Science.gov

Sample records for 31p nucleus polnaya

  1. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    SciTech Connect

    Miller, R.E.; Smith, D.L.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  2. Determination of coordination modes and estimation of the 31P-31P distances in heterogeneous catalyst by solid state double quantum filtered 31P NMR spectroscopy.

    PubMed

    Zhang, Si-Yong; Wang, Mei-Tao; Liu, Qing-Hua; Hu, Bing-Wen; Chen, Qun; Li, He-Xing; Amoureux, Jean-Paul

    2011-04-01

    To overcome the separation difficulty of the palladium-based homogeneous catalyst, the palladium complex can be anchored on various supports such as silica. However, it is difficult to determine the amounts of the two coordination modes of the Pd nucleus, that is, Pd coordinates with one phosphorus atom and Pd coordinates with two phosphorus atoms. Here a (31)P double-quantum filtered (DQ-filtered) method in solid-state NMR is introduced for the palladium-based heterogenous catalyst system. With the DQ-filtered method, we can not only determine the amounts of the two different kinds of palladium coordination modes, we can also estimate the interatomic distance of two (31)P nuclei bonded to a palladium nucleus. With the help of this method, we can quickly estimate interatomic distances in our designed system and accurately re-design the palladium system to accommodate either one (31)P or two (31)P. PMID:21301702

  3. Feasibility Evaluation of Detecting Hydroxymethylphosphine Oxide In Vivo by (31)P-MRS.

    PubMed

    Doblas, Sabrina; Pathuri, Gopal; Towner, Rheal A; Gali, Hariprasad

    2010-09-01

    Application of organophosphorus compounds in biomedicine is attractive because the (31)P nucleus is very amenable to study by nuclear magnetic resonance (NMR) techniques, particularly, by in vivo (31)P magnetic resonance spectroscopy ((31)P-MRS). The water-soluble organophosphorus compounds that are non-toxic, exhibit metabolic stability, and show a unique resonance peak in (31)P NMR spectroscopy, which could be ideal to be used as probes for (31)P-MRS. Here we evaluated the in vivo feasibility of potentially using a hydroxymethylphosphine oxide as a novel probe for (31)P-MRS studies using tris (hydroxymethyl) phosphine oxide (THPO) as an example. THPO was synthesized, injected in the normal CF1 mice, and (31)P spectra were acquired before and after injection with the coil located on the regions of interest. The NMR signal from the region of interest appeared within one minute of THPO injection. The compound was stable in vivo as no metabolites of THPO were observed. No toxicity was observed after THPO injection in mice. The peak concentrations of THPO in liver and kidney were reached within 15 min and 60 min respectively. THPO was excreted exclusively in urine without undergoing any metabolism indicating that it is very stable under in vivo conditions. These initial studies in normal CF1 mice clearly demonstrate that THPO possess the essential characteristics required for a potential MRS probe. Based on the current preliminary results, we suggest that HMPs, when incorporated into targeted drugs (peptides, proteins, antibodies, etc.), may serve as novel (31)P probes for monitoring the drug distribution in vivo by MRS. PMID:23675197

  4. Human cardiac 31P magnetic resonance spectroscopy at 7 tesla

    PubMed Central

    Rodgers, Christopher T; Clarke, William T; Snyder, Carl; Vaughan, J Thomas; Neubauer, Stefan; Robson, Matthew D

    2014-01-01

    Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, γ-ATP 1.82 ± 0.09s, α-ATP 1.39 ± 0.09s, β-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24006267

  5. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  6. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  7. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy.

    PubMed

    Avdievich, N I; Hetherington, H P

    2007-06-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil. PMID:17379554

  8. 13C and 31P chemical shielding tensors of a single crystal of dipotassium α- D-glucose-1-phosphate dihydrate. An application of a 13C-{ 1H, 31P} triple-resonance technique

    NASA Astrophysics Data System (ADS)

    McDowell, C. A.; Naito, A.; Sastry, D. L.; Takegoshi, K.

    The 13C NMR spectra of a single crystal of dipotassium α- D-glucose-l-phosphate dehydrate for different orientations in the external magnetic field, were recorded by using 1H and 31P double nuclear decoupling. To overcome difficulties encountered because of the high 13C RF power required to achieve the Hartmann-Hahn condition, a new cross-polarization method (K. Takegoshi and C. A. McDowell, J. Magn. Reson.67, 356 (1986)) was used. The directions of the most shielded principal value of the 13C chemical shielding tensors for the C2-C6 carbon nuclei in the glucose group were along the CO bond, and that for the CI carbon nucleus made an angle of 42† with the C1-O5 bond direction in the O1-C1-O5 plane. The 31P chemical shielding tensors are axially symmetric and the direction of the least shielded principal value is almost parallel to the P-O1(R) bond, which is the longest among the four PO bonds in the phosphate moiety.

  9. Formation of Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.

    1995-05-01

    The excitation functions and the cross sections for the formation of {sup 192-198}Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm are measured. A comparison of the results obtained for these reactions with the data on the cross sections for the formation of Po isotopes in the reaction {sup 100}Mo + {sup 92-100}Mo leads to the conclusion that the characteristics of the evaporation channel do not depend on the mass of the bombarding ion up to the complete symmetry in the input channel. It is shown that the experimental data can be adequately described using the statistical approach to the deexcitation of a compound nucleus only under the assumption that the liquid-drop fission barrier is reduced significantly for neutron-deficient Po isotopes. 21 refs., 5 figs., 2 tabs.

  10. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  11. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  12. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    NASA Astrophysics Data System (ADS)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  13. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  14. Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Joyce, Rebecca E.; Williams, Thomas L.; Serpell, Louise C.; Day, Iain J.

    2016-03-01

    Phospholipid vesicles are commonly used as biomimetics in the investigation of the interaction of various species with cell membranes. In this letter we present a 31P NMR investigation of a simple vesicle system using a paramagnetic shift reagent to probe the inner and outer layers of the lipid bilayer. Time-dependent changes in the 31P NMR signal are observed, which differ whether the paramagnetic species is inside or outside the vesicle, and on the choice of buffer solution used. An interpretation of these results is given in terms of the interaction of the paramagnetic shift reagent with the lipids.

  15. Structure and motion of phospholipids in human plasma lipoproteins. A sup 31 P NMR study

    SciTech Connect

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J. )

    1990-04-24

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using {sup 31}P NMR. Lateral diffusion coefficients, D{sub T}, obtained from the viscosity dependence of the {sup 31}P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL{sub 2}, HDL{sub 3}), and egg PC/TO microemulsions at 25{degree}C, for VLDL at 40{degree}C, and for LDL at 45{degree}C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, {Delta}{sigma}, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the {sup 31}P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL{sub 3} has been obtained from the temperature dependence of the {sup 31}P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL{sub 3} and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs.

  16. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  17. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  18. Functional group analysis in coal by sup 31 P NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1989-05-01

    The purpose of this research is to determine the labile-hydrogen functional group composition of coal and coal-derived materials by the nmr spectroscopy of their derivatives made with reagents containing the nmr-active nuclei {sup 31}P, {sup 119}Sn, or {sup 205}Tl. 7 refs.

  19. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.

    PubMed

    Layec, Gwenael; Gifford, Jayson R; Trinity, Joel D; Hart, Corey R; Garten, Ryan S; Park, Song Y; Le Fur, Yann; Jeong, Eun-Kee; Richardson, Russell S

    2016-08-01

    Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision. PMID:27302751

  20. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  1. Surface coil localization of /sup 31/P NMR signals from orthotopic human kidney and liver

    SciTech Connect

    Jue, T.; Rothman, D.L.; Lohman, J.A.B.; Hughes, E.W.; Hanstock, C.C.; Shulman, R.G.

    1988-02-01

    By incorporating the hyperbolic secant inversion pulses with the image-selected in vivo spectroscopy localization technique and by applying a gradient-echo imaging method, the authors have selected only the /sup 31/P NMR signals from orthotopic human kidney and liver, using a single concentric /sup 1/H//sup 31/P surface coil. Corresponding to the experimental results on animal studies, the phosphocreatine signal is dramatically reduced in the localized spectra. The localization strategy also allows them to shim easily on the well-defined volume of interest and leads to high-resolution spectra that exhibit multiplet structure. The results indicate that they can obtain localized signals from deep small organs and point the way for other human metabolism studies.

  2. Excitation functions for actinides produced in the interactions of sup 31 P with sup 248 Cm

    SciTech Connect

    Leyba, J.D.; Henderson, R.A.; Hall, H.L.; Czerwinski, K.R.; Kadkhodayan, B.A.; Kreek, S.A.; Brady, E.K.; Gregorich, K.E.; Lee, D.M.; Nurmia, M.J.; Hoffman, D.C. Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California )

    1991-11-01

    Excitation functions have been measured for the production of various isotopes of Bk, Cf, Es, and Fm from the interactions of 174- and 239-MeV {sup 31}P projectiles with {sup 248}Cm. The isotopic distributions were symmetric and displayed full widths at half maximum of 2.5, 2.5, and 2.25 mass units for Bk, Cf, and Fm, respectively. The maxima of the isotopic distributions occur for those reaction channels which involve the exchange of the fewest number of nucleons between the target and projectile for which the calculated excitation energy is a positive quantity. The maxima of the excitation functions occur at those projectile energies which are consistent with the calculated reaction barriers based upon a binary reaction mechanism. The effects of the odd proton in the {sup 31}P projectile on the final isotopic distributions are discussed.

  3. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates.

  4. Erythrocytes in muscular dystrophy. Investigation with /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (/sup 31/P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual /sup 31/P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates.

  5. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  6. Evaluation of Phosphorus Characterization in Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared ...

  7. Evaluation of Phosphorus Characterization in Broiler Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared t...

  8. In vivo 31P-NMR spectroscopy of right ventricle in pigs.

    PubMed

    Schwartz, G G; Steinman, S K; Weiner, M W; Matson, G B

    1992-06-01

    The energy metabolism of the right ventricle (RV) in vivo has been largely unexplored. The goal of this study was to develop and implement techniques for in vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the RV free wall. A two-turn, crossover-design elliptical surface coil was constructed to provide high sensitivity across the thin RV wall but minimal sensitivity in the blood-filled RV cavity. In 36 open-chest, anesthetized pigs, 31P spectroscopy of the RV free wall was performed with this coil at a field strength of 2 Tesla. Spectra were obtained from 800 acquisitions in 24 min with an average signal-to-noise ratio of 13.2 for phosphocreatine (PCr). The PCr-to-ATP (PCr/ATP) ratio of porcine RV was 1.42 +/- 0.05 (mean +/- SE), uncorrected for saturation at a repetition time of 1.8 s. With the use of literature values of the time constant of longitudinal relaxation (T1) to correct for partial saturation, the RV PCr/ATP was estimated to lie between 1.7 and 2.3. Decreased RV PCr/ATP was observed during RV ischemia and pressure overload. Thus in vivo 31P spectroscopy of the RV is readily accomplished with an appropriate surface coil and can provide new information about RV energy metabolism. PMID:1621852

  9. [sup 31]P NMR study of immobilized artificial membrane surfaces. Structure and dynamics of immobilized phospholipids

    SciTech Connect

    Qiu, X.; Pidgeon, C. )

    1993-11-25

    Chromatography surfaces were prepared by immobilizing a single-chain ether phospholipid at approximately a monolayer density on silica particles. The chromatography particles are denoted as [sup ether]IAM.PC[sup C10/C3], and they are stable to all solvents. The structure and dynamics of the interphase created by immobilizing phospholipids on silica particles were studied by [sup 31]P NMR methods. [sup ether]IAM.PC[sup C10/C3] spontaneously wets when suspended in both aqueous and organic solvents, and [sup 31]P NMR spectra were obtained in water, methanol, chloroform, acetonitrile, and acetone. [sup 31]P NMR spectra were subjected to line-shape analysis. From line-shape analysis, the correlation times for rapid internal motion ([tau]-PLL) and wobbling ([tau]-PRP) of the phospholipid headgroup were calculated for each solvent. Immobilized phospholipid headgroups comprising the IAM interfacial region undergo rapid reorientation similar to the case of the phospholipids forming liposome membranes with [tau]-PLL approximately 1 ns. Phospholipids in liposome membranes exhibit slower wobbling motion ([tau]-PRP approximately 1 ms) in the plane of the membrane. However, the immobilized phospholipids on [sup ether]IAM.PC[sup C10/C3] surfaces wobble with correlation times [tau]-PRP that depend on the solvent bathing the [sup ether]IAM.PC[sup C10/C3] surface. 41 refs., 9 figs., 2 tabs.

  10. 31P MAS-NMR of human erythrocytes: independence of cell volume from angular velocity.

    PubMed

    Kuchel, P W; Bubb, W A; Ramadan, S; Chapman, B E; Philp, D J; Coen, M; Gready, J E; Harvey, P J; McLean, A J; Hook, J

    2004-09-01

    31P magic angle spinning NMR (MAS-NMR) spectra were obtained from suspensions of human red blood cells (RBCs) that contained the cell-volume-sensitive probe molecule, dimethyl methylphosphonate (DMMP). A mathematical representation of the spectral-peak shape, including the separation and width-at-half-height in the 31P NMR spectra, as a function of rotor speed, enabled us to explore the extent to which a change in cell volume would be reflected in the spectra if it occurred. We concluded that a fractional volume change in excess of 3% would have been detected by our experiments. Thus, the experiments indicated that the mean cell volume did not change by this amount even at the highest spinning rate of 7 kHz. The mean cell volume and intracellular 31P line-width were independent of the packing density of the cells and of the initial cell volume. The relationship of these conclusions to other non-NMR studies of pressure effects on cells is noted. PMID:15334588

  11. /sup 31/P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle

    SciTech Connect

    Hamm, J.R.; Yue, G.M.

    1987-01-01

    The accuracy of intracellular pH (pH/sub i/) measurements by /sup 31/P nuclear magnetic resonance (NMR) spectroscopy was examined in single muscle fibers from the giant barnacle, Balanus nubilis. The pH/sub i/ was derived from the chemical shifts of 2-deoxy-D-glucose-6-phosphate and inorganic phosphate. In fibers superfused with sea water at pH 7.7, pH/sub i/ = 7.30 +/- 0.02 at 20/sup 0/C. Experimentally induced pH/sub i/ changes were followed with a time resolution of 3 min. Intracellular alkalinization was induced by exposure to NH/sub 3/Cl and intracellular acidification followed when NH/sub 3/ was removed. Then acid extrusion was stimulated by exposure to bicarbonate containing sea water. In single muscle fibers /sup 31/P NMR results were in excellent agreement with microelectrode studies over the pH range of 6.5 to 8.0. The initial acid extrusion rate was 1.7 +/- 0.3 mmol x 1/sup -1/ x min/sup -1/ at pH/sub i/ 6.75. The authors results showed that /sup 31/P NMR is a reliable in vivo pH probe.

  12. 31P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle.

    PubMed

    Hamm, J R; Yue, G M

    1987-01-01

    The accuracy of intracellular pH (pHi) measurements by 31P nuclear magnetic resonance (NMR) spectroscopy was examined in single muscle fibers from the giant barnacle, Balanus nubilis. The pHi was derived from the chemical shifts of 2-deoxy-D-glucose-6-phosphate and inorganic phosphate. In fibers superfused with sea water at pH 7.7, pHi = 7.30 +/- 0.02 at 20 degrees C. Experimentally induced pHi changes were followed with a time resolution of 3 min. Intracellular alkalinization was induced by exposure to NH4Cl and intracellular acidification followed when NH3 was removed. Then acid extrusion was stimulated by exposure to bicarbonate containing sea water. In single muscle fibers 31P NMR results were in excellent agreement with microelectrode studies over the pH range of 6.5 to 8.0. The initial acid extrusion rate was 1.7 +/- 0.3 mmol X l-1 X min-1 at pHi 6.75. Our results showed that 31P NMR is a reliable in vivo pH probe. PMID:3812665

  13. Compatibility of Superparamagnetic Iron Oxide Nanoparticle Labeling for 1H MRI Cell Tracking with 31P MRS for Bioenergetic Measurements

    PubMed Central

    Zhang, Zhuoli; Hancock, Brynne; Leen, Stephanie; Ramaswamy, Sharan; Sollott, Steven J.; Boheler, Kenneth R.; Juhaszova, Magdalena; Lakatta, Edward G.; Spencer, Richard G.; Fishbein, Kenneth W.

    2011-01-01

    Labeling of cells with superparamagnetic iron oxide nanoparticles permits cell tracking by 1H MRI while 31P MRS allows non-invasive evaluation of cellular bioenergetics. We evaluated the compatibility of these two techniques by obtaining 31P NMR spectra of iron-labeled and unlabeled immobilized C2C12 myoblast cells in vitro. Broadened but usable 31P spectra were obtained, and peak area ratios of resonances corresponding to intracellular metabolites showed no significant differences between labeled and unlabeled cell populations. We conclude that 31P NMR spectra can be obtained from cells labeled with sufficient iron to permit visualization by 1H imaging protocols and that these spectra have sufficient quality to be used in assessing metabolic status. This result introduces the possibility of using localized 31P MRS to evaluate the viability of iron-labeled therapeutic cells as well as surrounding host tissue in vivo. PMID:20853523

  14. Optimized (31)P MRS in the human brain at 7 T with a dedicated RF coil setup.

    PubMed

    van de Bank, Bart L; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W; Rodgers, Christopher T; Bitz, Andreas K; Scheenen, Tom W J

    2015-11-01

    The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3)  voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). PMID:26492089

  15. Optimized 31P MRS in the human brain at 7 T with a dedicated RF coil setup

    PubMed Central

    van de Bank, Bart L.; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W.; Rodgers, Christopher T.; Bitz, Andreas K.

    2015-01-01

    The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B 1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26492089

  16. Exploring new Routes for Identifying Phosphorus Species in Terrestrial and Aquatic Ecosystems with 31P NMR

    NASA Astrophysics Data System (ADS)

    Vestergren, Johan; Persson, Per; Sundman, Annelie; Ilstedt, Ulrik; Giesler, Reiner; Schleucher, Jürgen; Gröbner, Gerhard

    2014-05-01

    Phosphorus (P) is the primary growth-limiting nutrient in some of the world's biomes. Rock phosphate is a non-renewable resource and the major source of agricultural fertilizers. Predictions of P consumption indicate that rock phosphate mining may peak within 35 years, with severe impacts on worldwide food production1. Organic P compounds constitute a major fraction of soil P, but little is known about the dynamics and bioavailability of organic P species. Our aim is to develop new liquid and solid state 31P-NMR (nuclear magnetic resonance) techniques to identify P-species in water and soils; information required for correlating P speciation with plant and soil processes2, and eventually to improve P use. Soil organic P is frequently extracted using NaOH/EDTA, followed by characterization of the extract by solution 31P-NMR. However, the obtained NMR spectra usually have poor resolution due to line broadening caused by the presence of paramagnetic ions. Therefore, we successfully developed an approach to avoid paramagnetic line broadening by precipitation of metal sulfides. Sulfide precipitation dramatically reduces NMR line widths for soil extracts, without affecting P-composition. The resulting highly improved resolution allowed us to apply for the first time 2D 1H,31P-NMR methods to identify different P monoesters in spectral regions which are extremely crowded in 1D NMR spectra.3 By exploiting 2D 1H-31P NMR spectra of soil extracts we were able to unambiguously identify individual organic P species by combining 31P and 1H chemical shifts and coupling constants. This approach is even suitable for a structural characterization of unknown P-components and for tracing degradation pathways between diesters and monoesters3,4.Currently we apply our approach on boreal4 and tropical soils with focus on Burkina Faso. In addition we also monitor P-species in aqueos ecosystems. For this purpose stream water from the Krycklan catchment in northern Sweden5 has been used to

  17. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Liu, Shuling; Zhang, Shengwan; Li, Shengshi Z.

    2007-07-01

    Quantitative relationships of the 31P NMR chemical shifts of the phosphorus atoms in 291 phosphines with the atomic ionicity index (INI) and stereoscopic effect parameters ( ɛα, ɛβ, ɛγ) were primarily investigated in this paper for modeling some fundamental quantitative structure-spectroscopy relationships (QSSR). The results indicated that the 31P NMR chemical shifts of phosphines can be described as the quantitative equation by multiple linear regression (MLR): δp (ppm) = -174.0197 - 2.6724 INI + 40.4755 ɛα + 15.1141 ɛβ - 3.1858 ɛγ, correlation coefficient R = 0.9479, root mean square error (rms) = 13.9, and cross-validated predictive correlation coefficient was found by using the leave-one-out procedure to be Q2 = 0.8919. Furthermore, through way of random sampling, the estimative stability and the predictive power of the proposed MLR model were examined by constructing data set randomly into both the internal training set and external test set of 261 and 30 compounds, respectively, and then the chemical shifts were estimated and predicted with the training correlation coefficient R = 0.9467 and rms = 13.4 and the external predicting correlation coefficient Qext = 0.9598 and rms = 10.8. A partial least square model was developed that produced R = 0.9466, Q = 0.9407 and Qext = 0.9599, respectively. Those good results provided a new, simple, accurate and efficient methodology for calculating 31P NMR chemical shifts of phosphines.

  18. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-01-01

    The purpose of this research is to develop a convenient, reliable and rapid NMR method for the determination of labile-hydrogen functional groups and organic sulfur compounds which are components of coal and coal-derived materials. For this purpose, the former functional groups, including water molecules, are derivatized with reagents containing NMR-active nuclei such as {sup 31}P or {sup 119}Sn, while sulfur groups are derivatized with {sup 195}Pt NMR tagging reagents. Knowledge of the heteroatom composition of coals is necessary for the development of increasingly sophisticated coal processing technologies.

  19. In Vivo 31P Echo-Planar Spectroscopic Imaging of Human Calf Muscle

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Bachert, Peter

    2001-03-01

    Localized phosphorus-31 NMR spectra of human calf muscle in vivo were obtained by means of echo-planar spectroscopic imaging (EPSI) with a 1.5-T whole-body scanner. The technique permits the measurement of two-dimensional 31P SI data at a minimum acquisition time of 2.4 s (8×8 voxels, TR=300 ms). With 9.4 min measurement time (TR=1100 ms, 64 averages) and 25×25×40 mm spatial resolution in vivo the 31P NMR signal-to-noise ratio (S/N) of the phosphocreatine (PCr) resonance was about 45; the multiplets of nucleoside 5‧-triphosphates were resolved. Spectral quality permits quantitative assessment of the PCr signal in a measurement time that is shorter by a factor of 2 or more than the minimum measurement time feasible with chemical-shift imaging. In a functional EPSI study with a time resolution of 20.5 s on the calf muscle of volunteers, spectra showed a 40% decrease of the PCr signal intensity (at rest: S/N≅12) upon exertion of the muscle.

  20. Whole-body radiofrequency coil for (31) P MRSI at 7 T.

    PubMed

    Löring, J; van der Kemp, W J M; Almujayyaz, S; van Oorschot, J W M; Luijten, P R; Klomp, D W J

    2016-06-01

    Widespread use of ultrahigh-field (31) P MRSI in clinical studies is hindered by the limited field of view and non-uniform radiofrequency (RF) field obtained from surface transceivers. The non-uniform RF field necessitates the use of high specific absorption rate (SAR)-demanding adiabatic RF pulses, limiting the signal-to-noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body-sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick-up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7-T MRI scanner. The accuracy of power calibration with pick-up probes is analyzed at a clinical 3-T MR system with a close to identical (1) H body coil integrated at the MR system. Finally, we demonstrate high-quality three-dimensional (31) P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037615

  1. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  2. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  3. Nuclear spin decoherence of neutral 31P donors in silicon: Effect of environmental 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Petersen, Evan S.; Tyryshkin, A. M.; Morton, J. J. L.; Abe, E.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Lyon, S. A.

    2016-04-01

    Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as a function of 29Si concentration using X -band pulsed electron nuclear double resonance. The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors "protects" the donor nuclear spins by suppressing 29Si flip-flops within a "frozen core," as a result of the detuning of the 29Si spins caused by their hyperfine coupling to the electron spin.

  4. In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle.

    PubMed

    Clark, B J; Acker, M A; McCully, K; Subramanian, H V; Hammond, R L; Salmons, S; Chance, B; Stephenson, L W

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent 31P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all but the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation. PMID:3348365

  5. Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions.

    PubMed Central

    Kirk, K; Kuchel, P W; Labotka, R J

    1988-01-01

    Hypophosphorus acid has a single pKa of 1.1 and at physiological pH values it is therefore present almost entirely as the univalent hypophosphite ion. When added to a red cell suspension the ion crosses the cell membrane rapidly, via the anion exchange protein, and the intra- and extracellular populations of the ion give rise to separate 31P NMR resonances. From a single 31P NMR spectrum it was possible to determine the relative amounts of hypophosphite in the intra- and extracellular compartments and thereby estimate the corresponding concentrations. The ratio of intracellular to extracellular hypophosphite concentration was independent of the total hypophosphite concentration for cells suspended in NaCl solutions and was independent of hematocrit. The hypophosphite distribution ratio increased as extracellular NaCl was replaced iso-osmotically with citrate or sucrose, through it remained very similar to the corresponding hydrogen ion distribution ratio. Incorporation of the hypophosphite distribution ratio into the Nernst equation yielded an estimate of the membrane potential. For cells suspended in NaCl solutions the estimated potential was consistently around -10 mV. PMID:3207824

  6. In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle

    SciTech Connect

    Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. Univ. of Pennsylvania School of Medicine, Philadelphia Univ. of Birmingham )

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

  7. The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency.

    PubMed

    van Dijk, Sabine J; Bezold Kooiker, Kristina; Mazzalupo, Stacy; Yang, Yuanzhang; Kostyukova, Alla S; Mustacich, Debbie J; Hoye, Elaine R; Stern, Joshua A; Kittleson, Mark D; Harris, Samantha P

    2016-07-01

    Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function. PMID:26777460

  8. Optical hyperpolarization and inductive readout of 31P donor nuclei in natural abundance single crystal 29Si

    NASA Astrophysics Data System (ADS)

    Alexander, Thomas; Haas, Holger; Deshpande, Rahul; Gumann, Patryk; Cory, David

    2016-05-01

    We optically polarize and inductively detect 31P donor nuclei in single crystal silicon at high magnetic fields (6 . 7T). Samples include both natural abundance 29Si and an isotopically purified 28Si sample. We observe dipolar order in the 29Si nuclear spins through a spin-locking measurement. This provides a means of characterizing spin transport in the vicinity of the 31P donors.

  9. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR). PMID:26838434

  10. 31P NMR Study of Filled Skutterudite CeOs4P12

    NASA Astrophysics Data System (ADS)

    Magishi, K.; Sugawara, H.; Saito, T.; Koyama, K.

    2012-12-01

    We report the results of the electrical resistivity ρ(T) and the 31P-NMR measurements on filled skutterudite CeOs4P12 in order to investigate the magnetic properties at low temperatures from a microscopic point of view. For the polycrystalline sample synthesized under high pressure (HP), ρ(T) increases with decreasing temperature. On the other hand, for the single crystal (SC), ρ(T) reveals a positive temperature dependence between room temperature and 200 K, and increases with decreasing temperature below 200 K. Also, 1/T1 obeys the activated temperature dependence 1/T1 propto exp(-Δ/kBT) above 160 K with an energy gap Δ/fB ~ 500 K and 540 K for the HP and the SC samples, which are slightly larger than that of a previous report.

  11. sup 31 P saturation transfer and phosphocreatine imaging in the monkey brain

    SciTech Connect

    Mora, B.; Narasimhan, P.T.; Ross, B.D. California Inst. of Tech., Pasadena ); Allman, J. ); Barker, P.B. )

    1991-10-01

    {sup 31}P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response.

  12. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    SciTech Connect

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  13. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. PMID:16830567

  14. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action. PMID:25597861

  15. Solid-State Quantitative (1)H and (31)P MRI of Cortical Bone in Humans.

    PubMed

    Seifert, Alan C; Wehrli, Felix W

    2016-06-01

    Magnetic resonance imaging (MRI) plays a pivotal role for assessment of the musculoskeletal system. It is currently the clinical modality of choice for evaluation of soft tissues including cartilage, ligaments, tendons, muscle, and bone marrow. By comparison, the study of calcified tissue by MRI is still in its infancy. In this article, we review the potential of the modality for assessment of cortical bone properties known to be affected in degenerative bone disease, with focus on parameters related to matrix and mineral densities, and porosity, by means of emerging solid-state (1)H and (31)P MRI techniques. In contrast to soft tissues, the MRI signal in calcified tissues has very short lifetime, on the order of 100 μs to a few milliseconds, demanding customized imaging approaches that allow capture of the signal almost immediately after excitation. The technologies described are suited for quantitatively imaging human cortical bone in specimens as well as in vivo in patients on standard clinical imagers, yielding either concentrations in absolute units when measured against a reference standard, or more simply, in the form of surrogate biomarkers. The two major water fractions in cortical bone are those of collagen-bound and pore water occurring at an approximately 3:1 ratio. Collagen-bound water density provides a direct quantitative measure of osteoid density. While at an earlier stage of development, quantification of mineral phosphorus by (31)P MRI yields mineral density and, together with knowledge of matrix density, should allow quantification of the degree of bone mineralization. PMID:27048472

  16. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle

    PubMed Central

    Savage, David B.; Williams, Guy B.; Porter, David; Carpenter, T. Adrian; Brindle, Kevin M.; Kemp, Graham J.

    2016-01-01

    Fundamental criticisms have been made over the use of 31P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the 31P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK. PMID:26744504

  17. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (31-P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log (phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow (flow), developed pressure (DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with 31-P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using 31-P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  18. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (/sup 31/P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log(phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow(flow), developed pressure(DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with /sup 31/P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using /sup 31/P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  19. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer.

    PubMed

    Klomp, Dennis W J; van de Bank, Bart L; Raaijmakers, Alexander; Korteweg, Mies A; Possanzini, Cecilia; Boer, Vincent O; van de Berg, Cornelius A T; van de Bosch, Maurice A A J; Luijten, Peter R

    2011-12-01

    This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH. A double-tuned, dual-element transceiver was designed with focused radiofrequency fields for unilateral breast imaging and spectroscopy tuned for optimized sensitivity at 7 T. T(1) -weighted three-dimensional MRI and (1) H MRS were applied for the localization and quantification of total choline compounds. (31) P MRSI was obtained within 20 min per subject and mapped in three dimensions over the breast with pixel volumes of 10 mL. The feasibility of monitoring in vivo metabolism was demonstrated in two patients with breast cancer during neoadjuvant chemotherapy, validated by ex vivo high-resolution magic angle spinning NMR and compared with data from an age-matched healthy volunteer. Concentrations of total choline down to 0.4 mM could be detected in the human breast in vivo. Levels of adenosine and other nucleoside triphosphates, inorganic phosphate, phosphocholine, phosphoethanolamine and their glycerol diesters detected in glandular tissue, as well as in tumor, were mapped over the entire breast. Altered levels of these compounds were observed in patients compared with an age-matched healthy volunteer; modulation of these levels occurred in breast tumors during neoadjuvant chemotherapy. To our knowledge, this is the first comprehensive MRI and MRS study in patients with breast cancer, which reveals detailed information on the morphology and phospholipid metabolism from volumes as small as 10 mL. This endogenous metabolic information may provide a new method for the noninvasive assessment of prognostic and predictive biomarkers in breast cancer treatment. PMID

  20. Abnormal skeletal muscle oxidative capacity after lung transplantation by 31P-MRS.

    PubMed

    Evans, A B; Al-Himyary, A J; Hrovat, M I; Pappagianopoulos, P; Wain, J C; Ginns, L C; Systrom, D M

    1997-02-01

    Although lung transplantation improves exercise capacity by removal of a ventilatory limitation, recipients' postoperative maximum oxygen uptake (VO2max) remains markedly abnormal. To determine if abnormal skeletal muscle oxidative capacity contributes to this impaired aerobic capacity, nine lung transplant recipients and eight healthy volunteers performed incremental quadriceps exercise to exhaustion with simultaneous measurements of pulmonary gas exchange, minute ventilation, blood lactate, and quadriceps muscle pH and phosphorylation potential by 31P-magnetic resonance spectroscopy (31P-MRS). Five to 38 mo after lung transplantation, peak VO2 was decreased compared with that of normal control subjects (6.7 +/- 0.4 versus 12.3 +/- 1.0 ml/min/kg, p < 0.001), even after accounting for differences in age and lean body weight. Neither ventilation, arterial O2 saturation nor mild anemia could account for the decrease in aerobic capacity. Quadriceps muscle intracellular pH (pH(i)) was more acidic at rest (7.07 +/- 0.01 versus 7.12 +/- 0.01 units, p < 0.05) and fell during exercise from baseline values at a lower metabolic rate (282 +/- 21 versus 577 +/- 52 ml/min, p < 0.001). Regressions for pH(i) versus VO2, phosphocreatine/inorganic phosphate ratio (PCr/Pi) versus VO2, and blood lactate versus pH(i) were not different. Among transplant recipients, the metabolic rate at which pH(i) fell correlated closely with VO2max (r = 0.87, p < 0.01). The persistent decrease in VO2max after lung transplantation may be related to abnormalities of skeletal muscle oxidative capacity. PMID:9032203

  1. Composition of phosphorus in wetland soils determined by SMT and solution 31P-NMR analyses.

    PubMed

    Zhang, Wenqiang; Jin, Xin; Ding, Yuekui; Zhu, Xiaolei; Rong, Nan; Li, Jie; Shan, Baoqing

    2016-05-01

    In Eastern China, wetlands are common in the lower reaches of catchments or in coastal zones. Wetlands are at risk from eutrophication because of the large quantities of phosphorus (P) they receive from rivers. They are also decreasing in size. In this contribution, we present information about the composition of P in wetland soils, obtained using the Standards, Measurements, and Testing (SMT) protocol and (31)P-nuclear magnetic resonance (NMR) spectroscopy. Average P concentrations varied in the different wetland soils and, in four of the five wetlands sampled, exceeded 500 mg∙kg(-1). HCl-inorganic P (Pi) was the main Pi fraction in wetland soils. The percentage contribution of Pi (89.7 %) to total P was the highest in the Yangtze River estuary wetland. Six P components were detected by (31)P-NMR analysis. Mono-P was the main organic P (Po) in wetland soils. Orthophosphate (Ortho-P) was positively and negatively related to NaOH-Pi (R (2) = 0.957, p < 0.001) and HCl-Pi (R (2) = -0.689, p < 0.001), respectively. Orthophosphate monoesters (Mono-P) were positively related to Po (R (2) = 0.617, p < 0.001) and ortho-P (R (2) = 0.624, p < 0.001), respectively. The main Po component was Mono-P, and it may be mineralized to ortho-P under the frequently changing redox conditions in wetland soils. The information from this study will support the development of robust scientific and effective policy for P management in wetlands. PMID:26832861

  2. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  3. Metabolic engineering applications of in vivo sup 31 P and sup 13 C NMR studies of Saccharomyces cerevisiae

    SciTech Connect

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo {sup 31}P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the {sup 31}P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, {beta}-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the {sup 31}P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP{sub 1}) is established. Transient measurements provided by {sup 31}P NMR are applied to reg1 mutant and standard strains. {sup 31}P and {sup 13}C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered.

  4. A practical guide for the setup of a 1H-31P-13C double cross-polarization (DCP) experiment.

    PubMed

    Ciesielski, Wlodzimierz; Kassassir, Hassan; Potrzebowski, Marek J

    2011-01-01

    O-phospho-L-threonine is a convenient sample to setup a (1)H-(31)P-(13)C double cross-polarization (DCP) Hartmann-Hahn match. The (1)H-(31)P-(13)C technique is extremely sensitive to the rate of the sample spinning. Both zero-quantum (ZQ) and double-quantum (DQ) cross-polarization operate at an average spinning rate (6-7 kHz). At higher spinning rates (10 kHz), the DQCP mechanism dominates and leads to a reduction of signal intensity, in particular for lower (31)P RF field strength. The application of two shape pulses during the second cross-polarization greatly improves the signal to noise ratio allowing the recording of better quality spectra. (31)P-(13)C spectrally induced filtering in combination with cross-polarization (SPECIFIC-CP) experiments can be carried out under ZQCP and DQCP conditions if careful attention is paid to the choice of RF field amplitudes and carriers Ω. Application of 1D and 2D (1)H-(31)P-(13)C experiments is demonstrated on model samples; disodium ATP hydrate and O-phospho-L-tyrosine. PMID:21440422

  5. Contraction and recovery of living muscles studied by 31p nuclear magnetic resonance

    PubMed Central

    Gadian, D. G.; Dawson, M. Joan; Wilkie, D. R.

