Science.gov

Sample records for 317ln austenitic stainless

  1. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  2. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  3. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  4. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.; Alexander, D.J.

    1995-06-01

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties.

  5. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  6. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  7. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  8. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  9. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  10. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  11. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  12. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  13. Instabilities in stabilized austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Klein, C. F.; Marzinsky, C. N.

    1992-09-01

    The effect of aging on the precipitation of grain boundary phases in three austenitic stainless steels (AISI 347, 347AP, and an experimental steel stabilized with hafnium) was investigated. Aging was performed both on bulk steels as well as on samples which were subjected to a thermal treatment to simulate the coarse grain region of the heat affected zone (HAZ) during welding. Aging of the bulk steels at 866 K for 8000 hours resulted in the precipitation of Cr23C6 carbides, σ, and Fe2Nb phases; the propensity for precipitation was least for the hafnium-stabilized steel. Weld simulation of the HAZ resulted in dissolution of the phases present in the as-received 347 and 347AP steels, leading to grain coarsening. Subsequent aging caused extensive grain boundary Cr23C6 carbides and inhomogeneous matrix precipitation. In addition, steel 347AP formed a precipitate free zone (PFZ) along the grain boundaries. The steel containing hafnium showed the best microstructural stability to aging and welding.

  14. Weldability of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Asano, Kyoichi; Nishimura, Seiji; Saito, Yoshiaki; Sakamoto, Hiroshi; Yamada, Yuji; Kato, Takahiko; Hashimoto, Tsuneyuki

    1999-01-01

    Degradation of weldability in neutron irradiated austenitic stainless steel is an important issue to be addressed in the planning of proactive maintenance of light water reactor core internals. In this work, samples selected from reactor internal components which had been irradiated to fluence from 8.5 × 10 22 to 1.4 × 10 26 n/m 2 ( E > 1 MeV) corresponding to helium content from 0.11 to 103 appm, respectively, were subjected to tungsten inert gas arc (TIG) welding with heat input ranged 0.6-16 kJ/cm. The weld defects were characterized by penetrant test and cross-sectional metallography. The integrity of the weld was better when there were less helium and at lower heat input. Tensile properties of weld joint containing 0.6 appm of helium fulfilled the requirement for unirradiated base metal. Repeated thermal cycles were found to be very hazardous. The results showed the combination of material helium content and weld heat input where materials can be welded with little concern to invite cracking. Also, the importance of using properly selected welding procedures to minimize thermal cycling was recognized.

  15. Solidification behavior of austenitic stainless steel filler metals

    SciTech Connect

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + ..gamma.. ..-->.. ..gamma.. + delta, and for type 310 stainless steel filler metal, L ..-->.. L + ..gamma.. ..-->.. ..gamma... In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions.

  16. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    PubMed

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  17. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  18. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  19. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  20. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  1. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  2. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  3. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  4. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  5. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  6. Market Opportunities for Austenitic Stainless Steels in SO2 Scrubbers

    NASA Astrophysics Data System (ADS)

    Michels, Harold T.

    1980-10-01

    Recent U.S. federal legislation has created new opportunities for SO2 scrubbers because all coals, even low-sulfur western coals, will probably require scrubbing to remove SO2 from gaseous combustion products. Scrubbing, the chemical absorption of SO2 by vigorous contact with a slurry—usually lime or limestone—creates an aggressive acid-chloride solution. This presents a promising market for pitting-resistant austenitic stainless steels, but there is active competition from rubber and fiberglass-lined carbon steel. Since the latter are favored on a first-cost basis, stainless steels must be justified on a cost/performance or life-cost basis. Nickel-containing austenitic alloys are favored because of superior field fabricability. Ferritic stainless steels have little utility in this application because of limitations in weldability and resulting poor corrosion resistance. Inco corrosion test spools indicate that molybdenum-containing austenitic alloys are needed. The leanest alloys for this application are 316L and 317L. Low-carbon grades of stainless steel are specified to minimize corrosion in the vicinity of welds. More highly alloyed materials may be required in critical areas. At present, 16,000 MW of scrubber capacity is operational and 17,000 MW is under construction. Another 29,000 MW is planned, bringing the total to 62,000 MW. Some 160,000 MW of scrubber capacity is expected to be placed in service over the next 10 years. This could translate into a total potential market of 80,000 tons of alloy plate for new power industry construction in the next decade. Retrofitting of existing power plants plus scrubbers for other applications such as inert gas generators for oil tankers, smelters, municipal incinerators, coke ovens, the pulp and paper industry, sulfuric acid plants, and fluoride control in phosphoric acid plants will add to this large market.

  7. Hydrogen vibrations in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Delafosse, D.; Fuess, H.; Gavriljuk, V. G.; Ivanov, A.; Magnin, T.; Wipf, H.

    The vibrational modes of hydrogen in fcc Fe-25Cr-20Ni stainless steel with a hydrogen content of 0.33at.% were studied by neutron spectroscopy. Hydrogen doping was performed at 810K in a hydrogen-gas atmosphere of 190bar. Neutron spectra were taken at 2K and 77K with the spectrometer IN1-BeF (ILL, Grenoble). The spectra show the fundamental hydrogen vibration at 130 meV and the second harmonics at 260 meV. The frequencies are higher than in other fcc hydrides. In spite of the cubic symmetry of the octahedral hydrogen positions and the low hydrogen content, the inelastic hydrogen peak has a relatively large width and an asymmetric shape.

  8. Corrosion resistance of kolsterised austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Abudaia, F. B.; Khalil, E. O.; Esehiri, A. F.; Daw, K. E.

    2015-03-01

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe2C5. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  9. Corrosion resistance of kolsterised austenitic 304 stainless steel

    SciTech Connect

    Abudaia, F. B. Khalil, E. O. Esehiri, A. F. Daw, K. E.

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  10. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    SciTech Connect

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-18

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  11. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    NASA Astrophysics Data System (ADS)

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-01

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a `steering' of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  12. Solidification and solid state transformations of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-05-01

    The microstructure of austenitic stainless steel welds can contain a large variety of ferrite morphologies. It was originally thought that many of these morphologies were direct products of solidification. Subsequently, detailed work on castings suggested the structures can solidify either as ferrite or austenite. However, when solidification occurs by ferrite, a large fraction of the ferrite transforms to austenite during cooling via a diffusion controlled transformation. It was also shown by Arata et al that welds in a 304L alloy solidified 70-80% as primary ferrite, a large fraction of which also transformed to austenite upon cooling. More recently it was suggested that the cooling rates in welds were sufficiently high that diffusionless transformations were responsible for several commonly observed ferrite morphologies. However, other workers have suggested that even in welds, delta ..-->.. ..gamma.. transformations are diffusion controlled. A variety of ferrite morphologies have more recently been characterized by Moisio and coworkers and by David. The purpose of this paper is to provide further understanding of the evaluation of the various weld microstructures which are related to both the solidification behavior and the subsequent solid state transformations. To accomplish this, both TEM and STEM (Scanning Transmission Electron Microscopy) techniques were employed.

  13. Reducing tool wear when machining austenitic stainless steels

    SciTech Connect

    Magee, J.H.; Kosa, T.

    1998-07-01

    Austenitic stainless steels are considered more difficult to machine than carbon steels due to their high work hardening rate, large spread between yield and ultimate tensile strength, high toughness and ductility, and low thermal conductivity. These characteristics can result in a built-up edge or excessive tool wear during machining, especially when the cutting speed is too high. The practical solution is to lower the cutting speed until tool life reaches an acceptable level. However, lower machining speed negatively impacts productivity. Thus, in order to overcome tool wear at relatively high machining speeds for these alloys, on-going research is being performed to improve cutting fluids, develop more wear-resistant tools, and to modify stainless steels to make them less likely to cause tool wear. This paper discusses compositional modifications to the two most commonly machined austenitic stainless steels (Type 303 and 304) which reduced their susceptibility to tool wear, and allowed these grades to be machined at higher cutting speeds.

  14. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  15. 75 FR 70908 - Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic of China: Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... for Revocation in Part, 75 FR 22107 (April 27, 2010). The period of review (``POR'') is September 5... International Trade Administration Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic... of the antidumping duty order on circular welded austenitic stainless pressure pipe from the...

  16. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  17. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  18. High temperature properties of an austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nikulin, I.; Kaibyshev, R.; Skorobogatykh, V.

    2010-07-01

    Tensile properties of the 18Cr-9Ni-W-Nb-V-N austenitic stainless steel were studied at strain rates ranging from 6.7×10-6 to 1.3×10-2 s-1 in the temperature interval 20-740°C. It was found that this steel exhibits jerky flow at temperatures ranging from 530 to 680°C and an initial strain rate of 1.3×10-3 s-1. This phenomenon was interpreted in terms of Portevin-Le Chatelier (PLC) effect occurring due to dynamic strain aging (DSA). PLC yields significant increase in high temperature strength of this steel due to extending of plateau on temperature dependence of yield strength (YS) and ultimate tensile strength (UTS) to higher temperatures. As a result, YS and UTS remain virtually unchanged with increasing temperature from 350 to 740°C. Role of additives of tungsten and vanadium in DSA and high temperatures strength of the austenitic stainless steel is discussed.

  19. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  20. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  1. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    NASA Astrophysics Data System (ADS)

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magneto-optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation.

  2. Strain oxidation cracking of austenitic stainless steels at 610 C

    SciTech Connect

    Calvar, M. Le; Scott, P.M.; Magnin, T.; Rieux, P.

    1998-02-01

    Strain oxidation cracking of both forged and welded austenitic stainless steels (SS) was studied. Creep and slow strain rate tests (SSRT) were performed in vacuum, air, and a gas furnace environment (air + carbon dioxide [CO{sub 2}] + water [H{sub 2}O]). Results showed cracking was environmentally dependent. Almost no cracking was observed in vacuum, whereas intergranular cracking was observed with increasing severity in passing from an air to a gas furnace environment. The most severe cracking was associated with formation of a less protective film formed in the gas furnace environment (air: haematite-like M{sub 2}O{sub 3} oxide; gas furnace environment: spinel M{sub 3}O{sub 4} oxide). Cracking depended strongly on the carbon content and the sensitization susceptibility of the material: the higher the carbon content, the more susceptible the alloy. This cracking was believed to be similar to other oxidation-induced cracking phenomena.

  3. Formability analysis of austenitic stainless steel-304 under warm conditions

    NASA Astrophysics Data System (ADS)

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  4. Deuterium retention in ITER-grade austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nemanič, Vincenc; Žumer, Marko; Zajec, Bojan

    2008-11-01

    In view of the construction of ITER, it is essential to confirm that the retention of tritium by the large interior surface area of stainless steel will not become an issue for safety or operating inventory reasons. Retention of deuterium in ITER-grade austenitic stainless steel samples was studied during t = 24 h exposures to pure gaseous deuterium at p = 0.01 mbar and 0.1 mbar and T = 100 °C, 250 °C and 400 °C, respectively. The required high sensitivity for distinguishing hydrogen isotopes involved in the process (H2, HD and D2) was gained after suppression of the native hydrogen concentration by a thermal treatment at T = 400 °C for t = 200 h. The quantity of retained deuterium was determined by measuring the absolute pressure change during the deuterium exposure and subsequent mass spectrometry revealing an intense isotope exchange reaction. The retained amount of 2.6 × 1016 D cm-2 was the highest at T = 400 °C and p = 0.1 mbar and noticeably less at lower deuterium pressure and temperature. Our results, when compared with similar tritium exposures, do not exceed the limits set in the generic safety analysis for the ITER. They manifest that an extremely high sensitivity for deuterium absorption and release can be gained with a precise pressure measuring technique, otherwise attributed exclusively to tritium scintillation methods.

  5. Hydrogen-related phase transformations in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Narita, N.; Altstetter, C. J.; Birnbaum, H. K.

    1982-08-01

    The effect of hydrogen and stress (strain) on the stability of the austenite phase in stainless steels was investigated. Hydrogen was introduced by severe cathodic charging and by elevated temperature equilibration with high pressure H2 gas. Using X-ray diffraction and magnetic techniques, the behavior of two “stable” type AISI310 steels and an “unstable” type AISI304 steel was studied during charging and during the outgassing period following charging. Transformation from the fcc γ phase to an expanded fcc phase, γ*, and to the hcp ɛ phase occurred during cathodic charging. Reversion of the γ* and e phases to the original γ structure and formation of the bcc α structure were examined, and the kinetics of these processes was studied. The γ* phase was shown to be ferromagnetic with a subambient Curie temperature. The γ⇆ɛ phase transition was studied after hydrogen charging in high pressure gas, as was the formation of a during outgassing. These results are interpreted as effects of hydrogen and stress (strain) on the stability of the various phases. A proposed psuedo-binary phase diagram for the metal-hydrogen system was proposed to account for the formation of the γ* phase. The relation of these phase changes to hydrogen embrittlement and stress corrosion cracking of stainless steel is discussed.

  6. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R.; Bergen, R.; Balch, D. K.

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  7. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. PMID:23910251

  8. Austenite Formation in a Cold-Rolled Semi-austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada Casero, Carola; San Martín, David

    2014-04-01

    The progress of the martensite ( α') to austenite ( γ) phase transformation has been thoroughly investigated at different temperatures during the continuous heating of a cold-rolled precipitation hardening metastable stainless steel at a heating rate of 0.1 K/s. Heat-treated samples have been characterized using different experimental complementary techniques: high-resolution dilatometry, magnetization, and thermoelectric power (TEP) measurements, micro-hardness-Vickers testing, optical/scanning electron microscopy, and tensile testing. The two-step transformation behavior observed is thought to be related to the presence of a pronounced chemical banding in the initial microstructure. This banding has been characterized using electron probe microanalysis. Unexpectedly, dilatometry measurements seem unable to locate the end of the transformation accurately, as this technique does not detect the second step of this transformation (last 20 pct of it). It is shown that once the starting ( A S) and finishing ( A F) transformation temperatures have been estimated by magnetization measurements, the evolution of the volume fractions of austenite and martensite can be evaluated by TEP or micro-hardness measurement quite reliably as compared to magnetization measurements. The mechanical response of the material after being heated to temperatures close to A S, A F, and ( A F - A S)/2 is also discussed.

  9. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  10. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Etienne, A.; Hernández-Mayoral, M.; Genevois, C.; Radiguet, B.; Pareige, P.

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 °C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  11. Stress corrosion cracking of austenitic stainless steel core internal welds.

    SciTech Connect

    Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

    1999-04-14

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

  12. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  13. Modified Monkman-Grant relationship for austenitic stainless steel foils

    NASA Astrophysics Data System (ADS)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  14. A new constitutive model for nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Fréchard, S.; Lichtenberger, A.; Rondot, F.; Faderl, N.; Redjaïmia, A.; Adoum, M.

    2003-09-01

    Quasi-static, quasi-dynamic and dynamic compression tests have been performed on a nitrogen alloyed austenitic stainless steel. For all strain rates, a high strain hardening rate and a good ductility have been achieved. In addition, this steel owns a great strain rate sensitivity. The temperature sensitivity bas been determined between 20°C and 400°C. Microstructural analysis has been performed after different loading conditions in relation to the behaviour of the material. Johnson-Cook and Zerilli-Armstrong models have been selected to fit the experimental data into constitutive equations. These models do not reproduce properly the behaviour of this type of steel over the complete range. A new constitutive model that fits very well all the experimental data at different strain, strain rate and temperature has been determined. The model is based on empirical considerations on the separated influence of the main parameters. Single Taylor tests have been realized to validate the models. Live observations of the specimen during impact have been achieved using a special CCD camera set-up. The overall profile at different times are compared to numerical predictions using LS-DYNA code.

  15. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  16. Welding techniques for high alloy austenitic stainless steel

    SciTech Connect

    Gooch, T.G.; Woollin, P.

    1996-11-01

    Factors controlling corrosion resistance of weldments in high alloy austenitic stainless steel are described, with emphasis on microsegregation, intermetallic phase precipitation and nitrogen loss from the molten pool. The application is considered of a range of welding processes, both fusion and solid state. Autogenous fusion weldments have corrosion resistance below that of the parent, but low arc energy, high travel speed and use of N{sub 2}-bearing shielding gas are recommended for best properties. Conventional fusion welding practice is to use an overalloyed nickel-base filler metal to avoid preferential weld metal corrosion, and attention is given to the effects of consumable composition and level of weldpool dilution by base steel. With non-matching consumables, overall joint corrosion resistance may be limited by the presence of a fusion boundary unmixed zone: better performance may be obtained using solid state friction welding, given appropriate component geometry. Overall, the effects of welding on superaustenitic steels are understood, and the materials have given excellent service in welded fabrications. The paper summarizes recommendations on preferred welding procedure.

  17. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  18. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. PMID:25175259

  19. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  20. Magnetic properties of single crystalline expanded austenite obtained by plasma nitriding of austenitic stainless steel single crystals.

    PubMed

    Menéndez, Enric; Templier, Claude; Garcia-Ramirez, Pablo; Santiso, José; Vantomme, André; Temst, Kristiaan; Nogués, Josep

    2013-10-23

    Ferromagnetic single crystalline [100], [110], and [111]-oriented expanded austenite is obtained by plasma nitriding of paramagnetic 316L austenitic stainless steel single crystals at either 300 or 400 °C. After nitriding at 400 °C, the [100] direction appears to constitute the magnetic easy axis due to the interplay between a large lattice expansion and the expected decomposition of the expanded austenite, which results in Fe- and Ni-enriched areas. However, a complex combination of uniaxial (i.e., twofold) and biaxial (i.e., fourfold) in-plane magnetic anisotropies is encountered. It is suggested that the former is related to residual stress-induced effects while the latter is associated to the in-plane projections of the cubic lattice symmetry. Increasing the processing temperature strengthens the biaxial in-plane anisotropy in detriment of the uniaxial contribution, in agreement with a more homogeneous structure of expanded austenite with lower residual stresses. In contrast to polycrystalline expanded austenite, single crystalline expanded austenite exhibits its magnetic easy axes along basic directions. PMID:24028676

  1. TEM studies of plasma nitrided austenitic stainless steel.

    PubMed

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions. PMID:20500370

  2. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  3. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  4. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  5. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  6. Texture evolution of warm-rolled and annealed 304L and 316L austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Lindell, D.

    2015-04-01

    The brass-to-copper rolling texture transition is observed during warm rolling austenitic stainless steels. In the current paper austenitic stainless steels 304L and 316L have been subjected to warm rolling at 700°C to 90% reduction. The evolution of microstructure and texture during subsequent annealing has been studied using dilatometry and electron backscatter diffraction. Recrystallisation texture for 304L was primarily cube with some retained rolling texture while 316L only had retained rolling texture. The different behaviour between the two steels is believed to originate from differences in molybdenum content.

  7. Ferrite and austenite phase identification in duplex stainless steel using SPM techniques

    NASA Astrophysics Data System (ADS)

    Guo, L. Q.; Lin, M. C.; Qiao, L. J.; Volinsky, Alex A.

    2013-12-01

    It can be challenging to properly identify the phases in electro-polished duplex stainless steel using optical microscopy or other characterization techniques. This letter describes magnetic force microscopy to properly identify the phases in electropolished duplex stainless steel. The results are also confirmed with the current sensing atomic force and scanning Kelvin probe force microscopy. The difference in topography heights between the ferrite and austenite phases is attributed to the different etching rates during electropolishing, although these phases have different mechanical properties. The current in the austenite is much higher compared with the ferrite, thus current sensing atomic force microscopy can also be used to properly identify the phases.

  8. Investigation of fatigue behavior of two austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Kalnaus, Sergiy

    2009-12-01

    Fatigue of two stainless steels, AISI 304L and AL6-XN, was systematically investigated. While AISI 304L is well known in industry and has been used in engineering applications over the years, AL6-XN is a relatively new alloy and fatigue properties of this material have not been fully investigated by researchers. Both materials belong to one group of austenitic stainless steels. Tension-compression, torsion, and axial-torsion fatigue experiments were conducted on the two alloys to experimentally investigate the cyclic plasticity behavior and the fatigue behavior. Both materials are found to display significant non-proportional hardening. While AISI 304L exhibits cyclic hardening, the AL6-XN alloy displays overall softening under applied cyclic load. Under tension-compression, the cracking plane is perpendicular to the axial loading direction regardless of the loading amplitude for both alloys. The strain-life curves under fully reversed tension-compression and pure torsion for AISI 304L steel are smooth as expected for most metallic materials and can be described by a three-parameter power equation. However, the shear strain-life curve under pure torsion loading for AL6-XN alloy displays a distinct plateau in the fatigue life range approximately from 20,000 to 60,000 loading cycles. The shear strain amplitude corresponding to the plateau is approximately 1.0%. When the shear strain amplitude is above 1.0% under pure shear, the material displays shear cracking. When the shear strain amplitude is below 1.0%, the material displays tensile cracking. A transition from shear cracking to tensile cracking is associated with the plateau in the shear strain-life curve. Three different multiaxial fatigue criteria were evaluated based upon the experimental results on the material for the capability of the criteria to predict fatigue life and the cracking direction. Despite the difference in theory, all the three multiaxial criteria can reasonably correlate the experiments in

  9. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  10. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.

    PubMed

    Endo, K; Suzuki, M; Ohno, H

    2000-03-01

    The corrosion behaviors of four ferric stainless steels and two austenitic stainless steels were examined in a simulated physiological environment (0.9% NaCl solution) to obtain basic data for evaluating the appropriate composition of stainless steels for dental magnetic attachments. The corrosion resistance was evaluated by electrochemical techniques and the analysis of released metal ions by atomic absorption spectrophotometry. The surface of the stainless steels was analyzed by X-ray photoelectron spectroscopy (XPS). The breakdown potential of ferric stainless steels increased and the total amount of released metal ions decreased linearly with increases in the sum of the Cr and Mo contents. The corrosion rate of the ferric stainless steels increased 2 to 6 times when they were galvanically coupled with noble metal alloys but decreased when coupled with commercially pure Ti. For austenitic stainless steels, the breakdown potential of high N-bearing stainless steel was approximately 500 mV higher than that of SUS316L, which is currently used as a component in dental magnetic attachments. The enriched nitrogen at the alloy/passive film interface may be effective in improving the localized corrosion resistance. PMID:11219089

  11. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  12. On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction

    SciTech Connect

    Tolchard, Julian Richard; Sømme, Astri; Solberg, Jan Ketil; Solheim, Karl Gunnar

    2015-01-15

    Sections of a 13Cr supermartensitic stainless steel were investigated to determine the optimum sample preparation for measurement of the austenite content by X-ray diffraction. The surface of several samples was mechanically ground or polished using media of grit sizes in the range 1–120 μm. The strained surface layer was afterwards removed stepwise by electropolishing, and the austenite content measured at each step. It was found that any level of mechanical grinding or polishing results in a reduction of the measured austenite fraction relative to the true bulk value, and that coarser grinding media impart greater damage and greater reduction in the measured austenite content. The results thus highlight the importance of the electropolishing step in preparation of such samples, but suggest that the American Society for Testing and Materials standard E975-03 substantially overestimates the amount of material which needs to be removed to recover the true “bulk” content. - Highlights: • Quantitative Rietveld analysis of austenite/martensite ratio in supermartensitic stainless steels • Critical evaluation of sample preparation for residual austenite measurements by X-ray diffraction • Highlighting of the importance of electropolishing as a final preparation step.

  13. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  14. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    SciTech Connect

    Leitnaker, J.M.

    1981-05-05

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 015-0.030 times the volume percent ferrite present in alloy. The formation of chi phase upon aging is controlled by controlling the mo content.

  15. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    DOEpatents

    Bloom, Everett E.; Stiegler, James O.; Rowcliffe, Arthur F.; Leitnaker, James M.

    1977-03-08

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels.

  16. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Szakálos, Peter

    2015-06-01

    Alumina forming austenitic steels (AFA) and commercial stainless steels have been exposed in liquid lead with 10-7 wt.% oxygen at 550 °C for up to one year. It is known that chromia forming austenitic stainless steels, such as 316L and 15-15 Ti, have difficulties forming protective oxides in liquid lead at temperatures above 500 °C, which is confirmed in this study. By adding Al to austenitic steels, it is in general terms possible to increase the corrosion resistance. However this study shows that the high Ni containing AFA alloys are attacked by the liquid lead, i.e. dissolution attack occurs. By lowering the Ni content in AFA alloys, it is possible to achieve excellent oxidation properties in liquid lead. Following further optimization of the microstructural properties, low Ni AFA alloys may represent a promising future structural steel for lead cooled reactors.

  17. Solidification behavior and microstructural analysis of austenitic stainless steel laser welds

    SciTech Connect

    David, S.A.; Vitek, J.M.

    1981-01-01

    Solidification behavior of austenitic stainless steel laser welds has been investigated with a high-power laser system. The welds were made at speeds ranging from 13 to 60 mm/s. The welds sowed a wide variety of microstructural features. The ferrite content in the 13-mm/s weld varied from less than 1% at the root of the weld to about 10% at the crown. The duplex structure at the crown of the weld was much finer than the one observed in conventional weld metal. However, the welds made at 25 and 60 mm/s contained an austenitic structure with less than 1% ferrite throughout the weld. Microstructural analysis of these welds used optical microscopy, transmission electron microscopy, and analytical electron microscopy. The austenitic stainless steel welds were free of any cracking, and the results are explained in terms of the rapid solidification conditions during laser welding.

  18. Grain refinement of a nickel and manganese free austenitic stainless steel produced by pressurized solution nitriding

    SciTech Connect

    Mohammadzadeh, Roghayeh Akbari, Alireza

    2014-07-01

    Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr{sub 2}N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, and micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr{sub 2}N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr{sub 2}N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr{sub 2}N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr{sub 2}N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement.

  19. Phase stability in austenitic stainless steels -- New approaches, results, and their relation to properties

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1995-12-31

    In recent years, the phase stability of austenitic stainless steels, and its effect on the mechanical properties of stainless steels, have been the subject of much interest. With the availability of new experimental techniques, new theoretical methods, and new computational procedures, significant advances have been made in understanding, and being able to predict, phase stability and mechanical properties of stainless steel welds. This paper reviews some of these developments, with an emphasis on recent work that has been done at Oak Ridge National Laboratory.

  20. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Sharma, Sailaja

    2014-09-01

    The study describes evolution of the recrystallization microstructure in an austenitic stainless steel during iterative or repetitive type annealing process. The starting heavily cold deformed microstructure consisted of a dual phase structure i.e., strain-induced martensite (SIM) (43 pct in volume) and heavily deformed large grained retained austenite. Recrystallization behavior was compared with Johnson Mehl Avrami and Kolmogorov model. Early annealing iterations led to reversion of SIM to reversed austenite. The microstructure changes observed in the retained austenite and in the reverted austenite were mapped by electron backscatter diffraction technique and transmission electron microscope. The reversed austenite was characterized by a fine polygonal substructure consisting of low-angle grain boundaries. With an increasing number of annealing repetitions, these boundaries were gradually replaced by high-angle grain boundaries and recrystallized into ultrafine-grained microstructure. On the other hand, recrystallization of retained austenite grains was sluggish in nature. Progress of recrystallization in these grains was found to take place by a gradual evolution of subgrains and their subsequent transformation into fine grains. The observed recrystallization characteristics suggest continuous recrystallization type process. The analysis provided basic insight into the recrystallization mechanisms that enable the processing of ultrafine-grained fcc steels by iterative type annealing. Tensile properties of the processed material showed a good combination of strength and ductility.

  1. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Sharma, Sailaja

    2014-12-01

    The study describes evolution of the recrystallization microstructure in an austenitic stainless steel during iterative or repetitive type annealing process. The starting heavily cold deformed microstructure consisted of a dual phase structure i.e., strain-induced martensite (SIM) (43 pct in volume) and heavily deformed large grained retained austenite. Recrystallization behavior was compared with Johnson Mehl Avrami and Kolmogorov model. Early annealing iterations led to reversion of SIM to reversed austenite. The microstructure changes observed in the retained austenite and in the reverted austenite were mapped by electron backscatter diffraction technique and transmission electron microscope. The reversed austenite was characterized by a fine polygonal substructure consisting of low-angle grain boundaries. With an increasing number of annealing repetitions, these boundaries were gradually replaced by high-angle grain boundaries and recrystallized into ultrafine-grained microstructure. On the other hand, recrystallization of retained austenite grains was sluggish in nature. Progress of recrystallization in these grains was found to take place by a gradual evolution of subgrains and their subsequent transformation into fine grains. The observed recrystallization characteristics suggest continuous recrystallization type process. The analysis provided basic insight into the recrystallization mechanisms that enable the processing of ultrafine-grained fcc steels by iterative type annealing. Tensile properties of the processed material showed a good combination of strength and ductility.

  2. Role of Austenite in Brittle Fracture of Bond Region of Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yoshihiko; Ikeuchi, Kenji; Kuroda, Toshio

    Weld simulation of heat-affected zone (HAZ) was performed to investigate the mechanism by which austenite affects the toughness of super duplex stainless steel. Thermal cycles of various peak temperatures in the range from 1373 K to 1673 K corresponding to the HAZ were applied to SAF2507 super duplex stainless steel specimens. Charpy impact test was carried out using the specimens after the weld simulation, and the fracture surfaces were observed by SEM using three-dimensionally reconstruction technique. Austenite content decreased with increasing the peak temperature when the peak temperature exceeded 1473 K and the impact value decreased with increasing the peak temperature and decreasing the austenite content. The thermal cycle of the peak temperature of 1673 K corresponding to weld bond region caused decreasing of austenite content which was 22% lower than that of the base metal. The ductile-brittle transition temperature was measured. As a result the temperature increased rapidly in the weld bond region, the peak temperature of which exceeded 1623 K by the grain growth of ferrite matrix occurring subsequently to the completely dissolution of austenite. The morphology of the fracture surfaces after impact testing at 77 K showed cleavage fracture of ferrite. The {100} orientations of cleavage fracture facets were measured using three-dimensional images of the fracture surfaces and the results were visualized as the orientation color maps. The results showed that there were cleavage fractures consisting of a few facets parallel to each other. It was considered that a few facets existed in one ferrite grain. It was concluded that Widmanstätten austenite divided the large fracture into smaller cleavage facets in a ferrite grain and then suppressed the degradation of bond toughness of duplex stainless steel.

  3. Effect of Internal Hydrogen on Delayed Cracking of Metastable Low-Nickel Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Papula, Suvi; Talonen, Juho; Todoshchenko, Olga; Hänninen, Hannu

    2014-10-01

    Metastable austenitic stainless steels, especially manganese-alloyed low-nickel grades, may be susceptible to delayed cracking after forming processes. Even a few wppm of hydrogen present in austenitic stainless steels as an inevitable impurity is sufficient to cause cracking if high enough fraction of strain-induced α'-martensite and high residual tensile stresses are present. The role of internal hydrogen content in delayed cracking of several metastable austenitic stainless steels having different alloying chemistries was investigated by means of Swift cup tests, both in as-supplied state and after annealing at 673 K (400 °C). Hydrogen content of the test materials in each state was analyzed with three different methods: inert gas fusion, thermal analysis, and thermal desorption spectroscopy. Internal hydrogen content in as-supplied state was higher in the studied manganese-alloyed low-nickel grades, which contributed to susceptibility of unstable grades to delayed cracking. Annealing of the stainless steels reduced their hydrogen content by 1 to 3 wppm and markedly lowered the risk of delayed cracking. Limiting drawing ratio was improved from 1.4 to 1.7 in grade 204Cu, from 1.7 to 2.0 in grade 201 and from 1.8 to 2.12 in grade 301. The threshold levels of α'-martensite and residual stress for delayed cracking at different hydrogen contents were defined for the test materials.

  4. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Hanzelka, S.E.; Haltom, C.P.

    1981-07-01

    Four distinct ferrite morphologies have been identified in type 308 stainless steel multipass welds: vermicular, lacy, acicular, and globular. The first three ferrite types are related to transformations following solidification and the fourth is related to the shape instability of the residual ferrite. An earlier study showed that most of the ferrite observed in austenitic stainless steel welds contaning a duplex structure may be identified as residual primary ferrite resulting from incomplete delta ..-->.. ..gamma.. transformation during solidification and/or residual ferrite after Widmanstaetten austenite precipitation in primary ferrite. These modes of ferrite formation can be used to explain observed ferrite morphologies in austenitic stainless steel welds. Variations in ferrite content within the weld were related to weld metal composition, ferrite morphology, and dissolution of ferrite resulting from thermal cycles during subsequent weld passes. An investigation of the type 308 stainless steel filler metal solidified over cooling rates ranging from 7 to 1600/sup 0/C/s showed that the cooling rate of the weld metal within the freezing range of the alloy affects the amount of ferrite in the microstructure very litte. However, the scale of the solidification substructure associated with various solidification rates may influence the ferrite dissolution kinetics.

  5. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds

    SciTech Connect

    David, S.A.

    1981-04-01

    Four distinct ferrite morphologies have been identified in Type 308 stainless steel multipass welds: vermicular, lacy, acicular, and globular. The first three ferrite types are related to transformations following solidfication and the fourth is related to the shape instability of the residual ferrite. An earlier study showed that most of the ferrite observed in austenitic stainless steel welds containing a duplex structure may be identified as residual primary ferrite resulting from incomplete delta ..-->.. ..gamma.. transformation during solidification and/or residual ferrite after Widmanstatten austenite precipitation in primary ferrite. These modes of ferrite formation can be used to explain observed ferrite morphologies in austenitic stainless steel welds. Variations in ferrite content within the weld were also related to weld metal composition, ferrite morphology, and dissolution of ferrite resulting from thermal cycles during subsequent weld passes. An investigation of the Type 308 stainless steel filler metal solidified over cooling rates ranging from 7 to 1600/sup 0/C/s (44.6 to 2912/sup 0/F/s) showed that the cooling rate of the weld metal within the freezing range of the alloy affects the amount of ferrite in the microstructure very little. However, the scale of the solidification substructure associated with various solidification rates may influence the ferrite dissolution kinetics.

  6. Evaluation of the fabricability of advanced iron aluminide-clad austenitic stainless steel tubing

    SciTech Connect

    Mohn, W.R.; Topolski, M.J.

    1993-07-01

    Researchers at Babcock & Wilcox Alliance Research Center have investigated methods to produce bimetallic tubing consisting of iron aluminide-clad austenitic stainless steel for practical use in fossil fueled energy equipment. In the course of this work, the compatibility of iron aluminide with four candidate austenitic stainless steel substrates was first evaluated using diffusion couples. Based on these results, a combination of iron aluminide and 304 stainless steel was selected for further development. Two composite billets of this combination were then prepared and extruded in separate trails at 2200F and 2000F. Both extrusions yielded 2-inch OD clad tubes, each approximately 18 feet long. Results of the evaluation show that the tube extruded at 2000F had a sound, integrally bonded clad layer throughout its entire length. However, the tube extruded at 2200F exhibited regions of disbonding between the clad layer and the substrate. In supplement to this work, an assessment of the technical and economic merits of iron aluminide-clad austenitic stainless steel components in power generation systems was conducted by B&W Fossil Power Division. Future activities should include an investigation of lower extrusion processing temperatures to optimize the fabrication of high quality iron-aluminide clad tubing.

  7. Corrosion of austenitic stainless steels and nickel-base alloys in supercritical water and novel control methods

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Yang, Ying

    2012-01-01

    This chapter contains sections titled: (1) Introduction; (2) Thermodynamics of Alloy Oxidation; (3) Corrosion of Austenitic Stainless Steels and Ni-Base Alloys in SCW; (4) Novel Corrosion Control Methods; (5) Factors Influencing Corrosion; (6) Summary; and (7) References.

  8. The Change of Austenitic Stainless Steel Elements Content in the Inner Parts of VVER-440 Reactor during Operation

    NASA Astrophysics Data System (ADS)

    Smutný, Vladimír; Hep, Jaroslav; Novosad, Petr

    2009-08-01

    Neutron activation induces the element transmutation in materials surrounding the reactor active core. The objective of the present paper is to calculate and evaluate the change of austenitic stainless steel 08Ch18N10T elements content through neutron induced activation, in inner parts of VVER-440 - in the baffle and in the barrel. Particularly the content changes of Mn in austenitic stainless steel. The neutron flux density and then the neutron activation of austenitic stainless steel elements in parts at the core are calculated. Neutron activation represents a measure of austenitic stainless steel elements transmutation. The power distribution is determined as an average value of several cycles power distribution in the middle of a cycle for the NPP Dukovany. The power distribution is calculated with the code MOBY-DICK [1]. The neutron flux density is calculated with the code TORT [2]. The neutron activation of austenitic stainless steel elements in the baffle and in the barrel is calculated with the system EASY-2007 containing the code FISPACT-2007 [3]. The calculation of the changing austenitic stainless steel elements content is performed depending on the moment of the supposed end of reactor operation - 40 years. There is also necessary monitoring and benchmarking of steel element content change, because the neutron flux calculation, particularly in thermal region, shows a considerable uncertainty, e.g. [4]. The motivation for this work is the study focused to stress corrosion cracking of austenitic stainless steels induced by radiation inside PWR and BWR, e.g. [5]. The paper could be a suggestion to estimation of austenitic stainless steel corrosion damage induced by neutrons in inner parts of VVER-440 reactor.

  9. Advanced Cast Austenitic Stainless Steels for High Temperature Components

    SciTech Connect

    Maziasz, P.J.; Shingledecker, J.P.; Evans, N.D.; Pollard, M.J.

    2008-10-09

    In July of 2002, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Caterpillar, Inc. (Caterpillar Technical Center) to develop and commercialize new cast stainless steels invented and initially tested on a prior CRADA. This CRADA is a direct follow-on project to CRADA ORNL-99-0533 for diesel engine exhaust component and gas turbine engine structural component applications. The goal of this new CRADA was to develop and commercialize the newly discovered cast stainless steels (primarily CF8C-Plus) with improved performance and reliability, as lower-cost upgrade alternatives to more costly cast Ni-based superalloys.

  10. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi

    2016-02-01

    Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.

  11. Review of environmental effects on fatigue crack growth of austenitic stainless steels

    SciTech Connect

    Shack, W.J.; Kassner, T.F.

    1994-05-01

    Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and core components in light water reactors are potential concerns to the nuclear industry and regulatory agencies. The degradation processes include intergranular stress corrosion cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under US Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled into a data base along with similar data obtained from the open literature. The data were analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the feedwater, and for pressurized water reactor primary-system-coolant chemistry.

  12. Study of the Sensitization on the Grain Boundary in Austenitic Stainless Steel Aisi 316

    NASA Astrophysics Data System (ADS)

    Kocsisová, Edina; Dománková, Mária; Slatkovský, Ivan; Sahul, Martin

    2014-12-01

    Intergranular corrosion (IGC) is one of the major problems in austenitic stainless steels. This type of corrosion is caused by precipitation of secondary phases on grain boundaries (GB). Precipitation of the secondary phases can lead to formation of chromium depleted zones in the vicinity of grain boundaries. Mount of the sensitization of material is characterized by the degree of sensitization (DOS). Austenitic stainless steel AISI 316 as experimental material had been chosen. The samples for the study of sensitization were solution annealed on 1100 °C for 60 min followed by water quenching and then sensitization by isothermal annealing on 700 °C and 650 °C with holding time from 15 to 600 min. Transmission electron microscopy (TEM) was used for identification of secondary phases. Electron backscattered diffraction (EBSD) was applied for characterization of grain boundary structure as one of the factors which influences on DOS.

  13. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    SciTech Connect

    Dugan, Sandra; Wagner, Sabine

    2014-02-18

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  14. A review of compatibility of IFR fuel and austenitic stainless steel

    SciTech Connect

    Keiser, D.D. Jr.

    1996-11-01

    Interdiffusion experiments have been conducted to investigate the compatibility of various austenitic stainless steels with U-Pu-Zr alloys, which are alloys to be employed as fuel for the Integral Fast Reactor being developed by Argonne National Laboratory. These tests have also studied the compatibility of austenitic stainless steels with fission products, like the minor actinides (Np and Am) and lanthanides (Ce and Nd), that are generated during the fission process in an IFR. This paper compares the results of these investigations in the context of fuel-cladding compatibility in IFR fuel elements, specifically focusing on the relative Interdiffusion behavior of the components and the types of phases that develop based on binary phase diagrams. Results of Interdiffusion tests are assessed in the light of observations derived from post-test examinations of actual irradiated fuel elements.

