13. User's guide for the PWR LOCA analysis capability of the WRAP-EM system

    SciTech Connect

    Beranek, F; Gregory, M V

    1980-02-01

    The Water Reactor Analysis Package (WRAP) has been expanded to provide the capability to analyze loss-of-coolant accidents (LOCAs) in both pressurized water reactors (PWRs) and boiling water reactors (BWRs) by using evaluation models (EMs). The input specifications for modules in the WRAP-EM system are presented in this document along with the JOSHUA input templates. This document, along with the WRAP user's guide, provides a step-by-step procedure for setting up a PWR data base for the WRAP-EM system. 12 refs.

  14. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    SciTech Connect

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-10-03

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation.

  15. CRACK GROWTH RESPONSE OF ALLOY 152 AND 52 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The crack growth response of alloy 152 and 52 weld metals has been measured in simulated PWR primary water at both high (325-350 C) and low (50 C) temperatures. Tests were performed on samples machined from alloy 152 or 52 mockup welds. Propagation rates under cycle + hold and constant K conditions at high temperatures show stable, but extremely low SCC growth rates. The most significant intergranular cracking occurred during cycling at 50 C, particularly for the alloy 152 weld metal at high stress intensity.

  16. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients. [PWR

    SciTech Connect

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations.

  17. Neutronics and safety characteristics of a 100% MOX fueled PWR using weapons grade plutonium

    SciTech Connect

    Biswas, D.; Rathbun, R.; Lee, Si Young; Rosenthal, P.

    1993-12-31

    Preliminary neutronics and safety studies, pertaining to the feasibility of using 100% weapons grade mixed-oxide (MOX) fuel in an advanced PWR Westinghouse design are presented in this paper. The preliminary results include information on boron concentration, power distribution, reactivity coefficients and xenon and control rode worth for the initial and the equilibrium cycle. Important safety issues related to rod ejection and steam line break accidents and shutdown margin requirements are also discussed. No significant change from the commercial design is needed to denature weapons-grade plutonium under the current safety and licensing criteria.

  18. Development of inspection systems for alloy 600 nozzles of PWR reactor vessel

    SciTech Connect

    Unate, K.; Ideo, M.; Sanagawa, T.; Shirai, T.; Araki, Y.

    1995-08-01

    PWR reactor vessels have alloy 600 nozzles at top and bottom heads. The former are head penetration nozzles for CRDM, and the latter are bottom mounted instrumentation nozzles. The authors have developed inspection systems of two types for each nozzle to confirm the soundness. ECT and UT Techniques are employed for both systems. These systems are controlled remotely and enable to reduce radiation exposure, inspection time and number of inspectors. Based on the functional tests using full scale mockups, the reliabilities and effectiveness of both systems were confirmed.

  19. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  20. Neutron fluence vessel assessment in the 1300 MWe NPP French fleet: the FLUOLE program in EOLE

    SciTech Connect

    Blaise, P.; Thiollay, N.; Fougeras, P.; Destouches, C.; Beretz, D.; Pont, T.; Garnier, D.

    2006-07-01

    The Vessel Neutron fluence assessment is a key parameter for vessel embrittlement determination and plant lifetime estimation To validate this parameters, the CEA and its Industrial Partner EdF have decided to launch a devoted experimental program in the EOLE facility of the Cadarache Research Centre The aim of this proposed FLUOLE experimental program (acronym of Fluence in EOLE) is to provide the most accurate neutron propagation measurements in representative PWR neutron spectrum material and geometry in order to enable a reduction of uncertainties on calculated vessel fluence with Monte-Carlo codes such as MCNP or TRIPOLI. (authors)

  1. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, W.; Randerson, J.; Moore, J. K.

    2015-08-01

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth System Models (ESMs) performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, global NPP in the 2090s is reduced by 2.3-16 % and EP by 7-18 %. The models with the largest increases in stratification (and largest relative reductions in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting some potential overestimation of climate impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface ocean warming and freshening that is accompanied by decreases in NPP, EP, and surface macronutrient concentrations. There is considerable variability across models in the absolute magnitude of these fluxes, surface nutrient concentrations, and their perturbations by climate change, indicating large model uncertainties. The negative response of NPP and EP to stratification increases reflects a bottom-up control, as nutrient flux to the euphotic zone declines. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This is driven by phytoplankton community composition shifts, with a reduced percentage of NPP by large phytoplankton under RCP 8.5, as smaller phytoplankton are favored under the increasing nutrient stress. Thus, projections of the NPP response to climate change in the CMIP5 models are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump, and the resulting (highly variable) levels of regenerated production. Community composition is represented relatively simply in the CMIP5 models, and should be expanded to better capture the

  2. Experiment data report for LOFT anticipated transient-without-scram Experiment L9-3. [PWR

    SciTech Connect

    Bayless, P.D.; Divine, J.M.

    1982-05-01

    Selected pertinent and uninterpreted data from the third anticipated transient with multiple failures experiment (Experiment L9-3) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large (approx. 1000 MW(e)), commercial PWR operations. Experiment L9-3 simulated a loss-of-feedwater anticipated transient without scram. The loss-of-feedwater accident led to an increase in the primary coolant system temperature and pressure. Both the experiment power-operated relief valve (PORV) and safety relief valve opened and were able to limit and control the pressure transient. The plant was then recovered with the control rods still withdrawn by injecting 7200-ppM borated water, manually cycling the PORV and feeding and bleeding the steam generator.

  3. Code System for PWR & BWR Multicompartment Containment Analysis, Versions MOD5

    Energy Science and Technology Software Center (ESTSC)

    1999-06-02

    CONTEMPT4/MOD6 describes the response of multicompartment containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program can accommodate both pressurized water reactor (PWR) and boiling water reactor (BWR) containment systems. Also, both design basis accident (DBA) and degraded core type LOCA conditions can be analyzed. The program calculates the time variation of compartment pressures, temperatures, and mass and energy inventories due to inter-compartment mass and energy exchange taking into account user-supplied descriptions of compartments,more » inter-compartment junction flow areas, LOCA source terms, and user-selected problem features. Analytical models available to describe containment systems include models for containment fans and pumps, cooling sprays, heat conducting structures, sump drains, PWR ice condensers, and BWR pressure suppression systems. CONTEMPT4/MOD6 also provides analytical models for hydrogen and carbon monoxide combustion within compartments and energy transfer due to gas radiation to accommodate degraded core type accidents.« less

  4. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    SciTech Connect

    Santamarina, A.; Bernard, D.; Blaise, P.; Leconte, P.; Palau, J. M.; Roque, B.; Vaglio, C.; Vidal, J. F.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency of Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)

  5. Development of a new lattice physics code robin for PWR application

    SciTech Connect

    Zhang, S.; Chen, G.

    2013-07-01

    This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhanced neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)

  6. Survey of the power ramp performance testing of KWU'S PWR UO 2, fuel

    NASA Astrophysics Data System (ADS)

    Ga¨rtner, M.; Fischer, G.

    1987-06-01

    To determine the power ramp performance of KWU's PWR UO 2 fuel, 134 fuel rodlets with burnups of up to 46 GWd/ t (U) and several fuel assemblies with 19 to 30 GWd/t (U) burnup were ramped in power in the research reactors HFR Petten/The Netherlands and R2 Studsvik/Sweden and in the power plants KWO and KWB-A/Germany, respectively. The power ramp tests demonstrate decreasing resistance of the PWR fuel rods to PCI (pellet-to-clad interaction) up to fuel burnups of 35 GWd/t (U) and a reversal effect at higher burnups. The fuel rods can be operated free of defects at fast power transients to linear heat generation rates of up to 400 W/cm, at least.Power levels of up to 490 W/cm can be reached without defects by reducing the ramp rate. After reshuffling according to an out-in scheme, 1-cycle fuel assemblies may return to rod powers of up to 480 W/cm with a power increase rate of up to 10 W/(cm min) without fuel rod damage. Set points basing on these test results and incorporated into the power distribution control and power density limitation system of KWU's advanced power plants guarantee safe plant operation under normal and load follow operating conditions.

  7. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    SciTech Connect

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  8. Application of the MELCOR code to design basis PWR large dry containment analysis.

    SciTech Connect

    Phillips, Jesse; Notafrancesco, Allen; Tills, Jack Lee

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  9. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  10. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    NASA Astrophysics Data System (ADS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-05-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH( T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields.

  11. Bi-content Gadolinia as Burnable Absorber in PWR to Improve the Reactor Core Behaviour

    SciTech Connect

    Zheng, S.

    2007-07-01

    The gadolinia product is one of the standard burnable absorbers used in the PWR long and low leakage fuel cycle in order to control the radial power distribution and to hold down the initial core reactivity. This product presents a large number of advantages such as the high efficiency with only a small number of gadolinia-bearing rods, the easy adjustment between the number and the content of the gadolinia-bearing rods according to the cycle length need and the initial reactivity hold-down, no increasing of boron concentration versus cycle depletion, no additional increasing of internal pressure in poisoned rods, very low additional manufacture cost. On the other hand, some unfavourable phenomena are also observed during the utilization of the gadolinia: amplification of the asymmetrical power distribution and more negative axial offset. Based on the correlation between the gadolinia burnout and its content, the use of gadolinia bi-content will improve the parameters indicated here above. The gadolinia bi-content have been used in BWR for more than 20 years. In this paper, the comparison of the main reactor core physical parameters in PWR, calculated with the AREVA NP standard neutronic code package SCIENCE, is made by using the mono- and bi-content of the gadolinia products in the same fuel assembly. The results show that the asymmetrical axial and azimuthal power distribution can be improved in the case of the bi-content gadolinia product. (authors)

  12. Analysis of loss of off-site power with a PWR at shutdown

    SciTech Connect

    Chu, T.L.; Yoon, W.H.; Fitzpatrick, R.G.

    1987-01-01

    In many probabilistic risk assessments (PRAs), loss of offsite power (LOOP) when a nuclear power plant is operating was found to be a significant contributor to core damage. The purpose of this study is to provide an analysis of a LOOP event that occurs while a pressurized water reactor (PWR) is shut down. The importance of such an analysis was recognized as part of a study to evaluate the core damage frequency due to a loss of decay heat removal (DHR) capability during an outage. When a PWR is in a shutdown condition, there are relatively few technical specification requirements on the operability of safety systems. In fact, some safety systems are intentionally disabled, i.e., the safety injection system and nonoperating charging pumps. Another problem when the reactor is shut down is that the reactor coolant system (RCS) may be partially drained and the steam generators may be unavailable. To determine the time available for operator actions, given that a LOOP occurs during shutdown and the DHR capability is lost, a simple thermal model has been developed. Similar calculations have been performed for other phases of refueling and maintenance outages. A total core damage frequency due to LOOP while the plant is in shutdown has been calculated to be 5.9 x 10/sup -6//yr. This is approximately twice the core damage frequency calculated for LOOP when the plant is at power.

  13. An Algorithm For Climate-Quality Atmospheric Profiling Continuity From EOS Aqua To Suomi-NPP

    NASA Astrophysics Data System (ADS)

    Moncet, J. L.

    2015-12-01

    We will present results from an algorithm that is being developed to produce climate-quality atmospheric profiling earth system data records (ESDRs) for application to hyperspectral sounding instrument data from Suomi-NPP, EOS Aqua, and other spacecraft. The current focus is on data from the S-NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) instruments as well as the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua. The algorithm development at Atmospheric and Environmental Research (AER) has common heritage with the optimal estimation (OE) algorithm operationally processing S-NPP data in the Interface Data Processing Segment (IDPS), but the ESDR algorithm has a flexible, modular software structure to support experimentation and collaboration and has several features adapted to the climate orientation of ESDRs. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. The radiative transfer component uses an enhanced version of optimal spectral sampling (OSS) with updated spectroscopy, treatment of emission that is not in local thermodynamic equilibrium (non-LTE), efficiency gains with "global" optimal sampling over all channels, and support for channel selection. The algorithm is designed for adaptive treatment of clouds, with capability to apply "cloud clearing" or simultaneous cloud parameter retrieval, depending on conditions. We will present retrieval results demonstrating the impact of a new capability to perform the retrievals on sigma or hybrid vertical grid (as opposed to a fixed pressure grid), which particularly affects profile accuracy over land with variable terrain height and with sharp vertical structure near the surface. In addition, we will show impacts of alternative treatments of regularization of the inversion. While OE algorithms typically implement regularization by using background estimates from

  14. OVERVIEW ON BNL ASSESSMENT OF SEISMIC ANALYSIS METHODS FOR DEEPLY EMBEDDED NPP STRUCTURES.

    SciTech Connect

    XU,J.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H.

    2007-04-01

    A study was performed by Brookhaven National Laboratory (BNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (USNRC), to determine the applicability of established soil-structure interaction analysis methods and computer programs to deeply embedded and/or buried (DEB) nuclear power plant (NPP) structures. This paper provides an overview of the BNL study including a description and discussions of analyses performed to assess relative performance of various SSI analysis methods typically applied to NPP structures, as well as the importance of interface modeling for DEB structures. There are four main elements contained in the BNL study: (1) Review and evaluation of existing seismic design practice, (2) Assessment of simplified vs. detailed methods for SSI in-structure response spectrum analysis of DEB structures, (3) Assessment of methods for computing seismic induced earth pressures on DEB structures, and (4) Development of the criteria for benchmark problems which could be used for validating computer programs for computing seismic responses of DEB NPP structures. The BNL study concluded that the equivalent linear SSI methods, including both simplified and detailed approaches, can be extended to DEB structures and produce acceptable SSI response calculations, provided that the SSI response induced by the ground motion is very much within the linear regime or the non-linear effect is not anticipated to control the SSI response parameters. The BNL study also revealed that the response calculation is sensitive to the modeling assumptions made for the soil/structure interface and application of a particular material model for the soil.

  15. COMET Program Training Offerings to Support S-NPP and JPSS Utilization

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.

    2015-12-01

    Are you up to speed on how to exploit new S-NPP capabilities and products? If not, don't worry, because UCAR's COMET program has self-paced online educational materials that highlight the capabilities and applications of current and next-generation operational polar-orbiting and geostationary satellites. The COMET® Program (www.comet.ucar.edu) has long received funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. By partnering with experts from NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, the Naval Research Laboratory and others, COMET's self-paced training stimulates greater use of current and future satellite observations and products. Right now, over 70 satellite-focused, self-paced, online materials are freely available in English via the MetEd Web site at http://meted.ucar.edu/topics/satellite. Additionally, quite a few lessons are also available in Spanish and French making training more easily accessible to an international audience. This presentation will focus on COMET's latest satellite training and education offerings that are directly applicable to data and products from the S-NPP and JPSS satellite series. A recommended set of lessons for users who wish to learn more will be highlighted, including excerpts from the newest materials on the Suomi NPP VIIRS imager and its applications, as well as advances in nighttime visible observation with the VIIRS Day-Night Band. We'll show how the lessons introduce users to the advances these systems bring to forecasting, numerical weather prediction, and environmental monitoring. Finally, new relevant training initiatives will also be presented.

  16. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    USGS Publications Warehouse

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  17. MetEd Resources for Embracing Advances with S-NPP and JPSS

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.

    2014-12-01

    The COMET® Program (www.comet.ucar.edu), a part of the UCAR Community Programs (UCP) at UCAR, receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. For many years COMET's satellite education programs have focused on developing self-paced online educational materials that highlight the capabilities and applications of current and next-generation operational geostationary and polar-orbiting satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of current and future satellite observations and products. This presentation provides a tour of COMET's satellite training and education offerings that are directly applicable to data and products from the S-NPP and JPSS satellite series. A recommended set of lessons for users who wish to learn more will be highlighted, including excerpts from the newest materials on the Suomi NPP VIIRS imager and its applications, as well as advances in nighttime visible observation with the VIIRS Day-Night Band. We'll show how the lessons introduce users to the advances these systems bring to forecasting, numerical weather prediction, and environmental monitoring. Over 90 satellite-focused, self-paced, online materials are freely available on the of the MetEd Web site (http://www.meted.ucar.edu) via the "Education & Training", "Satellite" topic area. Quite a few polar-orbiting-related lessons are available in both English, Spanish, and French. Additionally, S-NPP and JPSS relevant information can also be found on the the Environmental Satellite Resource Center (ESRC) Web site (www.meted.ucar.edu/esrc) that is maintained by COMET. The ESRC is a searchable, database-driven Web site that provides access to

  18. Lunar BRDF Correction of Suomi-NPP VIIRS Day/Night Band Time Series Product

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Kalb, V.; Stokes, E.; Miller, S. D.

    2015-12-01

    Since the first-light images from the Suomi-NPP VIIRS low-light visible Day/Night Band (DNB) sensor were received in November 2011, the NASA Suomi-NPP Land Science Investigator Processing System (SIPS) has focused on evaluating this new capability for quantitative science applications, as well as developing and testing refined algorithms to meet operational and Land science research needs. While many promising DNB applications have been developed since the Suomi-NPP launch, most studies to-date have been limited by the traditional qualitative image display and spatial-temporal aggregated statistical analysis methods inherent in current heritage algorithms. This has resulted in strong interest for a new generation of science-quality products that can be used to monitor both the magnitude and signature of nighttime phenomena and anthropogenic sources of light emissions. In one particular case study, Román and Stokes (2015) demonstrated that tracking daily dynamic DNB radiances can provide valuable information about the character of the human activities and behaviors that influence energy, consumption, and vulnerability. Here we develop and evaluate a new suite of DNB science-quality algorithms that can exclude a primary source of background noise: i.e., the Lunar BRDF (Bidirectional Reflectance Distribution Function) effect. Every day, the operational NASA Land SIPS DNB algorithm makes use of 16 days worth of DNB-derived surface reflectances (SR) (based on the heritage MODIS SR algorithm) and a semiempirical kernel-driven bidirectional reflectance model to determine a global set of parameters describing the BRDF of the land surface. The nighttime period of interest is heavily weighted as a function of observation coverage. These gridded parameters, combined with Miller and Turner's [2009] top-of-atmosphere spectral irradiance model, are then used to determine the DNB's lunar radiance contribution at any point in time and under specific illumination conditions.

  19. Digital safety I and C system in the Paks NPP (Hungary))

    SciTech Connect

    Eiler, J.

    2006-07-01

    The entire replacement of the original, Russian safety I and C system in the Paks NPP concluded successfully in 2003. The new, digital system was selected after a very thorough tendering process and installation was performed within the time-frame of normal refueling outages. The new system has shown very high reliability and flexibility in the past years. Several other nuclear power plants have initiated / completed the same replacement using the same type of equipment. This paper provides a summary on selected technical and organizational issues, as well as the main lessons learned in this very comprehensive and wide-scale project. (authors)

  20. Application of the SASSI soil structure interaction method to CANDU 6 NPP seismic analysis

    SciTech Connect

    Ricciuti, R.A.; Elgohary, M.; Usmani, S.A.

    1996-12-01

    The standard CANDU 6 NPP has been conservatively qualified for a Design Basis Earthquake (DBE) peak horizontal ground acceleration of 0.2 g. Currently there are potential opportunities for siting the CANDU 6 at higher seismicity sites. In order to be able to extend the use of a standardized design for sites with higher seismicity than the standard plant, various design options, including the use of the SASSI Soil Structure Interaction (SSI) analysis method, are being evaluated. This paper presents the results of a study to assess the potential benefits from utilization of the SASSI computer program and the use of more realistic damping ratios for the structures.

  1. Maximim Accelerations On The Fuel Assemblies Of a 21-PWR Waste Package During End Impacts 

    SciTech Connect

    V. DeLa Brosse

    2003-03-27

    The objective of this calculation is to determine the acceleration of the fuel assemblies contained in a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities of the waste package is studied. The scope of this calculation is limited to estimating the acceleration of the fuel assemblies during the impact.

  2. Maximim Accelerations On The Fuel Assemblies Of a 21-PWR Waste Package During End Impacts 

    SciTech Connect

    T. Schmitt

    2005-08-17

    The objective of this calculation is to determine the acceleration of the fuel assemblies contained in a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities of the waste package is studied. The scope of this calculation is limited to estimating the acceleration of the fuel assemblies during the impact.

  3. Proceedings: 1984 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect

    1986-03-01

    During 1984, research investigating intergranular corrosion and stress corrosion cracking in PWR steam generators provided data to formulate a corrosion-product transport theory. In addition, the research showed that changing the pH of liquids in generator crevices will retard and sometimes arrest the corrosion process.

  4. End-of-life destructive examinations of Zircaloy maximum depletion blanket fuel plates from the Shippingport PWR Core 2

    SciTech Connect

    Clayton, J.C.; Kammenzind, B.F.; Senio, P.; Sherman, J.

    1993-10-01

    Destructive examinations were performed on four Shippingport PWR Core 2 maximum fluence and depletion blanket plates for surface integrity, corrosion oxide thickness, and hydrogen absorption of the Zircaloy-4 cladding. The Shippingport PWR Core 2 operated for 23,360 effective full power hours (EFPH) (62,235 hot hours) at an average coolant temperature of 536{degrees}F (280{degrees}C) and a peak neutron flux of 0.6{times}10{sup 14}n/cm{sup 2}/s. The end-of-life examination program included measurements on three PWR-2 beta-quenched blanket fuel plates and one alpha-annealed blanket end plate. The examinations consisted of optical and scanning electron microscopy (SEM) inspections, direct metallographic oxide thickness measurements, and hydrogen extraction analyses on a joined element pair from the peak fluence (132{times}10{sup 20} n/cm{sup 2}), maximum depletion (13.5{times}10{sup 20} fissions/cc)PWR-2 blanket cluster.

  5. Role of research reactors in training of NPP personnel with special focus on training reactor VR-1

    SciTech Connect

    Sklenka, L.; Rataj, J.; Frybort, J.; Huml, O.

    2012-07-01

    Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training program are demonstrated. (authors)

  6. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  7. Vicarious calibration of S-NPP/VIIRS day-night band

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Cao, Changyong; Uprety, Sirish

    2013-09-01

    The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. In order to cover this extremely broad measurement range, the DNB employs four imaging arrays that comprise three gain stages. The low gain stage (LGS) gain values are determined by solar diffuser data. In operation, the medium and high gain stage values are determined by multiplying the LGS gains by the medium gain stage (MGS)/LGS and high gain stage (HGS)/LGS gain ratios, respectively. This paper demonstrates a scheme of using DNB observation of ground vicarious sites under lunar illumination at night to independently verify the radiometric accuracy of HGS of DNB. We performed vicarious calibration of DNB when S-NPP flies above the vicarious site such as Dome C in Antarctic and Greenland in northern hemisphere at night and the moon illuminates the site with lunar phase being more than half moon. Lunar spectral irradiance model as a function of Sun-Earth-Moon distances and lunar phase is used to assist the determination of top-of-atmosphere reflectance at the vicarious site. Analysis of the vicariously-derived reflectance from DNB observations show agreement with the reflectance derived from Hyperion observations of the vicarious sites.

  8. Reactor Dosimetry Aspects of the Service Life Extension of the Hungarian Paks NPP

    NASA Astrophysics Data System (ADS)

    Zsolnay, Eva M.; Czifrus, Szabolcs; Fehér, Sándor; Hordósy, Gábor; Keresztúri, András; Kresz, Norbert; Oszvald, Ferenc

    2016-02-01

    The service life of the Hungarian Paks Nuclear Power Plant (NPP) will be extended from the originally planned 30 years to 50 years. To improve the reliability of the results obtained in frame of the old reactor pressure vessel (RPV) surveillance programme, new methods have been developed, and based on them, the old exposition data have been re-evaluated for all the four reactor units. At the same time, a new RPV surveillance programme has been developed and introduced, and long term irradiations have been performed to determine the radiation damage of the surveillance specimens due to the high fast neutron exposition. Neutron transport calculations have been performed with a validated neutron transport code system to determine the fast neutron exposition of the RPVs during the extended service life. The cavity dosimetry is in the introductory phase. This paper presents the new developments in the field of the RPV surveillance dosimetry and summarises the results obtained. According to the results the service life of the NPP can safely be extended for the planned 50 years.

  9. Land and Cryosphere Products from Suomi NPP VIIRS: Overview and Status

    NASA Technical Reports Server (NTRS)

    Justice, Christopher O.; Roman, Miguel O.; Csiszar, Ivan; Vermote, Eric F.; Wolfe, Robert E.; Hook, Simon J.; Friedl, Mark; Wang, Zhuosen; Schaaf, Crystal B.; Miura, Tomoaki; Tschudi, Mark; Riggs, George; Hall, Dorothy K.; Lyapustin, Alexei I.; Devadiga, Sadashiva; Davidson, Carol; Masuoka, Edward

    2013-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS.

  10. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice

    PubMed Central

    Kaneko, Kentaro; Takamatsu, Takeshi; Inomata, Takuya; Oikawa, Kazusato; Itoh, Kimiko; Hirose, Kazuko; Amano, Maho; Nishimura, Shin-Ichiro; Toyooka, Kiminori; Matsuoka, Ken; Pozueta-Romero, Javier; Mitsui, Toshiaki

    2016-01-01

    Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1–NPP6. Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)–Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2–GFP and NPP6–GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER–Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs. PMID:27335351

  11. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice.

    PubMed

    Kaneko, Kentaro; Takamatsu, Takeshi; Inomata, Takuya; Oikawa, Kazusato; Itoh, Kimiko; Hirose, Kazuko; Amano, Maho; Nishimura, Shin-Ichiro; Toyooka, Kiminori; Matsuoka, Ken; Pozueta-Romero, Javier; Mitsui, Toshiaki

    2016-08-01

    Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1-NPP6 Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)-Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2-GFP and NPP6-GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER-Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs. PMID:27335351

  12. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  13. COBRA/TRAC analysis of the PKL reflood test K9. [PWR

    SciTech Connect

    Wilkins, C.A.; Thurgood, M.J.

    1982-08-01

    Experiments at the Primaerkreislaeufe (PKL) test facility in Erlangen, Germany, simulated the refill and reflood procedure after a loss-of-coolant accident (LOCA) in the primary coolant system of a 1300-MW pressurized water reactor (PWR). COBRA/TRAC, a thermal-hydraulics analysis code developed at the Pacific Northwest Laboratory, was used to model experiment K9 of the PKL test series (completed December 1979). The COBRA/TRAC code, which utilizes COBRA-TF as the vessel module and TRAC-P1A for the remaining components, was designed to analyze LOCAs in PWRs. PKL-K9 was characterized by a double-ended guillotine break in the cold leg with emergency core cooling water injected into the cold legs. COBRA/TRAC was able to successfully predict lower-core temperature profiles and quench times, upper-core temperature profiles until the quench, upper plenum and break pressures, and correct trends in collapsed water levels.

  14. Failure probability of PWR reactor coolant loop piping. [Double-ended guillotine break

    SciTech Connect

    Lo, T.; Woo, H.H.; Holman, G.S.; Chou, C.K.

    1984-02-01

    This paper describes the results of assessments performed on the PWR coolant loop piping of Westinghouse and Combustion Engineering plants. For direct double-ended guillotine break (DEGB), consideration was given to crack existence probability, initial crack size distribution, hydrostatic proof test, preservice inspection, leak detection probability, crack growth characteristics, and failure criteria based on the net section stress failure and tearing modulus stability concept. For indirect DEGB, fragilities of major component supports were estimated. The system level fragility was then calculated based on the Boolean expression involving these fragilities. Indirect DEGB due to seismic effects was calculated by convolving the system level fragility and the seismic hazard curve. The results indicate that the probability of occurrence of both direct and indirect DEGB is extremely small, thus, postulation of DEGB in design should be eliminated and replaced by more realistic criteria.

  15. VISA: a computer code for predicting the probability of reactor pressure-vessel failure. [PWR

    SciTech Connect

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.; Klecker, R.W.; Engel, D.W.; Johnson, K.I.

    1983-09-01

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue from J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.

  16. Quantitative uncertainty and sensitivity analysis of a PWR control rod ejection accident

    SciTech Connect

    Pasichnyk, I.; Perin, Y.; Velkov, K.

    2013-07-01

    The paper describes the results of the quantitative Uncertainty and Sensitivity (U/S) Analysis of a Rod Ejection Accident (REA) which is simulated by the coupled system code ATHLET-QUABOX/CUBBOX applying the GRS tool for U/S analysis SUSA/XSUSA. For the present study, a UOX/MOX mixed core loading based on a generic PWR is modeled. A control rod ejection is calculated for two reactor states: Hot Zero Power (HZP) and 30% of nominal power. The worst cases for the rod ejection are determined by steady-state neutronic simulations taking into account the maximum reactivity insertion in the system and the power peaking factor. For the U/S analysis 378 uncertain parameters are identified and quantified (thermal-hydraulic initial and boundary conditions, input parameters and variations of the two-group cross sections). Results for uncertainty and sensitivity analysis are presented for safety important global and local parameters. (authors)

  17. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    SciTech Connect

    Simion, G.P.; VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B.; Bulmahn, K.D.

    1993-06-01

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement.

  18. Fog inerting effects on hydrogen combustion in a PWR ice condenser contaminant

    SciTech Connect

    Luangdilok, W.; Bennett, R.B.

    1995-05-01

    A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H{sub 2}-air-steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser contaminant during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H{sub 2} by volume). 18 refs., 3 tabs.

  19. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGESBeta

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; Wang, Jy-An John

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  20. Calculation of the neutron source distribution in the VENUS PWR Mockup Experiment

    SciTech Connect

    Williams, M.L.; Morakinyo, P.; Kam, F.B.K.; Leenders, L.; Minsart, G.; Fabry, A.

    1984-01-01

    The VENUS PWR Mockup Experiment is an important component of the Nuclear Regulatory Commission's program goal of benchmarking reactor pressure vessel (RPV) fluence calculations in order to determine the accuracy to which RPV fluence can be computed. Of particular concern in this experiment is the accuracy of the source calculation near the core-baffle interface, which is the important region for contributing to RPV fluence. Results indicate that the calculated neutron source distribution within the VENUS core agrees with the experimental measured values with an average error of less than 3%, except at the baffle corner, where the error is about 6%. Better agreement with the measured fission distribution was obtained with a detailed space-dependent cross-section weighting procedure for thermal cross sections near the core-baffle interface region. The maximum error introduced into the predicted RPV fluence due to source errors should be on the order of 5%.

  1. A predictive model for corrosion fatigue crack growth rates in RPV steels exposed to PWR environments

    SciTech Connect

    Atkinson, J.D.; Chen, Z.; Yu, J.

    1995-12-31

    Corrosion fatigue crack propagation rates have been measured in A533B Class 1 plate in stagnant PWR primary water for a range of steel sulphur contents, temperature and corrosion potential values. Parametric descriptions of the data collected under constant rig conditions give good correlations for each variable and are consistent with a crack tip environment controlled process related to sulphur chemistry. A modified crack velocity equation is proposed to include temperature, sulphur content, polarization potential, frequency and {Delta}K values and it is shown how the predictions compare with the proposed ASME XI revision. Critical fatigue situations are identified for 0.003% and 0.019% sulphur steels typical of modern and old plant. The use of the equation in assessing the synergistic effect of variables is discussed.

  2. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  3. Decontamination as a precursor to decommissioning. Status report Task 2: process evaluation. [PWR; BWR

    SciTech Connect

    Divine, J.R.; Woodruff, E.M.; McPartland, S.A.; Zima, G.E.