    1977-01-01

    1. Phosphorus nuclear magnetic resonance (31P NMR) can be used to measure the concentrations of phosphorus-containing metabolites within living tissue. We have developed methods for maintaining muscles in physiological condition, stimulating them and recording tension while at the same time accumulating their 31P NMR spectra. Experiments were performed on frog sartorii and frog and toad gastrocnemii at 4° C. 2. The NMR signals from 31P (the naturally occurring phosphorus) is weak, and signal averaging is required. In order to follow the time course of reactions it is necessary to maintain the muscles in a steady state for many hours while they are undergoing repeated contractions. Signals were accumulated in separate computer bins according to time after initiation of contraction. By these means spectra were obtained which corresponded to the different intervals during the contraction and recovery cycle. 3. In the absence of stimulation, the spectra of frog sartorius muscles and of their extracts indicated concentrations of adenosine triphosphate (ATP), phosphoryl creatine (PCr), inorganic orthophosphate (Pi) and sugar phosphates (sugar P) which are in reasonable agreement with the values obtained by chemical analysis. 4. We have confirmed that unidentified resonances representing unknown compounds appear in the spectra of both frog and toad muscle; one of these is much larger in spectra from toad than from frog. We have found an additional small, unidentified resonance which appears to be specific to toad muscle. 5. Spectra accumulated during actual contractions (1 s tetani every 2 min) did not differ dramatically from those accumulated throughout the 2 min cycle of contraction and partial recovery. 6. Following 25 s tetanii, approximately 20% of the PCr had been hydrolysed; it was then rebuilt exponentially with a half-time of about 10 min. The increase in [Pi] immediately after contraction and the time course of its disappearance corresponded to the changes in

  6. {sup 31}P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions. Final technical report

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  7. Ex vivo identification of atherosclerotic plaque calcification by a 31P solid-state magnetic resonance imaging technique.

    PubMed

    Hallock, Kevin J; Hamilton, James A

    2006-12-01

    Calcified tissue is a common component of atherosclerotic plaques, and occurs most often in mature plaques. The process of calcification is a poorly understood risk factor that may contribute to a plaque's vulnerability to sudden rupture. In this study a solid-state imaging sequence, termed single-point imaging (SPI), was used to observe calcification directly in ex vivo atherosclerotic plaques. Standards were used to validate the ability of (31)P SPI to detect and differentiate calcification from crystalline cholesterol, phospholipids, and other plaque components. After suitable experimental parameters were found, human carotid specimens obtained by endarterectomy were imaged ex vivo by (31)P solid-state imaging and standard (1)H methods. In contrast to (1)H imaging methods, (31)P imaging detected only the calcification in the plaque. PMID:17089379

  8. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    NASA Astrophysics Data System (ADS)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where

  9. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition

    PubMed Central

    Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.

    2011-01-01

    The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids – D1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690

  10. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  11. Transport of phosphocholine in higher plant cells: sup 31 P nuclear magnetic resonance studies

    SciTech Connect

    Gout, E.; Bligny, R.; Roby, C.; Douce, R. )

    1990-06-01

    Phosphocholine (PC) is an abundant primary form of organic phosphate that is transported in plant xylem sap. Addition of PC to the perfusate of compressed P{sub i}-starved sycamore cells monitored by {sup 31}P NMR spectroscopy resulted in an accumulation of PC and all the other phosphate esters in the cytoplasmic compartment. Addition of hemicholinium-3, an inhibitor of choline uptake, to the perfusate inhibited PC accumulation but not inorganic phosphate (P{sub i}). When the P{sub i}-starved cells were perfused with a medium containing either P{sub i} or PC, the resulting P{sub i} distribution in the cell was the same. Addition of choline instead of PC to the perfusate of compressed cells resulted in an accumulation of PC in the cytoplasmic compartment from choline kinase activity. In addition, PC phosphatase activity has been discovered associated with the cell wall. These results indicate that PC was rapidly hydrolyzed outside the cell and that choline and P{sub i} entered the cytosolic compartment where choline kinase re-forms PC.

  12. (31)P NMR phospholipid profiling of soybean emulsion recovered from aqueous extraction.

    PubMed

    Yao, Linxing; Jung, Stephanie

    2010-04-28

    The quantity and composition of phospholipids in full-fat soybean flour, flakes, and extruded flakes and in the cream fraction recovered after aqueous extraction (AEP) and enzyme-assisted aqueous extraction (EAEP) of these substrates were studied with (31)P NMR. Extruded flakes had significantly more phosphatidic acid (PA) than flakes and flour prior to aqueous extraction. The PA content of the cream recovered after AEP and EAEP of extruded flakes was similar to that of the starting material, whereas the PA content of the creams from flour and flakes significantly increased. Changes in the PA content could be explained by the action of phospholipase D during the processing step and aqueous extraction. Total phospholipids in the oil recovered from the creams varied from 0.09 to 0.75%, and free oil yield, which is an indicator of cream stability, varied from 6 to 78%. Total phospholipid did not correlate with emulsion stability when it was lower than 0.20%. Inactivation of phospholipase D prior to aqueous extraction of flour resulted in a cream emulsion less stable toward enzymatic demulsification and containing less PA and total phospholipids than untreated flour. The phospholipid distributions in the cream, skim, and insolubles obtained from AEP flour were 7, 51, and 42%, respectively. PMID:20329795

  13. 31P NMR spectroscopy of rat organs, in situ, using chronically implanted radiofrequency coils.

    PubMed Central

    Koretsky, A P; Wang, S; Murphy-Boesch, J; Klein, M P; James, T L; Weiner, M W

    1983-01-01

    A technique for making 31P NMR spectroscopic measurements in rat kidney, heart, and liver in vivo is presented. Two-turn solenoid coils were surgically implanted around the organ sufficiently in advance of NMR experiments to allow recovery of the animal. These chronically implanted coils allowed acquisition of high-resolution spectra at 40.5 and 97.3 MHz. No resolution improvement occurred at the higher field. Spectra were stable for up to 24 hr, during which time a variety of experiments could be performed. By accumulating spectra at 10-min intervals, the effects of intraperitoneal fructose injections were monitored; in kidney and liver, a rapid increase in sugar phosphates at the expense of Pi and ATP resulted. Fructose had no effect on heart metabolite levels. Spectra from the heart in vivo were obtained at systole and diastole by gating the spectrometer to the aortic pressure wave; no differences in phosphate metabolites were detected. Finally, saturation transfer techniques were used to monitor the rate of ATP synthesis in the kidney. The unidirectional rate constant for the conversion of Pi to ATP was 0.12 +/- 0.03 sec-1. Images PMID:6584867

  14. In vivo 31P and multilabel 13C NMR measurements for evaluation of plant metabolic pathways.

    PubMed

    Rijhwani, S K; Ho, C H; Shanks, J V

    1999-01-01

    Reliable measurements of intracellular metabolites are useful for effective plant metabolic engineering. This study explored the application of in situ 31P and 13C NMR spectroscopy for long-term measurements of intracellular pH and concentrations of several metabolites in glycolysis, glucan synthesis, and central carbon metabolic pathways in plant tissues. An NMR perfusion reactor system was designed to allow Catharanthus roseus hairy root cultures to grow for 3-6 weeks, during which time NMR spectroscopy was performed. Constant cytoplasmic pH (7.40+/-0.06), observed during the entire experiment, indicated adequate oxygenation. 13C NMR spectroscopy was performed on hairy root cultures grown in solutions containing 1-13C-, 2-13C-, and 3-13C-labeled glucose in separate experiments and the flow of label was monitored. Activities of pentose phosphate pathways, nonphotosynthetic CO2 fixation, and glucan synthesis pathways were evident from the experimental results. Scrambling of label in glucans also indicated recycling of triose phosphate and their subsequent conversion to hexose phosphates. PMID:10935751

  15. 31P-nuclear magnetic resonance studies of chronic myocardial ischemia in the Yucatan micropig.

    PubMed

    Rath, D P; Bailey, M; Zhang, H; Jiang, Z; Abduljalil, A M; Weisbrode, S; Hamlin, R L; Robitaille, P M

    1995-01-01

    In this work, an x-irradiation/high fat/high cholesterol diet-induced atherogenic model was invoked to examine the effects of severe diffuse atherosclerosis on myocardial metabolism in the in vivo porcine heart. This model was studied using spatially localized 31P-nuclear magnetic resonance (NMR) to monitor pH and the levels of inorganic phosphate, phosphomonoesters, creatine phosphate, and adenosine triphosphate as a function of workload transmurally in control swine and in animals suffering from chronic ischemic heart disease. These preliminary studies revealed that the development of severe atherosclerosis and the accompanying chronically diseased state produce changes in high energy phosphates and that increases in rate pressure products result in demonstrable signs of ischemia in the myocardium which span the entire left ventricular wall. Ischemic changes include a global increase in inorganic phosphate and corresponding decreases in creatine phosphate, ATP, and pH. Importantly, changes in intracellular pH are noted with even the slightest increase in workload suggesting that these diseased hearts display elevated glycolytic activity. By challenging these animals with increased cardiac workload, we directly visualize how the chronically compromised heart responds to severe oxygen challenges in a clinically relevant model of this situation. PMID:7814609

  16. 31P-nuclear magnetic resonance studies of chronic myocardial ischemia in the Yucatan micropig.

    PubMed Central

    Rath, D P; Bailey, M; Zhang, H; Jiang, Z; Abduljalil, A M; Weisbrode, S; Hamlin, R L; Robitaille, P M

    1995-01-01

    In this work, an x-irradiation/high fat/high cholesterol diet-induced atherogenic model was invoked to examine the effects of severe diffuse atherosclerosis on myocardial metabolism in the in vivo porcine heart. This model was studied using spatially localized 31P-nuclear magnetic resonance (NMR) to monitor pH and the levels of inorganic phosphate, phosphomonoesters, creatine phosphate, and adenosine triphosphate as a function of workload transmurally in control swine and in animals suffering from chronic ischemic heart disease. These preliminary studies revealed that the development of severe atherosclerosis and the accompanying chronically diseased state produce changes in high energy phosphates and that increases in rate pressure products result in demonstrable signs of ischemia in the myocardium which span the entire left ventricular wall. Ischemic changes include a global increase in inorganic phosphate and corresponding decreases in creatine phosphate, ATP, and pH. Importantly, changes in intracellular pH are noted with even the slightest increase in workload suggesting that these diseased hearts display elevated glycolytic activity. By challenging these animals with increased cardiac workload, we directly visualize how the chronically compromised heart responds to severe oxygen challenges in a clinically relevant model of this situation. Images PMID:7814609

  17. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  18. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena

    2015-02-01

    Glasses have been synthesized in the system P2O5sbnd SiO2sbnd K2Osbnd MgOsbnd CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and 31P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]sbnd Osbnd P and/or Mo[MoO4/MoO6]sbnd Osbnd Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations.

  19. 31P-NMR studies of isolated adult heart cells: effect of myoglobin inactivation.

    PubMed

    Gupta, R K; Wittenberg, B A

    1991-10-01

    31P nuclear magnetic resonance (NMR) studies of isolated adult rat heart cells revealed that the cells maintained high-energy phosphates for up to 6 h in polyamide hollow fibers perfused with well-oxygenated nutrient medium. Glucose plus pyruvate superfused heart cells maintained [phosphocreatine]/[ATP] at 1.4 +/- 0.1, internal pH at 7.09 +/- 0.04 (external pH = 7.25), and intracellular free Mg2+ at 0.51 +/- 0.04 mM. In glucose-containing media, hypoxia was accompanied by a reversible decrease in intracellular ATP and phosphocreatine of approximately 50% and 80%, respectively, while the intracellular free Mg2+ was reversibly increased by 40%. However, inhibition of glycolysis by iodoacetate in aerobic pyruvate-containing medium did not significantly alter high-energy phosphate content. Inactivation of intracellular myoglobin with 1-2 mM sodium nitrite, which reduces the steady-state respiratory oxygen consumption rate by 30%, caused a significant (30%) decrease in intracellular phosphocreatine peak, which was reversed upon removal of sodium nitrite. The nitrite-induced decrease in phosphocreatine was also observed in iodoacetate-treated myocytes but not in oligomycin-treated cells. These results indicate that functional myoglobin enhances high-energy phosphate synthesis in well-oxygenated myocytes. PMID:1928397

  20. 31P magnetic resonance phospholipid profiles of neoplastic human breast tissues.

    PubMed Central

    Merchant, T. E.; Meneses, P.; Gierke, L. W.; Den Otter, W.; Glonek, T.

    1991-01-01

    Phospholipids from malignant, benign and noninvolved human breast tissues were extracted by chloroform-methanol (2:1) and analysed by 31P MR spectroscopy at 202.4 MHz. Thirteen phospholipids were identified as constituents of the profiles obtained among the 55 tissue specimens analysed. Observed patterns in phospholipid tissues profiles were distinct, allowing qualitative characterisation of the three tissue groups. Multivariate analysis of lysophosphatidylcholine (LPC) and an uncharacterised phospholipid were shown to be independently significant in predicting benign tissue histology as either fibrocystic disease or fibroadenoma in 92% of cases. Univariate analysis of relative mole-percentage of phosphorus concentrations of individual phospholipids using the Scheffé comparison procedure revealed that in malignant tissues, phosphatidylethanolamine was significantly elevated compared to benign (+ 32%) and noninvolved tissues (+ 22%). Phosphatidylinositol (+ 33%) and phosphatidylcholine plasmalogen (PC plas) (+ 25%) were increased in malignant compared to benign and LPC was decreased (-44%) in malignant compared to noninvolved. LPC was significantly depressed (-39%) in benign tissue compared to normal. Phospholipid indices computed to further characterise the three tissue groups showed PC plas/PC elevated in malignant tissue compared to benign and PE plas/PE depressed in malignant tissue compared to noninvolved. These findings support previous investigations reporting that the alkyl-phospholipid analogues of phosphatidylcholine are released by malignant tissues and that levels of ethanolamine are elevated in malignant tissues. Indices describing the choline-containing phospholipids showed that these lipids are depressed significantly in malignant tissue relative to healthy tissue. PMID:2039694

  1. Singlet-triplet separations measured by [sup 31]P[l brace][sup 1]H[r brace] NMR: Applications to quadruply bonded dimolybdenum and ditungsten complexes

    SciTech Connect

    Cotton, F.A.; Eglin, J.L.; Bo Hong; James, C.A. )

    1993-05-12

    A series of quadruply bonded dimolybdenum and ditungsten compounds M[sub 2]X[sub 4](PP)[sub 2] (M = Mo, W; PP = bidentate phosphine ligands; X = Cl, Br, I) with internal rotational angles [chi] varying from 0.0 to 69.4[degrees] have been studied. Their [sup 31]P[l brace][sup 1]H[r brace] NMR spectra are characterized by their temperature-dependent shifts and line widths that broaden with increasing temperature. A nonlinear, least-squares fit of this temperature dependence of the paramagnetic shifts for their NMR signals allows the evaluation of the singlet-triplet energy separation ([minus]2J), the diamagnetic shift (H[sub dia]), and the electron-nucleus hyperfine coupling constant (A). The singlet-triplet energy separations for all the compounds investigated are found to be in the range 1200-3000 cm[sup [minus]1]. It is now clearly established that the ground state remains [sup 1]A[sub 1g] ([delta][sup 2]) even at [chi] = 45[degrees], where [sup 3]A[sub 2u] ([delta][delta]*) lies 1230 cm[sup [minus]1] above it. The [delta]-bond energy and electronic [delta]-barrier can also be experimentally estimated as 13.8[+-]0.5 kcal mol[sup [minus]1] and 10.3[+-]0.5 kcal mol[sup [minus]1], respectively. 32 refs., 3 figs., 1 tab.

  2. Intermolecular (119)Sn,(31)P Through-Space Spin-Spin Coupling in a Solid Bivalent Tin Phosphido Complex.

    PubMed

    Arras, Janet; Eichele, Klaus; Maryasin, Boris; Schubert, Hartmut; Ochsenfeld, Christian; Wesemann, Lars

    2016-05-01

    A bivalent tin complex [Sn(NP)2] (NP = [(2-Me2NC6H4)P(C6H5)](-)) was prepared and characterized by X-ray diffraction and solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. In agreement with the X-ray structures of two polymorphs of the molecule, (31)P and (119)Sn CP/MAS NMR spectra revealed one crystallographic phosphorus and tin site with through-bond (1)J((117/119)Sn,(31)P) and through-space (TS)J((117/119)Sn,(31)P) spin-spin couplings. Density functional theory (DFT) calculations of the NMR parameters confirm the experimental data. The observation of through-space (TS)J((117/119)Sn,(31)P) couplings was unexpected, as the distances of the phosphorus atoms of one molecule and the tin atom of the neighboring molecule (>4.6 Å) are outside the sum of the van der Waals radii of the atoms P and Sn (4.32 Å). The intermolecular Sn···P separations are clearly too large for bonding interactions, as supported by a natural bond orbital (NBO) analysis. PMID:27071033

  3. Nuclear Spin Polarization of Phosphorus Donors in Silicon. Direct Evidence from 31P-Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Gumann, Patryk; Ramanathan, Chandrasekhar; Patange, Om; Moussa, Osama; Thewalt, Mike; Riemann, Helge; Abrosimov, Nikolay; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei; Cory, David G.

    2014-03-01

    We experimentally demonstrate the optical hyperpolarization and coherent control of 31P, nuclear spins in single crystal silicon via the inductive readout of the nuclear magnetic resonance (NMR) signal of 31P at a concentration of 1.5 x 1015 cc-1. The obtained polarization is sufficient the 31P spin polarization of 1.17 x 1015 in a 10 mm x 10 mm sample, observed in one FID with signal-to-noise ration of 113. The linewidth is 800 Hz. The Hahn echo pulse sequence reveals a 31P T2 time of 0.42 s at 1.6 K, which was extended by the Carr Purcell cycle to 1.2 s at the same temperature. The maximum build-up of the nuclear polarization was achieved within ~577 seconds, at 4.2 K, in 6.7 T, using optical excitations provided by an infra-red laser. This work has been supported by CERC Canada.

  4. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  5. Nuclear-Overhauser-enhanced MR imaging of (31)P-containing metabolites: multipoint-Dixon vs. frequency-selective excitation.

    PubMed

    Rink, Kristian; Berger, Moritz C; Korzowski, Andreas; Breithaupt, Mathies; Biller, Armin; Bachert, Peter; Nagel, Armin M

    2015-12-01

    The purpose of this study is to develop nuclear-Overhauser-enhanced (NOE) [(1)H]-(31)P magnetic resonance imaging (MRI) based on 3D fully-balanced steady-state free precession (fbSSFP). Therefore, two implementations of a 3D fbSSFP sequence are compared using frequency-selective excitation (FreqSel) and multipoint-Dixon (MP-Dixon). (31)P-containing model solutions and four healthy volunteers were examined at field strengths of B0=3T and 7T. Maps of the distribution of phosphocreatine (PCr), inorganic phosphate (Pi), and adenosine 5´-triphosphate (ATP) in the human calf were obtained with an isotropic resolution of 1.5cm (1.0cm) in an acquisition time of 5min (10min). NOE-pulses had the highest impact on the PCr acquisitions enhancing the signal up to (82 ± 13) % at 3T and up to (37 ± 9) % at 7T. An estimation of the level of PCr in muscle tissue from [(1)H]-(31)P MRI data yielded a mean value of (33 ± 8) mM. In conclusion, direct [(1)H]-(31)P imaging using FreqSel as well as MP-Dixon is possible in clinically feasible acquisition times. FreqSel should be preferred for measurements where only a single metabolite resonance is considered. MP-Dixon performs better in terms of SNR if a larger spectral width is of interest. PMID:26248272

  6. [ 31P]NMR measurements of hexokinase activity in intact red blood cells with 2-deoxyglucose as substrate

    NASA Astrophysics Data System (ADS)

    Halabi, F.; Seguin, J. P.; Fonroget, J.; Goethals, G.

    [ 31P] NMR spectroscopy is demonstrated to be a suitable tool to follow the time course of 2-deoxyglucose-6-phosphate in intact human erythrocytes incubated with 2-deoxyglucose. It allowed to determine hexokinase Vmax and K m in near physiological conditions.

  7. 31P NMR study of erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency.

    PubMed Central

    Swanson, M S; Angle, C R; Stohs, S J; Wu, S T; Salhany, J M; Eliot, R S; Markin, R S

    1983-01-01

    The composition of phosphate metabolites and the intracellular pH in erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency were examined using 31P NMR spectroscopy. Several resonances were identified in spectra from intact cells and from extracts. The 2,3-bisphosphoglycerate line intensities were normal but the NTP resonances were about twice normal due to the presence of millimolar quantities of pyrimidine phosphates. Several intense resonances were also observed in the diphosphodiester region of the spectrum. One compound contributing to these lines has been identified as cytidine diphosphocholine. The resonances of NTPs were in a position indicating that the additional triphosphates were also bound by Mg2+. Direct measurement shows that there is a nearly proportional increase in total cell Mg2+ in the patient's cells, in agreement with the interpretation of the spectra. The intracellular pH was about 0.2 unit lower in the patient's erythrocytes. This lower pH is due to the elevation in intracellular fixed negative charges and the shift in permeable anions consequent to the Donnan equilibrium. We suggest that the lower intracellular pH may explain the lower oxygen affinity of these cells in the presence of otherwise normal 2,3-bisphosphoglycerate levels and the increased Mg2+ triphosphates level, because the Mg2+ form of NTPs is known not to alter the oxygen affinity of hemoglobin under physiologic conditions. Furthermore, the lower intracellular pH can also explain the abnormalities in glycolytic intermediates observed for these cells. PMID:6296865

  8. Application of (31P) NMR in analyzing the degradation efficiency of organic phosphorus degrading-bacteria.

    PubMed

    Lu, Yang; Sun, Xin; Ji, Si-Yao; Wang, Jian-Feng; Huang, Yao-Jian; Zhao, Yu-Fen; Xu, Peng-Xiang

    2007-07-01

    HPLC and HPLC-MS are the fastest and most accurate techniques for analysis of organic phosphorus pesticide (OPP) at the present time. Using these techniques, 14 strains of methamidopho (MAP) degrading-bacteria from the area contaminated with MAP have been identified. The results from HPLC and HPLC-MS analyses showed that the highest degradation rate was 73% after 7 days. In order to determine what metabolites will be formed after degradation, a key issue that has been neglected for a long time, we used ((31)P) NMR to track the degradation process. The results showed that different strains produced different metabolites. Ten strains were divided into three groups (groups A, B and C) by their metabolic profiling. Strains in group A degraded MAP into phosphor acid by breaking down all P-N, P-O and P-S bonds in 7 days. Strains in groups B and C had only broken down partially P-N and P-S bonds at the same time. Therefore, the bacterial strains in group A had a greater application potential than the other two groups. In addition, most metal phosphates are unsolvable in water. The analysis of X-ray showed, that the phosphate radicals generated by bacterial degradation induce crystallogenesis of heavy metal salts in water phase and also cause the chemical sedimentation of their crystals. Furthermore, these crystals are hydrogen phosphates. The results suggested that the MAP-degrading bacteria could be used for cleaning up not only the organic phosphorous pesticide contamination but also the phosphorous and heavy metal contamination in water environment simultaneously. PMID:17072553

  9. Regional Differences of Metabolic Response During Dynamic Incremental Exercise by (31)P-CSI.

    PubMed

    Kaneko, Yasuhisa; Kime, Ryotaro; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to detect the differences in muscle metabolic response of the quadriceps during incremental dynamic knee exercise using regional (31)Phosphorus Chemical Shift Imaging ((31)P-CSI). Sixteen healthy men participated in this study (age 28 ± 5 years, height 171.4 ± 3.9 cm, weight 67.1 ± 9.8 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed isometric unilateral knee extension exercise to detect their maximum voluntary contraction (MVC) in prone position. Then they performed dynamic unilateral knee extension exercise in the magnet at 10, 20, 30 and 40 % of their MVC with the transmit-receive coil placed under the right quadriceps. The subjects pulled down a rope with the adjusted weight attached to the ankle at a frequency of 0.5 Hz for 380 s. Intracellular pH (pHi) was calculated from the median chemical shift of the inorganic phosphate (Pi) peak relative to phosphocreatine (PCr). The quadriceps were divided into three regions, (1) medial, (2) anterior, (3) lateral, and in comparison, there was no significant difference in Pi/PCr nor in pHi between regions, except Pi/PCr of the medial region was significantly higher than the anterior region at maximum intensity (p < 0.05). These results suggest that regional muscle metabolic response is similar in the quadriceps except at maximum intensity. PMID:27526153

  10. Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis

    PubMed Central

    Chaumeil, Myriam M.; Valette, Julien; Guillermier, Martine; Brouillet, Emmanuel; Boumezbeur, Fawzi; Herard, Anne-Sophie; Bloch, Gilles; Hantraye, Philippe; Lebon, Vincent

    2009-01-01

    Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, 31P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish 31P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer 31P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (VTCA), and the rate of ATP synthesis (VATP) in primate monkeys by using 18F-FDG PET scan, indirect 13C MRS, and saturation transfer 31P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 ± 0.07 μmol·g−1·min−1, VTCA = 0.63 ± 0.12 μmol·g−1·min−1, and VATP = 7.8 ± 2.3 μmol·g−1·min−1. The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer 31P MRS for directly evaluating ATP synthesis in the living brain. PMID:19234118

  11. Nucleus-nucleus scattering at high energies

    NASA Technical Reports Server (NTRS)

    Franco, V.; Varma, G. K.

    1977-01-01

    Nucleus-nucleus scattering is treated in the Glauber approximation. The usual optical limit result, generally thought to improve as the number of nucleons in the colliding nuclei increases, is found to be the first term of a series which diverges for large nuclei. Corrections to the optical limit are obtained which provide a means of performing realistic calculations for collisions involving light nuclei. Total cross section predictions agree well with recent measurements.

  12. Superiority of blood over saline resuscitation from hemorrhagic shock: a 31P magnetic resonance spectroscopy study.

    PubMed Central

    Mann, D V; Robinson, M K; Rounds, J D; DeRosa, E; Niles, D A; Ingwall, J S; Wilmore, D W; Jacobs, D O

    1997-01-01

    OBJECTIVE: To study the relation between blood and saline administration, postresuscitation hematocrit (Hct) level, and metabolic recovery after hemorrhagic shock. SUMMARY BACKGROUND DATA: It is generally believed that crystalloid can be substituted, in whole or in part, for blood during resuscitation of hemorrhagic shock. This is based on the belief that Hct can be safely reduced but should not fall below a critical level. METHODS: Male rats weighing 200 g were subjected to an isobaric hemorrhagic shock at a mean arterial pressure of 30 mmHg for 14 minutes, after which they were randomized to one of three resuscitation regimens. Control group (n = 36) were resuscitated by return of all shed blood. Mid-Hct (n = 39) and low-Hct (n = 60) groups were depleted of one third and one half of their circulating blood volumes, respectively, and were resuscitated with three times that volume of normal saline. Skeletal muscle intracellular energetics and pH were measured serially using 31P magnetic resonance spectroscopy at baseline, during shock, and after resuscitation. Arterial blood was sampled at the same time points. The number of surviving animals in each group at 24 hours was recorded. RESULTS: After resuscitation, surviving rats in the low-Hct group demonstrated a greater consumption of high-energy phosphocreatine stores than did the other groups (control = 0.479 +/- 0.003, mid-Hct = 0.465 +/- 0.004, low-Hct = 0.457 +/- 0.007, mean +/- standard error of the mean; p < 0.01 low-Hct vs. other groups by analysis of variance). The rats that received saline resuscitation developed a relative intracellular acidosis (control = 7.29 +/- 0.02, mid-Hct = 7.25 +/- 0.02, low-Hct = 7.23 +/- 0.02; p < 0.05 controls vs. other groups by analysis of variance). At 24 hours, the death rates were significantly different among the groups: control = 1 of 36 rats (2.8%), mid-Hct = 6 of 39 (15.4%), and low-Hct = 14 of 60 (23.3%) (p < 0.05 by chi square analysis). CONCLUSION: The oxygen

  13. Discovery and Classification of Nova in M31 : P60-M31-081230

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Rau, A.; Salvato, M.; Cenko, S. B.; Ofek, E. O.; Quimby, R.; Kulkarni, S. R.

    2009-01-01

    On UT 2008 Dec 30.207, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient in M31 at RA(J2000) = 00:43:05.027, DEC(J2000)=+41:17:52.25, offset from the nucleus by 233.4"E,103.8"N. P60-M31-081230 had a brightness of g = 20.5 +/- 0.2 at discovery. It was not detected by P60 to g > 22.0 on Dec 29.140. There is no counterpart in SIMBAD. Follow-up spectroscopy with the Double Beam Spectrograph on the Palomar Hale telescope on Dec 31.104 revealed prominent Balmer emission and strong P Cygni profiles of several Fe II lines.

  14. Discovery of Possible Nova in M31 : P60-M31-080915

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Rau, A.; Ofek, E. O.; Quimby, R.; Kulkarni, S. R.

    2008-09-01

    On UT 2008 Sep 15.36, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered a possible nova in M31 at RA(J2000) = 00:42:51.42, DEC(J2000) = 41:01:54.0, offset from the nucleus by 1.34'E, 14.24'S. P60-M31-080915 has a brightness of g=19.1 +/- 0.2 at discovery (photometric calibration wrt NOMAD catalog). It is further confirmed to rise to g=17.6 on Sep 16.16. It is not detected, with 3-sigma upper limits of g > 20.5, g > 21.0, g > 21.7 on Sep 14.16, Sep 13.39 and Sep 11.39 respectively.

  15. Discovery of Possible Nova in M31 : P60-M31-080913

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Rau, A.; Ofek, E. O.; Quimby, R.; Kulkarni, S. R.

    2008-09-01

    On UT 2008 Sep 13.18, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered a possible nova in M31 at RA(J2000) = 00:41:46.72, DEC(J2000) = 41:07:52.1, offset from the nucleus by 10.8'W, 8.3'S. P60- M31-080913 has a brightness of g = 19.0 +/- 0.2 at discovery (photometric calibration wrt NOMAD catalog). It is further confirmed to rise to g=18.1 on Sep 14.18. It is not detected to g > 21.5 on images obtained on Sep 12.30.

  16. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  17. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using 31P Solid-State NMR Spectroscopy

    PubMed Central

    Yang, Yu; Yao, Hongwei

    2015-01-01

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology

  18. Characterization of phosphorus in sludges and sludge amended soils using /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Hinedi, Z.R.

    1987-01-01

    /sup 31/P NMR spectroscopy was an effective tool in the characterization of phosphorus (P) in municipal sewage sludges and sludge amended soils. Waste activated and aerobically digested sludges contained higher percentages of organic P than anaerobically digested sludges. The /sup 31/P Cross Polarization Magic Angle Spinning (/sup 31/P CP MAS) spectrum of an aerobically digested sludge indicated the presence of a significant organic P fraction over the inorganic P fraction. The /sup 31/P NMR spectra of sludge-borne phospholipids dissolved in cholate, to which a complexing agent was added, were found to be better resolved than those dissolved in chloroform. Phytic acid and ribonucleic acid were shown to be constituents of organic P in sludges based upon their susceptibility to different phosphoric ester hydrolases. Sludge amended soils were incubated to examine the transformations of sludge-borne P in soils. It was found that soil pH affected the biodegradation of organic P as well as that of pyrophosphate. Phosphorus-monoesters and pyrophosphates hydrolyzed after 70 days of incubation under alkaline soil condition while they persisted beyond 140 days of incubation under acid soil condition. The P-diesters completely hydrolyzed after 28 days of incubation under acid and alkaline soil conditions. The solubility study showed that the P in a sludge amended soil was undersaturated with respect to Ca-P, Fe-P and Al-P minerals considered. The finding suggested that the activity of the P solid phase under study might be less than unity which would be indicative of a coprecipitated solid solution.

  19. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  20. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  1. Protein analysis by 31p NMR spectroscopy in ionic liquid: quantitative determination of enzymatically created cross-links.

    PubMed

    Monogioudi, Evanthia; Permi, Perttu; Filpponen, Ilari; Lienemann, Michael; Li, Bin; Argyropoulos, Dimitris; Buchert, Johanna; Mattinen, Maija-Liisa

    2011-02-23

    Cross-linking of β-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic resonance (NMR) spectroscopy in ionic liquid (IL). According to (31)P NMR, 91% of the tyrosine side chains were cross-linked by TrTyr at high dosages. When Tgase was used, no changes were observed because a different cross-linking mechanism was operational. However, this verified the success of the phosphitylation of phenolics within the protein matrix in the IL. Atomic force microscopy (AFM) in solid state showed that disk-shaped nanoparticles were formed in the reactions with average diameters of 80 and 20 nm for TrTyr and Tgase, respectively. These data further advance the current understanding of the action of tyrosinases on proteins on molecular and chemical bond levels. Quantitative (31)P NMR in IL was shown to be a simple and efficient method for the study of protein modification. PMID:21218836

  2. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases

  3. Proton 1H- and Phosphorus 31P-MR spectroscopy (MRS) in asymptomatic HIV-positive patients

    PubMed Central

    Schuettfort, Gundolf; Hattingen, Elke; Pilatus, Ulrich; Stephan, Christoph; Wolf, Timo; Goepel, Siri; Haberl, Annette; Blasel, Stella; Zanella, Freidhelm; Brodt, Hans-Reinhard; Bickel, Markus

    2014-01-01

    Introduction HIV infection is accompanied by a variety of neurological disorders. Depression of cell-mediated immunity is followed by the development of central nervous system opportunistic infections/tumours, and frequently by the occurrence of the AIDS dementia complex (ADC). However, the pathophysiology of the emergence of neuro-AIDS is still unknown. Despite the development of cognitive impairments, the early diagnosis, objectification and quantification of the existence and extent of this impairment during infection are difficult to recognize in each individual case. To support the early diagnosis of ADC, there is a need for additional, non-invasive diagnostic methods. In this study, it is of interest to answer the clinically relevant question of whether magnetic resonance spectroscopy can detect changes in the cerebral metabolism of asymptomatic HIV-positive patients and is possibly suitable for the early diagnosis and prevention of HIV encephalopathy. Methods A group of 13 asymptomatic, HIV-positive patients with combined antiretroviral therapy (cART) and 13 healthy controls were examined with 2D 1H-MRS and 3D 31P-MRS at 3T. The patients were treated with cART for at least 12 months. Changes in the absolute concentrations of phosphorylated metabolites (ATP), N-acetyl-aspartate, creatine, myo-Isonitol, glutamate/glutamine and choline-containing compounds were compared with that of control subjects. Results Asymptomatic HIV-positive patients had significantly lower N-acetyl-aspartate in the white matter in a frontal and parietal target region. The other evaluated metabolites in the 1H MRS showed no significant difference between the HIV-positive patients and healthy controls. The 31P-MRS detected significant elevated values regarding the choline-containing compounds PEth, GPE and PCho. Conclusions This spectroscopic study revealed a significantly lower N-acetyl-aspartate in the white matter in a frontal and parietal cerebral target region in asymptomatic, HIV

  4. Analysis of 31P MR spectroscopy data using artificial neural networks for longitudinal evaluation of muscle diseases: dermatomyositis.