  15. Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures

    NASA Astrophysics Data System (ADS)

    Ogata, Toshio

    2015-12-01

    Hydrogen environment embrittlement (HEE) on austenitic stainless steels SUS304, 304L, and 316L in the high pressure hydrogen gas was evaluated from ambient temperature to 20 K using a very simple mechanical properties testing procedure. In the method, the high- pressure hydrogen environment is produced just inside the hole in the specimen and the specimen is cooled in a cooled-alcohol dewar and a cryostat with a GM refrigerator. The effect of HEE was observed in tensile properties, especially at lower temperatures, and fatigue properties at higher stress level but almost no effect around the stress level of yield strength where almost no strain-induced martensite was produced. So, no effect of HEE on austenitic stainless steels unless the amount of the ferrite phase is small.

  16. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Alur, K. C.; Mathew, M. D.

    2011-01-01

    A model of damage evolution in austenitic stainless steels under creep loading at elevated temperatures is proposed. The initial microstructure is idealized as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo power-law creep deformation. Damage evolution in the form of cavitation and wedge cracking on grain-boundary facets is considered. Both diffusion- and deformation-driven grain-boundary cavity growth are treated. Cavity and wedge-crack length evolution are derived from an energy balance argument that combines and extends the models of Cottrell (1961 Trans. AIME 212 191-203), Williams (1967 Phil. Mag. 15 1289-91) and Evans (1971 Phil Mag. 23 1101-12). The time to rupture predicted by the model is in good agreement with published experimental data for a type 316 austenitic stainless steel under uniaxial creep loading. Deformation and damage evolution at the microscale predicted by the present model are also discussed.

  17. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    NASA Astrophysics Data System (ADS)

    Dugan, Sandra; Wagner, Sabine

    2014-02-01

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  18. Improvement of the resistance to stress corrosion cracking in austenitic stainless steels by cyclic prestraining

    SciTech Connect

    Chambreuil-Paret, A.; Magnin, T.

    1999-05-01

    Austenitic stainless steels are known to be sensitive to stress corrosion cracking (SCC) in hot chloride solutions. The aim of the present study is to find improvements in the SCC behavior of 316L-type austenitic stainless steels in 117 C MgCl{sub 2} solutions. Previously, the authors have proposed the corrosion-enhanced plasticity model (CEPM) to describe the discontinuous cracking process which occurs in SCC. This model is based on localized corrosion (anodic dissolution, and hydrogen absorption)-deformation (dislocations) interactions (CDI). From the framework of this model, it is proposed that a prestraining in fatigue at saturation decreases the SCC sensitivity. This idea is experimentally confirmed for both crack initiation and crack propagation, through the analysis of the SCC behavior by slow-strain-rate tests of single and polycrystals after different prestraining conditions.

  19. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  20. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  1. Effects of a Hydrogen Gas Environment on Fatigue Crack Growth of a Stable Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kyohei; Oda, Yasuji; Noguchi, Hiroshi; Higashida, Kenji

    In order to clarify the effects of a hydrogen gas environment on the fatigue crack growth characteristics of stable austenitic stainless steels, bending fatigue tests were carried out in a hydrogen gas, in a nitrogen gas at 1.0 MPa and in air on a SUS316L using the Japanese Industrial Standards (type 316L). Also, in order to discuss the difference in the hydrogen sensitivity between austenitic stainless steels, the fatigue tests were also carried out on a SUS304 using the Japanese Industrial Standards (type 304) metastable austenitic stainless steel as a material for comparison. The main results obtained are as follows. Hydrogen gas accelerates the fatigue crack growth rate of type 316L. The degree of the fatigue crack growth acceleration is low compared to that in type 304. The fracture surfaces of both the materials practically consist of two parts; the faceted area seemed to be brittle and the remaining area occupying a greater part of the fracture surface and seemed to be ductile. The faceted area does not significantly contribute to the fatigue crack growth rate in both austenitic stainless steels. The slip-off mechanism seems to be valid not only in air and in nitrogen, but also in hydrogen. Also, the main cause of the fatigue crack growth acceleration of both materials occurs by variation of the slip behaviour. The difference in the degree of the acceleration, which in type 316L is lower than in type 304, seems to be caused by the difference in the stability of the γ phase.

  2. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  3. High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel

    SciTech Connect

    Maziasz, Philip J; Pint, Bruce A

    2011-01-01

    Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

  4. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    SciTech Connect

    Yang, Ying; Field, Kevin G; Allen, Todd R.; Busby, Jeremy T

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  5. Residual Ferrite and Relationship Between Composition and Microstructure in High-Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Ren, Yibin; Yao, Chunfa; Yang, Ke; Misra, R. D. K.

    2015-12-01

    A series of high-nitrogen stainless steels (HNS) containing δ-ferrite, which often retained in HNS, were studied to establish the relationship between composition and microstructure. Both ferrite and nitrogen depletions were found in the center regions of cast ingots, and the depletion of nitrogen in that area was found to be the main reason for the existence of δ-ferrite. Because of the existence of heterogeneity, the variation of microstructure with nitrogen content was detected. Hence, the critical contents of nitrogen (CCN) for the fully austenitic HNS were obtained. Then the effects of elements such as N, Cr, Mn, and Mo on austenite stability were investigated via thermodynamic calculations. The CCN of HNS alloys were also obtained by calculations. Comparing the CCN obtained from experiment and calculation, it was found that the forged microstructure of the HNS was close to the thermodynamic equilibrium. To elucidate the above relationship, by regression analysis using calculated thermodynamic data, nitrogen equivalent and a new constitution diagram were proposed. The constitution diagram accurately distinguishes the austenitic single-phase region and the austenite + ferrite dual-phase region. The nitrogen equivalent and the new constitution diagram can be used for alloying design and microstructural prediction in HNS. According to the nitrogen equivalent, the ferrite stabilizing ability of Mo is weaker than Cr, and with Mn content increases, Mn behaves as a weak austenite stabilizer first and then as a ferrite stabilizer.

  6. Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Misra, R. D. K.; Nayak, S.; Mali, S. A.; Shah, J. S.; Somani, M. C.; Karjalainen, L. P.

    2009-10-01

    Materials with submicron to nanometer-sized grains by virtue of their high grain boundary area to grain size ratio provide valuable tools for studying deformation behavior in ultrafine-grained structures. In this regard, the well-known strain-induced martensite transformation and its reversal to the parent austenite phase were used to produce nanograins/ultrafine grains via controlled annealing of heavily cold-worked metastable austenite. The results of the electron microscopy study of phase-reversion-induced microstructure and deformation behavior of nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel during tensile straining are described here. The phase-reversion-induced structure was observed to depend on the cold rolling reduction and temperature-time annealing cycle. The optimized structure consisted of nanocrystalline ( d < 100 nm), ultrafine ( d ≈ 100 to 500 nm), and submicron ( d ≈ 500 to 1000 nm) grains and was characterized by a high yield strength (800 to 1000 MPa)-high ductility (30 to 40 pct) combination. Austenite nucleation during phase-reversion annealing occurred in the form of thin plates or as equiaxed grains along the martensite laths. Twinning and dislocation glide were identified as the primary deformation mechanisms, where twinning had a varied character. However, the high elongation seems to be associated with the gradual transformation of metastable austenite, with twinning having only a minor contribution.

  7. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.

    PubMed

    Ossa, C P O; Rogero, S O; Tschiptschin, A P

    2006-11-01

    Stainless steel has been frequently used for temporary implants but its use as permanent implants is restricted due to its low pitting corrosion resistance. Nitrogen additions to these steels improve both mechanical properties and corrosion resistance, particularly the pitting and crevice corrosion resistance. Many reports concerning allergic reactions caused by nickel led to the development of nickel free stainless steel; it has excellent mechanical properties and very high corrosion resistance. On the other hand, stainless steels are biologically tolerated and no chemical bonds are formed between the steel and the bone tissue. Hydroxyapatite coatings deposited on stainless steels improve osseointegration, due their capacity to form chemical bonds (bioactive fixation) with the bone tissue. In this work hydroxyapatite coatings were plasma-sprayed on three austenitic stainless steels: ASTM-F138, ASTM-F1586 and the nickel-free Böhler-P558. The coatings were analyzed by SEM and XDR. The cytotoxicity of the coatings/steels was studied using the neutral red uptake method by quantitative evaluation of cell viability. The three uncoated stainless steels and the hydroxyapatite coated Böhler-P558 did not have any toxic effect on the cell culture. The hydroxyapatite coated ASTM-F138 and ASTM-F1586 stainless steels presented cytotoxicity indexes (IC50%) lower than 50% and high nickel contents in the extracts. PMID:17122924

  8. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel

    SciTech Connect

    Karimi, M.; Najafizadeh, A.; Kermanpur, A.; Eskandari, M.

    2009-11-15

    The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600-900 deg. C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 deg. C for 10 s exhibited the smallest average austenite grain size of 240 {+-} 60 nm with an almost fully-austenitic structure.

  9. A role of {delta}-ferrite in edge-crack formation during hot-rolling of austenitic stainless steels

    SciTech Connect

    Czerwinski, F.; Brodtka, A.; Cho, J.Y.; Szpunar, J.A.; Zielinska-Lipiec, A.; Sunwoo, J.H.

    1997-10-15

    Austenitic stainless steels are substantially harder during hot-rolling than either ferritic or mild steels. The objective of this study is to verify the possible correlation between the edge-crack formation during hot-rolling and the presence of {delta} ferrite in austenitic stainless steel. Hot-rolled plates of austenitic stainless steels, examined at room temperatures, contain up to 9% of {delta} ferrite in austenitic matrix. The distribution of ferrite in steel plate is inhomogeneous: the highest ferrite content is located in the vicinity of the plate edge. Moreover, the content of {delta} ferrite changes irregularly across the plate thickness. The results obtained from analysis of several plates suggest a correlation between the maximum content of {delta} ferrite in steel microstructure and the length of the edge-crack formed during hot-rolling: the higher the volume fraction of ferrite, the longer the edge-crack.

  10. Fatigue crack growth in metastable austenitic stainless steels

    SciTech Connect

    Mei, Z.; Chang, G.; Morris, J.W. Jr.

    1988-06-01

    The research reported here is an investigation of the influence of the mechanically induced martensitic transformation on the fatigue crack growth rate in 304-type steels. The alloys 304L and 304LN were used to test the influence of composition, the testing temperatures 298 K and 77 K were used to study the influence of test temperature, and various load ratios (R) were used to determine the influence of the load ratio. It was found that decreasing the mechanical stability of the austenite by changing composition or lowering temperature decreases the fatigue crack growth rate. The R-ratio effect is more subtle. The fatigue crack growth rate increases with increasing R-ratio, even though this change increases the martensite transformation. Transformation-induced crack closure can explain the results in the threshold regime, but cannot explain the R-ratio effect at higher cyclic stress intensities. 26 refs., 6 figs.

  11. Sensitivity of the magnetization curves of different austenitic stainless tube and pipe steels to mechanical fatigue

    NASA Astrophysics Data System (ADS)

    Niffenegger, M.; Leber, H. J.

    2008-07-01

    In meta-stable austenitic stainless steels, fatigue is accompanied by a partial strain-induced transformation of paramagnetic austenite to ferromagnetic martensite [G.B. Olsen, M. Cohen, Kinetics of strain induced martensite nucleation, Metall. Trans. 6 (1975) 791-795]. The associated changes of magnetic properties as the eddy current impedance, magnetic permeability or the remanence field may serve as an indication for the degree of fatigue and therefore the remaining lifetime of a component, even though the exact causal relationship between martensite formation and fatigue is not fully understood. However, measuring these properties by magnetic methods may be limited by the low affinity for strain-induced martensite formation. Thus other methods have to be found which are able to detect very small changes of ferromagnetic contents. With this aim the influence of cyclic strain loading on the magnetization curves of the austenitic stainless tube and pipe steels TP 321, 347, 304L and 316L is analysed in the present paper. The measured characteristic magnetic properties, which are the saturation magnetization, residual magnetization, coercive field and the field dependent permeability (AC-magnetization), are sensitive to fatigue and the corresponding material changes (martensitic transformation). In particular, the AC-magnetization was found to be very sensitive to small changes of the amount of strain induced martensite and therefore also to the degree of fatigue. Hence we conclude that applying magnetic minor loops are promising for the non-destructive evaluation of fatigue in austenitic stainless steel, even if a very small amount of strain induced martensite is formed.

  12. RESULTS OF CHARACTERIZATION TESTS OF THE SURFACES OF A COMMERCIALLY CARBURIZED AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Farrell, K

    2004-01-07

    A commercial surface carburization treatment that shows promise for hardening the surfaces of the stainless steel target vessel of the Spallation Neutron Source against cavitation erosion and pitting caused by the action of pulsed pressure waves in the liquid mercury target has been investigated. To verify promotional claims for the treatment and to uncover any factors that might be of concern for the integrity of a carburized target vessel, some characterization tests of the nature of the surface layers of carburized austenitic 316LN stainless steel were conducted. The findings support most of the claims. The carburized layer is about 35 {micro}m thick. Its indentation hardness is about five times larger than that of the substrate steel and declines rapidly with depth into the layer. The surface is distorted by the treatment, and the austenite lattice is enlarged. The corrosion resistance of the carburized layer in an acid medium is greater than that for untreated austenite. The layer is not brittle; it is plastically deformable and is quite resistant to cracking during straining. Contrary to the provider's assertations, the maximum carbon content of the layer is much less than 6-7 wt% carbon, and the carbon is not simply contained in supersaturated solid solution; some of it is present in a previously unreported iron carbide phase located at the very surface. Large variations were found in the thickness of the layer, and they signify that controls may be needed to ensure a uniform thickness for treatment of the SNS target vessel. Inclusion stringers and {delta}-ferrite phase embraced in the treated layer are less resistant to chemical attack than the treated austenite. From a cavitation pitting perspective under SNS bombardment, such non-austenitic phases may provide preferential sites for pitting. The shallow depth of the hardened layer will require use of protection measures to avoid mishandling damage to the layer during assembly and installation of a target

  13. ESD morphology deposition with WZr8 electrode on austenitic stainless steel support

    NASA Astrophysics Data System (ADS)

    Perju, M. C.; Ţugui, C. A.; Nejneru, C.; Axinte, M.; Vizureanu, P.

    2016-06-01

    Stainless steels are used to obtain mechanical parts, working in severe conditions with high dynamic loads in wet, chemically active environments. For this reason, these materials have good corrosion resistance in acidic or basic chemical agents. The main drawback is the relatively low wear and resistance to mechanical stress. This paper proposes a remedy by deposition of the hard thin films of tungsten electrode by spark electro-deposition method (ESD). Tungsten is an alfagen element and causes an increase for the mechanical properties at high and low temperatures for the austenitic stainless steels. Tungsten does not alter the corrosion resistance of stainless steels. The morphology for the obtained layers was analyzed using SEM, in 3D images, and profilographs.

  14. Post-irradiation annealing effect on helium diffusivity in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Katsura, R.; Morisawa, J.; Kawano, S.; Oliver, B. M.

    2004-08-01

    As an experimental basis for helium induced weld cracking of neutron irradiated austenitic stainless steels, helium diffusivity has been evaluated by measuring helium release at high temperature. Isochronal and isothermal experiments were performed at temperatures between 700 and 1300 °C for 304 and 316L stainless steels. In 1 h isochronal experiments, helium was released beginning at ˜900 °C and reaching almost 100% at 1300 °C. No apparent differences in helium release were observed between the two stainless steel types. At temperatures between 900 and 1300 °C, the diffusion rate was calculated from the time dependence of the helium release rate to be: D0=4.91 cm 2/s, E=289 kJ/mol. The observed activation energy suggests that the release of helium from the steels is associated with the removal of helium from helium bubbles and/or from vacancy diffusion.

  15. Post-Irradiation Annealing Effect on Helium Diffusivity in Austenitic Stainless Steels

    SciTech Connect

    Katsura, Ryoei; Morisawa, J; Kawano, S; Oliver, Brian M.

    2004-08-01

    As an experimental basis for helium induced weld cracking of neutron irradiated austenitic stainless steels, helium diffusivity has been evaluated by measuring helium release rates at high temperature. Isochronal and isothermal experiment were performed at temperatures between 700 and 1300 for Type 304 and 316L stainless steels. In 1 hour isochronal experiments, helium was released beginning at {approx}900 and reaching near 100% at 1300. No apparent differences in helium release rate were observed between Type 304 and 316L stainless steels. At temperatures between 1100 and 1300, the diffusion rate was calculated from the time dependence of the helium release rate to be:?D0=3.42?104 cm2/s, E=173.2 kJ/mol. The observed activation energy suggests that the release of helium from the steels is associated with the removal of helium from helium bubbles.

  16. Modeling the Ferrite-Austenite Transformation in the Heat-Affected Zone of Stainless Steel Welds

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1997-12-01

    The diffusion-controlled ferrite-austenite transformation in stainless steel welds was modeled. An implicit finite-difference analysis that considers multi-component diffusion was used. The model was applied to the Fe-Cr-Ni system to investigate the ferrite- austenite transformation in the heat-affected zone of stainless steel weld metal. The transformation was followed as a function of time as the heat-affected zone was subjected to thermal cycles comparable to those experienced during gas-tungsten arc welding. The results showed that the transformation behavior and the final microstructural state are very sensitive to the maximum temperature that is experienced by the heat-affected zone. For high maximum exposure temperatures ({approximately} 1300{degree} C), the ferrite formation that occurs at the highest temperatures is not completely offset by the reverse ferrite dissolution at lower temperatures. As a result, for high temperature exposures there is a net increase in the amount of ferrite in the microstructure. It was also found that if compositional gradients are present in the initial ferrite and austenite phases, the extent of the transformation is impacted.

  17. Surface modification of AISI 304 austenitic stainless steel by plasma nitriding

    NASA Astrophysics Data System (ADS)

    Liang, Wang

    2003-04-01

    Plasma nitriding of austenitic stainless steel samples has been carried out using pulse dc glow discharge plasma of NH 3 gas at substrate temperature ranging from 350 to 520 °C. A nitriding time of only 4 h has been found to produce a compact surface nitride layer composed of γN' phase with a thickness of around 7-12 μm as processing temperature remained between 420 and 450 °C. The thickness of γN phase was found to be very thin only about 2 μm after plasma nitriding at temperature below 400 °C. Microhardness measurements showed significant increase in the hardness from 240 HV (for untreated samples) up to 1700 HV (for nitrided samples at temperature of 460 °C). For nitriding at higher temperature, i.e. above 460 °C, the chromium nitrides precipitated in the nitrided layer and caused austenite phase transform into ferrite phase or iron nitrides ( γ' or ɛ). The consequent result of chromium nitride precipitation is the reduction of corrosion resistance of nitrided layer. Compressive residual stresses existed in the nitrided layer due to nitrogen diffusion into austenitic stainless steel.

  18. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  19. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    SciTech Connect

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-31

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  20. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    NASA Astrophysics Data System (ADS)

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a `steering' of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  1. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2016-04-01

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (∼3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. This difference is attributed to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  2. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.

    2008-01-21

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  3. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-07-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  4. Correlation Between Microstructure and Mechanical Properties Before and After Reversion of Metastable Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Fargas, Gemma; Zapata, Ana; Roa, Joan Josep; Sapezanskaia, Ina; Mateo, Antonio

    2015-12-01

    Reversion treatments are a way to improve the mechanical response of metastable austenitic stainless steels by means of grain refinement. To effectively apply those treatments, the steel must be previously deformed to induce a significant amount of martensitic transformation. In this work, the effect of reversion treatments was studied on a commercial AISI 301LN grade subjected to an industrial cold rolling process, with thickness reductions not higher than 40 pct. Microstructural changes and evolution of both monotonic and cyclic mechanical properties were investigated after cold rolling and upon reversion treatments. Results revealed that the finer austenitic microstructure obtained after reversion leads to an interesting combination of properties, with strong increments in hardness and yield strength, and also fatigue limit improvement, as compared to the initial annealed condition.

  5. High temperature corrosion of austenitic stainless steel coils in a direct reduction plant in Mexico

    SciTech Connect

    Juarez-Islas, J.A.; Campillo, B.; Chaudhary, N.; Mendoza, R.; Gonzalez, A.

    1996-08-01

    The subject of this study is related to the performance of austenitic steels coils and tubes, in a range of temperatures between 425 to 870 C for the transport of reducing gases, in an installation involving the direct reduction of iron-ore by reforming natural gas. Evidence is presented that metal dusting is not the only unique high temperature corrosion mechanism that caused catastrophic failures of austenitic 304 (UNS S30400) coils and HK-40 (UNS J94204) tubes. Sensitization as well as stress corrosion cracking occurred in 304 stainless steel coils, and metal dusting occurred in tubes of HK-40, a high resistance alloy. The role of a continuous injection of H{sub 2}S to the process is suggested to avoid the high temperature metal dusting corrosion mechanism found in these kind of installations.

  6. Estimation of fatigue strain-life curves for austenitic stainless steels in light water reactor environments.

    SciTech Connect

    Chopra, O. K.; Smith, J. L.

    1998-02-12

    The ASME Boiler and Pressure Vessel Code design fatigue curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue lives of austenitic stainless steels (SSs) in light water reactor (LWR) environments. Unlike those of carbon and low-alloy steels, environmental effects on fatigue lives of SSs are more pronounced in low-dissolved-oxygen (low-DO) water than in high-DO water, This paper summarizes available fatigue strain vs. life data on the effects of various material and loading variables such as steel type, DO level, strain range, and strain rate on the fatigue lives of wrought and cast austenitic SSs. Statistical models for estimating the fatigue lives of these steels in LWR environments have been updated with a larger data base. The significance of the effect of environment on the current Code design curve has been evaluated.

  7. Hydrogen concentration gradients in cathodically charged austenitic stainless steel

    SciTech Connect

    Ulmer, D.G.; Altstetter, C.J.

    1987-05-01

    An x-ray diffraction technique has been developed to make in-situ measurements of hydrogen concentration profiles from which diffusivity and solubility values are calculated. Hydrogen is supplied to the metal surface by cathodically polarizing it in a bath of 1N H/sub 2/SO/sub 4/ electrolyte. The incident x-ray beam penetrates a thin layer of electrolyte solution at the surface of the sample, thus, x-ray diffraction profile changes can be recorded as a function of charging time and temperature. The applied potential prevents outgassing of the specimen during the measurement. The x-ray diffraction profiles are deconvoluted to remove the ..cap alpha../sub 1//..cap alpha../sub 2/ doublet and noncompositional broadening effects. Composition-depth profiles are then obtained from an intensity band transformation of the deconvoluted data. A diffusion coefficient is determined by fitting a solution to Fick's second law to the concentration-depth profile. The technique described here was used to measure hydrogen diffusivity in stainless steel in the temperature range 20/sup 0/--80 /sup 0/C.

  8. Irradiation assisted stress corrosion cracking of austenitic stainless steels

    SciTech Connect

    Was, G.S.; Atzmon, M.

    1990-06-01

    Samples of ultra high purity stainless steel have been fabricated into 2mm {times} 2mm rectangular bars and irradiated to one dpa ({approximately}l {times} 10{sup 19} p{sup +}/cm{sup 2}) using 3.4 MeV protons (>20{mu}A) while controlling the sample temperature at 400{degree}C. Samples are pressed onto a water-cooled and electrically heated copper block with a thin layer of Sn in between to improve thermal conductivity. The irradiation produced a significant prompt radiation field but sample activation was limited to {beta}-decay and this decayed rapidly in less than 48 h. Samples were hydrogen charged and strained at slow rates at {minus}30{degree}C insitu in the Auger electron spectrometer to successfully fracture several samples intergranularly for grain boundary composition analysis. An ultra-high purity (UHP) alloy of Fe-19Cr-9Ni was irradiated to 1 dpa at 400C {plus minus} 5C and 7 {times} 10{sup {minus}9} torr in the tandem accelerator of the Michigan Ion Beam Laboratory, resulting in a dislocation network density of 1.8 {times} 10{sup 9} cm{sup 2} and a dislocation loop density of 7 {times} 10{sup 16} cm{sup {minus}3} along with the dissolution of small precipitates present in the unirradiated sample. EPR experiments on the UHP irradiated alloy showed no significant increase in charge passed upon reactivation, over an unirradiated sample experiencing the same thermal history. An SCC waterloop and autoclave system has been completed and a sample has been designed to measure the susceptibility of the irradiated microstructure as compared to the unirradiated microstructure.

  9. Automated GMA welding of austenitic stainless steel pipe

    SciTech Connect

    Tahash, G.J.

    1996-12-31

    The study focused on reducing weld cycle times of rotatable subassemblies (spools) using automated welding equipment. A unique automatic Gas Metal Arc Welding (GMAW) system was used to produce a series of pipe to pipe welds on 141 mm (5 in.) schedule 80 seamless stainless steel pipe. After manual tack welding, the adaptive control system welded the root pass of the argon gas backed open vee groove circumferential butt joints in the IG rotated position with short circuiting transfer GMAW. The fill and cover passes were welded automatically with spray transfer GMAW. Automatic welding cycle times were found to be 50--80 percent shorter than the current techniques of roll welding with Shielded Metal Arc Welding and manual Gas Tungsten Arc Welding. Weld costs ({Brit_pounds}/m), including amortization, for the various systems were compared. The cost of automated GMA welds was virtually equivalent to the most competitive methods while depositing 75% more filler metal per year. Also investigated were metallurgical effects generated by weld thermal cycling, and the associated effects on mechanical properties of the weld joint. Mechanical properties of the welds met or exceeded those of the base metal. Sensitization of the pipe did not occur in the heat affected zone (HAZ), based on the absence of evidence of intergranular attack in modified Strauss corrosion tests and despite the fact of interpass temperatures well above recommended maximums. Cooling rates of 3--5 C/s in the heat affected zone of the four pass welds were measured by thermocouple technique and found to be within the non-sensitizing range for this alloy.

  10. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    PubMed

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. PMID:25488024

  11. Quantitative metallographic method for determining delta ferrite content in austenitic stainless steels. Final report

    SciTech Connect

    Pressly, G.A.

    1986-01-01

    Delta ferrite is a magnetic form of iron and has a body centered cubic crystal structure. It is often present as a nonequilibrium phase in austenitic stainless steel welds, castings, and wrought materials. The ferrite content of austenitic stainless steel can directly affect its properties, especially weldability and formability. Therefore, it is highly desirable to be able to predict and/or measure the ferrite content accurately. Current magnetic ferrite measuring methods are not applicable when test materials are geometrically small (less than 2.54 mm thick and 6.35 mm wide). Therefore, a standard metallographic test method STM 00107-A was established to determine delta ferrite content in small weldments and base metals of austenitic stainless steel. This standard test method (STM 00107-A) was then performed on several exemplary metallographic specimens to illustrate its capabilities and applications. The results from the exemplary tests were compared and contrasted to metallographic manual point count measurements, Ferritescope measurements, and predicted values calculated from chemical analyses. By utilizing the manual metallographic point count data, an accuracy of +-16% and a precision of +-0.77% were determined for the standard test method. The comparison of Ferritescope data to standard test method revealed that the results obtained by the two methods are close at low (0 to 3%) ferrite contents and Ferritscope results are substantially greater at higher (6 to 10%) ferrite contents. The standard test method data compiled from the exemplary weld specimens was noted to be very similar to the predicted values calculated from chemical analyses. It was also shown that because the standard test method utilizes optics the morphology of the delta ferrite particles can be determined. This type of determination is possible only with metallographic methods.

  12. Laser etching of austenitic stainless steels for micro-structural evaluation

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  13. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].

    PubMed

    Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua

    2005-08-01

    The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance. PMID:16156260

  14. Embrittlement Phenomena in an Austenitic Stainless Steel: Influence of Hydrogen and Temperature

    NASA Astrophysics Data System (ADS)

    Lamani, Emil; Jouinot, Patrice

    2007-04-01

    The influence of hydrogen and temperature (up to 650°C) on an austenitic stainless steel is studied by means of two main techniques: the disk pressure embrittlement and the special biaxial tensile tests. The embrittlement index of the steel is determined as the ratio of rupture pressures of the disks tested similarly under helium and hydrogen. Furthermore, we studied the effect of loading speed and temperature on rupture pressures. We show that the mechanical behavior of the steel is strongly influenced by the apparition of a second phase: the deformation induced martensite, α'.

  15. Effect of Nitrogen on Stress Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique

    NASA Astrophysics Data System (ADS)

    Toppo, Anita; Pujar, M. G.; Mallika, C.; Kamachi Mudali, U.; Dayal, R. K.

    2015-03-01

    Stress corrosion cracking (SCC) studies were conducted on austenitic stainless steels with two different nitrogen contents (0.07 and 0.22 wt.% N) in boiling acidified sodium chloride medium using constant load technique. Progress of SCC was monitored using electrochemical noise (EN) technique to understand the effect of nitrogen addition on SCC initiation and propagation. With increase in nitrogen content, the characteristic frequency of corrosion events, f n increased, whereas the characteristic charge, q decreased simultaneously indicating the increased stability of passive film resulting in higher resistance to SCC.

  16. Grain Structure Development During Friction Stir Welding of Single-Crystal Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jeon, Jong Jin; Mironov, Sergey; Sato, Yutaka S.; Kokawa, Hiroyuki; Park, Seung Hwan C.; Hirano, Satoshi

    2013-07-01

    The high-resolution electron backscatter diffraction (EBSD) technique was used to study the grain boundary development and texture evolution during friction stir welding (FSW) in a single-crystal austenitic stainless steel. Strain-induced crystal rotations were found to be induced by simple shear deformation. With the crystal rotations, the single-crystal structure was broken up into a fine-grained polycrystalline aggregate in the stir zone. This process was deduced to be governed by continuous and discontinuous recrystallizations operating during the FSW process. The final texture which evolved in the stir zone was dominated by A/bar{A}\\{ {111} \\} < 110 rangle ideal simple shear orientations.

  17. Transition in Failure Mechanism Under Cyclic Creep in 316LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Mathew, M. D.

    2014-06-01

    Cyclic creep behavior of a type 316LN austenitic stainless steel was investigated in the temperature range from 823 K to 923 K (550 °C to 650 °C). A transition from fatigue-dominated to creep-dominated failure mode was observed with an increase in the mean stress. The threshold value of mean stress for the transition was seen to be a strong function of the test temperature. Occurrence of dynamic strain aging proved beneficial owing to a substantial reduction in the strain accumulation during cyclic loading.

  18. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  19. Microstructural Evolution During Friction Surfacing of Austenitic Stainless Steel AISI 304 on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Khalid Rafi, H.; Kishore Babu, N.; Phanikumar, G.; Prasad Rao, K.

    2013-01-01

    Austenitic stainless steel AISI 304 coating was deposited over low carbon steel substrate by means of friction surfacing and the microstructural evolution was studied. The microstructural characterization of the coating was carried out by optical microscopy (OM), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). The coating exhibited refined grains (average size of 5 μm) as compared to the coarse grains (average size of 40 μm) in as-received consumable rod. The results from the microstructural characterization studies show that discontinuous dynamic recrystallization (DDRX) is the responsible mechanism for grain evolution as a consequence of severe plastic deformation.

  20. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Misra, A.; Wang, H.; Nastasi, M.; Embury, J. D.; Mitchell, T. E.; Hoagland, R. G.; Hirth, J. P.

    2004-02-01

    Magnetron-sputter-deposited austenitic 330 stainless steel (330 SS) films, several microns thick, were found to have a hardness ˜6.5 GPa, about an order of magnitude higher than bulk 330 SS. High-resolution transmission electron microscopy revealed that sputtered 330 SS coatings are heavily twinned on {111} with nanometer scale twin spacing. Molecular dynamics simulations show that, in the nanometer regime where plasticity is controlled by the motion of single rather than pile-ups of dislocations, twin boundaries are very strong obstacles to slip. These observations provide a new perspective to producing ultrahigh strength monolithic metals by utilizing growth twins with nanometer-scale spacing.

  1. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    SciTech Connect

    Hanning, F. Engelberg, D.L.

    2014-08-15

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification.

  2. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    SciTech Connect

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels.

  3. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  4. Structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments

    SciTech Connect

    Lee, E.H.; Maziasz, P.J.; Rowcliffe, A.F.

    1980-01-01

    Transmission electron diffraction techniques coupled with quantitative x-ray energy dispersive spectroscopy have been used to characterize the phases which develop in austenitic stainless steels during exposure to thermal and to irradiation environments. In AISI 316 and Ti-modified stainless steels some thirteen phases have been identified and characterized in terms of their crystal structure and chemical composition. Irradiation does not produce any completely new phases. However, as a result of radiation-induced segregation principally of Ni and Si, and of enhanced diffusion rates, several major changes in phase relationships occur during irradiation. Firstly, phases characteristic of remote regions of the phase diagram appear unexpectedly and dissolve during postirradiation annealing (radiation-induced phases). Secondly, some phases develop with their compositions significantly altered by the incorporation of Ni or Si (radiation-modified phases).

  5. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    SciTech Connect

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation.

  6. The effects of neutron irradiation on fracture toughness of austenitic stainless steels.

    SciTech Connect

    Chopra, O. K.; Gruber, E. E.; Shack, W. J.

    1999-05-21

    Austenitic stainless steels are used extensively as structural alloys in reactor pressure vessel internal components because of their superior fracture toughness properties. However, exposure to high levels of neutron irradiation for extended periods leads to significant reduction in the fracture resistance of these steels. This paper presents results of fracture toughness J-R curve tests on four heats of Type 304 stainless steel that were irradiated to fluence levels of {approx}0.3 and 0.9 x 10{sup 21} n cm{sup {minus}2} (E >1 MeV) at {approx}288 C in a helium environment in the Halden heavy water boiling reactor. The tests were performed on 1/4-T compact tension specimens in air at 288 C; crack extensions were determined by both DC potential and elastic unloading compliance techniques.

  7. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    NASA Astrophysics Data System (ADS)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  8. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    NASA Astrophysics Data System (ADS)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  9. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    SciTech Connect

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolution of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.

  10. Capabilities of Ultrasonic Phased Arrays for Far-Side Examinations of Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system austenitic piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements for near side inspection. For this study, four circumferential welds in 610mm (24inch) diameter, 36mm (1.42inch) thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and compared to conventional ultrasonic techniques as a baseline. The examinations showed that phased-array methods were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  11. Development and Exploratory Scale-Up of Alumina-Forming Austenitic (AFA) Stainless Steels

    SciTech Connect

    Brady, Michael P; Magee, John H; Yamamoto, Yukinori; Maziasz, Philip J; Santella, Michael L; Pint, Bruce A; Bei, Hongbin

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  12. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  13. Review of environmental effects on fatigue crack growth of austenitic stainless steels.

    SciTech Connect

    Shack, W. J.; Kassner, T. F.; Energy Technology

    1994-07-11

    Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and core components in light water reactors are potential concerns to the nuclear industry and regulatory agencies. The degradation processes include intergranular stress corrosion cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under US Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled into a data base along with similar data obtained from the open literature. The data were analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the feedwater, and for pressurized water reactor primary-system-coolant chemistry. The corrosion-fatigue data and curves in water were compared with the air line in Section XI of the ASME Code.

  14. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  15. Estimation of Fatigue Damage for AN Austenitic Stainless Steel (SUS304) Using a Pancake Type Coil

    NASA Astrophysics Data System (ADS)

    Oka, M.; Tsuchida, Y.; Nagato, S.; Yakushiji, T.; Enokizono, M.

    2008-02-01

    There are some fatigue damage estimation methods of an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method, and so on. Those two methods are researched also in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. However, this method has the disadvantage to need a special magnetizer. Then, this method cannot be easily used at the job site such as the factory. On the other hand, as the special magnetizer is unnecessary, the excitation method can be easily used at the job site. But, this method has some disadvantages shown as follows. For instance, the output signal of this method is small. And the surface state of the specimen strongly influences the noise component of the output signal. It is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the method of evaluation of fatigue damage of an austenitic stainless steel (SUS304) by using a change of an inductance of a pancake type coil is shown. In addition, the fatigue evaluation performance of this method is described.

  16. On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature

    PubMed Central

    Zhang, Lei; Feng, Xiao; Wang, Xin; Liu, Changyong

    2014-01-01

    The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatures (900–1250°C) and strain rates (10−3–10 s−1), were employed to study the dynamic deformational behavior of and recrystallization in 316LN steels. The constitutive model is developed through multiple linear regressions performed on the experimental data and based on an Arrhenius-type equation and Zener-Hollomon theory. The influence of strain was incorporated in the developed constitutive equation by considering the effect of strain on the various material constants. The reliability and accuracy of the model is verified through the comparison of predicted flow stress curves and experimental curves. Possible reasons for deviation are also discussed based on the characteristics of modeling process. PMID:25375345

  17. Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test

    NASA Astrophysics Data System (ADS)

    Takahashi, Kyouhei; Ogawa, Takeshi

    Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.

  18. Mechanical and metallurgical properties of ion-nitrided austenitic-stainless steel welds

    NASA Astrophysics Data System (ADS)

    Çetinarslan, C. S.; Sahin, M.; Karaman Genç, S.; Sevil, C.

    2012-12-01

    Ion nitriding is an operation widely used in industry to harden materials surface. Nowadays, friction welding is one of the special welding methods used for welding the same or different kinds of materials. Especially in industry, it can be necessary to use materials after having operated them with different techniques or to use materials obtained by different manufacturing techniques. Investigating the mechanical and metallurgical properties of this kind of materials can be crucial. In this study, austenitic-stainless steel was used as an experimental material. Additionally, the samples of austenitic stainless steel with a diameter of 10 mm were joined by friction welding. The samples were subjected to ion nitriding process at 550 °C for 24 and 60 h. Then, tensile, fatigue, notch-impact and hardness tests were applied to the weldless and welded parts, and metallographic examinations were carried out. It was found that chromium and iron nitrides precipitated along the grain boundaries and in the middle of the grains. Spectrum patterns revealed that the most dominant phases resulted from the formation of CrN, Fe4N and Fe3N. However, the tests revealed that high temperature and longer time of ion nitriding caused a decrease in the values of fatigue and tensile strengths as well as in the notch-impact toughness in the ion nitrided joints.

  19. The microstructural, mechanical, and fracture properties of austenitic stainless steel alloyed with gallium

    NASA Astrophysics Data System (ADS)

    Kolman, D. G.; Bingert, J. F.; Field, R. D.

    2004-11-01

    The mechanical and fracture properties of austenitic stainless steels (SSs) alloyed with gallium require assessment in order to determine the likelihood of premature storage-container failure following Ga uptake. AISI 304 L SS was cast with 1, 3, 6, 9, and 12 wt pct Ga. Increased Ga concentration promoted duplex microstructure formation with the ferritic phase having a nearly identical composition to the austenitic phase. Room-temperature tests indicated that small additions of Ga (less than 3 wt pct) were beneficial to the mechanical behavior of 304 L SS but that 12 wt pct Ga resulted in a 95 pct loss in ductility. Small additions of Ga are beneficial to the cracking resistance of stainless steel. Elastic-plastic fracture mechanics analysis indicated that 3 wt pct Ga alloys showed the greatest resistance to crack initiation and propagation as measured by fatigue crack growth rate, fracture toughness, and tearing modulus. The 12 wt pct Ga alloys were least resistant to crack initiation and propagation and these alloys primarily failed by transgranular cleavage. It is hypothesized that Ga metal embrittlement is partially responsible for increased embrittlement.

  20. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Sudha, C.; Sivai Bharasi, N.; Anand, R.; Shaikh, H.; Dayal, R. K.; Vijayalakshmi, M.

    2010-07-01

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M 23C 6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  1. Analysis of tensile deformation and failure in austenitic stainless steels: Part II - Irradiation dose dependence

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on the stable and unstable deformation and fracture behavior of austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative finite element simulation technique was used to obtain the equivalent true stress-true strain data from experimental tensile curves. The simulation result showed that the austenitic stainless steels retained high strain hardening rate during unstable deformation even after significant irradiation. The strain hardening rate was independent of irradiation dose up to the initiation of a localized necking. Similarly, the equivalent fracture stress was nearly independent of dose before the damage (embrittlement) mechanism changed. The fracture strain and tensile fracture energy decreased with dose mostly in the low dose range <˜2 dpa and reached nearly saturation values at higher doses. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  2. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy. PMID:22160745

  3. Defect structures before steady-state void growth in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Sato, K.; Cao, X.; Xu, Q.; Horiki, M.; Troev, T. D.