    1983-05-01

    As part of the US Nuclear Regulatory Commission's program to reduce occupational exposure and waste volumes, the Pacific Northwest Laboratory is studying decontamination as a precursor to decommissioning. Eleven processes or solvents were examined for their behavior in decontaminating BWR carbon steel samples. The solvents included NS-1, a proprietary solvent of Dow Chemical Corporation, designed for BWR use, and AP-Citrox, a well-known, two-step process designed for PWR stainless steel; it was used to provide a reference for later comparison to other systems and processes. The decontamination factors observed in the tests performed in a small laboratory scale recirculating loop ranged from about 1 (no effect) to 222 (about 99.6% of the initial activity removed. Coordinated corrosion measurements were made using twelve chemical solvents and eight metal alloys found in a range of reactor types.

  4. Reactor coolant pump startup under degraded conditions in a scaled OTSG lowered loop PWR

    SciTech Connect

    Tafreshi, A.M.; Marzo, M. di

    1996-12-31

    After a SB-LOCA or improper maintenance activities, the potential exists for a non-uniform distribution of boric acid in a PWR coolant system. This in turn presents the possibility of a reactivity excursion if sufficient volumes of boron-dilute water are transported into the core region without having first undergone substantial mixing. A research program is being conducted at the University of Maryland College Park (UMCP) 2 x 4 thermal-hydraulic test facility to assess the generation, transport and mixing of boron-dilute volumes. Start up of a pump and flow of a boron free slug of water in the cold leg and subsequent transport to the core downcomer in the facility is investigated here.

  5. Deposition of cobalt on surface-treated stainless steel under PWR conditions

    SciTech Connect

    Lister, D.H.; Anderson, P.G.; Barry, B.J.; Lavoie, R.G. . Chalk River Nuclear Labs.)

    1989-10-01

    As part of an on-going program aimed at reducing radiation exposures in light water reactors, the modification of surfaces to minimize their propensity to pick up radioactivity under reactor conditions has been studied. This report describes how stainless steel specimens, surface-treated with a variety of processes, picked up Co-60 from high-temperature water under PWR conditions in a high-pressure loop. The build-up of activity was monitored on-line with a movable gamma spectrometer. Off-line counting at the end of the experiment established the absolute activity levels, and selective examinations with SEM and metallography characterized the surface condition of the exceptional specimens. The effectiveness of the surface treatments was gauged by fitting simple parabolae to the activity build-up data and comparing the coefficients with those obtained from untreated control specimens. 10 refs., 23 figs., 4 tabs.

  6. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  7. Methods and findings of a systems interaction study of a Westinghouse PWR

    SciTech Connect

    Youngblood, R.; Hanan, N.; Fitzpatrick, R.; Xue, D.; Bozoki, G.; Fresco, A.; Papazoglou, I.; Mitra, S.; Macdonald, G.; Chelliah, E.

    1985-01-01

    This paper describes the methods and findings of a systems interaction study of a Westinghouse PWR. BNL conducted the study as a methods application that was performed to support the resolution of Unresolved Safety Issue A-17 on Systems Interactions. The method calls for a fault tree model of the plant to be developed in stages, corresponding to successively increasing levels of scope and detail. A functional model is developed first, resolved only to sufficient detail to reflect support system dependences; this guides the subsequent searches for spatial and induced-human interactions. This process has led to the identification of an active single failure causing loss of low pressure injection following a large or medium LOCA.

  8. Monte Carlo characterization of PWR spent fuel assemblies to determine the detectability of pin diversion

    NASA Astrophysics Data System (ADS)

    Burdo, James S.

    This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the

  9. Assessment of Reactivity Margins and Loading Curves for PWR Burnup Credit Cask Designs

    SciTech Connect

    Wagner, J.C.

    2002-12-17

    This report presents studies to assess reactivity margins and loading curves for pressurized water reactor (PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to demonstrate the impact on the predicted effective neutron multiplication factor, k{sub eff}, and burnup-credit loading curves. The purpose of this report is to provide a greater understanding of the importance of input parameter variations and quantify the impact of calculational assumptions on the outcome of a burnup-credit evaluation. This study should provide guidance to regulators and industry on the technical areas where improved information will most enhance the estimation of accurate subcritical margins. Based on these studies, areas where future work may provide the most benefit are identified. The report also includes an evaluation of the degree of burnup credit needed for high-density casks to transport the current spent nuclear fuel inventory. By comparing PWR discharge data to actinide-only based loading curves and determining the number of assemblies that meet the loading criteria, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of current spent fuel assemblies in high-capacity casks. Assemblies that are not acceptable for loading in the prototypic high-capacity cask may be stored or transported by other means (e.g., lower capacity casks that utilize flux traps and/or increased fixed poison concentrations or high-capacity casks with design/utilization modifications).

  10. Criticality Safety and Sensitivity Analyses of PWR Spent Nuclear Fuel Repository Facilities

    SciTech Connect

    Maucec, Marko; Glumac, Bogdan

    2005-01-15

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based storage and dry transport containers under various loading patterns and moderating conditions. To comply with standard safety requirements, fresh 4.25% enriched nuclear fuel was assumed. The impact of potential optimum moderation due to water steam or foam formation as well as of different interpretations, of neutron multiplication through varying the system boundary conditions was elaborated. The simulations indicate that in the case of compact (all rack locations filled with fresh fuel) single or 'double tiering' loading, the supercriticality can occur under the conditions of enhanced neutron moderation, due to accidentally reduced density of cooling water. Under standard operational conditions the effective multiplication factor (k{sub eff}) of pool-based storage facility remains below the specified safety limit of 0.95. The nuclear safety requirements are fulfilled even when the fuel elements are arranged at a minimal distance, which can be initiated, for example, by an earthquake. The dry container in its recommended loading scheme with 26 fuel elements represents a safe alternative for the repository of fresh fuel. Even in the case of complete water flooding, the k{sub eff} remains below the specified safety level of 0.98. The criticality safety limit may however be exceeded with larger amounts of loaded fuel assemblies (i.e., 32). Additional Monte Carlo criticality safety analyses are scheduled to consider the 'burnup credit' of PWR spent nuclear fuel, based on the ongoing calculation of typical burnup activities.

  11. Initiation stress threshold irradiation assisted stress corrosion cracking criterion assessment for core internals in PWR environment

    SciTech Connect

    Tanguy, Benoit; Stern, Anthony; Bossis, Philippe; Pokor, Cedric

    2012-07-01

    Irradiation assisted stress corrosion cracking (IASCC) is a problem of growing importance in pressurized water reactors (PWR). An understanding of the mechanism(s) of IASCC is required in order to provide guidance for the development of mitigation strategies. One of the principal reasons why the IASCC mechanism(s) has been so difficult to understand is the inseparability of the different IASCC potential contributors evolutions due to neutron irradiation. The potential contributors to IASCC in PWR primary water are: (i) radiation induced segregation (RIS) at grain boundaries, (ii) radiation induced microstructure (formation and growth of dislocations loops, voids, bubbles, phases), (iii) localized deformation under loading, (iv) irradiation creep and transmutations. While the development of some of the contributors (RIS, microstructure) with increasing doses are at least qualitatively well understood, the role of these changes on IASCC remains unclear. Parallel to fundamental understanding developments relative to IASCC, well controlled laboratory tests on neutron irradiated stainless steels are needed to assess the main mechanisms and also to establish an engineering criterion relative to the initiation of fracture due to IASCC. First part of this study describes the methodology carried out at CEA in order to provide more experimental data from constant load tests dedicated to the study of initiation of SCC on neutron irradiated stainless steel. A description of the autoclave recirculation loop dedicated to SCC tests on neutron irradiated materials is then given. This autoclave recirculation loop has been started on July 2010 with the first SCC test on an irradiated stainless steel (grade 316) performed at CEA. The main steps of the interrupted SCC tests are then described. Second part of this paper reports the partial results of the first test performed on a highly neutron irradiated material. (authors)

  12. Effect of aging on the PWR Chemical and Volume Control System

    SciTech Connect

    Grove, E.J.; Travis, R.J.; Aggarwal, S.K.

    1995-06-01

    The PWR Chemical and Volume Control System (CVCS) is designed to provide both safety and non-safety related functions. During normal plant operation it is used to control reactor coolant chemistry, and letdown and charging flow. In many plants, the charging pumps also provide high pressure injection, emergency boration, and RCP seal injection in emergency situations. This study examines the design, materials, maintenance, operation and actual degradation experiences of the system and main sub-components to assess the potential for age degradation. A detailed review of the Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Report (LER) databases for the 1988--1991 time period, together with a review of industry and NRC experience and research, indicate that age-related degradations and failures have occurred. These failures had significant effects on plant operation, including reactivity excursions, and pressurizer level transients. The majority of these component failures resulted in leakage of reactor coolant outside the containment. A representative plant of each PWR design (W, CE, and B and W) was visited to obtain specific information on system inspection, surveillance, monitoring, and inspection practices. The results of these visits indicate that adequate system maintenance and inspection is being performed. In some instances, the frequencies of inspection were increase in response to repeated failure events. A parametric study was performed to assess the effect of system aging on Core Damage Frequency (CDF). This study showed that as motor-operated valve (MOV) operating failures increased, the contribution of the High Pressure Injection to CDF also increased.

  13. 3D Neutron Transport PWR Full-core Calculation with RMC code

    NASA Astrophysics Data System (ADS)

    Qiu, Yishu; She, Ding; Fan, Xiao; Wang, Kan; Li, Zeguang; Liang, Jingang; Leroyer, Hadrien

    2014-06-01

    Nowadays, there are more and more interests in the use of Monte Carlo codes to calculate the detailed power density distributions in full-core reactors. With the Inspur TS1000 HPC Server of Tsinghua University, several calculations have been done based on the EDF 3D Neutron Transport PWR Full-core benchmark through large-scale parallelism. To investigate and compare the results of the deterministic method and Monte Carlo method, EDF R&D and Department of Engineering Physics of Tsinghua University are having a collaboration to make code to code verification. So in this paper, two codes are used. One is the code COCAGNE developed by the EDF R&D, a deterministic core code, and the other is the Monte Carlo code RMC developed by Department of Engineering Physics in Tsinghua University. First, the full-core model is described and a 26-group calculation was performed by these two codes using the same 26-group cross-section library provided by EDF R&D. Then the parallel and tally performance of RMC is discussed. RMC employs a novel algorithm which can cut down most of the communications. It can be seen clearly that the speedup ratio almost linearly increases with the nodes. Furthermore the cell-mapping method applied by RMC consumes little time to tally even millions of cells. The results of the codes COCAGNE and RMC are compared in three ways. The results of these two codes agree well with each other. It can be concluded that both COCAGNE and RMC are able to provide 3D-transport solutions associated with detailed power density distributions calculation in PWR full-core reactors. Finally, to investigate how many histories are needed to obtain a given standard deviation for a full 3D solution, the non-symmetrized condensed 2-group fluxes of RMC are discussed.

  14. Electrochemical behaviour of stainless steel in PWR primary coolant conditions: Effects of radiolysis

    NASA Astrophysics Data System (ADS)

    Muzeau, Benoist; Perrin, Stéphane; Corbel, Catherine; Simon, Dominique; Feron, Damien

    2011-12-01

    Few data are available in the literature on the role of the water radiolysis on the corrosion of stainless steel core components in PWR operating conditions (300 °C, 155 bar). The present approach uses a high energy proton beam to control the production of radiolytic species at the interface between a stainless steel sample and water in a high temperature and high pressure (HP-HT) electrochemical cell working in the range 25 °C/1 bar-300 °C/90 bar. The cell is designed to record the free corrosion potential of the AISI 316L/water interface mounted in line with a cyclotron delivering the proton beam. The evolution of the potential is compared before, during and after the proton irradiation. The first results are obtained with an aqueous solution containing boron, lithium and dissolved hydrogen, as in PWR primary coolant circuit. The stainless steel/water interfaces are irradiated between 25 °C and 300 °C with protons emerging at 22 MeV at the interface. The flux is varied by five orders of magnitude, from 6.6 × 10 11 to 6.6 × 10 15 H + m -2 s -1. The evolution of the free corrosion potential is highly dependent on the temperature and/or pressure. For a given temperature and pressure, it evolves with the flux and the ageing of the AISI 316L/water interfaces. An important role of the temperature of irradiation on the electrochemical response was observed. These results give a better understanding of the role of radiolysis on stainless steel corrosion in high temperature conditions.

  15. Single PWR spent fuel assembly heat transfer data for computer code evaluations

    SciTech Connect

    Bates, J.M.

    1986-01-01

    The descriptions and results of two separate heat transfer tests designed to investigate the dry storage of commercial PWR spent fuel assemblies are presented. Presented first are descriptions and selected results from the Fuel Temperature Test performed at the Engine Maintenance and Disassembly facility on the Nevada Test Site. An actual spent fuel assembly from the Turkey Point Unit Number 3 Reactor with a decay heat level of 1.17 KW, was installed vertically in a test stand mounted canister/liner assembly. The boundary temperatures were controlled and the canister backfill gases were alternated between air, helium and vacuum to investigate the primary heat transfer mechanisms of convection, conduction and radiation. The assembly temperature profiles were experimentally measured using installed thermocouple instrumentation. Also presented are the results from the Single Assembly Heat Transfer Test designed and fabricated by Allied General Nuclear Services, under contract to the Department of Energy, and ultimately conducted by the Pacific Northwest Laboratory. For this test, an electrically heated 15 x 15 rod assembly was used to model a single PWR spent fuel assembly. The electrically heated model fuel assembly permitted various ''decay heat'', levels to be tested; 1.0 KW and 0.5 KW were used for these tests. The model fuel assembly was positioned within a prototypic fuel tube and in turn placed within a double-walled sealed cask. The complete test assembly could be positioned at any desired orientation (horizontal, vertical, and 25/sup 0/ from horizontal for the present work) and backfilled as desired (air, helium, or vacuum). Tests were run for all combinations of ''decay heat,'' backfill, and orientation. Boundary conditions were imposed by temperature controlled guard heaters installed on the cask exterior surface.

  16. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  17. Analysis of MERCI decay heat measurement for PWR UO{sub 2} fuel rod

    SciTech Connect

    Jaboulay, J.C.; Bourganel, S.

    2012-01-15

    Decay heat measurements, called the MERCI experiment, were conducted at Commissariat a l'Energie Atomique (CEA)/Saclay to characterize accurately residual power at short cooling time and verify its prediction by decay code and nuclear data. The MOSAIC calorimeter, developed and patented by CEA/Grenoble (DTN/SE2T), enables measurement of the decay heat released by a pressurized water reactor (PWR) fuel rod sample between 200 and 4 W within a precision of 1%. The MERCI experiment included three phases. At first, a UO{sub 2} fuel rod sample was irradiated in the CEA/Saclay experimental reactor OSIRIS. The burnup achieved at the end of irradiation was similar to 3.5 GWd/tonne. The second phase was the transfer of the fuel rod sample from its irradiation location to a hot cell, to be inserted inside the MOSAIC calorimeter. It took 26 min to carry out the transfer. Finally, decay heat released by the PWR sample was measured from 27 min to 42 days after shutdown. Post irradiation examinations were performed to measure concentrations of some heavy nuclei (U, Pu) and fission products (Cs, Nd). The decay heat was predicted using a calculation scheme based on the PEPIN2 depletion code, the TRIPOLI-4 Monte Carlo code, and the JEFF3.1.1 nuclear data file. The MERCI experiment analysis shows that the discrepancy between the calculated and the experimental decay heat values is included between -10% at 27 min and +6% at 12 h, 30 min otter shutdown. From 4 up to 42 days of cooling time, the difference between calculation and measurement is about ± 1%, i.e., experimental uncertainty. The MERCI experiment represents a significant contribution for code validation; the time range above 10{sup 5} s has not been validated previously. (authors)

  18. The environmental constraint needs for design improvements to the Saligny I/LLW-repository near Cernavoda NPP

    SciTech Connect

    Barariu, Gheorghe

    2007-07-01

    The paper presents the new perspectives on the development of the L/ILW Final Repository Project which will be built near Cernavoda NPP. The Repository is designed to satisfy the main performance objectives in accordance to IAEA recommendation. Starting in October 1996, Romania became a country with an operating nuclear power plant. Reactor 2 reached the criticality on May 6, 2007 and it will be put in commercial operation in September 2007. The Ministry of Economy and Finance has decided to proceed with the commissioning of Units 3 and 4 of Cernavoda NPP till 2014. The Strategy for radioactive waste management was elaborated by National Agency for Radioactive Waste (ANDRAD), the jurisdictional authority for definitive disposal and the coordination of nuclear spent fuel and radioactive waste management (Order 844/2004) with attributions established by Governmental Decision (GO) 31/2006. The Strategy specifies the commissioning of the Saligny L/IL Radwaste Repository near Cernavoda NPP in 2014. When designing the L/IL Radwaste Repository, the following prerequisites have been taken into account: 1) Cernavoda NPP will be equipped with 4 Candu 6 units. 2) National Legislation in radwaste management will be reviewed and/or completed to harmonize with UE standards 3) The selected site is now in process of confirmation after a comprehensive set of interdisciplinary investigations. (author)

  19. Radiation Monitoring using an Unmanned Helicopter in the Evacuation Zone Set up by the Fukushima Daiichi NPP Accident.

    NASA Astrophysics Data System (ADS)

    Torii, Tatsuo; Sanada, Yukihisa; Nishizawa, Yukiyasu; Kondo, Atsuya; Shoji, Yasunori; ikeda, Kazutaka

    2013-04-01

    By the nuclear accident of the Fukushima Daiichi Nuclear Power Plant (NPP) caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. In recent years, technologies for an unmanned helicopter have been developed and applied to natural disasters. In expectation of the application of the unmanned helicopter to airborne radiation monitoring, we had developed a radiation monitoring system using an autonomous unmanned helicopter (AUH). Then, we measured the ambient dose-rate at the height of 1-m above the ground and the soil deposition of radioactive cesium (Cs-134, Cs-137) by using the AUH system in the evacuation zone of residents around the NPP. Here, we report on the measurement technique and the result. As a result measured around a river at 10-km away from the NPP, high contaminated areas compared with the circumstance are detected along the dry riverbed. It was seemed that it had flowed along the river from highly contaminated areas in the upper stream.

  20. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... 29, 2009, for a 60-day public comment period (74 FR 68872). Numerous comments were received, and they... COMMISSION NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft... for public comment a document entitled, NUREG-1934 (EPRI 1023259), ``Nuclear Power Plant Fire...

  1. An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA.

    PubMed

    Kwon, Youngsang; Larsen, Chris P S

    2013-09-01

    Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson's correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km(2). This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km(2). PMID:23371248

  2. Development of a new flux map processing code for moveable detector system in PWR

    SciTech Connect

    Li, W.; Lu, H.; Li, J.; Dang, Z.; Zhang, X.

    2013-07-01

    This paper presents an introduction to the development of the flux map processing code MAPLE developed by China Nuclear Power Technology Research Institute (CNPPJ), China Guangdong Nuclear Power Group (CGN). The method to get the three-dimensional 'measured' power distribution according to measurement signal has also been described. Three methods, namely, Weight Coefficient Method (WCM), Polynomial Expand Method (PEM) and Thin Plane Spline (TPS) method, have been applied to fit the deviation between measured and predicted results for two-dimensional radial plane. The measured flux map data of the LINGAO nuclear power plant (NPP) is processed using MAPLE as a test case to compare the effectiveness of the three methods, combined with a 3D neutronics code COCO. Assembly power distribution results show that MAPLE results are reasonable and satisfied. More verification and validation of the MAPLE code will be carried out in future. (authors)

  3. A Cloud-Based Infrastructure for Near-Real-Time Processing and Dissemination of NPP Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.; Chettri, S. S.

    2011-12-01

    We are building a scalable cloud-based infrastructure for generating and disseminating near-real-time data products from a variety of geospatial and meteorological data sources, including the new National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP). Our approach relies on linking Direct Broadcast and other data streams to a suite of scientific algorithms coordinated by NASA's International Polar-Orbiter Processing Package (IPOPP). The resulting data products are directly accessible to a wide variety of end-user applications, via industry-standard protocols such as OGC Web Services, Unidata Local Data Manager, or OPeNDAP, using open source software components. The processing chain employs on-demand computing resources from Amazon.com's Elastic Compute Cloud and NASA's Nebula cloud services. Our current prototype targets short-term weather forecasting, in collaboration with NASA's Short-term Prediction Research and Transition (SPoRT) program and the National Weather Service. Direct Broadcast is especially crucial for NPP, whose current ground segment is unlikely to deliver data quickly enough for short-term weather forecasters and other near-real-time users. Direct Broadcast also allows full local control over data handling, from the receiving antenna to end-user applications: this provides opportunities to streamline processes for data ingest, processing, and dissemination, and thus to make interpreted data products (Environmental Data Records) available to practitioners within minutes of data capture at the sensor. Cloud computing lets us grow and shrink computing resources to meet large and rapid fluctuations in data availability (twice daily for polar orbiters) - and similarly large fluctuations in demand from our target (near-real-time) users. This offers a compelling business case for cloud computing: the processing or dissemination systems can grow arbitrarily large to sustain near-real time data access despite surges in

  4. Key factors limiting the open circuit voltage of n(+)pp(+) indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Goradia, Chandra; Thesling, William; Weinberg, Irving

    1990-01-01

    Solar cells made from gallium arsenide (Gaas), with a room temperature bandgap of E(sub g) = 1.43 eV have exhibited the best measured open circuit voltage (V sub oc) of 1.05 V at 1 AM0, 25 C. The material InP is in many ways similar to GaAs. A simple calculation comparing InP to GaAs then shows that solar cells made from InP, with E(sub g) = 1.35 at 300 K, should exhibit the best measured V sub oc of approximately 950 mV at 1 AM0, 300 K. However, to date, the best measured V sub oc for InP solar cells made by any fabrication method is 899 mV at AM1.5, 25 C which would translate to 912 mV at 1 AM0, 25 C. The V sub oc of an n(+)pp(+) InP solar cell is governed by several factors. Of these, some factors, such as the thickness and doping of the emitter and base regions, are easily controlled and can be adjusted to desired values dictated by a good performance optimizing model. Such factors were not considered. There are other factors which also govern V sub oc, and their values are not so easily controlled. The primary ones among these are (1) the indirect or Hall-Shockley-Read lifetimes in the various regions of the cell, (2) the low-doping intrinsic carrier concentration n(sub i) of the InP material, (3) the heavy doping factors in the emitter and BSF regions, and (4) the front surface recombination velocity S(sub F). The influence of these latter factors on the V sub oc of the n(+)pp(+) InP solar cell and the results were used to produce a near-optimum design of the n(+)pp(+) InP solar cell.

  5. Key factors limiting the open circuit voltage of n(+)pp(+) indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Goradia, Chandra; Thesling, William; Weinberg, Irving

    1991-01-01

    Solar cells made from gallium arsenide (GaAs), with a room temperature bandgap of E(sub g) = 1.43 eV have exhibited the best measured open circuit voltage (V sub OC) of 1.05 V at 1 AMO, 25 C. The material InP is in many ways similar to GaAs. A simple calculation comparing InP to GaAs then shows that solar cells made from InP, with E(sub g) = 1.35 at 300 K, should exhibit the best measured (V sub OC) of approximately 950 mV at 1 AMO, 300 K. However, to date, the best measured V(sub OC) for InP solar cells made by any fabrication method is 899 mV at AM1.5, 25 C which would translate to 912 mV at 1 AMO, 25 C. The V(sub OC) of an n(+)pp(+) InP solar cell is governed by several factors. Of these, some factors, such as the thickness and doping of the emitter and base regions, are easily controlled and can be adjusted to desired values dictated by a good performance optimizing model. Such factors were not considered. There are other factors which also govern V(sub OC), and their values are not so easily controlled. The primary ones among these are (1) the indirect or Hall-Shockley-Read lifetimes in the various regions of the cell, (2) the low-doping intrinsic carrier concentration n(sub i) of the InP material, (3) the heavy doping factors in the emitter and BSF regions, and (4) the front surface recombination velocity S(sub F). The influence of these latter factors on the V(sub OC) of the n(+)pp(+) InP solar cell and the results were used to produce a near-optimum design of the n(+)pp(+) InP solar cell.

  6. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    SciTech Connect

    Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M.; Michal, V.; Vargovcik, L.

    2012-07-01

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of

  7. A Model-based Approach to Scaling GPP and NPP in Support of MODIS Land Product Validation

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Cohen, W. B.; Gower, S. T.; Ritts, W. D.

    2003-12-01

    Global products from the Earth-orbiting MODIS sensor include land cover, leaf area index (LAI), FPAR, 8-day gross primary production (GPP), and annual net primary production (NPP) at the 1 km spatial resolution. The BigFoot Project was designed specifically to validate MODIS land products, and has initiated ground measurements at 9 sites representing a wide array of vegetation types. An ecosystem process model (Biome-BGC) is used to generate estimates of GPP and NPP for each 5 km x 5 km BigFoot site. Model inputs include land cover and LAI (from Landsat ETM+), daily meteorological data (from a centrally located eddy covariance flux tower), and soil characteristics. Model derived outputs are validated against field-measured NPP and flux tower-derived GPP. The resulting GPP and NPP estimates are then aggregated to the 1 km resolution for direct spatial comparison with corresponding MODIS products. At the high latitude sites (tundra and boreal forest), the MODIS GPP phenology closely tracks the BigFoot GPP, but there is a high bias in the MODIS GPP. In the temperate zone sites, problems with the timing and magnitude of the MODIS FPAR introduce differences in MODIS GPP compared to the validation data at some sites. However, the MODIS LAI/FPAR data are currently being reprocessed (=Collection 4) and new comparisons will be made for 2002. The BigFoot scaling approach permits precise overlap in spatial and temporal resolution between the MODIS products and BigFoot products, and thus permits the evaluation of specific components of the MODIS NPP algorithm. These components include meteorological inputs from the NASA Data Assimilation Office, LAI and FPAR from other MODIS algorithms, and biome-specific parameters for base respiration rate and light use efficiency.

  8. Comparison of Serpent and HELIOS-2 as applied for the PWR few-group cross section generation

    SciTech Connect

    Fridman, E.; Leppaenen, J.; Wemple, C.

    2013-07-01

    This paper discusses recent modifications to the Serpent Monte Carlo code methodology and related to the calculation of few-group diffusion coefficients and reflector discontinuity factors The new methods were assessed in the following manner. First, few-group homogenized cross sections calculated by Serpent for a reference PWR core were compared with those generated 1 commercial deterministic lattice transport code HELIOS-2. Second, Serpent and HELIOS-2 fe group cross section sets were later employed by nodal diffusion code DYN3D for the modeling the reference PWR core. Finally, the nodal diffusion results obtained using the both cross section sets were compared with the full core Serpent Monte Carlo solution. The test calculations show that Serpent can calculate the parameters required for nodal analyses similar to conventional deterministic lattice codes. (authors)

  9. A direct comparison of MELCOR 1.8.3 and MAAP4 results for several PWR & BWR accident sequences

    SciTech Connect

    Leonard, M.T.; Ashbaugh, S.G.; Cole, R.K.; Bergeron, K.D.; Nagashima, K.

    1996-08-01

    This paper presents a comparison of calculations of severe accident progression for several postulated accident sequences for representative Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) nuclear power plants performed with the MELCOR 1.8.3 and the MAAP4 computer codes. The PWR system examined in this study is a 1100 MWe system similar in design to a Westinghouse 3-loop plant with a large dry containment; the BWR is a 1100 MWe system similar in design to General Electric BWR/4 with a Mark I containment. A total of nine accident sequences were studied with both codes. Results of these calculations are compared to identify major differences in the timing of key events in the calculated accident progression or other important aspects of severe accident behavior, and to identify specific sources of the observed differences.

  10. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    SciTech Connect

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients.

  11. Nano-cavities observed in a 316SS PWR Flux Thimble Tube Irradiated to 33 and 70 dpa

    SciTech Connect

    Edwards, Danny J.; Garner, Francis A.; Bruemmer, Stephen M.; Efsing, Pal G.

    2009-02-28

    The radiation-induced microstructure of a cold-worked 316SS flux thimble tube from an operating pressurized water reactor (PWR) was examined. Two irradiated conditions, 33 dpa at 290ºC and 70 dpa at 315ºC were examined by transmission electron microscopy. The original dislocation network had completely disappeared and was replaced by fine dispersions of Frank loops and small nano-cavities at high densities. The latter appear to be bubbles containing high levels of helium and hydrogen. An enhanced distribution of these nano-cavities was found at grain boundaries and may play a role in the increased susceptibility of the irradiated 316SS to intergranular failure of specimens from this tube during post-irradiation slow strain rate testing in PWR water conditions.

  12. Sample problem calculations related to two-phase flow transients in a PWR relief-piping network

    SciTech Connect

    Shin, Y.W.; Wiedermann, A.H.

    1981-03-01

    Two sample problems related with the fast transients of water/steam flow in the relief line of a PWR pressurizer were calculated with a network-flow analysis computer code STAC (System Transient-Flow Analysis Code). The sample problems were supplied by EPRI and are designed to test computer codes or computational methods to determine whether they have the basic capability to handle the important flow features present in a typical relief line of a PWR pressurizer. It was found necessary to implement into the STAC code a number of additional boundary conditions in order to calculate the sample problems. This includes the dynamics of the fluid interface that is treated as a moving boundary. This report describes the methodologies adopted for handling the newly implemented boundary conditions and the computational results of the two sample problems. In order to demonstrate the accuracies achieved in the STAC code results, analytical solutions are also obtained and used as a basis for comparison.

  13. Application of RELAP5/MOD1 for calculation of safety and relief valve discharge piping hydrodynamic loads. Final report. [PWR

    SciTech Connect

    Not Available

    1982-12-01

    A series of operability tests of spring-loaded safety valves was performed at Combustion Engineering in Windsor, CT as part of the PWR Safety and Relief Valve Test Program conducted by EPRI on behalf of PWR Utilities in response to the recommendations of NUREG-0578 and the requirements of the NRC. Experimental data from five of the safety valve tests are compared with RELAP5/MOD1 calculations to evaluate the capability of the code to determine the fluid-induced transient loads on downstream piping. Comparisons between data and calculations are given for transients with discharge of steam, water, and water loop seal followed by steam. RELAP5/MOD1 provides useful engineering estimates of the fluid-induced piping loads for all cases.

  14. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    NASA Technical Reports Server (NTRS)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  15. Overview of Activities in the U.S. Related to Continued Service of NPP Concrete Structures

    SciTech Connect

    Naus, Dan J

    2011-01-01

    Safety-related nuclear power plant concrete structures are described and commentary on continued service assessments of these structures is provided. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status noted. A summary of operating experience related to U.S. nuclear power plant concrete structures is presented. Several candidate areas are identified where additional research would be of benefit to aging management of NPP concrete structures. Finally current ORNL activities related to aging-management of concrete structures are outlined: development of operating experience database, application of structural reliability theory, and compilation of elevated temperature concrete material property data and information.

  16. Net primary productivity (NPP) of a biological soil crust (BSC) in northwestern Queensland, Australia.

    NASA Astrophysics Data System (ADS)

    Büdel, B.; Reichenberger, H.; Williams, W.

    2012-04-01

    In the tropical savanna of northwestern Queensland, BSCs are mainly composed of cyanobacteria, liverworts and more rarely, lichens. These BSCs cover up to 30% of the soil, thus stabilizing the soil surface against erosion. One of the major BSC types there is almost completely formed by the filamentous cyanobacterium Symplocastrum sp., with scattered occurrence of different species of the liverwort genus Riccia. Because of the local dominance of these crust type, we selected it for the determination of its NPP over a period of 18 months by setting up a semi-continuous and semi-automatic CO2 - gas exchange measuring device in the natural environment at Boodjamulla National Park. We found astonishingly high CO2-fixation rates of the Sympolcastrum sp. dominated crust type and also could show the crust was adapted to extremely high temperatures (47°C), at which time considerable positive net photosynthetic rates were still gained.