    PubMed

    Park, J H; Kari, S; King, L E; Olsen, N J

    1998-01-01

    Classical myopathic dermatomyositis (DM) is a chronic autoimmune disease characterized by an erythematous rash and severe, proximal muscle weakness. A disease variant, amyopathic DM, presents with the typical rash but without clinical evidence of muscle weakness. Prednisone and immunosuppressive drugs alleviate symptoms in many patients. Accurate longitudinal evaluations of patients are important to limit serious side effects of these drugs, including osteoporosis, cataracts, and growth inhibition. Metabolic abnormalities detected with 31P magnetic resonance spectroscopy (MRS) provide the best quantitative data for evaluating these patients. With 31P MRS, the levels of inorganic phosphate (Pi), phosphocreatine (PCr), ATP, and phosphodiesters (PDE) were determined in the quadricep muscles of patients during rest and exercise. Artificial neural network (ANN) analyses of these data were previously used for accurate classification of patients with myopathic or amyopathic DM and normal controls. In the present investigation, an artificial neural network was employed for further analysis of the 31P metabolite levels in quantitative, longitudinal evaluations of the extent (percent) of clinical improvement or deterioration during treatment with prednisone and immunosuppressive drugs. The ANN results showed that adult patients in a severe myopathic state could improve with treatment to a clinical status of amyopathic DM. In contrast, severely weak juvenile patients in the myopathic state recovered to normal status. One juvenile patient did not improve and remained in the myopathic state. Additionally, a serious clinical relapse in an amyopathic patient was predicted with serial ANN analyses well in advance of the actual clinical event. These network analyses show potential utility for clinical applications in muscle diseases. PMID:9719579

  5. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  6. Local structure of spin Peierls compound TiPO4: 47/49Ti and 31P NMR study

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Heinmaa, Ivo; Leitmäe, Alexander; Joon, Enno; Tsirlin, Alexander; Kremer, Reinhard; Glaum, Robert

    TiPO4 structure is made of slightly corrugated TiO2 ribbon chains of edge-sharing TiO6 octahedra. The almost perfect 1D spin 1/2 Ti3 + chains are well separated by PO4 tetrahedra. By magnetic susceptibility and MAS-NMR measurements [1] it was shown that TiPO4 has nonmagnetic singlet ground state with remarkably high Spin-Peierls (SP) transition temperature. The high-T magnetic susceptibility of TiPO4 follows well that of a S =1/2 Heisenberg chain with very strong nearest-neighbor AF spin-exchange coupling constant of J =965K. On cooling TiPO4 shows two successive phase transitions at 111K and 74K, with incommensurate (IC) SP phase between them. We studied local structure and dynamics in TiPO4 single crystal using 47/49Ti and 31P NMR in the temperature range 40K to 300K, and determined the principal values and orientation of the magnetic shift tensors for 31P and 47,49Ti nuclei. Since 47,49Ti (S =5/2 and S =7/2, respectively) have quadrupolar moments, we also found the principal axis values and orientations of the electric field gradient (efg) tensor in SP phase and at 295K. In SP phase the structure contains 2 magnetically inequivalent P sites and only one Ti site. From the T-dependence of the relaxation rate of 31P and 47Ti nuclei we determined activation energy Ea = 550 K for spin excitations in SP phase. J. Law et al ., PRB 83, 180414(R) (2011).

  7. Intracellular pH of perfused single frog skin: combined 19F- and 31P-NMR analysis.

    PubMed

    Civan, M M; Lin, L E; Peterson-Yantorno, K; Taylor, J; Deutsch, C

    1984-11-01

    Intracellular pH (pHc) has been determined in frog skin by applying two different methods of pH measurement, 19F and 31P nuclear magnetic resonance (NMR) analysis, to the same tissues. Results from both NMR approaches confirm an observation by Lin, Shporer, and Civan [Am. J. Physiol. 248 (Cell Physiol. 17): 1985] that acidification of the extracellular medium reverses the sign of the pH gradient present under baseline conditions. The fluorinated probe, alpha-(difluoromethyl)-alanine methyl ester, was introduced into the epithelial cells by preincubating skins for 4.7-10.4 h at room temperature in Ringer solutions containing 1 mM ester. The free amino acid was subsequently released by intracellular esterase activity, thus providing a high enough probe concentration for NMR analysis to be practicable. From measurements of short-circuit current and transepithelial resistance under base-line and experimental conditions and the appearance of phosphocreatine (PCr) in the 31P spectrum of preloaded tissues, the fluorinated probe appears to be nontoxic to frog skin. Measurement of the chemical shift of methylphosphonate relative to PCr permitted calculation of extracellular pH. Estimation of the intracellular pH was performed both by measurement of the chemical shift of inorganic phosphate (Pi) relative to PCr and by measurement of the central peak spacing of the 19F spectrum. From four direct comparisons of the two techniques in two experiments, the difference in the estimated pH was only 0.03 +/- 0.07 pH units, supporting the concept that 31P-NMR analysis is a valid method of measuring pH in this tissue. PMID:6496729

  8. Measurement of changes in high-energy phosphates in the cardiac cycle using gated 31P nuclear magnetic renonance.

    PubMed Central

    Fossel, E T; Morgan, H E; Ingwall, J S

    1980-01-01

    Levels of the high-energy phosphate-containing compounds, ATP and creatine phosphate, and of inorganic phosphate (Pi) were measured as a function of position in the cardiac cycle. Measurements were made on isolated, perfused, working rat hearts through the use of gated 31P nuclear magnetic resonance spectroscopy. Levels of ATP and creatine phosphate were found to vary during the cardiac cycle and were maximal at minimal aortic pressure and minimal at maximal aortic pressure. Pi varied inversely with the high-energy phosphates. PMID:6932041

  9. Assessment of membrane protection by /sup 31/P-NMR effects of lidocaine on calcium-paradox in myocardium

    SciTech Connect

    Sakai, Hirosumi; Yoshiyama, Minoru; Teragaki, Masakazu; Takeuchi, Kazuhide; Takeda, Takeda; Ikata, Mari; Ishikawa, Makoto; Miura, Iwao

    1989-01-01

    In studying calcium paradox, perfused rat hearts were used to investigate the myocardial protective effects of lidocaine. Intracellular contents of phosphates were measured using the /sup 31/P-NMR method. In hearts reexposed to calcium, following 3 minute calcium-free perfusion, a rapid contracture occurred, followed by rapid and complete disappearance of intracellular phosphates with no resumption of cardiac function. In hearts where lidocaine was administered from the onset of the calcium-free perfusion until 2 minutes following the onset of reexposure to calcium, both intracellular phosphates and cardiac contractility were maintained. Therefore, it can be said that cell membranes were protected by lidocaine.

  10. [sup 31]P and [sup 27]Al NMR investigations of highly acidic, aqueous solutions containing aluminum and phosphorus

    SciTech Connect

    Mortlock, R.F.; Bell, A.T.; Radke, C.J. Univ. of California, Berkeley )

    1993-01-21

    [sup 31]P and [sup 27]Al NMR spectroscopies have been used to characterize acidic, aqueous solutions of orthophosphoric acid, aluminum chloride, and tetramethylammonium (TMA) hydroxide. The final compositions of the solutions range from 0.1 to 1 mol % P, 0.0 to 20 mol % HCl, P/Al = 0.1 to 20, and P/(TMA)[sub 2]O = 2 to 20. Soluble aluminophosphate cations form reactions of hexaaqua Al monomeric cations, [Al(H[sub 2]O)[sub 6

  11. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  12. Muscle phosphoglycerate mutase (PGAM) deficiency in the first Caucasian patient: biochemistry, muscle culture and 31P-MR spectroscopy.

    PubMed

    Vita, G; Toscano, A; Bresolin, N; Meola, G; Fortunato, F; Baradello, A; Barbiroli, B; Frassineti, C; Zaniol, P; Messina, C

    1994-03-01

    Muscle phosphoglycerate mutase (PGAM) deficiency has been so far identified in only six patients, five of these being African Americans. We report the results of clinical, morphological, biochemical, muscle culture and 31P-MR spectroscopy studies in the first Caucasian patient with muscle PGAM deficiency. A 23-year-old man had a 10-year history of cramps after physical exertion with one episode of pigmenturia. Neurological examination and EMG study were normal. ECG and echocardiography revealed hypertrophy of the interventricular septum and slight dilation of the left chambers of the heart. Muscle biopsy revealed increased glycogen content and some accumulation of mitochondria. Muscle PGAM activity was markedly decreased (6.5% and 9.7% of control value in two different biopsies). Citrate synthase and other mitochondrial respiratory chain enzyme activities were much higher than normal. In contrast to the marked decrease of PGAM activity observed in muscle biopsy, total enzyme activity in the patient's aneural muscle culture was normal, being represented exclusively by BB isoenzyme. The deficiency of PGAM-MM isoenzyme was reproduced in the patient's innervated muscle culture. Muscle 31P-MR spectroscopy showed accumulation of phosphomonoesters only on fast "glycolytic" exercise. On "aerobic" exercise, Vmax, calculated from the work-energy cost transfer function, showed an increase consistent with the morphological and biochemical evidence of mitochondrial proliferation. This might represent a sort of compensatory aerobic effort in an attempt to restore muscle power. PMID:8006681

  13. Characterization of the testicular cell types present in the rat by in vivo 31P magnetic resonance spectroscopy

    SciTech Connect

    van der Grond, J.; Van Pelt, A.M.; van Echteld, C.J.; Dijkstra, G.; Grootegoed, J.A.; de Rooij, D.G.; Mali, W.P. )

    1991-07-01

    Testes of vitamin A-deficient Wistar rats before and after vitamin A replacement, of rats irradiated in utero, and of control rats were investigated by in vivo 31P magnetic resonance (MR) spectroscopy. The testicular phosphomonoester/ATP (PM/ATP) ratio ranged from 0.79 {plus minus} 0.05 for testes that contained only interstitial tissue and Sertoli cells to 1.64 {plus minus} 0.04 for testes in which spermatocytes were the most advanced cell types present. When new generations of spermatids entered the seminiferous epithelium, this ratio decreased. The testicular phosphodiester/ATP (PD/ATP) ratio amounted to 0.16 {plus minus} 0.06 for testes in which Sertoli cells, spermatogonia, or spermatocytes were the most advanced cell type present. When new generations of spermatids entered the seminiferous epithelium, the PD/ATP ratio rapidly increased and finally reached a value of 0.71 {plus minus} 0.06 for fully developed testes. Taken together, specific patterns of the PM/ATP ratio, the PD/ATP ratio, and pH were obtained that were correlated to the presence of spermatogonia, spermatocytes, round spermatids, and elongated spermatids or to the absence of spermatogenic cells. Hence, a good impression of the status of the seminiferous epithelium in the rat can be obtained by in vivo 31P MR spectroscopy.

  14. A solid-state 31P-NMR investigation of the allosteric transition in glycogen phosphorylase b.

    PubMed Central

    Challoner, R; McDowell, C A; Stirtan, W; Withers, S G

    1993-01-01

    The catalytic role of the cofactor phosphate moiety at the active site of glycogen phosphorylase has been the subject of many investigations including solution-state high-resolution 31P-NMR studies. In this study the pyridoxal phosphate moiety in both the inactive and active forms of microcrystalline phosphorylase b has been investigated by high-resolution 31P magic-angle spinning NMR. The symmetry of the shielding tensor in model compounds at varying degrees of ionization is investigated and the results indicate a marked difference between the dianionic and monoanionic model compounds. Consequently the observed similarity in the principal tensor components describing the shielding tensor of the phosphorus nuclei present at the active site of both the R- and T-state conformations suggests that there is no change in ionization site upon activation in contrast to suggestions based upon isotropic shifts. Since previous relaxation measurements have pointed to the need to consider motional influences in such systems, several plausible models are considered. Subject to the assumption of congruency between the principal axis system describing the shielding interaction and molecular frame determined by the molecular symmetry axes, we conclude that the phosphate cofactor is dianionic in both forms. PMID:8457672

  15. The intact muscle lipid composition of bulls: an investigation by MALDI-TOF MS and 31P NMR.

    PubMed

    Dannenberger, Dirk; Süss, Rosmarie; Teuber, Kristin; Fuchs, Beate; Nuernberg, Karin; Schiller, Jürgen

    2010-02-01

    The analysis of beef lipids is normally based on chromatographic techniques and/or gas chromatography in combination with mass spectrometry (GC/MS). Modern techniques of soft-ionization MS were so far scarcely used to investigate the intact lipids in muscle tissues of beef. The objective of the study was to investigate whether matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry and (31)P nuclear magnetic resonance (NMR) spectroscopy are useful tools to study the intact lipid composition of beef. For the MALDI-TOF MS and (31)P NMR investigations muscle samples were selected from a feeding experiment with German Simmental bulls fed different diets. Beside the triacylglycerols (TAGs), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI) species the MALDI-TOF mass spectra of total muscle lipids gave also intense signals of cardiolipin (CL) species. The application of different matrix compounds, 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), leads to completely different mass spectra: 9-AA is particularly useful for the detection of (polar) phospholipids, whereas apolar lipids, such as cholesterol and triacylglycerols, are exclusively detected if DHB is used. Finally, the quality of the negative ion mass spectra is much higher if 9-AA is used. PMID:19900429

  16. /sup 31/P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    SciTech Connect

    Lopez, A.; Rols, M.P.; Teissie, J.

    1988-02-23

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 ..mu..s). The cells remained in a permeable state without loss of viability for several hours at 4/sup 0/C. A new anisotropic peak with respect to control cells was observed on /sup 31/P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The /sup 31/P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells.

  17. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.

    PubMed

    Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2016-07-01

    (29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. PMID:27117609

  18. Lateralization effects of image-guided 31P magnetoresonance spectroscopic parameters in the frontal lobe of schizophrenics and healthy controls

    NASA Astrophysics Data System (ADS)

    Huebner, Gabriele; Volz, Hans-Peter; Riehemann, Stefan; Wenda, Berit; Roessger, Grit; Rzanny, Reinhard; Sauer, Heinrich

    1999-05-01

    Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) has gained much interest in schizophrenia research in the last years since it allows the non-invasive measurement of high- energy phosphates and phospholipids in vivo. We investigated hemispherical differences of the concentrations of different phosphorus compounds in the frontal lobes. For this purpose, well defined volumes in the dorsolateral prefrontal cortex of 32 healthy controls and 51 schizophrenic patients were examined. Schizophrenic patients showed significant lateralization effects of phosphodiesters (PDE) and the intracellular pH-value. Differences in the lateralization of 31P-MRS parameters between patients and healthy volunteers were only detected for the pH-value. While healthy controls exhibit lower pH-values in the left frontal lobe (6.96), in schizophrenic patients we found lower pH-values in the right (6.89). Detailed examinations showed that this effect is mainly based on the subgroup of schizophrenics who received atypical neuroleptic medication.

  19. Evaluation of [sup 31]P magnetic resonance spectroscopy localization techniques in human myocardium and soft-tissue sarcomas

    SciTech Connect

    Li, Chun-Wei.

    1993-01-01

    The overall goals of this thesis are to establish and evaluate [sup 31]P MR spectroscopy localization techniques for their application to the study of human myocardium and sarcomas. Several localization techniques which include 1D-CSI, ISIS, ISIS/CSI, and 2D-CSI were evaluated in the myocardial muscle of normal subjects and patients receiving 5-fluorouracil (5-FU) chemotherapy. Among these localization techniques, 2D-CSI is recommended since it shows good selectivity, good flexibility and a good compromise between sensitivity patient toleration limits. These localization techniques were also evaluated in patients with osteosarcoma and soft-tissue sarcomas. Among these localization techniques, 1D-CSI is recommended for big and superficial tumors. Further definition of the voxel is provided by using 2D-CSI or 3D-CSI in the case of small or deep seated tumors. Several techniques that should improve the [sup 31]P MR spectroscopic study of patients in the future are evaluated on the phantom. These include the presaturation of the chest wall muscle for improved myocardial spectral using the CSI sequence, implementation of the BIR-4 pulse for variable angle adjustable pulse, and the proton decoupling technique for improved resolution and sensitivity. The good performance of the phantoms studies show that these techniques can be further extended to the normal subject and patient studies.

  20. Fructose-induced aberration of metabolism in familial gout identified by sup 31 P magnetic resonance spectroscopy

    SciTech Connect

    Seegmiller, J.E. Univ. of California, San Diego ); Dixon, R.M.; Kemp, G.J.; Rajagopalan, B.; Radda, G.K. ); Angus, P.W. Austin Hospital, Heidelburg, Victoria ); McAlindon, T.E.; Dieppe, P. )

    1990-11-01

    The hyperuricemia responsible for the development of gouty arthritis results from a wide range of environmental factors and underlying genetically determined aberrations of metabolism. {sup 31}P magnetic resonance spectroscopy studies of children with hereditary fructose intolerance revealed a readily detectable rise in phosphomonoesters with a marked fall in inorganic phosphate in their liver in vivo and a rise in serum urate in response to very low doses of oral fructose. Parents and some family members heterozygous for this enzyme deficiency showed a similar pattern when given a substantially larger dose of fructose. Three of the nine heterozygotes thus identified also had clinical gout, suggesting the possibility of this defect being a fairly common cause of gout. In the present study this same noninvasive technology was used to identify the same spectral pattern in 2 of the 11 families studied with hereditary gout. In one family, the index patient's three brothers and his mother all showed the fructose-induced abnormality of metabolism, in agreement with the maternal inheritance of metabolism, in agreement with the maternal inheritance of the gout in this family group. The test dose of fructose used produced a significantly larger increment in the concentration of serum urate in the patients showing the changes in {sup 31}P magnetic resonance spectra than in the other patients with familial gout or in nonaffected members, thus suggesting a simpler method for initial screening for the defect.

  1. Time course of myocardial sodium accumulation after burn trauma: a (31)P- and (23)Na-NMR study.

    PubMed

    Sikes, P J; Zhao, P; Maass, D L; Horton, J W

    2001-12-01

    In this study, (23)Na- and (31)P- nuclear magnetic resonance (NMR) spectra were examined in perfused rat hearts harvested 1, 2, 4, and 24 h after 40% total body surface area burn trauma and lactated Ringer resuscitation, 4 ml. kg(-1). %(-1) burn. (23)Na-NMR spectroscopy monitored myocardial intracellular Na+ using the paramagnetic shift reagent thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylenephosphonic acid). Left ventricular function, cardiac high-energy phosphates (ATP/PCr), and myocyte intracellular pH were studied by using (31)P NMR spectroscopy to examine the hypothesis that burn-mediated acidification of cardiomyocytes contributes to subsequent Na+ accumulation by this cell population. Intracellular Na+ accumulation was confirmed by sodium-binding benzofuran isophthalate loading and fluorescence spectroscopy in cardiomyocytes isolated 1, 2, 4, 8, 12, 18, and 24 h postburn. This myocyte Na+ accumulation as early as 2 h postburn occurred despite no changes in cardiac ATP/PCr and intracellular pH. Left ventricular function progressively decreased after burn trauma. Cardiomyocyte Na+ accumulation paralleled cardiac contractile dysfunction, suggesting that myocardial Na+ overload contributes, in part, to the progressive postburn decrease in ventricular performance. PMID:11717236

  2. FTIR and {sup 31}P-NMR spectroscopic analyses of surface species in phosphate-catalyzed lactic acid conversion

    SciTech Connect

    Gunter, G.C.; Tam, M.S.; Miller, D.J.

    1996-11-01

    The surface species present on silica/alumina-supported sodium phosphates, active catalysts for the conversion of lactic acid to acrylic acid and 2,3-pentanedione, are examined by pre- and postreaction MAS {sup 31}P-NMR and FTIR spectroscopies. Species present following lactic acid conversion are identified by transmission FTIR of phosphates supported on silicon disks (as a model catalyst system) and verified by {sup 31}P-NMR and diffuse reflectance IR spectroscopy of actual catalysts used in reaction. Monosodium phosphate (NaH{sub 2}PO{sub 4}) condenses to a mixture of sodium polyphosphate (NaPO{sub 3}){sub n} and sodium trimetaphosphate (Na{sub 3}P{sub 3}O{sub 9}), which exhibit little catalytic activity for converting lactic acid to desired products. Disodium phosphate (Na{sub 2}HPO{sub 4}) condenses to tetrasodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}), and proton transfer from lactic acid to pyrophosphate results in the formation of sodium lactate. Trisodium phosphate (Na{sub 3}PO{sub 4}) accepts a proton from lactic acid to form sodium lactate and disodium phosphate, which condenses to pyrophosphate. The presence of pyrophosphate and sodium lactate on supported disodium and trisodium phosphates explains their similar catalytic properties; the larger quantity of sodium lactate present on trisodium phosphate leads to higher conversions at lower temperatures. 40 refs., 14 figs., 2 tabs.

  3. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension

    PubMed Central

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-01-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake () is supplemented by a  slow component (), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with 31P magnetic resonance spectroscopy (MRS) and whole-body during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized 31P spectra were collected from the quadriceps throughout using a dual-tuned (1H and 31P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable (mean ± SD, 0.06 ± 0.12 l min−1) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min−1; each P = n.s.). During HVY, the was 0.37 ± 0.16 l min−1 (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min−1, or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the during HVY (r2 = 0.06; P = n.s.). This lack of relationship between ΔATPtot and , together with a steepening of the [PCr]– relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  4. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension.

    PubMed

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-12-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake (V̇O2) is supplemented by a V̇O2 slow component (V̇O2 sc ), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with (31)P magnetic resonance spectroscopy (MRS) and whole-body V̇O2 during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized (31)P spectra were collected from the quadriceps throughout using a dual-tuned ((1)H and (31)P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable V̇O2 sc (mean ± SD, 0.06 ± 0.12 l min(-1)) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min(-1); each P = n.s.). During HVY, the V̇O2 sc was 0.37 ± 0.16 l min(-1) (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min(-1), or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the V̇O2 sc during HVY (r(2) = 0.06; P = n.s.). This lack of relationship between ΔATPtot and V̇O2 sc , together with a steepening of the [PCr]-V̇O2 relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  5. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  6. Convergence of the nucleus-nucleus Glauber multiple scattering series

    SciTech Connect

    Usmani, A.A.; Ahmad, I. )

    1991-05-01

    The Glauber {ital S}-matrix operator for nucleus-nucleus scattering is expressed as a finite series of matrix elements involving Bell's polynomials. Analyzing {alpha}{sup 4}He elastic-scattering data at the incident momentum of 4.32 GeV/{ital c}, we infer that our expansion is appreciably converging. Further, by applying closure over target and projectile states and neglecting a certain class of terms involving intermediate excitations, we arrive at a recurrence relation for nucleus-nucleus multiple scattering series terms, which invites further study as it seems to provide a simple method for calculating the nucleus-nucleus elastic-scattering cross section.

  7. 31P NMR study of magnetic phase transitions of MnP single crystal under 2 GPa pressure

    NASA Astrophysics Data System (ADS)

    Fan, GuoZhi; Zhao, Bo; Wu, Wei; Zheng, Ping; Luo, JianLin

    2016-05-01

    Superconductivity on the border of the long-range magnetic order has been discovered in MnP under high pressures. In order to investigate the nature of the magnetic properties adjacent to the superconducting state, we performed zero-field 31P NMR for MnP single crystal under ambient and hydrostatic pressure of 2 GPa, respectively. Radio frequency power level was used to determine whether NMR signal originates from a helical state or not. When 2 GPa pressure was applied, the signal from helical state exists even above 160 K, while that from the ferromagnetic phase was not observed. Our NMR results indicate that the magnetic phase which is adjacent to the superconducting state is in a helical magnetic structure.

  8. 31P NMR study of daunorubicin-d(CGTACG) complex in solution. Evidence of the intercalation sites.

    PubMed

    Ragg, E; Mondelli, R; Battistini, C; Garbesi, A; Colonna, F P

    1988-08-15

    The interaction of daunorubicin with the self-complementary DNA fragment d(CGTACG) was studied by 31P NMR spectroscopy. The individual phosphates have been assigned for the nucleotide and the complex and signals from bound and free species in slow exchange at 19 degrees C were detected. In solution, the hexanucleotide binds two molecules of daunorubicin, which intercalate in the d(CG) sequence at both ends of the helix. Evidence for local deformations of the backbone at the sites of C5pG6, C1pG2 and G2pT3 phosphates is given. The binding constants for the stepwise equilibrium and the rate of dissociation of the intercalated duplex were also determined. PMID:3402614

  9. An efficient 1H/31P double-resonance solid-state NMR probe that utilizes a scroll coil

    PubMed Central

    Grant, Christopher V.; Sit, Siu-Ling; De Angelis, Anna A.; Khuong, Kelli S.; Wu, Chin H.; Plesniak, Leigh A.; Opella, Stanley J.

    2007-01-01

    The construction and performance of a scroll coil double-resonance probe for solid-state NMR on stationary samples is described. The advantages of the scroll coil at the high resonance frequencies of 1H and 31P include: high efficiency, minimal perturbations of tuning by a wide range of samples, minimal RF sample heating of high dielectric samples of biopolymers in aqueous solution, and excellent RF homogeneity. The incorporation of a cable tie cinch for mechanical stability of the scroll coil is described. Experimental results obtained on a Hunter Killer Peptide 1 (HKP1) interacting with phospholipid bilayers of varying lipid composition demonstrate the capabilities of this probe on lossy aqueous samples. PMID:17719813

  10. An efficient (1)H/(31)P double-resonance solid-state NMR probe that utilizes a scroll coil.

    PubMed

    Grant, Christopher V; Sit, Siu-Ling; De Angelis, Anna A; Khuong, Kelli S; Wu, Chin H; Plesniak, Leigh A; Opella, Stanley J

    2007-10-01

    The construction and performance of a scroll coil double-resonance probe for solid-state NMR on stationary samples is described. The advantages of the scroll coil at the high resonance frequencies of (1)H and (31)P include: high efficiency, minimal perturbations of tuning by a wide range of samples, minimal RF sample heating of high dielectric samples of biopolymers in aqueous solution, and excellent RF homogeneity. The incorporation of a cable tie cinch for mechanical stability of the scroll coil is described. Experimental results obtained on a Hunter Killer Peptide 1 (HKP1) interacting with phospholipid bilayers of varying lipid composition demonstrate the capabilities of this probe on lossy aqueous samples. PMID:17719813

  11. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  12. sup 31 P nuclear magnetic resonance study of the effect of azide on xylose fermentation by Candida tropicalis

    SciTech Connect

    Lohmeier-Vogel, E.; Vogel, H. ); Skoog, K.; Hahn-Haegerdal, B. )

    1989-08-01

    Maximal ethanol production by Candida tropicalis grown on xylose was obtained at an oxygen transfer rate of 5 to 7 mmol/liter per h. Addition of 0.2 mM azide increased the ethanol yield by a factor of 3 to 4, based on the cell mass produced, and decreased the formation of the by-product xylitol by 80%. In the presence of azide, ethanol was reassimilated before the carbon source was depleted. At all oxygenation levels studied, azide caused 25 to 60% of the carbon to be lost, most probable as carbon dioxide. Identical spectra were obtained with {sup 31}P nuclear magnetic resonance spectroscopy performed on extracts of C. tropicalis grown on xylose in the absence and presence of azide. Azide lowered the levels of sugar phosphates. Enzymatic analysis showed extremely low levels of fructose 1,6-diphosphate compared with the levels obtained in the absence of azide, while the level of malate, a citric acid cycle intermediate, was not influenced by azide. {sup 31}P nuclear magnetic resonance spectroscopy performed on xylose-grown whole cells of C. tropicalis showed that azide lowered the intracellular pH, inhibited the uptake of external P{sub i}, and decreased the buildup of polyphosphate in relation to results with untreated cells. Similar results were obtained with the uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), except that CCCP treatment led to extremely high levels of internal P{sub i}. The dual effect of azide as a respiratory inhibitor and as an uncoupler is discussed with respect to the metabolism and product formation in xylose-assimilating C. tropicalis.

  13. /sup 31/P NMR probes of sipunculan erythrocytes containing the O/sub 2/-carying protein hemerythrin

    SciTech Connect

    Robitaille, P.M.L.; Kurtz, D.M. Jr

    1988-06-14

    Reported are the first examinations by /sup 31/P NMR of erythrocytes containing the non-heme iron O/sub 2/ carrying protein hemerythrin (Hr). Intact coelomic erythrocytes from the sipunculids Phascolopsis gouldii and Themiste zostericola were shown by /sup 31/P NMR to contain O-phosphorylethanolamine and 2-amino-ethylphosphonate as the major soluble phosphorus metabolites. This combination of major metabolites appears to be unique to sipunculan erythrocytes. Nucleoside triphosphates and mannose 1-phosphate were present in lower concentrations. The concentration of O-phosphorylethanolamine within P. gouldii erythrocytes was established to be > 20 mM. T. zostericola erythrocytes contained relatively high levels of 2-amino-ethylphosphonate and lower levels of O-phosphorylethanolamine compared with those of P. gouldii. For P. gouldii and T. zostericola the intracellular pHs were determined to be 7.2 +/- 0.1 and 7.1 +/- 0.1, respectively, in air-equilibrated erythrocytes, and 6.5 +/- 0.1 in anaerobic P. gouldii erythrocytes. O-Phosphorylethanolamine was found to bind weakly to P. gouldii metHr. This interaction is best characterized by either negative cooperativity or nonspecific binding. O-phosphorylethanolamine strongly inhibits azide binding to the iron site of P. gouldii metHr at pH 7.2. The rate of azide binding decreases by approx. 85-fold in the presence of 0.33 M O-phosphorylethanolamine. However, neither O-phosphorylethanolamine nor 2-aminoethylphosphonate at 0.33 M was found to have any significant effect on O/sub 2/ affinity of P. gouldii deoxyHr. Alternative functions for the two metabolites are suggested.

  14. Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy.

    PubMed

    Turner, Benjamin L; Cheesman, Alexander W; Godage, H Yasmin; Riley, Andrew M; Potter, Barry V L

    2012-05-01

    The inositol phosphates are an abundant but poorly understood group of organic phosphorus compounds found widely in the environment. Four stereoisomers of inositol hexakisphosphate (IP(6)) occur, although for three of these (scyllo, neo, and D-chiro) the origins, dynamics, and biological function remain unknown, due in large part to analytical limitations in their measurement in environmental samples. We synthesized authentic neo- and D-chiro-IP(6) and used them to identify signals from these compounds in three soils from the Falkland Islands. Both compounds resisted hypobromite oxidation and gave quantifiable (31)P NMR signals at δ = 6.67 ppm (equatorial phosphate groups of the 4-equatorial/2-axial conformer of neo-IP(6)) and δ = 6.48 ppm (equatorial phosphate groups of the 2-equatorial/4-axial conformer of D-chiro-IP(6)) in soil extracts. Inositol hexakisphosphate accounted for 46-54% of the soil organic phosphorus, of which the four stereoisomers constituted, on average, 55.9% (myo), 32.8% (scyllo), 6.1% (neo), and 5.2% (D-chiro). Reappraisal of the literature based on the new signal assignments revealed that neo- and D-chiro-IP(6) occur widely in both terrestrial and aquatic ecosystems. These results confirm that the inositol phosphates can constitute a considerable fraction of the organic phosphorus in soils and reveal the prevalence of neo- and D-chiro-IP(6) in the environment. The hypobromite oxidation and solution (31)P NMR spectroscopy procedure allows the simultaneous quantification of all four IP(6) stereoisomers in environmental samples and provides a platform for research into the origins and ecological significance of these enigmatic compounds. PMID:22489788

  15. Analysis of 31P nuclear magnetic resonance lineshapes and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    The experimentally observed 31P lineshapes and transversal relaxation of 15% (wt/wt) M13, 30% M13, and 30% tobacco mosaic virus (TMV) are compared with lineshapes and relaxation curves that are simulated for various types of rotational diffusion using the models discussed previously (Magusin, P. C. M. M., and M. A. Hemminga. 1993. Biophys. J. 64:1851-1860). It is found that isotropic diffusion cannot explain the observed lineshape effects. A rigid rod diffusion model is only successful in describing the experimental data obtained for 15% M13. For 30% M13 the experimental lineshape and relaxation curve cannot be interpreted consistently and the TMV lineshape cannot even be simulated alone, indicating that the rigid rod diffusion model does not generally apply. A combined diffusion model with fast isolated motions of the encapsulated nucleic acid dominating the lineshape and a slow overall rotation of the virion as a whole, which mainly is reflected in the transversal relaxation, is able to provide a consistent picture for the 15 and 30% M13 samples, but not for TMV. Strongly improved lineshape fits for TMV are obtained assuming that there are three binding sites with different mobilities. The presence of three binding sites is consistent with previous models of TMV. The best lineshapes are simulated for a combination of one mobile and two static sites. Although less markedly, the assumption that two fractions of DNA with different mobilities exist within M13 also improves the simulated lineshapes. The possible existence of two 31P fractions in M13 sheds new light on the nonintegral ratio 2.4:1 between the number of nucleotides and protein coat subunits in the phage: 83% of the viral DNA is less mobile, suggesting that the binding of the DNA molecule to the protein coat actually occurs at the integral ratio of two nucleotides per protein subunit. PMID:8369412

  16. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    PubMed

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes. PMID:26681323

  17. Nucleus Course in Japanese.

    ERIC Educational Resources Information Center

    Akiyama, Nobuo; Flamm, Carol S.

    The "Nucleus Course in Japanese," based on the Institute of Modern Languages'"Situational Reinforcement" approach, is designed for 80 to 100 hours of instruction. Each lesson has several sections--Response drills, Appropriate Response Sequence, and Reading. Most of the lessons also include optional sections with Sentences for Repetition or a…

  18. Cell nucleus in context

    SciTech Connect

    Lelievre, Sophie A.; Bissell, Mina J.; Pujuguet, Philippe

    1999-11-11

    The molecular pathways that participate in regulation of gene expression are being progressively unraveled. Extracellular signals, including the binding of extracellular matrix and soluble molecules to cell membrane receptors, activate specific signal transducers that convey information inside the cell and can alter gene products. Some of these transducers when translocated to the cell nucleus may bind to transcription complexes and thereby modify the transcriptional activity of specific genes. However, the basic molecules involved in the regulation of gene expression are found in many different cell and tissue types; thus the mechanisms underlying tissue-specific gene expression are still obscure. In this review, we focus on the study of signals that are conveyed to the nucleus. We propose that the way in which extracellular signals are integrated may account for tissue-specific gene expression. We argue that the integration of signals depends on the structural organization of cells ( i.e., extracellular matrix, cell membrane, cytoskeleton, nucleus) which a particular cell type within a tissue. Putting the nuclei in context allows us to envision gene expression as being regulated not only by the communication between the extracellular environment and the nucleus, but also by the influence of organized assemblies of cells on extracellular-nuclear communications.

  19. Pyridoxal phosphate binding sites are similar in human heme-dependent and yeast heme-independent cystathionine beta-synthases. Evidence from 31P NMR and pulsed EPR spectroscopy that heme and PLP cofactors are not proximal in the human enzyme.

    PubMed

    Kabil, O; Toaka, S; LoBrutto, R; Shoemaker, R; Banerjee, R

    2001-06-01

    Two classes of cystathionine beta-synthases have been identified in eukaryotes, the heme-independent enzyme found in yeast and the heme-dependent form found in mammals. Both classes of enzymes catalyze a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to produce cystathionine. The role of the heme in the human enzyme and its location relative to the PLP in the active site are unknown. (31)P NMR spectroscopy revealed that spin-lattice relaxation rates of the phosphorus nucleus in PLP are similar in both the paramagnetic ferric (T(1) = 6.34 +/- 0.01 s) and the diamagnetic ferrous (T(1) = 5.04 +/- 0.06 s) enzyme, suggesting that the two cofactors are not proximal to each other. This is also supported by pulsed EPR studies that do not provide any evidence for strong or weak coupling between the phosphorus nucleus and the ferric iron. However, the (31)P signal in the reduced enzyme moved from 5.4 to 2.2 ppm, and the line width decreased from 73 to 16 Hz, providing the first structural evidence for transmission to the active site of an oxidation state change in the heme pocket. These results are consistent with a regulatory role for the heme as suggested by previous biochemical studies from our laboratory. The (31)P chemical shifts of the resting forms of the yeast and human enzymes are similar, suggesting that despite the difference in their heme content, the microenvironment of the PLP is similar in the two enzymes. The addition of the substrate, serine, resulted in an upfield shift of the phosphorus resonance in both enzymes, signaling formation of reaction intermediates. The resting enzyme spectra were recovered following addition of excess homocysteine, indicating that both enzymes retained catalytic activity during the course of the NMR experiment. PMID:11278994

  20. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  1. Evaluation of recombinant CXCL8(3-73)K11R/G31P in muscle fibrosis and Trichinella larvae encapsulation in a murine model of trichinellosis.