    2012-10-01

    In the radiation damage process of austenitic stainless steels, there exists an incubation period before steady-state void growth, and the defect formation behaviors during that period strongly depend on alloy composition. Using the technique of positron annihilation lifetime measurement, the evolution of defect clusters during the incubation period in neutron, electron, and H-ion irradiations was studied for a variety of austenitic stainless steels including commercial and model alloys. The lifetime measurements indicated that in fission neutron irradiation to 0.2 dpa at 363 K, single vacancies were predominantly formed in the commercial alloys, SUS316L and Ti added, modified SUS316, while large voids were formed in Ni and Fe-Cr-Ni. After neutron irradiation at 573 K, stacking fault tetrahedra and/or precipitates were detected in the commercial alloys, while large voids were detected in the model alloys. In the 30 MeV electron irradiation to a dose of 0.012 dpa, the effect of alloying elements on lifetime data was less significant at 353 K, but a significant difference was found between model alloys and commercial alloys at 573 K. The H-ion irradiation at 2 MeV was also performed at room temperature. Defect evolution during the incubation period is discussed on the basis of the neutron, electron and H-ion irradiation results.

  4. A Method to Estimate Residual Stress in Austenitic Stainless Steel Using a Microindentation Test

    NASA Astrophysics Data System (ADS)

    Yonezu, Akio; Kusano, Ryota; Hiyoshi, Tomohiro; Chen, Xi

    2015-01-01

    This study proposed a method to evaluate the residual stress and plastic strain of an austenitic stainless steel using a microindentation test. The austenitic stainless steel SUS316L obeys the Ludwick's work hardening law and is subjected to in-plane equi-biaxial residual stress. A numerical experiment with the finite element method (FEM) was carried out to simulate an indentation test for SUS316L having various plastic strains (pre-strains) and residual stresses. It was found that the indentation force increased with increasing pre-strain as well as with compressive residual stress. Next, a parametric FEM study by changing both residual stress σres and pre-strain ɛpre was conducted to deduce the relationship between the indentation curve and the parameters ɛpre and σres (which were employed for the FEM study). This relationship can be expressed by a dimensionless function with simple formulae. Thus, the present method can estimate both ɛpre and σres, when a single indentation test is applied to SUS316L.

  5. Mechanism and estimation of fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Energy Technology

    2002-08-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of fatigue crack initiation in austenitic stainless steels in LWR coolant environments. The existing fatigue {var_epsilon}-N data have been evaluated to establish the effects of key material, loading, and environmental parameters (such as steel type, strain range, strain rate, temperature, dissolved-oxygen level in water, and flow rate) on the fatigue lives of these steels. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. The influence of reactor environments on the mechanism of fatigue crack initiation in these steels is also discussed.

  6. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  7. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    SciTech Connect

    Karaman, Ibrahim; Arroyave, Raymundo

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  8. Thick-section Laser and Hybrid Welding of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Kujanpää, Veli

    Austenitic stainless steels are generally known to have very good laser weldability, when ordinary grades of sheets are concerned. But it is not necessarily the case, if special grades of fully austenitic structures with e.g. high molybdenum, or thick-section are used. It is also known that hot cracking susceptibility is strictly controlled by composition and welding parameters. If solidification is primary ferritic, hot cracking resistance is dramatically increased. It is also well known that laser welding needs a careful control of weld edge preparation and air gap between the edges. The dependence on edge quality can be decreased by using filler metal, either cold wire, hot wire or hybrid laser-arc welding. An additional role is high molybdenum contents where micro segregation can cause low local contents in weld which can decrease the corrosion properties, if filler metal is not used. Another feature in laser welding is its incomplete mixing, especially in thick section applications. It causes inhomogeneity, which can make uneven microstructure, as well as uneven mechanical and corrosion properties In this presentation the features of laser welding of thick section austenitic stainless steels are highlighted. Thick section (up to 60 mm) can be made by multi-pass laser or laser hybrid welding. In addition to using filler metal, it requires careful joint figure planning, laser head planning, weld parameter planning, weld filler metal selection, non-destructive and destructive testing and metallography to guarantee high-quality welds in practice. In addition some tests with micro segregation is presented. Also some examples of incomplete mixing is presented.

  9. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    PubMed

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement. PMID:11246957

  10. Use of plasma arc welding process to combat hydrogen metallic disbonding of austenitic stainless steel claddings

    SciTech Connect

    Alexandrov, O.A. ); Steklov, O.I.; Alexeev, A.V. )

    1993-11-01

    A separation type crack, metallic disbonding, occurred between austenitic stainless steel weld metal cladding and 2 1/4Cr-1Mo base metal in the hydrodesulfurizing reactor of an oil refining plant. For stainless steel cladding, the submerged arc welding (SAW) process with a strip electrode is usually applied, but the authors experimented with the plasma arc welding (PAW) process with hot wire electrode for the cladding. The metallic disbonding is considered to be attributed to hydrogen accumulation at the transition zone and has been generally studied on a laboratory scale using an autoclave. The authors used a electrolytic hydrogen charging technique for the sake of experimental simplicity and made a comparison with the results for gaseous hydrogen charging. The main conclusions obtained were follows: The PAW stainless steel weld metal cladding is more resistant to metallic disbonding with the PAW process is explained by the desirable microstructure and properties of the first layer of weld metal at the transition zone. Electrolytic hydrogen charging pretty well reproduces the results of autoclave gas phase charging.

  11. Austenitic stainless steels and high strength copper alloys for fusion components

    NASA Astrophysics Data System (ADS)

    Rowcliffe, A. F.; Zinkle, S. J.; Stubbins, J. F.; Edwards, D. J.; Alexander, D. J.

    1998-10-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop Al25), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop Al25 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface.

  12. Corrosion behavior of austenitic stainless steels in chloride containing ozone solutions

    SciTech Connect

    Pohjanne, P.

    1997-08-01

    Environmental concern about chlorinated organic compounds generated from traditional bleach plants has led to a development of new environmentally friendly bleaching processes. Recently, the development of ozone bleaching has progressed from pilot operations to production scale installations. Ozone is currently used as a bleaching agent of pulp as a replacement for chlorine based bleaching chemicals. Yet, there are few articles which are dealing with ozone and its effect to corrosion resistance of stainless steels or any other construction materials used in bleaching equipment. In this paper corrosion behavior of austenitic stainless steels, grades AISI 316, AISI 317LNM, UNS S31254 and UNS 32654 PM, were studied in simulated ozone bleaching environments. The laboratory tests showed that in ozone environments without chlorides the corrosion resistance of AISI 316 was superior to that of the high-alloyed stainless steels, due to the relatively low amount of alloying elements. The sequence was reversed in ozone environments containing chlorides. In the presence of chlorides AISI 316 was susceptible to localized corrosion whereas the high-alloyed UNS S31254 and UNS S 32654 PM were resistant to localized corrosion in all chloride concentrations examined.

  13. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    SciTech Connect

    Sayiram, G. Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  14. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    SciTech Connect

    Lucas, G.E.; Billone, M.; Pawel, J.E.; Hamilton, M.L.

    1995-12-31

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (e{sub u}) is well defined in terms of a plastic instability criterion, e{sub u} is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs.

  15. Five-parameter grain boundary analysis of a grain boundary-engineered austenitic stainless steel.

    PubMed

    Jones, R; Randle, V; Engelberg, D; Marrow, T J

    2009-03-01

    Two different grain boundary engineering processing routes for type 304 austenitic stainless steel have been compared. The processing routes involve the application of a small level of strain (5%) through either cold rolling or uni-axial tensile straining followed by high-temperature annealing. Electron backscatter diffraction and orientation mapping have been used to measure the proportions of Sigma3(n) boundary types (in coincidence site lattice notation) and degree of random boundary break-up, in order to gain a measure of the success of the two types of grain boundary engineering treatments. The distribution of grain boundary plane crystallography has also been measured and analyzed in detail using the five-parameter stereological method. There were significant differences between the grain boundary population profiles depending on the type of deformation applied. PMID:19250462

  16. Effect of Laser Peening without Coating on 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; kalainathan, S.

    2015-02-01

    Laser Peening without Coating (LPwC) is an innovative surface modification technique used for the in-suit preventive maintenance of nuclear reactor components using frequency doubled (green) laser. The advantage of LPwC is that the laser required for this technique is in milli joule range and the processes can perform in aqueous environment. This paper discussed the effect of LPwC on 316L austenitic stainless steel using low energy Nd: YAG laser with various laser pulse density. The base specimen and laser peened specimen were subjected to surface residual stress, surface morphology, micro hardness and potentiodynamic polarization studies. The laser peened surface exhibit significant improvement in surface compressive residual stress. The depth profile of micro hardness revealed higher strain hardening on laser peened specimens. Though corrosion potential reported an anodic shift,current density is found to be increased after LPwC for the specimen peened with higher pulse density.

  17. Deformation analysis on F138 austenitic stainless steel: ECAE and rolling

    NASA Astrophysics Data System (ADS)

    De Vincentis, N. S.; Avalos, M. C.; Kliauga, A. M.; Sordi, V. L.; Schell, N.; Brokmeier, H.-G.; Bolmaro, R. E.

    2014-08-01

    Twinning is an alternative mechanism to achieve ultra-fine grain structures through severe plastic deformation. The properties induced in a plastically deformed material are highly dependent on the degree of deformation, accumulated deformation energy and details on grain sizes and microstructure, which are on the scale of some tens of nanometers; therefore it is very important to understand misorientation distributions and dislocation arrays developed in the samples. In this work an F138 austenitic stainless steel was solution heat treated, deformed by Equal Channel Angular Extrusion (ECAE) at room temperature up to four passes, and rolled up to 70% thickness reduction at room temperature. The microstructure evolution was analyzed by x-ray diffraction and domain sizes calculated by Convolutional Multiple Whole Profile (CMWP) model, the misorientation boundaries were measured by electron backscattered diffraction (EBSD), and transmission electron microscopy. Mechanical behavior was tested by tensile tests.

  18. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  19. Influence of sulfate-reducing bacteria on alloy 625 and austenitic stainless steel weldments

    SciTech Connect

    Enos, D.G.; Taylor, S.R.

    1996-11-01

    A series of welded austenitic stainless steel and alloy 625 clad specimens were exposed to natural lake water inoculated with a mixed culture of anaerobic organisms high in sulfate-reducing bacteria. Total exposure was 300 days. The water and bacteria were taken from an actual service water system. Electrochemical testing included electrochemical impedance spectroscopy, monitoring of open-circuit potential (E{sub oc}), and zero resistance ammetry tests. Comparison of electrochemical and visual observations to sterile controls indicated electrochemical behavior of all materials in the test matrix was influenced by the bacteria. Polarization resistance and E{sub oc} values were reduced dramatically. Attack was along the fusion line of the weld. The magnitude of these effects followed a trend predicted by the pitting index for each material.

  20. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.

  1. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  2. TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, H. F.; Li, J. J.; Li, D. H.; Liu, R. D.; Lei, G. H.; Huang, Q.; Yan, L.

    2014-11-01

    Cross-sectional and bulk specimens of a 20% cold-worked 316 austenitic stainless steel (CW 316 SS) has been characterized by TEM, XRD and nanoindentation to determine the microstructural evolution and mechanical property changes of 316 SS after irradiation with 7 MeV Xe26+ ions. TEM results reveal the presence of dislocation loops with a number density of approximately 3 × 1022 m-3 and sizes between 3 to 10 nm due to the collapse of vacancy rich cores inside displacement cascades. Peak broadening observed in XRD diffraction patters reveal systematic changes to lattice parameters due to irradiation. The calculated indentation values in irradiated 316 SS were found to be much higher in comparison to the unirradiated specimen, indicating the dose dependent effect of irradiation on hardness. The relationship between irradiation induced microstructural evolution and the changes to the mechanical properties of CW 316 SS are discussed in the context of fluence and irradiation temperature.

  3. Development of corrosion-resistant improved Al-doped austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Kondo, Keietsu; Miwa, Yukio; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2011-10-01

    Aluminum-doped type 316L SS (316L/Al) has been developed for the purpose of suppressing the degradation of corrosion resistance induced by irradiation in austenitic stainless steels (SSs). The electrochemical corrosion properties of this material were estimated after Ni-ion irradiation at a temperature range from 330 °C to 550 °C. When irradiated at 550 °C up to 12 dpa, 316L/Al showed high corrosion resistance in the vicinity of grain boundaries (GBs) and in grains, while severe GB etching and local corrosion in grains were observed in irradiated 316L and 316 SS. It is supposed that aluminum enrichment was enhanced by high-temperature irradiation at GBs and in grains, to compensate for lost corrosion resistance induced by chromium depletion.

  4. Noncontact nonlinear resonant ultrasound spectroscopy to evaluate creep damage in an austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ohtani, T.; Kusanagi, Y.; Ishii, Y.

    2013-01-01

    In this paper, we described an evaluating technique of creep damage in an austenitic stainless steel by the combination with an electromagnetic acoustic transducer (EMAT) and the nonlinear resonant ultrasound spectroscopy (NRUS), which was a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity was manifest by a shift in the resonance frequency. The nonlinearity with NRUS showed a peak at 50 % and a minimum at 70 % of the total creep life. This nonlinearity measurement has a potential to assess creep damage advance and predict the creep remaining life of metals.

  5. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  6. A study on corrosion behavior of austenitic stainless steel in liquid metals at high temperature

    NASA Astrophysics Data System (ADS)

    Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Choi, Kyoung Joon; Bang, In Cheol; Kim, Ji Hyun

    2012-03-01

    The purpose of this study is to investigate the interaction between austenitic stainless steel, AISI 316L, and gallium liquid metal at a high temperature, for the potential application to advanced fast reactor coolants. Test specimens of AISI 316L were exposed to static gallium at 500 °C for up to 700 h in two different cover-gas conditions, including air and vacuum. Similar experimental tests were conducted in gallium alloy liquid metal environments, including Ga-14Sn-6Zn and Ga-8Sn-6Zn, in order to study the effect of addition of alloying elements. The results have shown that the weight change and metal loss of specimens were generally reduced in Ga-14Sn-6Zn and Ga-8Sn-6Zn compared to those in pure gallium at a high temperature.

  7. Composite model of microstructural evolution in austenitic stainless steel under fast neutron irradiation

    SciTech Connect

    Stoller, R.E.; Odette, G.R.

    1986-01-01

    A rate-theory-based model has been developed which includes the simultaneous evolution of the dislocation and cavity components of the microstructure of irradiated austenitic stainless steels. Previous work has generally focused on developing models for void swelling while neglecting the time dependence of the dislocation structure. These models have broadened our understanding of the physical processes that give rise to swelling, e.g., the role of helium and void formation from critically-sized bubbles. That work has also demonstrated some predictive capability by successful calibration to fit the results of fast reactor swelling data. However, considerable uncertainty about the values of key parameters in these models limits their usefulness as predictive tools. Hence the use of such models to extrapolate fission reactor swelling data to fusion reactor conditions is compromised.

  8. Microstructure and Nanoindentation Characterization of Low Temperature Hybrid Treated layer on Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Triwiyanto, Askar; Hussain, Patthi; Che Ismail, Mokhtar

    2013-06-01

    In this work, the hybrid treated layer on austenitic AISI 316L stainless steels were characterized to investigate the improvement on its surface properties. Characterization of this resulting layer was performed by FESEM (Field Emission Scanning Electron Microscope), USPM (Universal Scanning Probe Microscope) and nanoindentation. By using these methods, changes in the mechanical properties due to the diffusion of carbon and nitrogen at low temperature treatments have been traced. This hybrid treated sample has confirmed a considerable increase in hardness and a small rise in the elastic modulus compared to the untreated sample. It is found that all treated samples have enhance E/H ratio which exhibited the decreasing tendency to plastic deformation and reduced the mismatch of properties, while keeping deformation within the elastic range.

  9. Microstructural observations of HFIR-irratiated austenitic stainless steels including welds from JP9-16

    SciTech Connect

    Sawai, T.; Shiba, K.; Hishinuma, A.

    1996-04-01

    Austenitic stainless steels, including specimens taken from various electron beam (EB) welds, have been irradiated in HFIR Phase II capsules, JP9-16. Fifteen specimens irradiated at 300, 400, and 500{degrees}C up to 17 dpa are so far examined by a transmission electron microscope (TEM). In 300{degrees}C irradiation, cavities were smaller than 2nm and different specimens showed little difference in cavity microstructure. At 400{degrees}C, cavity size was larger, but still very small (<8 nm). At 500{degrees}C, cavity size reached 30 nm in weld metal specimens of JPCA, while cold worked JPCA contained a small (<5 nm) cavities. Inhomogeneous microstructural evolution was clearly observed in weld-metal specimens irradiated at 500{degrees}C.

  10. Evaluation of the biocompatibility of S-phase layers on medical grade austenitic stainless steels.

    PubMed

    Buhagiar, Joseph; Bell, Thomas; Sammons, Rachel; Dong, Hanshan

    2011-05-01

    S-phase surface layers were formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C). The presence of the S-phase was confirmed by microscopy, hardness testing, depth-profile analysis of chemical composition and X-ray Diffraction. Attachment and proliferation of mouse osteoblast MC3T3-E1 cells were tested on S-phase and untreated controls and the results demonstrated that all the S-phase layers formed were biocompatible under the conditions used. Cells adhered equally well to all samples but proliferation was enhanced on the treated materials. PMID:21437638

  11. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  12. Tensile properties and damage microstructures in ORR/HFIR-irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Hashimoto, N.; Robertson, J. P.; Jistukawa, S.; Sawai, T.; Hishinuma, A.

    2000-12-01

    The synergistic effect of displacement damage and helium generation under neutron irradiation on tensile behavior and microstructures of austenitic stainless steels was investigated. The steels were irradiated at 400°C in the spectrally-tailored (ST) Oak Ridge research reactor/high flux isotope reactor (ORR/HFIR) capsule to 17 dpa with a helium production of about 200 appm and in the HFIR target capsule to 21 and 34 dpa with 1590 and 2500 appm He, respectively. The increase of yield strength in the target irradiation was larger than that in the ST irradiation because of the high-number density of Frank loops, bubbles, voids, and carbides. Based on the theory of dispersed barrier hardening, the strengths evaluated from these clusters coincide with the measured increase of yield strengths. This analysis suggests that the main factors of radiation hardening in the ST and the target irradiation at 400°C are Frank-type loops and cavities, respectively.

  13. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  14. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  15. Role of microstructure and heat treatments on the desorption kinetics of tritium from austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chêne, J.; Brass, A.-M.; Trabuc, P.; Gastaldi, O.

    2007-02-01

    The liquid scintillation counting of solid samples (LSC-SS technique) was successfully used to study the role of microstructure and heat treatments on the behavior of residual tritium in several austenitic stainless steels (as-cast remelted tritiated waste, 316LN and 321 steels). The role of desorption annealing in the 100-600 °C range on the residual amount of tritium in tritiated waste was investigated. The residual tritium concentration computed from surface activity measurements is in good agreement with experimental values measured by liquid scintillation counting after full dissolution of the samples. The kinetics of tritium desorption recorded with the LSC-SS technique shows a significant desorption of residual tritium at room temperature, a strong barrier effect of thermal oxide films on the tritium desorption and a dependance of the tritium release on the steels microstructure. Annealing in the 300-600 °C range allows to desorb a large fraction of the residual tritium. However a significant trapping of tritium is evidenced. The influence of trapping phenomena on the concentration of residual tritium and on its dependance with the annealing temperature was investigated with different recrystallized and sensitized microstructures. Trapping is evidenced mainly below 150 °C and concerns a small fraction of the total amount of tritium introduced in austenitic steels. It presumably occurs preferentially on precipitates such as Ti(CN) or on intermetallic phases.

  16. Capabilities of Ultrasonic Techniques for Far-Side Examinations of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately length-size flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, austenitic stainless steel specimens with flaws located on the far-side of full penetration structural welds were used. The welds were fabricated with varied welding parameters to simulate as-built conditions in the components, and were examined with phased array technology at 2.0 MHz, and low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to reliably detect and length-size, but not depth size, notches and implanted fatigue cracks through the welds.

  17. Crack initiation in smooth fatigue specimens of austenitic stainless steel in light water reactor environments.

    SciTech Connect

    Chopra, O. K.; Smith, J. L.

    1999-04-08

    The fatigue design curves for structural materials specified in Section III of the ASME Boiler and Pressure Vessel Code are based on tests of smooth polished specimens at room temperature in air. The effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves; however, recent test data illustrate the detrimental effects of LWR coolant environments on the fatigue resistance of austenitic stainless steels (SSs). Certain loading and environmental conditions have led to test specimen fatigue lives that are significantly shorter than those obtained in air. Results of fatigue tests that examine the influence of reactor environments on crack initiation and crack growth of austenitic SSs are presented. Block loading was used to mark the fracture surface to determine crack length as a function of fatigue cycles in water environments, Crack lengths were measured by scanning electron microscopy. The mechanism for decreased fatigue life in LWR environments is discussed, and crack growth rates in the smooth fatigue specimens are compared with existing data from studies of crack growth rates.

  18. Flexural Strength and Toughness of Austenitic Stainless Steel Reinforced High-Cr White Cast Iron Composite

    NASA Astrophysics Data System (ADS)

    Sallam, H. E. M.; Abd El-Aziz, Kh.; Abd El-Raouf, H.; Elbanna, E. M.

    2013-12-01

    Flexural behavior of high-Cr white cast iron (WCI) reinforced with different shapes, i.e., I- and T-sections, and volume fractions of austenitic stainless steel (310 SS) were examined under three-point bending test. The dimensions of casted beams used for bending test were (50 × 100 × 500 mm3). Carbon and alloying elements diffusion enhanced the metallurgical bond across the interface of casted beams. Carbon diffusion from high-Cr WCI into 310 SS resulted in the formation of Cr-carbides in 310 SS near the interface and Ni diffusion from 310 SS into high-Cr WCI led to the formation of austenite within a network of M7C3 eutectic carbides in high-Cr WCI near the interface. Inserting 310 SS plates into high-Cr WCI beams resulted in a significant improvement in their toughness. All specimens of this metal matrix composite failed in a ductile mode with higher plastic deformation prior to failure. The high-Cr WCI specimen reinforced with I-section of 310 SS revealed higher toughness compared to that with T-section at the same volume fraction. The presence of the upper flange increased the reinforcement efficiency for delaying the crack growth.

  19. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  20. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M. D.

    2013-07-01

    Prior cold worked (PCW) titanium-modified 14Cr-15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16-24% on creep properties of IFAC-1 SS, a titanium modified 14Cr-15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K. Creep rupture life of the steel increased with the increase in PCW at 923 K. This has been attributed to the partial retention of prior cold work induced dislocations which facilitated the extensive precipitation of secondary Ti(C,N) particles on the stable dislocation substructure. Creep rupture life of the steel did not vary with PCW at 973 K due to softening by recrystallization and absence of secondary Ti(C,N).

  1. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-05-01

    The dynamics of deformation localization and dislocation channel formation were investigated in situ in a neutron-irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy (TEM). Channel formation was observed at ∼70% of the polycrystalline yield stress of the irradiated materials (σ0.2). It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the σ0.2, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young's modulus) in channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in "soft" grains with a high Schmid factor located near "stiff" grains with high elastic stiffness. The spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one-third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. In the AISI 304 steel, channels in grains oriented close to <0 0 1>||TA (tensile axis) and <1 0 1>||TA were twin free and grain with <1 1 1>||TA and grains oriented close to a Schmid factor maximum contained deformation twins.

  2. Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Saha, Saptarshi; Mukherjee, Manidipto; Pal, Tapan Kumar

    2015-03-01

    The present study elaborately explains the effect of welding parameters on the microstructure, texture, and mechanical properties of gas metal arc welded AISI 304 austenitic stainless steel sheet (as received) of 4 mm thickness. The welded joints were prepared by varying welding speed (WS) and current simultaneously at a fixed heat input level using a 1.2-mm-diameter austenitic filler metal (AISI 316L). The overall purpose of this study is to investigate the effect of the variation of welding conditions on: (i) Microstructural constituents using optical microscope and transmission electron microscope; (ii) Micro-texture evolution, misorientation distributions, and grain boundaries at welded regions by measuring the orientation data from electron back scattered diffraction; and (iii) Mechanical properties such as hardness and tensile strength, and their correlation with the microstructure and texture. It has been observed that the higher WS along with the higher welding current (weld metal W1) can enhance weld metal mechanical properties through alternation in microstructure and texture of the weld metal. Higher δ-ferrite formation and high-angle boundaries along with the <101> + <001> grain growth direction of the weld metal W1 were responsible for dislocation pile-ups, SFs, deformation twinning, and the induced martensite with consequent strain hardening during tensile deformation. Also, fusion boundary being the weakest link in the welded structure, failure took place mainly at this region.

  3. Thermal embrittlement of simulated heat-affected zone in cast austenitic stainless steels

    SciTech Connect

    Mimura, H.; Taniguchi, T.; Horii, Y.; Kume, R.; Uesugi, N.

    1998-08-01

    Metallurgical factors controlling thermal embrittlement in the heat-affected zone (HAZ) of cast austenitic stainless steels were investigated by using the simulated HAZ. It was shown that the simulated HAZ was more susceptible to the thermal embrittlement by aging at 673 K in correspondence with its higher tendency to age hardening and a higher content of ferrite than the parent casting. Electron microprobe analyzer measurement showed that application of the simulated thermal cycle gave a change in the chemical composition of the ferrite, which might be a cause of the higher age hardening of the ferrite in the simulated HAZ. This higher ferrite hardness had a good correlation with fine precipitates of presumably G-phase in the ferrite grain, which existed more in the simulated HAZ than in the parent casting, though it is not clear whether this correlation was only apparent. Ductility of the austenite portion was found to reduce remarkably when surrounded by the hard ferrite of a high fraction. Annealing after aging restored CTOD to some degree. Aging after fatigue cracking gave more embrittlement than a usual procedure for preparation of test specimens, i.e., fatigue cracking after aging.

  4. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGESBeta

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  5. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  6. In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2014-09-01

    The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.

  7. In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2014-12-01

    The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.

  8. Microstructures and Mechanical Properties of Nano/Ultrafine-Grained N-Bearing, Low-Ni Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Saeedipour, S.; Kermanpur, A.; Najafizadeh, A.; Abbasi, M.

    2015-02-01

    The nitrogen (N)-bearing austenitic stainless steels are new materials with interesting mechanical properties such as high strength and ductility, desirable toughness and work hardening, and good corrosion resistance. This work attempted to investigate the effect of N addition from 0.08 to 0.35 wt.% on grain refinement of the 201L austenitic stainless steel using the martensite thermomechanical process. This process was composed of cold rolling up to the thickness reduction of 90 % followed by reversion annealing at 800 °C for 60 and 1800 s. It was found that increasing N content resulted in an increase in the austenite grain size for short annealing duration (e.g. 60 s), but caused a decrease in the austenite grain size for long annealing duration (e.g. 1800 s). The smallest austenite grain size of about 150 nm was achieved for the 201L steel containing 0.08 wt.% N after reversion annealing at 800 °C for 60 s. The mechanical properties of the reversion-annealed N-bearing steels were enhanced due to both N alloying and grain refinement.

  9. Effect of Treatment Time on the Microstructure of Austenitic Stainless Steel During Low-Temperature Liquid Nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Zhang, Qiang; Zeng, Dezhi; Fan, Hongyuan

    2014-09-01

    The effect of treatment time on the microstructure of AISI 304 austenitic stainless steel during liquid nitrocarburizing (LNC) at 703 K (430 °C) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Experimental results revealed that the modified layer was covered with the alloy surface and the modified layer depth increased extensively from 2 to 33.4 μm with increasing treatment time. SEM and XRD showed that when the 304 stainless steel sample was subjected to LNC at 703 K (430 °C) for less than 4 hours, the main phase of the modified layer was expanded austenite. When the treatment time was prolonged to 8 hours, the abundant expanded austenite was formed and it partially transformed into CrN and ferrite subsequently. With the increased treatment time, more and more CrN precipitate transformed in the overwhelming majority zone in the form of a typical dendritic structure in the nearby outer part treated for 40 hours. Still there was a single-phase layer of the expanded austenite between the CrN part and the inner substrate. TEM showed the expanded austenite decomposition into the CrN and ferrite after longtime treatment even at low temperature.

  10. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  11. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    SciTech Connect

    Prajitno, Djoko Hadi Syarif, Dani Gustaman

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  12. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    NASA Astrophysics Data System (ADS)

    Prajitno, Djoko Hadi; Syarif, Dani Gustaman

    2014-03-01

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO2. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe2O3. Minor element such as Cr2O3 is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO2 appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  13. Effects of fluoride and other halogen ions on the external stress corrosion cracking of Type 304 austenitic stainless steel

    SciTech Connect

    Whorlow, K.M.; Hutto, F.B. Jr.

    1997-07-01

    The drip procedure from the Standard Test Method for Evaluating the Influence of Thermal Insulation on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel (ASTM C 692-95a) was used to research the effect of halogens and inhibitors on the External Stress Corrosion Cracking (ESCC) of Type 304 stainless steel as it applies to Nuclear Regulatory Commission Regulatory Guide 1.36, Nonmetallic Thermal Insulation for Austenitic Stainless Steel. The solutions used in this research were prepared using pure chemical reagents to simulate the halogens and inhibitors found in insulation extraction solutions. The results indicated that sodium silicate compounds that were higher in sodium were more effective for preventing chloride-induced ESCC in Type 304 austenitic stainless steel. Potassium silicate (all-silicate inhibitor) was not as effective as sodium silicate. Limited testing with sodium hydroxide (all-sodium inhibitor) indicated that it may be effective as an inhibitor. Fluoride, bromide, and iodide caused minimal ESCC which could be effectively inhibited by sodium silicate. The addition of fluoride to the chloride/sodium silicate systems at the threshold of ESCC appeared to have no synergistic effect on ESCC. The mass ratio of sodium + silicate (mg/kg) to chloride (mg/kg) at the lower end of the NRC RG 1.36 Acceptability Curve was not sufficient to prevent ESCC using the methods of this research.

  14. EFFECT OF MINOR ADDITIONS OF HYDROGEN TO ARGON SHIELDING GAS WHEN WELDING AUSTENITIC STAINLESS STEEL WITH THE GTAW PROCESS

    SciTech Connect

    CANNELL, G.R.

    2004-12-15

    This paper provides the technical basis to conclude that the use of hydrogen containing shielding gases during welding of austenitic stainless steels will not lead to hydrogen induced cracking (HIC) of the weld or weld heat affected zone. Argon-hydrogen gas mixtures, with hydrogen additions up to 35% [1], have been successfully used as the shielding gas in gas tungsten arc welding (GTAW) of austenitic stainless steels. The addition of hydrogen improves weld pool wettability, bead shape control, surface cleanliness and heat input. The GTAW process is used extensively for welding various grades of stainless steel and is preferred when a very high weld quality is desired, such as that required for closure welding of nuclear materials packages. The use of argon-hydrogen gas mixtures for high-quality welding is occasionally questioned, primarily because of concern over the potential for HIC. This paper was written specifically to provide a technical basis for using an argon-hydrogen shielding gas in conjunction with the development, at the Savannah River Technology Center (SRTC), of an ''optimized'' closure welding process for the DOE standardized spent nuclear fuel canister [2]. However, the basis developed here can be applied to other applications in which the use of an argon-hydrogen shielding gas for GTAW welding of austenitic stainless steels is desired.

  15. A Comparison of Ultrasonic Flaw Responses as Observed through Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2008-01-01

    A study was conducted to assess ultrasonic techniques for detection and sizing of flaws from the opposite side of wrought austenitic piping welds. A series of stainless steel specimens with implanted flaws were examined using phased-array ultrasonic probes. These examinations were conducted from both sides of the full-penetration structural piping welds, with emphasis on comparing the responses from the far-side inspection. The types of flaws examined include thermal fatigue cracks, saw cuts, and service-induced intergranular stress corrosion cracks (IGSCC). The flaws were examined using three phased-array probes: a 2-MHz shear-wave probe, a 1.5-MHz longitudinal-wave probe, and a “mini” 2-MHz longitudinal-wave probe. The sound fields for each probe were modeled in stainless steel to assure proper insonification at the depths and angles used in the tests. This paper describes the results of the sound field modeling, and compares the responses of the various flaws from the near and far side of the welds.

  16. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  17. Partial transient liquid phase diffusion bonding of Zircaloy-4 to stabilized austenitic stainless steel 321

    SciTech Connect

    Atabaki, M. Mazar; Hanzaei, A. Talebi

    2010-10-15

    An innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by a partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength and interlayer thickness has been studied. The diffusion of Fe, Cr, Ni and Zr has been investigated by scanning electron microscopy and energy dispersive spectroscopy elemental analyses. Results showed that control of the heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid-state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength of all the bonded specimens was found around 480-670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of the bonded specimens as a result of the transfer of atoms between the interlayer and the matrix during bonding. This technique provides a reliable method of bonding zirconium alloy to stainless steel.

  18. Tensile behavior of an austenitic stainless steel subjected to multidirectional forging

    NASA Astrophysics Data System (ADS)

    Tikhonova, M.; Sorokopudova, J.; Bondareva, E.; Belyakov, A.; Kaibyshev, R.

    2014-08-01

    The mechanical behavior of a chromium-nickel austenitic stainless steel with submicrocrystalline structures produced by multidirectional forging (MDF) to a total strain of ~ 4 at temperatures of 700 and 600°C was studied. This processing resulted in the formation of uniform ultrafine grained structure with an average crystallite size of 360 and 300 nm, respectively, and high dislocation density. The tensile tests were carried out in a wide temperature range 20-650°C. At ambient temperature, the yield stress (YS) comprised 900 MPa and 730 MPa in the samples subjected to MDF at 600 and 700°C, respectively. It should be noted that this strength was achieved along with elongations of 16% and 22% in the samples subjected to MDF at 600 and 700°C. The YS decreased and elongation-to-failure tends to increase with increasing test temperature and approaching 235 MPa and 51%, respectively, at 650°C. Effect of temperature on mechanical behavior of stainless steel with submicrocrystalline structure is discussed.

  19. Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Khan, Z.; Ahmed, M.

    1996-04-01

    This paper addresses the influence of cyclic stress-induced martensitic transformation on fatigue crack growth rates in metastable austenitic stainless steels. At low applied stress and mean stress values in AISI type 301 stainless steel, fatigue crack growth rate is substantially retarded due to a cyclic stress-induced γ-α' and γ-ɛ martensitic transformation occurring at the crack-tip plastic zone. It is suggested that the transformation products produce a compressive residual stress at the tip of the fatigue crack, which essentially lowers the effective stress intensity and hence retards the fatigue crack growth rate. At high applied stress or mean stress values, fatigue crack growth rates in AISI type 301 steels become almost equal to those of stable AISI type 302 alloy. As the amount of transformed products increases (with an increase in applied or mean stress), the strain-hardening effect brought about by the transformed martensite phase appears to accelerate fatigue crack growth, offsetting the contribution from the compressive residual stress produced by the positive volume change of γ → α' or ɛ transformation.

  20. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    SciTech Connect

    Chopra, O.K.; Gavenda, D.J.

    1997-07-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of {approx} 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At {approx} 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of {approx} 2 than in water containing {ge} 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed.

  1. Attachment of Listeria monocytogenes to an austenitic stainless steel after welding and accelerated corrosion treatments.

    PubMed

    Mai, Tam L; Sofyan, Nofrijon I; Fergus, Jeffrey W; Gale, William F; Conner, Donald E

    2006-07-01

    Austenitic stainless steels, widely used in food processing, undergo microstructural changes during welding, resulting in three distinctive zones: weld metal, heat-affected zone, and base metal. This research was conducted to determine the attachment of Listeria monocytogenes in these three zones before and after exposure to a corrosive environment. All experiments were done with tungsten inert gas welding of type 304 stainless steel. The four welding treatments were large or small beads with high or low heat. After welding, all surfaces were polished to an equivalent surface finish. A 10-microl droplet of an L. monocytogenes suspension was placed on the test surfaces. After 3 h at 23 degrees C, the surfaces were washed and prepared for scanning electron microscopy, which was used to determine attachment of L. monocytogenes by counting cells remaining on each test surface. In general, bacteria were randomly distributed on each surface type. However, differences in surface area of inoculum due to differences in interfacial energy (as manifested by the contact angle) were apparent and required normalization of bacterial count data. There were no differences (P > 0.05) in numbers of bacteria on the three surface zones. However, after exposure to the corrosive medium, numbers of bacteria on the three zones were higher (P < 0.05) than those on the corresponding zones of noncorroded surfaces. For the corroded surfaces, bacterial counts on the base metal were lower (P < 0.05) than those on heat-affected and weld zones. PMID:16865881

  2. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  3. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-04-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  4. Characterization of oxide layers grown on D9 austenitic stainless steel in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, P.; Hawley, M.; Koury, D.; Swadener, J. G.; Welch, J.; Johnson, A. L.; Mori, G.; Li, N.

    2008-04-01

    Lead bismuth eutectic (LBE) is a possible coolant for fast reactors and targets in spallation neutron sources. Its low melting point, high evaporation point, good thermal conductivity, low reactivity, and good neutron yield make it a safe and high performance coolant in radiation environments. The disadvantage is that it is a corrosive medium for most steels and container materials. This study was performed to evaluate the corrosion behavior of the austenitic stainless steel D9 in oxygen controlled LBE. In order to predict the corrosion behavior of steel in this environment detailed analyses have to be performed on the oxide layers formed on these materials and various other relevant materials upon exposure to LBE. In this study the corrosion/oxidation of D9 stainless steel in LBE was investigated in great detail. The oxide layers formed were characterized using atomic force microscopy, magnetic force microscopy, nanoindentation, and scanning electron microscopy with wavelength-dispersive spectroscopy (WDS) to understand the corrosion and oxidation mechanisms of D9 stainless steel in contact with the LBE. What was previously believed to be a simple double oxide layer was identified here to consist of at least 4 different oxide layers. It was found that the inner most oxide layer takes over the grain structure of what used to be the bulk steel material while the outer oxide layer consists of freshly grown oxides with a columnar structure. These results lead to a descriptive model of how these oxide layers grow on this steel under the harsh environments encountered in these applications.

  5. LOCALIZED CORROSION OF AUSTENITIC STAINLESS STEELEXPOSED TO MIXTURES OF PLUTONIUM OXIDE AND CHLORIDE SALTS

    SciTech Connect

    Zapp, P; Kerry Dunn, K; Jonathan Duffey, J; Ron Livingston, R; Zane Nelson, Z

    2008-11-21

    Laboratory corrosion tests were conducted to investigate the corrosivity of moist plutonium oxide/chloride (PuO{sub 2}/Cl-) salt mixtures on 304L and 316L stainless steel coupons. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The two flat coupons were placed so that the solid oxide/salt mixture contacted about one half of the coupon surface. One teardrop coupon was placed in contact with solid mixture; the second teardrop was in contact with the headspace gas only. The mixtures were loaded with nominally 0.5 wt % water under a helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration and on the composition of the salt. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas, nor in coupons exposed to other mixtures with either 0.92 wt% CaCl{sub 2} or no CaCl{sub 2}. The corrosion results point to the significance of the interaction between water loading and the concentration of the hydrating salt CaCl{sub 2} in the susceptibility of austenitic stainless steels to corrosion.

  6. Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Mohtadi-Bonab, M. A.; Basu, R.; Nezakat, M.; Kermanpur, A.; Szpunar, J. A.; Nahar, S.; Baghpanah, A. H.

    2015-02-01

    The crystallographic orientation of cold-rolled 316L stainless steel is investigated during reversion of strain-induced ά-martensite to nano/ultrafine-grained austenite upon annealing at 750 °C for different holding times; 1, 5, 15, and 30 min. The texture of nanoscale reverted austenite reveals a Brass ({110}<112>) and a Goss ({110}<100>) textures after annealing for 1 min. No new texture component is appeared through the completion of martensite to austenite reversion for 5 min, but the intensity of Brass and Goss textures are increased. Further annealing for 30 min results in a stronger texture with higher intensity for Brass compared to Goss.