  17. [Unsolved radioecological problems of Chernobyl NPP Exclusion Zone at late phase of the accident].

    PubMed

    Ivanov, Iu A; Bondar'kov, M D

    2009-01-01

    Some scientific and scientific-industrial radioecological problems of Chernobyl NPP Exclusion Zone are considered. These problems are demanding its solution or development of already obtaining results for adequate understanding and planning of conducted researches as well as for decision support of activities directed to minimization of the accident consequences. Following problems are discussed: an estimation of radiological significance of natural and technogenic objects of the Zone, long-term dynamics of radioecological processes, autorehabilitation processes of the Zone ecosystems, complex estimation of the influence of the Zone technogenic objects to radioecological state of ecosystems, radioecology of urban ecosystems (by the example of former town Pripyat) and problems of rehabilitation of abandoned areas. PMID:19637738

  18. Initial on-orbit radiometric calibration of the Suomi NPP VIIRS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Kwofu; Xiong, Xiaoxiong

    2012-09-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector's digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  19. Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment.

    PubMed

    Gudelis, A; Druteikiene, R; Luksiene, B; Gvozdaite, R; Nielsen, S P; Hou, X; Mazeika, J; Petrosius, R

    2010-06-01

    Two RBMK-1500 reactor units operated in Lithuania in the 1987-2004 period (one of them was stopped for decommissioning in 2004). This study presents a preliminary investigation of surface deposition density levels of (55)Fe and (63)Ni in moss samples collected in the close vicinity of the Ignalina NPP. Non-destructive analysis by the HPGe gamma-spectrometry was followed by radiochemical separation. Radiochemical analysis was based on anion-exchange and extraction chromatography. (55)Fe and (63)Ni activities were measured by liquid scintillation counting (LSC). The results indicate that the deposition values of (55)Fe are generally higher than those of (60)Co and (63)Ni. PMID:18818005

  20. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    PubMed Central

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-01-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv. PMID:23591638

  1. Study of Degradation Processes in Dielectric Materials Used in Electronic Control Equipment Operated in ``Kozloduy'' NPP

    NASA Astrophysics Data System (ADS)

    Naydenov, Nayden; Popov, Angel

    2007-04-01

    The electronic equipment for control of different systems of Units 5 and 6 is studied for presence of degradation processes occurring in result of continuous usage in conditions of controlled radiation background in compliance with ``Kozloduy'' NPP safety codes. Systems, operated in a continuous mode in the course of about 10 years were chosen - separate units containing different dielectric materials (varnish coating, circuit board bases, cable insulations, electro protective elements, etc.) were extrapolated. Series of test samples were prepared which were connected with flat or coaxial condensers and their characteristic parameters were measured: tgδ, ɛ, low voltage conductivity and leak currents at voltages that exceed the working ones several times. When comparing the obtained data with the reference ones, a conclusion is made about the effectiveness of electric ageing during operation in the course of time.

  2. Application of Mössbauer spectroscopy on corrosion products of NPP

    NASA Astrophysics Data System (ADS)

    Dekan, J.; Lipka, J.; Slugeň, V.

    2013-04-01

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  3. Preliminary assessment of Suomi-NPP VIIRS on-orbit radiometric performance

    NASA Astrophysics Data System (ADS)

    Oudrari, Hassan; McIntire, Jeff; Moyer, David; Chiang, Kwofu; Xiong, Xiaoxiong; Butler, James

    2012-09-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polarorbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of the planet Earth twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 375 m and 750 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.4 μm and 12.5 μm, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (DNB). VIIRS observations are used to generate 22 environmental data record (EDRs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SD) and solar diffuser stability monitor (SDSM), emissive bands calibration based on the on-board blackbody calibration (OBC), and cross-comparison with MODIS. A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS early on-orbit performance, and a plan for future cal/val activities and performance enhancements will be presented.

  4. Calibration/Validation of S-NPP/VIIRS Day-Night Band using Moon Light

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cao, C.; Uprety, S.

    2013-12-01

    The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard S-NPP represents a major advancement in night time imaging capabilities. The DNB of the VIIRS sensor utilizes a backside-illuminated charge coupled device (CCD) focal plane array (FPA) for sensing of radiances spanning 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band (RSB). In order to cover this extremely broad measurement range, the DNB employs four imaging arrays that comprise three gain stages. The low gain stage (LGS) gain values are determined by solar diffuser data. In operations, the medium and high gain stage values are determined by multiplying the LGS gains by the medium gain stage (MGS)/LGS and high gain stage (HGS)/LGS gain ratios, respectively. In this study, we demonstrate the radiometric calibration of DNB using moon light. This is performed by selecting events when S-NPP flies above the vicarious sites such as Dome C in Antarctic and Greenland in northern hemisphere at night and the moon illuminates the site with lunar phase being more than half moon. This helps to independently verify the radiometric accuracy of HGS of DNB. The calibration of DNB is performed using a lunar spectral irradiance model as a function of Sun-Earth-Moon distances and lunar phase to determine the top-of-atmosphere (TOA) reflectance at vicarious sites. Analysis of the vicariously-derived reflectance from DNB observations show general agreement with the reflectance derived from Hyperion observations of the vicarious sites. The stability of DNB is further verified from reflectance derived from observation of deep convective cloud with lunar illumination.

  5. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  6. Failure Forewarning in NPP Equipment NERI2000-109 Final Project Report

    SciTech Connect

    Hively, LM

    2004-03-26

    The objective of this project is forewarning of machine failures in critical equipment at next-generation nuclear power plants (NPP). Test data were provided by two collaborating institutions: Duke Engineering and Services (first project year), and the Pennsylvania State University (Applied Research Laboratory) during the second and third project years. New nonlinear methods were developed and applied successfully to extract forewarning trends from process-indicative, time-serial data for timely, condition-based maintenance. Anticipation of failures in critical equipment at next-generation NPP will improve the scheduling of maintenance activities to minimize safety concerns, unscheduled non-productive downtime, and collateral damage due to unexpected failures. This approach provides significant economic benefit, and is expected to improve public acceptance of nuclear power. The approach is a multi-tiered, model-independent, and data-driven analysis that uses ORNL's novel nonlinear method to extract forewarning of machine failures from appropriate data. The first tier of the analysis provides a robust choice for the process-indicative data. The second tier rejects data of inadequate quality. The third tier removes signal artifacts that would otherwise confound the analysis, while retaining the relevant nonlinear dynamics. The fourth tier converts the artifact-filtered time-serial data into a geometric representation, that is then transformed to a discrete distribution function (DF). This method allows for noisy, finite-length datasets. The fifth tier obtains dissimilarity measures (DM) between the nominal-state DF and subsequent test-state DFs. Forewarning of a machine failure is indicated by several successive occurrences of the DM above a threshold, or by a statistically significant trend in the DM. This paradigm yields robust nonlinear signatures of degradation and its progression, allowing earlier and more accurate detection of the machine failure.

  7. Preliminary Assessment of Suomi-NPP VIIRS On-orbit Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; DeLuccia, Frank; McIntire, Jeff; Moyer, David; Chiang, Vincent; Xiong, Xiao-xiong; Butler, James

    2012-01-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of most of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370.and 740 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.412 11m and 12.01 11m, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (ON B). VIIRS observations are used to generate 22 environmental data products (EORs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SO) and solar diffuser stability monitor (SOSM), and emissive bands calibration based on the on-board blackbody calibration (OBC). A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS on-orbit early performance, and a plan for future cal/val activities and performance enhancements will be presented.

  8. Land and cryosphere products from Suomi NPP VIIRS: Overview and status

    PubMed Central

    Justice, Christopher O; Román, Miguel O; Csiszar, Ivan; Vermote, Eric F; Wolfe, Robert E; Hook, Simon J; Friedl, Mark; Wang, Zhuosen; Schaaf, Crystal B; Miura, Tomoaki; Tschudi, Mark; Riggs, George; Hall, Dorothy K; Lyapustin, Alexei I; Devadiga, Sadashiva; Davidson, Carol; Masuoka, Edward J

    2013-01-01

    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA’s Earth Observing System’s Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA’s focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team’s evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS. PMID:25821661

  9. Operational diagnostics of thermal state and efficiency of steam turbines of TPP and NPP

    NASA Astrophysics Data System (ADS)

    Bozhko, V. V.; Kovalenko, A. N.; Lyapunov, V. M.; Khomenok, L. A.

    2016-05-01

    Various ways for solving complex problems of the strength and operating life of steam turbines of TPP and NPP are studied. Diagnostic characters and technical possibilities for their control during the steam turbine operation are determined. It is shown that the effect of various factors on the reliability, maneuverability, and service life of power installations of TPP and NPP is generally determined by the thermal state of steam-electric generating sets. Leading foreign and domestic manufacturers give major attention to the organization of the control of the thermal state of facilities and the development of systems for accounting ("counter") the service life depletion. Zones of high-temperature sites of shafts and disks with maximum parameters of operating environment are determined. A model for on-line computation of thermal stresses with the diagnostic evaluation of the service life depletion (fatigue accumulation) and forecasting of optimum heating conditions for thermostressed turbine units is briefly stated. An example of a program for diagnostics of the quality of the facility operation is given. The program provides the operative control of thermal stresses and the service life depletion in main units of the turbine under various operation conditions, operates in the real-time mode, calculates and represents currents values of thermal stresses in turbine units, and forms and transmits into the industrial control signals on the occurrence of restrictions with respect to thermal stresses and prohibition of an increase or decrease in the vapor temperature and the load in the case of approaching pressures to maximum permissible ones. In the case of stationary operation conditions, the program computed the current efficiency in high (HPC) and mean (MPC) pressure cylinders.

  10. NPP VIIRS on-orbit calibration and characterization using the moon

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xiong, X.; Butler, J.

    2012-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polarorbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2012. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56° to -55° in the first three scheduled lunar observations and then changed to the range from -51.5° to -50.5°, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14°, 0°] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  11. NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    NASA Technical Reports Server (NTRS)

    Sun, J.; Xiong, X.; Butler, J.

    2012-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  12. Patterns of NPP, GPP, Respiration and NEP During Boreal Forest Succession

    SciTech Connect

    Goulden, Michael L.; McMillan, Andrew; Winston, Greg; Rocha, Adrian; Manies, Kristen; Harden, Jennifer W.; Bond-Lamberty, Benjamin

    2010-12-15

    We deployed a mesonet of year-round eddy covariance towers in boreal forest stands that last burned in ~1850, ~1930, 1964, 1981, 1989, 1998, and 2003 to understand how CO2 exchange changes during secondary succession.The strategy of using multiple methods, including biometry and micrometeorology, worked well. In particular, the three independent measures of NEP during succession gave similar results. A stratified and tiered approach to deploying eddy covariance systems that combines many lightweight and portable towers with a few permanent ones is likely to maximize the science return for a fixed investment. The existing conceptual models did a good job of capturing the dominant patterns of NPP, GPP, Respiration and NEP during succession. The initial loss of carbon following disturbance was neither as protracted nor large as predicted. This muted response reflects both the rapid regrowth of vegetation following fire and the prevalence of standing coarse woody debris following the fire, which is thought to decay slowly. In general, the patterns of forest recovery from disturbance should be expected to vary as a function of climate, ecosystem type and disturbance type. The NPP decline at the older stands appears related to increased Rauto rather than decreased GPP. The increase in Rauto in the older stands does not appear to be caused by accelerated maintenance respiration with increased biomass, and more likely involves increased allocation to fine root turnover, root metabolism, alternative forms of respiration, mycorrhizal relationships, or root exudates, possibly associated with progressive nutrient limitation. Several studies have now described a similar pattern of NEP following boreal fire, with 10-to-15 years of modest carbon loss followed by 50-to-100 years of modest carbon gain. This trend has been sufficiently replicated and evaluated using independent techniques that it can be used to quantify the likely effects of changes in boreal fire frequency and

  13. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    SciTech Connect

    J.W. Davis

    1996-08-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  14. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  15. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  16. Acidosis Is a key regulator of osteoblast ecto‐nucleotidase pyrophosphatase/phosphodiesterase 1 (NPP1) expression and activity

    PubMed Central

    Key, Michelle L.; Hajjawi, Mark O.R.; Millán, José L.; Arnett, Timothy R.

    2015-01-01

    Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (Pi) to pyrophosphate (PPi) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both Pi and PPi, a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto‐nucleotidases. This study investigated the expression and activity of ecto‐nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto‐nucleotidases including NTPdase 1–6 (ecto‐nucleoside triphosphate diphosphohydrolase) and NPP1‐3 (ecto‐nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1 > NTPdase 4 > NTPdase 6 > NTPdase 5 > alkaline phosphatase > ecto‐5‐nucleotidase > Enpp3 > NTPdase 1 > NTPdase 3 > Enpp2 > NTPdase 2. Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8‐fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto‐nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (P < 0.001). Release of ATP, one of the key substrates for NPP1, from osteoblasts, was unaffected by acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5‐fold, P < 0.001) and was partially resistant to the inhibitory effect of acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions. J. Cell. Physiol. 230: 3049–3056, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc

  17. The nucleoporin Nup205/NPP-3 is lost near centrosomes at mitotic onset and can modulate the timing of this process in Caenorhabditis elegans embryos

    PubMed Central

    Hachet, Virginie; Busso, Coralie; Toya, Mika; Sugimoto, Asako; Askjaer, Peter; Gönczy, Pierre

    2012-01-01

    Regulation of mitosis in time and space is critical for proper cell division. We conducted an RNA interference–based modifier screen to identify novel regulators of mitosis in Caenorhabditis elegans embryos. Of particular interest, this screen revealed that the Nup205 nucleoporin NPP-3 can negatively modulate the timing of mitotic onset. Furthermore, we discovered that NPP-3 and nucleoporins that are associated with it are lost from the nuclear envelope (NE) in the vicinity of centrosomes at the onset of mitosis. We demonstrate that centrosomes are both necessary and sufficient for NPP-3 local loss, which also requires the activity of the Aurora-A kinase AIR-1. Our findings taken together support a model in which centrosomes and AIR-1 promote timely onset of mitosis by locally removing NPP-3 and associated nucleoporins from the NE. PMID:22740626

  18. NPP changes of Larix chinensis estimated by tree-ring data and its response to climate change in the northern and southern slopes of Mt. Taibai, central China

    NASA Astrophysics Data System (ADS)

    Fang, O.; Xuemei, S.

    2015-12-01

    Larix chinensis is mainly distributed in timberline of Mt. Taibai in the Qinling Mountains, a critical geographic demarcation for climate and vegetation distribution in China. Combined with biomass equations and the annual diameter at breast height calculated from tree-ring widths and investigation data of sampling plots, annual biomass and net primary productivity (NPP) of L. chinensis in northern and southern slopes were estimated. Correlation and response analyses were used to illustrate the relationship between the climate and NPP. The results show that from 1949 to 2014, the biomass of L. chinensis in the pure forests increases from 54.03 to 94.43 t/ha in the northern slope and 28.32 to 55.80 t/ha in the southern slope. The NPP of L. chinensis in northern and southern slopes has varied concordantly over the past 65 years, with an average value of 0.62 and 0.42 t/(ha·a) respectively. The difference in NPPs between the northern and southern slope is decreasing for the slight decrease trend of NPP in northern slope. Temperature plays an important role in the growth of L. chinensis. Low temperature before the growing seasons (from pervious November to April) and warm conditions in the growing seasons (mainly from June to July) can increase the growth of L. chinensis. However, the relationships between NPP and temperature are different in the northern and southern slope. The NPP in southern slope is more positively correlated with the temperature in the growing seasons and there is no significant correlation relationship between the NPP and the temperature in previous winter (from pervious November to January), while the NPP in northern slope is more negatively correlated with the temperature before the growing seasons. These results will provide useful information for the future research of forest carbon cycling.

  19. Impact of makeup water system performance on PWR steam generator corrosion. Final report

    SciTech Connect

    Bell, M.J.; Pearl, W.L.; Sawochka, S.G.; Smith, L.A.

    1985-06-01

    The objectives of this project were to review makeup system design and performance and assess the possible relation of pressurized water reactor (PWR) steam generator corrosion to makeup water impurity ingress at fresh water sites. Project results indicated that makeup water transport of most ionic impurities can be expected to have a significant impact on secondary cycle chemistry only if condenser inleakage and other sources of impurities are maintained at very low levels. Since makeup water oxygen control techniques at most study plants were not consistent with state-of-the-art technology, oxygen input to the cycle via makeup can be significant. Leakage of colloidal silica and organics through makeup water systems can be expected to control blowdown silica levels and organic levels throughout the cycle at many plants. Attempts to correlate makeup water quality to steam generator corrosion observations were unsuccessful since (1) other impurity sources were significant compared to makeup at most study plants, (2) many variables are involved in the corrosion process, and (3) in the case of IGA, the variables have not been clearly established. However, in some situations makeup water can be a significant source of contaminants suspected to lead to both IGA and denting.

  20. Modeling and design of a reload PWR core for a 48-month fuel cycle

    SciTech Connect

    McMahon, M.V.; Driscoll, M.J.; Todreas, N.E.

    1997-05-01

    The objective of this research was to use state-of-the-art nuclear and fuel performance packages to evaluate the feasibility and costs of a 48 calendar month core in existing pressurized water reactor (PWR) designs, considering the full range of practical design and economic considerations. The driving force behind this research is the desire to make nuclear power more economically competitive with fossil fuel options by expanding the scope for achievement of higher capacity factors. Using CASMO/SIMULATE, a core design with fuel enriched to 7{sup w}/{sub o} U{sup 235} for a single batch loaded, 48-month fuel cycle has been developed. This core achieves an ultra-long cycle length without exceeding current fuel burnup limits. The design uses two different types of burnable poisons. Gadolinium in the form of gadolinium oxide (Gd{sub 2}O{sub 3}) mixed with the UO{sub 2} of selected pins is sued to hold down initial reactivity and to control flux peaking throughout the life of the core. A zirconium di-boride (ZrB{sub 2}) integral fuel burnable absorber (IFBA) coating on the Gd{sub 2}O{sub 3}-UO{sub 2} fuel pellets is added to reduce the critical soluble boron concentration in the reactor coolant to within acceptable limits. Fuel performance issues of concern to this design are also outlined and areas which will require further research are highlighted.

  1. Large Break LOCA Safety Injection Sensitivity for a CE/ABB System 80+ PWR

    SciTech Connect

    Pottorf, J.; Bajorek, S.M.

    2002-07-01

    A WCOBRA/TRAC model of an evolutionary pressurized water reactor with direct vessel injection was constructed using publicly available information and a hypothetical double-ended guillotine break of a cold leg pipe was simulated. The model is an approximation of a ABB/Combustion Engineering System 80+ pressurized water reactor (PWR). WCOBRA/TRAC is the thermal-hydraulics code approved by the U.S. Nuclear Regulatory Commission for use in realistic large break LOCA analyses of Westinghouse 3- and 4-loop PWRs and the AP600 passive design. The AP600 design uses direct vessel injection, and the applicability of WCOBRA/TRAC to such designs is supported by comparisons to appropriate test data. This study extends the application of WCOBRA/TRAC to the investigation of the predicted behavior of direct vessel injection in an evolutionary design. A series of large break LOCA simulations were performed assuming a core power of 3914 MWt, and Technical Specification limits of 2.5 on total peaking factor and 1.7 on hot channel enthalpy rise factor. Two cladding temperature peaks were predicted during reflood, one following bottom of core recovery and a second caused by saturated boiling of water in the downcomer. This behavior is consistent with prior WCOBRA/TRAC calculations for some Westinghouse PWRs. The simulation results are described, and the sensitivity to failure assumptions for the safety injection system is presented. (authors)

  2. TRAB-3D/SMABRE Calculation of the OECD/NRC PWR MSLB Benchmark

    SciTech Connect

    Daavittila, A.; Haemaelaeinen, A.; Kyrki-Rajamaeki, R.

    2001-06-17

    All three exercises of the OECD/NRC Pressurized Water Reactor (PWR) Main Steam Line Break (MSLB) Benchmark were calculated. The SMABRE thermal-hydraulics code was used for the first exercise, the plant simulation with point-kinetics neutronics. The second exercise was calculated with the TRAB-3D three-dimensional reactor dynamics code. The third exercise was calculated with the combination TRAB-3D/SMABRE. The results of all the exercises agree reasonably well with those of the other participants; therefore, instead of reporting results, this paper concentrates on describing the computational aspects of the calculation with the above-mentioned codes and on some observations of the sensitivity of the results. The variations calculated with SMABRE with modifications in the upper head, steam generators, and steam lines affect mainly the time of recriticality. During the fourth workshop of the benchmark, a decision was made to extrapolate the cross sections if the fuel temperature or moderator density was out of the range of the given cross section tables. In the TRAB-3D calculation, this extrapolation made a significant difference for the first scenario; there is a low power maximum after the scram, which is not seen in the calculation without the extrapolation.

  3. LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.

    1997-04-01

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.

  4. Whole-core comet solutions to a 3-dimensional PWR benchmark problem with gadolinium

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2012-07-01

    A pressurized water reactor (PWR) benchmark problem with gadolinium was used to determine the accuracy and computational efficiency of the coarse mesh radiation transport method COMET. The benchmark problem contains 193 square fuel assemblies. The COMET solution (eigenvalue, assembly averaged and fuel pin averaged fission density distributions) was compared with those obtained from the corresponding Monte Carlo reference solution using the same 2-group material cross section library. The comparison showed that both the core eigenvalue and fission density distribution averaged over each assembly and fuel pin predicated by COMET agree very well with the corresponding MCNP reference solution if the incident flux response expansion used in COMET is truncated at 2nd order in the two spatial and the two angular variables. The benchmark calculations indicate that COMET has Monte Carlo accuracy. In, particular, the eigenvalue difference between the codes ranged from 17 pcm to 35 pcm, being within 2 standard deviations of the calculational uncertainty. The mean flux weighted relative differences in the assembly and fuel pin fission densities were 0.47% and 0.65%, respectively. It was also found that COMET's full (whole) core computational speed is 30,000 times faster than MCNP in which only 1/8 of the core is modeled. It is estimated that COMET would have been about over 6 orders of magnitude faster than MCNP if the full core were also modeled in MCNP. (authors)

  5. NDE and mechanical removal of sludge in PWR steam generators: Volume 2, Vendor practices: Final report

    SciTech Connect

    Kidd, C.C.; Scharton, T.D.; Spencer, R.B.; Taylor, G.B.; Stewart, D.R.; Gallagher, M.J.; Johnson, L.E.; Sapia, M.A.; Edwards, L.J.; Dashukewich, M.L.

    1988-01-01

    A study was made to identify the needs of utilities for detecting, measuring, and mechanically removing sludge and related corrosion products from PWR steam generators, both recirculating U-tube and once through designs. The study determining, from the utility-user viewpoint, how well these needs are being met by currently available technology; identified opportunities for improvement; and made recommendations for research efforts to realize these opportunities. Methods for chemically removing sludge and corrosion products from steam generators, i.e., use of chemical solvents, were not addressed. Reports from nuclear steam supply system vendors and independent service vendors on their current processes and prior developmental efforts to realize these opportunities. Methods for chemically removing sludge and corrosion products from steam generators, i.e., use of chemical solvents, were not addressed. Reports from nuclear steam supply system vendors and independent service vendors on their current processes and prior developmental efforts with mechanical removal methods and NDE techniques are included in the study. In addition, information was obtained from the technical literature and from discussions and visits with knowledgeable individuals at utilities, service vendors, and engineering and consulting firms. Current removal methods examined included sludge lancing, pressure pulse and water slap; current NDE techniques examined included eddy current, optical instruments, sludge sampling, and water balance measurements. Additional NDE techniques reported on by the service vendors included Hall effect and magnetic field sensing probes, ultrasonic, and radiation attenuation techniques.

  6. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    SciTech Connect

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-07-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  7. {sup 252}Cf-source-driven frequency analysis measurements with subcritical arrays of PWR fuel pins

    SciTech Connect

    Mihalczo, J.T.; Valentine, T.E.; Blakeman, E.D.; King, W.T.

    1996-08-01

    Experiments with fresh PWR fuel assemblies were performed to assess the {sup 252}Cf-source-driven frequency analysis method for measuring the subcriticality of spent fuel. The measurements at the Babcox and Wilcox Critical Experiments Facility mocked up between 17x17 fuel pins (single assembly) and a full array of 4961 fuel pins (about 17 fuel assemblies) in borated water with a fixed B concentration. For the full array, the B content of the water was varied from 1511 at delayed criticality to 4303 ppM. Measurements were done for various source-detector-fuel pin configurations; they showed high sensitivity of frequency analysis parameters to B content and fissile mass. Parameters such as auto and cross power spectral densities can be calculated directly by a more general model of the Monte Carlo code (MCNP-DSP). Calculation-measurement comparisons are presented. This model permits the validation of neutron and gamma ray transport calculational methods with subcritical measurements using the {sup 252}Cf-source-driven frequency analysis method.

  8. MELCOR 1.8.2 assessment: Surry PWR TMLB` (with a DCH study)

    SciTech Connect

    Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Summers, R.M.; Thompson, S.L.

    1994-02-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified.

  9. Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions

    NASA Astrophysics Data System (ADS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide; Ishijima, Kiyomi

    1997-09-01

    To study the fuel behavior and to evaluate the fuel enthalpy threshold of fuel rod failure under reactivity initiated accident (RIA) conditions, a series of experiments using pulse irradiation capability of the Nuclear Safety Research Reactor (NSRR) has been performed. During the experiments with 50 MWd/kg U PWR fuel rods (HBO test series; an acronym for high burnup fuels irradiated in Ohi unit 1 reactor), significant cladding failure occurred. The energy deposition level at the instant of the fuel failure in the test is 60 cal/g fuel, and is considerably lower than those expected and pre-evaluated. The result suggests that mechanical interaction between the fuel pellets and the cladding tube with decreased integrity due to hydrogen embrittlement causes fuel failure at the low energy deposition level. After the pulse irradiation, the fuel pellets were found as fragmented debris in the coolant water, and most of these were finely fragmented. This paper describes several key observations in the NSRR experiments, which include cladding failure at the lower enthalpy level, possible post-failure events and large fission gas release.

  10. Library of PWR (pressurized-water reactor) steam generator tubing samples: Final report

    SciTech Connect

    Albertin, L.; Clark, W.G. Jr.; Junker, W.R.; Kuchirka, P.J.; Madeyski, A.; Metala, M.J.; Taszarek, B.J.

    1988-01-01

    The PWR Steam Generator Tubing Sample Library is a Steam Generator Owners Group-EPRI program whose objective is to compile a library of well-characterized tubing samples to be used for performance evaluation of inspection systems and for training and qualification of signal interpretation systems. The library was created through the preparation of samples intended to replicate degradation encountered in actual field tubes. A limited number of tube segments removed from actual steam generators are included. Degradation categories include wear, pitting and fatigue cracks, as well as stress corrosion cracking (SCC) and intergranular attack (IGA). Eddy current and ultrasonic inspection techniques, along with supplementary radiography, dye penetrant, and optical techniques were used to characterize the library candidates. Advanced computer-aided NDE data collection, analysis and display techniques were used to assess test results. This report provides details of the library program, with major emphasis on the sampling protocol, characterization of degradation and recommendations for the use and future growth of the library. Also included is a compendium of steam generator tube degradation field observation, describing past destructive examinations of tubes removed for inspection from steam generators, and a description of a physical modeling approach, using mercury (metal) to assess the discontinuity characterization capabilities of a pancake-type eddy current probe. Computerized data analysis and display techniques were used to reconstruct the test results in both two-dimensional color-coded maps and three-dimensional pseudo-isometric plots.

  11. Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell

    SciTech Connect

    Feltus, M.A.; Pozsgai, C. )

    1992-01-01

    Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative nature of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.

  12. The stress corrosion cracking behavior of alloys 690 and 152 WELD in a PWR environment.

    SciTech Connect

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2009-01-01

    Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and 182, respectively. The latter two alloys are used as structural materials in pressurized water reactors (PWRs) and have been found to undergo stress corrosion cracking (SCC). The objective of this work is to determine the crack growth rates (CGRs) in a simulated PWR water environment for the replacement alloys. The study involved Alloy 690 cold-rolled by 26% and a laboratory-prepared Alloy 152 double-J weld in the as-welded condition. The experimental approach involved pre-cracking in a primary water environment and monitoring the cyclic CGRs to determine the optimum conditions for transitioning from the fatigue transgranular to intergranular SCC fracture mode. The cyclic CGRs of cold-rolled Alloy 690 showed significant environmental enhancement, while those for Alloy 152 were minimal. Both materials exhibited SCC of 10{sup -11} m/s under constant loading at moderate stress intensity factors. The paper also presents tensile property data for Alloy 690TT and Alloy 152 weld in the temperature range 25--870 C.

  13. Integrated Radiation Transport and Thermo-Mechanics Simulation of a PWR Assembly

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Sampath, Rahul S; Allu, Srikanth; Berrill, Mark A; Barai, Pallab; Banfield, James E

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step towards incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source terms, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. AMPFuel was used to model an entire 17 x 17 Pressurized Water Reactor (PWR) fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins, the 25 guide tubes, top and bottom structural regions, and the upper and lower (neutron) reflector regions. The final full-assembly calculation was executed on Jaguar (Cray XT5) at the Oak Ridge Leadership Computing Facility using 40,000 cores in under 10 hours to model over 162 billion degrees of freedom for 10 loading steps.

  14. Code System to Calculate Cross Sections for PWR Fuel Assembly Calculations.

    Energy Science and Technology Software Center (ESTSC)

    1994-11-15

    Version 00 The MARIA System calculates cross sections for PWR fuel assembly calculations. It generates the cross sections library for the diffusion calculations with burnup and feedback effects (CARMEN System, NEA 0649 and RSIC CCC-487) and the k(infinite) and M**2 parameters for the nodal calculations (SIMULA, NEA 0768). MARIA includes three modules. PRELIM generates the input data for the fuel assembly calculation module, for all fuel assembly types in the core and at any conditionmore » of power rate and temperature. WIMS-TRACA is a modified version of the fuel assembly calculation program WIMS-D/4 (NEA 0329 and RSIC CCC-576), which generates the collapsed cross sections versus burn up needed by the CARMEN code (reference cell, boron, xenon, samarium, and light water). POSWIM calculates the transport corrections to the diffusion constant of the absorber materials generated by WIMS-TRACA, to be used directly in the diffusion code when rods or burnable absorber rods are present.« less

  15. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    NASA Astrophysics Data System (ADS)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  16. Remote Gamma Scanning System for Characterization of BWR and PWR Fuel Rod Sections

    SciTech Connect

    Crowell, Shannon L.; Alzheimer, James M.

    2011-08-08

    Sometimes challenges with the design and deployment of automated equipment in remote environments deals more with the constraints imposed by the remote environment than it does with the details of the automation. This paper discusses the development of a scanning system used to provide gamma radiation profiles of irradiated fuel rod segments. The system needed the capability to provide axial scans of cut segments of BWR and PWR fuel rods. The scanning location is A-Cell at the Radiochemical Processing Laboratory (RPL) at the Hanford site in Washington State. The criteria for the scanning equipment included axial scanning increments of a tenth of an inch or less, ability to scan fuel rods with diameters ranging from 3/8 inch to 5/8 inch in diameter, and fuel rod segments up to seven feet in length. Constraints imposed by the environment included having the gamma detector and operator controls on the outside of the hot cell and the scanning hardware on the inside of the hot cell. This entailed getting a narrow, collimated beam of radiation from the fuel rod to the detector on the outside of the hot cell while minimizing the radiation exposure caused by openings for the wires and cables traversing the hot cell walls. Setup and operation of all of the in-cell hardware needed to accommodate limited access ports and use of hot cell manipulators. The radiation levels inside the cell also imposed constraints on the materials used.