    PubMed

    Yan, Wenhui; Li, Fang; Qin, Yuanhua; Ren, Yixin; Zheng, Lili; Dai, Xiaodong; Mao, Weifeng; Cui, Yu

    2016-06-01

    Trichinella spiralis (T. spiralis) larvae in raw or inadequately cooked meat can cause chronic infections in a wide range of hosts including humans. During the development inside the skeletal muscles, T. spiralis larvae infect muscle cells accompanying with the infiltration of host inflammatory cells, eventually create a new type of cell known as nurse cell developing a surrounding vascular network to support the larvae development. Controlling of host inflammatory responses and angiogenesis influences both the nurse cell differentiation and the parasite larvae development. CXCL8 is a chemokine that acts on G-protein coupled receptors, of which activation contributes to fibrosis and angiogenesis. CXCL8(3-73)K11R/G31P (G31P) has been reported as a CXCL8 analogue. The aim of this study is to investigate the effect of G31P in inflammatory responses and the development of T. spiralis larvae in muscle tissues of mice infected with T. spiralis. The level of inflammatory factors and the morphology of T. spiralis larvae in infected tissues were investigated through ELISA and electron-microscopy analysis. G31P up-regulated IFN-γ and down-regulated CXCL8 level, and impaired the encapsulation of T. spiralis larvae in vivo. The results showed that G31P influenced the development of T. spiralis larvae in muscle tissues. PMID:27089392

  2. Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig

    PubMed Central

    Meyerspeer, M.; Krššák, M.; Kemp, G.J.; Roden, M.; Moser, E.

    2016-01-01

    1 Objective To develop a measurement method for interleaved acquisition of 1H and 31P STEAM localised spectra of exercising human calf muscle. 2 Materials and Methods A nonmagnetic exercise rig with a pneumatic piston and sensors for force and pedal angle was constructed to enable plantar flexion measured in the 3 Tesla MR scanner, which holds the dual tuned (1H,31P) surface coil used for signal transmission and reception. 3 Results 31P spectra acquired in interleaved mode benefit from higher SNR (factor of 1.34± 0.06 for PCr) compared to standard acquisition due to the Nuclear Overhauser effect (NOE) and substantial PCr/Pi changes during exercise can be observed in 31P spectra. 1H spectral quality is equal to that in single mode experiments and allows Cr2 changes to be monitored. 4 Conclusion The feasibility of dynamic interleaved localised 1H and 31P spectroscopy during plantar flexion exercise has been demonstrated using a custom-built pneumatic system for muscle activation. This opens the possibility of studying the dynamics of metabolism with multi nuclear MRS in a single run. PMID:16320091

  3. Proton Nucleus Elastic Scattering Data.

    Energy Science and Technology Software Center (ESTSC)

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  4. Rotation of Lipids in Membranes: Molecular Dynamics Simulation, 31P Spin-Lattice Relaxation, and Rigid-Body Dynamics

    PubMed Central

    Klauda, Jeffery B.; Roberts, Mary F.; Redfield, Alfred G.; Brooks, Bernard R.; Pastor, Richard W.

    2008-01-01

    Molecular dynamics simulations and 31P-NMR spin-lattice (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{1}\\end{equation*}\\end{document}) relaxation rates from 0.022 to 21.1 T of fluid phase dipalmitoylphosphatidylcholine bilayers are compared. Agreement between experiment and direct prediction from simulation indicates that the dominant slow relaxation (correlation) times of the dipolar and chemical shift anisotropy spin-lattice relaxation are ∼10 ns and 3 ns, respectively. Overall reorientation of the lipid body, consisting of the phosphorus, glycerol, and acyl chains, is well described within a rigid-body model. Wobble, with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\bot}}=\\end{equation*}\\end{document} 1–2 × 108 s−1, is the primary component of the 10 ns relaxation; this timescale is consistent with the tumbling of a lipid-sized cylinder in a medium with the viscosity of liquid hexadecane. The value for \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\Vert}},\\end{equation*}\\end{document} the diffusion constant for rotation about the long axis of the lipid body, is difficult to determine precisely because of averaging by fast motions and wobble; it is tentatively estimated to be 1 × 107 s−1. The resulting D‖/D⊥

  5. The effects of pregnancy and parturition on phosphorus metabolites in rat uterus studied by 31P nuclear magnetic resonance.

    PubMed Central

    Dawson, M J; Wray, S

    1985-01-01

    Concentrations of phosphorus metabolites and intracellular pH have been measured in non-pregnant, late-pregnant and post-partum rat uterus using 31P nuclear magnetic resonance (31P n.m.r.). Intact uterine tissue was superfused with oxygenated de-Jalon solution at 4, 20 or 37 degrees C while inside the n.m.r. spectrometer. The phosphocreatine concentration [PCr], was higher and the inorganic phosphate concentration [Pi], lower than values determined by chemical analysis of extracts from both pregnant and non-pregnant rat uterus. [PCr] was 1.4-fold greater in late-pregnant than in non-pregnant rat uterus. Following parturition, large changes were observed in [PCr], [Pi] and in an unidentified metabolite in the phosphomonoester (PME) region of the n.m.r. spectrum. The time course of the recovery of these metabolites to prepregnant values was determined. The [PCr] remained below the non-pregnant value for at least 1 week post-partum and the [Pi] was elevated, compared to the non-pregnant value, during this period. More rapid changes were seen in the [PME], which doubled on day 0 post-partum but almost returned to its non-pregnant value on day 1 post-partum. No significant difference was observed between intracellular pH values in late-pregnant and non-pregnant rat uterus; however, there was a large acid shift following parturition. Intracellular pH depended upon the temperature at which the tissue was maintained. The effect of muscular work during parturition was investigated by comparing Caesarian-sectioned uteri with uteri which had undergone normal parturition. Uteri examined 1 day after Caesarian operation showed no differences in metabolite levels from normal, 1 day post-partum uteri. We conclude that concentrations of phosphorus metabolites depend upon the physiological state of the uterus. We suggest that the changes following parturition are not a consequence of the mechanical work performed by the uterus, but must be caused by some other event associated with

  6. Interactions of ciprofloxacin with DPPC and DPPG: fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis.

    PubMed

    Bensikaddour, Hayet; Snoussi, Karim; Lins, Laurence; Van Bambeke, Françoise; Tulkens, Paul M; Brasseur, Robert; Goormaghtigh, Erik; Mingeot-Leclercq, Marie-Paule

    2008-11-01

    The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (T(m)) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and (31)P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants K(app) were in the order of 10(5) M(-1) and the affinity appeared dependent on the negative charge of liposomes: DPPG>DOPC:DPPG (1:1; M:M)>DPPC>DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Deltasigma) values determined by (31)P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the T(m) of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its T(m) and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds

  7. Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy.

    PubMed

    Pucar, Darko; Dzeja, Petras P; Bast, Peter; Gumina, Richard J; Drahl, Carmen; Lim, Lynette; Juranic, Nenad; Macura, Slobodan; Terzic, Andre

    2004-01-01

    Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase. This analysis was supplemented with determination of energetically relevant metabolites in the phosphomonoester (PME) region of 31P NMR spectra, and in both aromatic and aliphatic regions of 1H NMR spectra. In control conditions, creatine kinase was the major phosphotransfer pathway processing high-energy phosphoryls between sites of ATP consumption and ATP production. In hypoxia, creatine kinase flux was dramatically reduced with a compensatory increase in adenylate kinase flux, which supported heart energetics by regenerating and transferring beta- and gamma-phosphoryls of ATP. Activation of adenylate kinase led to a build-up of AMP, IMP and adenosine, molecules involved in cardioprotective signaling. 31P and 1H NMR spectral analysis further revealed NADH and H+ scavenging by alpha-glycerophosphate dehydrogenase (alphaGPDH) and lactate dehydrogenase contributing to maintained glycolysis under hypoxia. Hypoxia-induced accumulation of alpha-glycerophosphate and nucleoside 5'-monophosphates, through alphaGPDH and adenylate kinase reactions, respectively, was mapped within the increased PME signal in the 31P NMR spectrum. Thus, 18O-assisted 31P NMR combined with 1H NMR provide a powerful approach in capturing rearrangements in cardiac bioenergetics, and associated metabolic signaling that underlie the cardiac adaptive response to stress. PMID:14977188

  8. Metabolic responses to forced dives in Pekin duck measured by indirect calorimetry and 31P-MRS.

    PubMed

    Stephenson, R; Jones, D R

    1992-12-01

    We tested the hypothesis that forced-dived ducks experience a reduction in metabolic rate during prolonged submergence. Unidirectionally ventilated conscious ducks were subjected to forced dives by temporarily stopping the airflow in the ventilation system and simultaneously filling a face mask with cold water. A typical cardiovascular response to submergence was observed: bradycardia and maintained arterial blood pressure. Phosphorylated metabolite concentrations in the pectoral muscle were measured noninvasively by phosphorus magnetic resonance spectroscopy (31P-MRS). ATP content was constant, and phosphocreatine was depleted via the creatine kinase reaction at a rate similar to the resting rate of ATP turnover, which was estimated to be 0.9 mumol.min-1 x g-1 in resting perfused pectoral muscle of pentobarbital-anesthetized ducks. Oxygen from myoglobin supplied at most 12% of the ATP required by the resting muscle during dives. Whole animal postdive excess oxygen consumption and blood lactic acid accumulation suggested that the shortfall in aerobic metabolism during forced dives was compensated by an increase in anaerobic metabolism. PMID:1481944

  9. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    PubMed Central

    Fiedler, Georg B.; Schmid, Albrecht I.; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J.; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  10. In vivo /sup 31/P NMR studies of corn root tissue and its uptake of toxic metals. [Zea mays L

    SciTech Connect

    Pfeffer, P.E.; Tu, S.I.; Gerasimowicz, W.V.; Cavanaugh, J.R.

    1986-01-01

    Excised corn root tissue has been evaluated for its viability, integrity of compartmentation, intracellular pH gradients, total mobile phosphorus content and nucleotide concentrations under different levels of acidity, and mineral stresses using in vivo /sup 31/P nuclear magnetic resonance spectroscopy at 21 to 23/sup 0/C. Perfusion with Al/sup 3 +/ ion at low pH (4.0) for 20 hours caused the overall concentration of nucleotides in the cytoplasm to decrease significantly relative to the control. Respiratory activity as measured by O/sub 2/ uptake decreased by a comparable amount over this time period. The addition of glucose to the Al-containing perfusate negated the inhibitory effects on the respiratory system. Treatment of the tissue with paramagnetic manganese ion while perfusing in the presence of O/sub 2/ allowed for the observation of the sequence of events leading to the irreversible trapping of Mn/sup 2 +/ in the vacuole. Pretreatment of the roots with Mg/sup 2 +/ prevented Mn/sup 2 +/ migration to the vacuole over the time period of this experiment. Hypoxia prevented all but a limited uptake of Mn/sup 2 +/ into the cytoplasm of the root tips. No evidence of Mn/sup 2 +/ complexation of either cytoplasmic or vacuole Pi suggests that the energy derived from O/sub 2/ consuming processes is necessary for the facilitated movement of this divalent cation.

  11. Centerband-only analysis of rotor-unsynchronized spin echo for measurement of lipid (31) P chemical shift anisotropy.

    PubMed

    Umegawa, Yuichi; Yamaguchi, Toshiyuki; Murata, Michio; Matsuoka, Shigeru

    2015-07-01

    Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies. PMID:26017552

  12. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  13. Skeletal muscle ATP synthesis and cellular H(+) handling measured by localized (31)P-MRS during exercise and recovery.

    PubMed

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    (31)P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H(+)) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60-75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  14. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    PubMed

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined. PMID:19365821

  15. Modulation of 2,3-diphosphoglycerate 31P-NMR resonance positions by red cell membrane shape.

    PubMed

    Fossel, E T; Solomon, A K

    1976-06-17

    Na+ transport in the red cells of the dog is dependent on cell volume, a 20% change in cell volume leading to a 25-fold increase in apparent Na+ flux; the effect is dependent upon metabolic energy. We have found that swelling and shrinking dog red cells causes a shift in the 31P-NMR peak of 2,3-diphosphoglycerate, which is present in dog red cells at 5.5 mM. Control experiments indicate that the 2,3-diphosphoglycerate resonance peak shifts may not be attributed to: interaction with hemoglobin, changes in cell pH, ionic strength, diamagnetic susceptibility or small changes in the Mg2+/2,3-diphosphoglycerate ratio. Experiments with chlorpromazine and pentanol which alter red cell membrane area by a mechanism different from osmotic swelling suggest that 2,3-diphosphoglycerate interacts with a binding site in the cell that is dependent upon the physical condition of the dog red cell membrane. PMID:1276226

  16. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: towards specific interest in human health.

    PubMed

    Garcia, Cyrielle; Lutz, Norbert W; Confort-Gouny, Sylviane; Cozzone, Patrick J; Armand, Martine; Bernard, Monique

    2012-12-01

    Our objective was to identify and quantify phospholipids in milk from different species (human HM, cow CoM, camel CaM, and mare MM) using an optimised (31)P NMR spectroscopy procedure. The phospholipid fingerprints were species-specific with a broader variety of classes found in HM and MM; HM and CaM were richer in sphingomyelin (78.3 and 117.5μg/ml) and plasmalogens (27.3 and 24μg/ml), possibly important for infant development. Total phospholipid content was higher in CaM (0.503mM) and lower in MM (0.101mM) compared to HM (0.324mM) or CoM (0.265mM). Our optimised method showed good sensitivity, high resolution, and easy sample preparation with minimal loss of target molecules. It is suitable for determining the accurate composition of a large number of bioactive phospholipids with putative health benefits, including plasmalogens, and should aid in selecting appropriate ingredient sources for infant milk substitutes or fortifiers, and for functional foods dedicated to adults. PMID:22953921

  17. Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat.

    PubMed

    Chahboune, Halima; Mahdjoub, Rachid; Desgoutte, Pierre; Rousset, Colette; Briguet, André; Cespuglio, Raymond

    2008-08-01

    Effects of chloramphenicol (antibiotic inhibiting complex-1 of respiratory chain) and thioamphenicol (TAP, a structural analog of CAP inactive on complex-1) were examined on cerebral energy metabolites and sleep-wake cycle architecture in rat. In the first group, animals were chronically equipped with a cranial surface resonator and (31)P spectroscopic measurements were performed using a 2 T magnetic resonance spectrometer (operating frequency 34.46 MHz). CAP administration (400 mg/kg, tail vein, light period) induced deficits in phosphocreatine (-30%, p < 0.01) and ATP (-40%, p < 0.01), whereas TAP (400 mg/kg) had no effect. In the second group, animals were chronically implanted with polygraphic electrodes for EEG and electromyogram recordings. CAP administered intraperitoneally at light-onset reduced rapid-eye movement (REM) sleep (-60% in the first 6 h of light period, p < 0.01), increased waking state (+65% in the first 6 h of light period, p < 0.01), and slightly affected slow-wave sleep (SWS). During waking state, theta and sigma power bands of the EEG were, respectively, increased and decreased (p < 0.05). During SWS, delta power band was reinforced (p < 0.05), while theta, alpha, and sigma bands were decreased (p < 0.05). No changes occurred during REM sleep. TAP had no effect on sleep-wake states and spectral components of the EEG. Overall, these data indicate that REM sleep occurrence is linked to an aerobic production of ATP. PMID:18507739

  18. Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using 31P magnetic resonance spectroscopy

    PubMed Central

    Sleigh, Alison; Lupson, Victoria; Thankamony, Ajay; Dunger, David B.; Savage, David B.; Carpenter, T. Adrian; Kemp, Graham J.

    2016-01-01

    The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using 31P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest. PMID:26751849

  19. 13C/31P NMR studies on the role of glucose transport/phosphorylation in human glycogen supercompensation.

    PubMed

    Price, T B; Laurent, D; Petersen, K F

    2003-05-01

    This study measured muscle glycogen during a 7-day carbohydrate loading protocol. Twenty healthy subjects (12 male, 8 female) performed 1 hr treadmill/toe-raise exercise immediately before a 3-day low carbohydrate (LoCHO) diet (20 % carbohydrate, 60 % fat, 20 % protein). On day 3 they repeated the exercise and began a 4-day high carbohydrate (HiCHO) diet (90 % carbohydrate, 2 % fat, 8 % protein). The order of administration of the diet was reversed in a subpopulation (n = 3). Interleaved natural abundance 13C/ 31P NMR spectra were obtained before and immediately after exercise, and each day during the controlled diets in order to determine concentrations of glycogen (GLY), glucose-6-phosphate (G6P), and muscle pH. Following exercise, muscle GLY and pH were reduced (p < 0.001) while muscle G6P was elevated (p

  20. Analytic optical potentials for nucleon-nucleus nucleus-nucleus collisions involving light and medium nuclei

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Utilizing an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series, optical potentials for nucleon-nucleus and nucleus-nucleus collisions are analytically derived. These expressions are applicable to light and medium cosmic ray nuclei as their single-particle density distributions are analytically determined, without approximation, from their actual harmonic well charge density distributions. Pauli correlation effects are included through the use of a simple Gaussian function to replace the usual expression obtained in the infinite nuclear matter approximation.

  1. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  2. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  3. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    PubMed

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution. PMID:20507069

  4. Brief Report: Approaches to [Superscript 31]P-MRS in Awake, Non-Sedated Children with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Erickson, Laura C.; Scott-Van Zeeland, Ashley A.; Hamilton, Gavin; Lincoln, Alan; Golomb, Beatrice A.

    2012-01-01

    We piloted a suite of approaches aimed to facilitate a successful series of up to four brain and muscle [superscript 31]Phosphorus-Magnetic Resonance Spectroscopy ([superscript 31]P-MRS) scans performed in one session in 12 "awake", non-sedated subjects (ages 6-18), 6 with autism spectrum disorders (ASD) and 6 controls. We targeted advanced…

  5. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  6. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  7. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; van Nierop, Bastiaan J; Koeman, Anneke; van der Kroon, Inge; Baartscheer, Antonius; Schumacher, Cees A; Strijkers, Gustav J; Houten, Sander M; Zuurbier, Coert J; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    (31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo

  8. sup 31 P NMR saturation-transfer study of the in situ kinetics of the mitochondrial adenine nucleotide translocase

    SciTech Connect

    Masiakos, P.T.; Williams, G.D.; Berkich, D.A.; Smith, M.B.; LaNoue, K.F. )

    1991-08-27

    The exchange of intramitochondrial ATP (ATP{sub in}) for extramitochondrial ATP (ATP{sub out}) was measured by using {sup 31}P NMR spectroscopy over a range of temperatures in isolated rat liver mitochondria oxidizing glutamate and succinate in the presence of external ATP but no added ADP (state 4). The rate of this exchange is more than an order of magnitude faster than rates reported previously that were determined by using isotopic techniques in the presence of oligomycin, the potent ATPase inhibitor. Differences are ascribed in part to the low levels of matrix ATP present in oligomycin-treated mitochondrial. Intramitochondrial ATP content regulates the rate of the ATP{sub in}/ATP{sub out} exchange. At 18C, the concentration of internal ATP that produces half-maximal transport rate is 6.6{plus minus}0.12 nmol/mg of mitochondrial protein. The relationship between substrate concentration and flux is sigmoidal and is 90% saturated at 11.3{plus minus}0.18 nmol/mg of mitochondrial protein. Since the measured rates of exchange of ATP{sub in} for ATP{sub out} are almost 10 times faster than the ATP synthase (ATP/P{sub i}) exchange rates, the translocase cannot limit net ATP/P{sub i} exchange in state 4. It may, nonetheless, limit net synthesis of ATP under other conditions when matrix ATP concentration is lower than in state 4 and when external ADP is present at higher concentrations than in these experiments.

  9. Decreased energy requirement of toad retina during light adaptation as demonstrated by 31P nuclear magnetic resonance.

    PubMed Central

    Apte, D V; Ebrey, T G; Dawson, M J

    1993-01-01

    1. The effect of light and dark adaptation on the levels of phosphorus metabolites (nucleotide di- and triphosphates, phosphocreatine, pyridine nucleotide, inorganic phosphate, phosphodiesters, phosphomonoesters, and uridine diphosphate-glucose) in the toad (Bufo marinus) retina and retinal extracts was studied by 31P nuclear magnetic resonance (NMR) spectroscopy. 2. Spectra were acquired using an NMR probe specifically designed for superfusion and illumination of a single retina. Retinae were maintained at a steady state for up to 10 h in an electrolyte solution containing 10 mM Hepes buffer and bubbled with 98% O2-2% CO2, pH 7.8 at 20 degrees C. 3. The intracellular concentrations of the phosphorus metabolites were measured in total darkness or during prolonged exposure to light. The concentration of nucleoside triphosphates (NTP) in the dark-adapted retina was about 1.5 mM and that of phosphocreatine (PCr) was about 0.7 mM. 4. In saturating levels of light, 6.0 x 10(11) or 1.5 x 10(13) quanta s-1 cm-2 at 520 nm, the levels of PCr and phosphomonoesters rose, the levels of NTP and protons (pH) were maintained, and the levels of pyridine nucleotides and nucleotide diphosphates (NDP) fell. 5. A rise in the level of PCr in the presence of an unchanged level of NTP in the light-adapted retina indicates that the energy consumption of the retina is greater in the dark. 6. These results are in agreement with the results of oxygen consumption, glucose dependence, and electrophysiological studies which also indicate that the metabolic energy requirement of the retina decreases in light. PMID:8229802

  10. Partial trisomy 2q due to a maternal balanced translocation t(2;22) (q31;p12)

    SciTech Connect

    Steinberg, L.S.; Bleiman, M.; Punnett, H.H.

    1994-09-01

    Features consistent among reported patients with 2q duplications due to familial translocations or de novo duplications include pre- and postnatal growth failure, ocular defects such as congenital glaucoma, cardiac defects, micrognathia, urogenital defects, renal defects, connective tissue laxity, neurologic defects, and dermatologic abnormalities. Genotype/phenotype correlations of patients with trisomy 2q due to familial translocations are complicated by the presence of the deletions of the other chromosome involved. We have had the opportunity to observe `pure` trisomy 2q31-qter resulting from adjacent-1 segregation from 46,XX,t(2;22)(q31;p12) in a carrier mother with apparent loss of the 22 NOR region. He was the 2453 gm product of a gestation complicated by gestational diabetes to a 29-year-old G1 P0 mother and a 30-year-old father. At birth, he was noted to have hypotonia, micrognathia, microphthalmia, left cryptorchidism, hypospadias, bilateral clinodactyly of the fifth digits, mild hyperextensibility of the joints, dry skin disorder, and bilateral hydronephrosis by ultrasound. He was treated for hypoglycemia in the nursery and had a vesicostomy at two months for vesicoureteral reflux. A hearing test at two months found moderate hearing loss in the right ear and mild to moderate hearing loss in the left ear. At 3 months he had surgery for a PDA and bilateral glaucoma and was treated for periods of hypothermia and type IV renal tubular acidosis. This patient and others with unbalanced translocations involving the NOR region of an acrocentric chromosome allow for genotype/phenotype correlation of the `pure` trisomic region.

  11. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by /sup 31/P-nuclear magnetic resonance

    SciTech Connect

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-03-05

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. /sup 31/P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (approx. 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites.

  12. 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart.

    PubMed

    Michael O'Donnell, J; Narayan, P; Bailey, M Q; Abduljalil, A M; Altschuld, R A; McCune, S A; Robitaille, P M

    1998-02-01

    31P-NMR was used to monitor myocardial bioenergetics in compensated and failing SHHF/MCC-fa(cp) (SHF) rat hearts. The SHHF/Mcc-fa(cp) (spontaneous hypertension and heart failure) rat is a relatively new genetic model in which all individuals spontaneously develop congestive heart failure, most during the second year of life. Failing SHF rat hearts displayed a pronounced decrease in resting PCr:ATP ratios (P<0.001), which was explained by a significant (P<0. 0001) drop in total creatine (47.2+/-3.1 nmol/mg protein) v age matched controls (106+/-3 nmol/mg protein). In end stage failure, NMR determined PCr was 2.9+/-0.1 micro mol/g wet weight under basal conditions. In contrast, 6- and 20-month-old controls and compensated SHFs had PCr values of 5.3+/-0.1, and 5.1+/-0.5 and 5. 1+/-0.2 micro mol/g wet weight. Both compensated and failing SHF hearts were metabolically compromised when the rate pressure product (RPP) was increased, as evidenced by an increase in Pi and a drop in PCr. Compensated SHF hearts, however, were able to increase rate pressure products (RRP, mmHg X beats/min) from 44.5+/-1.4 to 66.6+/-3. 4 K with dobutamine infusion, whereas hearts in end-stage failure were able to increase their RPP from baseline values of 27+/-4 K to only 37+/-7 K. The data indicate that a pronounced decline in PCr and total creatine signals the transition from compensatory hypertrophy to decompensation and failure in the SHF rat model of hypertensive cardiomyopathy. PMID:9515000

  13. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the 31P Magnetic Resonance Spectrum

    PubMed Central

    Conley, Kevin E.; Ali, Amir S.; Flores, Brandon; Jubrias, Sharon A.; Shankland, Eric G.

    2016-01-01

    Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)+ and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)+ and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy (31P MRS). These NAD(P) pools are identified by chemical standards (NAD+, NADP+, and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)+ peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)+ and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment. PMID:27065875

  14. 31P nuclear magnetic resonance studies of the association of basic proteins with multilayers of diacyl phosphatidylserine.

    PubMed

    Smith, R; Cornell, B A; Keniry, M A; Separovic, F

    1983-08-10

    Lysozyme, cytochrome c, poly(L-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(L-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12-20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(L-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20-30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers. PMID:6191774

  15. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  16. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  17. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  18. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  19. Theoretical Studies on the Fe-M Interactions and 31P NMR in Fe(CO)3(EtPhPpy)2MX2 (X = NCS, SCN, Cl; M = Zn, Cd, Hg)

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-xuan; Xu, Xuan; Xie, Mei-xiang

    2008-10-01

    To study the Fe-M interactions and their effects on 31P NMR, the structures of Fe(CO)3(EtPhPpy)2 1, Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M = Zn, 3: M = Cd, 4: M = Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X = C1, 6: X = SCN) were investigated by density functional theory (DFT) PBE0 method. The stabilities S of complexes follow S(2)>S(3)>S(4) and S(3)approxS(6)>S(5), indicating that 6 is stable and may be synthesized. The complexes with thiocyanate are more stable than that with chloride in Fe(CO)3(EtPhPpy)2CdX2. The strength / of Fe-M interactions follows I(2)approxI(3)nucleus is increased, and thus upfield 31P chemical shifts are caused (compared with mononuclear complex 1).

  20. Electric quadrupole excitations in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Calculations are presented for electric quadrupole excitations in relativistic nucleus-nucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei.

  1. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  2. Scaling phenomenon in relativistic nucleus-nucleus collisions

    SciTech Connect

    Wong, C. Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures.

  3. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  4. The Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  5. Interaction of Lipopolysaccharide and Phospholipid in Mixed Membranes: Solid-State 31P-NMR Spectroscopic and Microscopic Investigations

    PubMed Central

    Nomura, Kaoru; Inaba, Takehiko; Morigaki, Kenichi; Brandenburg, Klaus; Seydel, Ulrich; Kusumoto, Shoichi

    2008-01-01

    Lipopolysaccharide (LPS), which constitutes the outermost layer of Gram-negative bacterial cells as a typical component essential for their life, induces the first line defense system of innate immunity of higher animals. To understand the basic mode of interaction between bacterial LPS and phospholipid cell membranes, distribution patterns were studied by various physical methods of deep rough mutant LPS (ReLPS) of Escherichia coli incorporated in phospholipid bilayers as simple models of cell membranes. Solid-state 31P-NMR spectroscopic analysis suggested that a substantial part of ReLPS is incorporated into 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid bilayers when multilamellar vesicles were prepared from mixtures of these. In egg L-α-phosphatidylcholine (egg-PC)-rich membranes, ReLPS undergoes micellization. In phosphatidylethanolamine-rich membranes, however, micellization was not observed. We studied by microscopic techniques the location of ReLPS in membranes of ReLPS/egg-PC (1:10 M/M) and ReLPS/egg-PC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (1:9:1 M/M/M). The influence of ReLPS on the physicochemical properties of the membranes was studied as well. Microscopic images of both giant unilamellar vesicles and supported planar lipid bilayers showed that LPS was uniformly incorporated in the egg-PC lipid bilayers. In the egg-PC/POPG (9:1 M/M) lipid bilayers, however, ReLPS is only partially incorporated and becomes a part of the membrane in a form of aggregates (or as mixed aggregates with the lipids) on the bilayer surface. The lipid lateral diffusion coefficient measurements at various molar ratios of ReLPS/egg-PC/POPG indicated that the incorporated ReLPS reduces the diffusion coefficients of the phospholipids in the membrane. The retardation of diffusion became more significant with increasing POPG concentrations in the membrane at high ReLPS/phospholipid ratios. This work demonstrated that the phospholipid composition has critical

  6. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils.

    PubMed

    Buehler, Tania; Kreis, Roland; Boesch, Chris

    2015-02-01

    (31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are

  7. Assessment of Preparation Methods for Organic Phosphorus Analysis in Phosphorus-Polluted Fe/Al-Rich Haihe River Sediments Using Solution 31P-NMR

    PubMed Central

    Zhang, Wenqiang; Shan, Baoqing; Zhang, Hong; Tang, Wenzhong

    2013-01-01

    Fe/Al-rich river sediments that were highly polluted with phosphorus (P) were used in tests to determine the optimum preparation techniques for measuring organic P (Po) using solution 31P nuclear magnetic resonance spectroscopy (31P-NMR). The optimum pre-treatment, extraction time, sediment to solution ratio and sodium hydroxide-ethylenediaminetetraacetic acid (NaOH-EDTA) extractant solution composition were determined. The total P and Po recovery rates were higher from freeze- and air-dried samples than from fresh samples. An extraction time of 16 h was adequate for extracting Po, and a shorter or longer extraction time led to lower recoveries of total P and Po, or led to the degradation of Po. An ideal P recovery rate and good-quality NMR spectra were obtained at a sediment:solution ratio of 1∶10, showing that this ratio is ideal for extracting Po. An extractant solution of 0.25 M NaOH and 50 mM EDTA was found to be more appropriate than either NaOH on its own, or a more concentrated NaOH-EDTA mixture for 31P-NMR analysis, as this combination minimized interference from paramagnetic ions and was appropriate for the detected range of Po concentrations. The most appropriate preparation method for Po analysis, therefore, was to extract the freeze-dried and ground sediment sample with a 0.25 M NaOH and 50 mM EDTA solution at a sediment:solution ratio of 1∶10, for 16 h, by shaking. As lyophilization of the NaOH-EDTA extracts proved to be an optimal pre-concentration method for Po analysis in the river sediment, the extract was lyophilized as soon as possible, and analyzed by 31P-NMR. PMID:24143192

  8. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T.

    PubMed

    Lu, Ming; Zhu, Xiao-Hong; Chen, Wei

    2016-07-01

    NAD(+) and NADH play key roles in cellular respiration. Intracellular redox state defined by the NAD(+) /NADH ratio (RX) reflects the cellular metabolic and physiopathological status. By taking advantage of high/ultrahigh magnetic field strengths, we have recently established a novel in vivo (31) P MRS-based NAD assay for noninvasive and quantitative measurements of intracellular NAD concentrations and redox state in animal and human brains at 16.4 T, 9.4 T and 7 T. To explore its potential for clinical application, in this study we investigated the feasibility of assessing the NAD metabolism and redox state in human brain at a lower field of 4 T by incorporating the (1) H-decoupling technique with the in vivo (31) P NAD assay. The use of (1) H decoupling significantly narrowed the linewidths of NAD and α-ATP resonances, resulting in higher sensitivity and better spectral resolution as compared with the (1) H-coupled (31) P spectrum. These improvements made it possible to reliably quantify cerebral NAD concentrations and RX, consistent with previously reported results obtained from similar age human subjects at 7 T. In summary, this work demonstrates the capability and utility of the (1) H-decoupled (31) P MRS-based NAD assay at lower field strength; thus, it opens new opportunities for studying intracellular NAD metabolism and redox state in human brain at clinical settings. This conclusion is supported by the simulation results, indicating that similar performance and reliability as observed at 4T can be achieved at 3 T with the same signal-to-noise ratio. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27257783

  9. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].

    PubMed

    Yuasa, T; Miyatake, T; Kuwabara, T; Umeda, M; Eguchi, K

    1983-11-01

    31phosphorus nuclear magnetic resonance (31P-NMR) measurements have provided new and valuable insights for studying the metabolism of living systems. The aim of this paper is to introduce a technique of application of 31P-NMR measurements using a surface coil method, and to discuss the effects of halothane anesthesia and hypoxic hypoxia on the energetic metabolism of intact rat brains. All measurements were made using a JEOL FX 270 spectrometer with a super conducting magnet of 54-mm bore diameter. The magnetic field intensity of this machine is 6.3 tesla, and the resonance frequency used for 31P was 109.14 MHz. We remodelled an ordinary probe to take a live rat, and the animals were made to inhale anesthetic halothane or mixture of oxygen and nitrogen at various concentrations controlled by a flow regulator. The best conditions for measurements with our surface coil method were determined in this study as follows: (1) 90 degrees pulse width and selectivity, Fig. 1 shows signal selectivity in depthwise direction changed with 90 degrees pulse width, which was set to 20 microseconds. (2) Sensitivity and resolution; To obtain a spectrum of 31P-NMR from a rat brain 500 accumulations of free induction decays were considered suitable for both time and space resolution. Fig. 2 shows variations of signal intensity with pulse repetition time, which was set to 2 sec. It took about 17 min for averaging to get a spectrogram. (3) Quantitative accuracy and qualification; As shown in Fig. 3, a linear relationship was found between the signal intensity of beta-phosphate of ATP and the concentration of ATP solutions, thus proving the quantitative accuracy of our systems.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6661335

  10. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise

    PubMed Central

    Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.

    2013-01-01

    The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534

  11. Phosphorus speciation in agro-industrial byproducts: sequential fractionation, solution (31)P NMR, and P K- and L(2,3)-edge XANES spectroscopy.

    PubMed

    Negassa, Wakene; Kruse, Jens; Michalik, Dirk; Appathurai, Narayana; Zuin, Lucia; Leinweber, Peter

    2010-03-15

    Little is known about P species in agro-industrial byproducts from developing countries, which may be either pollutants or valuable soil amendments. The present study speciated P in dry (COD) and wet (COW) coffee, sisal (SIS), barley malt (BEB) and sugar cane processing (FIC) byproducts, and filter cakes of linseed (LIC) and niger seed (NIC)with sequential fractionation, solution (31)P nuclear magnetic resonance (NMR) spectroscopy, and P K- and L(2,3)-edge X-ray absorption near-edge structure (XANES) spectroscopy. The sequential P fractionation recovered 59% to almost 100% of total P (P(t)), and more than 50% of P(t) was extracted by H(2)O and NaHCO(3) in five out of seven samples. Similarly, the NaOH + EDTA extraction for solution (31)P NMR recovered 48-94% of P(t). The (31)P NMR spectra revealed orthophosphate (6-81%), pyrophosphate (0-10%), and orthophosphate monoesters (6-94%). Orthophosphate predominated in COD, COW, SIS, and FIC, whereas BEB, UC, and NIC were rich in orthophosphate monoesters. The concentrations of P(i), and P(o) determined in the sequential and NaOH + EDTA extractions and (31)P NMR spectra were strongly and positively correlated (r = 0.88-1.00). Furthermore, the P K- and L(2,3)-edge XANES confirmed the H(2)SO(4)--P(i) detected in the sequential fractionation by unequivocal identification of Ca--P phases in a few samples. The results indicate that the combined use of all four analytical methods is crucial for comprehensive P speciation in environmental samples and the application of these byproducts to soil. PMID:20146464

  12. Antiproton-nucleus interaction

    NASA Astrophysics Data System (ADS)

    Cugnon, J.; Vandermeulen, J.