  7. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-06-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  8. TEM microscopical examination of the magnetic domain boundaries in a super duplex austenitic-ferritic stainless steel

    SciTech Connect

    Fourlaris, G.; Gladman, T.; Maylin, M.

    1996-12-31

    It has been demonstrated in an earlier publication that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic-ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. In addition, the modification of the duplex austenitic-ferritic microstructure, via a heat treatment route, results in a finer austenite `island` dispersion in a ferritic matrix and provides an attractive option for further modification of the magnetic characteristics of the material. However, the 2205 type DSS exhibits {open_quotes}marginal{close_quotes} corrosion protection in a marine environment, so that a study has been undertaken to examine whether the beneficial effects exhibited by the 2205 DSS, are also present in a 2507 type super-DSS.

  9. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  10. Improvement of ultrasonic characteristics in butt-welded joint of austenitic stainless steel using magnetic stirring method

    SciTech Connect

    Tanosaki, M.; Yoshikawa, K.; Arakawa, T.

    1995-08-01

    Magnetic Stirring Method of Tungsten Inert Gas(TIG) Welding are applied to butt-welded joint of austenitic stainless steel. The purpose of this method is to refine the welded structure and to improve the ultrasonic characteristics. In the conventional method of ultrasonic test in austenitic stainless steel weldments, dendritic solidification structure of weldment prevents smooth ultrasonic beam transmission. The tests are performed in three welding conditions; One is conventional TIG welding (without magnetic stirring), the other two are TIG welding using magnetic stirring method. Each test piece is evaluated by observing macro structure of cross section and by several ultrasonic tests examining pulse amplitudes, beam path length and proceeding beam direction. The detectability of artificial notches in weldment is also investigated and compared.

  11. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik; Kim, Ji Hyun

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water.

  12. Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H.

    2007-04-01

    The authors have studied the influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel thin films. Transmission electron microscopy shows that the volume fraction of twinned grains increases with increasing deposition rate, whereas the average columnar grain size and twin spacing stay approximately unchanged. These experimental results agree qualitatively with their analytical model that predicts deposition rate dependent formation of growth twins. The film hardness increases monotonically with increasing volume fraction of twinned grains.

  13. Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films

    SciTech Connect

    Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H.

    2007-04-09

    The authors have studied the influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel thin films. Transmission electron microscopy shows that the volume fraction of twinned grains increases with increasing deposition rate, whereas the average columnar grain size and twin spacing stay approximately unchanged. These experimental results agree qualitatively with their analytical model that predicts deposition rate dependent formation of growth twins. The film hardness increases monotonically with increasing volume fraction of twinned grains.

  14. Capabilities of Ultrasonic Techniques for the Far-Side Examination of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-02-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, four circumferential welds in 610mm diameter, 36mm thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and with low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  15. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels - A literature review

    NASA Astrophysics Data System (ADS)

    Schibli, Raluca; Schäublin, Robin

    2013-11-01

    Irradiated austenitic stainless steels, because of their low stacking fault energy and high shear modulus, should exhibit a high ratio of stacking fault tetrahedra relative to the overall population of radiation induced nanometric defects. Experimental observations of stacking fault tetrahedra by transmission electron microscopy in commercial-purity stainless steels are however scarce, while they abundantly occur in high-purity or model austenitic alloys irradiated at both low and high temperatures, but not at around 673 K. In commercial alloys, the little evidence of stacking fault tetrahedra does not follow such a trend. These contradictions are reviewed and discussed. Reviewing the three possible formation mechanisms identified in the literature, namely the Silcox and Hirsch Frank loop dissociation, the void collapse and the stacking fault tetrahedra growth, it seems that the later dominates under irradiation. Black dots, are very small defect clusters, smaller than 1 nm in diameter, which cannot be resolved in TEM being below its spatial resolution in diffraction contrast. They can be created directly from the collapse of the cascade as undefined 3D clusters of point defects, namely vacancies, interstitials or impurities, or could be already well-defined nanometric voids, vacancy or interstitial dislocation loops [7]. Dislocation loops, either Frank or perfect dislocation loops, are generated by vacancies or interstitials coalescing as platelets between two adjacent {1 1 1} close-packed planes. Perfect loops are scarcer than Frank loops. For irradiation temperatures below 573 K some authors identified that Frank loops are of interstitial nature, while black dots are predominantly of vacancy nature [8-11]. More recent studies [12] contradict this statement and conclude that Frank loops with sizes in the range of 1-30 nm can be either vacancy or interstitial type. Stacking fault tetrahedra (SFT) are three-dimensional stacking fault configurations in the shape of

  16. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel.

    PubMed

    Krawczynska, Agnieszka Teresa; Lewandowska, Malgorzata; Pippan, Reinhard; Kurzydlowski, Krzysztof Jan

    2013-05-01

    In the present study, the high pressure torsion (HPT) was used to refine the grain structure down to the nanometer scale in an austenitic stainless steel. The principles of HPT lay on torsional deformation under simultaneous high pressure of the specimen, which results in substantial reduction in the grain size. Disks of the 316LVM austenitic stainless steel of 10 mm in diameter were subjected to equivalent strains epsilon of 32 at RT and 450 degrees C under the pressure of 4 GPa. Furthermore, two-stage HPT processes, i.e., deformation at room temperature followed by deformation at 450 degrees C, were performed. The resulting microstructures were investigated in TEM observations. The mechanical properties were measured in terms of the microhardness and in tensile tests. HPT performed at two-stage conditions (firstly at RT next at 450 degrees C) gives similar values of microhardness to the ones obtained after deforming only at 450 degrees C but performed to higher values of the overall equivalent strain epsilon. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel was evaluated. PMID:23858838

  17. Modelling the evolution of composition-and stress-depth profiles in austenitic stainless steels during low-temperature nitriding

    NASA Astrophysics Data System (ADS)

    Jespersen, Freja N.; Hattel, Jesper H.; Somers, Marcel A. J.

    2016-02-01

    Nitriding of stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behaviour. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume expansion that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen dissolution. In the present paper solid mechanics was combined with thermodynamics and diffusion kinetics to simulate the evolution of composition-depth and stress-depth profiles resulting from nitriding. The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded austenite, short range ordering (trapping) of nitrogen atoms by chromium atoms, and the effect of composition-induced stress on surface concentration and diffusive flux. The effect of plasticity and concentration-dependence of the yield stress was also included.

  18. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    NASA Astrophysics Data System (ADS)

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-06-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  19. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    NASA Astrophysics Data System (ADS)

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-04-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  20. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yin, Xue; Sun, Yanhui; Yang, Yindong; Bai, Xuefeng; Barati, Mansoor; Mclean, Alex

    2016-04-01

    The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.

  1. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Miura, Terumitsu; Fujii, Katsuhiko; Fukuya, Koji

    2015-02-01

    Effects of helium (He) on grain boundary (GB) fracture of austenitic stainless steel were investigated by micro-tensile tests. Micro-bicrystal tensile specimens were fabricated for non-coincidence site lattice boundaries of He ion-irradiated 316 stainless steel by focused ion beam (FIB) micro-processing. Micro-tensile tests were conducted in a vacuum at room temperature in the FIB system. Specimens containing more than 2 at.% He fractured at GBs. The criteria for brittle fracture occurrence on GBs were: (1) He concentrations higher than 2 at.%; (2) formation of He bubbles on the GBs with less than a 5 nm spacing; and (3) matrix hardening to more than 4.6 GPa (nano-indentation hardness). The fracture stress of GB brittle fracture was lower for a specimen with higher He concentration while the size and areal density of the GB He bubbles were the same. The specimens that contained 10 at.% He and had been annealed at 923 K after irradiation fractured at the GB nominally in a brittle manner; however the inter-bubble matrix at the GB experienced ductile fracture. The annealing caused He bubbles to grow but decreased the areal density so that the spacing of the GB He bubbles widened and the hardness decreased, therefore the fracture mode changed from brittle to ductile. The findings revealed that He promotes GB fracture by weakening the GB strength and hardening the matrix due to the formation of He bubbles both on GBs and in the matrix. In addition, the findings suggested that GB segregated He atoms may have a role in GB fracture.

  2. Tensile flow and work-hardening behavior of a Ti-modified austenitic stainless steel

    SciTech Connect

    Sivaprasad, P.V.; Venugopal, S.; Venkadesan, S.

    1997-01-01

    The flow-stress data of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel in the temperature range 300 to 1,023 K was analyzed in terms of Ludwigson and Voce equations. The parameters of these equations were critically examined with respect to the effect of Ti/C ratio and test temperature. It was found that the Ludwigson equation described the flow behavior adequately up to the test temperature of 923 K, whereas the Voce equation could be employed in the full temperature range. The peaks/plateaus observed in the variation of these parameters as a function of temperature in the intermediate temperature range have been identified as one of the manifestations of dynamic strain aging (DSA). Also, the variation of these parameters with temperature clearly could bring out the different domains of DSA observed in this alloy. The work-hardening analysis of the flow-stress data revealed that in the DSA regime, the onset of stage III hardening is athermal.

  3. Grain boundary engineering in a thermo-mechanically processed Nb-stabilized austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Yunquera, A.; Jorge-Badiola, D.; Gutiérrez, I.; Iza-Mendia, A.

    2015-04-01

    Three different thermo-mechanical strategies—annealing, strain recrystallization and strain annealing—were applied to a Nb-stabilized 304H austenitic stainless steel in order to study their effects on grain boundary character distribution (GBCD). An Electron Backscatter Diffraction (EBSD) analysis revealed specific combinations of cold reduction-temperature-time that favor annealing twinning. A uniform increase in microstructural size and special boundaries (particularly for Σ3, Σ9 and Σ27 boundaries) was achieved under strain annealing conditions (low cold reductions) and long times at high temperatures (≥ 990°C). These conditions provide a high fraction of special boundaries (about 80%), which replace the random grain boundary network and thus optimize the GBCD. The profuse presence of Σ3n boundaries is attributed to the geometric interaction of twin-related variants during grain boundary migration. In addition to all this, precipitation takes place at the temperature range where optimum GBCD is achieved. The significance of precipitation in the different strategies was also tackled.

  4. Strengthening of σ phase in a Fe20Cr9Ni cast austenite stainless steel

    SciTech Connect

    Wang, Y.Q.; Han, J.; Yang, B.; Wang, X.T.

    2013-10-15

    The strengthening mechanism of σ phase in a Fe20Cr9Ni cast austenite stainless steel used for primary coolant pipes of nuclear power plants has been investigated. The yield and ultimate tensile strengths of aged specimens increased comparing with those of the unaged ones. It was found that the increase of strengths is due to the hard and brittle (σ + γ{sub 2}) structure which decomposed from α phase in the steel. Fracture surfaces of specimens after in situ tensile test showed that the inhibition of (σ + γ{sub 2}) structure on the dislocation movements was more significant than ferrite although cracks started predominately at σ/γ{sub 2} interfaces. The (σ + γ{sub 2}) structure behaves like a fiber reinforced composite material. - Highlights: • The strengthening mechanism of σ phase in a Fe20Cr9Ni CASS is investigated. • The yield and ultimate tensile strengths increase with increasing of σ phase. • The increase of strengths is due to hard and brittle (σ + γ{sub 2}) structure. • The (σ + γ{sub 2}) structure in CASS behaves like a fibre reinforced composite material. • The σ/γ{sub 2} and α/σ/γ{sub 2} boundaries hinder the movement of dislocation.

  5. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    SciTech Connect

    Shiba, Kiyoyuki; Ioka, Ikuo; Jitsukawa, Shiro; Hamada, Shozo; Hishinuma, Atkinichi; Robertson, J.P.

    1999-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400 C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/.dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small not only for base metal specimens but also for the weld joint and the weld metal specimens.

  6. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    DOE PAGESBeta

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; et al

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size ofmore » ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.« less

  7. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Alexandreanu, B.; Chen, W.-Y.; Natesan, K.; Li, Z.; Yang, Y.; Rao, A. S.

    2015-11-01

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  8. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part II- Irradiation Dose Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on stable and unstable deformations and fracture behaviors in irradiated austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative technique in finite element simulation was used to obtain the equivalent true stress-true strain data from experimental tensile curves. It was shown that the strain hardening rate was retained at a high level on unstable deformation after significant irradiation and was independent of the irradiation dose up to the initiation of a localized necking. The equivalent fracture stress was nearly independent of irradiation dose before the damage (embrittlement) mechanism changed. In low dose range (< ~ 2dpa), the fracture strain and tensile fracture energy decreased rapidly with dose and at higher doses they decreased gradually to saturated levels, which were still high for irradiated materials. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation dose than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  9. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part I- Temperature Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from the tensile test data obtained at -150 ~ 450oC using an iterative technique of finite element simulation. Analysis was largely focused on the necking deformation and fracture: Key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was still retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The values of the parameters except for fracture strain decreased with temperature up to 200oC and were saturated as the temperature came close to the maximum test temperature 450oC. The fracture strain increased and had a maximum at -50oC to 20oC before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.

  10. Damage structure of austenitic stainless steel 316LN irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Grossbeck, M.L.; Rowcliffe, A.F.; Wakai, E.

    1998-03-01

    TEM disk specimens of austenitic stainless steel 316LN irradiated to damage levels of about 3 dpa at irradiation temperatures of either about 90 C or 250 C have been investigated by using transmission electron microscopy. The irradiation at 90 C and 250 C induced a dislocation loop density of 3.5 {times} 10{sup 22} m{sup {minus}3} and 6.5 {times} 10{sup 22} m{sup {minus}3}, a black dot density of 2.2 {times} 10{sup 23} m{sup {minus}3} and 1.6 {times} 10{sup 23} m{sup {minus}3}, respectively, in the steels, and a high density (<1 {times} 10{sup 22} m{sup {minus}3}) of precipitates in matrix. Cavities could be observed in the specimens after the irradiation. It is suggested that the dislocation loops, the black dots, and the precipitates cause irradiation hardening, an increase in the yield strength and a decrease in the uniform elongation, in the 316LN steel irradiated at low temperature.

  11. Residual Stresses Due to Circumferential Girth Welding of Austenitic Stainless Steel Pipes

    NASA Astrophysics Data System (ADS)

    Tarak, Farzan

    Welding, as a joining method in fabrication of engineering products and structural elements, has a direct influence on thermo-mechanical behavior of components in numerous structural applications. Since these thermo-mechanical behaviors have a major role in the life of welding components, predicting thermo-mechanical effects of welding is a major factor in designing of welding components. One of the major of these effects is generation of residual stresses due to welding. These residual stresses are not the causes of failure in the components solely, but they will add to external loads and stresses in operating time. Since, experimental methods are time consuming and expensive, computational simulation of welding process is an effective method to calculate these residual stresses. This investigation focuses on the evaluation of residual stresses and distortions due to circumferential girth welding of austenitic stainless steel pipes using the commercial finite element software ESI Visual-Environment and SYSWELDRTM to simulate welding process. Of particular importance is the comparison of results from three different types of mechanics models: 1) Axisymmetric, 2) Shell, and 3) Full 3-D.

  12. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  13. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    PubMed Central

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments. PMID:25588326

  14. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.

    PubMed

    Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan

    2015-12-01

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. PMID:26142697

  15. Microsegregation in high-molybdenum austenitic stainless steel laser beam and gas tungsten arc welds

    SciTech Connect

    Kujanpaeae, V.P.; David, S.A.

    1986-01-01

    An austenitic stainless steel with 6% molybdenum (thickness 6 mm) was welded using laser beam (LB) and gas tungsten arc (GTA) processes at various welding speeds. Depending on the welding speed the primary dendrite spacing ranged from 12 to 17 ..mu..m and from 2 to 7 ..mu..m for the GTA and LB welds, respectively. Extensive segregation of molybdenum was observed in the GTA welds. The segregation ratio for molybdenum, C/sub ID//C/sub D/, was found to be 1.9 in the GTA weld, and 1.2 in the LB weld. Distribution of iron, chromium and nickel was found nearly uniform in both welds. A recovered microstructure was observed after a post-weld annealing heat treatment. Annealing had a profound effect on the molybdenum segregation ratio in the laser weld. The critical pitting temperature (CPT) determined by a standard test was 55/sup 0/C for welds made using both processes, whereas it was 75/sup 0/C for the base metal. Upon homogenization the CPT of the laser beam weld increased to the base metal value, while that of the gas tungsten arc weld remained at 60/sup 0/C.

  16. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    SciTech Connect

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  17. Welding-induced mechanical properties in austenitic stainless steels before and after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Stoenescu, R.; Schäublin, R.; Gavillet, D.; Baluc, N.

    2007-03-01

    The effects of neutron irradiation on the mechanical properties of welded joints made of austenitic stainless steels have been investigated. The materials are welded AISI 304 and AISI 347, so-called test weld materials, irradiated with neutrons at 573 K to doses of 0.3 and 1.0 dpa. In addition, an AISI 304 from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 573 K, was investigated. The mechanical properties of heat-affected zones and base materials were analysed before and after irradiation. Tensile parameters were determined at room temperature and at 573 K, for all materials and irradiation conditions. In the test weld materials it is found that radiation hardening is lower and loss of ductility is higher in the heat-affected zone than in the base material. In the in-service material radiation hardening is about the same in heat-affected zone and base material. After irradiation, deformation takes place by stacking faults and twins, at both room temperature and high temperature, contrary to unirradiated materials, where deformation takes place by twinning at room temperature and by dislocation cells at high temperature. No defect free channels are observed.

  18. Welding-induced microstructure in austenitic stainless steels before and after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Stoenescu, R.; Schäublin, R.; Gavillet, D.; Baluc, N.

    2007-02-01

    The effects of neutron irradiation on the microstructure of welded joints made of austenitic stainless steels have been investigated. The materials were welded AISI 304 and AISI 347, so-called test weld materials, and irradiated with neutrons at 300 °C to 0.3 and 1.0 dpa. In addition, an AISI 304 type from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 300 °C, was investigated. The microstructure of heat-affected zones and base materials was analysed before and after irradiation, using transmission electron microscopy. Neutron diffraction was performed for internal stress measurements. It was found that the heat-affected zone contains, relative to the base material, a higher dislocation density, which relates well to a higher residual stress level and, after irradiation, a higher irradiation-induced defect density. In both materials, the irradiation-induced defects are of the same type, consisting in black dots and Frank dislocation loops. Careful analysis of the irradiation-induced defect contrast was performed and it is explained why no stacking fault tetrahedra could be identified.

  19. Flux effect on the ion-beam nitriding of austenitic stainless-steel AISI 304L

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Pranevicius, L.; Barradas, N.P.

    2005-06-15

    The effect of flux and Ar pretreatment during ion-beam nitriding of austenitic stainless steel is investigated. The ion energy and temperature were 1.2 keV and 400 deg. C, respectively, the ion current densities were 0.5, 0.67, and 0.83 mA cm{sup -2}. The nitrogen distribution profiles were measured using nuclear reaction analysis. The obtained nitrogen distribution profiles were analyzed by the means of the nitrided layer thickness evolution due to sputtering and diffusion and the model of trapping-detrapping. Both approaches could fit well the experimental results, however, different diffusion coefficients have to be assumed for each current density. In addition, the diffusion coefficients are higher for higher current densities. On the other hand, it is shown that the pretreatment with Ar-ion beam at nitriding temperatures produces only a thermal effect without any other influence on the following nitrogen diffusion. The results are discussed in relation with surface and temperature effects and atomic transport mechanisms.

  20. Irradiation testing of 316L(N)-IG austenitic stainless steel for ITER

    NASA Astrophysics Data System (ADS)

    van Osch, E. V.; Horsten, M. G.; de Vries, M. I.

    1998-10-01

    In the frame work of the European Fusion Technology Programme and the International Thermonuclear Experimental Reactor (ITER), ECN is investigating the irradiation behaviour of the structural materials for ITER. The main structural material for ITER is austenitic stainless steel Type 316L(N)-IG. The operating temperatures of (parts of) the components are envisaged to range between 350 and 700 K. A significant part of the dose-temperature domain of irradiation conditions relevant for ITER has already been explored, there is, however, very little data at about 600 K. Available data tend to indicate a maximum in the degradation of the mechanical properties after irradiation at this temperature, e.g. a minimum in ductility and a maximum of hardening. Therefore an irradiation program for plate material 316L(N)-IG, its Electron Beam (EB) weld and Tungsten Inert Gas (TIG) weld metal, and also including Hot Isostatically Pressed (HIP) 316L(N) powder and solid-solid joints, was set up in 1995. Irradiations have been carried out in the High Flux Reactor (HFR) in Petten at a temperature of 600 K, at dose levels from 1 to 10 dpa. The paper presents the currently available post-irradiation test results. Next to tensile and fracture toughness data on plate, EB and TIG welds, first results of powder HIP material are included.

  1. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel.

    PubMed

    Alavi, S Habib; Harimkar, Sandip P

    2015-05-01

    Simultaneous application of ultrasonic vibrations during conventional materials processing (casting, welding) and material removal processes (machining) has recently been gaining widespread attention due to improvement in metallurgical quality and efficient material removal, respectively. In this paper, ultrasonic vibration-assisted laser surface melting of austenitic stainless steel (AISI 316) is reported. While the application of ultrasonic vibrations during laser processing delays the laser interaction with material due to enhancement of surface convection, it resulted in expulsion of melt from the irradiated region (forming craters) and transition from columnar to equiaxed dendritic grain structure in the resolidified melt films. Systematic investigations on the effect of ultrasonic vibrations (with vibrations frequency of 20 kHz and power output in the range of 20-40%) on the development of microstructure during laser surface melting (with laser power of 900 W and irradiation time in the range of 0.30-0.45 s) are reported. The results indicate that the proposed ultrasonic vibration-assisted laser processing can be designed for efficient material removal (laser machining) and improved equiaxed microstructure (laser surface modifications) during materials processing. PMID:25670412

  2. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    SciTech Connect

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A.

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  3. Hydrogen emission in fatigue process of hydrogen-charged austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Hayashida, Katsuya; Matsunaga, Hisao; Endo, Masahiro

    2010-03-01

    The acceleration of hydrogen diffusion in the fatigue process of AISI type 304 and 316L meta-stable austenitic stainless steels was studied by paying attention to the relation between fatigue slip bands and hydrogen emission. Slip bands were formed in tension-compression fatigue tests of round specimens in ambient air, and then the specimens were cathodically charged with hydrogen. The location of hydrogen emission was microscopically visualized by means of the hydrogen microprint technique (HMT). Hydrogen was mainly emitted from slip bands on the surface of fatigued specimens. The depth of hydrogen diffusion into the specimens was also observed on the fatigue fracture surfaces by the HMT. The depth for a specimen hydrogen-charged before fatigue testing was about 50 μm at a maximum, whereas the depth for a specimen that was hydrogen-charged after slip bands had been formed in a preliminary fatigue test was about 300 μm. Those results suggested that slip bands act as a pathway where hydrogen will move preferentially.

  4. Hydrogen emission in fatigue process of hydrogen-charged austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Hayashida, Katsuya; Matsunaga, Hisao; Endo, Masahiro

    2009-12-01

    The acceleration of hydrogen diffusion in the fatigue process of AISI type 304 and 316L meta-stable austenitic stainless steels was studied by paying attention to the relation between fatigue slip bands and hydrogen emission. Slip bands were formed in tension-compression fatigue tests of round specimens in ambient air, and then the specimens were cathodically charged with hydrogen. The location of hydrogen emission was microscopically visualized by means of the hydrogen microprint technique (HMT). Hydrogen was mainly emitted from slip bands on the surface of fatigued specimens. The depth of hydrogen diffusion into the specimens was also observed on the fatigue fracture surfaces by the HMT. The depth for a specimen hydrogen-charged before fatigue testing was about 50 μm at a maximum, whereas the depth for a specimen that was hydrogen-charged after slip bands had been formed in a preliminary fatigue test was about 300 μm. Those results suggested that slip bands act as a pathway where hydrogen will move preferentially.

  5. Material Modeling and Springback Prediction of Ultra Thin Austenitic Stainless Steel Sheet

    NASA Astrophysics Data System (ADS)

    Verma, Rahul K.; Murakoso, Satoko; Chung, Kwansoo; Kuwabara, Toshihiko

    2010-06-01

    The constitutive model with combined isotropic-kinematic hardening along with hardening stagnation (or permanent softening) [Verma, Kuwabara, Chung, Haldar: Int. J. Plasticity (submitted)] was used here for modeling the tension-compression behaviors of a 0.1 mm thick austenitic stainless steel sheet (SUS304), which was observed in a recent work [Kuwabara and Murakoso: Proc. CIRP 2010 Conf. (submitted)]. Springback was also experimentally measured for a shallow drawn rectangular cup here and it was verified using the above model. It was found that this model can successfully predict the Bauschinger effect and hardening stagnation. As for springback, it was found that in this particular case it depends on, other than the material model, factors like boundary conditions, in the finite element analysis (FEA), during unloading. It was also observed that incorporation of the Bauschinger effect and permanent softening is a key for accurate springback prediction and, therefore, the present model performs better than the one which is based only on isotropic hardening without any hardening stagnation.

  6. Methods for the In-Situ Characterization of Cast Austenitic Stainless Steel Microstructures

    SciTech Connect

    Ramuhalli, Pradeep; Good, Morris S.; Harris, Robert V.; Bond, Leonard J.; Ruud, Clayton O.; Diaz, Aaron A.; Anderson, Michael T.

    2011-06-29

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. Its engineering properties made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that make current ultrasonic in-service inspection of components quite challenging. To address inspection needs, new ultrasonic inspection approaches are being sought. However, overcoming the deleterious and variable effects of the microstructure on the interrogating ultrasonic beam may require knowledge of the microstructure, for potential optimization of inspection parameters to enhance the probability of detection (POD). The ability to classify microstructure type (e.g. polycrystalline or columnar) has the potential to guide selection of optimal NDE approaches. This paper discusses the application of ultrasonic and electromagnetic methods for classifying CASS microstructures, when making measurements from the outside surface of the component. Results to date demonstrate the potential of these measurements to discriminate between two consistent microstructures - equiaxed-grain material versus columnar-grain material. The potential for fusion of ultrasonic and electromagnetic measurements for in-situ microstructure characterization in CASS materials will be explored.

  7. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments.

    PubMed

    Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments. PMID:25588326

  8. Residual stress variation due to piping processes of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ihara, R.; Hashimoto, T.; Mochizuki, M.

    2012-08-01

    In nuclear power plants, stress corrosion cracking (SCC) has been observed near the heat affected zone (HAZ) of the primary loop recirculation pipes made of austenitic stainless steel type 316L. Residual stress is a major cause of SCC. In the joining process of pipes, butt-welding is conducted after machining. Machining is performed to match the inside pipe diameter. Residual stress is generated by both machining and welding. In the case of welding after machining in manufacturing processes of pipes, it appears that residual stress due to machining is varied by the welding thermal cycle. In this study, residual stress variation caused by manufacturing processes was investigated. Residual stress variation was examined by the X-ray diffraction method. The residual stress distribution generated by welding after machining has a local maximum point in the HAZ. The Vickers hardness distribution also has a local maximum point. By the EBSD method, it is clarified that recovery and recrystallization due to welding heat do not occurred in the local maximum point. Residual stress distribution results from the superposition effect of hardening due to machining and welding. The location and value of the local maximum stress are varied by welding conditions. The region of the local maximum stress corresponds to the region where SCC has been observed. Therefore, in addition to a part of the manufacturing processes such as welding or machining, evaluation of all parts of the processes is important to investigate the effect of residual stress distribution on SCC.

  9. Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Microturbines

    SciTech Connect

    Brady, M.P.; Matthews, W.J.

    2010-09-15

    Oak Ridge National Laboratory (ORNL) and Capstone Turbine Corporation (CTC) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for microturbine recuperator components. ORNL delivered test coupons of three different AFA compositions to CTC. The coupons were exposed in steady-state elevated turbine exit temperature (TET) engine testing, with coupons removed for analysis after accumulating ~1,500, 3,000, 4,500, and 6,000 hours of operation. Companion test coupons were also exposed in oxidation testing at ORNL at 700-800°C in air with 10% H2O. Post test assessment of the coupons was performed at ORNL by light microscopy and electron probe microanalysis. The higher Al and Nb containing AFA alloys exhibited excellent resistance to oxidation/corrosion, and thus show good promise for recuperator applications.

  10. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    DOEpatents

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  11. Investigation of thermal spray coatings on austenitic stainless steel substrate to enhance corrosion protection

    NASA Astrophysics Data System (ADS)

    Rogers, Daniel M.

    The research is aimed to evaluate thermal spray coatings to address material issues in supercritical and ultra-supercritical Rankine cycles. The primary purpose of the research is to test, evaluate, and eventually implement a coating to improve corrosion resistance and increase efficiency of coal fired power plants. The research is performed as part of a comprehensive project to evaluate the ability of titanium, titanium carbide, or titanium diboride powders to provide fireside corrosion resistance in supercritical and ultra-supercritical steam boilers, specifically, coal driven boilers in Illinois that must utilize high sulfur and high chlorine content coal. [1] The powder coatings that were tested are nano-sized titanium carbide (TiC) and titanium di-boride (TiB2) powders that were synthesized by a patented process at Southern Illinois University. The powders were then sent to Gas Technology Institute in Chicago to coat steel coupons by HVOF (High Velocity Oxy-Fuel) thermal spray technique. The powders were coated on an austenitic 304H stainless steel substrate which is commonly found in high temperature boilers, pipelines, and heat exchangers. The samples then went through various tests for various lengths of time under subcritical, supercritical, and ultra-supercritical conditions. The samples were examined using a scanning electron microscope and x-ray diffraction techniques to study microstructural changes and then determined which coating performed best.

  12. Multi-response optimization of CO 2 laser-welding process of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Benyounis, K. Y.; Olabi, A. G.; Hashmi, M. S. J.

    2008-02-01

    Recently, laser welding of austenitic stainless steel has received great attention in industry. This is due to its widespread application in petroleum refinement stations, power plants, the pharmaceutical industry and also in households. Therefore, mechanical properties should be controlled to obtain good welded joints. The welding process should be optimized by the proper mathematical models. In this research, the tensile strength and impact strength along with the joint-operating cost of laser-welded butt joints made of AISI304 was investigated. Design-expert software was used to establish the design matrix and to analyze the experimental data. The relationships between the laser-welding parameters (laser power, welding speed and focal point position) and the three responses (tensile strength, impact strength and joint-operating cost) were established. Also, the optimization capabilities in design-expert software were used to optimize the welding process. The developed mathematical models were tested for adequacy using analysis of variance and other adequacy measures. In this investigation, the optimal welding conditions were identified in order to increase the productivity and minimize the total operating cost. Overlay graphs were plotted by superimposing the contours for the various response surfaces. The process parameters effect was determined and the optimal welding combinations were tabulated.

  13. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    NASA Astrophysics Data System (ADS)

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  14. Precipitation kinetics during aging of an alumina-forming austenitic stainless steel

    DOE PAGESBeta

    Trotter, Geneva; Hu, Bin; Sun, Annie Y.; Harder, Reed; Miller, Michael K.; Baker, Ian; Yao, Lan

    2016-04-28

    The microstructural evolution of DAFA26, an alumina-forming austenitic (AFA) stainless steel, was investigated during aging. The effect of aging at 750 °C and 800 °C on the growth of spherical γ’-Ni3(Al, Ti) particles present in the as-processed state was studied extensively using X-ray diffraction, microhardness testing, scanning electron microscopy, transmission electron microscopy, and atom probe tomography. The γ’ particles had a cube-on-cube orientation relationship with the matrix (i.e. ((010)(010)m//(010)(010)p, [100][100]m//[100][100]p)). The coarsening kinetics of γ’-Ni3Al particles were in agreement with the Lifshitz, Slyozof-Wagner theory. Coarse Laves phase particles were also present in the as-processed state, and during the aging processmore » both smaller Laves phase precipitates and B2-NiAl precipitates formed on both the grain boundaries and in the matrix. As a result, the γ’ precipitates were determined to have the most impact on the room temperature hardness.« less

  15. Void Swelling and Microstructure of Austenitic Stainless Steels Irradiated in the BOR - 60 Reactor

    SciTech Connect

    Chen, Y.; Yang, Yong; Huang, Yina; Allen, T.; Alexandreanu, B.; Natesan, K.

    2012-11-01

    As nuclear power plants age and neutron fluence increases, detrimental effects resulting from radiation damage have become an increasingly important issue for the operational safety and structural integrity of core internal components. In this study, irradiated specimens of reactor core internal components were characterized by transmission electron microscopy. The specimens had been irradiated to 5.5-45 dpa in the BOR-60 reactor at a dose rate close to 10-6 dpa/s and temperature of about 320°C. No voids were observed in the austenitic stainless steels and nickel alloys at all doses. Despite the possibility that fine voids below the TEM resolution limit may be present, it was clear that void swelling was insignificant in all examined alloys up to 45 dpa. Irradiated microstructures of the studied alloys were dominated by a high density of Frank loops. The mean size and density of the Frank loops varied from one material to another, but saturated with increasing dose above ~10 dpa. While no irradiation-induced precipitations were present below 24.5 dpa, fine precipitates were evident in several alloys at 45 dpa.

  16. DCEMS Study of Thin Oxide Layers and Interface of Stainless Steel Films Deposited by Sputtering Austenitic AISI304

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Takahashi, K.; Takeda, M.; Shimizu, K.; Habasaki, H.; Kuzmann, E.

    2004-12-01

    Thin stainless steel films were deposited on surface oxidized Si plate using austenitic AISI304 stainless steel as target with a RF magnetron Ar sputtering method. The deposited films and the oxidized films with about 15 nm in thickness were characterized by depth selective conversion electron Mössbauer spectroscopy (DCEMS) using a 2π gas proportional counter. The as-deposited film consisted of ferromagnetic phase. The average hyperfine magnetic fields increased from 25 to 28 T by heating. A relative large amount of iron oxide (Fe2O3) was produced on the top surface layer upon heating at 400°C. After heating at 500°C the relative amount of iron oxide decreased and chromium oxide layers grew in the interface between the iron oxide and substrate layers. The ferromagnetic phase in the deposited stainless steel film was partially converted into austenitic phase at 500°C and largely at 600°C. DCEMS is effective for non-destructive characterization of both surface and interface layers of thin stainless steel films with several 10 nm thickness.

  17. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.

    PubMed

    Kocijan, Aleksandra; Conradi, Marjetka; Schön, Peter M

    2012-04-01

    A study of oxide layers grown on 2205 duplex stainless steel (DSS) and AISI 316L austenitic stainless steel in simulated physiological solution is presented here in order to establish the possibility of replacement of AISI 316 L with 2205 DSS in biomedical applications. The results of the potentiodynamic measurements show that the extent of the passive range significantly increased for DSS 2205 compared to AISI 316L stainless steel. Cyclic voltammetry was used to investigate electrochemical processes taking place on the steel surfaces. Oxide layers formed by electrochemical oxidation at different oxidation potentials were studied by X-ray photoelectron spectroscopy, and their compositions were analyzed as a function of depth. The main constituents on both the investigated materials were Cr- and Fe-oxides. Atomic force microscopy topography studies revealed the higher corrosion resistance of the DSS 2205 compared to the AISI 316L under the chosen experimental conditions. PMID:22331841

  18. Recent developments in the study of phase stability of austenitic stainless steels and its relation to properties

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1995-12-31

    Much work has been done over the years in alloy development of stainless steels and in the characterization of stainless steel microstructures and properties. However, in recent years there have been significant new advances made, and insights gained, into the physical metallurgy of these materials. In particular, advanced techniques have led to new information on the phase stability of stainless steels and the influence of the phase stability on mechanical properties. This paper will highlight some of these new advances, with an emphasis on work that has been done at ORNL on these alloys. For stainless steel alloys, the phase stability can be influenced by several factors. They include solidification behavior, the ferrite/austenite solid-state transformation, other high temperature phase transformations, and low temperature phase transformations. Recent advances in theoretical and experimental methods have led to new developments in understanding and characterizing these factors. Advanced solidification theory has been applied to understand the influence of rapid solidification on phase formation during solidification. New thermodynamic evaluation methods have shown great potential in providing details on the overall phase stability, including details on the influence of composition on phase stability. finite-difference techniques have been applied to the stainless steel alloy system to gain much insight into the ferrite/austenite transformation behavior. Finally, advanced techniques such as analytical electron microscopy, atom probe field ion microscopy, nano-indentation techniques, and specimen miniaturization techniques have provided valuable information on the response of stainless steel microstructures and properties to thermal treatment. All of these new methods and approaches are described in detail in this presentation.

  19. An Investigation of the Massive Transformation from Ferrite to Austenite in Laser-Welded Mo-Bearing Stainless Steels

    NASA Astrophysics Data System (ADS)

    Perricone, M. J.; Dupont, J. N.; Anderson, T. D.; Robino, C. V.; Michael, J. R.

    2011-03-01

    A series of 31 Mo-bearing stainless steel compositions with Mo contents ranging from 0 to 10 wt pct and exhibiting primary δ-ferrite solidification were analyzed over a range of laser welding conditions to evaluate the effect of composition and cooling rate on the solid-state transformation to γ-austenite. Alloys exhibiting this microstructural development sequence are of particular interest to the welding community because of their reduced susceptibility to solidification cracking and the potential reduction of microsegregation (which can affect corrosion resistance), all while harnessing the high toughness of γ-austenite. Alloys were created using the arc button melting process, and laser welds were prepared on each alloy at constant power and travel speeds ranging from 4.2 to 42 mm/s. The cooling rates of these processes were estimated to range from 10 K (°C)/s for arc buttons to 105 K (°C)/s for the fastest laser welds. No shift in solidification mode from primary δ-ferrite to primary γ-austenite was observed in the range of compositions or welding conditions studied. Metastable microstructural features were observed in many laser weld fusion zones, as well as a massive transformation from δ-ferrite to γ-austenite. Evidence of epitaxial massive growth without nucleation was also found when intercellular γ-austenite was already present from a solidification reaction. The resulting single-phase γ-austenite in both cases exhibited a homogenous distribution of Mo, Cr, Ni, and Fe at nominal levels.

  20. Sensitization of 21% Cr Ferritic Stainless Steel Weld Joints Fabricated With/Without Austenitic Steel Foil as Interlayer

    NASA Astrophysics Data System (ADS)

    Wu, Wenyong; Hu, Shengsun; Shen, Junqi; Ma, Li; Han, Jian

    2015-04-01

    The effects of sensitization heat treatment on the microstructure and electrochemical behavior of 21% Cr ferritic stainless steel weld joints with or without 309L austenite stainless steel as an interlayer were investigated. The joints were processed by pulsed gas tungsten arc welding. With the interlayer, grains in weld bead were refined, and almost fully ferrite. When the joints with the interlayer were maintained at 500 °C for 1 and 4 h, no microstructure changes occurred, whereas Widmanstatten austenite and needle-like austenite formed in the weld bead after sensitization at 815 °C for 1 h. In general, sensitization treatment worsens the corrosion resistance of welds, but the resistance of samples with the 4-h treatment at 500 °C recovered in part compared to those subjected to sensitization at 500 °C for 1 h. This could be due to Cr diffusion from the ferrite that heals the chromium-depletion zone along the grain boundary. However, an increase in temperature does not have the same effect. The corrosion morphology of samples in the weld bead is different from those in base metal after heat treatment at 500 °C for 1 h; in base metal, pitting corrosion occurs, whereas grain boundary corrosion occurs in the weld bead. Corrosion morphology is closely associated with precipitation and segregation along the grain boundary.

  1. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    PubMed

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release. PMID:23471501

  2. Microstructure of austenitic stainless steels irradiated at 400°C in the ORR and the HFIR spectral tailoring experiment

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Wakai, E.; Robertson, J. P.; Sawai, T.; Hishinuma, A.

    2000-07-01

    Microstructural evolution in solution-annealed Japanese-PCA (JPCA-SA) and four other austenitic stainless steels, irradiated at 400°C to 17.3 dpa in the ORR and the high flux isotope reactor (HFIR) spectrally tailored experiment, were investigated by transmission electron microscopy (TEM). The mean He/dpa ratio throughout the irradiation fell between 12 and 16 appm He/dpa , which is close to the He/dpa values expected for fusion. In all the specimens, a bi-modal size distribution of cavities was observed and the number densities were about 1.0×10 22 m -3. There was no significant difference between the number densities in the different alloys, although the root mean cubes of the cavity radius are quite different for each alloy. Precipitates of the MC type were also observed in the matrix and on grain boundaries in all alloys except a high-purity (HP) ternary alloy. The JPCA-SA (including 0.06% carbon and 0.027% phosphorus) and standard type 316 steel (including 0.06% carbon and 0.028% phosphorus) showed quite low-swelling values of about 0.016 and 0.015%, respectively, while a HP ternary austenitic alloy showed the highest swelling value of 2.9%. This suggests that the existence of impurities affects the cavity growth in austenitic stainless steels even at 400°C.