  17. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    SciTech Connect

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)

  18. Comparison Between NPP-VIIRS Aerosol Data Products and the MODIS AQUA Deep Blue Collection 6 Dataset Over Land

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.

    2013-01-01

    Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data

  19. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  20. Towards the Seismic Hazard Reassessment of Paks NPP (Hungary) Site: Seismicity and Sensitivity Studies

    NASA Astrophysics Data System (ADS)

    Toth, Laszlo; Monus, Peter; Gyori, Erzsebet; Grenerczy, Gyula; Janos Katona, Tamas; Kiszely, Marta

    2015-04-01

    In context of extension of Paks Nuclear Power Plant by new units, a comprehensive site seismic hazard evaluation program has been developed that is already approved by the Hungarian Authorities. This includes a 3D seismic survey, drilling of several deep boreholes, extensive geological mapping, and geophysical investigations at the site and its vicinity, as well as on near regional, and regional scale. Furthermore, all relevant techniques of modern space geodesy (GPS, PSInSAR) will be also utilized to construct a new seismotectonic model. The implementation of the project is still in progress. In the presentation, some important elements of the new seismic hazard assessment are highlighted, and some results obtained in the preliminary phase of the program are presented and discussed. The first and most important component of the program is the compilation of the seismological database that is developed on different time scale zooming on different event recurrence rates such as paleo-earthquakes (10-1/a). In 1995, Paks NPP installed and started to operate a sensitive microseismic monitoring network capable for locating earthquakes as small as magnitude 2.0 within about 100 km of the NPP site. During the two decades of operation, the microseismic monitoring network located some 2,000 earthquakes within the region of latitude 45.5 - 49 N and longitude 16 - 23 E. Out of the total number of events, 130 earthquakes were reported as 'felt events'. The largest earthquake was an event of ML 4.8, causing significant damage in the epicenter area. The results of microseismic monitoring provide valuable data for seismotectonic modelling and results in more accurate earthquake recurrence equations. The first modern PSHA of Paks NPP site was carried out in 1995. Complex site characterization project was implemented and hazard curves had been evaluated for 10-3 - 10-5 annual frequency. As a follow-up, PSHA results have been reviewed and updated in the frame of periodic safety

  1. Transition of Suomi National Polar-Orbiting Partnership (S-NPP) Data Products for Operational Weather Forecasting Applications

    NASA Astrophysics Data System (ADS)

    Smith, M. R.; Fuell, K.; Molthan, A.; Jedlovec, G.

    2012-12-01

    The launch of the Suomi National Polar-Orbiting Partnership (S-NPP) satellite provides new and exciting opportunities for the application of remotely sensed data products in operational weather forecasting environments. The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama is a NASA and NOAA-funded project to assist with the transition of experimental and research products to the operational weather community through partnership with NOAA/National Weather Service Weather Forecast Offices (NWS WFOs) throughout the United States. This presentation will provide the S-NPP community with an update on current and future SPoRT projects related to the dissemination of S-NPP derived data to NWS WFOs and highlight unique applications and value of data from the Visible Infrared Imaging Radiometer Suite (VIIRS), specifically applications of high resolution visible and infrared data, uses of the day-night (or near constant contrast) band, and multispectral composites. Other applications are envisioned through use of selected channels of the Cross-track Infrared Sounder (CrIS), the Advanced Technology Microwave Sounder (ATMS), and the Ozone Mapper Profiler Suite (OMPS). This presentation will also highlight opportunities for future collaboration with SPoRT and activities planned for participation in the NOAA Joint Polar Satellite Program (JPSS) Proving Ground.

  2. BNL PREDICTION OF NUPECS FIELD MODEL TESTS OF NPP STRUCTURES SUBJECT TO SMALL TO MODERATE MAGNITUDE EARTHQUAKES.

    SciTech Connect

    XU,J.; COSTANTINO,C.; HOFMAYER,C.; MURPHY,A.; KITADA,Y.

    2003-08-17

    As part of a verification test program for seismic analysis codes for NPP structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model test programs to ensure the adequacy of methodologies employed for seismic analyses of NPP structures. A collaborative program between the United States and Japan was developed to study seismic issues related to NPP applications. The US Nuclear Regulatory Commission (NRC) and its contractor, Brookhaven National Laboratory (BNL), are participating in this program to apply common analysis procedures to predict both free field and soil-structure Interaction (SSI) responses to recorded earthquake events, including embedment and dynamic cross interaction (DCI) effects. This paper describes the BNL effort to predict seismic responses of the large-scale realistic model structures for reactor and turbine buildings at the NUPEC test facility in northern Japan. The NUPEC test program has collected a large amount of recorded earthquake response data (both free-field and in-structure) from these test model structures. The BNL free-field analyses were performed with the CARES program while the SSI analyses were preformed using the SASS12000 computer code. The BNL analysis includes both embedded and excavated conditions, as well as the DCI effect, The BNL analysis results and their comparisons to the NUPEC recorded responses are presented in the paper.

  3. BNL PREDICTION OF NUPECS FIELD MODEL TESTS OF NPP STRUCTURES SUBJECT TO SMALL TO MODERATE MAGNITUDE EARTHQUAKES.

    SciTech Connect

    XU,J.; COSTANTINO,C.; HOFMAYER,C.; MURPHY,A.; KITADA,Y.

    2003-08-17

    As part of a verification test program for seismic analysis codes for NPP structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model test programs to ensure the adequacy of methodologies employed for seismic analyses of NPP structures. A collaborative program between the United States and Japan was developed to study seismic issues related to NPP applications. The US Nuclear Regulatory Commission (NRC) and its contractor, Brookhaven National Laboratory (BNL), are participating in this program to apply common analysis procedures to predict both free field and soil-structure interaction (SSI) responses to recorded earthquake events, including embedment and dynamic cross interaction (DCI) effects. This paper describes the BNL effort to predict seismic responses of the large-scale realistic model structures for reactor and turbine buildings at the NUPEC test facility in northern Japan. The NUPEC test program has collected a large amount of recorded earthquake response data (both free-field and in-structure) from these test model structures. The BNL free-field analyses were performed with the CARES program while the SSI analyses were preformed using the SASS12000 computer code. The BNL analysis includes both embedded and excavated conditions, as well as the DCI effect, The BNL analysis results and their comparisons to the NUPEC recorded responses are presented in the paper.

  4. On the majority carrier collection in p(+)-p-n(+) and n(+)-p-p(+) silicon solar cells

    NASA Astrophysics Data System (ADS)

    Singh, S. N.; Kotnala, R. K.; Jain, G. C.

    1984-02-01

    The spectral responses of a few bifacial n(+)-p-p(+) silicon solar cells, 220-330-micron thick, were measured to investigate the possibility of majority carrier collection in n(+)-p-p(+) back-surface field and p(+)-p-n(+) front-surface field silicon solar cells. It was found that, under low level conditions, any appreciable collection of photogenerated majority carriers has to be field-aided. Therefore, under low level conditions, hole collection may contribute substantially to the photocurrent density of a p(+)-p-n(+) or n(+)-p-p(+) cell, and this may come from the p(+) or p region, provided that not only the concentration of photogenerated holes in that region is substantial, but also that there exists a built-in electric field due to the impurity gradient to aid the process. For high level conditions, however, holes can be collected from the uniformly doped p base region with or without the aid of an electric field.

  5. Evaluation of NPP VIIRS Vegetation Index EDR performance using MODIS and AVHRR data records

    NASA Astrophysics Data System (ADS)

    vargas, M.; Shabanov, N.; Miura, T.

    2012-12-01

    Vegetation Index (VI) is one key parameter to specify the boundary condition in global climate models, weather forecasting models and numerous remote sensing applications for monitoring environmental state and its change. The VI Environmental Data Record (EDR), which includes the Top of Atmosphere Normalized Difference Vegetation Index (TOA NDVI) and the Top of Canopy Enhanced Vegetation Index (TOC EVI), is currently operationally generated from data delivered by the Visible Infrared Imaging radiometer Suite (VIIRS) instrument onboard the National Polar-orbiting Partnership (NPP) platform launched in October 2011. The VI EDR was implemented to provide continuity for 30+ years of historical VI records provided by MODIS and AVHRR sensors. This presentation reports on the results of the analysis performed by the JPSS VI group at NOAA-NESDIS-STAR on two major aspects of performance of the VI EDR in the early phase of the NPP mission: (1) assessment of accuracy of the VIIRS VI EDR product with respect to input data including Surface Reflectances, Cloud and Aerosol masks as function of vegetation (biome) types; (2) temporal and spatial consistency of VIIRS VI EDR with respect to heritage MODIS and AVHRR VI products. This analysis is based on data from VIIRS (daily TOA NDVI and TOC EVI, and daily surface reflectances), Terra MODIS (16 days composites of TOC EVI and TOC NDVI, and daily TOA radiances) and NOAA-18 AVHRR (7-days composites of TOA NDVI). MODIS 8-biome landcover mask was used to quantify variations in VI product performance as function of vegetation type. Best overall agreement is achieved between VIIRS and MODIS data (TOC EVI and TOC NDVI) in terms of minimum systematic discrepancy (minimum bias and STD) and highest correlation of spatial patterns (highest r^2). The agreement is highest for biomes with low vegetation cover, but degrades with increased foliage density. VIIRS cloud mask provides a fair screening of daily data over the globe. While performance of

  6. Towards Continuity in Cloud Properties from MODIS and Suomi-NPP Polar-Orbiting Sensors

    NASA Astrophysics Data System (ADS)

    Baum, B. A.; Menzel, P.; Gladkova, I.; Heidinger, A. K.

    2015-12-01

    The intent of this talk is to discuss the progress and issues involved with developing a continuous record of cloud properties since 1978, beginning with the High Resolution Infrared Radiation Sounder (HIRS), then MODIS on the NASA Terra/Aqua platforms, and into the future from merged CrIS and VIIRS data. The MODIS measurements include infrared (IR) window radiances at 8.5-, 11- and 12-μm and four 15-μm channels in the broad CO2 absorption band. Cloud top pressure/height and emissivity are derived using a technique in which the strength is in retrievals for mid-to-high clouds but less so for low clouds where there is little thermal contrast with the surface. Additionally, MODIS provides a decadal IR cloud phase product. The goal now is to extend this continuity from HIRS and MODIS to the S-NPP era. However, there is one large drawback to consider: VIIRS has no infrared (IR) absorption channels. The lack of at least one IR absorption channel on VIIRS degrades the accuracy of the cloud properties. There is a solution: we can construct a 13.3-μm channel from a combination of VIIRS and CrIS (Cross-track Infrared Sounder). The approach involves using the high spatial resolution VIIRS IR window channels in combination with a lower spatial resolution 13.3-μm channel derived using CrIS high spectral resolution measurements. The result is a 13.3-μm pseudo-channel at the VIIRS pixel spatial resolution of 750 m (i.e., M-band resolution). The radiometric accuracy of this approach was tested using MODIS and AIRS, and found to be within 1-2%. The availability of the pseudo-channel increases the potential for achieving continuity between MODIS and S-NPP. Since future platforms will likely continue with a pairing of an imager and hyperspectral sounder, this work lays a foundation for future cloud product continuity. We will show how the use of this new channel will impact the cloud height and phase products.

  7. Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA

    NASA Astrophysics Data System (ADS)

    Kwon, Y.

    2013-12-01

    As evidence of global warming continue to increase, being able to predict forest response to climate changes, such as expected rise of temperature and precipitation, will be vital for maintaining the sustainability and productivity of forests. To map forest species redistribution by climate change scenario has been successful, however, most species redistribution maps lack mechanistic understanding to explain why trees grow under the novel conditions of chaining climate. Distributional map is only capable of predicting under the equilibrium assumption that the communities would exist following a prolonged period under the new climate. In this context, forest NPP as a surrogate for growth rate, the most important facet that determines stand dynamics, can lead to valid prediction on the transition stage to new vegetation-climate equilibrium as it represents changes in structure of forest reflecting site conditions and climate factors. The objective of this study is to develop forest growth map using regression tree analysis by extracting large-scale non-linear structures from both field-based FIA and remotely sensed MODIS data set. The major issue addressed in this approach is non-linear spatial patterns of forest attributes. Forest inventory data showed complex spatial patterns that reflect environmental states and processes that originate at different spatial scales. At broad scales, non-linear spatial trends in forest attributes and mixture of continuous and discrete types of environmental variables make traditional statistical (multivariate regression) and geostatistical (kriging) models inefficient. It calls into question some traditional underlying assumptions of spatial trends that uncritically accepted in forest data. To solve the controversy surrounding the suitability of forest data, regression tree analysis are performed using Software See5 and Cubist. Four publicly available data sets were obtained: First, field-based Forest Inventory and Analysis (USDA

  8. A new earthquake catalogue for seismic hazard assessment of the NPP (Nuclear Power Plant) Jaslovske Bohunice, Slovakia, site

    NASA Astrophysics Data System (ADS)

    Kysel, Robert; Kristek, Jozef; Moczo, Peter; Csicsay, Kristian; Cipciar, Andrej; Srbecky, Miroslav

    2014-05-01

    According to the IAEA (International Atomic Energy Agency) Safety Guide No. SSG-9, an earthquake catalogue should comprise all information on pre-historical, historical and seismometrically recorded earthquakes in the region which should cover geographic area not smaller than a circle with radius of 300 km around the site. Jaslovske Bohunice is an important economic site. Several nuclear facilities are located in Jaslovske Bohunice - either in operation (NPP V2, national radioactive waste repository) or in decommissioning (NPP A1, NPP V1). Moreover, a new reactor unit is being planned for the site. Jaslovske Bohunice site is not far from the Dobra Voda seismic source zone which has been the most active seismic zone at territory of Slovakia since the beginning of 20th century. Relatively small distances to Austria, Hungary, Czech Republic and Slovak capital Bratislava make the site a prominent priority in terms of seismic hazard assessment. We compiled a new earthquake catalogue for the NPP Jaslovske Bohunice region following the recommendations of the IAEA Safety Guide. The region includes parts of the territories of Slovakia, Hungary, Austria, the Czech Republic and Poland, and it partly extends up to Germany, Slovenia, Croatia and Serbia. The catalogue is based on data from six national earthquake catalogues, two regional earthquake catalogues (ACORN, CENEC) and a catalogue from the local NPP network. The primarily compiled catalogue for the time period 350 - 2011 consists of 9 142 events. We then homogenized and declustered the catalogue. Eventually we checked the catalogue for time completeness. For homogenization, we divided the catalogue into preseismometric (350 - 1900) and seismometric (1901-2011) periods. For earthquakes characterized by the epicentral intensity and local magnitude we adopted relations proposed for homogenization of the CENEC catalogue (Grünthal et al. 2009). Instead of assuming the equivalency between local magnitudes reported by the

  9. Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.

    2010-12-01

    We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for

  10. Synthetic Constraint of Ecosystem C Models Using Radiocarbon and Net Primary Production (NPP) in New Zealand Grazing Land

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.

    2011-12-01

    Time-series radiocarbon measurements have substantial ability to constrain the size and residence time of the soil C pools commonly represented in ecosystem models. Radiocarbon remains unique in the ability to constrain the large stabilized C pool with decadal residence times. Radiocarbon also contributes usefully to constraining the size and turnover rate of the passive pool, but typically struggles to constrain pools with residence times less than a few years. Overall, the number of pools and associated turnover rates that can be constrained depends upon the number of time-series samples available, the appropriateness of chemical or physical fractions to isolate unequivocal pools, and the utility of additional C flux data to provide additional constraints. In New Zealand pasture soils, we demonstrate the ability to constrain decadal turnover times with in a few years for the stabilized pool and reasonably constrain the passive fraction. Good constraint is obtained with two time-series samples spaced 10 or more years apart after 1970. Three or more time-series samples further improve the level of constraint. Work within this context shows that a two-pool model does explain soil radiocarbon data for the most detailed profiles available (11 time-series samples), and identifies clear and consistent differences in rates of C turnover and passive fraction in Andisols vs Non-Andisols. Furthermore, samples from multiple horizons can commonly be combined, yielding consistent residence times and passive fraction estimates that are stable with, or increase with, depth in different sites. Radiocarbon generally fails to quantify rapid C turnover, however. Given that the strength of radiocarbon is estimating the size and turnover of the stabilized (decadal) and passive (millennial) pools, the magnitude of fast cycling pool(s) can be estimated by subtracting the radiocarbon-based estimates of turnover within stabilized and passive pools from total estimates of NPP. In grazing

  11. Radiometric performance assessment of Suomi NPP VIIRS SWIR Band (2.25 μm)

    NASA Astrophysics Data System (ADS)

    Uprety, Sirish; Cao, Changyong

    2015-09-01

    Suomi NPP VIIRS SWIR band M11 (2.25 μm) has larger radiometric uncertainty compared to the rest of the reflective solar bands. This is due to a number of reasons including prelaunch calibration uncertainties. One of the most commonly used technique to verify the radiometric stability and accuracy of VIIRS is by intercomparing it with other well calibrated radiometers such as MODIS. However one of the limitations of using MODIS is that VIIRS band M11 RSR doesn't overlap with MODIS bands at all. Thus the accuracy of intercomparison relies completely on how well the spectral differences are analyzed over the given target. Since desert sites have higher reflectance and more flat spectra, this study uses desert sites to analyze M11 radiometric performance. In order to better match the RSR between instruments, we have chosen Landsat 8 OLI SWIR band 2 (2.20 μm) to perform intercomparison. This is mainly because OLI SWIR band 2 fully covers the VIIRS band M11 even though OLI has much wider RSR compared to VIIRS. The study suggests that there exists large radiometric inconsistency between VIIRS M11 and OLI, on the order of 5%. The impact due to spectral differences is estimated and accounted for using EO-1 Hyperion observations and MODTRAN.

  12. On-orbit calibration and performance of S-NPP VIIRS DNB

    NASA Astrophysics Data System (ADS)

    Chen, H.; Sun, C.; Chen, X.; Chiang, K.; Xiong, X.

    2016-05-01

    The S-NPP VIIRS instrument has successfully operated since its launch in October 2011. The VIIRS Day-Night Band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 μm that is capable of observing Earth scenes during both day and nighttime orbits at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low, mid, or high gain stages, and it uses an onboard solar diffuser (SD) for its low gain stage calibration. The SD observations also provide a means to compute gain ratios of low-to-mid and mid-to-high gain stages. This paper describes the DNB on-orbit calibration methodologies used by the VIIRS Characterization Support Team (VCST) in supporting the NASA earth science community with consistent VIIRS sensor data records (SDRs) made available by the Land Science Investigator-led Processing Systems (SIPS). It provides an assessment and update of DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, stray light contamination and its correction. Also presented in this paper are performance validations based on earth scenes and lunar observations.

  13. Commissioning and Operation of a Robotic Arm for Waste Retrieval at Trawsfynydd NPP, North Wales - 12091

    SciTech Connect

    Smith, Alan L.; Cabrera, David L.

    2012-07-01

    Trawsfynydd is one of the UK's first generation Magnox nuclear power plants. It started operation in 1965 and ceased generation in 1991. Before the site can enter the 'care and maintenance' phase a number of wet and dry waste stores around the site must be emptied and their contents made safe. Wet wastes include sludges and resins produced during the operating life of the NPP. The sludges and resins are stored in a number of different tanks that vary significantly in terms of size, shape, internal features and access. A dexterous long reach manipulator arm has been designed and built to facilitate tank clearance. Commissioning of the arm was carried out in parallel with Factory Acceptance Testing (FAT) at the manufacturer's site in Colorado, USA. In addition to basic functional testing this work included a full range of task based testing to ensure that the arm, tools, control system and support equipment were thoroughly exercised in representative conditions. Trawsfynydd is one of the lead sites in the UK's program for nuclear plant decommissioning. As such the lessons learned, both in terms of technology and process, will be applicable across the remainder of the fleet. (authors)

  14. Suomi NPP VIIRS day-night band on-orbit performance

    NASA Astrophysics Data System (ADS)

    Liao, L. B.; Weiss, Stephanie; Mills, Steve; Hauss, Bruce

    2013-11-01

    Suomi National Polar-Orbiting Partnership (NPP) launched on 28 October 2011 hosts the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor. The VIIRS sensor includes a day-night band (DNB) that covers almost 7 orders of magnitude in its dynamic range from full sunlit scenes to lunar-illuminated clouds. The DNB is panchromatic and covers the wavelengths from 500 nm to 900 nm. Since launch, extensive effort has gone into its characterization. We have shown that the DNB is performing extremely well, meeting most of its specifications with some minor exceedances. The DNB characteristics evaluated include the following: sampling and resolution across the swath, geolocation uncertainty, radiometric sensitivity, radiometric uncertainty, and stray light. The only significant deviation from specification involves the stray light specification. On-orbit, the characterization shows that the DNB suffers stray light level on the order of 100% Lmin or 3 × 10-9 W•cm-2•sr-1. After algorithmic correction, the residual radiometric error was reduced to approximately 4.5 × 10-10 W•cm-2•sr-1.

  15. Westinghouse Fuel Assemblies Performance after Operation in South-Ukraine NPP Mixed Core

    SciTech Connect

    Abdullayev, A. M.; Kulish, G. V.; Slyeptsov, O.; Slyeptsov, S.; Aleshin, Y.; Sparrow, S.; Lashevych, P.; Sokolov, D.; Latorre, Richard

    2013-09-14

    The evaluation of WWER-1000 Westinghouse fuel performance was done using the results of post–irradiation examinations of six LTAs and the WFA reload batches that have operated normally in mixed cores at South-Ukraine NPP, Unit-3 and Unit-2. The data on WFA/LTA elongation, FR growth and bow, WFA bow and twist, RCCA drag force and drag work, RCCA drop time, FR cladding integrity as well as the visual observation of fuel assemblies obtained during the 2006-2012 outages was utilized. The analysis of the measured data showed that assembly growth, FR bow, irradiation growth, and Zr-1%Nb grid and ZIRLO cladding corrosion lies within the design limits. The RCCA drop time measured for the LTA/WFA is about 1.9 s at BOC and practically does not change at EOC. The measured WFA bow and twist, and data of drag work on RCCA insertion showed that the WFA deformation in the mixed core is mostly controlled by the distortion of Russian FAs (TVSA) having the higher lateral stiffness. The visual inspection of WFAs carried out during the 2012 outages revealed some damage to the Zr-1%Nb grid outer strap for some WFAs during the loading sequence. The performed fundamental investigations allowed identifying the root cause of grid outer strap deformation and proposing the WFA design modifications for preventing damage to SG at a 225 kg handling trip limit.

  16. Nightfire: Sub-pixel Pyrometry of Nighttime Combustion Sources with Suomi NPP and Landsat 8

    NASA Astrophysics Data System (ADS)

    Zhizhin, M. N.; Elvidge, C.; Hsu, F. C.; Baugh, K.

    2014-12-01

    The Earth Observation Group at NOAA's National Geophysical Data Center has an active program on nocturnal remote sensing of combustion sources. Spectral bands designed for daytime imaging are particularly useful for detecting and characterizing fires, flares and industrial heat sources. By measuring combustion source emitted radiances across a range of wavelengths, the nightfire algorithm is able to model the Planck curve, which makes it possible to estimate temperature, size, and radiant heat of subpixel combustion sources. The algorithm fits two Planck curves for the sub-pixel fire and the background in a detected pixel and estimates the fire temperature, area and radiative power. Combining one day of data from the Suomi NPP VIIRS sensor, the Nightfire algorithm can detect and characterize more than 10,000 fires on the night side of the Earth with temperatures ranging from 500 K to 2,500 K and active burn areas down to several square meters. The temperature histogram for the detected fires has two distinct peaks discriminating gas flares from biomass burning. The Nightfire algorithm has been successfully applied to nighttime scenes from the Landsat 8 OLI sensor which has 30 m spatial resolution and higher dynamic range than VIIRS. Global Nightfire detection products are produced daily and are available from the NOAA NGDC web site.

  17. Improved Ozone Profile Retrievals Using Multispectral Measurements from S-NPP and NASA "A Train" Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Bowman, K. W.; Worden, J.; Livesey, N. J.; Kulawik, S. S.; Flynn, L. E.; Han, Y.; Liu, X.; Pawson, S.; Wargan, K.; Huang, M.; Luo, M.; Neu, J. L.; Irion, F. W.; Herman, R. L.; Schwartz, M. J.

    2014-12-01

    Our prototype studies showed that a new ozone column and profile products can be obtained by combining multi-spectral radiances from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping Profiler Suite (OMPS) and the Cross-track Infrared Sounder (CrIS). The product offers a unique combination of vertical resolution (enabled by the multi-spectral approach), and wide-swath horizontal coverage
and resolution. This product continues the EOS ozone records from the Aura platform that is based on the combination of the ozone profile product from Aura Ozone Monitoring Instrument (OMI) and the Aura Tropospheric Emission Spectrometer (TES). The unprecedented horizontal and vertical resolution and coverage of this product will enable new much-needed studies such as stratospheric chemistry and ozone loss, tropospheric and stratospheric ozone exchange, ozone climate forcing as well as long range transport of air pollution. The proposed joint CrIS/OMPS-TC/OMPS-NP global ozone record will have spatial sampling equivalent to OMPS Nadir Profiler measurements and similar to that of TES global survey record. The retrievals of using OMPS/CrIS radiances, TES/OMI and MLS/AIRS/OMI retrievals are presented. The comparisons among the multi-spectral retrievals, Aura operation ozone products, and in-situ measurements are shown.

  18. OSI-SAF operational NPP/VIIRS sea surface temperature chain

    NASA Astrophysics Data System (ADS)

    Le Borgne, Pierre; Legendre, Gérard; Marsouin, Anne; Péré, Sonia; Roquet, Hervé

    2013-06-01

    Data of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) have been acquired at Centre de Météorologie Spatiale (CMS) in Lannion (Brittany) in direct readout mode since April 2012. CMS is committed to produce sea surface temperature (SST) products from VIIRS data twice a day over an area covering North-East Atlantic and the Mediterranean Sea in the framework of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF). A cloud mask has been developed and cloud mask control techniques have been implemented. SST algorithms have been defined, as well as quality level attribution rules. Since mid October 2012 a VIIRS SST chain, similar to that used for processing METOP AVHRR has been run in a preoperational mode. The corresponding bias and standard deviation against drifting buoy measurements (mid October 2012 to mid March 2013) are -0.05 and 0.37 K for nighttime and -0.13 and 0.46 K for daytime, respectively. VIIRS derived SST production is expected operational by mid 2013. The OSI-SAF VIIRS derived SST products are compliant with the Group for High Resolution SST (GHRSST) GDS V2.0 format.

  19. An Operational Tool for Global Monitoring of Inundation Using NPP ATMS Data

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.

    2015-12-01

    The goal of this study is to introduce an operational microwave-based tool for the detection and monitoring of inundation across the globe using passive microwave observations from the Advanced Technology Microwave Sounder (ATMS) sensor onboard SUOMI NPP. ATMS surface sensitive channels, namely, the 23 GHz and the 89 GHz are used in this study. The inundation detection approach is based on the analysis of the standardized anomalies of a soil wetness index that is determined from the gradient between 89 and 23 GHz brightness temperatures. The dimensionless index is sensitive to extreme wetness conditions. Appropriate threshold-based techniques were implemented in the developed tool to detect and eliminate rainy pixels as well as snow and ice covered pixels. An automated tool was developed to process, analyze the data, develop the inundation product, and disseminate the detected inundated area through a web-based interface. The outputs of the developed algorithm were verified against records from the Darthmouth Flood Observatory data archive. The agreement was acceptable with POD reaching 80 % globally for flood with durations longer than 5 days. The analysis of the flood records showed that the most frequent flood events have a duration of 3 days. The flood detection and mapping system was able to reports more short duration events that lasted 1 day or less than what is in the flood observatory records. The inundation global mapping tool was deployed operationally using real time readouts from NOAA-CREST satellite receiving station in New York, USA.

  20. CERES FM-5 on the NPP Spacecraft: Continuing the Earth Radiation Budget Climate Data Record

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, G. Louis

    2009-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) Flight Model-5 (FM-5) instrument will fly on the NPOESS Preparatory Project (NPP) spacecraft, which has a launch-readiness date in June, 2010. This mission will continue the critical Earth Radiation Budget Climate Data Record (CDR) begun by the Earth Radiation Budget Experiment (ERBE) instruments in the mid 1980 s and continued by the CERES instruments currently flying on the EOS Terra and Aqua spacecraft. Ground calibrations have been completed for FM-5 and the instrument has been delivered for integration to the spacecraft Rigorous pre-launch ground calibration is performed on each CERES unit to achieve an accuracy goal of 1% for SW flux and 0.5% for outgoing LW flux. Any ground to flight or in-flight changes in radiometer response is monitored using a protocol employing both onboard and vicarious calibration sources and experiments. Recent studies of FM-1 through FM-4 data have shown that the SW response of space based broadband radiometers can change dramatically due to optical contamination. With these changes having most impact on optical response to blue-to UV radiance, where tungsten lamps are largely devoid of output, such changes are hard to monitor accurately using existing on-board sources. This paper outlines the lessons learned on the existing CERES sensors from 30+ years of flight experience and presents a radiometric protocol to be implemented on the FM-5 instrument to ensure that its performance exceeds the stated calibration and stability goals.

  1. Restoration of water environment contaminated by radioactive cesium released from Fukushima Daiichi NPP

    SciTech Connect

    Takeshita, K.; Takahashi, H.; Jinbo, Y.; Ishido, A.

    2013-07-01

    In the Fukushima Daiichi NPP Accident, large amounts of volatile radioactive nuclides, such as {sup 131}I, {sup 134}Cs and {sup 137}Cs, were released to the atmosphere and huge areas surrounding the nuclear site were contaminated by the radioactive fallout. In this study, a combined process with a hydrothermal process and a coagulation settling process was proposed for the separation of radioactive Cs from contaminated soil and sewage sludge. The coagulation settling operation uses Prussian Blue (Ferric ferrocyanide) and an inorganic coagulant. The recovery of Cs from sewage sludge sampled at Fukushima city (100.000 Bq/kg) and soil at a nearby village (55.000 Bq/kg), was tested. About 96% of Cs in the sewage sludge was removed successfully by combining simple hydrothermal decomposition and coagulation settling. However, Cs in the soil was not removed sufficiently by the combined process (Cs removal is only 56%). The hydrothermal decomposition with blasting was carried out. The Cs removal from the soil was increased to 85%. When these operations were repeated twice, the Cs recovery was over 90%. The combined process with hydrothermal blasting and coagulation settling is applicable to the removal of Cs from highly contaminated soil.

  2. S-NPP VIIRS on-orbit Band to Band Registration Estimation using the Moon

    NASA Astrophysics Data System (ADS)

    Choi, T.