    The antiproton-nucleus physics is reviewed. On the experimental side, the recent results obtained at the LEAR, BNL and KEK facilities are analyzed. A brief summary of the main pp and pn experimental data is also given. The antiproton-nucleus interaction can lead to elasic, inelastic and charge exchange scattering and to annihilation. The latter is very dominant. The scattering cross-sections are usually analyzed in terms of complex potential models. The relationship between potentials, charge conjugation and Dirac phenomenology is discussed. Much emphasis is put on the dynamics of the antiproton annihilation on nuclei. The energy transfer, pion absorption and target response are analyzed within the intranuclear cascade model. Special interest is devoted to strangeness production, hypernucleus formation and possible annihilation on two nucleons. Signatures for this new process are searched in experimental data. Finally, the highly debated question of quark-gluon formation is analyzed. Cet article constitue une revue de la physique antiproton-noyau. Du point de vue expérimental, cette revue porte particulièrement sur les récents résultats obtenus à LEAR, BNL et KEK. On y a aussi inclus une mise à jour des faits expérimentaux principaux pour pp et pn. L'interaction antiproton-noyau conduit à la diffusion élastique, inélastique et d'xA9change de charge et à des processus d'annihilation. Habituellement, les expériences de diffusion sont analysées en termes de potentiels complexes. La relation entre ces potentiels, la conjugaison de charge et la phénoménologie de Dirac est discutée. On s'est particulièrement intéressé à la dynamique de l'annihilation d'antiprotons sur des noyaux. Le transfert d'énergie, l'absorption de pions et la réponse de la cible sont analysés dans le cadre du modèle de cascade intranucléaire. Certains autres points sont discutés plus en détail: la production d'étrangeté, la formation d'hypernoyaux et l'annihilation sur

  13. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix

    SciTech Connect

    Hartzell, C.J.

    1994-07-24

    Goal was to use NMR to study TBP/lanthanide complexes in the interlayer or on edge sites of clays. Work in this laboratory yielded details of the complexation of Eu(NO{sub 3}){sub 3} and Pr(NO{sub 3}){sub 3} with TBP in hexane solution; this information is crucial to interpretation of results of NMR studies of the complexes exchanged into clays. The solution {sup 31}P-chemical shift values were improved by repeating the studies on the lanthanide salts dissolved directly into neat TBP. NMR studies of these neat solutions of the Eu(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex and the Pr(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex show that the {sup 31}P chemical shift remains relatively constant for TBP: lanthanide ratios below 3: 1. At higher ratios, the chemical shift approaches that of free TBP, indicating rapid exchange of TBP between the free and complexed state. Exchange of these complexes into the clay hectorite yielded discrete {sup 31}P-NMR signals for the Eu{lg_bullet}TBP complex at -190 ppm and free TBP at -6 ppm. Adsorption of the Pr{lg_bullet}TBP complex yielded broad signals at 76 ppm for the complex and -6 ppm for free TBP. There was no evidence of exchange between the incorporated complex and the free TBP.

  14. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well. PMID:22224711

  15. /sup 31/P NMR saturation-transfer and /sup 13/C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis

    SciTech Connect

    Campbell-Burk, S.L.; den Hollander, J.A.; Alger, J.R.; Shulman, R.G.

    1987-11-17

    /sup 31/P NMR saturation-transfer techniques have been employed in glucose-gown derepressed yeast to determine unidirectional fluxes in the upper part of the Embden-Meyerhof-Parnas pathway. The experiments were performed during anaerobic and aerobic glycolysis by saturating the ATP/sub ..gamma../ resonances and monitoring changes in the phosphomonoester signals from glucose 6-phosphate and fructose 1,6-bisphosphate. These experiments were supplemented with /sup 13/C NMR measurements of glucose utilization rates and /sup 13/C NMR label distribution studies. Combined with data obtained previously from radioisotope measurement, these /sup 31/P and /sup 13/C NMR kinetic studies allowed estimation of the net glycolytic flow in addition to relative flows through phosphofructokinase (PFK) and Fru-1,6-P/sub 2/ase during anaerobic and aerobic glycolysis. The /sup 31/P NMR saturation-transfer results are consistent with previous results obtained from measurements of metabolite levels, radioisotope data, and /sup 13/C NMR studies, providing additional support for in vivo measurement of the flows during glycolysis.

  16. Development of a CP 31P NMR broadline simulation methodology for studying the interactions of antihypertensive AT1 antagonist losartan with phospholipid bilayers.

    PubMed

    Fotakis, Charalambos; Christodouleas, Dionisios; Chatzigeorgiou, Petros; Zervou, Maria; Benetis, Nikolas-Ploutarch; Viras, Kyriakos; Mavromoustakos, Thomas

    2009-03-18

    A cross-polarization (CP) (31)P NMR broadline simulation methodology was developed for studying the effects of drugs in phospholipids bilayers. Based on seven-parameter fittings, this methodology provided information concerning the conformational changes and dynamics effects of losartan in the polar region of the dipalmitoylphosphatidylcholine bilayers. The test molecule for this study was losartan, an antihypertensive drug known to exert its effect on AT(1) transmembrane receptors. The results were complemented and compared with those of differential scanning calorimetry, solid-state (13)C NMR spectroscopy, Raman spectroscopy, and electron spin resonance. More specifically, these physical chemical methodologies indicated that the amphipathic losartan molecule interacts with the hydrophilic-head zone of the lipid bilayers. The CP (31)P NMR broadline simulations showed that the lipid molecules in the bilayers containing losartan displayed greater collective tilt compared to the tilt displayed by the load-free bilayers, indicating improved packing. The Raman results displayed a decrease in the trans/gauche ratio and increased intermolecular interactions of the acyl chains in the liquid crystalline phase. Additional evidence, suggesting that losartan possibly anchors in the realm of the headgroup, was derived from upfield shift of the average chemical shift sigma(iso) of the (31)P signal in the presence of losartan and from shift of the observed peak at 715 cm(-1) attributed to C-N stretching in the Raman spectra. PMID:19289049

  17. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  18. Two Neutron Removal in Relativistic Nucleus-Nucleus Reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for double neutron removal via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work examines the cause of these discrepancies and systematically investigates whether the problem might be due to electromagnetic theory, nuclear contributions, or an underestimate of experimental error. Using cross section systematics from other reactions it is found that the discrepancies can be resolved in a plausible manner.

  19. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  20. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour

  1. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  2. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  3. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  4. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.

    PubMed

    Wu, Y; Ackerman, J L; Strawich, E S; Rey, C; Kim, H-M; Glimcher, M J

    2003-05-01

    Previous 31P cross-polarization and differential cross-polarization magic angle spinning (CP/MAS and DCP/MAS) solid-state NMR spectroscopy studies of native bone and of the isolated crystals of the calcified matrix synthesized by osteoblasts in cell culture identified and characterized the major PO(-3)(4) phosphate components of the mineral phase. The isotropic and anisotropic chemical shift parameters of the minor HPO(-2)(4) component in bone mineral and in mineral deposited in osteoblast cell cultures were found to differ significantly from those of brushite, octacalcium phosphate, and other synthetic calcium phosphates. However, because of in vivo and in vitro evidence that phosphoproteins may play a significant role in the nucleation of the solid mineral phase of calcium phosphate in bone and other vertebrate calcified tissues, the focus of the current solid-state 31P NMR experiments was to detect the possible presence of and characterize the phosphoryl groups of phosphoproteins in bone at the very earliest stages of bone mineralization, as well as the possible presence of calcium-phosphoprotein complexes. The present study demonstrates that by far the major phosphate components identified by solid-state 31P NMR in the very earliest stages of mineralization are protein phosphoryl groups which are not complexed with calcium. However, very small amounts of calcium-complexed protein phosphoryl groups as well as even smaller, trace amounts of apatite crystals were also present at the earliest phases of mineralization. These data support the hypothesis that phosphoproteins complexed with calcium play a significant role in the initiation of bone calcification. PMID:12724829

  5. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    PubMed

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes. PMID:26451872

  6. Carbon-13, sup 15 N, and sup 31 P NMR studies on 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans

    SciTech Connect

    Pust, S.; Vervoort, J.; Decker, K.; Bacher, A.; Mueller, F. )

    1989-01-24

    The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by {sup 13}C, {sup 15}N and {sup 31}P NMR techniques. The FAD prosthetic group was selectively enriched in {sup 13}C and {sup 15}N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atom strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. It can unambiguously be concluded from the chemical shift of the N(1) atom that the reduced flavin is anionic. The doublet character of the N(3) and N(5) resonances suggests that bulk water has no access to the active center. The strong downfield shift of the N(1) position indicates that this atom is embedded in a polar environment, but it does not indicate the presence of a positively charged residue. The {sup 31}P NMR spectra show that the resonances of the pyrophosphate group of the bound FAD differ slightly from those of free FAD. Besides the {sup 31}P resonances from FAD, four peaks around 0 ppm are observed that belongs to bound phosphorus residues. The residues are not located close to the isoalloxazine ring.

  7. ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.

    PubMed

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-04-13

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using (113)Cd NMR experiments with (113)Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used (113)Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  8. 113Cd NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p**

    PubMed Central

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-01-01

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using 113Cd NMR experiments with 113Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used 113Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  9. {sup 31}P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions. Quarterly report, June 1, 1991--August 31, 1991

    SciTech Connect

    Verkade, J.G.

    1991-12-31

    The purpose of this research is to develop a convenient, reliable and rapid NMR method for the determination of labile-hydrogen functional groups and organic sulfur compounds which are components of coal and coal-derived materials. For this purpose, the former functional groups, including water molecules, are derivatized with reagents containing NMR-active nuclei such as {sup 31}P or {sup 119}Sn, while sulfur groups are derivatized with {sup 195}Pt NMR tagging reagents. Knowledge of the heteroatom composition of coals is necessary for the development of increasingly sophisticated coal processing technologies.

  10. Quantitative study of atomic ordering in Ga0.5In0.5P thin films by 31P nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Tycko, Robert; Dabbagh, Gary; Kurtz, Sarah R.; Goral, John P.

    1992-06-01

    We use 31P nuclear-magnetic-resonance (NMR) spectra to measure the degree of cation ordering in thin films of the semiconductor alloy Ga0.5In0.5P grown by organometallic vapor-phase epitaxy. We show that the five possible GanIn4-nP clusters in GaxIn1-xP give rise to resolved NMR lines under magic-angle spinning, allowing a determination of the degree of cation ordering from the relative areas of the five lines. The ordering is shown to be weak (order parameter <=0.6) even in films that appear highly ordered in transmission electron microscopy.

  11. Double Nucleus in M83

    NASA Astrophysics Data System (ADS)

    Mast, Damián; Díaz, Rubén J.; Agüero, M. Paz

    2006-03-01

    M83 is one of the nearest galaxies with enhanced nuclear star formation, and it presents one of the best opportunities to study the kinematics and physical properties of a circumnuclear starburst. Our three-dimensional spectroscopy data in the R band confirm the presence of a secondary nucleus or mass concentration (previously suggested by Thatte and coworkers). We determine the position of this hidden nucleus, which would be more massive than the visible one and was not detected in the optical Hubble Space Telescope images due, probably, to the strong dust extinction. Using a Keplerian approximation, we estimated for the optical nucleus a mass of (5.0+/-0.8)×106 Msolar/sini (r<1.5"), and for the hidden nucleus, located 4''+/-1'' to the northwest (position angle of 271deg+/-15deg) of the optical nucleus, a mass of (1.00+/-0.08)×107 Msolar/sini (r<1.5"). The emission-line ratio map also unveils the presence of a second circumnuclear ring structure, previously discovered by IR imaging (Elmegreen and coworkers). The data allow us to resolve the behavior of the interstellar medium inside the circumnuclear ring and around the binary mass concentration.

  12. Nucleus management with irrigating vectis.

    PubMed

    Srinivasan, Aravind

    2009-01-01

    The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS), incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost. PMID:19075403

  13. Studies of uptake and suppresion of Mn/sup 2 +/ migration in highly vacuolated sycamore (Acer pseudoplatanus L) cells by /sup 31/P NMR

    SciTech Connect

    Roby, C.; Bligny, R.; Douce, R.; Pfeffer, P.E.

    1987-04-01

    Recent /sup 31/P NMR studies have demonstrated that Mn/sup 2 +/ appears to invade the cells of heterogeneous excised tissue of corn root tips sequentially, first entering the cytoplasmic compartment, where it complexes with nucleotides and P/sub i/. Under aerobic conditions, further migration across the tonoplast, followed by vacoule trapping was visualized through paramagnetic broadening of the vacoular P/sub i/ resonance. Cultured cells such as Acer pseudoplatanus L offer better opportunities for studying cellular activity by /sup 31/P NMR because of their homogeneity and uniformly rapid response to various metabolic disturbances. In contrast to excised root tissue, Mn/sup 2 +/ showed no measurable accumulation in the cytoplasmic compartments of these cells under aerobic conditions. However, a rapid crossing of the large tonoplast resulted in immediate vacuolar metal ion sequestration. Anoxia did not foster leakage of Mn/sup 2 +/ from the vacuole to the cytoplasm, while hypoxia completely halted all movement of Mn/sup 2 +/ across the plasmalema. This disparity in terms of cell and tissue morphology, membrane permeability and possible tissue trapping of metal ions will be discussed.

  14. Temperature-dependent interconversion of phosphoramidite-Cu complexes detected by combined diffusion studies, 31P NMR, and low-temperature NMR spectroscopy.

    PubMed

    Schober, Katrin; Zhang, Hongxia; Gschwind, Ruth M

    2008-09-17

    For copper-catalyzed enantioselective conjugate additions, knowledge about the precatalytic and catalytic complexes has not yet been sufficiently developed to understand the strong influence of different temperatures on these famous reactions. Therefore, NMR experiments with four Cu(I) salts and two phosphoramidite ligands have been performed to elucidate the temperature dependence and the low-temperature structures of these copper complexes. The existence of the precatalytic binuclear complex with a mixed trigonal/tetrahedral coordination on copper is for the first time proven with direct NMR spectroscopic methods. Below 200 K, intermolecular interactions between free ligands and [Cu2X2L3] complexes induce binuclear [Cu2X2L4] complexes similar to the crystal structures. By combining diffusion experiments and (31)P integrals at different temperatures, it is for the first time possible to follow the formation of stoichiometrically different complexes, even under experimental conditions in which the (31)P signals of the complexes are spectroscopically not resolved due to exchange processes. This allows a first correlation between the complex species observed and the synthetic conditions reported. Furthermore, different preferences to build homo- or heterochiral complexes are detected for binaphthol and biphenol phosphoramidite complexes. PMID:18717560

  15. Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study.

    PubMed

    Peng, Yung-Kang; Ye, Lin; Qu, Jin; Zhang, Li; Fu, Yingyi; Teixeira, Ivo F; McPherson, Ian James; He, Heyong; Tsang, Shik Chi Edman

    2016-02-24

    Nano metal oxides are becoming widely used in industrial, commercial and personal products (semiconductors, optics, solar cells, catalysts, paints, cosmetics, sun-cream lotions, etc.). However, the relationship of surface features (exposed planes, defects and chemical functionalities) with physiochemical properties is not well studied primarily due to lack of a simple technique for their characterization. In this study, solid state (31)P MAS NMR is used to map surfaces on various ZnO samples with the assistance of trimethylphosphine (TMP) as a chemical probe. As similar to XRD giving structural information on a crystal, it is demonstrated that this new surface-fingerprint technique not only provides qualitative (chemical shift) but also quantitative (peak intensity) information on the concentration and distribution of cations and anions, oxygen vacancies and hydroxyl groups on various facets from a single deconvoluted (31)P NMR spectrum. On the basis of this technique, a new mechanism for photocatalytic •OH radical generation from direct surface-OH oxidation is revealed, which has important implications regarding the safety of using nano oxides in personal care products. PMID:26812527

  16. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation. PMID:21254775

  17. Coupling of Li motion and structural distortions in olivine LiMnPO4 from 7Li and 31P NMR

    NASA Astrophysics Data System (ADS)

    Rudisch, Christian; Grafe, Hans-Joachim; Geck, Jochen; Partzsch, Sven; Zimmermann, M. v.; Wizent, Nadja; Klingeler, Rüdiger; Büchner, Bernd

    2013-08-01

    We present a detailed 7Li- and 31P-NMR study on single crystalline LiMnPO4 in the paramagnetic and antiferromagnetic phase (AFM, TN˜34 K). This allows us to determine the spin directions in the field-induced spin-flop phase. In addition, the anisotropic dipolar hyperfine coupling tensor of the 7Li and 31P nuclei is also fully determined by orientation and temperature-dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimental values from the theoretical ones are discussed in terms of Mn disorder which is induced by Li disorder. In fact, the disorder in the Mn sublattice is directly revealed by diffuse x-ray scattering data. The present results provide experimental evidence for the Li diffusion strongly coupling to structural distortions within the MnPO4 host, which is expected to significantly affect the Li mobility as well as the performance of batteries based on this material.

  18. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  19. In vivo 31P nuclear magnetic resonance spectroscopy of experimental murine tumours and human tumour xenografts: effects of blood flow modification.

    PubMed Central

    Bremner, J. C.; Counsell, C. J.; Adams, G. E.; Stratford, I. J.; Wood, P. J.; Dunn, J. F.; Radda, G. K.

    1991-01-01

    The effect of hydralazine on tumours appears to vary depending on tumour type. Blood flow and radiation sensitivity decrease more in murine tumours than human tumour xenografts. In this study a comparison between various tumour types has been made using in vivo 31P nuclear magnetic resonance spectroscopy (NMRS) to follow the metabolic responses occurring after clamping or intravenous administration of hydralazine (5 mg kg-1). Large increases in the Pi/total phosphate ratio were found with the murine sarcomas, KHT and RIF-1 implanted into C3H/He mice. However little or no effect was seen for the two human xenografted tumours, HX118 and HT29 implanted in MFI nu/nu/01a mice. An intermediate response was observed for KHT tumours grown in nu/nu mice. All tumours showed a large response to clamping. The anaesthetic Hypnorm/Hypnovel has a great influence on the response of the tumour metabolism to hydralazine appearing to both prolong and increase the changes induced. There is evidence to support the theory that the changes in 31P spectra are related to the oxygen status of the tumours. PMID:1931606

  20. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  1. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  2. Formations of hydroxyapatite and inositol hexakisphosphate in poultry litter during the composting period: sequential fractionation, P K-edge XANES and solution (31)P NMR investigations.

    PubMed

    Hashimoto, Yohey; Takamoto, Akira; Kikkawa, Ren; Murakami, Keiichi; Yamaguchi, Noriko

    2014-05-20

    Little is known about how the solubility and chemical speciation of phosphorus (P) in poultry litters are altered during the composting period. This study investigated the quantitative and qualitative changes in organic P (Po) and inorganic P (Pi) compositions in poultry litters during the seven-day composting period using sequential extraction in combination with P K-edge X-ray absorption near-edge structure (XANES) and solution (31)P nuclear magnetic resonance (NMR) spectroscopy. The result of sequential extraction illustrated that the significant decrease of H2O-P by 55% in poultry litters occurred concomitantly with the increase of HCl-Pi and HCl-Po during the composting period (p < 0.05). X-ray diffraction results for poultry litter samples showed three distinct peaks indicative of hydroxyapatite. Phosphorus K-edge XANES confirmed the increase of hydroxyapatite during the composting period, corresponding to the increase of HCl-Pi determined by the sequential extraction. The NaOH-EDTA extraction for solution (31)P NMR revealed that myo-inositol hexakisphosphate (IHP) constituted about 80% of phosphate monoesters and was increased from 16 to 28% in the poultry litter during the composting period. The combined applications of chemical extraction and molecular-spectroscopic techniques determined that water-soluble P in poultry litter was transformed into less soluble phases, primarily hydroxyapatite and IHP, during the composting period. PMID:24735189

  3. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed1[W

    PubMed Central

    Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas

    2014-01-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  4. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  5. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  6. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  7. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using (31)P Magnetic Resonance Spectroscopy.

    PubMed

    Li, Ming; Chen, Fei; Wang, Huiting; Wu, Wenbo; Zhang, Xin; Tian, Chuanshuai; Yu, Haiping; Liu, Renyuan; Zhu, Bin; Zhang, Bing; Dai, Zhenyu

    2016-01-01

    Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent (31)P Magnetic Resonance Spectroscopy ((31)P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The (31)P-MRS coil was firmly placed under the middle of the quadriceps . (31)P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had

  8. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using 31P Magnetic Resonance Spectroscopy

    PubMed Central

    Wang, Huiting; Wu, Wenbo; Zhang, Xin; Tian, Chuanshuai; Yu, Haiping; Liu, Renyuan; Zhu, Bin

    2016-01-01

    Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent 31P Magnetic Resonance Spectroscopy (31P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The 31P-MRS coil was firmly placed under the middle of the quadriceps . 31P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had higher

  9. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner. PMID:24637338

  10. Acridine: a versatile heterocyclic nucleus.

    PubMed

    Kumar, Ramesh; Kaur, Mandeep; Kumari, Meena

    2012-01-01

    Acridine is a heterocyclic nucleus. It plays an important role in various medicines. A number of therapeutic agents are based on acridine nucleus such as quinacrine (antimalarial), acriflavine and proflavine (antiseptics), ethacridine (abortifacient), amsacrine and nitracine (anticancer), and tacrine. Acridine is obtained from high boiling fraction of coal tar. It is also obtained in nature from plant and marine sources. Acridine undergoes a number of reactions such as nucleophilic addition, electrophilic substitution, oxidation, reduction, reductive alkylation and photoalkylation. The present review article summarizes the synthesis, reaction, literature review and pharmaceutical importance of acridine. PMID:22574501

  11. Measurement of delta(1)J((199)Hg, (31)P) in [HgPCy3(OAc)2]2 and relativistic ZORA DFT investigations of mercury-phosphorus coupling tensors.

    PubMed

    Bryce, David L; Courchesne, Noémie Manuelle Dorval; Perras, Frédéric A

    2009-12-01

    Using 31P solid-state NMR spectroscopy, anisotropy in the indirect 199Hg-31P spin-spin coupling tensor (DeltaJ) for powdered [HgPCy3(OAc)2]2 (1) has been measured as 4700 +/- 300 Hz. Zeroth-order regular approximation (ZORA) density functional theory (DFT) calculations, including scalar and spin-orbit relativistic effects, performed on 1 and a series of other related compounds show that DeltaJ(199Hg, (31)P) arises entirely from the ZORA Fermi-contact-spin-dipolar cross term. The calculations validate assumptions made in the spectral analysis of 1 and in previous determinations of DeltaJ in powder samples, namely that J is axially symmetric and shares its principal axis system with the direct dipolar coupling tensor (D). Agreement between experiment and theory for various 199Hg, 31P spin-spin coupling anisotropies is reasonable; however, experimental values of 1J(199Hg, 31P)(iso) are significantly underestimated by the calculations. The most important improvements in the agreement were obtained as a result of including more of the crystal lattice in the model used for the calculations, e.g., a change of 43% was noted for 1J(199Hg, 31P)(iso) in [HgPPh3(NO3)2]2 depending on whether the two or three nearest nitrate ions are included in the model. Finally, we have written a computer program to simulate the effects of non-axial symmetry in J and of non-coincidence of the J and D on powder NMR spectra. Simulations clearly show that both of these effects have a pronounced impact on the 31P NMR spectrum of 199Hg-31P spin pairs, suggesting that the effects should be observable experimentally if a suitable compound can be identified. PMID:20056396

  12. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  13. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    Information about the interaction between nucleic acids and coat proteins in intact virus particles may be obtained by studying the restricted backbone dynamics of the incapsulated nucleic acids using 31P nuclear magnetic resonance (NMR) spectroscopy. In this article, simulations are carried out to investigate how reorientation of a rod-shaped virus particle as a whole and isolated nucleic acid motions within the virion influence the 31P NMR lineshape and transversal relaxation dominated by the phosphorus chemical shift anisotropy. Two opposite cases are considered on a theoretical level. First, isotropic rotational diffusion is used as a model for mobile nucleic acids that are loosely or partially bound to the protein coat. The effect of this type of diffusion on lineshape and transversal relaxation is calculated by solving the stochastic Liouville equation by an expansion in spherical functions. Next, uniaxial rotational diffusion is assumed to represent the mobility of phosphorus in a virion that rotates as a rigid rod about its length axis. This type of diffusion is approximated by an exchange process among discrete sites. As turns out from these simulations, the amplitude and the frequency of the motion can only be unequivocally determined from experimental data by a combined analysis of the lineshape and the transversal relaxation. In the fast motional region both the isotropic and the uniaxial diffusion model predict the same transversal relaxation as the Redfield theory. For very slow motion, transversal relaxation resembles the nonexponential relaxation as observed for water molecules undergoing translational diffusion in a magnetic field gradient. In this frequency region T2e is inversely proportional to the cube root of the diffusion coefficient. In addition to the isotropic and uniaxial diffusion models, a third model is presented, in which fast restricted nucleic acid backbone motions dominating the lineshape are superimposed on a slow rotation of the

  14. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  15. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  16. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  17. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  18. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  19. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  20. Effects of decreased pH on membrane structural organization of Escherichia coli grown in different fatty acid-supplemented media: a 31P NMR study.

    PubMed

    Ianzini, F; Guidoni, L; Simone, G; Viti, V; Yatvin, M B

    1990-04-01

    Total membranes from Escherichia coli cells grown in different fatty acid-supplemented media have been examined by 31P NMR at different pH values. The isolated inner and outer membranes were also studied and compared to the liposomes formed with the corresponding extracted lipids. While the liposomes show structures that are correlated with lipid composition, degree of fatty acid unsaturation, and pH, the membrane structure is mainly bilayer. The presence of two bilayer phases characterized by different chemical shift anisotropy values (delta nu csa) is detectable at neutral pH; a perturbation of the bilayer phase characterized by the smallest delta nu csa is produced by low pH. Moreover, an isotropic peak is always present in the membrane NMR spectra: its attribution to cardiolipin molecules is discussed on the basis of digestion experiments with phospholipase C. PMID:2181934

  1. Hydration behaviour of POPC/C(12)-Bet mixtures investigated by sorption gravimetry, (31)P NMR spectroscopy and X-ray diffraction.

    PubMed

    Pfeiffer, H; Weichert, H; Klose, G; Heremans, K

    2012-02-01

    The hydration behaviour of mixtures of the zwitterionic phospholipid 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) and the zwitterionic surfactant N,N-dimethyl-N-dodecyl-betain (C(12)-Bet) was investigated by sorption gravimetry, solid-state (31)P NMR-spectroscopy and small angle X-ray diffraction (SAXD). Negative excess hydration (dehydration) was found for almost all hydration degrees investigated. This behaviour is explained by the formation of an inner salt between the dipoles of phospholipid and surfactant headgroups that show a reverse sequence of partial charges with respect to the hydrocarbon backbone. The formation of an inner-salt most probably reduces potential water binding sites. Moreover, NMR data suggest that the incorporation of the zwitterionic surfactant into the phospholipid membrane is correlated with reorientation of the phosphate axis towards the membrane director as well as with reduced lateral and wobbling diffusion. PMID:22285958

  2. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle

    PubMed Central

    Vorgerd, M; Zange, J

    2007-01-01

    Summary McArdle’s disease is caused by genetic defects of the musclespecific isozyme of glycogen phosphorylase, which block ATP formation from glycogen in skeletal muscle. Creatine supplementation and ketogenic diet have been tested as potential supplements for muscle energy metabolism which may improve muscle symptomatic. Outcome measures were clinical scores describing muscle symptomatic and parameters derived from 31P-MRS examinations on working muscle. In two placebo controlled cross-over studies low dose creatine showed beneficial effects on muscle symptoms and performance whereas high dose creatine distinctly worsened muscle symptomatic in patients. In both studies, however, the absence of an elevation in phosphocreatine indicated the absence of a creatine uptake by the muscle fibre. The effects of creatine on muscle symptomatic may be independent from energy metabolism in muscle. In a case study, ketogenic diet improved muscle symptomatic and performance. However, these effects again did not result in 31PMRS visible changes in muscle energy metabolism. PMID:17915573

  3. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  4. Topographical analysis of regulatory and metal ion binding sites on glutamine synthetase from Escherichia coli: 13C and 31P nuclear magnetic resonance and fluorescence energy transfer study

    PubMed Central

    Villafranca, J. J.; Rhee, S. G.; Chock, P. B.

    1978-01-01

    The paramagnetic effect of Mn(II) on 13C and 31P nuclear magnetic resonance signals from the [2-13C]ATP adenylylated glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming); EC 6.3.1.2] from Escherichia coli was measured. This effect permitted the determination of distances from the 2-C position and the phosphorus of covalently bound AMP to the two Mn(II) binding sites, n1 and n2. Binding of Mn(II) to the n1 site converts an inactive apo-enzyme to its active form, while the metal ion bound at n2 occupies the metal-nucleotide substrate site. The distances from Mn(II) at the n1 and n2 sites to phosphorus are ∼10 and ∼7 Å and to the 2-C position of the adenine ring are ∼12 and ∼11 Å, respectively. The fluorescence energy transfer method was used to determine distances between Co(II) at n1 and n2 and the adenylyl site. For this experiment the enzyme was adenylylated with ε-ATP. The distances between ε-adenine and Co(II) at n1 and n2 are ∼13 and ∼11 Å, respectively. Quantitation of the paramagnetic effect due to Co(II) on the 31P nuclear magnetic resonance signal yielded values of 8 and 6 Å for the distances between the phosphorus of the covalently bound AMP and the n1 and n2 sites, respectively. The results reveal that the covalent modification site is very close to the catalytic center of the enzyme. In this study both nuclear magnetic resonance and fluorescence energy transfer techniques have been used to determine distances between the same set of sites on an enzyme surface. PMID:26053

  5. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event. PMID:3543375

  6. Adenosine triphosphate infusion increases liver energy status in advanced lung cancer patients: an in vivo 31P magnetic resonance spectroscopy study.

    PubMed

    Leij-Halfwerk, Susanne; Agteresch, Hendrik J; Sijens, Paul E; Dagnelie, Pieter C

    2002-02-01

    We recently observed inhibition of weight loss in patients with advanced nonsmall-cell lung cancer after intravenous infusion of ATP. Because liver ATP levels were found to be decreased in lung cancer patients with weight loss, the present 31P magnetic resonance spectroscopy (MRS) study was aimed at investigating whether ATP infusion restores liver energy status in these patients. Nine patients with advanced nonsmall-cell lung cancer (stage IIIB/IV) were studied 1 week before (baseline) and at 22 to 24 hours of continuous ATP infusion (37-75 microg/kg/min). Localized hepatic 31P MR spectra (repetition time 15 seconds), obtained in the overnight-fasted state, were analyzed for ATP and P(i) content. Ten healthy subjects (without ATP infusion) served as control. Liver ATP levels in lung cancer patients increased from 8.8 +/- 0.7% (relative to total MR-detectable phosphate; mean +/- SE) at baseline to 12.2 +/- 0.9% during ATP infusion (P <.05), i.e., a level similar to that in healthy subjects (11.9 +/- 0.9%). The increase in ATP level during ATP infusion was most prominent in patients with > or = 5% weight loss (baseline: 7.9 +/- 0.7%, during ATP infusion: 12.8 +/- 1.0%, P < 0.01). In conclusion, ATP infusion restores hepatic energy levels in patients with advanced lung cancer, especially in weight-losing patients. These changes may contribute to the previously reported beneficial effects of ATP infusion on the nutritional status of lung cancer patients. PMID:11826418

  7. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.

    PubMed

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  8. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).

    PubMed

    Schocke, Michael F H; Esterhammer, Regina; Kammerlander, Christian; Rass, Anton; Kremser, Christian; Fraedrich, Gustav; Jaschke, Werner R; Greiner, Andreas

    2004-01-01

    Several previous 31 phosphorus magnetic resonance spectroscopy ((31)P MRS) studies performing incremental or progressive muscle exercises have observed that a decrease in pH is accompanied with an acceleration in phosphocreatine (PCr) hydrolysis. The purpose of this study was to investigate the relationship between PCr breakdown and pH during isotonic, exhaustive, incremental plantar flexion exercises. We included eight healthy, male volunteers into this study. Using a 1.5 Tesla MR scanner and a self-built exercise bench, we performed serial free induction decay (FID) (31)P MRS measurements with a time resolution of 1 min at rest, isotonic calf muscle exercise, and recovery. The exercise protocol consisted of 5-min intervals with 4.5, 6, 7.5, and 9 W workload followed by 9-min recovery. Changes in PCr and inorganic phosphate (Pi) were determined as percent changes in comparison to the baseline. In addition, pH values were calculated. This study obtained significant decreases in PCr corresponding to the gradual increases in workload. In each workload level that was succeeded by all volunteers, PCr hydrolysis passed into a steady state. After an early biphasic response, we detected a significant decrease in pH from the first to the second minute of the 6-W workload level followed by a further continuous decrease in pH up to the second minute of the recovery phase. The decrease in pH was not accompanied by acceleration in PCr hydrolysis. In conclusion, this study shows that PCr hydrolysis during incremental plantar flexion exercises passes into a steady state at different workload levels. The observed decrease in pH does not result in acceleration of PCr hydrolysis. PMID:14972400

  9. Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from 13C, 31P and 19F Solid-State NMR

    PubMed Central

    Su, Yongchao; Doherty, Tim; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2009-01-01

    Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg10 and Lys13, in the CPP penetratin. 13C chemical shifts indicate that Arg10 adopts a rigid β-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic β-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature 13C-31P distances between the peptide and the lipid phosphates indicate that both the Arg10 guanidinium Cζ and the Lys13 Cε lie in close proximity to the lipid 31P (4.0 - 4.2 Å), proving the existence of charge-charge interaction for both Arg10 and Lys13 in the gel-phase membrane. However, since lysine substitution in CPPs are known to reduce their translocation ability, we propose that low temperature stabilizes both lysine and arginine interactions with the phosphates, whereas at high temperature the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg10 sidechain and its β-strand conformation at high temperature. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium sidechains. 19F and 13C spin diffusion experiments indicate that penetratin is oligomerized into β-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes. PMID:19364134

  10. Effects of Coenzyme Q10 on Skeletal Muscle Oxidative Metabolism in Statin Users Assessed Using 31P Magnetic Resonance Spectroscopy: a Randomized Controlled Study

    PubMed Central

    Buettner, Catherine; Greenman, Robert L.; Ngo, Long H.; Wu, Jim S.

    2016-01-01

    Objectives Statins partially block the production of coenzyme Q10 (CoQ10), an essential component for mitochondrial function. Reduced skeletal muscle mitochondrial oxidative capacity has been proposed to be a cause of statin myalgia and can be measured using 31phosphorus magnetic resonance spectroscopy (31P-MRS). The purpose of this study is to assess the effect of CoQ10 oral supplementation on mitochondrial function in statin users using 31P-MRS. Design/Setting In this randomized, double-blind, placebo-controlled pilot study, 21 adults aged 47–73 were randomized to statin+placebo (n=9) or statin+CoQ10 (n=12). Phosphocreatine (PCr) recovery kinetics of calf muscles were assessed at baseline (off statin and CoQ10) and 4 weeks after randomization to either statin+CoQ10 or statin+placebo. Results Baseline and post-treatment PCr recovery kinetics were assessed for 19 participants. After 4 weeks of statin+ CoQ10 or statin+placebo, the overall relative percentage change (100*(baseline−follow up)/baseline) in PCr recovery time was −15.1% compared with baseline among all participants, (p-value=0.258). Participants randomized to statin+placebo (n=9) had a relative percentage change in PCr recovery time of −18.9%, compared to −7.7% among participants (n=10) receiving statin+CoQ10 (p-value=0.448). Conclusions In this pilot study, there was no significant change in mitochondrial function in patients receiving 4 weeks of statin+CoQ10 oral therapy when compared to patients on statin+placebo. PMID:27610419

  11. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  12. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  13. Effect of Oxygen Concentration on Viability and Metabolism in a Fluidized-Bed Bioartificial Liver Using 31P and 13C NMR Spectroscopy

    PubMed Central

    Jeffries, Rex E.; Gamcsik, Michael P.; Keshari, Kayvan R.; Pediaditakis, Peter; Tikunov, Andrey P.; Young, Gregory B.; Lee, Haakil; Watkins, Paul B.