  3. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2011-01-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the {approx}923 K to 1173 K (650 C to 900 C) temperature range due to the formation of a protective Al{sub 2}O{sub 3} scale rather than the Cr{sub 2}O{sub 3} scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe{sub 2}(Mo,Nb)-Laves, Ni{sub 3}Al-L1{sub 2}, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  4. Assessment of void swelling in austenitic stainless steel PWR core internals.

    SciTech Connect

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  5. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  6. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F.; Frary, M.E.; Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused

  7. Irradiation-assisted stress corrosion cracking behavior of austenitic stainless steels applicable to LWR core internals.

    SciTech Connect

    Chung, H. M.; Shack, W. J.; Energy Technology

    2006-01-31

    This report summarizes work performed at Argonne National Laboratory on irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels that were irradiated in the Halden reactor in simulation of irradiation-induced degradation of boiling water reactor (BWR) core internal components. Slow-strain-rate tensile tests in BWR-like oxidizing water were conducted on 27 austenitic stainless steel alloys that were irradiated at 288 C in helium to 0.4, 1.3, and 3.0 dpa. Fractographic analysis was conducted to determine the fracture surface morphology. Microchemical analysis by Auger electron spectroscopy was performed on BWR neutron absorber tubes to characterize grain-boundary segregation of important elements under BWR conditions. At 0.4 and 1.4 dpa, transgranular fracture was mixed with intergranular fracture. At 3 dpa, transgranular cracking was negligible, and fracture surface was either dominantly intergranular, as in field-cracked core internals, or dominantly ductile or mixed. This behavior indicates that percent intergranular stress corrosion cracking determined at {approx}3 dpa is a good measure of IASCC susceptibility. At {approx}1.4 dpa, a beneficial effect of a high concentration of Si (0.8-1.5 wt.%) was observed. At {approx}3 dpa, however, such effect was obscured by a deleterious effect of S. Excellent resistance to IASCC was observed up to {approx}3 dpa for eight heats of Types 304, 316, and 348 steel that contain very low concentrations of S. Susceptibility of Types 304 and 316 steels that contain >0.003 wt.% S increased drastically. This indicates that a sulfur related critical phenomenon plays an important role in IASCC. A sulfur content of <0.002 wt.% is the primary material factor necessary to ensure good resistance to IASCC. However, for Types 304L and 316L steel and their high-purity counterparts, a sulfur content of <0.002 wt.% alone is not a sufficient condition to ensure good resistance to IASCC. This is in distinct contrast to

  8. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  9. Influence of nitrogen on the sensitization, corrosion, mechanical, and microstructural properties of austenitic stainless steels. First annual progress report

    SciTech Connect

    Clark, W.A.T.; Macdonald, D.D.

    1982-04-01

    During this first year of the project, the research effort has concentrated on the electrochemical aspects of the effect of nitrogen on austenitic steels. The status of all the individual project tasks are outlined briefly, and then more detailed results of the electrochemical studies conducted so far are reported. Highlights of this quarter are: (1) nitrogen additions of up to 0.16 wt % retard sensitization of 18Cr-8Ni austenitic stainless steels. However, nitrogen additions to levels above approx. 0.25 wt % promote sensitization; (2) the retardation of sensitization by nitrogen can possibly be explained as being due to retardation of the nucleation or rate of growth of chromium carbides; and (3) polarization studies in high temperature 0.01 M Na/sub 2/SO/sub 4/ solutions at 250/sup 0/C demonstrate that the sensitized alloys are electrochemically more active than the solution annealed materials thereby indicating that they are susceptible to intergranular attack.

  10. A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chopra, O. K.; Rao, A. S.

    2011-02-01

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods changes the microstructure (radiation hardening) and microchemistry (radiation-induced segregation) of these steels, and degrades their fracture properties. Irradiation-assisted stress corrosion cracking (IASCC) is another degradation process that affects LWR internal components exposed to neutron radiation. The existing data on irradiated austenitic SSs were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose, and water chemistry on IASCC susceptibility and crack growth rates of these materials in LWR environments. The significance of microstructural and microchemistry changes in the material on IASCC susceptibility is also discussed. The results are used to determine (a) the threshold fluence for IASCC and (b) the disposition curves for cyclic and IASCC growth rates for irradiated SSs in LWR environments.

  11. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-06-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

  12. A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials

    SciTech Connect

    Raske, D.T.

    1995-06-01

    The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

  13. Characterization of a nitrogen-rich austenitic stainless steel used for osteosynthesis devices.

    PubMed

    Ornhagen, C; Nilsson, J O; Vannevik, H

    1996-05-01

    Two laboratory melts of the standardized nitrogen-rich austenitic stainless steel specified in ISO 5832-9:1992(E) have been characterized with respect to corrosion properties, mechanical properties, and microstructure. The two melts differ essentially in nitrogen concentration, namely, 0.42 and 0.46 wt %, respectively. Both melts were found to fulfill the requirements in the ISO standard for corrosion and mechanical properties. The resistance to pitting corrosion in a solution of 0.9% NaCl, intended to simulate the conditions in the human body, was demonstrated by a critical pitting temperature of about 70 degrees C for both alloys, which should be compared with 40 degrees C for the biocompatible reference steel AISI 316. While no difference in corrosion resistance was observed between the two alloys, a significantly higher mechanical strength and lower toughness were observed for the nitrogen-rich melt. Using electron diffraction Z-phase was identified in unaged material. These were present as primary precipitates, most likely precipitated in the liquid state owing to the high concentration of nitrogen in combination with the presence of the strong nitride former niobium. However, the influence of Z-phase on pitting corrosion is believed to be of minor importance. The ageing behavior was studied indirectly in terms of toughness as a function of ageing. Formation of the intermetallic phase--chi-phase--was observed, particularly during prolonged ageing at 800 degrees C. The total absence of chi-phase in forged bar condition shows that the cooling rates during production are sufficient to suppress the formation of chi-phase. PMID:8731154

  14. Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Xiong, Zhihong; Futakawa, Masatoshi

    2016-01-01

    A mercury enclosure vessel for the pulsed spallation neutron source manufactured from a type 316L austenitic stainless steel, a so-called target vessel, suffers the cyclic loading caused by the proton beam induced pressure waves. A design criteria of the JSNS target vessel which is defined based on the irradiation damage is 2500 h at 1 MW with a repetition rate of 25 Hz, that is, the target vessel suffers approximately 109 cyclic loading while in operation. Furthermore, strain rate of the beam window of the target vessel reaches 50 s-1 at the maximum, which is much higher than that of the conventional fatigue. Gigacycle fatigue strength up to 109 cycles for solution annealed 316L (SA) and cold-worked 316L (CW) were investigated through the ultrasonic fatigue tests. Fatigue tests were performed under room temperature and 250 °C which is the maximum temperature evaluated at the beam window in order to investigate the effect of temperature on fatigue strength of SA and CW 316L. The results showed that the fatigue strength at 250 °C is clearly reduced in comparison with room temperature, regardless of cold work level. In addition, residual strength and microhardness of the fatigue tested specimen were measured to investigate the change in mechanical properties by cyclic loading. Cyclic hardening was observed in both the SA and CW 316L, and cyclic softening was observed in the initial stage of cyclic loading in CW 316L. Furthermore, abrupt temperature rising just before fatigue failure was observed regardless of testing conditions.

  15. Corrosion behavior of cold-worked austenitic stainless steels in liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Kurata, Yuji

    2014-05-01

    The effect of cold working on the corrosion behavior of austenitic stainless steels in liquid lead-bismuth eutectic (LBE) was studied to develop accelerator-driven systems for the transmutation of long-lived radioactive wastes and lead-bismuth cooled fast reactors. Corrosion tests on solution-treated, 20% cold-worked and 50% cold-worked 316SS and JPCA (15Cr-15Ni-Ti) were conducted in oxygen-controlled LBE. Slight ferritization caused by Ni dissolution and Pb-Bi penetration were observed for all specimens in the corrosion test conducted at 500 °C for 1000 h in liquid LBE with an intermediate oxygen concentration (1.4 × 10-7 wt.%). In the corrosion test performed at 550 °C for 1000 h in liquid LBE with a low oxygen concentration (4.2 × 10-9 wt.%), the depth of the ferritization of 316SS and JPCA increased with the extent of cold working. Only oxidation was observed in the corrosion test that was performed at 550 °C for 1000 h in liquid LBE with a high oxygen concentration (approximately 10-5 wt.%). Cold working accelerated the formation of the double layer oxide and increased the thickness of the oxide layer slightly. In contrast, the ferritization accompanied by Pb-Bi penetration was widely observed with oxidation for all specimens corrosion tested at 550 °C for 3000 h under the high-oxygen condition. Cold working increased the depth of the ferritization of 316SS and JPCA. It is considered that cold working accelerated the ferritization and Pb-Bi penetration through the enhanced dissolution of Ni into LBE due to an increase in the dislocation density under conditions in which the protective oxide layer was not formed in liquid LBE.

  16. Mechanisms of hydrogen-assisted fracture in austenitic stainless steel welds.

    SciTech Connect

    Balch, Dorian K.; Sofronis, Petros; Somerday, Brian P.; Novak, Paul

    2005-03-01

    The objective of this study was to quantify the hydrogen-assisted fracture susceptibility of gas-tungsten arc (GTA) welds in the nitrogen-strengthened, austenitic stainless steels 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). In addition, mechanisms of hydrogen-assisted fracture in the welds were identified using electron microscopy and finite-element modeling. Elastic-plastic fracture mechanics experiments were conducted on hydrogen-charged GTA welds at 25 C. Results showed that hydrogen dramatically lowered the fracture toughness from 412 kJ/m{sup 2} to 57 kJ/m{sup 2} in 21-6-9 welds and from 91 kJ/m{sup 2} to 26 kJ/m{sup 2} in 22-13-5 welds. Microscopy results suggested that hydrogen served two roles in the fracture of welds: it promoted the nucleation of microcracks along the dendritic structure and accelerated the link-up of microcracks by facilitating localized deformation. A continuum finite-element model was formulated to test the notion that hydrogen could facilitate localized deformation in the ligament between microcracks. On the assumption that hydrogen decreased local flow stress in accordance with the hydrogen-enhanced dislocation mobility argument, the finite-element results showed that deformation was localized in a narrow band between two parallel, overlapping microcracks. In contrast, in the absence of hydrogen, the finite-element results showed that deformation between microcracks was more uniformly distributed.

  17. Hot Ductility Characterization of Sanicro-28 Super-Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mirzaei, A.; Zarei-Hanzaki, A.; Abedi, H. R.

    2016-05-01

    The hot ductility behavior of a super-austenitic stainless steel has been studied using tensile testing method in the temperature range from 1073 K to 1373 K (800 °C to 1100 °C) under the strain rates of 0.1, 0.01, and 0.001 s-1. The hot compression tests were also performed at the same deformation condition to identify the activated restoration mechanisms. At lower temperatures [ i.e., 1073 K and 1173 K (800 °C and 900 °C)], the serration of initial grain boundaries confirms the occurrence of dynamic recovery as the predominant restoration process. However, in the course of applied deformation, the initial microstructure is recrystallized at higher temperatures [ i.e., 1273 K and 1373 K (1000 °C and 1100 °C)]. In this respect, annealing the twin boundaries could well stimulate the recrystallization kinetic through initiation new annealing twins on prior annealing twin boundaries. The hot tensile results show that there is a general trend of increasing ductility by temperature. However, two regions of ductility drop are recognized at 1273 K and 1373 K (1000°C)/0.1s-1 and (1100°C)/0.01s-1. The ductility variations at different conditions of temperature and strain rate are discussed in terms of simultaneous activation of grain boundary sliding and restoration processes. The observed ductility troughs are attributed to the occurrence of grain boundary sliding and the resulting R-type and W-type cracks. The occurrence of dynamic recrystallization is also considered as the main factor increasing the ductility at higher temperatures. The enhanced ductility is primarily originated from the post-uniform elongation behavior, which is directly associated with the strain rate sensitivity of the experimental material.

  18. Defocusing Techniques for Multi-pass Laser Welding of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Karhu, Miikka; Kujanpää, Veli

    This study introduces an experimental work carried out in multi-pass laser welding with cold filler wire and laser-arc hybrid welding of thick section austenitic stainless steel. As it has been demonstrated earlier, hybrid and cold wire welding with a keyhole-mode can offer very efficient way to produce multi-pass welds in narrow gap thick section joints. However, when multi-pass welding is applied to one pass per layer method without e.g. scanning or defocusing, the used groove width needs to be very narrow in order to ensure the proper melting of groove side walls and thus to avoid lack of fusion/cold-run defects. As a consequence of the narrow groove, particularly in thick section joints, the accessibility of an arc torch or a wire nozzle into the very bottom of a groove in root pass welding can be considerably restricted. In an alternative approach described in this paper, a power density of a laser beam spot was purposely dispersed by using a defocusing technique. In groove filling experiments, a power density of defocused laser beam was kept in the range, which led the welding process towards to conduction limited regime and thus enabled to achieve broader weld cross-sections. The object was to study the feasibility of defocusing as a way to fill and bridge wider groove geometries than what can be welded with focused keyhole-mode welding with filler addition. The paper covers the results of multi-pass welding of up to 60 mm thick joints with single side preparations.

  19. High temperature stability of a 316 austenitic stainless steel coated with cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Del Angel, Humberto

    Cerium oxide (CeO2-x) nanoparticles were used for coating protection on a 316 Austenitic Stainless Steel (Aust. SS) to enhance the thermal stability of the oxide films formed at high temperatures. Three simple coating methods were used, dipping, spraying and spinning in order to explore the coating film morphology, nanoparticle distribution and its effect on thermal stability of the steel substrates. Experimentally, the selected steel was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. The cerium oxide nanoparticles used on the three methods were synthesized in the laboratory obtaining nanoparticles in the range of 3.5 to 6.2 nanometers. It was found that cerium oxide particle size is affected by temperature. In this case, the activation energy for particle growth was estimated to be around 21,1 kJ/mol. Characterization of the film morphologies before and after oxidation were carried out using Atomic Force Microscopy (AFM), Surface Profilometry, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). A comparison of the three coating methods was carried out for the particular case of the 316 Aust. SS coupons. In addition, the oxidation kinetics was experimentally investigated for the coated samples. For this purpose thermal gravimetric determinations were made at 800°C, 900°C, and 1000°C and oxidation rate constants were calculated at each temperature.

  20. Improvement in the Corrosion Resistance of Austenitic Stainless Steel 316L by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Cai, Xun; Feng, Kai

    In the present work, austenitic stainless steel 316L (SS316L) samples were implanted with Ni and Ni-Cr. A nickel-rich layer about 100 nm in thickness and a Ni-Cr enriched layer about 60 nm thick are formed on the surface of SS316L. The effects of ion implantation on the corrosion performance of SS316L are investigated in a 0.5 M H2SO4 with 2 ppm HF solution at 80°C by open circuit potential (OCP), potentiodynamic and potentiostatic tests. The samples after the potentiostatic test are analyzed by XPS. The results indicate that the composition of the passive film change from a mixture of Fe oxides and Cr oxide to a Cr oxide dominated passive film after the potentiostatic test. The solutions after the potentiostatic test are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results reveal that Fe is selectively dissolved in all cases and a proper Ni and Ni-Cr implant fluence can greatly improve the corrosion resistance of SS316L in the simulated polymer electrolyte membrane fuel cells (PEMFCS) environment. They are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni and Ni-Cr implantation reduce markedly the dissolution rate. After the potentiostatic test the interfacial contact resistance (ICR) values are also measured. Ni and Ni-Cr are enriched in the passive film formed in the simulated PEMFC cathode environment after ion implantation thereby providing better conductivity than that formed in the anode one. A significant improvement of ICR is achieved for the SS316L implanted with Ni and Ni-Cr as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by Ni and Ni-Cr implantation. The ICR values for implanted specimens increase with increasing dose.

  1. Irradiation-assisted stress corrosion cracking of model austenitic stainless steel.

    SciTech Connect

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.; Karlsen, T. M.

    1999-10-26

    Slow-strain-rate tensile (SSRT) tests were conducted on model austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup 2} and {approx} 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. At {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, a high-purity heat of Type 316L SS that contains a very low concentration of Si exhibited the highest susceptibility to IGSCC. In unirradiated state, Types 304 and 304L SS did not exhibit a systematic effect of Si content on alloy strength. However, at {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, yield and maximum strengths decreased significantly as Si content was increased to >0.9 wt.%. Among alloys that contain low concentrations of C and N, ductility and resistance to TGSCC and IGSCC were significantly greater for alloys with >0.9 wt.% Si than for alloys with <0.47 wt.% Si. Initial data at {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} were also consistent with the beneficial effect of high Si content. This indicates that to delay onset of and reduce susceptibility to irradiation-assisted stress corrosion cracking (IASCC), at least at low fluence levels, it is helpful to ensure a certain minimum concentration of Si. High concentrations of Cr were also beneficial; alloys that contain <15.5 wt.% Cr exhibited greater susceptibility to IASCC than alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.

  2. Stress corrosion cracking behavior of irradiated model austenitic stainless steel alloys.

    SciTech Connect

    Chung, H. M.; Karlsen, T. M.; Ruther, W. E.; Shack, W. J.; Strain, R. V.

    1999-07-16

    Slow-strain-rate tensile tests (SSRTs) and posttest fractographic analyses by scanning electron microscopy were conducted on 16 austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} and {approx}0.9 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E >1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. Following irradiation to a fluence of {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2}, a high-purity laboratory heat of Type 316L SS (Si {approx} 0.024 wt%) exhibited the highest susceptibility to IGSCC. The other 15 alloys exhibited negligible susceptibility to IGSCC at this low fluence. The percentage of TGSCC on the fracture surfaces of SSRT specimens of the 16 alloys at {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E > 1 MeV) could be correlated well with N and Si concentrations; all alloys that contained <0.01 wt.% N and <1.0 wt. % Si were susceptible, whereas all alloys that contained >0.01 wt.% N or >1.0 wt.% Si were relatively resistant. High concentrations of Cr were beneficial. Alloys that contain <15.5 wt.% Cr exhibited greater percentages of TGSCC and IGSCC than those alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.

  3. Effect of hydrogen on internal friction and Young`s modulus of Fe-Cr-Mn austenitic stainless steel

    SciTech Connect

    Usui, Makoto; Asano, Shigeru

    1996-06-01

    The internal friction technique has so far been applied to studies on hydrogen behavior in iron and steel. The hydrogen cold-work peak is well known for pure iron and has also been observed in BCC iron alloys such as ferritic stainless steel and maraging steel. It provides important information about the hydrogen- dislocation interaction in the BCC iron lattice. Meanwhile, for FCC iron alloys such as austenitic stainless steel, another characteristic hydrogen internal friction peak has been found by authors` group and confirmed by several other investigators. In the present study, type 205 austenitic stainless steel (Fe-17Cr-15Mn) was chosen as a nickel-free FCC iron alloy, in which manganese is totally substituted for nickel in type 304 steel. This steel has an unstable FCC lattice as is the case of type 304 steel, in which hydrogen-induced phase transformation depends on the austenite stability. However, the present steel was confirmed to form the {var_epsilon}{sub H} phase after cathodic hydrogen charging in a similar manner to the stable FCC lattice of type 310 steel. In addition, the Fe-Cr-Mn alloy shows a marked anomaly in the temperature dependence of Young`s modulus: an abrupt drop near the Neel temperature T{sub N} and successive lowering below T{sub N}, as has been reported in the literature for some antiferromagnetic materials. The effect of hydrogen on Young`s modulus was studied by several investigators, but there was great inconsistency among their experimental results. The purpose of this paper is to confirm the hydrogen peak of internal friction in type 205 steel and to examine the effect of hydrogen on Young`s modulus of this steel.

  4. AN ULTRASONIC PHASED ARRAY EVALUATION OF INTERGRANULAR STRESS CORROSION CRACK (IGSCC) DETECTION IN AUSTENITIC STAINLESS STEEL PIPING WELDS

    SciTech Connect

    Diaz, Aaron A.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Cumblidge, Stephen E.

    2010-07-22

    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components and challenging material/component configurations. This study assessed the effectiveness of far-side inspections on wrought stainless steel piping with austenitic welds, as found in thin-walled, boiling water reactor (BWR) component configurations, for the detection and characterization of intergranular stress corrosion cracks (IGSCC).

  5. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures

    NASA Astrophysics Data System (ADS)

    Ding, Jinhui; Zhang, Lei; Lu, Minxu; Wang, Jing; Wen, Zhibin; Hao, Wenhui

    2014-01-01

    In oil-gas production environments, presence of H2S-Cl- can induce deterioration of the passive film, leading to pitting corrosion of stainless steels. In this paper, by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and capacitance measurements (Mott-Schottky analysis), the electrochemical behaviour of AISI 316L austenitic stainless steel was investigated in Cl- solutions under different H2S partial pressures (from 0 to 1.0 bar). The results indicated that presence of H2S in Cl- solution can accelerate both the cathodic and anodic current density, leading to a metastable passive state in higher passive potential range, changing the semiconductor behaviour from p-type to n-type, increasing its susceptibility to corrosion. XPS analysis was employed to characterize the surface film after potentiostatic polarization, whose results provide good evidences for the electrochemical measurements.

  6. Thermal characterization of austenite stainless steel (304) and CNT films of varying thickness using micropipette thermal sensors

    NASA Astrophysics Data System (ADS)

    Dangol, Ashesh

    Thermal transport behavior of austenite stainless steel stripe (304) and the carbon nano-tubes (CNTs) films of varying thickness are studied using a micropipette thermal sensor. Micropipette sensors of various tip sizes were fabricated and tested for the sensitivity and reliability. The sensitivity deviated by 0.11 for a batch of pipette coated under same physical vapor deposition (PVD) setting without being affected by a tip size. Annealing, rubber coating and the vertical landing test of the pipette sensor proved to be promising in increasing the reliability and durability of the pipette sensors. A micro stripe (80microm x 6microm x 0.6microm) of stainless steel, fabricated using focused ion beam (FIB) machining, was characterized whose thermal conductivity was determined to be 14.9 W/m-K at room temperature. Similarly, the thermal characterization of CNT films showed the decreasing tendency in the thermal transport behavior with the increase in the film thickness.

  7. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  8. Automated Flaw Detection Scheme For Cast Austenitic Stainless Steel Weld Specimens Using Hilbert Huang Transform Of Ultrasonic Phased Array Data

    SciTech Connect

    Khan, T.; Majumdar, Shantanu; Udpa, L.; Ramuhalli, Pradeep; Crawford, Susan L.; Diaz, Aaron A.; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize the flaws using NDE ultrasonic data. Data was collected using cast austenitic stainless steel (CASS) weld specimens on-loan from the U.S. nuclear power industry’s Pressurized Water Reactor Owners Group (PWROG) specimen set. Each specimen consists of a centrifugally cast stainless steel (CCSS) pipe section welded to a statically cast (SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection signals in the weld and heat affected zone of the base materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  9. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe.

    PubMed

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-01-01

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions. PMID:26868719

  10. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe

    PubMed Central

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-01-01

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions. PMID:26868719

  11. Effects of Multiple Treatments of Low-Temperature Colossal Supersaturation on Tribological Characteristics of Austenitic Stainless Steels

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Zhang, Ligong; Xu, Hanbing

    2008-01-01

    An alternative carburization process, low-temperature colossal supersaturation (LTCSS), has demonstrated significant improvement on both wear- and corrosion-resistance for austenitic stainless steel surfaces in recent literature. This study explores the effects of multiple treatments of LTCSS on tribological characteristics for Type 316 stainless steel. Thicker carburized layers were produced by multiple LTCSS treatments, with 30, 45, and 55 m for one, two, and four treatments, respectively. Although the hardness remains unchanged at low-load microindentation, multiple treatments have showed higher values in both microindentation and scratch hardness tests when deeper penetrations occurred under heavier loads. The friction and wear characteristics of Type 316 stainless steel with multiple LTCSS treatments were evaluated in non-lubricated unidirectional sliding (pin-on-disk) against Type 440C stainless steel. While little change was observed on friction behavior, substantial further improvement on wear-resistance has been achieved for the multiple treatments. In addition, the wear of the counterface was also largely reduced when rubbing against a multiple-treated surface.

  12. Influence of the PM-Processing Route and Nitrogen Content on the Properties of Ni-Free Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lefor, Kathrin; Walter, M.; Weddeling, A.; Hryha, E.; Huth, S.; Weber, S.; Nyborg, L.; Theisen, W.

    2015-03-01

    Ni-free austenitic steels alloyed with Cr and Mn are an alternative to conventional Ni-containing steels. Nitrogen alloying of these steel grades is beneficial for several reasons such as increased strength and corrosion resistance. Low solubility in liquid and δ-ferrite restricts the maximal N-content that can be achieved via conventional metallurgy. Higher contents can be alloyed by powder-metallurgical (PM) production via gas-solid interaction. The performance of sintered parts is determined by appropriate sintering parameters. Three major PM-processing routes, hot isostatic pressing, supersolidus liquid phase sintering (SLPS), and solid-state sintering, were performed to study the influence of PM-processing route and N-content on densification, fracture, and mechanical properties. Sintering routes are designed with the assistance of thermodynamic calculations, differential thermal analysis, and residual gas analysis. Fracture surfaces were studied by X-ray photoelectron spectroscopy, secondary electron microscopy, and energy dispersive X-ray spectroscopy. Tensile tests and X-ray diffraction were performed to study mechanical properties and austenite stability. This study demonstrates that SLPS process reaches high densification of the high-Mn-containing powder material while the desired N-contents were successfully alloyed via gas-solid interaction. Produced specimens show tensile strengths >1000 MPa combined with strain to fracture of 60 pct and thus overcome the other tested production routes as well as conventional stainless austenitic or martensitic grades.

  13. Digital Processing of Ultrasound Signals Backscattered from Coarse Grained Austenitic Stainless Steel.

    NASA Astrophysics Data System (ADS)

    Hargreaves, Martin Lawrence

    Available from UMI in association with The British Library. In this thesis, the characteristics of individual pulse-echo ultrasound signals received from a cast block of coarse grained austenitic stainless steel (ASS) are considered. Such signals are renowned for beam skewing effects and being rich in backscattered acoustic noise due to the nature of the material. Cast ASS is used for its mechanical properties in critical applications such as nuclear reactor systems and the acoustic noise is known to be detrimental to the pulse-echo non-destructive testing (NDT) of this form of steel. After a review of these subjects, this thesis describes the application of one-dimensional (1-D) time sequence analysis techniques to the digitally recorded ultrasound data in order to assess their ability to discriminate between data characteristics due to the material and that due to a reflection from the back surface of the block. This is seen as a first step in the evaluation of improving ultrasonic NDT of these materials by use of standard equipment in conjunction with digital signal processing techniques. Two data sets are examined; one from a broad band 5MHz centre frequency compression wave transducer and the other from a similar 1MHz transducer. Numerous 1-D signal processing techniques are applied to the data and their insensitivity to the effect of the material characteristics on the data is noted. Many techniques have not previously been applied to this type of ultrasound data. Cepstrum techniques have shown to be inappropriate when analysing such data and adaptive techniques were generally unsuccessful except for one variant when applied to the 5MHz data. Modern spectrum analysis techniques and a l_4 norm deconvolution technique have been shown to be promising in the analysis of such data but further work in this area is recommended, especially time-space processing in order to improve the statistics of the techniques. Also contained in this thesis is a description of a

  14. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE PAGESBeta

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; Brady, Michael P.; Meier, G. H.

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H2–3%H2O the areas of continuous alumina were reducedmore » and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H2O, Ar–3%H2O and Ar–4%H2–3%H2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  15. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    PubMed

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer. PMID

  16. Mechanical behavior and structure of passive films on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Al-Amr, Abdulaziz

    2005-07-01

    The Taguchi analysis method was used in conjunction with ex-situ and in-situ nanoindentation tests to study the effects of alloy chemistry, solution pH, and halide ion concentrations on the mechanical fracture of electrochemically grown passive films formed at passive and metastable pitting potentials. Three austenitic stainless steels, SS, 304, 316, and 904L were anodically polarized in hydrochloric acid solutions for this study. The ex-situ study indicated that the alloy chemistry is the dominant factor of the mechanical fracture of the film formed at a stable passive potential; the average load to fracture the films using a 450 nm radius diamond tip was 52 muN. The films formed on 904L were the strongest, while the films on 316 SS were the weakest. The fracture load of the films formed at a metastable pitting potential, on the other hand, was equally influenced by the chloride ion concentration and the alloy chemistry. The load at fracture of films formed in the metastable pitting region was 64% of the fracture load of passive films formed at a stable potential. The fracture load of the passive films was depended on the degree of crystallinity of the passive film. The passive film on 316SS with lower density of crystalline islands than that of 304 SS had the lowest fracture load. In contrast, when the film was epitaxial, the fracture load was the largest. The dichromate treatment results indicate that the increase in degree of crystallinity of the passive films is associated with the increase in the chromium content of the substrate. In-situ measurements during anodic polarization led to similar behavior and results. The measured strength of films measured in ambient conditions after removal from the electrolyte was greater than when the films were measured in situ. However, the trends in film strength as a function of environment are the same between in situ and ex situ testing, suggesting the two tests are both feasible methods of analyzing environmental

  17. Stress Corrosion Cracking—Crevice Interaction in Austenitic Stainless Steels Characterized By Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Leinonen, H.; Schildt, T.; Hänninen, H.

    2011-02-01

    Stress corrosion cracking (SCC) susceptibility of austenitic EN1.4301 (AISI 304) and EN1.4404 (AISI 316L) stainless steels was studied using the constant load method and polymer (PTFE) crevice former in order to study the effects of crevice on SCC susceptibility. The uniaxial active loading tests were performed in 50 pct CaCl2 at 373 K (100 °C) and in 0.1 M NaCl at 353 K (80 °C) under open-circuit corrosion potential (OCP) and electrochemical polarization. Pitting, crevice, and SCC corrosion were characterized and identified by acoustic emission (AE) analysis using ∆ t filtering and the linear locationing technique. The correlation of AE parameters including amplitude, duration, rise time, counts, and energy were used to identify the different types of corrosion. The stages of crevice corrosion and SCC induced by constant active load/crevice former were monitored by AE. In the early phase of the tests, some low amplitude AE activity was detected. In the steady-state phase, the AE activity was low, and toward the end of the test, it increased with the increasing amplitude of the impulses. AE allowed a good correlation between AE signals and corrosion damage. Although crevice corrosion and SCC induced AE signals overlapped slightly, a good correlation between them and microscopical characterization and stress-strain data was found. Especially, the activity of AE signals increased in the early and final stages of the SCC experiment under constant active load conditions corresponding to the changes in the measured steady-state creep strain rate of the specimen. The results of the constant active load/crevice former test indicate that a crevice can initiate SCC even in the mild chloride solution at low temperatures. Based on the mechanistic model of SCC, the rate determining step in SCC is thought to be the generation of vacancies by selective dissolution, which is supported by the low activity phase of AE during the steady-state creep strain rate region.

  18. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    SciTech Connect

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; Brady, Michael P.; Meier, G. H.

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H2–3%H2O the areas of continuous alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H2O, Ar–3%H2O and Ar–4%H2–3%H2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different

  19. Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ba, Dechun; Ming, Yue; Xu, Lin; Guo, Deyu

    2014-10-01

    The significant role of ion beam flux during nitriding 304 austenitic stainless steel has been investigated by using a radio frequency inductively-coupled plasma reactor into which a sample with negative bias voltage was inserted. A milliammeter is used to detect the current of ions which collide with the sample and optical emission spectroscopy is used to discern the reactive species included in the nitrogen plasma. The nitriding efficiency is indicated by X-ray diffraction and the microhardness test. The reported data reveal that the ion beam flux density as well as the deposition pressure, bias voltage and time can strongly affect the nitriding of stainless steel via the expanded multiphase microstructure inside the nitrided layer. The increase in the density of ion flux results in an ascent in the intensity of the expanded peak and a simultaneous decline in the intensity of the γ austenite peak. The evolution trend of ion beam flux density is described as a function of the operating pressure and the bias voltage. The maximum ion flux density has been achieved at 10 Pa pressure and -500 V bias voltage. A reasonable nitriding region has been, consequently, suggested after comparing this work with previously reported results.

  20. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2016-08-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low-temperature nitriding results in improved properties of both bulk and surface.

  1. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    SciTech Connect

    Unnikrishnan, Rahul; Idury, K.S.N. Satish; Ismail, T.P.; Bhadauria, Alok; Shekhawat, S.K.; Khatirkar, Rajesh K.; Sapate, Sanjay G.

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual

  2. Austenite precipitation during tempering in 16Cr-2Ni martensitic stainless steels

    SciTech Connect

    Balan, K.P.; Reddy, A.V.; Sarma, D.S.

    1998-09-04

    The 16Cr-2Ni steel when quenched from austenitizing temperature of 1,323K results in the formation of a complex microstructure consisting of the inherited {delta}-ferrite, martensite and retained austenite with a few undissolved M{sub 23}C{sub 6} carbides. There do not appear to be many reports on tempering behavior of 16Cr-2Ni steel through microstructural characterization using transmission electron microscopy. A comprehensive study is under progress to examine the structure-fracture-property relationship on 16Cr-2Ni steel and the microstructural changes that occur on tempering the steel are dealt with in this paper.

  3. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-07-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  4. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-05-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  5. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  6. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  7. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  8. Mechanical properties of HIP bonded joints of austenitic stainless steel and Cu-alloy for fusion experimental reactor blanket

    NASA Astrophysics Data System (ADS)

    Sato, S.; Kuroda, T.; Kurasawa, T.; Furuya, K.; Togami, I.; Takatsu, H.

    1996-10-01

    Tensile, fatigue and impact properties have been measured for hot isostatic pressing (HIP) bonded joints of type 316 austenitic stainless steel (SS316)/SS316, and of SS316/Al 2O 3 dispersion strengthened copper (DSCu). The HIP bonded joints of SS316/SS316 had almost the same tensile and fatigue properties as those of the base metal. The HIP bonded joints of SS316/DSCu had also almost the same tensile properties as those of the base metal of the DSCu, though total elongation and fatigue strength were slightly lower than those of the DSCu base metal. Further data accumulation, even with further optimization of fabrication conditions, is required, especially for HIP bonded SS316/DSCu joints, to confirm above data and reflect to blanket/first wall design.

  9. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  10. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Martinavičius, A.; Abrasonis, G.; Möller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm-2), ion energy (0.5-1.2 keV), and temperature (370-430 °C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  11. Effects of Cyclic and Monotonic Deformations on Nonlinear Ultrasonic Response of Austenitic Stainless Steel: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen; Xiang, Yanxun; Zhao, Peng

    2016-05-01

    The effect of plastic deformations on the nonlinear ultrasonic response in austenite stainless steel was investigated under the tensile, asymmetric cyclic, and symmetric cyclic loadings. Nonlinear ultrasonic wave measurement was performed on the interrupted specimens. Results show that cyclic and monotonic plastic deformations lead to the significantly different acoustic nonlinear response. The increase of dislocation density and martensite transformation causes the increase of acoustic nonlinearity. By contrast, the well-developed cell structures decrease the acoustic nonlinear response. Under the asymmetric cyclic loading condition, the lightly decrease of acoustic nonlinearity is caused by the development of cell structures, while the slight increase of acoustic nonlinearity should be attributed to the increase of martensite transformation. Comparatively, the severe increase of acoustic nonlinearity during the first stage under symmetric cyclic loading is ascribed to the fast generation of dislocation structures and martensite transformation.

  12. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    NASA Astrophysics Data System (ADS)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  13. Comparison of Roller Burnishing Method with Other Hole Surface Finishing Processes Applied on AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Akkurt, Adnan

    2011-08-01

    Component surface quality and selection of the optimum material are the main factors determining the performance of components used in machine manufacturing. The level of hole surface quality can be evaluated by the measurements regarding surface roughness, micro-hardness, and cylindricity. In this study, data had been obtained for different hole drilling methods. The characteristics of materials obtained after applications were compared for different hole-finishing processes to identify best hole drilling method. AISI 304 austenitic stainless steel material was used. Surface finishing of holes were performed using drilling, turning, reaming, grinding, honing, and roller burnishing methods. The results of the study show that the roller burnishing method gives the best results for mechanical, metallurgical properties, and hole surface quality of the material. On the other hand, the worst characteristics were obtained in the drilling method.

  14. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    SciTech Connect

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-31

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  15. Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Rhouma, A. Ben; Sidhom, H.; Braham, C.; Lédion, J.; Fitzpatrick, M. E.

    2001-10-01

    Surface finishing treatments such as shot blasting and wire brushing can be beneficial in improving the integrity of machined surfaces of austenitic stainless steels. These operations optimize in-service properties such as resistance to pitting corrosion and stress corrosion cracking (SCC). In this study, ground steel surfaces were subjected to a series of sand blasting and wire brushing treatments. The surfaces were then characterized by their hardness, surface residual stress state, and resistance to stress corrosion and pitting corrosion. Some samples were selected for depth profiling of residual stress. It is found that surface hardening and the generation of near-surface compressive residual stress are the benefits that can be introduced by sand blasting and brushing operations.

  16. Microstructural development due to long-term aging and ion irradiation behavior in weld metals of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nakata, K.; Ikeda, S.; Hamada, S.; Hishinuma, A.

    1996-10-01

    In a candidate austenitic stainless steel (316F) for fusion reactor structural materials, irradiation behavior of the weld metal produced by electron-beam welding (containing 7.9 vol% δ-ferrite) was investigated in terms of microstructural development. The densities of interstitial clusters in the γ-phase of the weld metal irradiated with He-ions at 673 and 773 K were about four times larger than those in 316F. Voids were formed in the δ-ferrite of the weld irradiated at 773 K. The number of clusters decreased in the weld metal (γ-phase) aged at 773 to 973 K, compared with that in the as-welded metal. The change in cluster density could be attributed to a Ni concentration increase in the γ-phase of the weld metal during aging.

  17. Corrosion processes of austenitic stainless steels and copper-based materials in gamma-irradiated aqueous environments

    SciTech Connect

    Glass, R.S.

    1985-09-01

    The US Department of Energy is evaluating a site located at Yucca Mountain in Nye County, Nevada, as a potential high-level nuclear waste repository. The rock at the proposed repository horizon (above the water table) is densely welded, devitrified tuff, and the fluid environment in the repository is expected to be primarily air-steam. A more severe environment would be present in the unlikely case of intrusion of vadose groundwater into the repository site. For this repository location, austenitic stainless steels and copper-based materials are under consideration for waste container fabrication. This study focuses on the effects of gamma irradiation on the electrochemical mechanisms of corrosion for the prospective waste container materials. The radiolytic production of such species as hydrogen peroxide and nitric acid are shown to exert an influence on corrosion mechanisms and kinetics.

  18. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  19. Effect of Shot Peening on the Intergranular Corrosion Susceptibility of a Novel Super304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Rui Kun; Zheng, Zhi Jun; Gao, Yan

    2016-01-01

    The surface phase constituent of Super304H austenitic stainless steel, after shot peening and sensitization treatment at 600, 650, and 700 °C for 2 h, was characterized using x-ray diffraction method. The degree of sensitization (DOS) was investigated by means of double-loop electrochemical potentiokinetic reactivation (DL-EPR) test, and the morphology after DL-EPR test was observed by scanning electron microscopy (SEM). The results showed that nano-sized grains and strain-induced martensite together with compressive residual stress formed on the surface of Super304H steel after shot peening. Surface compressive residual stresses relaxed greatly after being sensitized at 600-700 °C for 2 h, and no systematic correlation was observed between the compressive residual stresses developed and the intergranular corrosion susceptibility (IGCS). Because of the occurrence of strain-induced martensite in the shot-peened specimens, their IGCS is much higher than that of the as-received specimen when being sensitized at 600-650 °C for 2 h. Besides, the DOS increased with the increasing of shot peening time and the content of strain-induced martensite. On the contrary, the IGCS of Super304H stainless steels subjected to shot peening was eliminated when being sensitized at 700 °C for 2 h because of the reverse transformation of strain-induced martensite and faster diffusion rate of Cr at higher temperature in ultrafine-grained austenite which had helped healing the chromium depletion zone in a very short time. In a word, shot peening promoted desensitization of Super304H steel in a time shorter than 2 h at higher temperature up to 700 °C.