    2015-12-01

    The Soumi National Polar-orbit Partnership (S-NPP) was successfully launched and has been operational since October 28, 2011, which carries the Visible Infrared Radiometer Suite (VIIRS) with among other instruments. Since VIIRS does not include on-board spatial calibrator such as Spectroradiometric Calibration Assembly (SRCA) on the predecessor sensor called MODerate resolution Imaging Spectroradiometer (MODIS), the on-orbit estimation of the spatial parameters needs to be measured independently. As a well-known radiometric target, the moon is utilized to estimate Band-to-Band (BBR) results as a part of spatial quality factors using the lifetime scheduled lunar collections. The reference band of the BBR is chosen to be the VIIRS band of Imaging band 1 (I1), because of its high signal-to-noise ratio, and high spatial sampling frequency compared to other moderate (M) bands. In this study, the conventional BBR calculation applied MODIS called weighted sum method is applied providing along-track and along-scan direction results. The BBR differences based on the reference band I1 results are very stable over the 3 years of VIIRS operation. The along-scan direction BBR results are mostly within ± 0.5 nominal Ground Sampling Distance (GSD) and the along-track direction BBR values are mostly between + 0.1 and -0.4 GSD. The final BBR results are available publically at the National Oceanic Atmospheric Agency (NOAA) Integrated Calibration Validation System (ICVS) webpage.

  3. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  4. On-orbit radiometric performance characterization of S-NPP VIIRS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Uprety, Sirish; Blonski, Slawomir; Cao, Changyong

    2016-05-01

    It has been nearly four years that the S-NPP was launched. In an effort to improve the VIIRS calibration, VIIRS has undergone a number of major look up table updates during this period. RSB bands such as M1 through M3 suggested higher solar diffuser degradation rate. Similarly, for higher wavelengths, even though the solar diffuser degradation is much smaller and even negligible for SWIR bands, bands such as M7 suffer from major degradation due to RTA throughput degradation. Even though the solar diffuser and mirror degradation is well characterized, the data quality needs to be independently validated to ensure that data are well within the specification. We have used on-orbit calibration/validation techniques such as extended SNOs to estimate the bias of these bands and quantify the radiometric performance since launch. Assuming MODIS as a standard reference, intercomparison was performed to analyze the VIIRS radiometric performance. It was observed that some of the VIIRS bands such as M5 and M7 suggest bias on the order of 1.5% or more for most of the time period since early launch. VIIRS bias trends keep changing over time which can be mainly correlated to calibration updates and instrument anomalies. Results on VIIRS on-orbit calibration performance and its bias since early launch will be presented during meeting to help users better understand the data quality and its impacts on broader scientific research and applications.

  5. Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cao, C.

    2014-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.

  6. Dynamic Monitoring of Energy Services in Conflict Regions using Suomi-NPP VIIRS

    NASA Astrophysics Data System (ADS)

    Stokes, E.; Roman, M. O.

    2015-12-01

    While remote sensing data has proven useful for understanding the environmental conditions surrounding conflict, it can also present a more nuanced, dynamic picture inside conflict zones. This study investigates the use of global nighttime environmental products as derived from the Suomi-NPP satellite's Visible Infrared Imaging Radiometer Suite (VIIRS) to identify and track the location and timing of regional conflicts in the Middle East as reflected in changes to the region's energy infrastructure. The study focuses on a 43-month period (c. Jan 2012 - Aug 2015) over major urban centers in Iraq, Syria, Egypt, and Lebanon. The new daily dynamic products captured a series of striking downturns in energy service supply and demand that occurred in 2012 in the Syrian cities of Damascus (-50%) and Aleppo (-94%) corresponding to the onset of major military confrontations (The Battle of Aleppo on 7/15/2012 and The Damascus Bombing on 7/23/2012, respectively). Iraqi cities recently captured by the Islamic State of Iraq and the Levant (ISIL) (e.g. Mosul, Tikrit, Tal Afor, Ramadi), also showed marked average decreases in energy service provision (-84% since 4/1/2014) compared to their unoccupied counterparts (e.g., Baghdad and Sulaimaniya at +6%). A seasonal trend decomposition analysis is used to disentangle climactic, social, and political factors affecting the VIIRS time-series, distinguishing between energy patterns associated with conflict and those associated with cultural festivals, load shedding, seasonal weather, and socioeconomic factors.

  7. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  8. Progress in Low and Intermediate Level Operational Waste Characterization and Preparation for Disposal at Ignalina NPP

    SciTech Connect

    Poskas, P.; Adomaitis, J. E.; Ragaisis, V.

    2003-02-25

    In Lithuania about 70-80% of all electricity is generated at a single power station, Ignalina NPP, which has two RBMK-1500 type reactors. Units 1 and 2 will be closed by 2005 and 2010, respectively, taking into account the conditions of the long-term substantial financial assistance rendered by the European Union, G-7 countries and other states as well as international institutions. The Government approved the Strategy on Radioactive Waste Management. Objectives of this strategy are to develop the radioactive waste management infrastructure based on modern technologies and provide for the set of practical actions that shall bring management of radioactive waste in Lithuania in compliance with radioactive waste management principles of IAEA and with good practices in force in European Union Member States. SKB-SWECO International-Westinghouse Atom Joint Venture with participation of Lithuanian Energy Institute has prepared a reference design of a near surface repository for short-lived low and intermediate level waste. This reference design is applicable to the needs in Lithuania, considering its hydro-geological, climatic and other environmental conditions and is able to cover the expected needs in Lithuania for at least thirty years ahead. Development of waste acceptance criteria is in practice an iterative process concerning characterization of existing waste, repository development, safety and environmental impact assessment etc. This paper describes the position in Lithuania with regard to the long-term management of low and intermediate level waste in the absence of finalized waste acceptance criteria and a near surface repository.

  9. Determination of plutonium isotopes in low activity waste of NPP origin

    NASA Astrophysics Data System (ADS)

    Nikiforova, A.; Taskaeva, I.; Veleva, B.; Valova, Tz.; Slavchev, B.; Dimitrova, D.

    2006-01-01

    The inventory analysis of the alkaline low level liquid radioactive waste collected during more than 30 years of NPP “Kozloduy” operation requires determination of eighteen radioactive isotopes with different decay properties. Plutonium isotopes of interest are Pu-238, Pu-239/Pu-240, and Pu-242. The preliminary investigations of the supernatant phase of model and authentic waste samples showed essential challenges for determination of plutonium due to its various oxidation states and low concentration in the complex matrix. Plutonium concentration was determined in precipitate and supernatant after the calcium phosphate precipitation and in the different fractions of the anion exchange steps. The separation by anion exchange and final purification of plutonium fraction by extraction chromatography on TEVA resin (EiChroM Industries) was studied by variation of plutonium oxidation states. The sources were prepared by micro precipitation with NdF3 and counted by alpha spectrometry. As a result from the performed experiments, plutonium determination procedure was optimized and applied to real waste samples.

  10. Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements

    NASA Astrophysics Data System (ADS)

    Bai, Kaixu; Liu, Chaoshun; Shi, Runhe; Gao, Wei

    2015-09-01

    The objective of this study is to evaluate the accuracy of the daily nadir total column ozone products derived from the nadir mapper instrument on the Ozone Mapping and Profiler Suite (OMPS) flying onboard the Suomi National Polar-orbiting Partnership satellite (S-NPP) launched as a part of the Joint Polar Satellite System (JPSS) program between NOAA and NASA. Since NOAA is already operationally processing OMPS nadir total ozone products, evaluations were made in this study on the total column ozone research products generated by NASA's science team, utilizing the latest version of their Backscatter Ultraviolet (BUV) retrieval algorithms, to provide insight into the performance of the operation system. Comparisons were made with globally distributed ground-based Brewer and Dobson spectrophotometer total column ozone measurements. Linear regressions show fair agreement between OMPS and ground-based total column ozone measurements with a root-mean-square error (RMSE) of approximately 3% (10 DU). The comparison results indicate that the OMPS total column ozone data are 0.59% higher than the Brewer measurements with a standard deviation of 2.82% while 1.09% higher than the Dobson measurements with a standard deviation of 3.27%. Additionally, the variability of relative differences between OMPS and ground total column ozone were analyzed as a function of latitude, time, viewing geometry, and total column ozone value. Results show a 2% bias over most latitudes and viewing conditions when total column ozone value varies between 220 DU and 450 DU.

  11. International experience with a multidisciplinary table top exercise for response to a PWR accident

    SciTech Connect

    Lakey, J.R.A.

    1996-06-01

    Table Top Exercises are used for the training of emergency response personnel from a wide range of disciplines whose duties range from strategic to tactical, from managerial to operational. The exercise reported in this paper simulates the first two or three hours of an imaginary accident on a generic PWR site (named Seaside or Lakeside depending on its location). It is designed to exercise the early response of staff of the utility, government, local authority and the media and some players represent the public. The relatively few scenarios used for this exercise are based on actual events scaled to give off-site consequences which demand early assessment and therefore stress the communication procedures. The exercise is applicable in different cultures and has been used in over 20 short courses held in the USA, UK, Sweden, Prague, and Hong Kong. There are two styles of support for players: a linear program which ensures that all players follow the desired path through the event and an open program which is triggered by umpires (who play the reactor crew from a script) and by requests from other players. In both cases the exercise ends with a Press Conference. Players have an initial briefing and are assigned to roles; those who must speak at interviews and at the Press Conference arc given separate briefing by an expert in Public Affairs. The exercise runs with up to six groups and the communication rate reaches about 30 to 40 messages per hour for each group. The exercise can be applied to test management and communication systems and to study human response to emergencies because the merits of individual players are highlighted in the relatively stressful conditions of the initial stage of an accident. For some players the exercise is the first time that they have been required to carry out their task in front of other people.

  12. Severe accident modeling of a PWR core with different cladding materials

    SciTech Connect

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  13. Development of the ACP safeguards neutron counter for PWR spent fuel rods

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Menlove, Howard O.; Lee, Sang-Yoon; Kim, Ho-Dong

    2008-04-01

    An advanced neutron multiplicity counter has been developed for measuring spent fuel in the Advanced spent fuel Conditioning Process (ACP) at the Korea Atomic Energy Research Institute (KAERI). The counter uses passive neutron multiplicity counting to measure the 244Cm content in spent fuel. The input to the ACP process is spent fuel from pressurized water reactors (PWRs), and the high intensity of the gamma-ray exposure from spent fuel requires a careful design of the counter to measure the neutrons without gamma-ray interference. The nuclear safeguards for the ACP facility requires the measurement of the spent fuel input to the process and the Cm/Pu ratio for the plutonium mass accounting. This paper describes the first neutron counter that has been used to measure the neutron multiplicity distribution from spent fuel rods. Using multiple samples of PWR spent fuel rod-cuts, the singles (S), doubles (D), and triples (T) rates of the neutron distribution for the 244Cm nuclide were measured and calibration curves were produced. MCNPX code simulations were also performed to obtain the three counting rates and to compare them with the measurement results. The neutron source term was evaluated by using the ORIGEN-ARP code. The results showed systematic difference of 21-24% in the calibration graphs between the measured and simulation results. A possible source of the difference is that the burnup codes have a 244Cm uncertainty greater than ±15% and it would be systematic for all of the calibration samples. The S/D and D/T ratios are almost constant with an increment of the 244Cm mass, and this indicates that the bias is in the 244Cm neutron source calculation using the ORIGEN-ARP source code. The graphs of S/D and D/T ratios show excellent agreement between measurement and MCNPX simulation results.

  14. PWR core and spent fuel pool analysis using scale and nestle

    SciTech Connect

    Murphy, J. E.; Maldonado, G. I.; St Clair, R.; Orr, D.

    2012-07-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  15. On-line PWR RHR pump performance testing following motor and impeller replacement

    SciTech Connect

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  16. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    SciTech Connect

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa; Xu, Yiban; Cao, Liping

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  17. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (E<0.625 eV) are required as these affect the CR integrity through stresses/strains induced by coupled clad embrittlement / absorber swelling phenomena. The concept of the PSI scheme under development is to provide from validated core analysis models, the volumetric neutron source to a full core MCNPX model that is then used to compute the neutron fluxes. A particular aspect that needs scrutiny is the ability of the MCNPX-based calculation methodology to accurately predict the flux shapes along the control rod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  18. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    SciTech Connect

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A.

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  19. Applicability of 3D Monte Carlo simulations for local values calculations in a PWR core

    NASA Astrophysics Data System (ADS)

    Bernard, Franck; Cochet, Bertrand; Jinaphanh, Alexis; Jacquet, Olivier

    2014-06-01

    As technical support of the French Nuclear Safety Authority, IRSN has been developing the MORET Monte Carlo code for many years in the framework of criticality safety assessment and is now working to extend its application to reactor physics. For that purpose, beside the validation for criticality safety (more than 2000 benchmarks from the ICSBEP Handbook have been modeled and analyzed), a complementary validation phase for reactor physics has been started, with benchmarks from IRPHEP Handbook and others. In particular, to evaluate the applicability of MORET and other Monte Carlo codes for local flux or power density calculations in large power reactors, it has been decided to contribute to the "Monte Carlo Performance Benchmark" (hosted by OECD/NEA). The aim of this benchmark is to monitor, in forthcoming decades, the performance progress of detailed Monte Carlo full core calculations. More precisely, it measures their advancement towards achieving high statistical accuracy in reasonable computation time for local power at fuel pellet level. A full PWR reactor core is modeled to compute local power densities for more than 6 million fuel regions. This paper presents results obtained at IRSN for this benchmark with MORET and comparisons with MCNP. The number of fuel elements is so large that source convergence as well as statistical convergence issues could cause large errors in local tallies, especially in peripheral zones. Various sampling or tracking methods have been implemented in MORET, and their operational effects on such a complex case have been studied. Beyond convergence issues, to compute local values in so many fuel regions could cause prohibitive slowing down of neutron tracking. To avoid this, energy grid unification and tallies preparation before tracking have been implemented, tested and proved to be successful. In this particular case, IRSN obtained promising results with MORET compared to MCNP, in terms of local power densities, standard

  20. COMMIX-1A analysis of fluid and thermal mixing in a model cold leg and downcomer of a PWR

    SciTech Connect

    Chen, B.C.J.; Cha, B.K.; Sha, W.T.

    1984-06-01

    Fluid and thermal mixing in a model cold leg and downcomer of a PWR was analyzed using COMMIX-1A. The present analysis differs from previous analyses reported in EPRI NP-3321 in three major aspects. First, extremely fine meshes were used to minimize numerical diffusion in the analysis. Second, one-equation (k) turbulence model was used to better model the turbulent flow. Third, curved surfaces were modeled by several slanted planes to better represent the geometries. By using these improvements, CREARE 1/5-scale test No. 51 was reanalyzed. Significant improvements were achieved in the comparisons between the COMMIX-1A calculations and the experimental data.

  1. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    SciTech Connect

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  2. The Suomi National Polar-Orbiting Partnership (NPP) CalVal Overview

    NASA Astrophysics Data System (ADS)

    Weng, F.

    2012-12-01

    The Suomi NPP (SNPP) satellite was launched successfully on October 28, 2011 and is a pathfinder for the future US Joint Polar Satellite System (JPSS) operational satellite series. The primary objectives of the SNPP mission provide a continuation of the group of Earth system observations initiated by the Earth Observing System Terra, Aqua, and Aura missions; and prepare the operational forecasting community with pre-operational risk reduction, demonstration, and validation for selected JPSS instruments and ground processing data systems. The SNPP satellite is now flying with the following five instruments: 1) Visible/Infrared Imager/Radiometer Suite (VIIRS) has multi-band imaging capabilities to support the acquisition of high-resolution atmospheric imagery and generation of a variety of applied products including visible and infrared imaging of hurricanes and detection of fires, smoke, and atmospheric aerosols. 2) Cross-track Infrared Sounder (CrIS) is the the first in a series of advanced operational sounders that provide more accurate, detailed atmospheric temperature and moisture observations for weather and climate applications. 3) Advanced Technology Microwave Sounder (ATMS) operates in conjunction with the CrIS to profile atmospheric temperature and moisture. Higher (spatial, temporal and spectral) resolution and more accurate sounding data from CrIS and ATMS support continuing advances in data assimilation systems and NWP models to improve short- to medium-range weather forecasts. 4) Ozone Mapping and Profiler Suite (OMPS) measures the concentration of ozone in the atmosphere, providing information on how ozone concentration varies with altitude. Data from OMPS continue three decades of climate measurements of this important parameter used in global climate models. The OMPS measurements also fulfill the U.S. treaty obligation to monitor global ozone concentrations with no gaps in coverage. Cloud and Earth Radiant Energy System (CERES) seeks to develop and

  3. Paleoseismology of the Hluboká Fault in the near-region of the NPP Temelin

    NASA Astrophysics Data System (ADS)

    Tschegg, Dana; Popotnig, Ankelika; Porpaczy, Clemens; Lomax, Johanna; Decker, Kurt

    2015-04-01

    Temelin is located in the Bohemian Massif, a Variscan basement unit characterized by very low historical/instrumental seismicity. Previous seismic hazard assessments for the site revealed very low hazard (PGA<0.1g) for a non-exceedance probability of 10-4 per year. The assessments are based on historical/instrumental earthquake data of the Bohemian Massif that cover the time period since about 1800 and 1903, respectively. In this study we assess the late Variscan Hluboká fault in the vicinity of the site, which was repeatedly re-activated in Mesozoic, Miocene and Pliocene times. The fault is part of the several tens of kilometres long NW-striking Jáchymov (Joachimsthal) Fault zone. It is located about 10 to 20 km south of the NPP. Geological, geophysical, and structural data characterize the fault as a dextral strike-slip fault system. Reflection seismic shows an up to a few hundred meters wide zone with steeply dipping faults that are supposed to merge into a common master fault at depth. The fault is characterized by fault bends defining a restraining and a releasing segment. The latter coincides with a pronounced morphological scarp. Recent uplift of the footwall of the fault at this releasing bend is indicated by previously published geodetic data (P. Vyskočil, 1973) and geomorphological data comparing the tectonic morphology of the fault scarp near Hluboká nad Vltavou with slopes, which are not fault controlled. All analysed geomorphological indices characterize the Hluboká scarp as a unique morphological feature, which results from Quaternary uplift of the footwall of the Hluboká Fault with respect to its hanging wall. The assessment of the youngest tectonic history of the fault further uses correlations of Quaternary terraces of the Vltava River across the fault. We established a new Late Pleistocene stratigraphy of fluvial terraces using field and borehole data combined with OSL/IRSL age dating. The results show terrace staircases in the hanging wall

  4. Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit

    SciTech Connect

    Wagner, John C.; Sanders, Charlotta E.

    2002-08-15

    The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommendation eliminates a large portion of the currently discharged SNF from loading in burnup credit casks and thus severely limits the practical usefulness of burnup credit. Therefore, data are needed to support the extension of burnup credit to additional SNF. This research investigates the effect of various fixed absorbers, including integral burnable absorbers, burnable poison rods, control rods, and axial power shaping rods, on the reactivity of PWR SNF. Trends in reactivity with relevant parameters (e.g., initial fuel enrichment, burnup and absorber type, exposure, and design) are established, and anticipated reactivity effects are quantified. Where appropriate, recommendations are offered for addressing the reactivity effects of the fixed absorbers in burnup-credit safety analyses.

  5. COMMIX-1A analysis of fluid and thermal mixing in a model cold leg and downcomer of a PWR

    SciTech Connect

    Chen, B.C.J.; Cha, B.K.; Miao, C.C.; Sha, W.T.; Kim, J.H.; Sun, B.K.H.

    1983-01-01

    The issue of thermal shock of a PWR pressure vessel has been under considerable attention recently. A number of experimental as well as analytical studies have been performed to investigate the effect of the thermal transient on the pressure vessel due to the high pressure injection (HPI) of the cold fluid into the cold leg. This process has been called Pressurized Thermal Shock (PTS). This paper is an analytical study of PTS by using COMMIX-1A. Experimental investigations were performed at CREARE and SAI. In the CREARE experiment, a 1/5 scale model was set up to simulate a cold leg and downcomer of a PWR. Tests with several different ratios of hot loop flow versus cold HPI flow were performed to study the effect of the flow ratio on the fluid and thermal mixing process in the system, especially in the downcomer region. Analytical investigations also proceeded in parallel with the experiments. Quite a few analytical investigations were performed with the COMMIX-1A code. However, in this version of COMMIX, the effect of the numerical diffusion was not addressed.

  6. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Steady state and transient computations

    SciTech Connect

    Martin, A.; Alvarez, D.; Cases, F.

    1996-06-01

    After the Tchernobyl accident a working group was created to analyze the French PWR Safety with a respect to potential risk of reactivity accident. Potentially risky situations are those which can lead to heterogeneous boron concentration or temperature of the primary coolant fluid. This paper reports a Research and Development action based on numerical simulations and experiments on the primary coolant temperature or boron mixing capabilities in a PWR vessel. New numerical results obtained with the thermal hydraulic Finite Element (FE) Code N3S are presented. In these calculations the FE mesh takes into account the geometry of the lower plenum plates and columns. Two configurations have been investigated The first one is a steady state fluid flow mixing case. The reactor is cooled by free convection and the three loops, balanced in mass flow rate, are in operation. The second is a free boron plug transient case. It is related to the mixing of a clear plug injected in the vessel when a primary coolant pump starts-up. Two clear plug volumes have been investigated (3 and 8 m{sup 3}). Comparisons between these new numerical results and the data previously obtained (see Alvarez et al., 1992, Alvarez, Martin and Schneider, 1994) are presented in this paper.

  7. Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel

    SciTech Connect

    McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

    1989-02-01

    A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

  8. Update on the performance of Suomi-NPP VIIRS lunar calibration

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Fulbright, Jon; Xiong, Xiaoxiong (.

    2015-09-01

    Lunar observations have been regularly scheduled for the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite since its launch on October 28th, 2011. In reference to the ROLO irradiance model, the detector gain coefficient or F-factor can be derived from these lunar observations for the reflective solar bands (RSB). Unlike its predecessor Moderate Resolution Imaging Spectroradiometer (MODIS), the Moon and the on-board solar diffuser (SD) are viewed by VIIRS detectors at the same angle of incidence (AOI) to the half angle mirror (HAM). Eliminating the impact from the variation in the instrument response to the HAM AOI, this design allows the detector gain changes tracked by the Moon and the SD to be directly compared. In this paper, we update the lunar F-factors from the scheduled lunar calibration. The long-term trends of the lunar F-factor trending and the SD F-factor trending still agree in general for all RSBs. We also calculate the lunar F-factor at detector level and compare the detector dependency of the lunar F-factor and the SD F-factor. For a few RSBs at shorter wavelengths, a bias of up to 1% between the two has been identified. Using the detector-dependent lunar F-factors will decrease the retrieved Earth view radiance of lower-number detectors in relative to higher-number detectors than the SD F-factors. The inconsistency indicates systematic bias between the lunar and SD calibration approaches.

  9. Suomi-NPP VIIRS day/night band calibration with stars

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Xiong, Xiaoxiong

    2015-09-01

    Observations of stars can be used to calibrate the radiometric performance of the Day/Night Band (DNB) of the Suomi-NPP instrument VIIRS. Bright stars are normally visible in the Space View window. In this paper, we describe several potential applications of stellar observations with preliminary results for several. These applications include routine trending of the gain of the highand mid-gain stages of the DNB and trending the gain ratio between those stages. Many of the stars observed by the VIIRS DNB have absolute flux curves available, allowing for an absolute calibration. Additionally, stars are visible during scheduled lunar roll observations. The electronic sector rotations applied during the scheduled lunar observations greatly increases the sky area recorded for a brief period, increasing the observing opportunities. Additionally, the DNB recorded data during the spacecraft pitch maneuver. This means the deep sky was viewed through the full Earth View. In this situation, thousands of stars (and the planet Mars) are recorded over a very short time period and over all aggregation zones. A possible application would be to create a gain curve by comparing the instrument response to the known apparent stellar brightness for a large number of stars of similar spectral shape. Finally, the DNB is especially affected the mirror degradation afflicting VIIRS. The degradation has shifted peak of the relative spectral response (RSR) of the DNB the blue and the effective band pass has been slightly reduced. The change in response for hot stars (effective temperatures of over 30,000 K) due to this degradation will differ by about 10 percent from the response change of cool stars (below 3500 K).

  10. Modeling the transport of nitrogen in an NPP-2006 reactor circuit

    NASA Astrophysics Data System (ADS)

    Stepanov, O. E.; Galkin, I. Yu.; Sledkov, R. M.; Melekh, S. S.; Strebnev, N. A.

    2016-07-01

    Efficient radiation protection of the public and personnel requires detecting an accident-initiating event quickly. Specifically, if a heat-exchange tube in a steam generator is ruptured, the 16N radioactive nitrogen isotope, which contributes to a sharp increase in the steam activity before the turbine, may serve as the signaling component. This isotope is produced in the core coolant and is transported along the circulation circuit. The aim of the present study was to model the transport of 16N in the primary and the secondary circuits of a VVER-1000 reactor facility (RF) under nominal operation conditions. KORSAR/GP and RELAP5/Mod.3.2 codes were used to perform the calculations. Computational models incorporating the major components of the primary and the secondary circuits of an NPP-2006 RF were constructed. These computational models were subjected to cross-verification, and the calculation results were compared to the experimental data on the distribution of the void fraction over the steam generator height. The models were proven to be valid. It was found that the time of nitrogen transport from the core to the heat-exchange tube leak was no longer than 1 s under RF operation at a power level of 100% N nom with all primary circuit pumps activated. The time of nitrogen transport from the leak to the γ-radiation detection unit under the same operating conditions was no longer than 9 s, and the nitrogen concentration in steam was no less than 1.4% (by mass) of its concentration at the reactor outlet. These values were obtained using conservative approaches to estimating the leak flow and the transport time, but the radioactive decay of nitrogen was not taken into account. Further research concerned with the calculation of thermohydraulic processes should be focused on modeling the transport of nitrogen under RF operation with some primary circuit pumps deactivated.

  11. Joint Polar Satellite System's Operational and Research Applications from Suomi NPP

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2014-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the Suomi National Polar-orbiting Partnership (S-NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key operational and research applications, and includes: 1) Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. 2) Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. 3) Climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be discussed, including the use of CrIS and ATMS for improved weather forecasting, the use of VIIRS for environmental monitoring of sea ice, smoke, fire, floods, droughts, coastal water quality (e.g. harmful algal blooms

  12. S-NPP VIIRS instrument telemetry and calibration data trend study

    NASA Astrophysics Data System (ADS)

    Sun, ZiPing; De Luccia, Frank J.; Cardema, Jason C.; Moy, Gabriel

    2015-09-01

    The Suomi National Polar Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) employs a large number of temperature and voltage sensors (telemetry points) to monitor instrument health and performance. We have collected data and built tools to study telemetry and calibration parameters trends. The telemetry points are organized into groups based on locations and functionalities. Examples of the groups are: telescope motor, focal plane array (FPA), scan cavity bulkhead, radiators, solar diffuser and Solar Diffuser Stability Monitor (SDSM). We have performed daily monitoring and long-term trending studies. Daily monitoring processes are automated with alarms built into the software to indicate if pre-defined limits are exceeded. Long-term trending studies focus on instrument performance and sensitivities of Sensor Data Record (SDR) products and calibration look-up tables (LUTs) to instrument temperature and voltage variations. VIIRS uses a DC Restore (DCR) process to periodically correct the analog offsets of each detector of each spectral band to ensure that the FPA output signals are always within the dynamic range of the Analog to Digital Converter (ADC). The offset values are updated based on observations of the On-Board Calibrator Blackbody source. We have performed a long-term trend study of DCR offsets and calibration parameters to explore connections of the DCR offsets with onboard calibrators. The study also shows how the instrument and calibration parameters respond to the VIIRS Petulant Mode, spacecraft (SC) anomalies and flight software (FSW) updates. We have also shown that trending studies of telemetry and calibration parameters may help to improve the instrument calibration processes and SDR Quality Flags.

  13. Calibration and validation of the Suomi NPP ice surface temperature environmental data record

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Key, J. R.; Tschudi, M. A.; Dworak, R.; Baldwin, D.

    2015-12-01

    Surface temperature is an important climate variable because it integrates changes in the surface energy budget that result from local processes and large-scale heat advection. The Arctic has been warming more than any other part of the earth ("polar amplification") and is projected to rise at a rate about twice the global mean over the next century. Continuous monitoring of the Arctic surface temperature is critical to understanding Arctic climate change. Ice surface temperature has been measured with optical and thermal infrared sensors like the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for many years. With the ice surface temperature (IST) Environmental Data Record (EDR) available from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the SuomiNPP and future Joint Polar Satellite System (JPSS) satellites, we can continue to monitor and investigate Arctic climate change based on over 30 years of data.This work evaluates the quality of the VIIRS IST EDR for use in near real-time applications as well as for extending the IST climate data record. Validation is performed through comparisons with multiple in situ, aircraft, model, and satellite datasets, including NASA IceBridge KT-19 infrared ice surface temperature observations, observations from the Arctic drifting buoys, IST from collocated MODIS, and surface air temperature from the National Centers for Environmental Prediction (NCEP) reanalysis. Results show bias of 0.09 K ( -0.14, -3.60, and -3.67 K) and root mean squared error of 0.95 K (1.33, 3.8, and 7.07 K) for VIIRS IST EDR compared to KT-19 (MODIS, drifting buoy, and NCEP reanalysis).

  14. Transfer of fallout radionuclides by Fukushima NPP accident from tree crown to forest ecosystem

    NASA Astrophysics Data System (ADS)

    Onda, Y.; Kato, H.; Wakahara, T.; Kawamori, A.; Tsujimura, M.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring prefectures due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami on 11 March 2011. The total deposition of radioactive materials in fallout samples for 137Cs ranged from 0.02to >10 M Bq/m2 for Cs-137. Experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. Approximate Cs-137 fallout in this area is 200-600k Bq/m2. We established 3 forest sites: broad leaf tree forest and two Japanese cedar forest plantation (young and mature). In each site we installed towers of 8-12 meters. Using these towers, we sampled tree leaves, and measure Cs-137 and Cs-134 in the laboratory, and also we have measure Cs-137, Cs-134 content at various height in each forest using a portable High Purity Germanium (HPGe) detector (Ortech; Detective-EX). We also measured the throughfall, stem flow and litter fall inside of the forest. In each site, we establish the 20 m x 20 m plot to monitor the changes of fallout radionuclides through time with the portable HPGe detector. The monitoring is now ongoing but we found significant amount of Cs-134 and Cs-137 has been trapped by cedar forest plantations especially young trees, but not so much in broad leaf trees. The trapped Cs-137 and Cs-134 is then washed by rainfall and found into throughfall. Therefore, in forest ecosystems, the fallout has been still ongoing, and and effective remediation method in forested area (especially cedar plantation) can be removing the trees.

  15. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    SciTech Connect

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria

  16. Analysis of a Defected Dissimilar Metal Weld in a PWR Power Plant

    SciTech Connect

    Efsing, P.; Lagerstrom, J.