    2013-01-01

    Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo 31P and 13C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and 13C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 μm; 3.5×107 cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, β-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady β-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a 13C NMR time course (∼5 h) revealed 2-13C-glycine and 2-13C-glucose to be incorporated into [2-13C-glycyl]glutathione (GSH) and 2-13C-lactate, respectively, with 95% having a lower rate of lactate formation. 31P and 13C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape. PMID:22835003

  14. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K. PMID:23374070

  15. sup 1 H and sup 31 P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF sub 1 ATP synthase

    SciTech Connect

    Devlin, C.C.; Grisham, C.M. )

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their complexes with Mn{sup 2+} bound to both the latent and dithiothreitol-activated CF{sub 1} ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and {sup 1}H and {sup 31}P nuclear relaxation measurements. Titration of both the latent and activated Mn{sup 2+}-CF{sub 1} complexes with ATP, ADP, P{sub i}, Co(NH{sub 3}){sub 4}ATP, Co(NH{sub 3}){sub 4}ADP, and Co(NH{sub 3}){sub 4}AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF{sub 1} by Co(NH{sub 3}){sub 4}AMPPCP with respect to CaATP. {sup 1}H and {sup 31}P nuclear relaxation measurements in solutions of CF{sub 1} and Co(NH{sub 3}){sub 4}AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn{sup 2+} site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the {beta}-P and {gamma}-P of the substrate. The distances from Mn{sup 2+} to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  16. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    PubMed

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. PMID:27354096

  17. Skeletal muscle intracellular pH and levels of high energy phosphates during hypercapnia in intact lizards by /sup 31/P NMR

    SciTech Connect

    Johnson, D.C.; Hitzig, B.M.; Elmden, K.; McFarland, E.; Koutcher, J.; Kazemi, H.

    1986-03-05

    Lizards have been shown to reduce ventilation during CO/sub 2/ breathing. This is thought to be detrimental to the maintenance of intracellular pH (pHi) and levels of high energy phosphates. The authors subjected chameleons (n=4) to 5% CO/sub 2/ breathing and made serial measurements of tail (skeletal) muscle pHi, levels of phosphocreatine (PCr), and ATP utilizing high resolution /sup 31/P NMR. pHi was unchanged from controls (7.27 +/- 0.06 units) (mean +/- SE) during 30 minutes of hypercapnia (7.19 +/- 0.09 units) (p>.2) demonstrating effective regulation of skeletal muscle pHi; however, there were significant decreases in the PCr/ATP ratios to 65% +/- 5% (p<.05) of control. The reduced PCr/ATP ratio does not appear due to decreased O/sub 2/ availability because there were no increases in the levels of glycolytic intermediates and inorganic phosphate which would indicate tissue hypoxia. It is possible that an active process requiring ATP is required for the maintenance of pHi in the presence of hypercapnia and that the reduction of PCr/ATP ratio is a reflection of an increased utilization of ATP.

  18. Time Averaging and Fitting of Nonlinear Metabolic Changes: The Issue of the Time Index Choice Applied to 31P MRS Investigation of Muscle Energetics

    NASA Astrophysics Data System (ADS)

    Simond, G.; Bendahan, D.; Cozzone, P. J.

    2001-03-01

    We present an exact analytical method dedicated to fitting time-dependent exponential-like changes in MR spectra. As an illustration, this method has been applied to fitting metabolic changes recorded by 31P MRS in human skeletal muscle occurring during a rest-exercise-recovery protocol. When recording metabolic changes with the accumulative method, the time averaging of the MR signals implies the choice of a time index for fitting any changes in the features of the associated MR spectra. A critical examination of the different ways (constant, linear, and exponential) of choosing the time index is reported. By numerical analysis, we have calculated the errors generated by the three methods and we have compared their sensitivity to noise. In the case of skeletal muscle, both constant and linear methods introduce large and uncontrolled errors for the whole set of metabolic parameters derived from [PCr] changes. In contrast, the exponential method affords a reliable estimation of critical parameters in muscle bioenergetics in both normal and pathological situations. This method is very easy to implement and provides an exact analytical solution to fitting changes in MR spectra recorded by the accumulative method.

  19. 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise.

    PubMed Central

    Miller, R G; Boska, M D; Moussavi, R S; Carson, P J; Weiner, M W

    1988-01-01

    The goal of these experiments was to investigate the relationship of ATP, phosphocreatine (PCr), inorganic phosphate (Pi), monobasic phosphate (H2PO4-), and pH to human muscle fatigue. Phosphates and pH were measured in adductor pollicis using 31P nuclear magnetic resonance at 2.0 Tesla. The force of muscle contraction was simultaneously measured with a force transducer. The effects of aerobic and anaerobic exercise were compared using two exercise protocols: 4 min sustained maximal voluntary contraction (MVC) and 40 min of repeated intermittent contractions (75% MVC). The sustained maximal contraction produced a rapid decline of MVC and PCr, and was accompanied by a rapid rise of Pi, H+, and H2PO4-. Intermittent exercise produced steady state changes of MVC, pH, and phosphates. No significant changes of ATP were found in either protocol. During fatiguing exercise, PCr and Pi had a nonlinear relationship with MVC. H+ showed a more linear correlation, while H2PO4- showed the best correlation with MVC. Furthermore, the correlations between MVC and H2PO4- were similar in sustained (r = 0.70) and intermittent (r = 0.73) exercise. The highly significant linear relationship between increases of H+ and H2PO4- and the decline of MVC strongly suggests that both H+ and H2PO4- are important determinants of human muscle fatigue. PMID:3350969

  20. In vivo (31)P magnetic resonance spectroscopy and morphometric analysis of the perfused vascular architecture of human glioma xenografts in nude mice.

    PubMed Central

    van der Sanden, B. P.; Rijken, P. F.; Heerschap, A.; Bernsen, H. J.; van der Kogel, A. J.

    1997-01-01

    The relationship between the bioenergetic status of human glioma xenografts in nude mice and morphometric parameters of the perfused vascular architecture was studied using (31)P magnetic resonance spectroscopy (MRS), fluorescence microscopy and two-dimensional digital image analysis. Two tumour lines with a different vascular architecture were used for this study. Intervascular distances and non-perfused area fractions varied greatly between tumours of the same line and tumours of different lines. The inorganic phosphate-nucleoside triphosphate (P(i)/NTP) ratio increased rapidly as mean intervascular distances increased from 100 microm to 300 microm. Two morphometric parameters - the percentage of intervascular distances larger than 200 microm (ivd200) and the non-perfused area fraction at a distance larger than 100 microm from a nearest perfused vessel (area100), - were deduced from these experiments and related to the P(i)/NTP ratio of the whole tumour. It is assumed that an aerobic to anaerobic transition influences the bioenergetic status, i.e. the P(i)/NTP ratio increased linearly with the percentage of ivd200 and the area100. PMID:9166934

  1. Use of superfused rat skeletal muscle for metabolic studies: assessment of pH by 31P n.m.r.

    PubMed Central

    Meynial-Denis, D; Mignon, M; Foucat, L; Bonnet, Y; Bielicki, G; Renou, J P; Lacourt, P; Lacourt, A; Arnal, M

    1993-01-01

    We developed a muscle superfusion system suitable for metabolic studies of small isolated rat muscle ex vivo in real time and in a non-destructive manner by n.m.r. spectroscopy. In order to determine biochemical stability of superfused extensor digitorum longus (EDL) muscle (from fasted 45 and 100 g rats), the energy state and the pH of muscle were continuously monitored by 31P n.m.r. spectroscopy. ATP and phosphocreatine remained stable during 2 h whatever the muscle size (20 or 45 mg). Neither metabolite was a sensitive probe of possible metabolic compartmentation within muscle under our experimental conditions. By contrast, the chemical shift of Pi by its sensitivity to pH was a discriminant factor in the assessment of muscle stability. Indeed, heterogeneity of pH was observed only in the 45 mg EDL muscle resulting from a core region with loss of glycogen. Together, these observations suggest deviations of energy metabolism to supply ATP. Consequently, pH may be considered as a new real-time criterion for monitoring a metabolic heterogeneity due to changes in energy metabolism of muscle preparations ex vivo. Images Figure 1 PMID:8343121

  2. Uptake of metal ions by a new chelating ion exchange resin. Part 3: Protonation constants via potentiometric titration and solid state [sup 31]P NMR spectroscopy

    SciTech Connect

    Nash, K.L.; Rickert, P.G.; Muntean, J.V.; Alexandratos, S.D.

    1994-01-01

    A new chelating ion exchange resin which incorporates methylenediphosphonate, carboxylate, and sulfonate functional groups in a polystyrene-divinylbenzene matrix has been prepared. This resin exhibits exceptionally high affinity for polyvalent cations even from moderately acidic aqueous media. Metal ion coordination occurs primarily at the diphosphonate group with the secondary binding sites contributing to charge neutralization when necessary and possible, and to increasing hydrophilicity of the resin pores. In the present investigation, the protonation equilibria of the phosphonate groups in the resin are investigated via potentiometric titration and solid-state [sup 31]P NMR spectroscopy of the resin. Intrinsic equilibrium constants for the first two diphosphonate protonation reactions are pK[sub 4] = 10.47 and pK[sub 3] = 7.24. The last two protons added to the diphosphonate group are acidic having pK[sub a] values less than 2.5. These protonation constants are consistent with those reported previously for monomer analog 1,1-diphosphonic acids. This result implies that thermodynamic data available in the literature can be used to predict the relative affinity of the resin for polyvalent cations. 17 refs., 2 figs., 3 tabs.

  3. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel.

    PubMed

    Teuber, Kristin; Riemer, Thomas; Schiller, Jürgen

    2010-12-01

    High-performance thin-layer chromatography (HPTLC) is a highly established separation method in the field of lipid and (particularly) phospholipid (PL) research. HPTLC is not only used to identify certain lipids in a mixture but also to isolate lipids (preparative TLC). To do this, the lipids are separated and subsequently re-eluted from the silica gel. Unfortunately, it is not yet known whether all PLs are eluted to the same extent or whether some lipids bind selectively to the silica gel. It is also not known whether differences in the fatty acyl compositions affect the affinities to the stationary phase. We have tried to clarify these questions by using a readily available extract from hen egg yolk as a selected example of a lipid mixture. After separation, the complete lanes or selected spots were eluted from the silica gel and investigated by a combination of MALDI-TOF MS and (31)P NMR spectroscopy. The data obtained were compared with the composition of the total extract (without HPTLC). Although there were significant, solvent-dependent losses in the amount of each lipid, the relative composition of the mixture remained constant; there were also only very slight changes in the fatty acyl compositions of the individual PL classes. Therefore, lipid isolation by TLC may be used without any risk of major sample alterations. PMID:20694807

  4. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  5. Triacontanol and jasmonic acid differentially modulate the lipid organization as evidenced by the fluorescent probe behavior and 31P nuclear magnetic resonance shifts in model membranes.

    PubMed

    Sivakumar Swamy, G; Swamy, Sivakumar G; Ramanarayan, K; Inamdar, Laxmi S; Inamdar, Sanjeev R

    2009-04-01

    Fluorescence resonance energy transfer (FRET), time-resolved fluorescence and anisotropy decays were determined in large unilamellar vesicles (LUVs) of egg phosphatidylcholine with the FRET pair N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phospho-ethanolamine as donor and lissamine rhodamine B 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as acceptor, using 2-ps pulses from a Ti:sapphire laser on LUVs with incorporated plant growth regulators: triacontanol (TRIA) and jasmonic acid (JA). FRET efficiency, energy transfer rate, rotation correlation time, microviscosity, and diffusion coefficient of lateral diffusion of lipids were calculated from these results. It was observed that TRIA and JA differentially modulated all parameters studied. The effect of JA in such modulations was always partially reversed by TRIA. Also, the generalized polarization of laurdan fluorescence indicated that JA enhances the degree of hydration in lipid bilayers to a larger extent than does TRIA. Solid-state (31)P magic-angle spinning nuclear magnetic resonance spectra of LUVs showed two chemical shifts, at 0.009 and -11.988 ppm, at low temperatures (20 degrees C), while at increasing temperatures (20-60 degrees C) only one (at -11.988 ppm) was prominent and the other (0.009 ppm) gradually became obscure. However, LUVs with TRIA exhibited only one of the shifts at 0.353 ppm even at lower temperatures and JA did not affect the chemical shifts. PMID:19418089

  6. [sup 31]P and [sup 27]Al NMR investigations of the effects of pH on aqueous solutions containing aluminum and phosphorus

    SciTech Connect

    Mortlock, R.F.; Bell, A.T.; Radke, C.J. Univ. of California, Berkeley )

    1993-01-21

    [sup 31]P and [sup 27]Al NMR spectroscopies are used to characterize the distribution of soluble aluminophosphate species in aqueous solutions of tetramethylammonium (TMA) hydroxide, phosphoric acid, and aluminum chloride. Solution compositions range from 0.1 to 1 mol % P, P/Al = 0.1-5, P/(TMA)[sub 2]O = 0.37-10. For solutions of 1 mol % P, a phase diagram is constructed for various concentrations of TMAOH and Al. The phase diagram is divided into three regions: a high-pH region (pH [ge] 6), a medium-pH range (2 [le] pH [le] 10) in which stable solid phases exist, and a low-pH region (pH [le] 2). In the low-pH region, soluble aluminophosphate complexes form between P species (H[sub 3]PO[sub 4] acid dimers, H[sub 3]PO[sub 4] molecules, and H[sub 2]PO[sub 4][sup [minus

  7. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  8. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  9. Solid state 31P MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    NASA Astrophysics Data System (ADS)

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-01

    A systematic study of composite powders of niobium oxide phosphate (NbOPO4) and phosphoric acid (H3PO4) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H3PO4 contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, 31P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H3PO4 takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO4 and H3PO4 has reacted to form niobium pyrophosphate (Nb2P4O15). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10-3 S/cm for a sample containing 74.2 M% of H3PO4. Lastly, it was shown that NbOPO4 has no significant conductivity of its own.

  10. Neutral zinc(II) O,O-di-alkyldithiopho- sphates-variable temperature 31P NMR and quantum chemical study of the ZDDP monomer-dimer equilibrium.

    PubMed

    Harrison, J J; Chan, C Y; Onopchenko, A; Pradhan, A R; Petersen, M

    2008-02-01

    A full line-shape analysis of the VT 31P NMR spectra was carried out for the monomer-dimer equilibrium of neutral ZDDP. The energy surface and the energetics of the monomer-dimer equilibrium (DeltaH degrees , DeltaG degrees , Ea, DeltaH(not equal), and DeltaG(not equal)) are reported for three variants wherein the alkyl groups in the ZDDP are 2-ethylhexyl, isopropyl, and isobutyl. We explored a reaction pathway between the monomer and dimer form by means of density functional theory (DFT). The linear combination of atomic orbitals (LCAO) code DMol3 was used together with a synchronous transient method to effectively locate transition states. Vibrational eigenmodes of all intermediates were computed to capture finite temperature effects. Methyl and ethyl were considered as alkyl groups. Two novel intermediates were located-a four-membered ring and a six-membered ring intermediate along the reaction coordinate. Comparison of the experimentally derived and computed energy surfaces was carried out. PMID:18098153

  11. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies.

    PubMed

    Tsvetkova, N M; Phillips, B L; Crowe, L M; Crowe, J H; Risbud, S H

    1998-12-01

    The effect of the carbohydrates trehalose, glucose, and hydroxyethyl starch (HES) on the motional properties of the phosphate headgroup of freeze-dried dipalmitoylphosphatidylcholine (DPPC) liposomes was studied by means of 31P NMR, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The results show that trehalose, which is a strong glass former (Tg = 115 degreesC), elevates the onset of the lipid headgroup rotations and preserves some rotational mobility of the phosphate headgroups after cooling from the liquid-crystalline state. Glucose (Tg = 30 degreesC), a very effective depressant of the phase transition temperature of freeze-dried DPPC, markedly elevates the initiation of the temperature of headgroup rotations. On the other hand, the monosaccharide does not preserve the headgroup disordering when cooled from the liquid-crystalline state. These effects are consistent with formation of hydrogen bonds between the OH groups of the sugar and the polar headgroups of DPPC. They show, however, that hydrogen bonding is not sufficient for preservation of the dynamic properties of freeze-dried DPPC. HES, although a very good glass former (Tg > 110 degreesC), does not depress the phase transition temperature and affects only slightly the rotational properties of freeze-dried DPPC. This lack of effect of HES is associated with the absence of direct interactions with the lipid phosphates, as evidenced by the FTIR results. These data show that vitrification of the additive is not sufficient to affect the dynamic properties of dried DPPC. PMID:9826615

  12. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  13. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  14. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  15. Intersample fluctuations in phosphocreatine concentration determined by 31P-magnetic resonance spectroscopy and parameter estimation of metabolic responses to exercise in humans

    PubMed Central

    Rossiter, H B; Howe, F A; Ward, S A; Kowalchuk, J M; Griffiths, J R; Whipp, B J

    2000-01-01

    The ATP turnover rate during constant-load exercise is often estimated from the initial rate of change of phosphocreatine concentration ([PCr]) using 31P-magnetic resonance spectroscopy (MRS). However, the phase and amplitude characteristics of the sample-to-sample fluctuations can markedly influence this estimation (as well as that for the time constant (τ) of the [PCr] change) and confound its physiological interpretation especially for small amplitude responses. This influence was investigated in six healthy males who performed repeated constant-load quadriceps exercise of a moderate intensity in a whole-body MRS system. A transmit- receive surface coil was placed under the right quadriceps, allowing determination of intramuscular [PCr]; pulmonary oxygen uptake (V̇O2) was simultaneously determined, breath-by-breath, using a mass spectrometer and a turbine volume measuring module. The probability density functions (PDF) of [PCr] and V̇O2 fluctuations were determined for each test during the steady states of rest and exercise and the PDF was then fitted to a Gaussian function. The standard deviation of the [PCr] and V̇O2 fluctuations at rest and during exercise (sr and sw, respectively) and the peak centres of the distributions (xcr and xcw) were determined, as were the skewness (γ1) and kurtosis (γ2) coefficients. There was no difference between sr and sw for [PCr] relative to the resting control baseline (sr= 1.554%Δ (s.d.= 0.44), sw= 1.514%Δ (s.d.= 0.35)) or the PDF peak centres (xcr=−0.013 %Δ (s.d.= 0.09), xcw−0.197 %Δ (s.d.= 0.18)). The standard deviation and peak centre of the ‘noise’ in V̇O2 also did not vary between rest and exercise (sr= 0.0427 l min−1 (s.d.= 0.0104), sw= 0.0640 l min−1 (s.d.= 0.0292); xcr=−0.0051 l min−1 (s.d.= 0.0069), xcw 0.0022 l min−1 (s.d.= 0.0034)). Our results demonstrate that the intersample ‘noise’ associated with [PCr] determination by 31P-MRS may be characterised as a stochastic Gaussian

  16. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.

    PubMed

    Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar

    2010-07-15

    This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. PMID:20452650

  17. Modeling sickle cell vasoocculsion in the rat leg: Quantification of trapped sickle cells and correlation with sup 31 P metabolic and sup 1 H magnetic resonance imaging changes

    SciTech Connect

    Fabry, M.E.; Rajanayagam, V.; Fine, E.; Holland, S.; Gore, J.C.; Nagel, R.L.; Kaul, D.K. )

    1989-05-01

    The authors have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m ({sup 99m}Tc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative {sup 99m}Tc imaging, {sup 31}P magnetic resonance spectroscopy by surface coil at 2 teslas, and {sup 1}H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 {mu}l of SS4 cells was trapped in the microcirculation of the thigh. In contrast, fewer SS discocytes (SS2) or AA cells were trapped. After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T{sub 1} reached a broad maximum at 18-28 hr. When T{sub 1} obtained at this time was plotted against the volume of cells trapped, an increase of T{sub 1} over the control value of 411 {plus minus} 48 msec was found that was proportional to the number of cells trapped. They conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by {sup 1}H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate.

  18. Analysis of Metabolism in Dormant Spores of Bacillus Species by 31P Nuclear Magnetic Resonance Analysis of Low-Molecular-Weight Compounds

    PubMed Central

    Ghosh, Sonali; Korza, George; Maciejewski, Mark

    2014-01-01

    This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium. PMID:25548246

  19. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation. PMID:24759778

  20. /sup 31/P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition

    SciTech Connect

    Campbell-Burk, S.L.; Jones, K.A.; Shulman, R.G.

    1987-11-17

    /sup 31/P nuclear magnetic resonance (NMR) saturation-transfer (ST) techniques have been used to measure steady-state flows through phosphate-adenosine 5'-triphosphate (ATP) exchange reactions in glucose-grown derepressed yeast. The results have revealed that the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK) and by the mitochondrial ATPase contribute to the observed ST. Contributions from these reactions were evaluated by performing ST studies under various metabolic conditions in the presence and absence of either iodoacetate, a specific inhibitor of GAPDH, or the respiratory chain inhibitor antimycin A. Intracellular phosphate (P/sub i/) longitudinal relaxation times were determined by performing inversion recovery experiments during steady-state ATP/sub lambda/ saturation and were used in combination with ST data to determine P/sub i/ consumption rates. /sup 13/C NMR and O/sub 2/ electrode measurements were also conducted to monitor changes in rates of glucose consumption and O/sub 2/ consumption, respectively, under the various metabolic conditions examined. The results suggest that GAPDH/PGK-catalyzed P/sub i/-ATP exchange is responsible for antimycin-resistant saturation transfer observed in anaerobic and aerobic glucose-fed yeast. Kinetics through GAPDH/PGK were found to depend on metabolic conditions. The coupled system appears to operate in a unidirectional manner during anaerobic glucose metabolism and bidirectionally when the cells are respiring on exogenously supplied ethanol. Additionally, mitochondrial ATPase activity appears to be responsible for the transfer observed in iodoacetate-treated aerobic cells supplied with either glucose or ethanol, with synthesis of ATP occurring unidirectionally.

  1. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study.

    PubMed

    Hattingen, Elke; Jurcoane, Alina; Bähr, Oliver; Rieger, Johannes; Magerkurth, Jörg; Anti, Sandra; Steinbach, Joachim P; Pilatus, Ulrich

    2011-12-01

    Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. (31)P and (1)H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2' mapping (indirect marker of oxygen extraction) were investigated in 16 patients with recurrent GBM at 3 Tesla before and 1.5-2 months after initiation of therapy with bevacizumab. Changes of metabolite concentrations and of the quantitative values in the tumor and normal appearing brain tissue were calculated. The Wilcoxon signed-ranks test was used to evaluate differences for tumor/edema versus control as well as changes before versus after commencement of therapy. Survival analyses were performed for significant parameters. Tumor T2', pH, ADC, and T2 decreased significantly in patients responding to bevacizumab therapy (n = 10). Patients with at least 25% T2' decrease during treatment showed longer progression-free and overall survival durations. Levels of high-energy metabolites were lower at baseline; these persisted under therapy. Glycerophosphoethanolamine as catabolic phospholipid metabolite increased in responders. The MRSI data support the hypothesis that bevacizumab induces relative tumor hypoxia (T2' decrease) and affects energy homeostasis in recurrent GBM, suggesting that bevacizumab impairs vascular function. The antiangiogenic effect of bevacizumab is predictive of better outcome and seems to induce antitumoral activity in the responding GBMs. PMID:21890539

  2. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen–glucose deprivation in a neonatal brain slice model of asphyxia

    PubMed Central

    Liu, Jia; Litt, Lawrence; Segal, Mark R; Kelly, Mark J S; Yoshihara, Hikari A I; James, Thomas L

    2011-01-01

    Human clinical trials using 72 hours of mild hypothermia (32°C–34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that 1H/31P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen–glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). Hypothermia was followed by 3 hours of normothermic recovery. Slices collected at different predetermined times were processed, respectively, for 14.1 Tesla NMR analysis, enzyme-linked immunosorbent assay (ELISA) cell-death quantification, and superoxide production. Forty-nine NMR-observable metabolites underwent a multivariate analysis. Separated clustering in scores plots was found for treatment and outcome groups. Final ATP (adenosine triphosphate) levels, severely decreased at normothermia, were restored equally by immediate and delayed hypothermia. Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the 1H spectra included PCr-1H (phosphocreatine in the 1H spectrum), ATP-1H (adenosine triphosphate in the 1H spectrum), and ADP-1H (adenosine diphosphate in the 1H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia. PMID:20717124

  3. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen-glucose deprivation in a neonatal brain slice model of asphyxia.

    PubMed

    Liu, Jia; Litt, Lawrence; Segal, Mark R; Kelly, Mark J S; Yoshihara, Hikari A I; James, Thomas L

    2011-02-01

    Human clinical trials using 72 hours of mild hypothermia (32°C-34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that (1)H/(31)P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen-glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). Hypothermia was followed by 3 hours of normothermic recovery. Slices collected at different predetermined times were processed, respectively, for 14.1 Tesla NMR analysis, enzyme-linked immunosorbent assay (ELISA) cell-death quantification, and superoxide production. Forty-nine NMR-observable metabolites underwent a multivariate analysis. Separated clustering in scores plots was found for treatment and outcome groups. Final ATP (adenosine triphosphate) levels, severely decreased at normothermia, were restored equally by immediate and delayed hypothermia. Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the (1)H spectra included PCr-(1)H (phosphocreatine in the (1)H spectrum), ATP-(1)H (adenosine triphosphate in the (1)H spectrum), and ADP-(1)H (adenosine diphosphate in the (1)H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia. PMID:20717124

  4. Bryostatin 1, a novel antineoplastic agent and protein kinase C activator, induces human myalgia and muscle metabolic defects: a 31P magnetic resonance spectroscopic study.

    PubMed Central

    Hickman, P. F.; Kemp, G. J.; Thompson, C. H.; Salisbury, A. J.; Wade, K.; Harris, A. L.; Radda, G. K.

    1995-01-01

    Bryostatin 1, a novel antineoplastic agent and protein kinase C (PKC) activator, has been found to induce myalgia (muscle pain) 48 h after administration in clinical trials. This is the dose-limiting toxicity and has restricted the duration of therapy in phase I trials. To investigate the mechanisms and try to increase toleration of the drug, we studied calf muscle metabolism of 14 patients at rest and during exercise and subsequent recovery using 31P magnetic resonance spectroscopy (MRS) before and 4 h, 48-72 h and 1-2 weeks following bryostatin therapy. In resting muscle there was a significant (P < 0.001) increase in the phosphodiester/adenosine 5'-triphosphate (PDE/ATP) ratio 48 h post bryostatin and in patients with myalgia compared with pre-bryostatin control studies. Following exercise, patients with myalgia showed significantly slower phosphocreatine (PCr) and ADP recovery half-time (P < or = 0.05) suggesting impaired mitochondrial (oxidative) energy production, possibly due to a direct effect on the mitochondria or secondary to reduced blood flow. The apparent proton efflux rate following exercise was significantly reduced 4 h after bryostatin (P < or = 0.05), suggesting reduced blood flow. The rate of post-exercise reoxygenation was studied in four patients by near-infrared spectroscopy 4 h post bryostatin. In three of these the rate was reduced, consistent with reduced muscle blood flow. Bryostatin 1 appeared to cause a long-lasting impairment of oxidative metabolism and proton washout from muscle, consistent with a vasoconstrictive action. Thus these studies provide evidence for two mechanisms of the dose-limiting toxicity for bryostatin. Prospective studies on the use of vasodilators to improve the tolerance of the drug should be carried out. PMID:7547256

  5. 31P NMR lineshapes of beta-P (ATP) in the presence of Mg2+ and Ca2+: estimate of exchange rates.

    PubMed

    Vasavada, K V; Ray, B D; Nageswara Rao, B D

    1984-08-01

    The 31P NMR chemical shift of beta-P of adenosine triphosphate (ATP) undergoes a substantial change (approximately 2-3 ppm) upon chelation of divalent ions such as Mg2+ or Ca2+. In the presence of nonsaturating amounts of Mg2+ or Ca2+, the lineshape of this resonance depends on the characteristic association and dissociation rates of these metal-ATP complexes. A procedure for computer simulation of this lineshape is outlined. A comparison of computer-simulated lineshapes with the experimental lineshapes obtained at 121 MHz was used to determine the following dissociation rate of Mg2+ and Ca2+ from their ATP complexes at 20 degrees C and pH 8.0: Ca2+, greater than 3 X 10(5) s-1 (Hepes buffer); Mg2+, 1200 s-1 (no buffer), 1000 s-1 (Tris buffer) and 2100 s-1 (Hepes buffer). The limits of error are +/- 10% in these values. For the Mg2+ complexes, the rates were determined as a function of temperature to obtain activation energies (with a maximum deviation of 10% in the least-squares fit): 8.1 Kcal/mole (no buffer and Hepes buffer) and 6.8 kcal/mole (Tris buffer). Lineshapes of the beta-P resonance simulated as a function of Mg2+ concentration, using 2100 s-1 for the dissociation rate, are also presented. The computer simulation of lineshapes offers a reliable and straightforward method for the determination of exchange rates of diamagnetic cations from their ATP complexes, under a variety of sample conditions. PMID:6332879

  6. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance.

    PubMed

    Shaghaghi, Hoora; Kadlecek, Stephen; Siddiqui, Sarmad; Pourfathi, Mehrdad; Hamedani, Hooman; Clapp, Justin; Profka, Harrilla; Rizi, Rahim

    2015-12-01

    Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes. PMID:26165188

  7. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. PMID:26624522

  8. Influence of muscle temperature during fatiguing work with the first dorsal interosseous muscle in man: a 31P-NMR spectroscopy study.

    PubMed

    Wade, A J; Broadhead, M W; Cady, E B; Llewelyn, M E; Tong, H N; Newham, D J

    2000-02-01

    Six healthy subjects rapidly lifted and lowered a small (250 g) weight with the first dorsal interosseous muscle (FDI) of one hand while the work performed was recorded continuously until fatigue (defined as losing the ability to continue lifting). Work was recorded in units of chart recorder trace displacement from baseline (centimeters) as an isotonic transducer followed the movement of the weight. In all experiments, the temperature of the hand was first adjusted by immersion in a controlled-temperature water bath. In the warmest condition, the skin surface temperature over the FDI was 30.5(0.30) degrees C [mean (SE)]. After moderate cooling, this surface temperature was 21.5(0.16) degrees C. Cooling significantly reduced the time taken to reach fatigue and more than halved the work capacity. An intermediate degree of cooling was also used in four subjects, showing that most of the effects seen were changing incrementally. Before work, and at fatigue, intracellular metabolic conditions in the FDI were studied by phosphorus nuclear magnetic resonance (31P-NMR) spectroscopy, with occlusion of the blood flow maintained during measurements. The mean intracellular pH of the FDI was also calculated. The changes observed were all consistent with the fact that intense work requires energy which must be derived largely from intracellular stores of phosphocreatine and glycogen. Less work made less demand upon reserves, and created lower concentrations of waste products and by-products. The observations did not, however, allow us to explain why fatigue occurred at a particular point or why work capacity was reduced by cooling. PMID:10638378

  9. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  10. Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans

    PubMed Central

    Wegrzyk, Jennifer; Fouré, Alexandre; Le Fur, Yann; Maffiuletti, Nicola A.; Vilmen, Christophe; Guye, Maxime; Mattei, Jean-Pierre; Place, Nicolas; Bendahan, David; Gondin, Julien

    2015-01-01

    Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit–at least in some subjects (i.e., responders)–a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI’s during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality–at least in this subgroup of subjects–by possibly exhibiting a muscle activation pattern similar to VOL contractions. PMID:26619330

  11. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  12. 31P and 1H MRS of DB-1 Melanoma Xenografts: Lonidamine Selectively Decreases Tumor Intracellular pH and Energy Status and Sensitizes Tumors to Melphalan

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Ho, Andrew; Lee, Seung-Cheol; Darpolor, Moses M.; Pickup, Stephen; Zhou, Rong; Heitjan, Daniel F.; Leeper, Dennis B.; Glickson, Jerry D.

    2012-01-01

    In vivo 31P MRS demonstrates that human melanoma xenografts in immunosuppressed mice treated with lonidamine (LND, 100 mg/kg, i.p.) exhibit a decrease in intracellular pH (pHi) from 6.90 ± 0.05 to 6.33 ± 0.10 (p < 0.001), a slight decrease in extracellular pH (pHe) from 7.00 ± 0.04 to 6.80 ± 0.07 (p > 0.05), and a monotonic decline in bioenergetics (NTP/Pi) by 66.8 ± 5.7% (p < 0.001) relative to the baseline level. Both bioenergetics and pHi decreases were sustained for at least 3 hr following LND treatment. Liver exhibited a transient intracellular acidification by 0.2 ± 0.1 pH units (p > 0.05) at 20 min post-LND with no significant change in pHe and a small transient decrease in bioenergetics, 32.9 ± 10.6 % (p > 0.05), at 40 min post-LND. No changes in pHi or ATP/Pi were detected in the brain (pHi, bioenergetics; p > 0.1) or skeletal muscle (pHi, pHe, bioenergetics; p > 0.1) for at least 120 min post-LND. Steady-state tumor lactate monitored by 1H MRS with a selective multiquantum pulse sequence with Hadamard localization increased ~3-fold (p = 0.009). Treatment with LND increased systemic melanoma response to melphalan (LPAM; 7.5 mg/kg, i.v.) producing a growth delay of 19.9 ± 2.0 d (tumor doubling time = 6.15 ± 0.31d, log10 cell-kill = 0.975 ± 0.110, cell-kill = 89.4 ± 2.2%) compared to LND alone of 1.1 ± 0.1 d and LPAM alone of 4.0 ± 0.0 d. The study demonstrates that the effects of LND on tumor pHi and bioenergetics may sensitize melanoma to pH-dependent therapeutics such as chemotherapy with alkylating agents or hyperthermia. PMID:22745015

  13. The retrotrapezoid nucleus and breathing.

    PubMed

    Guyenet, Patrice G; Stornetta, Ruth L; Abbott, Stephen B G; Depuy, Seth D; Kanbar, Roy

    2012-01-01

    The retrotrapezoid nucleus (RTN) is located in the rostral medulla oblongata close to the ventral surface and consists of a bilateral cluster of glutamatergic neurons that are non-aminergic and express homeodomain transcription factor Phox2b throughout life. These neurons respond vigorously to increases in local pCO(2) via cell-autonomous and paracrine (glial) mechanisms and receive additional chemosensory information from the carotid bodies. RTN neurons exclusively innervate the regions of the brainstem that contain the respiratory pattern generator (RPG). Lesion or inhibition of RTN neurons largely attenuates the respiratory chemoreflex of adult rats whereas their activation increases respiratory rate, inspiratory amplitude and active expiration. Phox2b mutations that cause congenital central hypoventilation syndrome in humans prevent the development of RTN neurons in mice. Selective deletion of the RTN Phox2b-VGLUT2 neurons by genetic means in mice eliminates the respiratory chemoreflex in neonates.In short, RTN Phox2b-VGLUT2 neurons are a major nodal point of the CNS network that regulates pCO(2) via breathing and these cells are probable central chemoreceptors. PMID:23080151

  14. The multifunctional lateral geniculate nucleus.

    PubMed

    Weyand, Theodore G

    2016-02-01

    Providing the critical link between the retina and visual cortex, the well-studied lateral geniculate nucleus (LGN) has stood out as a structure in search of a function exceeding the mundane 'relay'. For many mammals, it is structurally impressive: Exquisite lamination, sophisticated microcircuits, and blending of multiple inputs suggest some fundamental transform. This impression is bolstered by the fact that numerically, the retina accounts for a small fraction of its input. Despite such promise, the extent to which an LGN neuron separates itself from its retinal brethren has proven difficult to appreciate. Here, I argue that whereas retinogeniculate coupling is strong, what occurs in the LGN is judicious pruning of a retinal drive by nonretinal inputs. These nonretinal inputs reshape a receptive field that under the right conditions departs significantly from its retinal drive, even if transiently. I first review design features of the LGN and follow with evidence for 10 putative functions. Only two of these tend to surface in textbooks: parsing retinal axons by eye and functional group and gating by state. Among the remaining putative functions, implementation of the principle of graceful degradation and temporal decorrelation are at least as interesting but much less promoted. The retina solves formidable problems imposed by physics to yield multiple efficient and sensitive representations of the world. The LGN applies context, increasing content, and gates several of these representations. Even if the basic concentric receptive field remains, information transmitted for each LGN spike relative to each retinal spike is measurably increased. PMID:26479339

  15. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA. PMID:25102783

  16. Nucleus accumbens stimulation in pathological obesity.

    PubMed

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  17. 31P MR spectroscopy and computational modeling identify a direct relation between Pi content of an alkaline compartment in resting muscle and phosphocreatine resynthesis kinetics in active muscle in humans.