  20. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.

    PubMed

    Cizek, P; Whiteman, J A; Rainforth, W M; Beynon, J H

    2004-03-01

    The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 degrees C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre-existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of [111] slip planes. The corresponding misorientations were small and largely displayed a non-cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub-boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub-boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic

  1. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  2. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    DOE PAGESBeta

    Hu, Bin; Baker, Ian; Miller, Michael K.; Yao, Lan; Chen, Si; Cai, Z.; Trotter, G.

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced themore » grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.« less

  3. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    SciTech Connect

    Hu, Bin; Baker, Ian; Miller, Michael K.; Yao, Lan; Chen, Si; Cai, Z.; Trotter, G.

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  4. Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: realistic input data for NDT numerical modeling.

    PubMed

    Ploix, Marie-Aude; Guy, Philippe; Chassignole, Bertrand; Moysan, Joseph; Corneloup, Gilles; El Guerjouma, Rachid

    2014-09-01

    Multipass welds made of 316L stainless steel are specific welds of the primary circuit of pressurized water reactors in nuclear power plants. Because of their strong heterogeneous and anisotropic nature due to grain growth during solidification, ultrasonic waves may be greatly deviated, split and attenuated. Thus, ultrasonic assessment of the structural integrity of such welds is quite complicated. Numerical codes exist that simulate ultrasonic propagation through such structures, but they require precise and realistic input data, as attenuation coefficients. This paper presents rigorous measurements of attenuation in austenitic weld as a function of grain orientation. In fact attenuation is here mainly caused by grain scattering. Measurements are based on the decomposition of experimental beams into plane-wave angular spectra and on the modeling of the ultrasonic propagation through the material. For this, the transmission coefficients are calculated for any incident plane wave on an anisotropic plate. Two different hypotheses on the welded material are tested: first it is considered as monoclinic, and then as triclinic. Results are analyzed, and validated through comparison to theoretical predictions of related literature. They underline the great importance of well-describing the anisotropic structure of austenitic welds for UT modeling issues. PMID:24759567

  5. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of > 50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at > 973 K (700 A degrees C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (similar to 100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 A degrees C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting. (C) The Minerals, Metals & Materials Society and ASM International 2015

  6. European developments in the application of structural austenitic and duplex stainless steels

    SciTech Connect

    Cochrane, D.J.

    1995-12-31

    Stainless steel is increasingly being specified for structural applications. Principally, this is due to the aesthetic appeal of the material, no need for surface protection, durability, and the growing awareness, and use, of Life Cycle Cost analysis for assessing costs over the longer term, However, use of stainless steel in the U.K. offshore oil and gas platforms for fire and blast walls, has highlighted valuable properties of stainless steel that may be unfamiliar to structural designers. It is the purpose of this paper to demonstrate these properties. Additionally, new design guidance has become available in Europe as a result of a 4 year research program into the structural use of stainless steel. The ``Design Manual for Structural Stainless Steel`` was issued by Euro Inox and the Nickel Development Institute in 1994. This new manual will be outlined in this paper together with its influence on new European Building Standards and new European material standards for structural stainless steel. Currently in preparation, these include high strength grades with significantly higher strength than structural carbon steels. Finally, this paper will address the use of stainless steel for the reinforcement of concrete structures.

  7. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. PMID:15660438

  8. The Effect of Surface Finish on Low-Temperature Acetylene-Based Carburization of 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ge, Yindong; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-12-01

    We observed a strong influence of surface finish on the efficacy of low-temperature acetylene-based carburization of AISI 316L austenitic stainless steel. Steel coupons were prepared with different surface finishes prior to carburization, from P400 SiC grit paper to 1- µm-diameter-diamond-paste. The samples with the finer surface finish developed a thicker "case" (a carbon-rich hardened surface layer) and a larger surface carbon concentration. Transmission electron microscopy revealed that the differences arose mainly from the nature of the deformation-induced disturbed layer on the steel surface. A thick (>400 nm) disturbed layer consisting of nano-crystalline grains (≈10 nm diameter) inhibits acetylene-based carburization. The experimental observations can be explained by assuming that during machining or coarse polishing, the surface oxide layer is broken up and becomes incorporated into the deformation-induced disturbed layer. The incorporated oxide-rich films retard or completely prevent the ingress of carbon into the stainless steel.

  9. Bactericidal activity of copper and niobium-alloyed austenitic stainless steel.

    PubMed

    Baena, M I; Márquez, M C; Matres, V; Botella, J; Ventosa, A

    2006-12-01

    Biofouling and microbiologically influenced corrosion are processes of material deterioration that originate from the attachment of microorganisms as quickly as the material is immersed in a nonsterile environment. Stainless steels, despite their wide use in different industries and as appliances and implant materials, do not possess inherent antimicrobial properties. Changes in hygiene legislation and increased public awareness of product quality makes it necessary to devise control methods that inhibit biofilm formation or to act at an early stage of the biofouling process and provide the release of antimicrobial compounds on a sustainable basis and at effective level. These antibacterial stainless steels may find a wide range of applications in fields, such as kitchen appliances, medical equipment, home electronics, and tools and hardware. The purpose of this study was to obtain antibacterial stainless steel and thus mitigate the microbial colonization and bacterial infection. Copper is known as an antibacterial agent; in contrast, niobium has been demonstrated to improve the antimicrobial effect of copper by stimulating the formation of precipitated copper particles and its distribution in the matrix of the stainless steel. Thus, we obtained slides of 3.8% copper and 0.1% niobium alloyed stainless steel; subjected them to three different heat treatment protocols (550 degrees C, 700 degrees C, and 800 degrees C for 100, 200, 300, and 400 hours); and determined their antimicrobial activities by using different initial bacterial cell densities and suspending solutions to apply the bacteria to the stainless steels. The bacterial strain used in these experiments was Escherichia coli CCM 4517. The best antimicrobial effects were observed in the slides of stainless steel treated at 700 degrees C and 800 degrees C using an initial cell density of approximately 10(5) cells ml(-1) and phosphate-buffered saline as the solution in which the bacteria came into contact with

  10. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  11. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    SciTech Connect

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  12. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels.

    SciTech Connect

    Chopra, O. K.

    1998-01-13

    Fatigue tests have been conducted on Types 304 and 316NG stainless steels to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on the fatigue lives of these steels. The results confirm significant decreases in fatigue life in water. Unlike the situation with ferritic steels, environmental effects on Types 304 and 316NG stainless steel are more pronounced in low-DO than in high-DO water. Experimental results have been compared with estimates of fatigue life based on a statistical model. The formation and growth of fatigue cracks in air and water environments are discussed.

  13. Pitting corrosion detection of austenitic stainless steel EN 1.4404 in MgCl2 solutions using a machine learning approach

    NASA Astrophysics Data System (ADS)

    Jiménez-Come, M. J.; Muñoz, E.; García, R.; Matres, V.; Martín, M. L.; Trujillo, F.; Turias, I.

    2012-04-01

    Different classification techniques such as Classification Tree (CT), Discriminant Analysis (DA), K-Nearest Neighbour (KNN) and Back-Propagation Neural Networks (BPNN) have been used to model pitting corrosion behaviour of austenitic stainless steel EN 1.4404. The main purpose is to predict the corrosion status of this material in different environmental conditions. Samples of this alloy have been subjected to polarization tests in order to determine pitting potentials values (Epit) with different aqueous conditions: chloride concentration (from MgCl2 solutions), pH values and temperature. In this way, the classification methods employed try to simulate the relation between corrosion status and those various environmental parameters studied. These techniques have generally been regarded as successful, giving a good correlation between experimental and predicted data. High values for precision have been obtained for all the models making these techniques an useful tool to know the behaviour of austenitic stainless steel in different environmental conditions.

  14. Ultrasonic Flaw Detection of Cracks and Machined Flaws as Observed Through Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.

    2009-07-01

    Piping welds in the pressure boundary of light water reactors (LWRs) are subject to a volumetric examination based on Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Due to access limitations and high background radiation levels, the technique used is primarily ultrasonic rather than radiographic. Many of the austenitic welds in safety-related piping systems provide limited access to both sides of the weld, so a far-side examination is necessary. Historically, far-side inspections have performed poorly because of the coarse and elongated grains that make up the microstructures of austenitic weldments. The large grains cause the ultrasound to be scattered, attenuated, and redirected. Additionally, grain boundaries or weld geometry may reflect coherent ultrasonic echoes, making flaw detection and discrimination a more challenging endeavor. Previous studies conducted at the Pacific Northwest National Laboratory (PNNL) on ultrasonic far-side examinations in austenitic piping welds involved the application of conventional transducers, use of low-frequency Synthetic Aperture Focusing Techniques (SAFT), and ultrasonic phased-array (PA) methods on specimens containing implanted thermal fatigue cracks and machined reflectors [1-2]. From these studies, PA inspection provided the best results, detecting nearly all of the flaws from the far side. These results were presented at the Fifth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components in 2006. This led to an invitation to examine field-removed specimens containing service-induced intergranular stress corrosion cracks (IGSCC) at the Electric Power Research Institute’s (EPRI) Nondestructive Evaluation (NDE) Center, in Charlotte, North Carolina. Results from this activity are presented.

  15. 76 FR 17819 - Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Stainless Pressure Pipe from the People's Republic of China, 74 FR 11351 (March 17, 2009). \\2\\ See... Administrative Review, 75 FR 9162 (March 1, 2010). The Department received a timely request for an administrative... Administrative Reviews and Request for Revocation in Part, 75 FR 22107 (April 27, 2010). The Department...

  16. Effects of phosphorus, silicon and sulphur on microstructural evolution in austenitic stainless steels during electron irradiation

    NASA Astrophysics Data System (ADS)

    Fukuya, K.; Nakahigashi, S.; Ozaki, S.; Shima, S.

    1991-03-01

    Fe-18Cr-9Ni-1.5Mn austenitic alloys containing phosphorus, silicon and sulphur were irradiated by 1 MeV electrons at 573-773 K. Phosphorus increased the intersitial loop nucleation and decreased the void swelling by increasing void number density and suppressing void growth. Silicon had a similar effect to phosphorus but its effect was weaker than phosphorus. Sulphur enhanced void swelling through increasing the void density. Nickel enrichment at grain boundaries was suppressed only in the alloy containing phosphorus. These phosphorus effects may be explained by a strong interaction with interstitials resulting in a high density of sinks for point defects.

  17. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  18. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Hyeok; Povoden-Karadeniz, Erwin; Kozeschnik, Ernst; Wirth, Brian D.

    2015-07-01

    The long-term evolution of precipitates in type 316 austenitic stainless steels at 400 °C has been simulated using a numerical model based on classical nucleation theory and the thermodynamic extremum principle. Particular attention has been paid to the precipitation of radiation-induced phases such as γ‧ and G phases. In addition to the original compositions, the compositions for radiation-induced segregation at a dose level of 5, 10 or 20 dpa have been used in the simulation. In a 316 austenitic stainless steel, γ‧ appears as the main precipitate with a small amount of G phase forming at 10 and 20 dpa. On the other hand, G phase becomes relatively dominant over γ‧ at the same dose levels in a Ti-stabilized 316 austenitic stainless steel, which tends to suppress the formation of γ‧. Among the segregated alloying elements, the concentration of Si seems to be the most critical for the formation of radiation-induced phases. An increase in dislocation density as well as increased diffusivity of Mn and Si significantly enhances the precipitation kinetics of the radiation-induced phases within this model.

  19. Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material – An Interim Study

    SciTech Connect

    Ramuhalli, Pradeep; Good, Morris S.; Diaz, Aaron A.; Anderson, Michael T.; Watson, Bruce E.; Peters, Timothy J.; Dixit, Mukul; Bond, Leonard J.

    2009-10-27

    Ultrasonic nondestructive evaluation (NDE) and inspection of cast austenitic stainless steel (CASS) components used in the nuclear power industry is neither as effective nor reliable as is needed due to detrimental effects upon the interrogating ultrasonic beam and interference from ultrasonic backscatter. The root cause is the coarse-grain microstructure inherent to this class of materials. Some ultrasonic techniques perform better for particular microstructural classifications and this has led to the hypothesis that an ultrasonic inspection can be optimized for a particular microstructural class, if a technique exists to reliably classify the microstructure for feedback to the inspection. This document summarizes scoping experiments of in-situ ultrasonic methods for classification and/or characterization of the material microstructures in CASS components from the outside surface of a pipe. The focus of this study was to evaluate ultrasonic methods and provide an interim report that documents results and technical progress. An initial set of experiments were performed to test the hypothesis that in-service characterization of cast austenitic stainless steel (CASS) is feasible, and that, if reliably performed, such data would provide real-time feedback to optimize in-service inspections in the field. With this objective in mind, measurements for the experiment were restricted to techniques that should be robust if carried forward to eventual field implementation. Two parameters were investigated for their ability to discriminate between different microstructures in CASS components. The first parameter was a time-of-flight ratio of a normal incidence shear wave to that of a normal incidence longitudinal wave (TOFRSL). The ratio removed dependency on component thickness which may not be accurately reported in the field. The second parameter was longitudinal wave attenuation. The selected CASS specimens provided five equiaxed-grain material samples and five columnar

  20. Hydrogen-enhanced SCC of 304 austenitic stainless steel in MgCl{sub 2}

    SciTech Connect

    Gao, K.W.; Qiao, L.J.; Luo, J.L.

    1998-12-31

    SCC of 304 stainless steel(ss) in boiling MgCl{sub 2} at 416K was performed to investigate the effect of hydrogen during test. Results showed that the existence of hydrogen enhanced the susceptibility of SCC of 304ss. The fractography of specimen charged with hydrogen contained more intergranular than that of uncharged ones, and for both specimens charged or uncharged with hydrogen, SCC initiated and propagated along {l_brace}111{r_brace} plane.

  1. Deviation of longitudinal and shear waves in austenitic stainless steel weld metal

    SciTech Connect

    Kupperman, D.S.; Reimann, K.J.

    1980-01-01

    One of the difficulties associated with the ultrasonic inspection of stainless steel weld metal is the deviation of the ultrasonic beams. This can lead to errors in determining both the location and size of reflectors. The present paper compares experimental and theoretical data related to beam steering for longitudinal and shear waves in a sample of 308 SS weld metal. Agreement between predicted and measured beam deviations is generally good. Reasons for discrepancies are discussed.

  2. Atomic-scale decoration for improving the pitting corrosion resistance of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhou, Y. T.; Zhang, B.; Zheng, S. J.; Wang, J.; San, X. Y.; Ma, X. L.

    2014-01-01

    Stainless steels are susceptible to the localized pitting corrosion that leads to a huge loss to our society. Studies in the past decades confirmed that the pitting events generally originate from the local dissolution in MnS inclusions which are more or less ubiquitous in stainless steels. Although a recent study indicated that endogenous MnCr2O4 nano-octahedra within the MnS medium give rise to local nano-galvanic cells which are responsible for the preferential dissolution of MnS, effective solutions of restraining the cells from viewpoint of electrochemistry are being tantalizingly searched. Here we report such a galvanic corrosion can be greatly resisted via bathing the steels in Cu2+-containing solutions. This chemical bath generates Cu2-δS layers on the surfaces of MnS inclusions, invalidating the nano-galvanic cells. Our study provides a low-cost approach via an atomic scale decoration to improve the pitting corrosion resistance of stainless steels in a volume-treated manner.

  3. Atomic-scale decoration for improving the pitting corrosion resistance of austenitic stainless steels.

    PubMed

    Zhou, Y T; Zhang, B; Zheng, S J; Wang, J; San, X Y; Ma, X L

    2014-01-01

    Stainless steels are susceptible to the localized pitting corrosion that leads to a huge loss to our society. Studies in the past decades confirmed that the pitting events generally originate from the local dissolution in MnS inclusions which are more or less ubiquitous in stainless steels. Although a recent study indicated that endogenous MnCr2O4 nano-octahedra within the MnS medium give rise to local nano-galvanic cells which are responsible for the preferential dissolution of MnS, effective solutions of restraining the cells from viewpoint of electrochemistry are being tantalizingly searched. Here we report such a galvanic corrosion can be greatly resisted via bathing the steels in Cu(2+)-containing solutions. This chemical bath generates Cu(2-δ)S layers on the surfaces of MnS inclusions, invalidating the nano-galvanic cells. Our study provides a low-cost approach via an atomic scale decoration to improve the pitting corrosion resistance of stainless steels in a volume-treated manner. PMID:24398863

  4. Atomic-scale decoration for improving the pitting corrosion resistance of austenitic stainless steels

    PubMed Central

    Zhou, Y. T.; Zhang, B.; Zheng, S. J.; Wang, J.; San, X. Y.; Ma, X. L.

    2014-01-01

    Stainless steels are susceptible to the localized pitting corrosion that leads to a huge loss to our society. Studies in the past decades confirmed that the pitting events generally originate from the local dissolution in MnS inclusions which are more or less ubiquitous in stainless steels. Although a recent study indicated that endogenous MnCr2O4 nano-octahedra within the MnS medium give rise to local nano-galvanic cells which are responsible for the preferential dissolution of MnS, effective solutions of restraining the cells from viewpoint of electrochemistry are being tantalizingly searched. Here we report such a galvanic corrosion can be greatly resisted via bathing the steels in Cu2+-containing solutions. This chemical bath generates Cu2−δS layers on the surfaces of MnS inclusions, invalidating the nano-galvanic cells. Our study provides a low-cost approach via an atomic scale decoration to improve the pitting corrosion resistance of stainless steels in a volume-treated manner. PMID:24398863

  5. Time-temperature-sensitization diagrams and critical cooling rates of different nitrogen containing austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Parvathavarthini, N.; Dayal, R. K.

    2010-04-01

    Nitrogen-alloyed 316L stainless steel is being used as structural material for high temperature fast breeder reactor components with a design life of 40 years. With a view to increase the design life to 60 years and beyond, high nitrogen stainless steels are being considered for certain critical components which may be used at high temperatures. Since carbon and nitrogen have major influence on the sensitization kinetics, investigations were carried out to establish the sensitization behaviour of four heats of 316L SS containing (i) 0.07%N and 0.035%C, (ii) 0.120%N and 0.030%C, (iii) 0.150%N and 0.025%C and (iv) 0.22%N and 0.035%C. These stainless steels were subjected to heat treatments in the temperature range of 823-1023 K for various durations ranging from 1 h to 500 h. Using ASTM standard A262 Practice A and E tests, time-temperature-sensitization diagrams were constructed and from these diagrams, critical cooling rate above which there is no risk of sensitization was calculated. The data established in this work can be used to select optimum heat treatment parameters during heat treatments of fabricated components for fast reactors.

  6. Analytical description of true stress-true strain curves for neutron-irradiated stainless austenitic steels

    SciTech Connect

    Gussev, Maxim N; Byun, Thak Sang; Busby, Jeremy T

    2012-01-01

    This paper summarizes the results of an investigation for the deformation hardening behaviors of neutron-irradiated stainless steels in terms of true stress( ) true strain( ) curves. It is commonly accepted that the - curves are more informative for describing plastic flow, but there are few papers devoted to using the true curves for describing constitutive behaviors of materials. This study uses the true curves obtained from stainless steel samples irradiated to doses in the range of 0 55 dpa by various means: finite element calculation, optic extensomentry, and recalculation of engineering curves. It is shown that for the strain range 0 0.6 the true curves can be well described by the Swift equation: =k ( - 0)0.5. The influence of irradiation on the parameters of the Swift equation is investigated in detail. It is found that in most cases the k-parameter of this equation is not changed significantly by irradiation. Since large data scattering was observed for the 0-parameter, a modified Swift equation =k*( - 0 2/k2)0.5 was proposed and evaluated. This equation is based on the concept of zero stress, which is, in general, close to yield stress. The relationships among k, 0, and damage dose are discussed in detail, so as to more accurately describe the true curves for irradiated stainless steels.

  7. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    SciTech Connect

    Paggi, A.; Angella, G.; Donnini, R.

    2015-09-15

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along the directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.

  8. General corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Nakazono, Y.; Iwai, T.; Abe, H.

    2010-03-01

    The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a

  9. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  10. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  11. Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor condition

    NASA Astrophysics Data System (ADS)

    Gan, J.; Was, G. S.; Stoller, R. E.

    2001-10-01

    A model for microstructure development in austenitic alloys under light water reactor irradiation conditions is described. The model is derived from the model developed by Stoller and Odette to describe microstructural evolution under fast neutron or fusion reactor irradiation conditions. The model is benchmarked against microstructure measurements in 304 and 316 SS irradiated in a boiling water reactor core using one material-dependent and three irradiation-based parameters. The model is also adapted for proton irradiation at higher dose rate and higher temperature and is calibrated against microstructure measurements for proton irradiation. The model calculations show that for both neutron and proton irradiations, in-cascade interstitial clustering is the driving mechanism for loop nucleation. The loss of interstitial clusters to sinks by interstitial cluster diffusion was found to be an important factor in determining the loop density. The model also explains how proton irradiation can produce an irradiated dislocation microstructure similar to that in neutron irradiation.

  12. Abnormal magnetic behaviour of powder metallurgy austenitic stainless steels sintered in nitrogen

    NASA Astrophysics Data System (ADS)

    García, C.; Martin, F.; Blanco, Y.

    2009-10-01

    The magnetic response of AISI 304L and AISI 316L obtained through powder metallurgy and sintered in nitrogen were studied. AISI 304L sintered in nitrogen showed a ferromagnetic behaviour in as-sintered state while AISI 316L was paramagnetic. After solution annealing both were paramagnetic. Magnetic behaviour was analysed by using a vibrating sample magnetometer, a magnetic ferritscope and magnetic etching. A microstructural characterization was performed by means of optical metallography, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDS). Some samples when needed were submitted to aged heat treatments at 675 and 875 °C for 90 min, 4, 6, 8 or 48 h. The main microstructural feature found was the presence of a lamellar constituent formed by nitride precipitates and an interlamellar matrix of austenite and/or ferrite. The abnormal magnetic response was explained based on this.

  13. Internal Crack Propagation in a Continuously Cast Austenitic Stainless Steel Analyzed by Actual Residual Stress Tensor Distributions

    NASA Astrophysics Data System (ADS)

    Saito, Youichi; Tanaka, Shun-Ichiro

    2016-04-01

    Initiation, propagation, and termination of internal cracks in a continuously cast austenitic stainless steel has been investigated with emphasis on stress loading of the solidified shell during casting. Cracks were formed at the center of the slab, parallel to the width of the cast, and were observed near the narrow faces. Optimized two-dimensional X-ray diffraction method was employed to measure residual stress tensor distributions around the cracks in the as-cast slab with coarse and strongly preferentially oriented grains. The tensor distributions had a sharp peak, as high as 430 MPa, at the crack end neighboring the columnar grains. On the other hand, lower values were measured at the crack end neighboring the equiaxed grains, where the local temperatures were higher during solidification. The true residual stress distributions were determined by evaluating the longitudinal elastic constant for each measured position, resulting in more accurate stress values than before. Electron probe micro-analysis at the terminal crack position showed that Ni, Ti, and Si were concentrated at the boundaries of the equiaxed grains, where the tensile strength was estimated to be lower than at the primary grains. A model of the crack formation and engineering recommendations to reduce crack formation are proposed.

  14. Swelling and microstructure of austenitic stainless steel ChS-68 CW after high dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Porollo, S. I.; Konobeev, Yu. V.; Garner, F. А.

    2009-08-01

    Austenitic stainless steel ChS-68 serving as fuel pin cladding was irradiated in the 20% cold-worked condition in the BN-600 fast reactor in the range 56-84 dpa. This steel was developed to replace EI-847 which was limited by its insufficient resistance to void swelling. Comparison of swelling between EI-847 and ChS-68 under similar irradiation conditions showed improvement of the latter steel by an extended transient regime of an additional ˜10 dpa. Concurrent with swelling was the development of a variety of phases. In the temperature range 430-460 °С where the temperature peak of swelling was located, the principal type of phase generated during irradiation was G-phase, with volume fraction increasing linearly with dose to ˜0.5% at 84 dpa. While the onset of swelling is concurrent with formation of G-phase, the action of G-phase cannot be confidently ascribed to significant removal from solution of swelling-suppressive elements such as silicon. A plausible mechanism for the higher resistance to void swelling of ChS-68 as compared with EI-847 may be related to an observed higher stability of faulted dislocation loops in ChS-68 that impedes the formation of a glissile dislocation network. The higher level of boron in ChS-68 is thought to be one contributor that might play this role.

  15. The Mechanical and material properties of 316LN austenitic stainless steel for the fusion application in cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sas, J.; Weiss, K.-P.; Jung, A.

    2015-12-01

    Due to the constant increase of claims for all materials used in superconducting magnets in "magnetic fusion reactors", the article deals with the possibilities of increasing the mechanical properties of austenitic stainless steel tested at cryogenic conditions that ensure the transport of Helium to magnets. The aim of the experimental plan was to increase the mechanical properties of the steel grade 316LN tested at 4.2K from the original value Steel A: YS = 1045 MPa, UTS = 1528 MPa, A = 33% to the value of YS = 1204 MPa,UTS = 1642 MPa, A = 34% and Steel B: YS = 1173 MPa, UTS = 1541 MPa, A = 28% to the value of YS = 1351 MPa, UTS = 1645 MPa, A = 17%. The increase in mechanical properties of the steel grade under examination has been made by means of heat processing in the conditions of annealing: Th1 = 625 ° C / th1 = 696 h. The mechanical properties of steel were evaluated using static tension tests at 4,2 K. The samples were placed in a cryostat filled with liquid helium. Except for the mechanical properties, there were also evaluated structural changes depending on the conditions of heat processing by light optical microscopy and EBSD (Electron Backscatter Diffraction). The increase of steel properties used in low temperatures was achieved by heat processing.

  16. CRADA NFE-08-01456 Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Industrial Gas Turbines

    SciTech Connect

    Brady, Michael P; Pint, Bruce A; Unocic, Kinga A; Yamamoto, Yukinori; Kumar, Deepak; Lipschutz, Mark D.

    2011-09-01

    Oak Ridge National Laboratory (ORNL) and Solar Turbines Incorporated (Solar) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for industrial gas turbine recuperator components. ORNL manufactured lab scale foil of three different AFA alloy compositions and delivered them to Solar for creep properties evaluation. One AFA composition was selected for a commercial trial foil batch. Both lab scale and the commercial trial scale foils were evaluated for oxidation and creep behavior. The AFA foil exhibited a promising combination of properties and is of interest for future scale up activities for turbine recuperators. Some issues were identified in the processing parameters used for the first trial commercial batch. This understanding will be used to guide process optimization of future AFA foil material production.

  17. Strengthening of a thin austenitic stainless steel coil by cold wavy rolling with no magnetic and dimensional changes

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Kashyap, B. P.; Sangal, S.; Misra, R. D. K.

    2015-10-01

    A comparison of the effects of wavy rolling and cold rolling on microstructure variation, phase evolution, tensile and magnetic properties of a thin coil of Fe-18.47Cr-8.10Ni-0.94Mn austenitic stainless steel was made at room temperature. Wavy rolling led to strengthening with no change in magnetic property and thickness, unlike the conventional cold rolling that changed all these properties by deformation induced martensitic transformation, in addition to substructure evolution. The yield strength of 413 MPa and magnetic saturation 3.7 emu/g under mill-annealed condition increased, respectively, to 1208 MPa and 11.8 emu/g, upon four cycles of wavy rolling. While the maximum yield strength of 1790 MPa could be achieved by combining this stage of four cycles of wavy rolling with subsequent 50% conventional cold rolling, the magnetic saturation increased to 73.3 emu/g by deformation induced martensitic transformation caused by the latter.

  18. In situ x-ray diffraction investigations during low energy ion nitriding of austenitic stainless steel grade 1.4571

    NASA Astrophysics Data System (ADS)

    Manova, D.; Mändl, S.; Gerlach, J. W.; Hirsch, D.; Neumann, H.; Rauschenbach, B.

    2014-09-01

    Insertion of nitrogen into austenitic stainless steel leads to anomalously fast nitrogen diffusion and the formation of an expanded face-centred cubic phase which is known to contain a large amount of mechanical stress. In situ x-ray diffraction (XRD) measurements during low energy nitrogen ion implantation into steel 316Ti at 300-550 °C allow a direct view into diffusion and phase formation. While the layer growth is directly observable from the decreasing substrate reflection intensity, the time evolution of the intensities for the expanded phase reflection is much more complex: several mechanisms including at least formation and annealing of defects, twinning, reduction of the crystal symmetry, or grain rotation may be active inside the expanded phase, besides the thermally activated decay of the metastable expanded phase. This locally varying coherence length or scattering intensity from the expanded phase is furthermore a function of temperature and time, additionally complicating the deconvolution of XRD spectra for stress and concentration gradients. As no concise modelling of this coherence length is possible at present, a simple qualitative model assuming a dependence of the scattering intensity on the depth, influence by stress and plastic flow during the nitriding process is proposed for understanding the underlying processes.

  19. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Krishna, Nanda Gopala; Kim, Dong-Ik

    2015-10-01

    Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr2O4 and MnCr2O4 along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  20. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    DOE PAGESBeta

    Miao, Yinbin; Mo, Kun; Cui, Bai; Chen, Wei-Ying; Miller, Michael K.; Powers, Kathy A.; McCreary, Virginia; Gross, David; Almer, Jonathan; Robertson, Ian M.; et al

    2015-01-26

    We report comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y2O3, fluorite Y2O3–HfO2 solid solution and pyrochlore (or fluorite) Y2(Ti,Hf)2 - xO7 - x. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Moreover, two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and themore » steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. Our results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation.« less

  1. Effects of Laser Peening Treatment on High Cycle Fatigue and Crack Propagation Behaviors in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 108 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment.

  2. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  3. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  4. Development of 18Cr-9Ni-W-Nb-V-N Austenitic Stainless Steel Tube for Thermal Power Boilers

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Tetsuo; Mimura, Hiroyuki

    An 18Cr-9Ni-W-Nb-V-N austenitic stainless steel tube for thermal power boilers has been newly developed. The high temperature mechanical properties and corrosion resistance of the steel were investigated. The creep rupture strength of the developed steel is about 1.5 times as high as that of SUS347HTB, and is almost the same as that of Ka-SUS310J2TB at 650°C. This excellent creep strength of the steel is mainly due to solid solution strengthening by tungsten and nitrogen, and precipitation strengthening by nitrides of niobium and vanadium. The carbon content of the steel is reduced to 0.03% to improve intergranular corrosion resistance. The steam oxidation resistance and the high temperature corrosion resistance of the tube are almost the same as those of SUS347HTB. Weldability of the developed steel is superior to that of SUS304HTB and SUS310TB. Thus the developed steel is suitable for use as a material for superheater and reheater tubes of thermal power boilers.

  5. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton's Lymphoma cell line.

    PubMed

    Talha, Mohd; Kumar, Sanjay; Behera, C K; Sinha, O P

    2014-02-01

    The aims of the present work are to explore the effect of cold working on in-vitro biocompatibility of indigenized low cost Ni-free nitrogen containing austenitic stainless steels (HNSs) and to compare it with conventionally used biomedical grade, i.e. AISI 316L and 316LVM, using Dalton's Lymphoma (DL) cell line. The MTT assay [3-(4,5-dimethythiazol 2-yl)-2,5-diphenyltetrazolium bromide] was performed on DL cell line for cytotoxicity evaluation and cell adhesion test. As a result, it was observed that the HNS had higher cell proliferation and cell growth and it increases by increasing nitrogen content and degree of cold working. The surface wettability of the alloys was also investigated by water contact angle measurements. The value of contact angles was found to decrease with increase in nitrogen content and degree of cold working. This indicates that the hydrophilic character increases with increasing nitrogen content and degree of cold working which further attributed to enhance the surface free energy (SFE) which would be conducive to cell adhesion which in turn increases the cell proliferation. PMID:24411354

  6. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect

    Muñoz-Andrade, Juan D.

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  7. Effect of Grain Refinement on the Mechanical Properties of a Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Akbari, Alireza; Mohammadzadeh, Roghayeh

    2015-04-01

    Grain coarsening due to the high temperature exposure deteriorates mechanical properties of the high nitrogen austenitic stainless steels (HNASSs) produced by solution nitriding. To improve mechanical properties, the grains of nickel and manganese-free Fe-23Cr-2.4Mo-1.2N HNASS plates fabricated by pressurized solution nitriding were refined using a two-stage heat treatment process. Structural and mechanical properties were investigated using X-ray diffraction, optical microscopy, scanning and transmission electron microscopy, hardness and tensile testing and compared with that of the conventional AISI 316L steel. The results show that the as-produced HNASS exhibits uniform deformation up to failure without necking and brittle inter-granular fracture. By grain refinement, the yield and tensile strengths as well as the elongation to failure are increased by 17.8, 21.2, and 108.3 pct, respectively, as compared to the as-produced HNASS. However, despite more than a double increase in tensile toughness and elongation to failure, the brittle inter-granular fracture is not suppressed. The HNASSs plastically deform through formation of straight slip bands. TEM observations indicate development of planar arrays of dislocations in tensile-deformed HNASSs. The enhancement in tensile strength and toughness by grain refinement is discussed on the basis of straight slip bands formation, number of dislocations in pile-ups, and incompatibility strain developed between adjacent grains.

  8. Phased Array Ultrasonic Sound Field Mapping through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Components

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Coble, Jamie B.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    A sound field beam mapping exercise was conducted to assist in understanding the effects of coarse-grained microstructures found in cast austenitic stainless steel (CASS) materials on acoustic longitudinal wave propagation. Ultrasonic laboratory measurements were made on three specimens representing four different grain structures. Phased array (PA) probes were fixed on each specimen surface and excited in the longitudinal mode at specific angles while a point receiver was scanned in a raster pattern over the end of the specimen, generating a transmitted sound field image. Three probes operating at nominal frequencies of 0.5, 0.8, and 1.0 MHz were used. A 6.4 mm (0.25-in.) thick slice was removed from the specimen end and beam mapping was repeated three times, yielding four full sets of beam images. Data were collected both with a constant part path for each configuration (probe, specimen and slice, angle, etc.) and with a variable part path (fixed position on the surface). The base specimens and slices were then polished and etched to reveal measureable grain microstructures that were compared to the sound field interactions and scattering effects seen in the collected data.

  9. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    NASA Astrophysics Data System (ADS)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  10. Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Unocic, Kinga A; Lance, Michael J; Santella, Michael L; Yamamoto, Yukinori; Walker, Larry R

    2011-01-01

    A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from {approx}600-900 C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to {approx}800 C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800-1000 C, with post oxidation characterization of the 900 C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.

  11. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  12. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  13. Evaluation of toughness deterioration by an electrochemical method in an isothermally-aged N-containing austenitic stainless steel

    SciTech Connect

    Saucedo-Munoz, Maribel L. Lopez-Hirata, Victor M.; Avila-Davila, Erika O.; Melo-Maximo, Dulce V.

    2009-02-15

    This work presents the results of an evaluation of the deterioration of cryogenic toughness by means of an electrochemical method in a N-containing austenitic stainless steel (JK2) aged at temperatures of 700, 800 and 900 deg. C for times from 10 to 1000 min. The aging process at 700 and 800 deg. C caused the decrease in the Charpy V-Notch impact energy at - 196 deg. C because of the intergranular precipitation of carbides. Scanning electron micrographs of the Charpy V-Notch test specimens showed the presence of intergranular brittle fracture. The degree of sensitization was determined by the ratio of the maximum current density generated by the reactivation scan to that of the anodic scan, I{sub r}/I{sub a}, using the double-loop electrochemical potentiokinetic reactivation test. The Charpy V-Notch impact energy decreased with increase in the I{sub r}/I{sub a} ratio. This relation permits an estimate of the deterioration of cryogenic toughness due to thermal aging in this type of steel.

  14. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-11-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials.

  15. Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Souza Filho, I. R.; Sandim, M. J. R.; Cohen, R.; Nagamine, L. C. C. M.; Hoffmann, J.; Bolmaro, R. E.; Sandim, H. R. Z.

    2016-12-01

    Strain-induced martensite (SIM) and its reversion in a cold-rolled AISI 201 austenitic stainless steel was studied by means of magnetic properties, light optical (LOM) and scanning electron (SEM) microscopy, electron backscatter diffraction (EBSD), texture measurements, and Vickers microhardness testing. According to Thermo-calc© predictions, the BCC phase (residual δ-ferrite and SIM) is expected to be stable until 600 °C. The current material was cold rolled up to 60% thickness reduction and submitted to both isothermal and stepwise annealing up to 800 °C. Magnetic measurements were taken during annealing (in situ) of the samples and also for their post mortem conditions. The Curie temperatures (Tc) of residual δ-ferrite and SIM have similar values between 550 and 600 °C. Besides Tc, the focused magnetic parameters were saturation magnetization (Ms), remanent magnetization (MR), and coercive field (Hc). SIM reversion was found to occur in the range of 600-700 °C in good agreement with Thermo-calc© predictions. The microstructures of the material, annealed at 600 and 700 °C for 1 h, were investigated via EBSD. Microtexture measurements for these samples revealed that the texture components were mainly those found for the 60% cold rolled material. This is an evidence that the SIM reversion occurred by an athermal mechanism.

  16. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    PubMed

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component. PMID:19450861

  17. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-06-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  18. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    NASA Astrophysics Data System (ADS)

    Muñoz-Andrade, Juan D.

    2013-12-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  19. Manufacture of Alumina-Forming Austenitic Stainless Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-23

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 30lb heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(1-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions.

  20. The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels

    SciTech Connect

    Moon, Joonoh; Jang, Min-Ho; Kang, Jun-Yun; Lee, Tae-Ho

    2014-01-15

    The effect of a Zr addition on the precipitation behavior and mechanical properties in Nb-containing alumina-forming austenitic (AFA) stainless steels was investigated using tensile tests, scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analysis. The TEM observation showed that a Zr addition led to the formation of a (Nb,Zr)(C,N) complex particle, which coarsened the Nb-rich carbonitride. Tensile tests were performed at an elevated temperature (700 °C), and both the tensile and yield strengths decreased with a Zr addition. This unexpected result of a Zr addition was due to the reduction of the precipitation strengthening by particle coarsening. - Highlights: • The effect of Zr on high temperature strength in AFA steel containing Nb was studied. • Both the tensile and yield strengths of an AFA steel decreased with Zr-addition. • This is due to the reduction of precipitation strengthening by particle coarsening. • Nb(C,N) and (Nb,Zr)(C,N) particles were precipitated in an AFA and Zr-added AFA steel. • The size of (Nb,Zr)(C,N) particle is much bigger than that of Nb(C,N) particle.

  1. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic stainless steel based on EBSD analysis.

    PubMed

    Chen, Yao; Luo, Zhongbing; Zhou, Quan; Zou, Longjiang; Lin, Li

    2015-05-01

    The ultrasonic inspection of heavy-walled centrifugally cast austenitic stainless steel (CCASS) is challenging due to the complex metallurgical structure. Numerical modeling could provide quantitative information on ultrasonic propagation and plays an important role in developing advanced and reliable ultrasonic inspection techniques. But the fundamental obstacle is the accurate description of the complex metallurgical structure. To overcome this difficulty, a crystal orientation map of a CCASS specimen in the 96 mm × 12 mm radial-axial cross section was acquired based on the electron backscattered diffraction (EBSD) technique and it was used to describe the coarse-grained structure and grain orientation. A model of ultrasonic propagation for CCASS was built according to the EBSD map. The ultrasonic responses of the CCASS sample were also tested. Some experimental phenomena such as structural noise and signal distortion were reproduced. The simulated results showed a good consistence with the experiments. The modeling method is expected to be effective for the precise interpretation of ultrasonic propagation in the polycrystalline structures of CCASS. PMID:25670411

  2. Microstructural evolution of austenitic stainless steels irradiated in spectrally tailored experiment in ORR at 400°C

    NASA Astrophysics Data System (ADS)

    Sawai, T.; Maziasz, P. J.; Kanazawa, H.; Hishinuma, A.