    2002-07-01

    During the refueling outage 2000, inspections of the RC-loops of one of the Ringhals PWR-units, Ringhals 4, indicated surface breaking defects in the axial direction of the piping in a dissimilar weld between the Low alloy steel nozzle and the stainless safe end in the hot leg. In addition some indications were found that there were embedded defects in the weld material. These defects were judged as being insignificant to the structural integrity. The welds were inspected in 1993 with the result that no significant indications were found. The weld it self is a double U weld, where the thickness of the material is ideally 79,5 mm. Its is constructed by Inconel 182 weld material. At the nozzle a buttering was applied, also by Inconel 182. The In-service inspection, ISI, of the object indicated four axial defects, 9-16 mm deep. During fabrication, the areas where the defects are found were repaired at least three times, onto a maximum depth of 32 mm. To evaluate the defects, 6 boat samples from the four axial defects were cut from the perimeter and shipped to the hot-cell laboratory for further examination. This examination revealed that the two deep defects had been under sized by the ISI outside the requirement set by the inspection tolerances, while the two shallow defects were over sized, but within the tolerances of the detection system. When studying the safety case it became evident that there were several missing elements in the way this problems is handled with respect to the Swedish safety evaluation code. Among these the most notable at the beginning was the absence of reliable fracture mechanical data such as crack growth laws and fracture toughness at elevated temperature. Both these questions were handled by the project. The fracture mechanical evaluation has focused on a fit for service principal. Thus defects both in the unaffected zones and the disturbed zones, boat sample cutouts, of the weld have been analyzed. With reference to the Swedish safety

  17. High mechanical performance of Areva upgraded fuel assemblies for PWR in USA

    SciTech Connect

    Gottuso, Dennis; Canat, Jean-Noel; Mollard, Pierre

    2007-07-01

    The merger of the product portfolios of the former Siemens and Framatome fuel businesses gave rise to a new family of PWR products which combine the best features of the different technologies to enhance the main performance of each of the existing products. In this way, the technology of each of the three main fuel assembly types usually delivered by AREVA NP, namely Mark-BW{sup TM}, HTP{sup TM} and AFA 3G{sup TM} has been enriched by one or several components from the others which contributes to improve their robustness and to enhance their performance. The combined experience of AREVA's products shows that the ROBUST FUELGUARD{sup TM}, the HMP{sup TM} end grid, the MONOBLOC{sup TM} guide tube, a welded structure, M5{sup R} material for every zirconium component and an upper QUICK-DISCONNECT{sup TM} are key features for boosting fuel assembly robustness. The ROBUST FUELGUARD benefits from a broad experience demonstrating its high efficiency in stopping debris. In addition, its mechanical strength has been enhanced and the proven blade design homogenizes the downstream flow distribution to strongly reduce excitation of fuel rods. The resistance to rod-to-grid fretting resistance of AREVA's new products is completed by the use of a lower HMP grid with 8 lines of contact to insure low wear. The Monobloc guide tube with a diameter maximized to strengthen the fuel assembly stiffness, excludes through its uniform outer geometry any local condition which could weaken guide tube straightness. The application of a welded cage to all fuel assemblies of the new family of products in combination with stiffer guide tubes and optimized hold-down assures each fuel assembly enhanced resistance to distortion. The combination of these features has been widely demonstrated as an effective method to reduce the risk of incomplete RCCA insertion and significantly reduce assembly distortion. Thanks to its enhanced performance, M5 alloy insures that all fuel assemblies in the family

  18. The Operational Use of Suomi National Polar-Orbiting Partnership (S-NPP) Satellite Information in Alaska

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Goldberg, M.

    2014-12-01

    The National Weather Service (NWS), Alaska Region (AR) provides warnings, forecasts and information for an area greater than 20% of the size of the continental United States. This region experiences an incredible diversity of weather phenomena, yet ironically is one of the more data-sparse areas in the world. Polar orbiting satellite-borne sensors offer one of the most cost effective means of gaining repetitive information over this data-sparse region to provide insight on Alaskan weather and the environment on scales ranging from synoptic to mesoscale in a systematic manner. Because of Alaska's high latitude location, polar orbiting satellites can provide coverage about every two hours at high resolution. The Suomi National Polar-orbiting Partnership (S-NPP) Satellite, equipped with a new generation of satellite sensors to better monitor, detect, and track weather and the environment was launched October 2011. Through partnership through the with NESDIS JPSS, the University of Alaska - Geographical Information Network of Alaska (GINA), the NWS Alaska Region was able to gain timely access to the Visible Infrared Imaging Radiometer Suite (VIIRS) imagery from S-NPP. The imagery was quickly integrated into forecast operations across the spectrum of NWS Alaska areas of responsibility. The VIIRS has provided a number of new or improved capabilities for detecting low cloud/fog, snow cover, volcanic ash, fire hotspots/smoke, flooding due to river ice break up, and sea ice and ice-free passages. In addition the Alaska Region has successfully exploited the 750 m spatial resolution of the VIIRS/Near Constant Contrast (NCC) low-light visible measurements. Forecasters have also begun the integration of NOAA Unique Cross-track Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) Processing System (NUCAPS) Soundings in AWIPS-II operations at WFO Fairbanks and Anchorage, the Alaska Aviation Weather Unit (AAWU) and the Alaska Region, Regional Operations Center (ROC

  19. Measurement of long-lived radionuclides in surface soil around F1NPP accident site by Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miyake, Yasuto; Matsuzaki, Hiroyuki; Sasa, Kimikazu; Takahashi, Tsutomu

    2015-10-01

    In March 2011, vast amounts of radionuclides were released into the environment due to the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident. However, very little work has been done concerning accident-derived long-lived nuclides such as 129I (T1/2 = 1.57 × 107 year) and 36Cl (T1/2 = 3.01 × 105 year). 129I and 131I are both produced by 235U fission in nuclear reactors. Being isotopes of iodine, these nuclides are expected to behave similarly in the environment. This makes 129I useful for retrospective reconstruction of 131I distribution during the initial stages of the accident. On the other hand, 36Cl is generated during reactor operation via neutron capture reaction of 35Cl, an impurity in the coolant or reactor component. Resulting 36Cl/Cl ratio within the reactor is thus much higher compared to that in environment. Similar to 129I, 36Cl is expected to have leaked out during the accident and it is important to evaluate its effects. In this study, 129I concentrations were determined in several surface soil samples collected around F1NPP. Average 129I/131I ratio was estimated to be 26.1 ± 5.8 as of March 11, 2011, consistent with calculations using ORIGEN2 code and other published data. 36Cl/Cl ratios in some of the soil samples were likewise measured and ranged from 1.1 × 10-12 to 2.6 × 10-11. These are higher compared to ratios measured around F1NPP before the accident. A positive correlation between 36Cl and 129I concentration was observed.

  20. Assessment of the NPP VIIRS RVS for the thermal emissive bands using the first pitch maneuver observations

    NASA Astrophysics Data System (ADS)

    Wu, A.; Xiong, X.; Chiang, K.; Sun, C.

    2012-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) (launched in October 2011). VIIRS sensor design draws on heritage instruments including AVHRR, OLS, SeaWiFS and MODIS. It has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle (SD for RSB and blackbody for TEB). Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first three months of intensive Cal/Val. The NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of scan angles, which can be used to characterize the TEB RVS. This study will provide our analysis of the pitch maneuver data and assessment of the derived TEB RVS. A comparison between the RVS determined by the pitch maneuver observations and prelaunch lab tests will be conducted for each band, detector, and half angle mirror (HAM) side.

  1. Application of the leak-before-break concept to the primary circuit piping of the Leningrad NPP

    SciTech Connect

    Eperin, A.P.; Zakharzhevsky, Yu.O.; Arzhaev, A.I.

    1997-04-01

    A two-year Finnish-Russian cooperation program has been initiated in 1995 to demonstrate the applicability of the leak-before-break concept (LBB) to the primary circuit piping of the Leningrad NPP. The program includes J-R curve testing of authentic pipe materials at full operating temperature, screening and computational LBB analyses complying with the USNRC Standard Review Plan 3.6.3, and exchange of LBB-related information with emphasis on NDE. Domestic computer codes are mainly used, and all tests and analyses are independently carried out by each party. The results are believed to apply generally to RBMK type plants of the first generation.

  2. Electrodialysis recovery of boric acid and potassium hydroxide from eluates of SWC facilities at NPP with VVER

    SciTech Connect

    Dudnik, S.N.; Virich, P.M.; Kramskikh, E.Y.; Masanov, O.L.; Turovsky, I.P.

    1993-12-31

    To extract boric acid and potassium hydroxide from regenerates of SWC-2-46 facilities, an electrodialysis-sorption process has been devised consisting of the following operations: separation of boron-alkaline regenerate solution into desorbate and wash water; filling of desalination and concentration chambers, respectively, with desorbate and was water of electrodialysis equipment; production of boric acid and potassium hydroxide from desorbate by electrodialysis; removal of chloride-ion from boric acid solution on ion-exchange filter AB-17-18. The flow-sheet was tested and boron containing alkaline regeneration solutions were recovered from Novovoronezh NPP.

  3. [The distribution of the radionuclides in the main components of lake ecosystems within the Chernobyl NPP exclusion zone].

    PubMed

    2005-01-01

    The results of the studies devoted to the distribution of radionuclides 90Sr, 137Cs, 238Pu, 239 + 240Pu and 241Am in 1998-2003 in main components of Glubokoe Lake and Dalekoe-1 Lake located within Krasnensky flood lands of the Pripyat River (inner exclusion zone of the Chernobyl NPP) were analysed. The data about the radionuclide content in bottom sediments, in water, in seston, in macrozoobenthos (including bivalvia molluscs), in gasteropods molluscs, in higher aquatic plants and in fish are presented. PMID:16080615

  4. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  5. Development, construction, and use of pneumometric tubes for measurement of steam flow in the steam lines of PVG-1000 at NPP

    SciTech Connect

    Gorbunov, Yu. S.; Ageev, A. G.; Vasil'eva, R. V.; Korol'kov, B. M.

    2007-05-15

    A system for the direct measurement of steam flow in steam lines after a steam generator, which utilizes a special design of pneumometric tubes and a computing unit that accounts for variation in steam pressure, has been developed to improve the quality of water-level regulation in the steam generators of VVER-1000 power-generating units in the stationary and transitional modes. The advantage of the pneumometric tubes consists in their structural simplicity, high erosion resistance, and absence of irrevocable losses during measurement of steam flow. A similar measurement system is used at foreign NPP. The measurement system in question has been placed in experimental service at the No. 3 unit of the Balakovo NPP, and has demonstrated its worthiness. This measurement system can also be used to determine steam flow in the steam lines of NPP units with VVER-1000 and VVER-440 reactors, and PBMK-1000 power-generating units.

  6. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen; Zhou, Bangxin; Shoji, Tetsuo

    2016-04-01

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T-L and L-T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T-L orientation with a higher crack growth rate than that in the specimen L-T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L-T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant.

  7. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    PubMed

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales. PMID:26390037

  8. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data

    PubMed Central

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales. PMID:26390037

  9. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems.

    PubMed

    Taelman, Sue Ellen; Schaubroeck, Thomas; De Meester, Steven; Boone, Lieselot; Dewulf, Jo

    2016-04-15

    Terrestrial land and its resources are finite, though, for economic and socio-cultural needs of humans, these natural resources are further exploited. It highlights the need to quantify the impact humans possibly have on the environment due to occupation and transformation of land. As a starting point of this paper (1(st) objective), the land use activities, which may be mainly socio-culturally or economically oriented, are identified in addition to the natural land-based processes and stocks and funds that can be altered due to land use. To quantify the possible impact anthropogenic land use can have on the natural environment, linked to a certain product or service, life cycle assessment (LCA) is a tool commonly used. During the last decades, many indicators are developed within the LCA framework in an attempt to evaluate certain environmental impacts of land use. A second objective of this study is to briefly review these indicators and to categorize them according to whether they assess a change in the asset of natural resources for production and consumption or a disturbance of certain ecosystem processes, i.e. ecosystem health. Based on these findings, two enhanced proxy indicators are proposed (3(rd) objective). Both indicators use net primary production (NPP) loss (potential NPP in the absence of humans minus remaining NPP after land use) as a relevant proxy to primarily assess the impact of land use on ecosystem health. As there are two approaches to account for the natural and productive value of the NPP remaining after land use, namely the Human Appropriation of NPP (HANPP) and hemeroby (or naturalness) concepts, two indicators are introduced and the advantages and limitations compared to state-of-the-art NPP-based land use indicators are discussed. Exergy-based spatially differentiated characterization factors (CFs) are calculated for several types of land use (e.g., pasture land, urban land). PMID:26808405

  10. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    NASA Astrophysics Data System (ADS)

    Ješkovský, Miroslav; Povinec, Pavel P.; Steier, Peter; Šivo, Alexander; Richtáriková, Marta; Golser, Robin

    2015-10-01

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO2 absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for 14C analysis by accelerator mass spectrometry. The 14C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual 14C concentrations in atmospheric CO2.

  11. Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP

    NASA Astrophysics Data System (ADS)

    Thind, Harwinder

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus

  12. Comparative analysis of isotopic composition of spent fuel from Takahama-3 PWR PIE database using TRIPOLI-PEPIN code

    SciTech Connect

    Lee, Y. K.

    2006-07-01

    Evaluation of isotopic composition of spent nuclear fuel is essential for reactor physics and fuel cycle back-end applications. A TRIPOLI-PEPIN coupled depletion code, TR4PEP, has been developed to meet these requirements. It combines the continuous-energy Monte Carlo transport code, TRIPOLI4.3 [1] and the point depletion code, PEPIN-2 [2], to perform the burnup dependent material data calculation. The depletion calculation flow of TR4PEP code has been presented on a previous study. Its application on PWR UO{sub 2} and MOX spent fuel has been validated against several international numerical benchmarks. Compared to industry standard deterministic cell codes and other Monte Carlo based depletion codes, TR4PEP deep-burn depletion calculations have shown satisfactory results. [3] In addition to the numerical benchmarks, the analysis of available post irradiation examination (PIE) results by TR4PEP is also important The PIE results at fuel assembly level are accessible only from spent fuel reprocessing plant and these data are not easy to use for code validation due to the dissolution of several assemblies in the same time. The PIE results at fuel pellet level depend not only on the method for the isotopic measurements but also on the irradiation environment and history. A free access PIE database on isotopic composition of spent nuclear fuel is obtainable from OECD/NEA. [4] Both PWR and BWR PIE data at fuel pellet level are taken into account in this database but the only 17 x 17 type PWR fuel available in this database is from Takahama-3 PIE results. To validate TR4PEP with Takahama-3 PIE results, two irradiated UO{sub 2} samples, SF95-4 from fuel assembly NT3G23 and SF97-5 from NT3G24, are considered in this study. Both samples have an initial {sup 235}U enrichment of 4.11 wt% and their burnup are respectively 36.69 and 47.03 GWd/t. Comparative analysis of isotopic composition from SF95-4 and SF97-5 including 19 actinides from {sup 234}U to {sup 247}Cm and 18

  13. Identification of ryanodine receptor isoforms in prostate DU-145, LNCaP, and PWR-1E cells.

    PubMed

    Kobylewski, Sarah E; Henderson, Kimberly A; Eckhert, Curtis D

    2012-08-24

    The ryanodine receptor (RyR) is a large, intracellular calcium (Ca(2+)) channel that is associated with several accessory proteins and is an important component of a cell's ability to respond to changes in the environment. Three isoforms of the RyR exist and are well documented for skeletal and cardiac muscle and the brain, but the isoforms in non-excitable cells are poorly understood. The aggressiveness of breast cancers in women has been positively correlated with the expression of the RyR in breast tumor tissue, but it is unknown if this is limited to specific isoforms. Identification and characterization of RyRs in cancer models is important in understanding the role of the RyR channel complex in cancer and as a potential therapeutic target. The objective of this report was to identify the RyR isoforms expressed in widely used prostate cancer cell lines, DU-145 and LNCaP, and the non-tumorigenic prostate cell line, PWR-1E. Oligonucleotide primers specific for each isoform were used in semi-quantitative and real-time PCR to determine the identification and expression levels of the RyR isoforms. RyR1 was expressed in the highest amount in DU-145 tumor cells, expression was 0.48-fold in the non-tumor cell line PWR-1E compared to DU-145 cells, and no expression was observed in LNCaP tumor cells. DU-145 cells had the lowest expression of RyR2. The expression was 26- and 15-fold higher in LNCaP and PWR-1E cells, respectively. RyR3 expression was not observed in any of the cell lines. All cell types released Ca(2+) in response to caffeine showing they had functional RyRs. Total cellular RyR-associated Ca(2+) release is determined by both the number of activated RyRs and its accessory proteins which modulate the receptor. Our results suggest that the correlation between the expression of the RyR and tumor aggression is not related to specific RyR isoforms, but may be related to the activity and number of receptors. PMID:22846571

  14. Application of Suomi-NPP Green Vegetation Fraction and NUCAPS for Improving Regional Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Berndt, Emily B.; Srikishen, Jayanthi; Zavodsky, Bradley T.

    2014-01-01

    The NASA SPoRT Center is working to incorporate Suomi-NPP products into its research and transition activities to improve regional numerical weather prediction (NWP). Specifically, SPoRT seeks to utilize two data products from NOAA/NESDIS: (1) daily global VIIRS green vegetation fraction (GVF), and (2) NOAA Unique CrIS and ATMS Processing System (NUCAPS) temperature and moisture retrieved profiles. The goal of (1) is to improve the representation of vegetation in the Noah land surface model (LSM) over existing climatological GVF datasets in order to improve the land-atmosphere energy exchanges in NWP models and produce better temperature, moisture, and precipitation forecasts. The goal of (2) is to assimilate NUCAPS retrieved profiles into the Gridpoint Statistical Interpolation (GSI) data assimilation system to assess the impact on a summer pre-frontal convection case. Most regional NWP applications make use of a monthly GVF climatology for use in the Noah LSM within the Weather Research and Forecasting (WRF) model. The GVF partitions incoming energy into direct surface heating/evaporation over bare soil versus evapotranspiration processes over vegetated surfaces. Misrepresentations of the fractional coverage of vegetation during anomalous weather/climate regimes (e.g., early/late bloom or freeze; drought) can lead to poor NWP model results when land-atmosphere feedback is important. SPoRT has been producing a daily MODIS GVF product based on the University of Wisconsin Direct Broadcast swaths of Normalized Difference Vegetation Index (NDVI). While positive impacts have been demonstrated in the WRF model for some cases, the reflectances composing these NDVI do not correct for atmospheric aerosols nor satellite view angle, resulting in temporal noisiness at certain locations (especially heavy vegetation). The method behind the NESDIS VIIRS GVF is expected to alleviate the issues seen in the MODIS GVF real-time product, thereby offering a higher-quality dataset for

  15. Trending of Suomi-NPP VIIRS radiometric performance with lunar band ratio

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Choi, Taeyoung; Cao, Changyong; Blonski, Slawomir; Wang, Wenhui; Ban, Yan

    2014-11-01

    Radiometric stability of the lunar surface and its smooth reflectance spectrum makes the moon an ideal target for calibrating satellite-based hyper/multi-band visible imagers, as demonstrated in several lunar calibration studies of satellite radiometers. Most of the lunar calibrations rely on using lunar irradiance models to calibrate satellite radiometers, which require the lunar irradiance model to be highly accurate. In this paper, we use Lunar Band Ratio (LBR) to trend satellite radiometer performance so that the usage of lunar irradiance model is not required. The LBR method is applied to monitor long term radiometric performance of VIIRS (Visible Infrared Imaging Radiometer Suite) onboard Suomi-NPP. VIIRS observes moon at nearly the same lunar phase angle through Earth view during scheduled spacecraft maneuver. Total lunar digital number are calculated for each VIIRS reflective solar bands (RSBs) from lunar observations and one of the most stable bands of VIIRS such as M4 band is chosen as the reference band for calculating the band ratio. LBRs are compared with the degradation factors derived from VIIRS operational radiometric calibration of RSBs using onboard solar diffuser. The LBR analysis reveals that M6 and M7 degrade the fastest and agree well with the trending independently determined from onboard solar diffuser. For stable bands such as M3-M4 of VIIRS, the variation range of band ratios of M2/M4 and M3/M4 are all within 0.6%, indicating the LBR can be used to reveal the sub percent band to band stability. For M11 band of VIIRS, there have been large uncertainties in verifying its radiometric performance using vicarious ground targets. LBR of M11 provides an independent and useful radiometric stability monitoring tool for verifying the relative stability of M11 band. The LBR analysis also shows that band-to-band variability in the spectrally similar band pairs such as I2 vs. M7 and I3 vs. M10 of VIIRS are consistent within 0.2%. It is demonstrated

  16. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The

  17. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  18. Probabilistic Seismic Hazard Assessment for a NPP in the Upper Rhine Graben, France

    NASA Astrophysics Data System (ADS)

    Clément, Christophe; Chartier, Thomas; Jomard, Hervé; Baize, Stéphane; Scotti, Oona; Cushing, Edward

    2015-04-01

    The southern part of the Upper Rhine Graben (URG) straddling the border between eastern France and western Germany, presents a relatively important seismic activity for an intraplate area. A magnitude 5 or greater shakes the URG every 25 years and in 1356 a magnitude greater than 6.5 struck the city of Basel. Several potentially active faults have been identified in the area and documented in the French Active Fault Database (web site in construction). These faults are located along the Graben boundaries and also inside the Graben itself, beneath heavily populated areas and critical facilities (including the Fessenheim Nuclear Power Plant). These faults are prone to produce earthquakes with magnitude 6 and above. Published regional models and preliminary geomorphological investigations provided provisional assessment of slip rates for the individual faults (0.1-0.001 mm/a) resulting in recurrence time of 10 000 years or greater for magnitude 6+ earthquakes. Using a fault model, ground motion response spectra are calculated for annual frequencies of exceedance (AFE) ranging from 10-4 to 10-8 per year, typical for design basis and probabilistic safety analyses of NPPs. A logic tree is implemented to evaluate uncertainties in seismic hazard assessment. The choice of ground motion prediction equations (GMPEs) and range of slip rate uncertainty are the main sources of seismic hazard variability at the NPP site. In fact, the hazard for AFE lower than 10-4 is mostly controlled by the potentially active nearby Rhine River fault. Compared with areal source zone models, a fault model localizes the hazard around the active faults and changes the shape of the Uniform Hazard Spectrum at the site. Seismic hazard deaggregations are performed to identify the earthquake scenarios (including magnitude, distance and the number of standard deviations from the median ground motion as predicted by GMPEs) that contribute to the exceedance of spectral acceleration for the different AFE

  19. The possibilities of applying a risk-oriented approach to the NPP reliability and safety enhancement problem

    NASA Astrophysics Data System (ADS)

    Komarov, Yu. A.

    2014-10-01

    An analysis and some generalizations of approaches to risk assessments are presented. Interconnection between different interpretations of the "risk" notion is shown, and the possibility of applying the fuzzy set theory to risk assessments is demonstrated. A generalized formulation of the risk assessment notion is proposed in applying risk-oriented approaches to the problem of enhancing reliability and safety in nuclear power engineering. The solution of problems using the developed risk-oriented approaches aimed at achieving more reliable and safe operation of NPPs is described. The results of studies aimed at determining the need (advisability) to modernize/replace NPP elements and systems are presented together with the results obtained from elaborating the methodical principles of introducing the repair concept based on the equipment technical state. The possibility of reducing the scope of tests and altering the NPP systems maintenance strategy is substantiated using the risk-oriented approach. A probabilistic model for estimating the validity of boric acid concentration measurements is developed.

  20. The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells.

    PubMed

    Tsai, Shih Han; Kinoshita, Makoto; Kusu, Takashi; Kayama, Hisako; Okumura, Ryu; Ikeda, Kayo; Shimada, Yosuke; Takeda, Akira; Yoshikawa, Soichiro; Obata-Ninomiya, Kazushige; Kurashima, Yosuke; Sato, Shintaro; Umemoto, Eiji; Kiyono, Hiroshi; Karasuyama, Hajime; Takeda, Kiyoshi

    2015-02-17

    Crosslinking of the immunoglobulin receptor FcεRI activates basophils and mast cells to induce immediate and chronic allergic inflammation. However, it remains unclear how the chronic allergic inflammation is regulated. Here, we showed that ecto-nucleotide pyrophosphatase-phosphodiesterase 3 (E-NPP3), also known as CD203c, rapidly induced by FcεRI crosslinking, negatively regulated chronic allergic inflammation. Basophil and mast cell numbers increased in Enpp3(-/-) mice with augmented serum ATP concentrations. Enpp3(-/-) mice were highly sensitive to chronic allergic pathologies, which was reduced by ATP blockade. FcεRI crosslinking induced ATP secretion from basophils and mast cells, and ATP activated both cells. ATP clearance was impaired in Enpp3(-/-) cells. Enpp3(-/-)P2rx7(-/-) mice showed decreased responses to FcεRI crosslinking. Thus, ATP released by FcεRI crosslinking stimulates basophils and mast cells for further activation causing allergic inflammation. E-NPP3 decreases ATP concentration and suppresses basophil and mast cell activity. PMID:25692702

  1. Comparison of Tropical Ozone from SHADOZ with Remote Sensing Retrievals from Suomi-npp Ozone Mapping Profile Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof

    2014-01-01

    The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.

  2. Remote monitoring of emission activity level from NPP using radiofrequencies 1420, 1665, 1667 MHz in real time.

    PubMed

    Kolotkov, Gennady; Penin, Sergei

    2013-01-01

    The Fukushima nuclear accident showed the importance of timely monitoring and detection of radioactive emissions released from enterprises of the nuclear fuel cycle. Nuclear power plants (NPP) working continuously are a stationary source of gas-aerosol emissions which presented in a ground surface layer persistently. Following radioactive emission, untypical effects can be observed, for example: the occurrences of areas with increased ionization, and increased concentration of some gases caused by photochemical reactions. The gases themselves and their characteristic radiation can be markers of radioactivity and can be monitored by a passive method. Hydrogen atom (H) and hydroxyl radical (OH) are formed in a radioactive plume by radiolysis of water molecules and other hydrogen-containing air components by the high energy electrons from beta-decay of radionuclides. The hydrogen atom and hydroxyl radical can spontaneously radiate at 1420 MHz and 1665-1667 MHz respectively. The passive method of remote monitoring of radiation levels using radio-frequencies of H and OH from radioactive emissions of NPP is described. The model data is indicative of the monitoring of radiation levels using these frequencies. PMID:22885151

  3. Two new cataract loci, Ccw and To3, and further mapping of the Npp and Opj cataracts in the mouse

    SciTech Connect

    Kerscher, S.; Glenister, P.H.; Lyon, M.F.; Favor, J.

    1996-08-15

    Many types of inherited early onset cataract are known in both human and mouse. Here we describe the mapping of two novel dominant cataract loci in the mouse genome. Cataract and curly whiskers, Ccw, maps to Chromosome 4, 3.1 {+-} 1.1 cM distal to the b (brown) locus. Total opacity 3, To3, maps to Chromosome 7, 7.1 {+-} 1.8 cM proximal top (pink-eyed dilution). The map positions of two other dominant cataract mutants have now been refined by three-point crosses. Nuclear and posterior polar cataract, Npp, maps to the central part of Chromosome 5,1.4 {+-} 0.5 cM distal to W{sup e} (dominant spotting-extreme, an allele at the Kit locus), and Opaque secondary fiber cell junctions, Opj, maps to the proximal region of Chromosome 16, 9.1 {+-} 1.5 cM distal to the marker md (mahoganoid). While there are no obvious candidate genes in the vicinity of the Ccw, Npp, and Opj mutations, To3 lies remarkably close to the recently mapped Lim2 locus, which encodes lens intrinsic membrane protein 2. also called MP19. 24 refs., 1 fig., 4 tabs.

  4. Simulation of Loss of RHRS Sequences in the Almaraz NPP during Mid-loop Operation using TRACE Code

    SciTech Connect

    Queral, Cesar; Gonzalez, Isaac; Exposito, Antonio

    2006-07-01

    In the framework of different international and national projects sponsored by the Spanish nuclear regulatory body, Consejo de Seguridad Nuclear, and the energy industry of Spain, UNESA, one of the most important objectives is the maintenance and developing of Spanish NPP models for different codes, such as RELAP5 and TRACE. In this context, and due to the risk importance of the loss of RHRS at mid-loop conditions, our group has developed a mid-loop model of Almaraz NPP with the TRACE code. During this kind of transients the reflux condensation is one of the cooling mechanisms anticipated in the abnormal operational procedure of loss of RHRS at mid-loop level. In this sense, several simulations of loss of the RHRS are being performed attending to different plant states, such as primary closed or open (different path vents were considered), availability of steam generators, power levels, primary inventory and different secondary conditions. These parametric analyses allow us to check the capability of this cooling mechanism at different plant configurations and to apply them to the success criteria of the reflux condensation mechanism. (authors)

  5. A Satellite Based Assessment of the Impact of Urban Sprawl on Carbon Balance (NPP) of the United States

    NASA Astrophysics Data System (ADS)

    Imhoff, M. L.; Lawrence, W.; Bounoua, L.; Stutzer, D.; Tucker, C. J.; Ricketts, T.; Drob, K. M.

    2001-12-01

    For the first time, diurnal observations from two Earth imaging satellites were used to measure the extent of urban sprawl and estimate the photosynthetic capacity of the land surface inside and outside urbanized areas and assess the impact of urbanization on the terrestrial carbon cycle. Night-time data from the Defense Meteorological Satellite Program's Operational Linescan System were used to map urban areas and monthly maximum NDVI values from1-km AVHRR data were used with the Carnegie Ames Stanford Approach biophysical model to estimate net primary production (NPP). Seasonal profiles of NPP for urban and non-urban areas describe a variable effect on production depending upon the prevailing local climate and a strong urban "warming" signal can be seen. A comparison between a simulated "pre-urban" landscape and current conditions indicates that urbanization has reduced the productivity of the US land surface by about 0.012 PgC per year - about 0.5% of the estimated annual total. In terms of human requirements, this loss translates to enough energy to feed 105 million persons per year. The impact on biological systems therefore may be significant.

  6. [Ranking of radionuclides and pathways according to their contribution to the dose burden to the population resulting from NPP releases].

    PubMed

    Spiridonov, S I; Karpenko, E I; Sharpan, L A

    2013-01-01

    Approaches are described towards estimating the consequences of radioactive contamination of ecosystems by nuclear fuel cycle enterprises with the rationale for the optimal specification level for nuclear power plants (NPP) operating in the normal mode. Calculations are made based on the initial data of the IAEA project, INPRO ENV, dealing with the ranking of radionuclides escaping to the environment from the operating NPPs. Influence of various factors on rankings of radionuclides and pathways of public exposure is demon- strated. An important factor is the controlled radionuclide composition of atmospheric NPP releases. It has been found that variation in the dose coefficients for some radionuclides leads to significant changes not only in the ranking results but also in the estimates of total dose burdens. Invariability is shown of the estimation concerning the greatest contribution of the peroral route to the population dose of irradiation in the situation considered. A conclusion was drawn on the need of taking into consideration uncertainties of different factors when comparing effects on the environment from enterprises of conventional and innovative nuclear fuel cycles. PMID:25427373

  7. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as

  8. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect

    Bi, G.; Liu, C.; Si, S.

    2012-07-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no

  9. Probabilistic assessment of the primary-coolant-loop pipe-fracture due to fatigue crack growth for a PWR plant

    SciTech Connect

    Chou, C.K.

    1981-06-01

    The work reported herein assesses the probability of a double-ended guillotine break of the hot leg, cold leg and cross-over line (for the purpose of this paper we defined it as a large LOCA) of a PWR plant subjected to the loads caused by plant transients and earthquakes. The work employs a fracture mechanics based fatigue model to propagate cracks from an initial flaw distribution. Flaw size and aspect ratio, material properties, operating transient and seismic stress histories, pre-service and in-service inspections as well as leak defections are considered random variables to be input into the fatigue crack growth fracture mechanics model. A brief description of the model and interrelationship between various steps are discussed.

  10. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    NASA Astrophysics Data System (ADS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-05-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water.

  11. Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR

    SciTech Connect

    McCardell, R.K.; MacDonald, P.E.

    1980-01-01

    This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

  12. Analysis of the performance of the Westinghouse reactor vessel level indicating system for tests at semiscale. [PWR

    SciTech Connect

    Hardy, J.E.; Miller, G.N.