    PubMed

    van Oorschot, Joep W M; Schmitz, Joep P J; Webb, Andrew; Nicolay, Klaas; Jeneson, Jeroen A L; Kan, Hermien E

    2013-01-01

    The assessment of mitochondrial properties in skeletal muscle is important in clinical research, for instance in the study of diabetes. The gold standard to measure mitochondrial capacity non-invasively is the phosphocreatine (PCr) recovery rate after exercise, measured by (31)P Magnetic Resonance spectroscopy ((31)P MRS). Here, we sought to expand the evidence base for an alternative method to assess mitochondrial properties which uses (31)P MRS measurement of the Pi content of an alkaline compartment attributed to mitochondria (Pi2; as opposed to cytosolic Pi (Pi1)) in resting muscle at high magnetic field. Specifically, the PCr recovery rate in human quadriceps muscle was compared with the signal intensity of the Pi2 peak in subjects with varying mitochondrial content of the quadriceps muscle as a result of athletic training, and the results were entered into a mechanistic computational model of mitochondrial metabolism in muscle to test if the empirical relation between Pi2/Pi1 ratio and the PCr recovery was consistent with theory. Localized (31)P spectra were obtained at 7T from resting vastus lateralis muscle to measure the intensity of the Pi2 peak. In the endurance trained athletes a Pi2/Pi1 ratio of 0.07 ± 0.01 was found, compared to a significantly lower (p<0.05) Pi2/Pi1 ratio of 0.03 ± 0.01 in the normally active group. Next, PCr recovery kinetics after in magnet bicycle exercise were measured at 1.5T. For the endurance trained athletes, a time constant τPCr 12 ± 3 s was found, compared to 24 ± 5s in normally active subjects. Without any parameter optimization the computational model prediction matched the experimental data well (r(2) of 0.75). Taken together, these results suggest that the Pi2 resonance in resting human skeletal muscle observed at 7T provides a quantitative MR-based functional measure of mitochondrial density. PMID:24098796

  18. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  19. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  20. Testing string dynamics in lepton nucleus reactions

    SciTech Connect

    Gyulassy, M.; Pluemer, M.

    1989-10-01

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus ({ell}A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs.

  1. Volumes of cochlear nucleus regions in rodents.

    PubMed

    Godfrey, Donald A; Lee, Augustine C; Hamilton, Walter D; Benjamin, Louis C; Vishwanath, Shilpa; Simo, Hermann; Godfrey, Lynn M; Mustapha, Abdurrahman I A A; Heffner, Rickye S

    2016-09-01

    The cochlear nucleus receives all the coded information about sound from the cochlea and is the source of auditory information for the rest of the central auditory system. As such, it is a critical auditory nucleus. The sizes of the cochlear nucleus as a whole and its three major subdivisions - anteroventral cochlear nucleus (AVCN), posteroventral cochlear nucleus (PVCN), and dorsal cochlear nucleus (DCN) - have been measured in a large number of mammals, but measurements of its subregions at a more detailed level for a variety of species have not previously been made. Size measurements are reported here for the summed granular regions, DCN layers, AVCN, PVCN, and interstitial nucleus in 15 different rodent species, as well as a lagomorph, carnivore, and small primate. This further refinement of measurements is important because the granular regions and superficial layers of the DCN appear to have some different functions than the other cochlear nucleus regions. Except for DCN layers in the mountain beaver, all regions were clearly identifiable in all the animals studied. Relative regional size differences among most of the rodents, and even the 3 non-rodents, were not large and did not show a consistent relation to their wide range of lifestyles and hearing parameters. However, the mountain beaver, and to a lesser extent the pocket gopher, two rodents that live in tunnel systems, had relative sizes of summed granular regions and DCN molecular layer distinctly larger than those of the other mammals. Among all the mammals studied, there was a high correlation between the size per body weight of summed granular regions and that of the DCN molecular layer, consistent with other evidence for a close relationship between granule cells and superficial DCN neurons. PMID:27435005

  2. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  3. Commissural axons of the mouse cochlear nucleus.

    PubMed

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith

    2013-05-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course. PMID:23124982

  4. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  5. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law. PMID:27373306

  6. Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.

    1988-01-01

    A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.

  7. Electron impact excitation of helium: A polarization correlation study of the 3(1)P state at 40 eV incident energy

    NASA Astrophysics Data System (ADS)

    Harris, Clifford Lee

    The present work reports the development and implementation of an electron scattering apparatus able to investigate a wide range of electron impact processes by coincidence methods. The electron gun is capable of producing a collimated electron beam of approximately 1 μ A throughout an energy range of 30eV to 200eV. A hemispherical electrostatic analyzer is used to collect scattered electrons. It was designed to allow constant energy resolution independent of the scattered energy. The gas target used was an effusive gas jet. The linear and circular polarization state of deexcitation photons emitted perpendicular to the scattering plane can be determined by a vertically mounted polarization analyzer. Polarization analysis of photons emitted in the scattering plane and perpendicular to the incident electron beam direction is also possible. In addition, detection of photons over a wide angular range in the scattering plane is possible. Two automated coincidence data accumulation systems were developed. One is based on a Nucleus PCA card, and the other on a Scientific Solution LabMaster DMA card. Basic modules were written to control Polaroid rotation, and to provide synchronization between data acquisition computers. Custom software packages were developed to provide Pulse-Height Analysis and Multi-Channel Scaling capabilities for the collection of coincidence and energy-loss spectra. The performance of the system has been tested and verified using the polarization correlation technique to study electron impact excitation of He (3 1P) from the ground state. Values of the relative Stokes parameters and the Electron Impact Coherence Parameters over a range of electron scattering angles from 45° to 120°, and at an energy of 40eV, are reported here for the first time. The data are in good agreement with recent predictions of a 111-state convergent close coupling calculation.

  8. A Model of Comet Nucleus Rotation

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.; Rickman, H.; Thomas, N.

    2000-10-01

    Modelling cometary rotation is of particular interest for the preparation of space missions to comets. For example, the mapping phase during the ROSETTA mission must be planned keeping in mind that, unlike most asteroids, the rotational state of most short-period comets might be complex (excited). The modelling of cometary nucleus rotation can also provide us with important parameters that are needed to interpret coma structures or to build time-dependent thermal models of the nucleus. We combine a general three-dimensional model for the nucleus shape, surface properties, and insolation with a simplified thermal model to calculate the local time-dependent activity and consequently the non-gravitational forces acting on the nucleus. The torque of this force is then used to numerically solve the forced Euler equations for a homogeneously outgassing irregularly-shaped cometary nucleus. We will discuss the results of our model for comets 46P/Wirtanen, the target of the ROSETTA mission, and 19P/Borrelly, the target of DEEP-SPACE 1 and derive some generalized inferences.

  9. Protein quality control in the nucleus.

    PubMed

    Jones, Ramon D; Gardner, Richard G

    2016-06-01

    The nucleus is the repository for the eukaryotic cell's genetic blueprint, which must be protected from harm to ensure survival. Multiple quality control (QC) pathways operate in the nucleus to maintain the integrity of the DNA, the fidelity of the DNA code during replication, its transcription into mRNA, and the functional structure of the proteins that are required for DNA maintenance, mRNA transcription, and other important nuclear processes. Although we understand a great deal about DNA and RNA QC mechanisms, we know far less about nuclear protein quality control (PQC) mechanisms despite that fact that many human diseases are causally linked to protein misfolding in the nucleus. In this review, we discuss what is known about nuclear PQC and we highlight new questions that have emerged from recent developments in nuclear PQC studies. PMID:27015023

  10. Interpretive monitoring in the caudate nucleus

    PubMed Central

    Yanike, Marianna; Ferrera, Vincent P

    2014-01-01

    In a dynamic environment an organism has to constantly adjust ongoing behavior to adapt to a given context. This process requires continuous monitoring of ongoing behavior to provide its meaningful interpretation. The caudate nucleus is known to have a role in behavioral monitoring, but the nature of these signals during dynamic behavior is still unclear. We recorded neuronal activity in the caudate nucleus in monkeys during categorization behavior that changed rapidly across contexts. We found that neuronal activity maintained representation of the identity and context of a recently categorized stimulus, as well as interpreted the behavioral meaningfulness of the maintained trace. The accuracy of this cognitive monitoring signal was highest for behavior for which subjects were prone to make errors. Thus, the caudate nucleus provides interpretive monitoring of ongoing behavior, which is necessary for contextually specific decisions to adapt to rapidly changing conditions. DOI: http://dx.doi.org/10.7554/eLife.03727.001 PMID:25415238

  11. Uncovering the Nucleus Candidate for NGC 253

    NASA Astrophysics Data System (ADS)

    Günthardt, G. I.; Agüero, M. P.; Camperi, J. A.; Díaz, R. J.; Gomez, P. L.; Bosch, G.; Schirmer, M.

    2015-11-01

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H2 rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  12. Sigma-nucleus potential in A=28.

    PubMed

    Noumi, H; Saha, P K; Abe, D; Ajimura, S; Aoki, K; Bhang, H C; Endo, T; Fujii, Y; Fukuda, T; Guo, H C; Imai, K; Hashimoto, O; Hotchi, H; Kim, E H; Kim, J H; Kishimoto, T; Krutenkova, A; Maeda, K; Nagae, T; Nakamura, M; Outa, H; Sekimoto, M; Saito, T; Sakaguchi, A; Sato, Y; Sawafta, R; Shimizu, Y; Takahashi, T; Tang, L; Tamura, H; Tanida, K; Watanabe, T; Xia, H H; Zhou, S H; Zhu, L H; Zhu, X F

    2002-08-12

    We have studied the (pi(-),K+) reaction on a silicon target to investigate the sigma-nucleus potential. The inclusive spectrum was measured at a beam momentum of 1.2 GeV/c with an energy resolution of 3.3 MeV (FWHM) by employing the superconducting kaon spectrometer system. The spectrum was compared with theoretical calculations within the framework of the distorted-wave impulse approximation, which demonstrates that a strongly repulsive sigma-nucleus potential with a nonzero size of the imaginary part reproduces the observed spectrum. PMID:12190516

  13. Nucleus model for periodic Comet Tempel 2

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.

  14. Hydrated nucleus pulposus herniation in seven dogs.

    PubMed

    Manunta, M L; Evangelisti, M A; Bergknut, N; Grinwis, G C M; Ballocco, I; Meij, B P

    2015-03-01

    The clinical signs, magnetic resonance imaging (MRI) findings, treatment and follow-up in seven dogs with hydrated nucleus pulposus extrusion (HNPE) are reported. All dogs had tetraparesis or tetraplegia. T2-weighted MRI revealed extradural hyperintense homogeneous material compressing the cervical spinal cord. After conservative treatment (five dogs) or surgical decompression (two dogs), all dogs returned to ambulatory function within 1 month. Follow-up MRI in conservatively treated dogs revealed complete disappearance of the extruded material. Histopathological examination of surgical specimens confirmed that the retrieved material was extruded nucleus pulposus with evidence of early degeneration. PMID:25599897

  15. Characteristics and assessment of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR)

    NASA Astrophysics Data System (ADS)

    Zhang, W. Q.; Zhang, H.; Tang, W. Z.; Shan, B. Q.

    2013-10-01

    We studied the phosphorus (P) pollution, as described by concentrations, distribution and transformation potential, of sediments of the water scarce and heavily polluted Fuyang River, a tributary of the Haihe River, using P fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR).The sediments of the Fuyang River accumulate significant amounts of inorganic phosphorus (Pi) and organic phosphorus (Po) from industrial and domestic wastewater and agricultural non-point pollution. In terms of their contribution to total phosphorus, the rank order of the P fractions was as follows: H2SO4-P > NaOH-Pi > Res-P > NaOH-Po > KCl-P and their average relative proportions were 69.7:47.5:15.9:2.9:1.0 (the proportion was based on the average proportion of the KCl-P). Seven P compounds were detected by the 31P-NMR analysis. Orthophosphate (Ortho-P: 45.2-92.4%) and orthophosphate monoesters (mono-P: 6.6-45.7%) were the dominant forms. Smaller amounts of pyrophosphates (pyro-P: 0.1-6.6%), deoxyribonucleic acid (DNA-P: 0.3-3.9%), phosphonates (phon-P: 0-3.3%), phospholipids (lipids-P: 0-2.7%) and polyphosphate (poly-P: 0-0.04%) were observed in the sediments. Results of P fractionation and 31P-NMR analysis showed that 35% of Pi was labile P, including KCl-P and NaOH-Pi (Fe-P and Al-P). Biogenic-P accounted for 24% of P in the sediments. Analysis of the relationships between P species and water quality indicated that the Po compounds would mineralize to form ortho-P and would be potentially bioavailable for recycling to surface water, supporting further growth of phytoplankton and leading to algal blooms.

  16. Projections of the sensory trigeminal nucleus in a percomorph teleost, tilapia (Oreochromis niloticus).

    PubMed

    Xue, Hao-Gang; Yamamoto, Naoyuki; Yang, Chun-Ying; Kerem, Gulnisa; Yoshimoto, Masami; Sawai, Nobuhiko; Ito, Hironobu; Ozawa, Hitoshi

    2006-03-20

    The sensory trigeminal nucleus of teleosts is the rostralmost nucleus among the trigeminal sensory nuclear group in the rhombencephalon. The sensory trigeminal nucleus is known to receive the somatosensory afferents of the ophthalmic, maxillar, and mandibular nerves. However, the central connections of the sensory trigeminal nucleus remain unclear. Efferents of the sensory trigeminal nucleus were examined by means of tract-tracing methods, in a percomorph teleost, tilapia. After tracer injections to the sensory trigeminal nucleus, labeled terminals were seen bilaterally in the ventromedial thalamic nucleus, periventricular pretectal nucleus, medial part of preglomerular nucleus, stratum album centrale of the optic tectum, ventrolateral nucleus of the semicircular torus, lateral valvular nucleus, prethalamic nucleus, tegmentoterminal nucleus, and superior and inferior reticular formation, with preference for the contralateral side. Labeled terminals were also found bilaterally in the oculomotor nucleus, trochlear nucleus, trigeminal motor nucleus, facial motor nucleus, facial lobe, descending trigeminal nucleus, medial funicular nucleus, and contralateral sensory trigeminal nucleus and inferior olive. Labeled terminals in the oculomotor nucleus and trochlear nucleus showed similar densities on both sides of the brain. However, labelings in the trigeminal motor nucleus, facial motor nucleus, facial lobe, descending trigeminal nucleus, and medial funicular nucleus showed a clear ipsilateral dominance. Reciprocal tracer injection experiments to the ventromedial thalamic nucleus, optic tectum, and semicircular torus resulted in labeled cell bodies in the sensory trigeminal nucleus, with a few also in the descending trigeminal nucleus. PMID:16440296

  17. Nucleus-nucleus interactions between 20 and 65 GeV per nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Derrickson, J. H.; Fountain, W. F.; Meegan, C. A.; Parnell, T. A.; Roberts, F. E.; Watts, J. W.; Oda, H.; Takahashi, Y.; Jones, W. V.

    1987-01-01

    A hybrid electronic-counter/emulsion-chamber instrument was exposed to high-energy cosmic rays on a balloon. The data on 105 nucleus-nucleus collisions in the energy range 20-65 GeV/nucleon and for incident nuclear charges Zp in the range of 22 to 28 are presented. Inclusive characteristics of particle production on different targets (plastic, emulsion, and lead) are shown and compared with models based on the superposition of nucleon-nucleus interactions. Features of a subset of the more central collisions with a plastic target and some characteristics of individual events with the highest multiplicity of produced particles are described.

  18. Compound nucleus studies withy reverse kinematics

    SciTech Connect

    Moretto, L.G.

    1985-06-01

    Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs.

  19. Coherent elastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate

    2015-05-01

    I describe physics potential and experimental prospects for coherent elastic neutrino-nucleus scattering (CEvNS), a process which has not yet been observed. Germanium- based detectors represent a promising technology for CEvNS experiments. I focus primarily on stopped-pion neutrino sources.

  20. Transport model of nucleon-nucleus reaction

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Cucinotta, F. A.

    1986-01-01

    A simplified model of nucleon-nucleus reaction is developed and some of its properties are examined. Comparisons with proton production measured for targets of Al-27, Ni-58, Zr-90, and Bi-209 show some hope for developing an accurate model for these complex reactions. It is suggested that binding effects are the next step required for further development.

  1. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2015-04-01

    The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.

  2. The Nucleus and the Simple Microscope.

    ERIC Educational Resources Information Center

    Ford, Brian J.

    1982-01-01

    The 150th anniversary of the naming of the nucleus by Robert Brown in 1831 was commemorated by re-creating some of his most important observations using two of his microscopes. Comments on Brown's career and the microtechnique employed during his time are provided. (Author/JN)

  3. Nucleon-nucleus interactions from JACEE

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1985-01-01

    Results on hadron-nucleus interactions from the Japanese-American Cooperation Emulsion Experiment experiment are presented. Angular distributions for charged particles, and angular and transverse momentum spectra for photons have been measured for a sample of events with sigma epsilon sub gamma. Results on central rapidity density and transverse energy flow are discussed.

  4. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  5. 1H and 31P NMR and HPLC studies of mouse L1210 leukemia cell extracts: the effect of Au(I) and Cu(I) diphosphine complexes on the cell metabolism.

    PubMed

    Berners-Price, S J; Sant, M E; Christopherson, R I; Kuchel, P W

    1991-03-01

    The effect of the antitumor complex [Au(dppe)2]Cl (where dppe is Ph2P(CH2)2PPh2) on the overall metabolism of cultured mouse L1210 leukemia cells was investigated by comparing 1H and 31P NMR spectra of perchloric acid extracts of cells incubated for 1 h in the presence and absence of 2 microM [Au(dppe)2]Cl. There were marked (ca. two-fold) increases in the levels of lactate and almost all detectable amino acids suggesting a drug-induced increase in the rate of glycolysis and inhibition of protein synthesis. The levels of taurine and phosphorylcholine were significantly decreased and 31P NMR spectra revealed a depletion of nucleoside triphosphates (NTP). The effect on nucleotide metabolism was investigated further by separating purine and pyrimidine nucleotides and precursors by anion-exchange HPLC. NTP levels were depleted by ca. 70-90% and there was a ca. three- to four-fold increase in nucleoside di- and monophosphates. The effect is postulated to be the result of uncoupling of mitochondrial oxidative phosphorylation. The Cu(I) complex [Cu(Ph2PCH = CHPPh2)2]Cl produced a similar effect on the cellular metabolism but was more potent. The water-soluble complex [Cu(Ph2P(CH2)PEt2)2]Cl caused the accumulation of cellular amino acids at a concentration that did not significantly deplete ATP levels. PMID:2062226

  6. Multiple Antiferromagnetic Spin Fluctuations and Novel Evolution of Tc in Iron-Based Superconductors LaFe(As1‑xPx)(O1‑yFy) Revealed by 31P-NMR Studies

    NASA Astrophysics Data System (ADS)

    Shiota, Takayoshi; Mukuda, Hidekazu; Uekubo, Masahiro; Engetsu, Fuko; Yashima, Mitsuharu; Kitaoka, Yoshio; Lai, Kwing To; Usui, Hidetomo; Kuroki, Kazuhiko; Miyasaka, Shigeki; Tajima, Setsuko

    2016-05-01

    We report on 31P-NMR studies of LaFe(As1‑xPx)(O1‑yFy) over wide compositions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Systematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of dxz/yz, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of dxy and dxz/yz. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As1‑xPx)(O1‑yFy) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.

  7. Heavy-flavour dynamics in proton-proton and nucleus-nucleus collisions at LHC

    NASA Astrophysics Data System (ADS)

    Nardi, M.; Beraudo, A.; De Pace, A.; Monteno, M.; Prino, F.

    2016-01-01

    We present recent results for heavy-quark observables in nucleus-nucleus collisions at LHC energies, obtained by the POWLANG transport setup. The initial creation of c c ¯ and b b ¯ pairs is simulated with a perturbative QCD approach (POWHEG+PYTHIA) and validated through comparison to experimental data of proton-proton collisions. In the nucleus-nucleus case, the propagation of the heavy quarks in the plasma is studied with the relativistic Langevin equation, here solved using weak-coupling transport-coefficients. Successively, the heavy quarks hadronize in the medium. We compute the nuclear modification factor RAA and the elliptic flow v2 of the final D mesons, as well as D - h correlations, and compare our results to experimental data from the ALICE and CMS Collaborations.

  8. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  9. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  10. Applicability of fluid-dynamical modeling of nucleus-nucleus collisions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Hazineh, Dean; Auvinen, Jussi; Nahrgang, Marlene; Bass, Steffen

    2015-10-01

    At sufficiently high temperatures and densities, similar to the conditions found in the early universe, QCD matter forms a deconfined state called the quark gluon plasma (QGP). This state of matter can be created in collisions of ultra-relativistic heavy-ions, and RHIC data suggests that this QGP behaves similar to an ideal fluid. Viscous relativistic fluid dynamics therefore is one of the preferred theoretical tools to model the time-evolution and properties of the QGP. As the collision energy or the system size is decreased, the range of applicability of viscous fluid dynamics becomes smaller as the length scale of the interaction among the basic constituents is similar to the overall scale of the collision system itself. In order to investigate the validity of fluid-dynamical modeling of proton-nucleus and nucleus-nucleus collisions at LHC and RHIC, we conduct an analysis of the spatial and temporal evolution of the Knudsen number, i.e. the ratio of the microscopic mean free path to the macroscopic length scale of the system. We show results for large and small collision systems, as a function of the specific shear viscosity, and discuss the range of applicability of fluid-dynamical modeling in relativistic proton-nucleus and nucleus-nucleus collisions at different energies.

  11. Nucleus-nucleus total reaction cross sections, and the nuclear interaction radius

    SciTech Connect

    Abu-Ibrahim, Badawy

    2011-04-15

    We study the nucleus-nucleus total reaction cross sections for stable nuclei, in the energy region from 30A MeV to about 1A GeV, and find them to be in proportion to ({radical}({sigma}{sub pp}{sup tot}Z{sub 1}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 1}{sup 2/3})+{radical}({sigma}{sub pp}{sup tot}Z{sub 2}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 2}{sup 2/3})) {sup 2} in the mass range 8 to 100. Also, we find a parameter-free relation that enables us to predict a total reaction cross section for any nucleus-nucleus within 10% uncertainty at most, using the experimental value of the total reaction cross section of a given nucleus-nucleus. The power of the relation is demonstrated by several examples. The energy dependence of the nuclear interaction radius is deduced; it is found to be almost constant in the energy range from about 200A MeV to about 1A GeV; in this energy range and for nuclei with N=Z, R{sub I}(A)=(1.14{+-}0.02)A{sup 1/3} fm.

  12. Collateral projections from the lateral parabrachial nucleus to the paraventricular thalamic nucleus and the central amygdaloid nucleus in the rat.

    PubMed

    Liang, Shao-Hua; Yin, Jun-Bin; Sun, Yi; Bai, Yang; Zhou, Kai-Xiang; Zhao, Wen-Jun; Wang, Wei; Dong, Yu-Lin; Li, Yun-Qing

    2016-08-26

    Combined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.18% and 9.09%, respectively. Almost all of the FG/TMR double-labeled neurons (95%) exhibited calcitonin gene-related peptide (CGRP) immunoreactivity. In the condition of neuropathic pain, 94% of these neurons showed FOS immunoreactivity. The present data indicates that some of CGRP-expressing neurons in the LPB may transmit nociceptive information toward the PVT and CeA by way of axon collaterals. PMID:27423318

  13. Dropped nucleus following phacoemulsification cataract surgery.

    PubMed

    Tajunisah, I; Reddy, S C

    2007-12-01

    Twenty two cases of dropped nucleus following 1,196 phacoemulsification procedures in cataract surgery were examined retrospectively to determine the incidence, predisposing factors and visual outcomes of this dreaded complication. All the cases underwent pars plana vitrectomy and the lens fragments were removed with phacofragmotome, vitrectomy cutter or delivered through limbus. The incidence of dropped nucleus was 1.84%. The predisposing factors were hard cataracts (13.6%), polar cataracts (9.1%), previously vitrectomized eyes (4.5%) and high myopia (4.5%). The final visual outcome was > or = 6/12 in 10 eyes (45.5%); complications were seen in 5 eyes (22.7%). The interval between initial surgery and vitrectomy, the method of fragment removal and the type of lens implanted, did not influence the final visual outcome. PMID:18705466

  14. Cell Nucleus-Targeting Zwitterionic Carbon Dots

    PubMed Central

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-01-01

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation. PMID:26689549

  15. Macromolecular transport in synapse to nucleus communication.

    PubMed

    Panayotis, Nicolas; Karpova, Anna; Kreutz, Michael R; Fainzilber, Mike

    2015-02-01

    Local signaling events at synapses or axon terminals must be communicated to the nucleus to elicit transcriptional responses. The lengths of neuronal processes pose a significant challenge for such intracellular communication. This challenge is met by mechanisms ranging from rapid signals encoded in calcium waves to slower macromolecular signaling complexes carried by molecular motors. Here we summarize recent findings on macromolecular signaling from the synapse to the nucleus, in comparison to those employed in injury signaling along axons. A number of common themes emerge, including combinatorial signal encoding by post-translational mechanisms such as differential phosphorylation and proteolysis, and conserved roles for importins in coordinating signaling complexes. Neurons may integrate ionic flux with motor-transported signals as a temporal code for synaptic plasticity signaling. PMID:25534890

  16. Core-nucleus distortation in hypernuclei

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.

  17. Coherency in neutrino-nucleus elastic scattering

    NASA Astrophysics Data System (ADS)

    Kerman, S.; Sharma, V.; Deniz, M.; Wong, H. T.; Chen, J.-W.; Li, H. B.; Lin, S. T.; Liu, C.-P.; Yue, Q.; Texono Collaboration

    2016-06-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α ) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold, and target nucleus are studied. The ranges of α that can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α >0.95 are derived.

  18. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  19. Neurofibromin is actively transported to the nucleus.

    PubMed

    Vandenbroucke, Ina; Van Oostveldt, Patrick; Coene, Elisabeth; De Paepe, Anne; Messiaen, Ludwine

    2004-02-27

    Mutations in the neurofibromatosis type 1 (NF1) tumor suppressor gene predispose individuals to a variety of benign and malignant tumors. Many tumor suppressors 'shuttle' between the nucleus and the cytoplasm, thus regulating their function. By expressing different NF1 constructs in COS-7 cells (encompassing exons 28-49 and fused to the green fluorescent protein), we identified a functional nuclear localization signal (NLS) in exon 43. Mutation of the NLS completely abolishes the nuclear entry of the NF1-derivative fusion protein. A highly expressed splice variant that lacks this NLS controls the localization and hence the function of neurofibromin. The localization of neurofibromin in the nucleus may provide novel clues to unknown functions for NF1. PMID:14988005

  20. Revisiting the supratrigeminal nucleus in the rat.

    PubMed

    Fujio, T; Sato, F; Tachibana, Y; Kato, T; Tomita, A; Higashiyama, K; Ono, T; Maeda, Y; Yoshida, A

    2016-06-01

    The supratrigeminal nucleus (Vsup), originally proposed as a premotoneuron pool in the trigeminal reflex arc, is a key structure of jaw movement control. Surprisingly, however, the location of the rat Vsup has not precisely been defined. In light of our previous cat studies, we made two hypotheses regarding the rat Vsup: (1) the Vsup is cytoarchitectonically distinguishable from its surrounding structures; (2) the Vsup receives central axon terminals of the trigeminal mesencephalic nucleus (Vmes) neurons which are primary afferents innervating muscle spindles of jaw-closing muscles and periodontal ligaments around the teeth. To test the first hypothesis, we examined the cytoarchitecture of the rat Vsup. The Vsup was identified as an area medially adjacent to the dorsomedial part of trigeminal principal sensory nucleus (Vp), and extended from the level just rostral to the caudal two-thirds of the trigeminal motor nucleus (Vmo) to the level approximately 150μm caudal to the Vmo. Our rat Vsup was much smaller and its location was considerably different in comparison to the Vsup reported previously. To evaluate the second hypothesis, we tested the distribution patterns of Vmes primary afferent terminals in the cytoarchitectonically identified Vsup. After transganglionic tracer applications to the masseter, deep temporal, and medial pterygoid nerves, a large number of axon terminals were observed in all parts of Vsup (especially in its medial part). After applications to the inferior alveolar, infraorbital, and lingual nerves, a small number of axon terminals were labeled in the caudolateral Vsup. The Vsup could also be identified electrophysiologically. After electrical stimulation of the masseter nerve, evoked potentials with slow negative component were isolated only in the Vsup. The present findings suggest that the rat Vsup can be cytoarchitectonically and electrophysiologically identified, receives somatotopic termination of the trigeminal primary afferents, and

  1. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  2. Development of a Mobile Ice Nucleus Counter

    SciTech Connect

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  3. The fast Ice Nucleus chamber FINCH

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Nillius, B.; Jaenicke, R.; Wetter, T.; Klein, H.; Bingemer, H.

    2008-11-01

    We present first results of our new developed Ice Nucleus (IN) counter FINCH from the sixth Cloud and Aerosol Characterization Experiment (CLACE 6) campaign at Jungfraujoch station, 3571 m asl. Measurements were made at the total and the ICE CVI inlet. Laboratory measurements of ice onset temperatures by FINCH are compared to those of the static diffusion chamber FRIDGE (FRankfurt Ice Deposition Freezing Experiment). Within the errors of both new instruments the results compare well to published data.

  4. Parity violation in the compound nucleus

    SciTech Connect

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-06-10

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized.

  5. Comet nucleus impact probe feasibility study

    NASA Technical Reports Server (NTRS)

    Castro, A. J.

    1980-01-01

    A top level listing of the comet nucleus impact probe (CNIP) feasibility experiments requirements are presented. A conceptual configuration which shows that the feasibility of engineering the experiment is possible and describes the candidate hardware is discussed. The design studies required in order to design the operating experiment are outlined. An overview of a program plan used to estimate a rough order of magnitude cost for the CNIP experiment is given.

  6. Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(I) thiocyanate adducts with bulky monodentate tertiary phosphine ligands.

    PubMed

    Bowmaker, Graham A; Hanna, John V; Hart, Robert D; Healy, Peter C; King, Scott P; Marchetti, Fabio; Pettinari, Claudio; Skelton, Brian W; Tabacaru, Aurel; White, Allan H

    2012-07-01

    A number of adducts of copper(I) thiocyanate with bulky tertiary phosphine ligands, and some nitrogen-base solvates, were synthesized and structurally and spectroscopically characterised. CuSCN:PCy3 (1:2), as crystallized from pyridine, is shown by a single crystal X-ray study to be a one-dimensional polymer ...(Cy3P)2CuSCN(Cy3P)2CuSCN... (1) with the four-coordinate copper atoms linked end-on by S-SCN-N bridging thiocyanate groups. A second form (2), obtained from acetonitrile, was also identified and shown by IR and 31P CPMAS NMR spectroscopy to be mononuclear, with the magnitude of the dν(Cu) parameter measured from the 31P CPMAS and the ν(CN) value from the IR clearly establishing this compound as three-coordinate [(Cy3P)2CuNCS]. Two further CuSCN/PCy3 compounds CuSCN:PCy3 (1:1) (3), and CuSCN:PCy3:py (1:1:1) (4) were also characterized spectroscopically, with the dν(Cu) parameters indicating three- and four-coordinate copper sites, respectively. Attempts to obtain a 1:2 adduct with tri-t-butylphosphine have yielded, from pyridine, the 1:1 adduct as a dimer [(Bu(t)3P)((SCN)(NCS))Cu(PBu(t)3)] (5), while similar attempts with tri-o-tolylphosphine (from acetonitrile and pyridine (= L)) resulted in solvated 1:1:1 CuSCN:P(o-tol)3:L forms as dimeric [{(o-tol)3P}LCu((SCN)(NCS))CuL{P(o-tol)3}] (6 and 8). The solvent-free 1:1 CuSCN:P(o-tol)3 adduct (7), obtained by desolvation of 6, was characterized spectroscopically and dν(Cu) measurements from the 31P CPMAS NMR data are consistent with the decrease in coordination number of the copper atom from four (for 6) (P,N(MeCN)Cu,S,N) to three (for 7) (PCuS,N) upon loss of the acetonitrile of solvation. These results are compared with those previously reported for mononuclear and binuclear PPh3 adducts which demonstrate a clear tendency for the copper centre to remain four-coordinate. The IR spectroscopic measurements on these compounds show that bands in the far-IR spectra provide a much more definitive criterion for

  7. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  8. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  9. Efficient nucleus detector in histopathology images.

    PubMed

    Vink, J P; Van Leeuwen, M B; Van Deurzen, C H M; De Haan, G

    2013-02-01

    In traditional cancer diagnosis, (histo)pathological images of biopsy samples are visually analysed by pathologists. However, this judgment is subjective and leads to variability among pathologists. Digital scanners may enable automated objective assessment, improved quality and reduced throughput time. Nucleus detection is seen as the corner stone for a range of applications in automated assessment of (histo)pathological images. In this paper, we propose an efficient nucleus detector designed with machine learning. We applied colour deconvolution to reconstruct each applied stain. Next, we constructed a large feature set and modified AdaBoost to create two detectors, focused on different characteristics in appearance of nuclei. The proposed modification of AdaBoost enables inclusion of the computational cost of each feature during selection, thus improving the computational efficiency of the resulting detectors. The outputs of the two detectors are merged by a globally optimal active contour algorithm to refine the border of the detected nuclei. With a detection rate of 95% (on average 58 incorrectly found objects per field-of-view) based on 51 field-of-view images of Her2 immunohistochemistry stained breast tissue and a complete analysis in 1 s per field-of-view, our nucleus detector shows good performance and could enable a range of applications in automated assessment of (histo)pathological images. PMID:23252774

  10. The nucleus basalis in Huntington's disease.

    PubMed

    Clark, A W; Parhad, I M; Folstein, S E; Whitehouse, P J; Hedreen, J C; Price, D L; Chase, G A

    1983-10-01

    The nucleus basalis of Meynert (nbM) provides most of the cholinergic input to the cerebral cortex. The loss of cortical choline acetyltransferase (CAT) activity in Alzheimer's disease (AD) and senile dementia of the Alzheimer's type (SDAT) appears to be related to a severe depopulation of the nbM in this dementia. In Huntington's disease (HD), by contrast, there is no loss of cortical CAT activity. The present quantitative study indicates that (1) there is no significant loss of neurons from the nbM in HD, and (2) that the previously described cytologic changes in the neurons of this nucleus in HD patients do not differ significantly from controls. These findings are consistent with the working hypothesis that the types of dementia associated with reductions of neocortical CAT activity are characterized by dysfunction or death of neurons in the nbM, but dementing disorders with normal neocortical CAT activity manifest no major abnormalities in this cholinergic nucleus of the basal forebrain. PMID:6225032

  11. Functional morphology of the suprachiasmatic nucleus.

    PubMed

    Ibata, Y; Okamura, H; Tanaka, M; Tamada, Y; Hayashi, S; Iijima, N; Matsuda, T; Munekawa, K; Takamatsu, T; Hisa, Y; Shigeyoshi, Y; Amaya, F

    1999-07-01

    In mammals, the biological clock (circadian oscillator) is situated in the suprachiasmatic nucleus (SCN), a small bilaterally paired structure just above the optic chiasm. Circadian rhythms of sleep-wakefulness and hormone release disappear when the SCN is destroyed, and transplantation of fetal or neonatal SCN into an arrhythmic host restores rhythmicity. There are several kinds of peptide-synthesizing neurons in the SCN, with vasoactive intestinal peptide, arginine vasopressin, and somatostatine neurons being most prominent. Those peptides and their mRNA show diurnal rhythmicity and may or may not be affected by light stimuli. Major neuronal inputs from retinal ganglion cells as well as other inputs such as those from the lateral geniculate nucleus and raphe nucleus are very important for entrainment and shift of circadian rhythms. In this review, we describe morphological and functional interactions between neurons and glial elements and their development. We also consider the expression of immediate-early genes in the SCN after light stimulation during subjective night and their role in the mechanism of signal transduction. The reciprocal interaction between the SCN and melatonin, which is synthesized in the pineal body under the influence of polysynaptic inputs from the SCN, is also considered. Finally, morphological and functional characteristics of clock genes, particularly mPers, which are considered to promote circadian rhythm, are reviewed. PMID:10433864

  12. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  13. Electrochemical lithiation/delithiation of SnP2O7 observed by in situ XRD and ex situ(7)Li/(31)P NMR, and (119)Sn Mössbauer spectroscopy.