    1992-09-01

    Several different heats of austenitic stainless steel, including Japanese-PCA(JPCA), were irradiated in the spectrally tailored ORR experiment at 400°C to 7.4 dpa. The levels of helium generated were 155 appm for JPCA (16Ni, 30 wppm B) and 102 appm for standard type 316 steel (13Ni). The mean He: dpa ratio throughout the irradiation falls between 15 and 20 appm He/dpa, which is close to the He/dpa values expected for fusion. Swelling was measured by transmission electron microscopy and by precision immersion densitometry. All the CW alloys showed swelling that was at or below the detection limit of the densitometer (0.1%). No measurable swelling was detected in the SA JPCA alloy, while the highest value of 0.8% was observed in the SA high-purity alloy. One Ti-modified steel with low C also showed a relatively high swelling value of 0.5%, while standard type 316 steel showed only 0.15% swelling. TEM observation gave consistent but slightly larger values of swelling.

  3. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Cui, Bai; Chen, Wei-Ying; Miller, Michael K.; Powers, Kathy A.; McCreary, Virginia; Gross, David; Almer, Jonathan; Robertson, Ian M.; Stubbins, James F.

    2015-01-26

    We report comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y2O3, fluorite Y2O3–HfO2 solid solution and pyrochlore (or fluorite) Y2(Ti,Hf)2 - xO7 - x. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Moreover, two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. Our results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation.

  4. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain

    2016-01-01

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  5. Explosion bonding: aluminum-magnesium alloys bonded to austenitic stainless steel

    SciTech Connect

    Patterson, R.A.

    1982-01-01

    The explosion bonding of 5000 series aluminum alloys to 300 series stainless steel alloys is summarized. The process technique involves a parallel gap arrangement with copper or aluminum bonding aids. Successful bonds have been achieved using either a single shot process for joining the trilayer clad or a sequential shot technique for each metal component. Bond success is monitored through a combined metallographic and tensile strength evaluation. Tensile properties are shown to be strongly dependent upon process parameters and the amount of intermetallic formation at the aluminum bond interface. Empirical data has been compared with experimental and destructive test results to determine the optimum procedures.

  6. Relative Humidity and the Susceptibility of Austenitic Stainless Steel to Stress Corrosion Cracking in an impure Plutonium Oxide Environment

    SciTech Connect

    Zapp, P.; Duffey, J.; Lam, P.; Dunn, K.

    2010-05-05

    Laboratory tests to investigate the corrosivity of moist plutonium oxide/chloride salt mixtures on 304L and 316L stainless steel coupons showed that corrosion occurred in selected samples. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The exposures were conducted in sealed containers in which the oxide-salt mixtures were loaded with about 0.6 wt % water from a humidified helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration, the composition of the salt and the moisture present in the test environment. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride and 0.6 wt% water. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas above the solid mixture, or in coupons exposed to other mixtures with either no CaCl{sub 2} or 0.92 wt% CaCl{sub 2}. SCC was present where the 0.6 wt % water content exceeded the value needed to fully hydrate the available CaCl{sub 2}, but was absent where the water content was insufficient. These results reveal the significance of the relative humidity in the austenitic stainless steels environment to their susceptibility to corrosion. The relative humidity in the test environment was controlled by the water loading and the concentration of the hydrating salts such as CaCl{sub 2}. For each salt or salt mixture there is a threshold relative

  7. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  8. Experiment and numerical simulation on cross-die forming of SUS304 metastable austenitic stainless using a modified Johnson-Cook model

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Ding, Wei; Ye, Liyan; Chen, Jun

    2013-12-01

    True stress-strain curves of SUS304 metastable austenitic stainless steel at various strain rates were fitted by a modified Johnson-Cook material model. The effect of blank-holder force on Cross-die forming of SUS304 stainless steel was studied. The forming process was also simulated by the software Marc based on this model. Major strain distribution, thickness distribution and load-displacement were compared between experiment and simulation. The results indicated the modified Johnson-Cook model could well predict the deformation behavior of SUS304 stainless steel. The martensitie volume fraction at different positions of the formed part was in good agreement with what can be expected.

  9. Spatial averaging algorithms for ultrasonic inspection of austenitic stainless steel welds

    SciTech Connect

    Horn, J. E.; Cooper, C.S.; Michaels, T.E.

    1980-04-07

    Interpretation of ultrasonic inspection data from stainless steel welds is difficult because the signal-to-noise ratio is very low. The three main reasons for this are the granular structure of the weld, the high attenuation of stainless steel, and electronic noise. Averaging in time at the same position in space reduces electronic noise, but does not reduce ultrasonic noise from grain boundary scattering. Averaging wave-forms from different spatial positions helps reduce grain noise, but desired signals can destructively interfere if they shift in time. If the defect geometry is known, the ultrasonic waveforms can be shifted before averaging, ensuring signal reinforcement. The simplest geometry results in a linear time shift. An averaging algorithm has been developed which finds the optimum shift. This algorithm computes the averaged, or composite waveform as a function of the time shift. The optimum occurs when signals from a reflector become aligned in time, producing a large amplitude composite waveform. This algorithm works very well, but requires significant computer time and storage. This paper discusses this linear shift averaging algorithm, and considers an implementation using frequency domain techniques. Also, data from several weld defects are presented and analyzed.

  10. Behavior of dissolved molybdenum during localized corrosion of austenitic stainless steel

    SciTech Connect

    Isaacs, H.S.; Huang, S.M.

    1995-12-01

    An in situ study of the chemistry of molybdenum during localized of corrosion of stainless steel in chloride solutions has been carried using energy dispersive x-ray techniques. An artificial pit was used to maintained a one dimensional diffusion geometry by dissolving back the cross section of strip of Type 316 stainless steel foil mounted in an epoxy resin. A high intensity 8 {mu}m diameter polychromatic x-ray beam at Beamline x26A was scanned across the steel, a salt layer on the steel, and the concentrated dissolution products within the artificial pit. The resulting x-ray fluorescence was analyzed to determine changes in concentration of the constituent alloying elements. It has been found that the salt layer on the steel was formed mainly by iron chloride and all other alloying elements were present at relatively lower concentrations than n the steel. Virtually no chromium remained in the salt layer. Also, little molybdenum was present negating proposed corrosion inhibition by a definitive molybdenum forming salt layer. Within the concentrated artificial pit solution it was found that alloying elements dissolved and migrated down a concentration gradient, but closer to the mouth of deep ({approximately}2 mm) pits, precipitation of molybdenum occurred to a minor extent that did not affect the localized corrosion processes.

  11. Anisotropic Radiation-Induced Segregation in 316L Austenitic Stainless Steel with Grain Boundary Character

    SciTech Connect

    Christopher M. Barr; Gregory A. Vetterick; Kinga A. Unocic; Khalid Hattar; Xian-Ming Bai; Mitra L. Taheri

    2014-04-01

    Radiation-induced segregation (RIS) and subsequent depletion of chromium along grain boundaries has been shown to be an important factor in irradiation-assisted stress corrosion cracking in austenitic face-centered cubic (fcc)-based alloys used for nuclear energy systems. A full understanding of RIS requires examination of the effect of the grain boundary character on the segregation process. Understanding how specific grain boundary structures respond under irradiation would assist in developing or designing alloys that are more efficient at removing point defects, or reducing the overall rate of deleterious Cr segregation. This study shows that solute segregation is dependent not only on grain boundary misorientation, but also on the grain boundary plane, as highlighted by markedly different segregation behavior for the __3 incoherent and coherent grain boundaries. The link between RIS and atomistic modeling is also explored through molecular dynamic simulations of the interaction of vacancies at different grain boundary structures through defect energetics in a simple model system. A key insight from the coupled experimental RIS measurements and corresponding defect–grain boundary modeling is that grain boundary–vacancy formation energy may have a critical threshold value related to the major alloying elements’ solute segregation.

  12. Comparative evaluations of the weldability of modified 800H and other advanced austenitic stainless steels

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.

    1993-07-01

    The weldability of modified 800H was evaluated in terms of HAZ hot cracking susceptibility and HAZ softening tendency. Four other types of austenitic alloys, modified 316, 310Ta, HR3C and NF709, were employed to carry out a comparative study. It was found that modified 800H exhibits good weldability in terms of operability as contrasted to NF709. However, a higher HAZ hot cracking susceptibility for the modified 800H tubing heats was revealed as compared to the commercial tubing heats of HR3C and NF709. The hot cracking test results for the small laboratory prepared modified 800H heats showed an equivalent or better HAZ hot cracking resistance as compared to HR3C and NF709. Thus, it is anticipated that modified 800H tubing can show a hot cracking resistance equivalent to NF709 and HR3C if the base metal grain size is properly controlled and an optimum thermal mechanical treatment has been performed. The preliminary assessment on HAZ softening behavior for modified 800H, modified 316, 310Ta, HR3C and NF709 alloys is discussed.

  13. Improved Erosion Resistance of Austenitic Stainless Steel in Corrosive Environment with Gas Tungsten Arc Melt Injection

    NASA Astrophysics Data System (ADS)

    Liu, Aiguo; Guo, Mianhuan; Ma, Yinan; Hu, Hailong

    2013-06-01

    Cr3C2-NiCr particles were injected into surface of 304 stainless steel using a gas tungsten arc melt injection process. Microstructure, composition, and phases in the treated layer were characterized. Hardness of the treated layer was tested. Corrosion resistance and erosion resistance of the treated layer were tested in 5 wt.% NaCl aqueous solution. Polarization curve was obtained by an electrochemical measuring system. An untreated substrate was tested for comparison. The results showed that large amount of (Cr, Fe)7C3 carbides were formed in the treated layer. Corrosion potential of the substrate was increased from -1.04 to -0.618 V. But the passivation effect was weakened, and the corrosion current density became higher. The hardness of the treated layer was greatly improved, from Hv245.0 to Hv1098.9. The erosion resistance of the treated layer was 1.5 times higher than that of the untreated substrate.

  14. Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Nakano, J.; Miwa, Y.; Kohya, T.; Tsukada, T.

    2004-08-01

    To study the effects of minor elements on irradiation assisted stress corrosion cracking (IASCC), high purity type 304 and 316 stainless steels (SSs) were fabricated and minor elements, Si or C were added. After neutron irradiation to 3.5 × 10 25 n/m 2 ( E>1 MeV), slow strain rate tests (SSRTs) of irradiated specimens were conducted in oxygenated high purity water at 561 K. Specimen fractured surfaces were examined using a scanning electron microscope (SEM) after the SSRTs. The fraction of intergranular stress corrosion cracking (IGSCC) on the fractured surface after the SSRTs increased with neutron fluence. In high purity SS with added C, the fraction of IGSCC was the smallest in the all SSs, although irradiation hardening level was the largest of all the SSs. Addition of C suppressed the susceptibility to IGSCC.

  15. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    SciTech Connect

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-07-15

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B{sub 2} intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  16. Flow stress and microstructural evolution during hot working of alloy 22Cr-13Ni-5Mn-0.3N austenitic stainless steel

    SciTech Connect

    Mataya, M.C.; Perkins, C.A.; Thompson, S.W.; Matlock, D.K.

    1996-05-01

    The stress-strain behavior and the development of microstructure between 850 C and 1,150 C in an austenitic stainless steel, 22Cr-13Ni-5Mn-0.3N, were investigated by uniaxial compression of cylindrical specimens at strain rates between 0.01 and 1 s{sup {minus}1} up to a strain of one. The measured (anisothermal) and corrected (isothermal) flow curves were distinctly different. The flow stress at moderate hot working temperatures, compared to a number of other austenitic alloys, was second only to that of alloy 718. Both static and dynamic recrystallization were observed. Recrystallization was sluggish in comparison to alloy 304L, apparently due to the presence of a fine Cr- and Nb-rich second-phase dispersion, identified as Z phase, which tended to pin the high-angle grain boundaries even at a high temperature of 1,113 C. Recrystallization may also be retarded by preferential restoration through the competitive process of recovery, which is consistent with the relatively high stacking-fault energy for this alloy. It is concluded that this alloy must be hot worked at temperatures higher than usual for austenitic stainless steels in order to minimize flow stress and refine grain size.

  17. Phase diffusionless γ↔α transformations and their effect on physical, mechanical and corrosion properties of austenitic stainless steels irradiated with neutrons and charged particles

    NASA Astrophysics Data System (ADS)

    Maksimkin, O. P.

    2016-04-01

    The work presents relationships of γ→α' and α'→γ-transformations in reactor 12Cr18Ni10Ti and 08Cr16Ni11Mo3 austenitic stainless steels induced by cold work, irradiation and/or temperature. Energy and mechanical parameters of nucleation and development of deformation-induced martensitic α'-phase in the non-irradiated and irradiated steels are given. The mechanisms of localized static deformation were investigated and its effect on martensitic γ→α' transformation is determined. It has been shown that irradiation of 12Cr18Ni10Ti steel with heavy Kr ions (1.56MeV/nucleon, fluence of 1·1015 cm-2) results in formation of α'-martensite in near-surface layer of the sample. Results of systematic research on reversed α'→γ-transformation in austenitic metastable stainless steels irradiated with slow (VVR-K) and fast (BN-350) neutrons are presented. The effect of annealing on strength and magnetic characteristics was determined. It was found that at the temperature of 400 °C in the irradiated with neutrons samples (59 dpa) an increase of ferromagnetic α'-phase and microhardness was observed. The obtained results could be used during assessment of operational characteristics of highly irradiated austenitic steels during transportation and storage of Fuel Assemblies for fast nuclear reactors.

  18. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    PubMed Central

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  19. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.

    PubMed

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  20. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  1. Contributions of ɛ and α' TRIP Effects to the Strength and Ductility of AISI 304 (X5CrNi18-10) Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Weiß, Andreas; Gutte, Heiner; Mola, Javad

    2016-01-01

    The deformation-induced processes by tensile loading of X5CrNi18-10 austenitic stainless steel in the temperature range of 77 K to 413 K (-196 °C to 140 °C) were investigated. The results were presented in the form of stress-temperature-transformation (STT) and strain-temperature-transformation (DTT) diagrams. The thermodynamic stability of the austenite with respect to the ɛ- and α'-martensite transformations was reflected in the STT and DTT diagrams. Furthermore, conclusions could be drawn from the transformation diagrams about the kinetics of stress- and strain-induced martensitic transformations. The diagrams laid foundations for the development of a new method of quantitative determination of strength and elongation contributions by means of induced and often overlapping deformation processes in the austenite. In this context, the plastic strains contributed by the glide and shearing of austenite were quantified and presented in connection with the ɛ and α' TRansformation-Induced Plasticity effects. Each deformation process was shown to have made a contribution to the strength and ductility, with a magnitude proportional to its dominance. The summation of such contributions provided the tensile strength and the uniform elongation of the steel. In other words, tensile strength and uniform elongation could be derived from a rule of mixtures. The newly proposed method was capable of explaining the anomalous temperature dependence of uniform elongation in the alloy investigated.

  2. Microstructural Evolution During Normal/Abnormal Grain Growth in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shirdel, Mohammad; Mirzadeh, Hamed; Habibi Parsa, Mohammad

    2014-10-01

    The grain growth behavior of 304L stainless steel was studied in a wide range of annealing temperatures and times with emphasis on the distinction between normal and abnormal grain growth (AGG) modes. The dependence of AGG (secondary recrystallization) at homologous temperatures of around 0.7 upon microstructural features such as dispersed carbides, which were rich in Ti but were almost free of V, was investigated by optical micrographs, X-ray diffraction patterns, scanning electron microscopy images, and energy dispersive X-ray analysis spectra. The bimodality in grain-size distribution histograms signified that a transition in grain growth mode from normal to abnormal was occurred at homologous temperatures of around 0.7 due to the dissolution/coarsening of carbides. Continued annealing to a long time led to completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another noticeable abnormality in grain growth was observed at very high annealing temperatures, which may be related to grain boundary faceting/defaceting. Finally, a versatile grain growth map was proposed, which can be used as a practical guide for estimation of the resulting grain size after exposure to high temperatures.

  3. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    NASA Astrophysics Data System (ADS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  4. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    SciTech Connect

    Sahri, M. I.; Othman, N. K.; Samsu, Z.; Daud, A. R.

    2014-09-03

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm{sup 2} and −13.5225 mg/cm{sup 2} respectively. The surface morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} were the main phases developed and detected by XRD technique. Cr{sub 2}O{sub 3} was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region.

  5. Cumulative creep-fatigue damage evolution in an austenitic stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1992-01-01

    A model of cumulative creep-fatigue damage has been developed which is based on the use of damage curve equations to describe the evolution of creep-fatigue damage for four basic creep-fatigue cycle types. These cycle types correspond to the four fundamental cycles of the Strain Range Partitioning Life Prediction approach of Manson, Halford, and Hirschberg. A concept referred to as Damage Coupling is introduced to analytically account for the differences in the nature of the damage introduced by each cycle type. For application of this model, the cumulative creep-fatigue damage behavior of type 316 stainless steel at 816 C has been experimentally established for the two-level loading cases involving fatigue and creep-fatigue, in various permutations. The tests were conducted such that the lower life (high strain) cycling was applied first, for a controlled number of cycles, and the higher life (lower strain) cycling was conducted at the second level, to failure. The proposed model correlated the majority of the observed cumulative creep-fatigue data.

  6. Effect of superheat on the solidification structures of AISI 310S austenitic stainless steel

    SciTech Connect

    Ozbayraktar, S.; Koursaris, A.

    1996-04-01

    An experimental study was carried out to investigate the evolution of macrostructure and microstructure in AISI 310S stainless steel during solidification. Experimental findings suggested that the macrostructure a/nd the microstructure of the cast material responded differently to variations in casting temperature. As the casting temperature decreased, the macrostructure was refined, as expected, but the microstructure coarsened. A relationship was established between the proportion of equiaxed zone and superheat as follows: pct equiaxed zone = a + b ln (1/{Delta}T), where a and b are constants. The relationship between grain width and superheat could be expressed by the equation: gw = e(c+d/{Delta}T), where c and d are constants determined by the distance from the edge of the ingot. The relationship between primary arm spacing and superheat could be expressed by the equation: {lambda}{sub 1} = p + q ln (1/{Delta}T), where p and q are constants determined by the distance from the edge of the ingot. The parameter grain width ratio has been introduced to describe the relationship between the shape and the nucleation and growth kinetics of the columnar grains.

  7. Prevention of weld-decay in austenitic stainless steel by using surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Laleh, Majid; Kargar, Farzad; Rouhaghdam, Alireza Sabour

    2012-11-01

    Surface mechanical attrition treatment (SMAT) was applied to the samples of a type AISI 304 stainless steel in order to induce grain refinement as well as formation of twins. Transmission electron microscopy and X-ray diffraction analysis results showed that the average grain size at the surface of the SMATed sample was about 10 nm. The untreated and SMATed samples were then welded using a one-pass gas tungsten arc procedure. The heat-affected zone (HAZ) of the samples was examined by optical microscopy and corrosion tests. Results of the double loop electrochemical potentiokinetic reactivation tests showed that the degree of sensitization in the HAZ for the SMATed sample was very low as compared to that of the untreated one. The pre-SMATed sample was resistant to intergranular corrosion. This is mainly due to the formation of high density of twins which are not prone to carbide precipitation because of their regular and coherent atomic structure and extreme low grain boundary energy as compared with those of other grain boundaries.

  8. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    SciTech Connect

    Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.

    1994-03-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application.

  9. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Literature Review

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provides recommendations to insure accurate, repeatable and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  10. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Final Report

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provide recommendations to ensure accurate, repeatable, and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  11. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Sun, Juncai; Kang, Bin; Li, Song; Ji, Shijun; Wen, Zhongsheng; Wang, Xiaochun

    2014-01-01

    A niobium carbide diffusion layer with a cubic NbC phase surface layer (∼6 μm) and a Nb and C diffusion subsurface layer (∼1 μm) is fabricated on the surface of AISI 304 stainless steel (304 SS) bipolar plate in a proton exchange membrane fuel cell (PEMFC) using plasma surface diffusion alloying. The electrochemical behaviour of the niobium carbide diffusion-modified 304 SS (Nb-C 304 SS) is investigated in simulated PEMFC environments (0.5 M H2SO4 and 2 ppm HF solution at 80 °C). Potentiodynamic, potentiostatic polarisation and electrochemical impedance spectroscopy measurements reveal that the niobium carbide diffusion layer considerably improves the corrosion resistance of 304 SS compared with untreated samples. The corrosion current density of Nb-C 304 SS is maintained at 0.058 μA cm-2 and 0.051 μA cm-2 under simulated anodic and cathodic conditions, respectively. The interfacial contact resistance of Nb-C 304 SS is 8.47 mΩ cm2 at a compaction force of 140 N cm-2, which is significantly lower than that of the untreated sample (100.98 mΩ cm2). Moreover, only a minor increase in the ICR of Nb-C 304 SS occurs after 10 h potentiostatic tests in both cathodic and anodic environments.

  12. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    PubMed

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The

  13. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    NASA Astrophysics Data System (ADS)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of

  14. Σ3 CSL boundary distributions in an austenitic stainless steel subjected to multidirectional forging followed by annealing

    NASA Astrophysics Data System (ADS)

    Tikhonova, Marina; Kuzminova, Yuliya; Fang, Xiaoying; Wang, Weiguo; Kaibyshev, Rustam; Belyakov, Andrey

    2014-12-01

    The effect of processing and annealing temperatures on the grain boundary characters in the ultrafine-grained structure of a 304-type austenitic stainless steel was studied. An S304H steel was subjected to multidirectional forging (MDF) at 500-800°C to total strains of ~4, followed by annealing at 800-1,000°C for 30 min. The MDF resulted in the formation of ultrafine-grained microstructures with mean grain sizes of 0.28-0.85 μm depending on the processing temperature. The annealing behaviour of the ultrafine-grained steel was characterized by the development of continuous post-dynamic recrystallization including a rapid recovery followed by a gradual grain growth. The post-dynamically recrystallized grain size depended on both the deformation temperature and the annealing temperature. The recrystallization kinetics was reduced with an increase in the temperature of the preceding deformation. The grain growth during post-dynamic recrystallization was accompanied by an increase in the fraction of Σ3n CSL boundaries, which was defined by a relative change in the grain size, i.e. a ratio of the annealed grain size to that evolved by preceding warm working (D/D0). The fraction of Σ3n CSL boundaries sharply rose to approximately 0.5 in the range of D/D0 from 1 to 5, which can be considered as early stage of continuous post-dynamic recrystallization. Then, the rate of increase in the fraction of Σ3n CSL boundaries slowed down significantly in the range of D/D0 > 5. A fivefold increase in the grain size by annealing is a necessary condition to obtain approximately 50% Σ3n CSL boundaries in the recrystallized microstructure.

  15. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    SciTech Connect

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{sub 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.

  16. Alumina-Forming Austenitics: A New Approach to Thermal and Degradation Resistant Stainless Steels for Industrial Use

    SciTech Connect

    David A Helmick; John H Magee; Michael P Brady

    2012-05-31

    A series of developmental AFA alloys was selected for study based on: 25 Ni wt.% (alloys A-F), 20 wt% Ni (alloys G-H), and 12 Ni wt.% (alloys I-L). An emphasis in this work was placed on the lower alloy content direction for AFA alloys to reduce alloy raw material cost, rather than more highly alloyed and costly AFA alloys for higher temperature performance. Alloys A-D explored the effects of Al (3-4 wt.%) and C (0.05-0.2 wt.%) in the Fe-25Ni-14Cr-2Mn-2Mo-1W-1Nb wt.% base range; alloys E and F explored the effects of removing costly Mo and W additions in a Fe-25Ni-14Cr-4Al-2.5Nb-2Mn-0.2C base, alloys G and H examined Nb (1-2.5wt.%) and removal of Mo, W in a Fe-20Ni-14Cr-3Al-2Mn-0.2 C wt.% base; and alloys I-L examined effects of C (0.1-0.2 wt.%) and Mn (5-10 wt.%) on a low cost Fe-14Cr-12Ni-3Cu-2.5Al wt.% base (no Mo, W additions). Creep testing resulted in elemental trends that included the beneficial effect of higher carbon and lower niobium in 20-25%Ni AFA alloys and, the beneficial of lower Mn in 12%Ni AFA alloys. Corrosion tests in steam and sulfidation-oxidation environments showed, in general, these alloys were capable of a ten-fold improvement in performance when compared to conventional austenitic stainless steels. Also, corrosion test results in metal-dusting environments were promising and, warrant further investigation.

  17. Temperature dependence of the dislocation microstructure of PCA austenitic stainless steel irradiated in ORR spectrally-tailored experiments

    NASA Astrophysics Data System (ADS)

    Maziasz, P. J.

    1992-09-01

    Specimens of solution-annealed (SA) and 25% cold-worked (CW) prime-candidate-alloy (PCA) austenitic stainless steel were irradiated in ORR in spectrally-tailored experiments specially designed to produce fusion-relevant He/dpa ratios (12-18 appm He/dpa). SA and CW PCA were irradiated at 330 and 400°C to 13 dpa while only CW PCA was irradiated at 60, 200, 330 and 400°C to 7.4 dpa. Cavities and fine MC precipitates were only detectable at 330 and 400°C. Dislocations were a major component of the radiation-induced microstructure at 60-400°C. Mixtures of tiny “black-spot” loops, larger Frank loops, and network components of the total dislocation structure were very temperature dependent. Both SA and CW PCA contained Frank loops and network dislocations at 330 and 400°C, with SA PCA having more of both. Frank loop concentrations were maximum at 330°C and dislocations evolved most with dose at 400°C. At 60 and 200°C, the microstructure was dominated by very dense dispersions of tiny (1-3 nm diam) “black-spot” loops. No Frank loops were found at 60°C. Surprisingly, significant radiation-induced recovery of the as-cold-worked dislocation network occured in CW PCA at all temperatures. The nature of the radiation-induced microstructure makes a transition between 200 and 330°C.

  18. Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

  19. Microstructure and corrosion behavior of austenitic stainless steel treated with laser

    NASA Astrophysics Data System (ADS)

    Khalfallah, I. Y.; Rahoma, M. N.; Abboud, J. H.; Benyounis, K. Y.

    2011-06-01

    Surface modification of AISI316 stainless steel by laser melting was investigated experimentally using 2 and 4 kW laser power emitted from a continuous wave CO 2 laser at different specimen scanning speeds ranged from 300 to 1500 mm/min. Also, an investigation is reported of the introduction of carbon into the same material by means of laser surface alloying, which involves pre-coating the specimen surfaces with graphite powder followed by laser melting. The aim of these treatments is to enhance corrosion resistance by the rapid solidification associated with laser melting and also to increase surface hardness without affecting the bulk properties by increasing the carbon concentration near the surface. Different metallurgical techniques such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the microstructure of the treated zone. The microstructures of the laser melted zones exhibited a dendritic morphology with a very fine scale with a slight increase in hardness from 200 to 230 Hv. However, the laser alloyed samples with carbon showed microstructure consisting of γ dendrite surrounded by a network of eutectic structures (γ+carbide). A significant increase in hardness from 200 to 500 Hv is obtained. Corrosion resistance was improved after laser melting, especially in the samples processed at high laser power (4 kW). There was shift in Icorr and Ecorr toward more noble values and a lower passive current density than that of the untreated materials. These improvements in corrosion resistance were attributed to the fine and homogeneous dendritic structure, which was found throughout the melted zones. The corrosion resistance of the carburized sample was lower than the laser melted sample.

  20. X-ray photoelectron spectroscopic analysis of oxidized Fe-16Cr-16Ni-2Mn-1Mo-2Si austenitic stainless steel

    SciTech Connect

    Poston, J.A., Jr.; Siriwardane, R.V.; Dunning, J.S.; Alman, D.E.; Rawers, J.C.

    2007-03-30

    Depth profile analysis (argon ion etching/X-ray photoelectron spectroscopy) was conducted on a series of Fe–16Cr–16Ni–2Mn–1Mo–2Si austenitic stainless steel samples oxidized at 973 and 1073 K with exposure times of 25, 100, 193, 436 and 700 h. Surface and near surface rearrangement following oxidation resulted in a region of high Cr concentration on all oxidized samples. Temperature and time dependence to O2 penetration depth was observed. In general, O2 penetration depth was found to increase with increasing exposure up to 436 h. No increase in depth was observed between 436 and 700 h exposure time.

  1. Corrosion testing of welds in austenitic stainless steel tubing using ASTM A 249 boiling HCl weld decay test (Supplementary requirement S7)

    SciTech Connect

    Pepin, J.J.; Blessman, E.R.; Lovejoy, P.T.

    1997-06-01

    Welded stainless steel tubing manufactured to ASTM A 249 specification, Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes, can exhibit substantial differences in its S7 Weld Decay Test performance. Manufacturing conditions are the major contributors to the variation in S7 results. The method of measuring the S7 samples can also contribute to nonrepresentative results. The S7 boiling HCl test is a good indication of weld homogenization. To ensure that the tubing will have no tendency toward selective or accelerated weld corrosion, a maximum corrosion ratio of 1.0 must be achieved across the entire weld.

  2. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.

    PubMed

    Proust, Gwénaëlle; Retraint, Delphine; Chemkhi, Mahdi; Roos, Arjen; Demangel, Clemence

    2015-08-01

    Austenitic 316L stainless steel can be used for orthopedic implants due to its biocompatibility and high corrosion resistance. Its range of applications in this field could be broadened by improving its wear and friction properties. Surface properties can be modified through surface hardening treatments. The effects of such treatments on the microstructure of the alloy were investigated here. Surface Mechanical Attrition Treatment (SMAT) is a surface treatment that enhances mechanical properties of the material surface by creating a thin nanocrystalline layer. After SMAT, some specimens underwent a plasma nitriding process to further enhance their surface properties. Using electron backscatter diffraction, transmission Kikuchi diffraction, energy dispersive spectroscopy, and transmission electron microscopy, the microstructural evolution of the stainless steel after these different surface treatments was characterized. Microstructural features investigated include thickness of the nanocrystalline layer, size of the grains within the nanocrystalline layer, and depth of diffusion of nitrogen atoms within the material. PMID:26139391

  3. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    SciTech Connect

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  4. Automated flaw detection scheme for cast austenitic stainless stell weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    NASA Astrophysics Data System (ADS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-05-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  5. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    DOE PAGESBeta

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherentmore » from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  6. Improved Creep Behavior of a High Nitrogen Nb-Stabilized 15Cr-15Ni Austenitic Stainless Steel Strengthened by Multiple Nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Ha, Vu The; Jung, Woo Sang; Suh, Jin Yoo

    2011-11-01

    Austenitic stainless steels are expected to be a major material for boiler tubes and steam turbines in future ultra-supercritical (USC) fossil power plants. It is of great interest to maximize the creep strength of the materials without increasing the cost. Precipitation strengthening was found to be the best and cheapest way for increasing the creep strength of such steels. This study is concerned with improving creep properties of a high nitrogen Nb-stabilized 15Cr-15Ni austenitic alloy through introducing a high number of nanosized particles into the austenitic matrix. The addition of around 4 wt pct Mn and 0.236 wt pct N into the 15Cr-15Ni-0.46Si-0.7Nb-1.25Mo-3Cu-Al-B-C matrix in combination with a special multicycled aging-quenching heat treatment resulted in the fine dispersion of abundant quantities of thermally stable (Nb,Cr,Fe)(C,N) precipitates with sizes of 10 to 20 nm. Apart from the carbonitrides, it was found that a high number of coherent copper precipitates with size 40 to 60 nm exist in the microstructure. Results of creep tests at 973 K and 1023 K (700 °C and 750 °C) showed that the creep properties of the investigated steel are superior compared to that of the commercial NF709 alloy. The improved creep properties are attributed to the improved morphology and thermal stability of the carbonitrides as well as to the presence of the coherent copper precipitates inside the austenitic matrix.

  7. Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr-10Ni-Ti austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Maltsev, D. A.; Prikhodko, K. E.; Fedotova, S. V.; Margolin, B. Z.; Sorokin, A. A.

    2015-10-01

    A complex study of structural state and properties of 18Cr-10Ni-Ti austenitic stainless steel after irradiation in BOR-60 fast research reactor (in the temperature range 330-400 °C up to damaging doses of 145 dpa) and in VVER-1000 light water reactor (at temperature ∼320 °C and damaging doses ∼12-14 dpa) was performed. The possibility of recovery of structural-phase state and mechanical properties to the level almost corresponding to the initial state by the recovery annealing was studied. The principal possibility of the recovery annealing of pressurized water reactor internals that ensures almost complete recovery of its mechanical properties and microstructure was shown. The optimal mode of recovery annealing was established: 1000 °C during 120 h.

  8. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.

    PubMed

    Engelberg, D L; Humphreys, F J; Marrow, T J

    2008-06-01

    Grain boundary engineering of austenitic stainless steel, through the introduction of plastic strain and thermal annealing, can be used to develop microstructures with improved resistance to inter-granular degradation. The influence of low-strain thermo-mechanical processing on grain boundary network development, with systematic variations of annealing treatments, has been investigated. Three stages of the microstructure development during grain boundary engineering in low-strain processing conditions are identified, and correlated with changes in grain boundary character and deviation distributions. Low-energy connected length segments at triple junctions, which have been proposed to be responsible for crack bridging during inter-granular stress corrosion cracking, can be influenced by the choice of the annealing treatment parameters. The development of individual grain boundary length segments of different character showed consistent trends with increasing grain size. Crack length predictions are consistent with the beneficial effect of designing microstructures with high fractions of twin grain boundaries and smaller grain size. PMID:18503670

  9. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wang, Yanli; Wang, Hui; Xin, Changsheng; Wang, Xitao

    2016-02-01

    The stress corrosion cracking (SCC) behavior of cast austenitic stainless steels of unaged and thermally aged at 400 °C for as long as 20,000 h were studied by using a slow strain rate testing (SSRT) system. Spinodal decomposition in ferrite during thermal aging leads to hardening in ferrite and embrittlement of the SSRT specimen. Plastic deformation and thermal aging degree have a great influence on the oxidation rate of the studied material in simulated PWR primary water environments. In the SCC regions of the aged SSRT specimen, the surface cracks, formed by the brittle fracture of ferrite phases, are the possible locations for SCC. In the non-SCC regions, brittle fracture of ferrite phases also occurs because of the effect of thermal aging embrittlement.

  10. Effects of Ce, Y and Mo Addition on the Stress Accelerated Oxidation of Austenitic Stainless Steel in Oxygenated High Temperature Water

    SciTech Connect

    Shengchun Wang; Nobuaki Kawaguchi; Tetsuo Shoji

    2004-07-01

    Based upon the recent progress in mechanistic understanding of intergranular stress corrosion cracking (IGSCC) of austenitic stainless steels in high temperature water in light water reactor (LWR), the effects of Ce, Y, and Mo addition on oxidation kinetics under a tensile stress condition was investigated. Minor impurity of P was also studied. A kind of circumferentially notched tensile specimen was prepared to simulate the crack tip stress field. The notched specimens of different materials studied were applied with an almost constant load in simulated boiling water reactor (BWR) water. The oxidation was examined by the specimen cross section. It was shown that these elements have quite clear effects on the metal oxidation and alloying element distribution in the oxide layer. (authors)

  11. Elevated temperature dry sliding wear behavior of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding

    NASA Astrophysics Data System (ADS)

    He, Xiang-Ming; Liu, Xiu-Bo; Wang, Ming-Di; Yang, Mao-Sheng; Shi, Shi-Hong; Fu, Ge-Yan; Chen, Shu-Fa

    2011-10-01

    In order to improve the high-temperature wear resistance of austenitic stainless steel, a wear resistant composite coating reinforced with hard (Cr,Fe) 7C 3 carbide and toughened by ductile γ-(Ni,Fe)/(Cr,Fe) 7C 3 eutectic matrix was fabricated by a novel central hollow laser cladding technique. The constituent phases and microstructure as well as high-temperature tribological behaviors of the Ni-based coating were investigated, respectively, and the corresponding wear mechanisms were discussed. It has been found that the composite coating exhibits superior wear resistance than substrate either at ambient or high temperatures. The coating shows better sliding wear resistance at 600 °C than 300 °C owing to high-temperature stability of the reinforced carbide and polishing effect as well as formation of continuous lubricious films, which implied it has large potential industrial applications at relatively higher temperatures.

  12. Irradiation creep and stress-enhanced swelling of Fe-16Cr-15Ni-Nb austenitic stainless steel in BN-350

    SciTech Connect

    Vorobjev, A.N.; Porollo, S.I.; Konobeev, Yu.V.

    1997-04-01

    Irradiation creep and void swelling will be important damage processes for stainless steels when subjected to fusion neutron irradiation at elevated temperatures. The absence of an irradiation device with fusion-relevant neutron spectra requires that data on these processes be collected in surrogate devices such as fast reactors. This paper presents the response of an annealed austenitic steel when exposed to 60 dpa at 480{degrees}C and to 20 dpa at 520{degrees}C. This material was irradiated as thin-walled argon-pressurized tubes in the BN-350 reactor located in Kazakhstan. These tubes were irradiated at hoop stresses ranging from 0 to 200 MPa. After irradiation both destructive and non-destructive examination was conducted.

  13. Lattice dynamics in austenitic stainless steels Fe 18Cr 12Ni 2Mo and Fe 18Cr 16Ni 10Mn

    NASA Astrophysics Data System (ADS)

    Rajevac, V.; Hoelzel, M.; Danilkin, S. A.; Hoser, A.; Fuess, H.

    2004-04-01

    Phonon dispersion curves of austenitic stainless steels Fe-18Cr-16Ni-10Mn and Fe-18Cr-12Ni-2Mo have been measured by triple-axis neutron spectroscopy. The data were analysed using Born-von Karman interactions as well as calculations including the contribution of conduction electrons on the lattice dynamics. An appropriate description of the experimental data was obtained by taking into account two-neighbour shells plus the contribution of the electron gas. The elastic constants and moduli obtained are close to reported results by ultrasonic studies on polycrystalline samples. The phonon densities of states in both systems calculated from the dispersion curves agree well with results obtained by time-of-flight neutron spectroscopy on polycrystalline samples. The Debye temperature THgr(T) shows a minimum around 40 K, similar to copper and nickel.

  14. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Christiansen, Thomas L.; Winther, Grethe; Somers, Marcel A. J.

    2016-08-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed ( ɛ eq=0.5) samples of stable stainless steel EN 1.4369 were nitrided or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa's in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone.

  15. The role of hydrogen in stress-corrosion cracking of austenitic stainless steel in hot MgCl{sub 2} solution

    SciTech Connect

    Qiao, L.; Mao, X.; Chu, W.

    1995-07-01

    The role of hydrogen in stress-corrosion cracking (SCC) of austenitic stainless steel was investigated in boiling chloride solution. The tests in the mixed melted salt verified that hydrogen-induced cracking (HIC) could occur at 160 C if sufficient hydrogen could be supplied continuously. It was found that the threshold SCC intensity factors of both 321 and 310 steels were lower than those of HIC during dynamic charging at high fugacity at 40 C and 160 C. In addition, anodic polarization decreased hydrogen concentration and promoted SCC in hot LiCl solution, while cathodic polarization increased hydrogen concentration and restrained SCC. Hydrogen could be introduced into the specimen and be concentrated at the crack tip during SCC. It could promote anodic dissolution and SCC remarkably, although it was not enough to produce cracking.

  16. Observations of Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Spot Welds Using Time Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S

    2003-10-29

    Time Resolved X-Ray Diffraction (TRXRD) measurements are made in the Heat Affected Zone (HAZ) of 2205 Duplex Stainless Steel (DSS) spot welds. Both the {gamma} {yields} {delta} and {delta} {yields} {gamma} transformations are monitored as a function of time during the rapid spot weld heating and cooling cycles. These observations are then correlated with calculated thermal cycles. Where the peak temperatures are highest ({approx}1342 C), the {gamma} {yields} {delta} transformation proceeds to completion, leaving a ferritic microstructure at the end of heating. With lower peak temperatures, the {gamma} {yields} {delta} transformation proceeds to only partial completion, resulting in a microstructure containing both transformed and untransformed austenite. Further analyses of the individual diffraction patterns show shifts in the peak positions and peak widths as a function of both time and temperature. In addition, these changes in the peak characteristics are correlated with measured changes in the ferrite volume fraction. Such changes in the peak positions and widths during the {gamma} {yields} {delta} transformation provide an indication of changes occurring in each phase. These changes in peak properties can be correlated with the diffusion of nitrogen and other substitutional alloying elements, which are recognized as the primary mechanisms for this transformation. Upon cooling, the {delta} {yields} {gamma} transformation is observed to proceed from both the completely and partially transformed microstructural regions in the TRXRD data. An examination of the resulting microstructures confirms the TRXRD observation as the evidence shows that austenite both nucleates and grows from the ferritic microstructure at locations closest to the fusion zone boundary and grows from untransformed austenite grains at locations further from this boundary.