    1982-10-01

    The Westinghouse Reactor Vessel Level Indicating System (RVLIS), a differential pressure level measurement system, was tested at SEMISCALE. This report contains the analyses of these tests and the conclusions of these analyses. The tests performed included small break and intermediate break tests. Also, frequency response and natural circulation tests were run and analyzed. The RVLIS always indicated a level less than the two phase froth level. The RVLIS output in early small break tests indicated a level 200 cm greater than actual collapsed liquid level. This discrepancy was caused by structural differences between SEMISCALE and a Westinghouse reactor. Once modifications were made so that SEMISCALE better simulated a Westinghouse PWR, the maximum difference between RVLIS and SEMISCALE instrumentation was 30 cm or 3% which is less than the stated uncertainty of the Westinghouse RVLIS.

  13. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    SciTech Connect

    Hartini, Entin Andiwijayakusuma, Dinan

    2014-09-30

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  14. Modeling the activity of 129I and 137Cs in the primary coolant and CVCS resin of an operating PWR

    NASA Astrophysics Data System (ADS)

    Hwang, K. H.; Lee, K. J.

    2006-04-01

    Mathematical models have been developed to describe the activities of 129I and 137Cs in the primary coolant and resin of the chemical and volume control system (CVCS) during constant power operation in a pressurized water reactor (PWR). The models, which account for the source releases from defective fuel rod(s) and tramp uranium, rely on the contribution of CVCS resin and boron recovery system as a removal process, and differences in behavior for each nuclide. The current models were validated through measured coolant activities of 137Cs. The resultant scaling factors agree reasonably well with the results of the test resin of the coolant and the actual resins from the PWRs of other countries.

  15. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    NASA Astrophysics Data System (ADS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; de Araújo Figueiredo, C.

    2016-08-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H2/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition.

  16. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP

    SciTech Connect

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-10-20

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

  17. NPOESS Preparatory Project (NPP) instrument characterization and calibration, and products validation: an integrated strategy in preparation for NPOESS new generation of environmental satellites

    NASA Astrophysics Data System (ADS)

    Mango, Stephen A.; Murphy, Robert E.; Ouaidrari, Hassan; Menzel, W. Paul

    2003-04-01

    This paper presents the strategy designed by the government team, IPO and NASA, for the NPOESS Preparatory Project (NPP) instrument characterization and calibration, and product validation, in preparation for the NPOESS operational system. NPP is a risk reduction mission for NPOESS, managed by the IPO and NASA. NPP will carry three (3) instruments, VIIRS, CrIS and ATMS, and an Instrument of Opportunity to be announced soon. Responsibilities will be shared between government and industry participants to ensure high performance at all system levels. This will include provision of the sensor pre-launch characterization and post-launch calibration procedures, definition of validation approaches for all NPP products, and identification of the resources and assets required to achieve these activities. This calibration and validation plan will benefit greatly from the validation efforts and infrastructure of several existing programs at the national and international scale. The synergy between the SSPR system integrator and the government team, IPO and NASA, will build the foundation for interactions that will lead to better sensors, better algorithms, and better ground data systems.

  18. Influence of Agricultural Developments on Net Primary Productivity (NPP) in the Semi-arid Region of India: A Study using GloPEM Model

    NASA Astrophysics Data System (ADS)

    Gholkar, M. D.; Goroshi, S.; Singh, R. P.; Parihar, J. S.

    2014-11-01

    The present study aims to assess the effect of agricultural developments on inter-annual variations in the agricultural Net Primary Productivity (NPP) of selected districts of the semi-arid region of India by using GloPEM model. Advancements in farming practices have been contributing to the increase of net primary productivity, which ultimately leads to increase in the agricultural production. The study shows that increase in the gross irrigated area, fertilizer consumption, use of high yielding crop varieties and adoption of agricultural mechanization in terms of tractors and irrigation pumps have contributed significantly in the increase in agricultural NPP in the semi-arid region of India. The agricultural NPP of the semi-arid region of India has shown a very good correlation with the gross irrigated area (R2 = 0.668) and fertilizer use (R2 = 0.701). The anthropogenic factors influencing the agricultural NPP were grouped in 3 major Factor Components (FC) (eigenvalues > 1) as: FC1-nutrients application, FC2-irrigation potential and agricultural mechanization (irrigation pumps and tractors) and irrigated area while FC3-cultivated area and area under high yielding crop varieties. The study showed that most of the semi-arid region of India has a good agricultural production potential which needs to harness by increasing the supply of irrigation water, promoting agricultural mechanization and adoption of integrated nutrient management approach.

  19. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    SciTech Connect

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  20. NPP Saturation, Soil Acidification, and Phosphorus Limitation Caused by Nitrogen Enrichment-Meta Analysis of Manipulative Experiments

    NASA Astrophysics Data System (ADS)

    Niu, S.; Tian, D.; Li, Y.

    2015-12-01

    Increased reactive nitrogen (N) deposition is traditionally expected to increase net primary production (NPP), but continued retention of N deposition may saturate the ecosystem capacity to store N and cause some dark side effects on ecosystems, like soil acidification and the limitation of other nutrient. However, those dark side effects of nitrogen deposition have not been well quantified based on experimental evidences. We synthesized nitrogen deposition experiments in the world and conducted three meta-analysis studies. By compiling a dataset from 44 studies with at least three levels of N addition treatment, we found an universal saturation response of NPP to N addition gradient in terrestrial ecosystems. The N saturation threshold for NPP was at the N addition rates of 4-5 g m-2 yr-1 on average across all the ecosystems. However, ecosystem types and environmental factors largely impacted the saturation response patterns and the N thresholds. By synthesizing 106 studies that monitored soil pH and base cations under N enrichment, we quantified global soil acidification caused by N addition. On average, N addition significantly reduced soil pH by 0.26, but the magnitude varied with ecosystem types, N addition rate, N fertilization forms, and experimental durations. Environmental factors such as initial soil pH, soil carbon and nitrogen content, precipitation, and temperature all influenced the N responses of soil pH. Global soils are now at a buffering transition from base cations (Ca2+, Mg2+ and K+) to non-base cations (Mn2+ and Al3+). This calls our attention to care about the limitation of base cations and the toxic impact of non-base cations for terrestrial ecosystems with N deposition. By comparing the phosphorus limitation on biomass productions between the ambient and elevated N conditions, we found a stronger P limitation induced by N enrichment. Overall, the results indicate that the beneficial effect of N deposition on ecosystem productivity will

  1. The influence of biotic and abiotic factors on (137)Cs accumulation in higher fungi after the accident at Chernobyl NPP.

    PubMed

    Zarubina, N

    2016-09-01

    Levels of soil contamination with (137)Cs, the belonging of fungi to a certain ecological group, the localization depth of the main part of mycelium in soil are the primary factors influencing the value of (137)Cs specific activity in higher fungi after the accident at Chernobyl NPP. It has been found that the value of (137)Cs specific activity in fungi of one species could vary by more than 10 times during a vegetation period. A correlation between the changes of (137)Cs content in fungi during the vegetation period and the amount of precipitates during various periods preceding the collection of samples has not been determined. An assumption has been proposed stating dependence between peculiarities of mycelium growth during the vegetation period and the changes of (137)Cs specific activity in fungi. PMID:26690320

  2. Assessment of CO2 fluxes and forest productivity (NPP/GPP) estimates from eddy covariance measurement and field observations

    NASA Astrophysics Data System (ADS)

    Anić, Mislav; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Večenaj, Željko

    2016-04-01

    Eddy covariance (EC) measurements were carried out at the Jastrebarsko site, Croatia, in lowland forest dominated by pedunculate oak. For validation of CO2 fluxes measured with EC method bi-weekly field measurements of increment of 640 trees in 24 plots set in a 100m x 100m grid, height increment and litterfall have been used. In our work we compared annual productivity (GPP and NPP) assessments from EC measurements with field measurements. The comparison was made on a seven year dataset of measurements, spanning from 2008 to 2014. Also, flux dependence on groundwater level has been investigated. Results are showing that forest productivity estimates with EC method are in good agreement with the estimates from field measurements in the dry years. Agreement is slightly lower for years with high precipitation.

  3. Performance of high resistivity n+pp+ silicon solar cells under 1 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Goradia, C.; Swartz, C. K.; Hermann, A. M.

    1981-01-01

    High resistivity (1250 and 84 ohm-cm) n(+)pp(+) silicon solar cells were irradiated and their performance evaluated as a function of fluence. The greatest degradation in power occurred for the higher resistivity cell. The data were analyzed under open circuit conditions, and the components of V sub oc determined as a function of fluence. It was found that the voltage contributions from the front and back junctions decreased while the base component (V sub B) increased with fluence. The anomalous behavior of V sub B was attributed to an increase in the base minority carrier gradient with fluence. An argument that the increased power degradation in the 1250 ohm-cm cells was attributable to an increased voltage drop in the base is presented. Diffusion lengths calculated under high injection conditions were significantly greater than those determined under low injection. This was attributed to a saturation of recombination centers under high injection conditions.

  4. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  5. Sensor-centric calibration and characterization of the VIIRS Ocean Color bands using Suomi NPP operational data

    NASA Astrophysics Data System (ADS)

    Pratt, P.

    2012-12-01

    Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.

  6. The monetary value of the man-mSv for Korean NPP radiation workers assessed by the radiation aversion factor.

    PubMed

    Lee, Byoung-il; Suh, Dong-hee; Kim, So-i; Jeong, Mi-seon; Lim, Young-khi

    2012-07-01

    The monetary value of the man-mSv for operators of Korean nuclear power plants (NPPs) was calculated using a radiation aversion factor based on a survey of NPP workers. Initially, the life expectancy in the population is 79.4 y, the average age of cancer occurrence is 60 y, the average annual wage for an electric worker is 56 000 $ y(-1) and the nominal risk coefficient induced by radiation is 4.2E(-5) mSv were used to evaluate the basic monetary value (α(base)) resulting in 45.6 $ mSv(-1). To investigate the degree of radiation aversion, the subject of the investigation was selected as the working radiation workers in 10 NPPs in Korea (Kori 1-2, Yeonggwang 1-3, Ulchin 1-3 and Wolseong 1-2). In August 2010, with the cooperation of KHNP and partner companies, a total of 2500 survey questionnaires to 10 NPPs (or 250 surveys to each NPP) were distributed to currently employed radiation workers. From these, 2157 responses were obtained between August and October 2010. The assessed radiation aversion factor and the monetary value of the man-mSv from the calculated radiation aversion factor were 1.26 and ∼50 $ in the 0-1 mSv range, 1.38 and ∼200 $ in the 1-5 mSv range, 1.52 and ∼1000 $ in the 5-10 mSv range, 1.65 and ∼4000 $ in the 10-20 mSv range and 1.74 and ∼8500 $ >20 mSv. PMID:22147927

  7. River Ice and Flood Detection Products Derived from Suomi NPP VIIRS Satellite Data to Support Hydrologic Forecast Operations in Alaska

    NASA Astrophysics Data System (ADS)

    van Breukelen, C. M.; Plumb, E. W.; Li, S.; Holloway, E.; Stevens, E.

    2015-12-01

    A lack of river ice data during spring break-up in Alaska creates many forecast challenges for National Weather Service (NWS) forecasters. Limited and infrequent ice conditions and flood observations are provided by river observers, community officials, and pilots. Although these observations are invaluable, there are extensive spatial and temporal data gaps across Alaska during spring break-up. The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellite imagery has proved to be an extremely beneficial situational awareness and decision support tool for NWS forecast operations. In particular, the VIIRS satellite imagery became highly effective in identifying extensive flooding of many Alaskan rivers due to ice jams during the 2013 spring breakup season. A devastating ice jam flood in the Yukon River community of Galena prompted the development of river ice and flood detection products derived from the VIIRS satellite imagery with the support of the Joint Polar Satellite System/Proving Ground and Risk Reduction (JPSS/PGRR) Program. The two new products from S-NPP/VIIRS imagery provided critical decision making information to NWS forecasters responsible for issuing flood warnings for the region. Since 2013, the NWS continues to evaluate the use of these products in an operational forecast setting, and has expanded the evaluation period to include summertime flooding. There are limitations of these products due to cloud cover, sun zenith angles, product validation, and other issues unique to Alaska. The NWS will continue to provide feedback to the JPSS/PGRR Program in order to further refine and improve the algorithms used to create the river ice and flood detection products. This presentation will demonstrate how these products have been integrated into the NWS forecast process for several types of flood events in Alaska.

  8. Towards remote sensing of Arctic ice roads and associated human activities using SUOMI NPP night light images

    NASA Astrophysics Data System (ADS)

    Bennett, M.; Smith, L. C.; Stephenson, S. R.

    2014-12-01

    Ice roads are often the only cost-effective means of transporting goods and supplies to communities, mines, and other sites in remote parts of the Arctic. Yet, there is no global dataset for Arctic ice roads. However, remotely sensed images from the SUOMI NPP day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) may allow for the construction of such a dataset. The DNB's high sensitivity to low-level light suggests that while it is not feasible to view ice roads at night per se, other prominent features associated with ice roads can serve as proxies. Using a time series of images taken in winter 2012, 2013, and 2014, SUOMI NPP images are compared with Landsat 8 images and an existing map of the Tibbitt to Contwoyto ice road in the Northwest Territories and Nunavut, Canada. First results reveal that while the ice road's exact path cannot be discerned, key points of human activity along the way can be made out. This bodes well for future applications of DNB imagery to detect ice roads in places like the Russian Federation, for which there is a dearth of publicly available maps. Knowing the location of ice roads is important for two reasons. First, these data can signal sites of natural resource extraction in places for which information is not widely disseminated, such as in the Russian Far East. Second, new geospatial datasets for ice roads can be combined with models assessing impacts of climate change on circumpolar land accessibility (Stephenson et al. 2011) in order to understand where the structural integrity of ice roads may be at risk. As warming temperatures threaten to shorten the season for ice roads, communities and mines alike will need to prepare for changes to their transportation infrastructure, made out of the changing landscape itself.

  9. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results

    NASA Astrophysics Data System (ADS)

    Csiszar, Ivan; Schroeder, Wilfrid; Giglio, Louis; Ellicott, Evan; Vadrevu, Krishna P.; Justice, Christopher O.; Wind, Brad

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite incorporates fire-sensitive channels, including a dual-gain high-saturation temperature 4 µm channel, enabling active fire detection and characterization. The active fire product, based on the 750 m moderate resolution "M" bands of VIIRS, is one of the standard operational products generated by the Interface Data Processing Segment of the S-NPP ground system. The product builds on an earlier "Collection 4" version of the algorithm used for processing Moderate Resolution Imaging Spectroradiometer (MODIS) data. Following postlaunch quality assessments and corrections in the input VIIRS Sensor Data Record data processing, an initial low detection bias was removed and the product achieved Beta quality in April 2012. Daily spurious detections along-scan lines were also significantly reduced as a result of further processing improvements in October 2012. Direct product comparison with MODIS over 4 months of data in 2013 has shown that VIIRS produces approximately 26% more detections than MODIS within the central 3 pixel VIIRS aggregation zone of approximately ±31° scan angle range and 70% more detections outside of that zone, mainly as a result of the superior VIIRS scanning and sampling characteristics. Further development is in progress to ensure high-quality VIIRS fire products that continue the MODIS data record and better serve the user community by delivering a full image classification product and fire radiative power retrievals. Research is also underway to take advantage of the radiometric signal from the 375 m VIIRS imager "I" bands.

  10. Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, David; Wu, Aisheng; Wu, Xiangqian

    2016-05-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter- Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth-observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  11. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  12. Evaluation of storing Shippingport Core II spent blanket fuel assemblies in the T Plant PWR Core II fuel pool without active cooling

    SciTech Connect

    Gilbert, E.R.; Lanning, D.D.; Dana, C.M.; Hedengren, D.C.

    1994-10-01

    PWR Core II fuel pool chiller-off test was conducted because it appeared possible that acceptable pool-water temperatures could be maintained without operating the chillers, thus saving hundreds of thousands of dollars in maintenance and replacement costs. Test results showed that the water-cooling capability is no longer needed to maintain pool temperature below 38{degrees}C (100{degrees}F).

  13. Scoping design analyses for optimized shipping casks containing 1-, 2-, 3-, 5-, 7-, or 10-year-old PWR spent fuel

    SciTech Connect

    Bucholz, J.A.

    1983-01-01

    This report details many of the interrelated considerations involved in optimizing large Pb, Fe, or U-metal spent fuel shipping casks containing 1, 2, 3, 5, 7, or 10-year-old PWR fuel assemblies. Scoping analyses based on criticality, shielding, and heat transfer considerations indicate that some casks may be able to hold as many as 18 to 21 ten-year-old PWR fuel assemblies. In the criticality section, a new type of inherently subcritical fuel assembly separator is described which uses hollow, borated stainless-steel tubes in the wall-forming structure between the assemblies. In another section, details of many n/..gamma.. shielding optimization studies are presented, including the optimal n/..gamma.. design points and the actual shielding requirements for each type of cask as a function of the age of the spent fuel and the number of assemblies in the cask. Multigroup source terms based on ORIGEN2 calculations at these and other decay times are also included. Lastly, the numerical methods and experimental correlations used in the steady-state and transient heat transfer analyses are fully documented, as are pertinent aspects of the SCOPE code for Shipping Cask Optimization and Parametric Evaluation. (While only casks for square, intact PWR fuel assemblies were considered in this study, the SCOPE code may also be used to design and analyze casks containing canistered spent fuel or other waste material. An abbreviated input data guide is included as an appendix).

  14. Development of on-line monitoring system for Nuclear Power Plant (NPP) using neuro-expert, noise analysis, and modified neural networks

    SciTech Connect

    Subekti, M.; Ohno, T.; Kudo, K.; Nabeshima, K.; Takamatsu, K.

    2006-07-01

    The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactor in Indonesia), will be applied in HTTR for more complex monitoring. (authors)

  15. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  16. Climate Change Response of Ocean Net Primary Production (NPP) and Export Production (EP) Regulated by Stratification Increases in The CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, W.; Randerson, J. T.; Moore, J. K.

    2014-12-01

    Ocean warming due to rising atmospheric CO2 has increasing impacts on ocean ecosystems by modifying the ecophysiology and distribution of marine organisms, and by altering ocean circulation and stratification. We explore ocean NPP and EP changes at the global scale with simulations performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the representative concentration pathway (RCP) 8.5 scenario, although models differ in their significantly in their direct temperature impacts on production and remineralization. The Earth system models used here project similar NPP trends albeit the magnitudes vary substantially. In general, projected changes in the 2090s for NPP range between -2.3 to -16.2% while export production reach -7 to -18% relative to 1990s. This is accompanied by increased stratification by 17-30%. Results indicate that globally reduced NPP is closely related to increased ocean stratification (R2=0.78). This is especially the case for global export production, that seems to be mostly controlled by the increased stratification (R2=0.95). We also identify phytoplankton community impacts on these patterns, that vary across the models. The negative response of NPP to climate change may be through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. There are large disagreements among the CMIP5 models in terms of simulated nutrient and oxygen concentrations for the 1990s, and their trends over time with climate change. In addition, potentially important marine biogeochemical feedbacks on the climate system were not well represented in the CMIP5 models, including important feedbacks with aerosol deposition and the marine iron cycle, and feedbacks involving the oxygen minimum zones and the marine nitrogen cycle. Thus, these substantial reductions in primary productivity and export production over

  17. The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data.

    PubMed

    Peng, Dailiang; Wu, Chaoyang; Zhang, Bing; Huete, Alfredo; Zhang, Xiaoyang; Sun, Rui; Lei, Liping; Huang, Wenjing; Liu, Liangyun; Liu, Xinjie; Li, Jun; Luo, Shezhou; Fang, Bin

    2016-01-01

    Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China's landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001-2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone. PMID:27348303

  18. The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data

    PubMed Central

    Wu, Chaoyang; Zhang, Bing; Huete, Alfredo; Zhang, Xiaoyang; Sun, Rui; Lei, Liping; Huang, Wenjing; Liu, Liangyun; Liu, Xinjie; Li, Jun; Luo, Shezhou; Fang, Bin

    2016-01-01

    Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China’s landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001–2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone. PMID:27348303

  19. Probability of pipe failure in the reactor coolant loops of Combustion Engineering PWR plants. Volume 1. Summary report

    SciTech Connect

    Holman, G.S.; Lo, T.; Chou, C.K.

    1985-01-01

    As part of its reevaluation of the double-ended guillotine break (DEGB) as a design requirement for reactor coolant piping, the US Nuclear Regulatory Commission (NRC) contracted with the Lawrence Livermore National Laboratory (LLNL) to estimate the probability of occurrence of a DEGB, and to assess the effect that earthquakes have on DEGB probability. This report describes a probabilistic evaluation of reactor coolant loop piping in PWR plants having nuclear steam supply systems designed by Combustion Engineering. Two causes of pipe break were considered: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by failure of component supports due to an earthquake (indirect DEGB). The probability of direct DEGB was estimated using a probabilistic fracture mechanics model. The probability of indirect DEGB was estimated by estimating support fragility and then convolving fragility with seismic hazard. The results of this study indicate that the probability of a DEGB from either cause is very low for reactor coolant loop piping in these plants, and that NRC should therefore consider eliminating DEGB as a design basis in favor of more realistic criteria.

  20. Probability of pipe failure in the reactor coolant loops of Westinghouse PWR Plants. Volume 1. Summary report

    SciTech Connect

    Holman, G.S.; Chou, C.K.

    1985-07-01

    As part of its reevaluation of the double-ended guillotine break (DEGB) of reactor coolant loop piping as a design basis event for nuclear power plants, the US Nuclear Regulatory Commission (NRC) contracted with the Lawrence Livermore National Laboratory (LLNL) to estimate the probability of occurrence probability. This report describes a probabilistic evaluation of reactor coolant loop piping in PWR plants having nuclear steam supply systems designed by Westinghouse. Two causes of pipe break were considered: pipe fracture due to the growth of cracks at welded joints (''direct'' DEGB), and pipe rupture indirectly caused by failure of component supports due to an earthquake (''indirect'' DEGB). The probability of direct DEGB was estimated using a probabilistic fracture mechanics model. The probability of indirect DEGB was estimated by estimating support fragility and then convolving fragility and seismic hazard. The results of this study indicate that the probability of a DEGB from either cause is very low for reactor coolant loop piping in these plants, and that NRC should therefore consider eliminating DEGB as a design basis event in favor of more realistic criteria. 17 refs., 15 figs., 11 tabs.

  1. MANCINTAP: Time and space dependent neutron activation tool algorithm improvement and analysis of a PWR nozzle gallery

    SciTech Connect

    Frambati, S.; Firpo, G.; Frignani, M.

    2012-07-01

    MANCINTAP [1], a fully automated tool for determining the activation patterns in complex 4D scenarios and evaluating the distribution of the ensuing radiation fields, has been improved. The constraint of forcing the user to define a single global mesh in order to approximate the whole problem, a limitation which prevented an accurate description of detail-rich geometries, has been overcome. The algorithm was improved and many limitations were relaxed. MANCINTAP is now capable of handling many different geometry elements in a given area at once, even if they have very different geometries and characteristic dimensions, thus allowing a vastly more complete and detailed analysis. Different meshes can be superimposed to the 3D geometry, allowing for an appropriate, dedicated treatment of all the relevant features of the problem, and the results are automatically combined in order to provide a global perspective. These new capabilities were accurately tested by applying the tool to the study of time-dependent radiation levels during shutdown in the upper reactor cavity and nozzle gallery regions of a 2-loop PWR reactor. (authors)

  2. OBSERVATIONS AND IMPLICATIONS OF INTERGRANULAR STRESS CORROSION CRACK GROWTH OF ALLOY 152 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2013-08-15

    Significant intergranular (IG) crack growth during stress corrosion cracking (SCC) tests has been documented during tests in simulated PWR primary water on two alloy 152 specimens cut from a weldment produced by ANL. The cracking morphology was observed to change from transgranular (TG) to mixed mode (up to ~60% IG) during gentle cycling and cycle + hold loading conditions. Measured crack growth rates under these conditions often suggested a moderate degree of environmental enhancement consistent with faster growth on grain boundaries. However, overall SCC propagation rates at constant stress intensity (K) or constant load were very low in all cases. Initial SCC rates up to 6x10-9 mm/s were occasionally measured, but constant K/load growth rates dropped below ~1x10-9 mm/s with time even when significant IG engagement existed. Direct comparisons were made among loading conditions, measured crack growth response and cracking morphology during each test to assess IGSCC susceptibility of the alloy 152 specimens. These results were analyzed with respect to our previous SCC crack growth rate measurements on alloy 152/52 welds.

  3. Three-dimensional analysis of thermal and fluid mixing in cold leg and downcomer of PWR geometries

    SciTech Connect

    Lyczkowski, R.W.; Miao, C.C.; Domanus, H.M.; Hull, J.R.; Sha, W.T.; Schmitt, R.C.

    1983-12-01

    This report describes the three-dimensional transient and steady-state computations using the COMMIX-1A computer code for the analysis of six (6) 1/5-scale thermal and fluid mixing experiments conducted at Creare, Inc. under EPRI sponsorship. The tests chosen for analyses emphasized the effects of vent valve flow, cold leg and high pressure injection (HPI) coolant flow rates, and HPI location and geometry. The COMMIX-1A computations will provide fluid temperatures and velocities in the belt-line region of the downcomer for assessment of boundary conditions for thermal stress analysis in the vessel walls. A realistic prediction for thermal and fluid mixing significantly helps establish what overcooling transients can lead to in pressurized thermal shock (PTS) events. Sample three-dimensional steady-state computations are presented for three (3) generic full-scale pressurized water reactors (PWR's) typical of Westinghouse (W), Combustion Engineering (CE), and Babcock and Wilcox (B and W) configurations as part of the code assessment.

  4. Development of modified MDA (M-MDA), PWR fuel cladding tube for high duty operation in future

    SciTech Connect

    Watanabe, Seiichi; Kido, Toshiya; Arakawa, Yasushi

    2007-07-01

    A new cladding material of M-MDA has been developed in order to prepare for a strong growing demand for advanced fuel which can maintain its integrity even under high duties due to more efficient operation such as higher burnup, higher LHR, and longer operation cycle which will contribute the suppression of environmental burdens like CO{sub 2} emission. The main aim of M-MDA is to have excellent corrosion resistance while the other properties are inherited from MDA, which has been adopted to the step 2 fuel, instead of Zry-4, of Japanese PWR plant whose upper limit of assembly discharged burnup is 55 MWd/kgU. And we could confirm that the main aim of M-MDA was achieved by means of out-of-pile tests. In order to confirm improvement of corrosion resistance of M-MDA in the actual operation, irradiation test of M-MDA in the commercial reactor of Vandellos II is ongoing. The latest results of on-site examination after every end of cycle showed that oxide thickness of M-MDA-SR was much smaller than that of MDA at rod discharged burnup of approximately 60 MWd/kgU. The final irradiation cycle was completed on April 2007 and then we will obtain corrosion data of M-MDA over 70 MWd/kgU. M-MDA is a candidate alloy for advanced fuel under higher duty usage. (authors)

  5. Non-Invasive Characterization of Burnup for PWR Spent Fuel Rods with Burnups > 80 GWd/t

    SciTech Connect

    Caruso, S.; Murphy, M.; Jatuff, F.; Chawla, R.

    2006-07-01

    High-resolution gamma spectroscopy has been employed for the measurement of {sup 134}Cs/{sup 137}Cs, {sup 154}Eu/{sup 137}Cs and {sup 134}Cs/{sup 154}Eu gamma intensity ratios from spent fuel with the purpose of deriving pin-averaged single-ratio burnup indicators for high and ultra-high burnups. Two UO{sub 2} pressurised water reactor (PWR) fuel rod segments with record burnup levels >80 GWd/t have been experimentally characterised. Additionally, pin cell depletion calculations have been performed for each sample with the deterministic code CASMO-4, using both its JEF2.2- and its ENDF/B-IV-based libraries, for three different descriptions of the fuel rod irradiation histories, in order to test the sensitivity of the results to neutron cross sections and to the depletion model employed. Measured and calculated ratios have then been compared. It is shown that the {sup 134}Cs/{sup 137}Cs ratio, frequently used as burnup monitor, is considerably less accurate for values exceeding 50 GWd/t; discrepancies of up to {approx}25% are found between measured and calculated values. The ratios built with the {sup 154}Eu concentration show much larger discrepancies, essentially because this isotope is rather poorly predicted as revealed by the use of different basic cross section data. (authors)

  6. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  7. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect

    Lau, C. W.; Demaziere, C.; Nylen, H.; Sandberg, U.

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  8. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    SciTech Connect

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.; Thomas, Larry E.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. For the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.

  9. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  10. Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: Dependencies with burn-up and temperature

    NASA Astrophysics Data System (ADS)

    Spino, J.; Stalios, A. D.; Santa Cruz, H.; Baron, D.

    2006-08-01

    The stereology of the rim-structure was studied for PWR-fuels up to the ninth irradiation cycle, achieving maximum local burn-ups of 240 GWd/tM and beyond. At intermediate radial positions (0.55 < r/ r0 < 0.7), a small increase of the pore and grain size of recrystallized areas was found, which is attributed to the increase of the irradiation temperatures in the outer half-pellet-radius due to deterioration of the thermal conductivity. In the rim-zone marked pore coarsening and pore-density-drop occur on surpassing the local burn-up of 100 GWd/tM, associated with cavity fractions of ≈0.1. Above this threshold the porosity growth rate drops and stabilizes at a value nearing the matrix-gas swelling-rate (≈0.6%/10 GWd/tM). The rim-cavity coarsening shows ingredients of both Ostwald-ripening and coalescence mechanisms. Despite individual pore-contact events, no clusters of interconnected pores were observed up to maximum pore fractions checked (≈0.24). The rim-pore-structure is found to be well represented in its lower bound by the model system of random penetrable spheres, with percolation threshold at ϕc = 0.29. Rim-cavities are expected to remain closed at least up to this limit.

  11. Comparison of PWR - Burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results

    SciTech Connect

    Oberle, P.; Broeders, C. H. M.; Dagan, R.

    2006-07-01

    The increasing tendency towards fuel lifetime extension in thermal nuclear reactors motivated validation work for available evaluation tools for nuclear fuel burnup calculations. In this study two deterministic codes with different transport solvers and one Monte Carlo method are investigated. The code system KAPROS/KARBUS uses the classical deterministic First Collision Probability method utilizing a cylinderized Wigner-Seitz cell. In the SCALES.0/TRITON/NEWT code the Extended Step Characteristic method is applied. In a first step the two deterministic codes are compared with experimental results from the KWO-Isotope Correlation Experiment up to 30 MWD/kg HM burnup, published in 1981. Two pin cell calculations are analyzed by comparison of calculated and experimental results for important heavy isotope vectors. The results are very satisfactory. Subsequently, further validation at higher burnup (< 80 MWD/kg HM) is provided by comparison of the two deterministic codes and the Monte Carlo based burnup code MONTEBURNS for PWR UO{sub 2} fuel assembly calculations. Possible reasons for differences in the results are analyzed and discussed. Especially the influence of cross section data and processing is presented. (authors)

  12. Preliminary study of the Suomi NPP VIIRS detector-level spectral response function effects for the long-wave infrared bands M15 and M16

    NASA Astrophysics Data System (ADS)

    Padula, Francis; Cao, Changyong

    2014-09-01

    The Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the detector-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the detector-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs, and that if users require optimal system performance detector-level processing is recommended. Future work will investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  13. 1,25-Dihydroxyvitamin D3 and extracellular calcium promote mineral deposition via NPP1 activity in a mature osteoblast cell line MLO-A5.