  17. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    SciTech Connect

    Moon, Joonoh Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.

  18. Influence of Nb-Microalloying on the Formation of Nano/Ultrafine-Grained Microstructure and Mechanical Properties During Martensite Reversion Process in a 201-Type Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Baghbadorani, Hojjat Samaei; Kermanpur, Ahmad; Najafizadeh, Abbas; Behjati, Peiman; Moallemi, Mohammad; Rezaee, Ahad

    2015-08-01

    In this study, influence of Nb-microalloying on formation of nano/ultrafined grain microstructure and mechanical properties during martensite reversion process in a 201-type austenitic stainless steel microalloyed with Nb was investigated. For this purpose, the 90 pct cold-rolled samples with almost fully martensitic microstructure were reversion annealed at 1023 K to 1173 K (750 °C to 900 °C) for 5 to 1800 seconds. The microstructural evolution was characterized using X-ray diffractometer, Ferritescope, optical microscope, scanning, and transmission electron microscopes. Mechanical properties were evaluated using hardness and tensile tests. The reversion mechanism was found to be diffusion controlled. In comparison with other types of 201 steel, the kinetics of grain growth at 1173 K (900 °C) was much slower in the Nb-bearing steel, being related to the rapid precipitation of nano-sized Nb-rich carbonitrides during reversion process. At this temperature, the finest austenitic microstructure was achieved in the specimen reversion annealed for 60 seconds, possessing a microstructure composed of nano and ultrafined grains with an average grain size of 93 nm. This specimen exhibited an excellent combination of ultrahigh strength (yield strength of 1 GPa and tensile strength of 1.5 GPa) and good ductility (tensile elongation of 35 pct).

  19. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments.

    PubMed

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2015-02-01

    Surface modification treatments can be used to improve the biocompatibility of austenitic stainless steels. In the present research two different modifications of AISI 316L stainless steel were considered, low temperature nitriding and collagen-I coating, applied as single treatment or in conjunction. Low temperature nitriding produced modified surface layers consisting mainly of S phase, which enhanced corrosion resistance in PBS solution. Biocompatibility was assessed using human peripheral blood mononuclear cells (PBMC) in culture. Proliferation, lactate dehydrogenase (LDH) levels, release of cytokines (TNF-α, IL-1β, IL-12, IL-10), secretion of metalloproteinase (MMP)-9 and its inhibitor TIMP-1, and the gelatinolytic activity of MMP-9 were determined. While the 48-h incubation of PBMC with all the sample types did not negatively influence cell proliferation, LDH and MMP-9 levels, suggesting therefore a good biocompatibility, the release of the pro-inflammatory cytokines was always remarkable when compared to that of control cells. However, in the presence of the nitrided and collagen coated samples, the release of the pro-inflammatory cytokine IL-1β decreased, while that of the anti-inflammatory cytokine IL-10 increased, in comparison with the untreated AISI 316L samples. Our results suggest that some biological parameters were ameliorated by these surface treatments of AISI 316L. PMID:25655502

  20. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  1. Solidification Behavior and Weldability of Dissimilar Welds Between a Cr-Free, Ni-Cu Welding Consumable and Type 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sowards, Jeffrey W.; Liang, Dong; Alexandrov, Boian T.; Frankel, Gerald S.; Lippold, John C.

    2012-04-01

    The solidification behavior of a Cr-free welding consumable based on the Ni-Cu system was evaluated in conjunction with Type 304L stainless steel. The weld metal microstructure evolution was evaluated with optical and secondary electron microscopy, energy dispersive spectroscopy, X-ray diffraction, button melting, and thermodynamic (CALPHAD-based) modeling. Solidification partitioning patterns showed that higher dilutions of the filler metal by Type 304L increased segregation of Ti, Cu, and Si to interdendritic regions. Button melting experiments showed a widening of the solidification temperature range with increasing dilution because of the expansion of the austenite solidification range and formation of Ti(C,N) via a eutectic reaction. The model predictions showed good correlation with button melting experiments and were used to evaluate the nature of the Ti(C,N) precipitation reaction. Solidification cracking susceptibility of the weld metal was shown to increase with dilution of 304L stainless steel based on testing conducted with the cast pin tear test. The increase in cracking susceptibility is associated with expansion of the solidification temperature range and the presence of eutectic liquid at the end of solidification that wets solidification grain boundaries.

  2. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 deg. C

    SciTech Connect

    Vach, Marian Kunikova, Terezia; Domankova, Maria; Sevc, Peter; Caplovic, Lubomir; Gogola, Peter; Janovec, Jozef

    2008-12-15

    Three austenitic steels (18Cr-8Ni, 18Cr-10Ni, 21Cr-30Ni), used for long-term applications at temperatures between 600 and 800 deg. C were investigated. In the investigation, metallography, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy were used. In additional to the experimental measurements, thermodynamic predictions were done using the ThermoCalc software and the non-commercial database STEEL16F. Various combinations of M{sub 23}C{sub 6}, sigma, and MC phases were identified in the austenite matrix of these steels. It was confirmed experimentally that extra large particles (up to 10 {mu}m) observed in the 21Cr-30Ni steel are M{sub 23}C{sub 6}, even though this carbide was not predicted as the equilibrium carbide at service temperature (800 deg. C). The analytical-experimental approach, combining thermodynamic predictions and experimental measurements, was found to be reliable for the characterization of austenitic steels.

  3. Effect of Nitrogen Content on Grain Refinement and Mechanical Properties of a Reversion-Treated Ni-Free 18Cr-12Mn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Behjati, P.; Kermanpur, A.; Najafizadeh, A.; Samaei Baghbadorani, H.; Karjalainen, L. P.; Jung, J.-G.; Lee, Y.-K.

    2014-12-01

    Martensite reversion treatment was utilized to obtain ultrafine grain size in Fe-18Cr-12Mn-N stainless steels containing 0 to 0.44 wt pct N. This was achieved by cold rolling to 80 pct reduction followed by reversion annealing at temperatures between 973 K and 1173 K (700 °C and 900 °C) for 1 to 104 seconds. The microstructural evolution was characterized using both transmission and scanning electron microscopes, and mechanical properties were evaluated using hardness and tensile tests. The steel without nitrogen had a duplex ferritic-austenitic structure and the grain size refinement remained inefficient. The finest austenitic microstructure was achieved in the steels with 0.25 and 0.36 wt pct N following annealing at 1173 K (900 °C) for 100 seconds, resulting in average grain sizes of about 0.240 ± 0.117 and 0.217 ± 0.73 µm, respectively. Nano-size Cr2N precipitates observed in the microstructure were responsible for retarding the grain growth. The reversion mechanism was found to be diffusion controlled in the N-free steel and shear controlled in the N-containing steels. Due to a low fraction of strain-induced martensite in cold rolled condition, the 0.44 wt pct N steel displayed relatively non-uniform, micron-scale grain structure after the same reversion treatment, but it still exhibited superior mechanical properties with a yield strength of 1324 MPa, tensile strength of 1467 MPa, and total elongation of 17 pct. While the high yield strength can be attributed to strengthening by nitrogen alloying, dislocation hardening, and slight grain refinement, the moderate strain-induced martensitic transformation taking place during tensile straining was responsible for enhancement in tensile strength and elongation.

  4. Effects of deformation (strain) and heat treatment on grain boundary sensitization and precipitation in austenitic stainless steels

    SciTech Connect

    Murr, L.E. ); Advani, A.; Shankar, S.; Atteridge, D.G. . Dept. of Materials Science and Engineering)

    1990-03-01

    Sensitization, particularly the degree of sensitization (DOS) in type 316 stainless steel pipe is critically dependent upon the solution anneal of the mill-annealed or commercial material, and is particularly sensitive to los-temperature aging when the starting material is solution annealed between about 1,000{degrees}C and 1,100{degrees}C. It is observed that when the DOS is above about 10 C/cm{sup 2} (quantitative electrochemical photentiokinetic reactivation units in Coulombs/cm{sup 2}), noticeable carbide precipitation occurs in the grain boundaries and increases with increasing DOS. Transmission electron microscopy (TEM) examination of precipitation occurring in type 316 stainless steel pipe grain boundaries has shown them to exhibit many microstructural features that seem to be coincident with grain boundary microstructures, particularly ledges.

  5. Residual stresses in a multi-pass weld in an austenitic stainless steel plate before and after thermal stress relief

    SciTech Connect

    Spooner, S.; Wang, X.L.; Hubbard, C.R.; David, S.A.

    1994-06-01

    Changes in residual stresses due to thermal stress relief were determined in a welded 1/2 in. thick 304 stainless steel plate from two residual stress maps determined with the neutron diffraction technique. The 304 stainless plate was made from two 6 {times} 12 {times} 1/2 in. pieces joined along the length by a gas tungsten arc welding process. Multi-pass welds were made with a semiautomatic welding machine employing cold-wire feed of type 308 stainless steel filler alloy. The thermal stress relief treatment consisted of heating to 1150 F, holding for one hour at temperature and then air cooling. Strain components were measured along the weld direction (longitudinal), perpendicular to the weld line in the plate (transverse), and normal to the plate. Measurements were confined to the plane bisecting the weld at the center of the plate. The strain components were converted to stresses assuming that the measured strains were along the principal axes of the strain tensor. Parameters used in the calculation were E=224 GPa and v=0.25. As-welded longitudinal stresses are compressive in the base metal and become strongly tensile through the heat affected zone and into the fusion zone. The transverse stresses follow the longitudinal trend but with a lower magnitude while the normal stresses are small throughout. The stress relief treatment reduced the magnitudes of all the stresses. In the weld zone the longitudinal stress was lowered by 30% and the spatial range of residual stresses was reduced as well.

  6. The dependence of the creep properties of din 1.4970 austenitic stainless steel at 973 K on different thermomechanical pre-treatments

    NASA Astrophysics Data System (ADS)

    Abou Zahra, Ahmed A.; Schroeder, Herbert

    1982-05-01

    The creep-rupture behaviour of a Type DIN 1.4970 austenitic stainless steel has been investigated at 973 K (700°C) in a high vacuum for three conditions of thermomechanical treatment and a wide range of applied stresses using foil specimens of 105 μm thickness. After solution-annealing at 1373 K (1100°C) for all specimens, the three treatments were: — condition 1: 13% cold-worked — condition2: aged for 24 h at 1073 K (800°C) and 13% cold-worked — condition 3: ("Standard condition"): 13% cold-worked and aged for 24 h at 1073 K (800°C). The rupture lives and the minimum creep rates were found to be highly dependent on the applied stresses. The treatment of condition 1 material yielded a product as strong as the "standard" condition 3, while the condition 2 material was less creep resistant. Structural changes as well as fractography were followed using metallographic, transmission and scanning electron microscope techniques. Transgranular ductile fracture was clearly observed in all three conditions. TEM investigations showed that dispersive TiC precipitates were present in the matrix of condition 3 material before creep testing, contrary to condition 1 and 2 material. In condition 1, the TiC dispersion was already found after short creep times, while no dispersive TiC precipitates were found in condition 2 material in any test condition.

  7. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel.

    PubMed

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2016-12-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. PMID:27612806

  8. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  9. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2015-02-01

    This investigation deals with the evaluation of structural and mechanical behavior of deformed (10% and 20% cold work) and annealed (at 1050°C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs). The microstructure was observed by optical micrograph and the mechanical properties were determined by macrohardness and tensile tests. Both stress strain behavior and work hardening behavior were evaluated. HNSs have smaller grain size as compared to low nitrogen steels and no formation of martensite was observed after 20% cold working. Further, it was found that hardness; yield strength and ultimate tensile strength of the steels linearly increases and elongation decreased with nitrogen content and degree of cold working. The strength coefficient was observed to be higher for the high nitrogen steels; it decreased to some extent with degree of cold working. The work hardening exponent was also observed to decrease with degree of cold working. Influence of nitrogen on mechanical properties was mainly related to its effect on solid solution strengthening. X-ray diffraction analysis of annealed as well as deformed alloys further confirmed no evidence for formation of martensite or any other secondary phases. SEM fractography of the annealed and deformed samples after tensile tests indicates predominantly ductile fracture in all specimens. PMID:25492189

  10. Effect of cold-work on self-welding susceptibility of austenitic stainless steel (alloy D9) in high temperature flowing sodium

    NASA Astrophysics Data System (ADS)

    Meikandamurthy, C.; Kumar, Hemant; Chakraborty, Gopa; Albert, S. K.; Ramakrishnan, V.; Rajan, K. K.; Bhaduri, A. K.

    2010-12-01

    Self-welding susceptibility of alloy D9 (15Cr-15Ni-2Mo titanium-modified austenitic stainless steel), used as wrapper in the fuel subassemblies of sodium cooled fast reactor, was studied in flowing sodium. Specimens were tested at 823 K in annealed and in 20% cold-worked condition up to a maximum contact stress of 24.5 MPa and maximum duration of 9 months. The results showed that the annealed alloy D9 showed good resistance to self-welding in all the tests. But 20% cold-worked alloy D9 got self-welded in all the tests except in the test carried out for 3 months duration indicating that tests conducted at high contact stresses and long duration reduce the resistance of the steel to self-weld. Microstructural changes observed in the cold-worked alloy D9 at the location of contact between the mating surfaces indicate dynamic recovery resulting from high contact stress and temperature facilitating self-weld.

  11. Ultrasonic Phased Array Evaluations Of Implanted And In-Situ Grown Flaws In Cast Austenitic Stainless Steel Pressurizer Surge Line Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Diaz, Aaron A.; Anderson, Michael T.

    2011-07-31

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimen welds (pipe-to-elbow configuration) that were salvaged from a U.S. commercial nuclear power plant that had not been operated. Thus, these welds were fabricated using vintage CASS materials that were formed in the 1970s. Additionally, in-situ grown TFCs were placed in the adjacent CASS base material of one of these specimens. Ultrasonic phased-array responses from both types of flaws (implanted and in-situ grown) were analyzed for detection and characterization based on sizing and signal-to-noise determination. Multiple probes were employed covering the 0.8 to 2.0 MHz frequency range. To further validate the Pacific Northwest National Laboratory (PNNL) findings, an independent in-service inspection (ISI) supplier evaluated the flaws with their American Society of Mechanical Engineers (ASME) Code, Section XI, Appendix VIII-qualified procedure. The results obtained by PNNL personnel compared favorably to the ISI supplier results. All examined flaws were detected and sized within the ASME Code-allowable limits.

  12. Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation.

    PubMed

    Bernardes, Fabiano R; Rodrigues, Samuel F; Silva, Eden S; Reis, Gedeon S; Silva, Mariana B R; Junior, Alberto M J; Balancin, Oscar

    2015-06-01

    Precipitation-recrystallization interactions in ASTM F-1586 austenitic stainless steel were studied by means of hot torsion tests with multipass deformation under continuous cooling, simulating an industrial laminating process. Samples were deformed at 0.2 and 0.3 at a strain rate of 1.0s(-1), in a temperature range of 900 to 1200°C and interpass times varying from 5 to 80s. The tests indicate that the stress level depends on deformation temperature and the slope of the equivalent mean stress (EMS) vs. 1/T presents two distinct behaviors, with a transition at around 1100°C, the non-recrystallization temperature (Tnr). Below the Tnr, strain-induced precipitation of Z-phase (NbCrN) occurs in short interpass times (tpass<30s), inhibiting recrystallization and promoting stepwise stress build-up with strong recovery, which is responsible for increasing the Tnr. At interpass times longer than 30s, the coalescence and dissolution of precipitates promote a decrease in the Tnr and favor the formation of recrystallized grains. Based on this evidence, the physical simulation of controlled processing allows for a domain refined grain with better mechanical properties. PMID:25842112

  13. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. PMID:24857514

  14. Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shao, C. W.; Shi, F.; Li, X. W.

    2015-04-01

    Cyclic deformation and damage behavior of a Ni-free high-nitrogen austenitic stainless steel with a composition of Fe-18Cr-18Mn-0.63N (weight pct) were studied, and the internal stress and effective stress were estimated by partitioning the hysteresis loop during cyclic straining at total strain amplitudes ranging from 3.0 × 10-3 to 1.0 × 10-2. It is found that immediate cyclic softening takes place at all strain amplitudes and subsequently a saturation or quasi-saturation state develops and occupies the main part of the whole fatigue life. The internal stress increases with increasing strain amplitude, while the variation of effective stress with strain amplitude is somewhat complicated. Such a phenomenon is discussed in terms of dislocation structures and the short-range ordering caused by the interaction between nitrogen atoms and substitutional atoms. The relationship of fatigue life vs plastic strain amplitude ( N f-Δ ɛ pl/2) follows a bilinear Coffin-Manson rule, resulting from the variation in slip deformation mode with the applied strain amplitude. At the low strain amplitude, cracks initiate along slip bands, and planar slip dislocation configurations dominate the major characteristic of internal microstructures. At high strain amplitudes, intergranular (mostly along grain boundaries and few along twin boundaries) cracks are generally found, and the deformation microstructures are mainly composed of dislocation cells, stacking faults and a small amount of deformation twins, in addition to planar slip dislocation structures.

  15. Fracture and the formation of sigma phase, M[sub 23]C[sub 6], and austenite from delta-ferrite in an AISI 304L stainless steel

    SciTech Connect

    Tseng, C.C.; Shen, Y.; Thompson, S.W.; Krauss, G. . Dept. of Metallurgical and Materials Engineering); Mataya, M.C. )

    1994-06-01

    The decomposition of delta-ferrite and its effects on tensile properties and fracture of a hot-rolled AISI 304L stainless steel plate were studied. Magnetic response measurements of annealed specimens showed that the transformation rate of delta-ferrite was highest at 720 C. Transformation behavior was characterized by light microscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy on thin foils. The initial transformation of delta-ferrite ([delta]) to austenite ([gamma]) and a chromium-rich carbide (M[sub 23]C[sub 6]) occurred by a lamellar eutectoid reaction, [sigma] [r reversible] M[sub 23]C[sub 6] + [gamma]. The extent of the reaction was limited by the low carbon content of the 304L plate, and the numerous, fine M[sub 23]C[sub 6] particles of the eutectoid structure provide microvoid nucleation sites in tensile specimens annealed at 720 C for short times. Sigma phase ([sigma]) formed as a result of a second eutectoid reaction, [delta] [r reversible] [sigma] + [gamma]. Brittle fracture associated with the plate-shaped sigma phase of the second eutectoid structure resulted in a significant decrease in reduction of area (RA) in the transverse tensile specimens. The RA for longitudinal specimens was not affected by the formation of sigma phase. Tensile strengths were little affected by delta-ferrite decomposition products in either longitudinal or transverse orientations.

  16. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-09-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  17. Analysis of bi-layer oxide on austenitic stainless steel, 316L, exposed to Lead-Bismuth Eutectic (LBE) by X-ray Photoelectron Spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Koury, D.; Johnson, A. L.; Ho, T.; Farley, J. W.

    2013-09-01

    Corrosion of the austenitic stainless steel alloy 316L by Lead-Bismuth Eutectic (LBE) was studied using X-ray Photoelectron Spectroscopy (XPS) with Sputter-Depth Profiling (SDP), and compared to data taken by Scanning Electron Microscopy (SEM) and Energy Dispersive X-rays (EDXs). Exposed and unexposed samples were compared. Annealed 316L samples, exposed to LBE for durations of 1000, 2000 and 3000 h, developed bi-layer oxides up to 30 μm thick. Analysis of the charge-states of the 2p3/2 peaks of iron, chromium, and nickel in the oxide layers reveal an inner layer consisting of iron and chromium oxides (likely spinel-structured) and an outer layer consisting of iron oxides (Fe3O4). Cold-rolled 316L samples, exposed for the same durations, form a chromium-rich, thin (⩽1 μm) oxide with some oxidized iron in the outermost ˜200 nm of the oxide layer. This is the first experiment to investigate what components of the 316L are oxidized by LBE exposure. It is shown here that nickel is metallic in the inner layer.

  18. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  19. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-06-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  20. Investigation of the Kinetics of the Ferrite/Austenite Phase Transformation in the HAZ of a 2205 Duplex Stainless Steel Weldment

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J; Babu, S S; Vitek, J M

    2002-03-14

    A semi-quantitative map based on a series of spatially resolved X-ray diffraction (SRXRD) scans shows the progression of the ferrite ({delta})/austenite ({gamma}) phase balance throughout the HAZ during GTA welding of a 2205 duplex stainless steel (DSS). This map shows an unexpected decrease in the ferrite fraction on heating, followed by a recovery to the original ferrite fraction on cooling at locations within the HAZ. Even though such behavior is supported by thermodynamic calculations, it has not been confirmed by either experimental methods or have the kinetics been evaluated. Both Gleeble thermal simulations and time resolved x-ray diffraction measurements on spot welds in the 2205 DSS provide further evidence for this rather low-temperature transformation. On the other hand, calculations of the diffusion of alloying elements across the 6/y interface under a variety of conditions shed no further light on the driving force for this transformation. Further work on the mechanisms and driving forces for this transformation is on-going.

  1. Assessment of Creep Strain Distribution Across Base Metal of 316LN Austenitic Stainless Steel Weld Joint by an EBSD-Based Parameter

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Ganesan, V.; Ganesh Kumar, J.; Parameswaran, P.; Naveena; Laha, K.

    2015-11-01

    Electron backscatter diffraction (EBSD) analysis has been used to estimate the accumulated strain in base metal region of 316LN austenitic stainless steel weld joints, creep tested at 923 K (650 °C), and at stresses of 175 and 225 MPa. The variation in strength of weld metal, heat-affected zone (HAZ), and base metal-induced stress and strain gradients across the weld joint under creep exposure. Finite element analysis (FEA) of von-Mises stress distribution across the joint has been carried out on incorporating strength of different constituents of the joint, derived by miniature specimen testing techniques. The FEA simulations revealed preferential accumulation of von-Mises stress in the base metal region near to HAZ. The variation in accumulated plastic strain across the base metal has been estimated using a `crystal deformation' ( C d) parameter which quantifies the orientation spread within a grain. This parameter was obtained by EBSD analysis carried out using a scanning electron microscope. The trend in variation of accumulated plastic strain across the base metal accounted well with the von-Mises stress variation, which causes plastic deformation. The plastic strain in the base metal in both the stress levels was found to accumulate preferentially near to the HAZ and reduced steadily toward the ridge at the end of specimen. Transmission electron microscopic study has been carried out to substantiate the findings of the EBSD investigation.

  2. Microstructural evolution of welded austenitic stainless steels irradiated in the spectrally-tailored ORR experiment at 400$deg;C*1

    NASA Astrophysics Data System (ADS)

    Sawai, T.; Maziasz, P. J.; Hishinuma, A.

    1991-03-01

    Microstructural evolution of austenitic stainless steels and their welds has been examined after spectrally-tailored neutron irradiation. JPCA and 316W, containing 0.24 and 0.08 wt% of titanium, respectively, were electron-beam welded. TEM disks taken from these weld joints were irradiated in the ORR (Oak Ridge Research Reactor), to 7.4 dpa and almost 100 appm He. Base metal specimens of 316R with very low titanium content (0.005 wt%) were also irradiated. Specimens were examined by precision immersion densitometry before TEM observation. Only the 316R base metal showed measurable swelling by density change. Cavity swelling, determined by TEM observations in the base metals, was 0.29% for 316R, 0.06% for 316W and 0.03% for JPCA. Titanium effectively suppressed the cavity swelling of the base metals. The cellular microstructure of fusion zone remained after this irradiation both in JPCA and 316W with uniform distribution of cavities. Welding did not degrade the swelling resistance as measured either by immersion densitometry or TEM.

  3. Oxidation of Al-containing austenitic stainless steels as related to the formation of strong glass-ceramic to metal seals

    SciTech Connect

    Moddeman, W.E.; Birkbeck, J.C.; Bowling, W.C.; Burke, A.R.; Cassidy, R.T.

    1996-08-01

    In glass-ceramic to metal seals used in pyrotechnic actuators and ignitors, Ni-based alloys and Al-containing austenitic stainless steels are used. Metal attack by the glass is severe if Ni based alloys are used, less so for the Al-containing alloys. In this paper, lithia-alumina-silica glass-ceramic was sealed to Al-containing alloys that were first oxidized prior to sealing (preoxidation). Results show that this preoxidation substantially reduces the probability of glass/metal reactions during seal formation, thus improving the overall quality of the interface without loss of seal bond strength. Mechanism of surface oxide formation of these Al- containing steels is discussed. Auger data show the composition of the resulting oxides to be a function of oxidation temperature. There are two theories on the oxidation mechanism: (1) oxidation occurring at the air/oxide interface (Abderrazik et al, 1987), and (2) oxidation taking place at the oxide/metal interface (Hindam and Smeltzer, 1980). To test the theories, oxidation of the Al-containing alloys was carried out, first in pure oxygen-16, and then followed by pure oxygen-18. SIMS showed no layered structure, but did show a mixture of oxides. Thus, the oxidation mechanism is not simple and must be allowing oxygen to have access at all stages of the oxidation process.

  4. Characterization of the mechanism of bi-layer oxide growth on austenitic stainless steels 316L and D9 in oxygen-controlled Lead-Bismuth Eutectic (LBE)

    NASA Astrophysics Data System (ADS)

    Koury, Daniel

    Lead Bismuth Eutectic (LBE) has been proposed for use in programs for accelerator-based and reactor-based transmutation of nuclear waste. LBE is a leading candidate material as a spallation target (in accelerator-based transmutation) and an option for the sub-critical blanket coolant. The corrosion by LBE of annealed and cold-rolled 316L stainless steels, and the modified austenitic stainless steel alloy D9, has been studied using Scanning Electron Microscopy (SEM), Electron Probe Micro Analysis (EPMA), and X-ray Photoelectron Spectroscopy (XPS). Exposed and unexposed samples have been compared and the differences studied. Small amounts of surface contamination are present on the samples and have been removed by ion-beam sputtering. The unexposed samples reveal typical stainless steel characteristics: a chromium oxide passivation surface layer and metallic iron and nickel. The exposed samples show protective iron oxide and chromium oxide growths on the surface. Oxygen takes many forms on the exposed samples, including oxides of iron and chromium, carbonates, and organic acids from subsequent handling after exposure to LBE. Different types of surface preparation have lead to considerably different modes of corrosion. The cold-rold samples were resistant to thick oxide growth, having only a thin (< 1 mum), dense chromium-rich oxide. The annealed 316L and D9 samples developed thick, bi-layered oxides, the inner layer consisting of chromium-rich oxides (likely spinel) and the outer layer consisting mostly of iron oxides. The cold-rolled samples were able to maintain a thin chromium oxide layer because of the surface work performed on it, as ample diffusion pathways provided an adequate supply of chromium atoms. The annealed samples grew thick oxides because iron was the primary diffusant, as there are fewer fast-diffusion pathways and therefore an amount of chromium insufficient to maintain a chromium based oxide. Even the thick oxide, however, can prolong the life of

  5. Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muralimohan, C. H.; Ashfaq, M.; Ashiri, Rouholah; Muthupandi, V.; Sivaprasad, K.

    2016-01-01

    Joining of commercially pure Ti to 304 stainless steel by fusion welding processes possesses problems due to the formation of brittle intermetallic compounds in the weld metal, which degrade the mechanical properties of the joints. Solid-state welding processes are contemplated to overcome these problems. However, intermetallic compounds are likely to form even in Ti-SS joints produced with solid-state welding processes such as friction welding process. Therefore, interlayers are employed to prevent the direct contact between two base metals and thereby mainly to suppress the formation of brittle Ti-Fe intermetallic compounds. In the present study, friction-welded joints between commercially pure titanium and 304 stainless steel were obtained using a thin nickel interlayer. Then, the joints were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectrometry, and X-ray diffractometry. The mechanical properties of the joints were evaluated by microhardness survey and tensile tests. Although the results showed that the tensile strength of the joints is even lower than titanium base metal, it is higher than that of the joints which were produced without nickel interlayer. The highest hardness value was observed at the interface between titanium and nickel interlayers indicating the formation of Ni-Ti intermetallic compounds. Formation these compounds was validated by XRD patterns. Moreover, in tensile tests, fracture of the joints occurred along this interface which is related to its brittle nature.

  6. Hot and cold rolling of high nitrogen Cr-Ni and Cr-Mn austenitic stainless steels

    SciTech Connect

    Iiola, R.; Hanninen, H.; Kauppi, T.

    1998-10-01

    Behavior of austenitic Cr-Ni-(0.14--0.50)N and Cr-Mn-(0.78--1.00)N steels in hot and cold rolling was investigated by rolling experiments and mechanical testing. Structure of the steels in the as-cast condition and fracture surfaces after the rolling experiments were investigated using optical and scanning electron microscopy (SEM). Resistance to deformation was calculated using rolling forces in hot rolling. Increase in strength in the rolling experiments was related to the nitrogen content of the steels. Resistance to deformation during hot rolling increased with decreasing rolling temperature and with increasing nitrogen content. In some steels, hot rolling led to edge cracking, which was more a function of impurity than nitrogen content. Microscopy revealed that the edge cracking occurred along grain boundaries and second phase particles. For the cold-rolled steels, the highest achievable reductions were limited due to a crocodiling phenomenon, that is, opening of the strip end. Fracture type at the opened strip end was a brittle-like fracture.

  7. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    SciTech Connect

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P; Pint, Bruce A; Pankiw, Roman; Voke, Don

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  8. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Maeda, Koji

    2011-09-01

    The C3M irradiation test, which was conducted in the experimental fast reactor, "Joyo", demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, "Monju". The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and 137Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  9. Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins

    SciTech Connect

    Zhang, X.; Misra, A.; Wang, H.; Swadener, J.G.; Lima, A.L.; Hundley, M.F.; Hoagland, R.G.

    2005-12-05

    We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 deg. C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films.

  10. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  11. Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Misra, A.; Wang, H.; Swadener, J. G.; Lima, A. L.; Hundley, M. F.; Hoagland, R. G.

    2005-12-01

    We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500°C. In spite of an average twin spacing of only 4nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7GPa for as-deposited films to around 8GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films.

  12. Radiation-induced instability of MnS precipitates and its possible consequences on IASCC of austenitic stainless steels

    SciTech Connect

    Chung, H.M.; Garner, F.A.

    1996-10-01

    Irradiation assisted stress corrosion cracking (IASCC) continues to be a significant materials issue for the light water reactor industry and may also pose a problem for fusion power devices that employ water cooling. Although a number of potential mechanisms have been proposed to participate in this phenomenon, at this time it is not clear that any of these candidate mechanisms are sufficient to rationalize the observed failures. A new mechanism is proposed in this paper that involves the radiation-induced release into solution of elements not usually thought to participate in IASCC. It is shown in this paper that MnS precipitates, which contain most of the sulphur in stainless steels, are probably unstable under irradiation. First, the Mn transmutes very strongly to Fe in highly thermalized neutron spectra. Second, the combination of cascade-induced disordering and the inverse-Kirkendall effect operating at the incoherent interfaces of MnS precipitates will probably act as a pump to export Mn from the precipitate surface into the alloy matrix. Both of these processes will most likely allow some of the sulphur to re-enter the alloy matrix. Sulphur is known to exert a deleterious influence on grain boundary cracking. MnS precipitates are also thought to be a reservoir of other deleterious impurities such as fluorine which could be also released due to radiation-induced instability of the precipitates. This possibility has been confirmed by Auger electron spectroscopy of Types 304, 316, and 348 stainless steel specimens sectioned from several BWR components irradiated up to 3.5x10{sup 21} n/cm{sup 2} (E > 1 MeV).

  13. Technical Letter Report Assessment of Ultrasonic Phased Array Inspection Method for Welds in Cast Austenitic Stainless Steel Pressurizer Surge Line Piping JCN N6398, Task 1B

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Mathews, Royce; Moran, Traci L.; Anderson, Michael T.

    2009-07-28

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS); dissimilar metal welds; piping with corrosion-resistant cladding; weld overlays, inlays and onlays; and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. In this effort, PNNL supports cooperation with Commissariat à l’Energie Atomique (CEA) to assess reliable inspection of CASS materials. The NRC Project Manager has established a cooperative effort with the Institut de Radioprotection et de Surete Nucleaire (IRSN). CEA, under funding from IRSN, are supporting collaborative efforts with the NRC and PNNL. Regarding its work on the NDE of materials, CEA is providing its modeling software (CIVA) in exchange for PNNL offering expertise and data related to phased-array detection and sizing, acoustic attenuation, and back scattering on CASS materials. This collaboration benefits the NRC because CEA performs research and development on CASS for Électricité de France (EdF). This technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of welds in CASS pressurizer (PZR) surge line nuclear reactor piping. A set of thermal fatigue cracks (TFCs) was implanted into three CASS PZR surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing

  14. Extreme embrittlement of austenitic stainless steel irradiated to 75--81 dpa at 335--360 C

    SciTech Connect

    Porollo, S.I.; Vorobjev, A.N.; Konobeev, Yu.V.; Garner, F.A.

    1998-03-01

    This paper presents the results of an experiment conducted in the BN-350 fast reactor in Kazakhstan that involved the irradiation of argon-pressurized thin-walled tubes (0--2000 MPa hoop stress) constructed from Fe-16Cr-15Ni-3Mo-Nb stabilized steel in contact with the sodium coolant, which enters the reactor at {approximately}270 C. Tubes in the annealed condition reached 75 dpa at 335 C, and another set in the 20% cold-worked condition reached 81 dpa at 360 C. Upon disassembly all tubes, except those in the stress-free condition, were found to have failed in an extremely brittle fashion. The stress-free tubes exhibited diameter changes that imply swelling levels ranging from 9 to 16%. It is expected that stress-enhancement of swelling induced even larger swelling levels in the stressed tubes. The embrittlement is explained in terms of the sensitivity of the swelling regime to displacement rate and the large, unprecedented levels of swelling reached at 335--360 C at these high neutron fluences. The failure mechanism appears to be identical to that observed at similar swelling levels in other austenitic steels irradiated in US fast reactors at 400--425 C, whereby stress-concentration between voids and nickel segregation at void surfaces predisposes the steel to an epsilon martensite transformation followed by formation of alpha martensite at crack tips. The very slow strain rate inherent in such creep tests and the relatively high helium levels may also contribute to the failure.

  15. Extreme embrittlement of austenitic stainless steel irradiated to 75-81 dpa at 335-360{degrees}C

    SciTech Connect

    Porollo, S.I.; Vorobjev, A.N.; Konobeev, Yu.V.

    1997-04-01

    It is generally accepted that void swelling of austenitic steels ceases below some temperature in the range 340-360{degrees}C, and exhibits relatively low swelling rates up to {approximately}400{degrees}C. This perception may not be correct at all irradiation conditions, however, since it was largely developed from data obtained at relatively high displacement rates in fast reactors whose inlet temperatures were in the range 360-370{degrees}C. There is an expectation, however, that the swelling regime can shift to lower temperatures at low displacement rates via the well-known {open_quotes}temperature shift{close_quotes} phenomenon. It is also known that the swelling rates at the lower end of the swelling regime increase continuously at a sluggish rate, never approaching the terminal 1%/dpa level within the duration of previous experiments. This paper presents the results of an experiment conducted in the BN-350 fast reactor in Kazakhstan that involved the irradiation of argon-pressurized thin-walled tubes (0-200 MPa hoop stress) constructed from Fe-16Cr-15Ni-3Mo-Nb stabilized steel in contact with the sodium coolant, which enters the reactor at {approx}270{degrees}C. Tubes in the annealed condition reached 75 dpa at 335{degrees}C, and another set in the 20% cold-worked condition reached 81 dpa at 360{degrees}C. Upon disassembly all tubes, except those in the stress-free condition, were found to have failed in an extremely brittle fashion. The stress-free tubes exhibited diameter changes that imply swelling levels ranging from 9 to 16%. It is expected that stress-enhancement of swelling induced even larger swelling levels in the stressed tubes.

  16. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    SciTech Connect

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

    2008-07-21

    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  17. Influence of tungsten, carbon and nitrogen on toughness and weldability of low activation austenitic high manganese stainless steels

    NASA Astrophysics Data System (ADS)

    Hosoi, Y.; Shimoide, Y.; Abraham, M.; Kutsuna, M.; Miyahara, K.

    1992-09-01

    The effect of alloying elements of tungsten, carbon and nitrogen on high temperature strength, toughness and weldability of Fe12Cr15Mn alloy has been investigated. The high temperature stregth of Fe12Cr15Mn0.2C0.1N at 873 K increases with the addition of 2-300W without affecting ductility. The toughness as estimated by Charpy tests, is also not influenced by the addition of 2-3%W, while the increase of carbon content decreases the absorbed energy. The transition temperature shifts to higher temperature by aging at 873 K for 3600 ks, but it is still lower than room temperature. The degradation of tougheness after aging is considered to be related to the precipitation of M23C6 on grain boundaries. The weldability evaluated by hot cracking susceptibility is not affected by alloying of tungsten and carbon in this alloy system. It is noted that the alloys studied show less hot cracking susceptibility than commercial AISI 316L stainless steel.

  18. Assessment of surface relief and short cracks under cyclic creep in a type 316LN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.

    2015-12-01

    Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.

  19. Correlation Between Experimental and Calculated Phase Fractions in Aged 20Cr32Ni1Nb Austenitic Stainless Steels Containing Nitrogen

    NASA Astrophysics Data System (ADS)

    Dewar, Matthew P.; Gerlich, Adrian P.

    2013-02-01

    A centrifugally cast 20Cr32Ni1Nb stainless steel manifold in service for 16 years at temperatures ranging from 1073 K to 1123 K (800 °C to 850 °C) has been characterized using scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), auger electron spectroscopy (AES), and X-ray diffraction (XRD). Nb(C,N), M23C6, and the silicide G-phases (Ni16Nb6Si7) were all identified in a conventional SEM, while the nitride Z-phase (CrNbN) was observed only in AES. M23C6, Z-phase and G-phase were characterized in XRD. Thermodynamic equilibrium calculations using ThermoCalc Version S, with the TCS Steel and Fe-alloys Database (TCFE6), and Thermotech Ni-based Superalloys Database (TTNI8) were validated by comparing experimental phase fraction results obtained from both EPMA and AES. A computational study looking at variations in the chemical composition of the alloy, and how they affect phase equilibria, was investigated. Increasing the nitrogen concentration is shown to decrease G-phase formation, where it is replaced by other intermetallic phases such as Z-phase and π-phase that do not experience liquation during pre-weld annealing treatments. Suppressing G-phase formation was ultimately determined to be a function of minimizing silicon content, and understabilizing the Nb/(C + 6/7N) ratio.

  20. Effects of strain and strain-induced α'-martensite on passive films in AISI 304 austenitic stainless steel.

    PubMed

    Lv, Jinlong; Luo, Hongyun

    2014-01-01

    In this paper, the effects of strain and heat treatment on strain-induced α'-martensite of AISI 304 stainless steel tubes were measured by X-ray diffraction. Moreover, the effects of strain and content of α'-martensite on passivated property on the surface of the material in borate buffer solution were evaluated by electrochemical technique. The results showed that the volume fraction of α'-martensite increased gradually with the increase of tensile strain for as-received and solid solution samples. However, α'-martensite in as-received sample was more than that in the solid solution sample. The electrochemical impedance spectroscopy results showed that the solid solution treatment improved corrosion resistance of the steel, especially for samples with small strain. Moreover, acceptor densities were always higher than donor densities for as-received and solid solution samples. With the increase of strain, the increase tendency of acceptor density was more significant than that of donor density. We also found that the total density of the acceptor and donor almost increased linearly with the increase of α'-martensite. The present results indicated that the increased acceptor density might lead to the decreased corrosion resistance of the steel. PMID:24268285