    PubMed

    Yang, Dongqing; Turner, Andrew G; Wijenayaka, Asiri R; Anderson, Paul H; Morris, Howard A; Atkins, Gerald J

    2015-09-01

    While vitamin D supplementation is common, the anabolic mechanisms that improve bone status are poorly understood. Under standard mineralising conditions including media ionised calcium of 1.1 mM, 1,25-dihydroxyvitamin D3 (1,25D) enhanced differentiation and mineral deposition by the mature osteoblast/pre-osteocyte cell line, MLO-A5. This effect was markedly increased with a higher ionised calcium level (1.5 mM). Gene expression analyses revealed that 1,25D-induced mineral deposition was associated with induction of Enpp1 mRNA, coding for nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) and NPP1 protein levels. Since MLO-A5 cells express abundant alkaline phosphatase that was not further modified by 1,25D treatment or exposure to increased calcium, this finding suggested that the NPP1 production of pyrophosphate (PPi) may provide alkaline phosphatase with substrate for the generation of inorganic phosphate (Pi). Consistent with this, co-treatment with Enpp1 siRNA or a NPP1 inhibitor, PPADS, abrogated 1,25D-induced mineral deposition. These data demonstrate that 1,25D stimulates osteoblast differentiation and mineral deposition, and interacts with the extracellular calcium concentration. 1,25D regulates Enpp1 expression, which presumably, in the context of adequate tissue non-specific alkaline phosphatase activity, provides Pi to stimulate mineralisation. Our findings suggest a mechanism by which vitamin D with adequate dietary calcium can improve bone mineral status. PMID:26054750

  14. NOAA/National Weather Service Operational Applications and Training of S-NPP Imagery and Products in Preparation for JPSS Mission Readiness

    NASA Astrophysics Data System (ADS)

    Motta, B.; Miller, S. D.; Folmer, M. J.; Lindstrom, S.; Nietfeld, D.; Stevens, E.; Dankers, T.; Baker, M.; Meier, B.; Mostek, A. J.; Hillger, D.

    2014-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), in collaboration with the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and its Cooperative Institutes, have been prototyping various operational applications of Suomi-NPP satellite imagery and products. Some of these new satellite capabilities are NOAA and S-NPP mission unique and have resulted in new science applications for high impact events and related impact-based decision support services. From detection to monitoring to recovery-phase operations, S-NPP debuts new NOAA-unique capabilities for true color RGB imagery, Near Constant Contrast Day-Night Band Imagery, Flood/Ice Detection and Monitoring, Wildfire and Smoke Detection and Monitoring, Severe Weather Environmental and Storm Analysis, Dust Detection and Monitoring, and Global Infrared and Microwave Atmospheric Soundings. These newly demonstrated applications have been part of the research to operations transitions occurring in the NOAA Satellite Proving Ground (JPSS and GOES-R) and NOAA training developed as part of the Virtual Institute for Satellite Integration and Training (VISIT).

  15. Change of outlook for the forest productivity estimated with remote sensing using the new Collection 6 GPP/NPP MODIS product

    NASA Astrophysics Data System (ADS)

    Marjanović, Hrvoje; Kern, Anikó; Anić, Mislav; Zorana Ostrogović Sever, Maša; Balenović, Ivan; Alberti, Giorgio; Kovač, Goran; Barcza, Zoltán

    2016-04-01

    Estimates of forest productivity from remote sensing data, such as the MOD17 GPP and NPP values derived from MODIS data, are becoming increasingly important tools for monitoring forest productivity in light of the climate change. Hence, small sensor degradation, like the one in the case of MODIS sensor on-board satellite Terra could lead so significant bias in results and false conclusions of the path that the ecosystem is on. In new Collection 6 (C6) of the MOD17 product, the sensor degradation problem has been addressed compared to the previous version Collection 5.5 (C5.5) products, offering a new outlook on the trends in forest productivity. In our work we compared the C5.5 and C6 for MOD17 GPP and NPP products against estimates from eddy covariance and field measurements ('ground truth') at young Pedunculate oak site in Jastrebarsko forest. In order to assess the outlook of forest productivity at larger scale we intersected in GIS maps of forest areas under management and MODIS pixels with 1km spatial resolution. After selecting only those pixels that have at least 90% forest coverage according to the management plans, we analysed the temporal trends and variability in MODIS derived GPP and NPP both from C5.5 and C6 products. Analysis was performed for four main forests classes according to the dominant tree species (Pedunculate oak, Sessile oak, Common beech and Silver fir).

  16. Mid-Pacific Ground-Truth Data For Validation of the CrIMSS Sensor Suite Aboard Suomi-NPP

    NASA Astrophysics Data System (ADS)

    Mollner, A. K.; Wessel, J.; Gaab, K. M.; Cardoza, D. M.; LaLumondiere, S. D.; Karuza, P.; Caponi, D.; Lotshaw, W. T.; Nalli, N. R.; Reale, T.; Divakarla, M.; Gambacorta, A.; Barnet, C.; Maddy, E. S.; Tan, C.; Xiong, X.; Porter, O.

    2013-12-01

    The Aerospace Transportable Lidar System 2 (ATLS-2) provides ground truth humidity and temperature data for the testing and evaluation of instruments aboard environmental satellites. The Aerospace ground-truth data consist of collocated state-of-the art lidar and radiosonde observations (RAOBs). The lidar system consists of a pulsed UV transmitter, 36-inch collection telescope, and detection channels for water Raman, nitrogen Raman, and Rayleigh/Mie scattering. All channels are separated into two altitude bins to improve the dynamic range of the system. Dedicated balloon-borne radiosondes are Vaisala RS-92, processed with the current version of the Digicora-III software. The synergy between the Raman lidar data and radiosonde data produce high accuracy, quality-controlled vertical profiles of humidity (0 - 20 km) and temperature (0 - 60 km). Starting in May 2012, The Aerospace Corporation has exercised ATLS-2 to collect dedicated ground truth data sets in support of calibration and validation (cal/val) efforts for the Cross-track Infrared and Microwave Sounding Suite (CrIMSS) aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. Data sets are collected from the Pacific Missile Range Facility (PMRF) on the west coast of Kauai and are timed to be coincident with S-NPP overpasses. The Aerospace PMRF datasets complement the ensemble of similar datasets collected from DOE Atmospheric Radiation Measurement (ARM) and NOAA Aerosols and Ocean Science Expedition (AEROSE) sites, which are compared to CrIMSS Environmental Data Records (EDRs) by the NOAA/NESDIS/STAR cal/val team for validation of algorithm performance and algorithm improvement. In addition to providing the only dedicated CrIMSS data in the mid-pacific, The Aerospace Corporation was the first site to provide ground truth data to the EDR cal/val team. As a result, ATLS-2 data sets served as the initial benchmarks for EDR performance testing. Details of the ATLS-2 system and data products as well

  17. Radio-cesium accumulation during decomposition of leaf litter in a deciduous forest after the Fukushima NPP accident.

    NASA Astrophysics Data System (ADS)

    Kaneko, Nobuhiro; Huang, Yao; Nakamori, Taizo; Tanaka, Yoichiro; Nonaka, Masanori

    2013-04-01

    Fukusima NPP accident contaminated vast area in eastern Japan with radio isotopes. Most of the area is covered by natural and plantation forest. The forest floor in deciduous forests, and canopy of evergreen forest were most contaminated by fall out. Radio-cesium is known to stay bioavailable in forest ecosystems for long time, and it is necessary to cut the cycling process to decontaminate the forest ecosystem. Ecological process to recycle radio-Cs in forest ecosystem should be studied to enhance decontamination of radio-Cs. Mushrooms show high concentration of Cs. Although mushroom biomass in a forest ecosystem is small, fungal mycelium in detritus and soil is large, thus fungi contain substantial amount of radio-Cs. It is well known that concentration of some nutrients, such as nitrogen and phosphorus, increase, whereas potassium decreases during the leaf litter decomposition. We observed radio-Cs concentration of leaf litter during decomposition on a forest floor where 134-Cs and 137-Cs of surface soil were 5,700, and 6,800 Bq/kg, respectively. We put 16 g (dry weight) of newly fallen mixed deciduous leaf litter (half of which was oak, Quercus serrata) into 25 cm x 25 cm litter bag (2 mm mesh size) in a deciduous forest about 50 km from Fukushima NPP. Fresh litter 137-Cs concentration was ca. 1,000 Bq/kg in December 2011. During the decomposition process on the forest floor, litter Cs increased exponentially and exceeded 10,000 Bq/kg after 6 months, indicating that Cs and K show contrasting dynamics during early decomposition phase. Increase in fungal biomass in the early stage of litter decomposition was observed. Therefore, this upward movement of Cs from humus and soil layer suggests fungal translocation of nutrients from outside of litter substrate. Retrieving the litter after 6 months can remove 18.0% of 134-Cs. Interaction between fungal species, grazing effect on fungi by fungivorous invertebrates will change the amount of translocation of radio-Cs from

  18. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun

    2014-01-01

    The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.

  19. Towards real-time risk mitigation for NPP in Switzerland: the potential role of EEW and OEF.

    NASA Astrophysics Data System (ADS)

    Cauzzi, Carlo; Wiemer, Stefan; Behr, Yannik; Clinton, John; Renault, Philippe; Le Guenan, Thomas; Douglas, John; Woessner, Jochen; Biro, Yesim; Caprio, Marta; Cua, Georgia

    2014-05-01

    Spurred by the research activities being carried out within the EC-funded project REAKT (Strategies and Tools for Real Time Earthquake Risk Reduction, FP7, contract no. 282862, 2011-2014, www.reaktproject.eu), we present herein the key elements to understanding the potential benefits of routinely using Earthquake Early Warning and Operational Earthquake Forecasting methods to mitigate the seismic risk at NPP in Switzerland. The advantages of using the aforementioned real-time risk reduction tools are critically discussed based on the limitations of the current scientific knowledge and technology, as well as on the costs associated to both system maintenance and machine- or human-triggered actions following an alert. Basic inputs to this discussion are, amongst others: a) the performances of the Swiss seismic network (http://www.seismo.ethz.ch/monitor, where SeisComP3 is used as earthquake monitoring software) and the selected EEW algorithm (the Virtual Seismologist, VS, http://www.seiscomp3.org/doc/seattle/2013.200/apps/vs.html), in terms of correct detections, false alerts, and missed events; b) the reliability of time-dependent hazard scenarios for the region of interest; c) a careful assessment of the frequency of occurrence of critical warnings based on the local and regional seismicity; d) the identification of the mitigation actions and their benefits and costs for the stakeholders.

  20. [Long-term follow-up cytogenetic survey and biological dosimetry in persons evacuated from 30-km Chernobyl NPP zone].

    PubMed

    Maznik, N A

    2004-01-01

    The paper presents the results of the follow-up cytogenetic survey and biological dosimetry carried out in inhabitants of Pripiat' town and nearby villages, who were departured from the Chernobyl NPP 30-km exclusive zone during first days after the Chernobyl catastrophe. The unstable chromosome aberration level in inhabitants were significantly increased above control in terms up to 1 year after evacuation and declined gardually during next 14 years. In early period the cytogenetic damage frequency in evacuees showed no dependence on gender. The chromosome type aberration level appeared to be lower in young persons comparing with adults. The dicentrics plus centric rings yield had a positive correlation with duration of staying at Chernobyl zone. The average doses of protracted exposure were calculated from the dicentrics and centric rings yields; the dose estimations appeared to be 1.4 times higher in persons evacuated 3-11 days after the accident than that of in persons with shorter departure time. Uing the Bayesian analysis the probabilistic distribution of biological doses was constructed for the studied evacuees group. This distribution was characterized by a mean dose of 360 mGy, the modal doses of 200-450 mGy and 80% of probability density within the dose range 0-1000 mGy, that seems to be sufficient for considering the increased risk of late somatic radiation effects for this cohort. PMID:15571047

  1. Mapping Water Vapor Bands using AIRS Measurements for NPOESS/NPP VIIRS Pre-launch End-to-End Testing

    NASA Astrophysics Data System (ADS)

    Qu, J. J.; Hao, X.; Hauss, B.; Wang, C.; Xiong, J.

    2005-12-01

    NPOESS/NPP pre-launch end to end testing is very important for establishing the long-term high quality Environmental Data Records (EDRs). In our early studies, we have developed spatial and spectral mapping technology and demonstrated the AIRS-MODIS-VIIRS band mapping approaches successfully. In this paper, we will focus on VIIRS water vapor band mapping for proxy dataset generating based on our recently established proxy database which includes the AIRS simulated MODIS, AIRS simulated VIIRS and aggregated MODIS radiances/ brightness temperatures. We demonstrate the efficacy of this approach by presenting results of the cross-comparison of water vapor band measurements from AIRS, MODIS and simulated VIIRS. We also investigate the dependence of the quality of water vapor band mapping as a function of the surface emissivity spectrum, phenomenology, and atmospheric conditions. The same approach can be used to map CrIS to VIIRS for post-launch calibration and validation. It is also valuable to keep the continuity between MODIS and VIIRS water vapor measurements. This approach can provide increased confidence in evaluating EDR retrieval algorithms performances. It also can be used to map 6.75 μm band using AIRS or CrIS measurements for water vapor algorithm testing.

  2. Spatio-temporal variability of the deposited radioactive materials in forest environments after the Fukushima Daiichi NPP accident

    NASA Astrophysics Data System (ADS)

    Kato, H.; Onda, Y.; Komatsu, Y.; Yoda, H.

    2012-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. Study site have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. The total deposition of radioactive materials at the study site ranged from 0.02to >10 M Bq/m2 for Cs-137. The mature cedar, young cedar, and broad-leaf stands were selected as experimental site for the monitoring of spatio-temporal variability of the deposited radionuclides after the accidental release of radioactive materials. In order to measure the vertical distribution of radioactivity in forest, a tower with the same height of tree have been established at each experimental site. The measurement of radioactivity by using a portable Ge gamma-ray detector (Detective-DX-100, Ortec) and radionuclide analysis of leaf samples at different height revealed that a large proportion of radionuclides which deposited on forest were trapped by canopies of the cedar forests. In contrast, in the broad-leaf forest highest radioactivity was found at the forest floor. Furthermore, spatio-temporal variability of radioactivity at the forest floor indicated that huge amount of caesium still remains on the canopy of coniferous forest, and subsequently transfers to forest floor in association with throughfall, stemflow, and litter fall.

  3. Analysis of Alternatives for Dismantling of the Equipment in Building 117/1 at Ignalina NPP - 13278

    SciTech Connect

    Poskas, Povilas; Simonis, Audrius; Poskas, Gintautas

    2013-07-01

    Ignalina NPP was operating two RBMK-1500 reactors which are under decommissioning now. In this paper dismantling alternatives of the equipment in Building 117/1 are analyzed. After situation analysis and collection of the primary information related to components' physical and radiological characteristics, location and other data, two different alternatives for dismantling of the equipment are formulated - the first (A1), when major components (vessels and pipes of Emergency Core Cooling System - ECCS) are segmented/halved in situ using flame cutting (oxy-acetylene) and the second one (A2), when these components are segmented/halved at the workshop using CAMC (Contact Arc Metal Cutting) technique. To select the preferable alternative MCDA method - AHP (Analytic Hierarchy Process) is applied. Hierarchical list of decision criteria, necessary for assessment of alternatives performance, are formulated. Quantitative decision criteria values for these alternatives are calculated using software DECRAD, which was developed by Lithuanian Energy Institute Nuclear engineering laboratory. While qualitative decision criteria are evaluated using expert judgment. Analysis results show that alternative A1 is better than alternative A2. (authors)

  4. The Results of Feasibility Study of Co-generation NPP With Innovative VK-300 Simplified Boiling Water Reactor

    SciTech Connect

    Kuznetsov, Yury N.

    2006-07-01

    The co-generation nuclear power plant (CNPP) producing electricity and district heating heat is planned to be constructed in Archangelsk Region of Russia. Following the 'Letter of Intent' signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal/h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production. (authors)

  5. Using the Moon to evaluate the radiometric calibration performance of S-NPP VIIRS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Xiong, Xiaoxiong; Efremova, Boryana V.; Chen, Hongda

    2014-09-01

    The Suomi-NPP VIIRS thermal emissive bands (TEB) are radiometrically calibrated on-orbit with reference to a blackbody (BB) operated at a nominal temperature of approximately 292.5 K. The quality of the calibration can be evaluated at other temperature ranges using independent thermal sources. The thermal properties of the lunar surface are extremely stable over time, making it a feasible target for the TEB calibration stability assessment for the space-borne sensors with regular lunar observations. VIIRS is scheduled to view the Moon on a nearly monthly basis at approximately the same phase angle since January 2012, before the cryo-cooler door was open and TEB started to collect data. In this paper, the brightness temperatures (BT) of the lunar surface retrieved using the calibration coefficients derived from the BB calibration are trended for VIIRS TEB to examine the calibration stability. The lunar surface temperature varies greatly with location and also oscillates seasonally with the solar illumination geometry. Radiance from many lunar locations saturates TEB detectors. Therefore, the trending must base on the regions of the Moon that do not saturate the detectors at any lunar observation event and thus their BT can be consistently retrieved. To achieve that, a temporally dynamic spatial mask is built for each detector to clip the locations of the Moon that may saturate the detector at any lunar event. Results show the radiometric calibration of all TEB detectors has been stable within 1 K range since being functional.

  6. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    SciTech Connect

    David Andrs; Ray Berry; Derek Gaston; Richard Martineau; John Peterson; Hongbin Zhang; Haihua Zhao; Ling Zou

    2012-05-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  7. Probability of pipe failure in the reactor coolant loops of Babcock and Wilcox PWR plants. Volume 1. Summary report

    SciTech Connect

    Holman, G.S.; Chou, C.K.

    1986-05-01

    As part of its reevaluation of the double-ended guillotine break (DEGB) of reactor coolant piping as a design basis event for nuclear power plants, the US Nuclear Regulatory Commission (NRC) contracted the Lawrence Livermore National Laboratory (LLNL) to estimate the probability of occurrence of a DEGB, and to assess the effect that earthquakes have on DEGB probability. This report describes an evaluation of reactor coolant loop piping in PWR plants having nuclear steam supply systems designed by Babcock and Wilcox. Two causes of pipe break were considered: pipe fracture due to the growth of cracks at welded joints (''direct'' DEGB), and pipe rupture indirectly caused by failure of heavy component supports due to an earthquake (''indirect'' DEGB). Unlike in earlier evaluations of Westinghouse and Combustion Engineering reactor coolant loop piping, in which the probability of direct DEGB had been explicitly estimated using a probabilistic fracture mechanics model, no detailed fracture mechanics calculations were performed. Instead, a comparison of relevant plant data, mainly reactor coolant loop stresses, for one representative B and W plant with equivalent information for Westinghouse and C-E systems inferred that the probability of direct DEGB should be similarly low (less than le-10 per reactor year). The probability of indirect DEGB, on the other hand, was explicitly estimated for two representative plants. The results of this study indicate that the probability of a DEGB form either cause is very low for reactor coolant loop piping in these specific plants and, because of similarity in design, infer that the probability of DEGB is generally very low in B and W reactor coolant loop piping. The NRC should therefore consider eliminating DEGB as a design basis event in favor of more realistic criteria. 13 refs., 9 tabs.

  8. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    SciTech Connect

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-07-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  9. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  10. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    SciTech Connect

    Wagner, J.C.

    2001-08-02

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

  11. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    SciTech Connect

    Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M

    1983-10-01

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

  12. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    SciTech Connect

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  13. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  14. Comparing the impacts of the 2003 and 2005 fire seasons and the 2004 drought on NPP in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Gouveia, Célia M.; Russo, Ana; Trigo, Ricardo M.

    2014-05-01

    Mediterranean ecosystems have evolved together with relatively frequent disturbances such as wildfires and long dry periods. However, in recent decades fire regimes have been changing due to widespread socio-economic factors (e.g. rural abandonment) as well as in response to climatic trends. In particular, drought have become more frequent and intense, a pattern that is expected to increase in future decades. Despite Mediterranean ecosystems being adapted to fire and drought occurrence, changes in the characteristics of disturbances may affect the ability of ecosystems to recover to their previous state. The years 2003, 2004 and 2005 were particularly severe for ecosystems in the Iberia Peninsula, as a devastating fire season (2003, ~574.000ha burnt) was followed by a very intense drought (2004/2005) that affected 2/3 of Iberian vegetation for more than 9 months. In 2005, a very destructive fire season was again registered, with ~727.000ha burnt. These disturbances have been shown to have a severe impact on vegetation phenology, as assessed by remote sensing imagery. One of the more relevant societal impacts of these disturbances is the decrease in net primary production (NPP) of vegetation, both for practical issues such as food production, fiber and fuel and for carbon balance assessments. This work focuses on 2003 and 2005 fire seasons in the Iberia Peninsula and in the 2004/05 drought. Burnt scars in all fire seasons were identified by cluster analysis; the area affected by the drought event of 2004/2005 was selected as the region where vegetative stress was observed for 9 or more months. Remote sensing allows large scale studies of the evolution of vegetation dynamics at relatively fine spatial resolution. We rely on satellite NDVI data from SPOT/VEGETATION (1km) to identify burnt scars and drought-stricken regions. To quantify the impacts in terms of carbon uptake by vegetation, the MOD17A2 (annual NPP) and MOD17A3 (monthly net photosynthesis, PsN) datasets

  15. Real-time mapping of combustion sources using Suomi NPP satellite VIIRS and CrIMSS data

    NASA Astrophysics Data System (ADS)

    Zhizhin, M.; Elvidge, C.; Baugh, K.; Hsu, F.

    2012-12-01

    Night-time images from the Suomi NPP satellite VIIRS scanning radiometer in visible and infrared spectral bands provide invaluable data for real-time detection of natural and technological combustion sources on the surface of the Earth, such as forest fires, gas flares, steel mills or active volcanoes. Point sources detected at night in 1.6 micron near-infrared M10 channel are most likely to be large fires or gas flares. Their temperature and radiative power can be estimated by simultaneous fitting of two Planck black-body spectral curves to the observed radiances of all VIIRS infrared M-channels, one curve for the temperature and power of the combustion, another for the background. VIIRS instrument is sensitive to the IR sources with temperature range from 800 to 2000 degrees K. This method can discriminate low temperature sources such as volcanoes and forest fires from the high temperature gas flares with 300 m average location error. Global real-time mapping of the IR sources on the Earth requires correction of the M-channels for bow tie effect, atmospheric correction and filtering of the false detections resulting from sensor bombardment by the cosmic rays, especially at the aurora rings and at the South Atlantic anomaly. MODTRAN atmospheric radiative transfer mode is used with temperature and moisture profiles provided by the CrIMSS onboard sensor suite. False detections can be removed by correlating of the observed bright spots in M10 channel with other infrared and the visible day-night band. After geometry correction and denoising, the IR point sources are mapped on Google Earth and listed in a table. NOAA NGDC provides global daily detection products for thousands of IR sources as KML vector maps and as CSV tables.

  16. Pre-launch sensor characterization of the CERES Flight Model 5 (FM5) instrument on NPP mission

    NASA Astrophysics Data System (ADS)

    Thomas, Susan; Priestley, K. J.; Shankar, M.; Smith, N. P.; Timcoe, M. G.

    2011-10-01

    Clouds and the Earth's Radiant Energy System (CERES) instrument was designed to measure broadband radiances in reflected shortwave and emitted outgoing longwave energy. The 3-sensor CERES instrument measure radiances in 0.3 to 5.0 micron region with Shortwave sensor, 0.3 to >100 microns with Total sensor and 8 to 12 micron region with Window sensor. Flight Model 5 (FM5), the sixth of the CERES instruments is scheduled to launch aboard the NPP spacecraft on October 2011. An accurate determination of the radiometric gains and spectral responsivity of CERES FM5 sensors was accomplished through rigorous calibrations at Northrop Grumman Aerospace Systems' (NGAS) Radiometric Calibration Facility (RCF). The longwave calibration of the total and window sensors are achieved using the Narrow Field-of-View Blackbody (NFBB) source which is tied to International Scale of 1990 (ITS '90). A Shortwave Reference Source (SWRS) along with the Transfer Active Cavity radiometer (TACR) which acts as the transfer standard of NFBB source, is used to determine the radiometric responsivity and spectral response estimates of the SW sensor and shortwave portion of the Total sensor. The spectral responsivity in longwave region is determined using a Fourier Transform Spectrometer (FTS) system. CERES instrument also perform calibrations using on-board sources during pre-launch testing which serve as a traceability standard to carry the ground determined sensor radiometric gains to orbit. This paper covers the calibration philosophy and the results from ground calibration testing of FM5 sensors conducted in 2008. The sensor radiometric gain responses calculated using primary sources and performance of the sensors using on-board sources will be discussed.

  17. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality

    NASA Astrophysics Data System (ADS)

    Han, Yong; Revercomb, Henry; Cromp, Mike; Gu, Degui; Johnson, David; Mooney, Daniel; Scott, Deron; Strow, Larrabee; Bingham, Gail; Borg, Lori; Chen, Yong; DeSlover, Daniel; Esplin, Mark; Hagan, Denise; Jin, Xin; Knuteson, Robert; Motteler, Howard; Predina, Joe; Suwinski, Lawrence; Taylor, Joe; Tobin, David; Tremblay, Denis; Wang, Chunming; Wang, Lihong; Wang, Likun; Zavyalov, Vladimir

    2013-11-01

    Cross-Track Infrared Sounder (CrIS) is a Fourier Transform Michelson interferometer instrument launched on board the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite on 28 October 2011. CrIS provides measurements of Earth view interferograms in three infrared spectral bands at 30 cross-track positions, each with a 3 × 3 array of field of views. The CrIS ground processing software transforms the measured interferograms into calibrated and geolocated spectra in the form of Sensor Data Records (SDRs) that cover spectral bands from 650 to 1095 cm-1, 1210 to 1750 cm-1, and 2155 to 2550 cm-1 with spectral resolutions of 0.625 cm-1, 1.25 cm-1, and 2.5 cm-1, respectively. During the time since launch a team of subject matter experts from government, academia, and industry has been engaged in postlaunch CrIS calibration and validation activities. The CrIS SDR product is defined by three validation stages: Beta, Provisional, and Validated. The product reached Beta and Provisional validation stages on 19 April 2012 and 31 January 2013, respectively. For Beta and Provisional SDR data, the estimated absolute spectral calibration uncertainty is less than 3 ppm in the long-wave and midwave bands, and the estimated 3 sigma radiometric uncertainty for all Earth scenes is less than 0.3 K in the long-wave band and less than 0.2 K in the midwave and short-wave bands. The geolocation uncertainty for near nadir pixels is less than 0.4 km in the cross-track and in-track directions.

  18. The Urban Social and Energy Use Data Embedded in Suomi-NPP VIIRS Nighttime Lights: Algorithm Overview and Status

    NASA Astrophysics Data System (ADS)

    Stokes, E. C.; Roman, M. O.; Seto, K. C.

    2014-12-01

    Although urban areas contribute between 67-75% of global greenhouse gas (GHG) emissions, there is very little understanding of what drives anthropogenic emissions both locally and globally. Part of this gap in knowledge is due to a lack of reliable measurements across a range of urban scales. Where, when, and how much urban areas use energy is also a function of human activity patterns and social practices deeply embedded in culture. One apparent manifestation of energy use patterns in human settlements is in the celebration of holidays - when human activity patterns change, this affects short-term patterns in energy consumption. Using satellite-based retrievals of nighttime lighting (NTL) during three major holiday periods, (1) Christmas and New Year's, (2) the Holy Month of Ramadan, and (3) the Chinese Spring Festival, we demonstrate that cultural variations within and between urban areas contextualize and shape the magnitude and timing of energy use. We derived NTL signatures from the Suomi-NPP satellite's (VIIRS) Day/Night Band for two years and over 1200 cities. The high-quality NTL retrievals are based on the latest science reprocessing (Collection V1.1, c. 8/2014) produced by the Land Product Evaluation and Analysis Tool Element (Land PEATE) at NASA's Goddard Space Flight Center. After correcting for cloud and snow cover, as well as atmospheric-, terrain-, lunar BRDF-, fire-, and straylight effects, the high-resolution NTL time series were decomposed into seasonal, trend, and remainder signals—revealing strong, consistent patterns of activity changes during holiday periods. We demonstrate that patterns of holiday luminosity reveal changes in human activities important for understanding urban demographics and urban dynamics, and are strong examples of the socio-cultural and energy demand signatures embedded in satellite remote sensing imagery.

  19. Evolving Synergy between UV and VIS instruments for Aerosol Remote Sensing- Implications for Suomi NPP and Future Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.

    2014-12-01

    Satellite remote sensing of aerosols started in 1979 using data from the AVHRR series of instruments on NOAA polar orbiters. Though limited to the oceans only, AVHRR clearly showed the basic latitudinal, longitudinal, and seasonal patterns in global aerosol fields that have been confirmed by more advanced instruments. In the early 90s a surprising discovery was made that UV instruments, such as TOMS, designed primarily to measure atmospheric ozone, can enhance this information by tracking the aerosol absorption signal of smoke and dust plumes over both land and water, as well as over bright surfaces covered by low level clouds, snow and ice. While more recent VIS/IR mapping instruments, such as SeaWIFS, MISR, MODIS, and VIIRS have greatly enhanced aerosol remote sensing capability compared to AVHRR, similar improvements have been made in UV remote sensing of aerosols, particularly with the launch of OMI on Aura in 2004. More recently, several successful approaches have been developed to combine MODIS and OMI data to estimate aerosol single scattering albedo over cloud-free areas and aerosol optical thickness over cloudy areas. I will discuss how these advanced techniques could be applied to combine VIIRS and OMPS data from Suomi NPP and what improvements are planned for JPSS-1. These techniques could also be applied to process data from the EPIC instrument, scheduled to be launched on the DSCOVR satellite next year. It will be located 1.5 million km from the Earth along the Sun-Earth axis at the first Lagrange point. Several other UV/VIS instruments are planned to be launched in LEO and GEO orbits in this decade that can take advantage of this synergy.

  20. Vicarious Validation of Suomi-NPP/VIIRS Day /Night Band using DOME-C and Greenland under moon-light

    NASA Astrophysics Data System (ADS)

    Qiu, S.; Shao, X.; Cao, C.

    2014-12-01

    The Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. DNB covers almost 7 orders of magnitude in its dynamic range from full sunlight to quarter moon. To achieve this large dynamic range, it uses four charge-coupled device (CCD) arrays in three gain stages. The low gain stage (LGS) gain is calibrated using the solar diffuser. In operations, the medium and high gain stage values are determined by multiplying the gain ratios between the medium gain stage (MGS), and LGS, and high gain stage (HGS) and LGS, respectively. This work focuses on independently verifying the radiometric accuracy and stability of DNB HGS using DNB observation of ground vicarious sites under lunar illumination at night. Dome C in Antarctic and Greenland in northern hemisphere are chosen as the vicarious sites. Nadir observations of these high latitude regions by VIIRS are selected during perpetual night season, i.e. from April to August for Dome C and from Nov. to Jan. for Greenland over the year 2012 to 2013. Additional selection criteria such as lunar phase being more than half moon and no influence of straylight effects are also applied in data selection. Lunar spectral irradiance model, as a function of Sun-Earth-Moon distances and lunar phase, is used to determine the top-of atmosphere (TOA) reflectance at the vicarious site. The vicariously-derived long-term reflectance from DNB observations agrees with the reflectance derived from Hyperion observations. The vicarious trending of DNB radiometric performance using DOME-C and Greenland under moon light shows that the DNB HGS radiometric variability (relative accuracy to lunar irradiance model and Hyperion observation) is within 10%. Residue variability and future work are also discussed.