    PubMed

    Bezza, Ilham; Kaus, Maximilian; Riekehr, Lars; Pfaffmann, Lukas; Doyle, Stephen; Indris, Sylvio; Ehrenberg, Helmut; Solhy, Abderrahim; Saadoune, Ismael

    2016-04-21

    SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling. PMID:27029601

  14. Localization of two X-linked mental retardation (XLMR) genes to Xp: MRX37 gene at Xp22.31-p22.32 and a putative MRX gene on Xp22.11-p22.2

    SciTech Connect

    Bar-David, S.; Lerer, I.; Sarfaty, C.K.

    1996-07-12

    MRX genes of 2 families with X-linked mental retardation (XLMR) were localized by linkage analysis. In family A, the gene was mapped to Xp22.31-p22.32, with significant LOD scores to various Xp22 markers within a distance of 6 Mb between DXS1223 and DXS1224. The MRX gene of this family was designated MRX37. In a mentally retarded female who is a carrier of the MRX37 gene, a random pattern of X inactivation was demonstrated. In family B, a positive LOD score, although not significant (<+2), was found with the marker DXS1202 at Xp22.11-p22.2. 15 refs., 4 figs., 2 tabs.

  15. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    SciTech Connect

    Palke, A. C.; Stebbins, J. F.; Boatner, Lynn A

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  16. 31P magic angle spinning NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence of random cation distribution from paramagnetically shifted NMR resonances.

    PubMed

    Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A

    2013-11-01

    We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii. PMID:24131129

  17. The Effect of a C-Terminal Peptide of Surfactant Protein B (SP-B) on Oriented Lipid Bilayers, Characterized by Solid-State 2H- and 31P-NMR

    PubMed Central

    Yang, Tran-Chin; McDonald, Mark; Morrow, Michael R.; Booth, Valerie

    2009-01-01

    SP-BCTERM, a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state 2H- and 31P-NMR were used to examine the effects of SP-BCTERM on mechanically oriented lipid bilayer samples. SP-BCTERM modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The 31P spectra of BLES, which contains ∼1% SP-B, and POPC/POPG with 1% SP-BCTERM, look very similar, supporting a similarity in lipid interactions of SP-BCTERM and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-BCTERM induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively. PMID:19413982

  18. a Unified Approach to Hadron-Hadron Hadron-Nucleus and Nucleus-Nucleus Collisions at High Energy

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Nian

    The problem of multiparticle production in high -energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are studied systematically in the framework of the Geometrical Branching Model (GBM). The model is based on the geometrical properties of nucleons and the stochastic nature of the interaction among the soft partons. The eikonal formalism is used to relate the elastic and inelastic cross sections and AGK cutting rule is used in connection with the multiparticle production process. The stochastic process of Furry branching is employed to describe the proliferation and hadronization of partons which lead to the produced particles. The approach describes hh, hA and AA collisions in a unified formalism for c.m. energies less than 100 GeV. The result of multiplicity distribution of produced particles exhibits Koba-Nielsen-Olesen (KNO) scaling. The universality of KNO scaling breaks down due to the different geometrical sizes of the hadron and nuclei. For hA and AA collisions, the formalism of GBM allows the hadron to be broken (to h^') by the first collision; indeed, it is the attention given to h^'h and h ^'h^' collisions that distinguishes this work from other earlier investigations on the subject. All of the calculated results are in good agreement with experiments. A general Monte Carlo simulation of GBM for multiparticle production in hh, hA and AA collisions is also given. The particle productivity in particular is studied in detail and is contrasted from the case where quark-gluon plasma (QGP) is produced in the AA collisions. This work forms a definitive description of hadronic and nuclear collisions that can serve as a basis from which exotic features such as the formation of QGP can be recognized as signatures deviating from the normal background.

  19. Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions

    SciTech Connect

    Merino, C.; Novikov, I. S.; Shabelski, Yu.

    2009-12-15

    The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.

  20. Cold breakup of spectator residues in nucleus-nucleus collisions at high energy

    NASA Astrophysics Data System (ADS)

    Aichelin, J.; Hüfner, J.; Ibarra, R.

    1984-07-01

    Inclusive data from fragmentation reactions of the type AP+AT-->Z+X are analyzed and a reaction mechanism is proposed. A projectile AP (p, He, α, or Ne) collides with a target nucleus AT (Au) and one fragment with charge Z and energy E is observed at a solid angle Ω. Projectile energies vary between 84A MeV and several A GeV. We propose a parametrization for the triple differential cross section d3σdΩ dE dZ with six free parameters. The parametrization generalizes the two-vector model which is often used to describe spallation products in proton-nucleus collisions. By fitting data from various experiments we establish a systematics of the six parameters. The experimental values of the parameters can be quantitatively understood in a model where the target nucleus breaks into several fragments similar to the shattering of glass.

  1. The orientation of nucleus, nucleus-associated body and protruding nucleolus in aggregating Dictyostelium discoideum.

    PubMed

    Sameshima, M

    1985-02-01

    Dictyostelium discoideum growing or developing on cellulose dialysis membranes were fixed with acrolein vapour for electron microscopy. In interphase amoebae, nucleoli began to protrude from the nuclei. The percentage of cells with protruding nucleoli increased during aggregation by a value approximately twice as high in aggregation streams as in centers. Cells in pseudoplasmodia showed only a low percentage and protrusions disappeared at early culmination stage. The protrusions did not reappear when cells from dissociated pseudoplasmodia migrated toward cAMP. Thus the formation of the protrusions did not depend solely on chemotaxis; rather, it was specific to the aggregation stage. In aggregation streams, the nucleus was anterior in the cell, with the protrusion at its anterior periphery. In contrast, the nucleus associated body (NAB) was evident at the cell's mid-point. This orientation of nucleus and NAB in the aggregating slime mould amoeba is contrary to that seen in human neutrophils or cultured mouse 3T3 cells. PMID:2981691

  2. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  3. The effect of the relative nuclear size on the nucleus-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Erofeeva, I. N.; Murzin, V. S.; Sivoklokov, S. Y.; Smirnova, L. N.

    1985-01-01

    The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere.

  4. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  5. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Jurak, A.; Hayashi, T.; Iwai, J.; Jones, W. V.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  6. High energy factorization in nucleus-nucleus collisions. II. Multigluon correlations

    SciTech Connect

    Gelis, Francois; Lappi, Tuomas

    2008-09-01

    We extend previous results from the preceding paper on factorization in high energy nucleus-nucleus collisions by computing the inclusive multigluon spectrum to next-to-leading order. The factorization formula is strictly valid for multigluon emission in a slice of rapidity of width {delta}Y{<=}{alpha}{sub s}{sup -1}. Our results shows that often neglected disconnected graphs dominate the inclusive multigluon spectrum, and are crucial in order to achieve factorization for this quantity. These results provide a dynamical framework for the Glasma flux tube picture of the striking ''ridge''-like correlation seen in heavy ion collisions.

  7. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2014-03-01

    The Lach Checker Board Model (CBM) of the nucleus and the associated ESM predicts that nature has 5 generations of quarks not 3. The heaviest generation in the Extended Standard Model (ESM) has a t' quark of mass 65 GeV and a b' quark of 42.4 GeV. The lepton in this generation has a mass of 27 GeV. Part of this theory evolved because it appears that the quarks and lepton of each generation have masses related by the geometric mean. The Geometric mean of 65 and 27 is 42. Charge is conserved (+2/3 and -1 is -1/3). Details of how this theory evolved is found on my web site (http://checkerboard.dnsalias.net) or in the following references [T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000); T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/] One independent check of this CB model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light around the ``dn'' quark in the center turns out to be exactly one DeBroglie wavelength. This explains the mass of the proton and neutron and their magnetic moments. This along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. One would expect a t'-anti t' meson of mass of about 130 GeV.

  8. Angular distributions of neutron-nucleus collisions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2011-06-15

    We derive the total and the differential cross sections with respect to angle for neutron-induced reactions from an analytical model having a simple functional form to demonstrate the quantitative agreement with the measured cross sections. The energy dependence of the neutron-nucleus interaction cross sections are estimated successfully for energies ranging from 5 to 600 MeV. In this work, the effect of the imaginary part of the nuclear potential is treated more appropriately compared to our earlier work. The angular distributions for neutron scattering also agree reasonably well with the experimental data at forward angles.

  9. Unveiling the nucleus of NGC 7172

    NASA Astrophysics Data System (ADS)

    Smajić, S.; Fischer, S.; Zuther, J.; Eckart, A.

    2012-08-01

    Aims: We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods: The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV). Results: We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and

  10. Parity violation in the compound nucleus

    SciTech Connect

    Mitchell, G.E.; Crawford, B.E.; Grossmann, C.A.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Penttilae, S.; Seestrom, S.J.; Smith, D.A.; Yen, Y.; Yuan, V.W.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N.R.; Sharapov, E.I.; Stephenson, S.L.

    1999-06-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized. {copyright} {ital 1999 American Institute of Physics.}

  11. The bare nucleus of comet Neujmin 1

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; A'Hearn, Michael F.; Mcfadden, Lucy-Ann

    1987-01-01

    Simultaneous visible and infrared observations of comet P/Neujmin 1 1984c are presented which show that the comet has a large (mean radius 10 km), dark (geometric albedo 2-3 percent) nucleus with a surface which is mostly inert material but which still shows a low level of gaseous activity. This is the first physical evidence that cometary nuclei can leave behind an inert body after the coma activity ceases. No asteroid or asteroid class has been found to match the reflectance and albedo of this comet except possibly some D asteroids.

  12. The Subthalamic Nucleus, oscillations and conflict

    PubMed Central

    Zavala, Baltazar; Zaghloul, Kareem; Brown, Peter

    2014-01-01

    The subthalamic nucleus (STN), which is currently the most common target for deep brain stimulation for Parkinson’s disease, has received increased attention over the past few years for the roles it may play in functions beyond simple motor control. In this article we will highlight several of the theoretical, interventional, and electrophysiological studies that have implicated the STN in response inhibition. Most influential amongst this evidence has been the reported effect of STN deep brain stimulation in increasing impulsive responses in the laboratory setting. Yet, how this relates to pathological impulsivity in patient’s everyday lives remains uncertain. PMID:25688872

  13. A thalamic input to the nucleus accumbens mediates opiate dependence.

    PubMed

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  14. Paraventricular hypothalamic nucleus: axonal projections to the brainstem

    PubMed Central

    Geerling, Joel C.; Shin, Jung-Won; Chimenti, Peter C.; Loewy, Arthur D.

    2010-01-01

    The paraventricular hypothalamic nucleus (PVH) contains many neurons that innervate the brainstem, but information regarding their target sites remains incomplete. Here, we labeled neurons in the rat PVH with an anterograde axonal tracer, Phaseolus vulgaris leucoagglutinin (PHAL) and studied their descending projections in reference to specific neuronal subpopulations throughout the brainstem. While many of their target sites were identified previously, numerous new observations were made. Major findings include: (1) In the midbrain, the PVH projects lightly to the ventral tegmental area, Edinger-Westphal nucleus, ventrolateral periaqueductal gray matter, reticular formation, pedunculopontine tegmental nucleus, and dorsal raphe nucleus. (2) In the dorsal pons, the PVH projects heavily to the pre-locus coeruleus, yet very little to the catecholamine neurons in the locus coeruleus, and selectively targets the viscerosensory subregions of the parabrachial nucleus; (3) In the ventral medulla, the superior salivatory nucleus, retrotrapezoid nucleus, compact and external formations of the nucleus ambiguus, A1 and caudal C1 catecholamine neurons, and caudal pressor area receive dense axonal projections, generally exceeding the PVH projection to the rostral C1 region; (4) The medial nucleus of the solitary tract (including A2 noradrenergic and aldosterone-sensitive neurons) receives the most extensive projections of the PVH, substantially more than the dorsal vagal nucleus or area postrema. Our findings suggest that the PVH may modulate a range of homeostatic functions, including cerebral and ocular blood flow, corneal and nasal hydration, ingestive behavior, sodium intake, and glucose metabolism, as well as cardiovascular, gastrointestinal, and respiratory activities. PMID:20187136

  15. On M31's Double Nucleus

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The recent HST discovery of a double nucleus in M31 brings into prominence the question how long, a second core can survive within the nuclear regions of a galaxy. Physical conditions in the nuclear regions of a typical galaxy help a second core survive, so it can orbit for a long time. possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Our method allows the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 pc comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter core (P1) in M31. We use these physical principles to discuss M31's double nucleus, but they apply to other galaxies as well. and in other astronomical situations such as dumbbell galaxies. galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  16. Comet Borrelly Nucleus Found to the Side

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Deep Space 1 flew by comet Borrelly on September 22, 2001 and took these measurements with its plasma instruments between 90,000 kilometers (56,000 miles) and 2,000 kilometers (1,200 miles) away. These data show that the flow of ions around the comet's rocky, icy nucleus (the center of the deep V-shaped feature) is not centered on the comet's nucleus as scientists expected before the Borrelly flyby. Ions in the turbulent flow are heated to about 1 million Kelvin (2 million degrees Fahrenheit) causing the bands of ions to appear broad and jagged compared to the solar wind.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  17. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; McMillan, C.

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  18. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  19. Neutronic Cross Section Calculations on Fluorine Nucleus

    NASA Astrophysics Data System (ADS)

    Kara, A.; Tel, E.

    2013-06-01

    Certain light nuclei such as Lithium (Li), Beryllium (Be), Fluorine (F) (which are known as FLİBE) and its molten salt compounds (LiF, BeF2 and NaF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure. These molten salt compounds are also a good neutron moderator. In this study, cross sections of neutron induced reactions have been calculated for fluorine target nucleus. The new calculations on the excitation functions of 19F( n, 2n), 19F( n, p), 19F( n, xn), 19F( n, xp) have been made. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, 2n) and ( n, p) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The multiple pre-equilibrium mean free path constant from internal transition have been investigated for 19F nucleus. The obtained results have been discussed and compared with the available experimental data.

  20. Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering

    SciTech Connect

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2009-10-15

    The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scattering at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.

  1. Centrifugal inhibitory processes affecting neurones in the cat cochlear nucleus

    PubMed Central

    Comis, S. D.

    1970-01-01

    1. Stimulation of the lateral part of the olivary S-segment in the cat inhibited neurones in the ipsilateral cochlear nucleus. A smaller number of neurones located in the ventral division of the cochlear nucleus were excited. 2. It is suggested that inhibition in the ipsilateral cochlear nucleus may be mediated directly by fibres making synaptic connexions on the cochlear nucleus neurones, or indirectly by inhibitory fibres acting at the cochlea. 3. The direct inhibitory process at the cochlear nucleus is unaffected by strychnine, whereas the inhibitory process at the cochlea is abolished by strychnine. 4. A cochlear nucleus neurone can be influenced simultaneously by excitatory and inhibitory processes. ImagesFig. 1 PMID:5499823

  2. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  3. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    2012-12-01

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  4. Physical role for the nucleus in cell migration

    NASA Astrophysics Data System (ADS)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  5. Satellite control system nucleus for the Brazilian complete space mission

    NASA Astrophysics Data System (ADS)

    Yamaguti, Wilson; Decarvalhovieira, Anastacio Emanuel; Deoliveira, Julia Leocadia; Cardoso, Paulo Eduardo; Dacosta, Petronio Osorio

    1990-10-01

    The nucleus of the satellite control system for the Brazilian data collecting and remote sensing satellites is described. The system is based on Digital Equipment Computers and the VAX/VMS operating system. The nucleus provides the access control, the system configuration, the event management, history files management, time synchronization, wall display control, and X25 data communication network access facilities. The architecture of the nucleus and its main implementation aspects are described. The implementation experience acquired is considered.

  6. Decrease and conquer: Phacoemulsification technique for hard nucleus cataracts.

    PubMed

    Kim, Hong Kyun

    2009-10-01

    I describe a technique to improve the control and safety of phacoemulsification during hard nucleus cataract surgery. Whereas the goal of the conventional nucleofractis technique is complete fragmentation of the lens, the technique aims to separate the endonuclear core from the epinucleus. This is done in 3 steps: circumferential disassembly, decreasing the central nucleus volume, and conquering the remnant. The technique offers safer and more effective phacoemulsification in patients with hard nucleus cataracts. PMID:19781457

  7. Physical role for the nucleus in cell migration.

    PubMed

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  8. Thalamic reticular nucleus in Caiman crocodilus: forebrain connections.

    PubMed

    Pritz, Michael B

    2016-08-01

    Forebrain connections of the thalamic reticular nucleus associated with the lateral forebrain bundle were analyzed in Caiman crocodilus. Both the compact portion, the dorsal peduncular nucleus, and the diffuse part, the perireticular region, associated with the lateral forebrain bundle, were studied. A small tracer injection into the dorsal peduncular nucleus demonstrated reciprocal connections with a restricted portion of the dorsal thalamus. Tracer placements into this nucleus retrogradely labeled cells in a caudal portion of the ventrolateral area of the telencephalon. These results are compared with similar studies in other amniotes. PMID:27233216

  9. Giant Resonances in the Alpha-Nucleus Interaction

    SciTech Connect

    Karpeshin, F. F.

    2010-04-30

    Tunneling of alpha particles through the Coulomb barrier for the source {sup 135}Pr nucleus is consecutively considered. The effect of sharp peaks arising in the case of coincidence of the alpha energy with that of a quasistationary state within the barrier is elucidated. Peaks' energy depend on the alpha-nucleus potential. They can give rise to 'anomalous' properties of some neutron resonances. The peaks can also be observed in the incoming alpha-nucleus channel. The method can be applied for solution of the reverse problem of the alpha-nucleus scattering.

  10. Constraints on the structure and dynamics of the β-cristobalite polymorphs of SiO2 and AlPO4 from 31P, 27Al and 29Si NMR spectroscopy to 770 K

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Thompson, John G.; Xiao, Yuehui; Kirkpatrick, R. James

    1993-10-01

    Nuclear magnetic resonance spectroscopic data are presented for the cristobalite polymorphs of AlPO4 and SiO2 from RT to 770 K, through their respective α- β transitions. The nuclear magnetic resonance (NMR) data include chemical shifts for 31P, 27Al, and 29Si, 27Al quadrupole coupling parameters, and 31P and 27Al spin-lattice relaxation rates. Also presented are electron diffraction patterns of β-cristobalite AlPO4 that show diffuse scattering similar to that reported previously for SiO2. For the α-phases of both AlPO4 and SiO2, the chemical shifts decrease approximately linearly with increasing temperature from RT to Tc and discontinuously by -2 to -3 ppm from α to β. This result is consistent with a small, continuous increase in the mean T-O-T angle (<θ>) of the α-phases with increasing T and an increase of <θ> by about 4° across the α- β transition for both cristobalite and its AlPO4 analogue. Based on the 29Si chemical shifts, the mean Si-O-Si angle for β-cristobalite is 152.7±1° near Tc. For AlPO4-cristobalite, the 27Al nuclear quadrupole coupling constant (CQ) decreases approximately linearly from 1.2 MHz at RT to 0.94 MHz near Tc (493±10 K). At the α- β transition the 27Al CQ approaches zero, in agreement with the cubic average structure observed by diffraction. The satellite transitions retain a small frequency distribution above the α- β transition from electric field gradients attributed to defects. The short-range cubic symmetry of the Al-site and non-linear Al-O-P angle support a dynamically disordered model of the β-cristobalite structure. Complete averaging of the 27Al quadrupole coupling in the β-phase indicates that the lifetime of any short-range ordered domains must be shorter than about 1 μs.

  11. Multimodal MRI and 31P-MRS Investigations of the ACTA1(Asp286Gly) Mouse Model of Nemaline Myopathy Provide Evidence of Impaired In Vivo Muscle Function, Altered Muscle Structure and Disturbed Energy Metabolism

    PubMed Central

    Gineste, Charlotte; Duhamel, Guillaume; Le Fur, Yann; Vilmen, Christophe; Cozzone, Patrick J.; Nowak, Kristen J.; Bendahan, David; Gondin, Julien

    2013-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital disease of skeletal muscle, can be caused by mutations in the skeletal muscle α-actin gene (ACTA1) (~25% of all NM cases and up to 50% of severe forms of NM). Muscle function of the recently generated transgenic mouse model carrying the human Asp286Gly mutation in the ACTA1 gene (Tg(ACTA1)Asp286Gly) has been mainly investigated in vitro. Therefore, we aimed at providing a comprehensive picture of the in vivo hindlimb muscle function of Tg(ACTA1)Asp286Gly mice by combining strictly noninvasive investigations. Skeletal muscle anatomy (hindlimb muscles, intramuscular fat volumes) and microstructure were studied using multimodal magnetic resonance imaging (Dixon, T2, Diffusion Tensor Imaging [DTI]). Energy metabolism was studied using 31-phosphorus Magnetic Resonance Spectroscopy (31P-MRS). Skeletal muscle contractile performance was investigated while applying a force-frequency protocol (1–150 Hz) and a fatigue protocol (6 min–1.7 Hz). Tg(ACTA1)Asp286Gly mice showed a mild muscle weakness as illustrated by the reduction of both absolute (30%) and specific (15%) maximal force production. Dixon MRI did not show discernable fatty infiltration in Tg(ACTA1)Asp286Gly mice indicating that this mouse model does not reproduce human MRI findings. Increased T2 values were observed in Tg(ACTA1)Asp286Gly mice and might reflect the occurrence of muscle degeneration/regeneration process. Interestingly, T2 values were linearly related to muscle weakness. DTI experiments indicated lower λ2 and λ3 values in Tg(ACTA1)Asp286Gly mice, which might be associated to muscle atrophy and/or the presence of histological anomalies. Finally 31P-MRS investigations illustrated an increased anaerobic energy cost of contraction in Tg(ACTA1)Asp286Gly mice, which might be ascribed to contractile and non-contractile processes. Overall, we provide a unique set of information about the anatomic, metabolic and functional consequences

  12. Interplay between Fe 3d and Ce 4f magnetism and Kondo interaction in CeFeAs(1-x)P(x)O probed by 75As and 31P NMR.

    PubMed

    Sarkar, R; Baenitz, M; Jesche, A; Geibel, C; Steglich, F

    2012-04-01

    A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations. PMID:22407024

  13. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  14. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  15. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties

    PubMed Central

    Welsh, David K.; Takahashi, Joseph S.; Kay, Steve A.

    2013-01-01

    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN. PMID:20148688

  16. The Bivalent Side of the Nucleus Accumbens

    PubMed Central

    Levita, Liat; Hare, Todd A.; Voss, Henning U.; Glover, Gary; Ballon, Douglas J.; Casey, B.J.

    2009-01-01

    An increasing body of evidence suggests that the nucleus accumbens (NAcc) is engaged in both incentive reward processes and in adaptive responses to conditioned and unconditioned aversive stimuli. Yet, it has been argued that NAcc activation to aversive stimuli may be a consequence of the rewarding effects of their termination, i.e., relief. To address this question we used fMRI to delineate brain response to the onset and offset of unpleasant and pleasant auditory stimuli in the absence of learning or motor response. Increased NAcc activity was seen for the onset of both pleasant and unpleasant stimuli. Our results support the expanded bivalent view of NAcc function and call for expansion of current models of NAcc function that are solely focused on reward. PMID:18976715

  17. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  18. Isotopic microanalysis of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1989-01-01

    If isotopic measurements of interplanetary dust particles (IDPs) and primitive meteorites can serve as a guide to the isotopic analysis of returned comet nucleus material, an essential requirement will be the capability for microanalysis. The reason is that in both types of extraterrestrial samples large isotopic heterogeneities on a small spatial scale have become apparent once it was possible to measure isotopes in small samples. In the discovery of large isotopic anomalies the ion microprobe has played a significant role because of its high spatial resolution for isotopic ratio measurements. The largest isotopic anomalies in C, N, O, Mg, Si, Ca and Ti found to date were measured by ion microprobe mass spectrometry. The most striking examples are D/H measurements in IDPs and isotopic measurements of C, N and Si in SiC from the CM chondrites Murray and Murchison.

  19. Delta-nucleus dynamics: proceedings of symposium

    SciTech Connect

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  20. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity

    PubMed Central

    Guyenet, Patrice G.; Bayliss, Douglas A.; Stornetta, Ruth L.; Fortuna, Michal G.; Abbott, Stephen B.; Depuy, Seth D.

    2009-01-01

    SUMMARY Breathing automaticity and CO2 regulation are inseparable neural processes. The retrotrapezoid nucleus (RTN), a group of glutamatergic neurons that express the transcription factor Phox2b, may be a crucial nodal point through which breathing automaticity is regulated to maintain CO2 constant. This review updates the analysis presented in prior publications. Additional evidence that RTN neurons have central respiratory chemoreceptor properties is presented but this is only one of many factors that determine their activity. The RTN is also regulated by powerful inputs from the carotid bodies and, at least in the adult, by many other synaptic inputs. We also analyze how RTN neurons may control the activity of the downstream central respiratory pattern generator. Specifically, we review the evidence which suggests that RTN neurons a) innervate the entire ventral respiratory column, and b) control both inspiration and expiration. Finally, we argue that the RTN neurons are the adult form of the parafacial respiratory group in neonate rats. PMID:19712903

  1. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  2. Nonlinear osmotic properties of the cell nucleus

    PubMed Central

    Finan, John D.; Chalut, Kevin J.; Wax, Adam; Guilak, Farshid

    2009-01-01

    Summary In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van’t Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo, and furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically-sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically-induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  3. Cumulative “roof effect” in high-resolution in vivo 31P NMR spectra of human calf muscle and the Clebsch Gordan coefficients of ATP at 1.5 T

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2005-05-01

    NMR spectra of non-weakly coupled spin systems exhibit asymmetries in line intensities known as "roof effect" in 1D spectroscopy. Due to limited spectral resolution, this effect has not been paid much attention so far in in vivo spectroscopy. But when high-quality spectra are obtained, this effect should be taken into account to explain the quantum-mechanical fine structure of the system. Adenosine 5'-triphosphate (ATP) represents a 31P spin system with multiple line splittings which are caused by J-couplings of medium strength at 1.5 T. We analyzed the ATP roof effect in vivo, especially for the β-ATP multiplet. The intensities of its outer resonances deviate by ca. 12.5% from a symmetrical triplet. As this asymmetry reflects the transition from Paschen-Back to Zeeman effect with total spin that is largely broken up, the Clebsch-Gordan coefficients of the system can be indicated in analogy to the hyperfine structure of hydrogen. Taking the roof effect into account, the χ2 of fitting in vivo ATP resonances is reduced by ca. 9% ( p < 0.005).

  4. Nucleotide Availability in Maize (Zea mays L.) Root Tips (Estimation of Free and Protein-Bound Nucleotides Using 31P-Nuclear Magnetic Resonance and a Novel Protein-Ligand-Binding Assay).

    PubMed Central

    Hooks, M. A.; Shearer, G. C.; Roberts, JKM.

    1994-01-01

    Sequestration of nucleotides in cells through protein binding could influence the availability of nucleotides and free energy for metabolic reactions and, therefore, affect rates of physiological processes. We have estimated the proportion of nucleotides bound to proteins in maize (Zea mays L.) root tips. Binding of nucleoside mono- and diphosphates to total root-tip protein was studied in vitro using high-performance liquid chromatography and a new ligand-binding technique. We estimate that approximately 40% of the ADP, 65% of the GDP, 50% of the AMP, and virtually all the GMP in aerobic cells are bound to proteins. In hypoxic cells, free concentrations of these nucleotides increase proportionately much more than total intracellular concentrations. Little or no binding of CDP, UDP, CMP, and UMP was observed in vitro. Binding of nucleoside triphosphate (NTP) to protein was estimated from in vivo 31P-nuclear magnetic resonance relaxation measurements. In aerobic root tips most (approximately 70%) of the NTP is free, whereas under hypoxia NTP appears predominantly bound to protein. Our results indicate that binding of nucleotides to proteins in plant cells will significantly influence levels of free purine nucleotides available to drive and regulate respiration, protein synthesis, ion transport, and other physiological processes. PMID:12232108

  5. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling

    PubMed Central

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I.; Wilmanns, Matthias; Vértessy, Beáta G.

    2013-01-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure. PMID:23982515

  6. Enhancement of superconducting transition temperature due to antiferromagnetic spin fluctuations in iron pnictides LaFe(As1-xPx)(O1-yFy): 31P-NMR studies

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Engetsu, F.; Yamamoto, K.; Lai, K. T.; Yashima, M.; Kitaoka, Y.; Takemori, A.; Miyasaka, S.; Tajima, S.

    2014-02-01

    Systematic 31P-NMR studies on LaFe(As1-xPx)(O1-yFy) with y =0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x =0.6 and 0.4, respectively, and as a result, Tc exhibits respective peaks at 24 and 27 K against the P substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As1-xPx)(O1-yFy) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La1-zYz)FeAsOδ compounds in which Tc reaches 50 K for z =0.95, we remark that a moderate development of AFMSFs causes Tc to increase up to 50 K under the condition that the local lattice parameters of the FeAs tetrahedron approach those of the regular tetrahedron. We propose that Tc of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.

  7. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure. PMID:23982515

  8. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study.

    PubMed Central

    Picard, F; Paquet, M J; Dufourc, E J; Auger, M

    1998-01-01

    31P two-dimensional exchange solid-state NMR spectroscopy was used to measure the lateral diffusion, D(L), in the fluid phase of dipalmitoylphosphatidylcholine (DPPC) in the presence and absence of melittin. The use of a spherical solid support with a radius of 320 +/- 20 nm, on which lipids and peptides are adsorbed together, and a novel way of analyzing the two-dimensional exchange patterns afforded a narrow distribution of D(L) centered at a value of (8.8 +/- 0.5) x 10(-8) cm2/s for the pure lipid system and a large distribution of D(L) spanning 1 x 10(-8) to 10 x 10(-8) cm2/s for the lipids in the presence of melittin. In addition, the determination of D(L) for nonsupported DPPC multilamellar vesicles (MLVs) suggests that the support does not slow down the lipid diffusion and that the radii of the bilayers vary from 300 to 800 nm. Finally, the DPPC-melittin complex is stabilized at the surface of the silica beads in the gel phase, opening the way to further study of the interaction between melittin and DPPC. PMID:9533697

  9. Recent developments in the study of deconfinement in nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2014-05-01

    Deconfinement refers to the creation of a state of quasi-free quarks and gluons in strongly interacting matter. Model predictions and experimental evidence for the onset of deconfinement in nucleus-nucleus collisions were discussed in our first review on this subject. These results motivated further experimental and theoretical studies. This review addresses two subjects. First, a summary of the past, present and future experimental programmes related to discovery and study of properties of the onset of deconfinement are presented. Second, recent progress is reviewed on analysis methods and preliminary experimental results for new strongly intensive fluctuation measures are discussed, which are relevant for current and future studies of the onset of deconfinement and searches for the critical point of strongly interacting matter.

  10. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  11. Dynamical and Statistical Aspects in Nucleus--Nucleus Collisions Around the Fermi Energy

    NASA Astrophysics Data System (ADS)

    Tamain, B.; Assenard, M.; Auger, G.; Bacri, C. O.; Benlliure, J.; Bisquer, E.; Bocage, F.; Borderie, B.; Bougault, R.; Buchet, P.; Charvet, J. L.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Eudes, P.; Frankland, J.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Germain, M.; Gourio, D.; Guinet, D.; Gulminelli, F.; Lautesse, P.; Laville, J. L.; Lebrun, C.; Lecolley, J. F.; Lefevre, A.; Lefort, T.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Lukasik, J.; Marie, N.; Maskay, M.; Metivier, V.; Nalpas, L.; Nguyen, A.; Parlog, M.; Peter, J.; Plagnol, E.; Rahmani, A.; Reposeur, T.; Rivet, M. F.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Squalli, M.; Steckmeyer, J. C.; Stern, M.; Tabacaru, T.; Tassan-Got, L.; Tirel, O.; Vient, E.; Volan, C.; Wieleczko, J. P.

    1998-01-01

    This contribution is devoted to two important aspects of intermediate energy nucleus-nucleus collisions: the competition of dynamical and statistical features, and the origin of the multifragmentation process. These two questions are discussed in focusing on Indra data. It turns out that most of collisions are binary and reminiscent of deep inelastic collisions observed at low energy. However, intermediate velocity emission is a clear signature of dynamical emission and establishes a link with the participant-spectator picture which applies at high bombarding energies. Multifragmentation is observed when the dissipated energy is large and it turns out that expansion occurs at least for central collisions, as it is expected if this phenomenum has a dynamical origin.

  12. Experimental evidence and the Landau-Zener promotion in nucleus-nucleus collisions

    SciTech Connect

    Cindro, N.; Freeman, R.M.; Haas, F.

    1986-04-01

    Recent data from C+O collisions are analyzed in terms of the Landau-Zener promotion in nuclei. Evidence for the presence of this mechanism in nuclear collisions is of considerable interest, since it provides a signature of single-particle orbitals in molecular-type potentials and, at the same time, paves the way to a microscopic understanding of the collision dynamics, in particular of the energy dissipation rate. The analyzed data are of two types: integrated cross sections and angular distributions of inelastically scattered particles. The first set of data shows structure qualitatively consistent with recent calculations of the Landau-Zener effect; for this set of data no other reasonable explanation is presently available. The second set of data, while consistent with the presence of the Landau-Zener promotion, is examined in terms of other possible explanations too. The combined data show evidence favoring the presence of the Landau-Zener promotion in nucleus-nucleus collisions.

  13. Nonmonotonic Target Excitation Dependence of Pion Clans in Relativistic Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipak; Deb, Argha; Dutta, Srimonti

    Target excitation dependence of fluctuation of produced pions (i.e. classifying data of the fluctuation pattern on pions on the basis of the number of gray tracks) is studied for nucleus-nucleus collisions at different projectile energies. In each set the experimental multiplicity distribution is compared with the negative binomial distribution (NBD), which is found to describe the experimental distribution quite well. Target excitation dependence is studied in respect of the clan model parameters bar {n}c and bar {N}, which are extracted from the NBD fit parameters bar {n} and k. A detailed comparison between different interactions at the same energy and the same interactions at different energies is also drawn. A nonmonotonic dependence of D2/bar {n} on is revealed, which is also a characteristic of multiplicity fluctuations at RHIC data.

  14. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the finite proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to the assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability limits for geometric reaction cross sections are determined.

  15. Measuring gene expression noise in early Drosophila embryos: nucleus-to-nucleus variability.

    PubMed

    Golyandina, Nina E; Holloway, David M; Lopes, Francisco J P; Spirov, Alexander V; Spirova, Ekaterina N; Usevich, Konstantin D

    2012-01-01

    In recent years the analysis of noise in gene expression has widely attracted the attention of experimentalists and theoreticians. Experimentally, the approaches based on in vivo fluorescent reporters in single cells appear to be straightforward and effective tools for bacteria and yeast. However, transferring these approaches to multicellular organisms presents many methodological problems. Here we describe our approach to measure between-nucleus variability (noise) in the primary morphogenetic gradient of Bicoid (Bcd) in the precellular blastoderm stage of fruit fly (Drosophila) embryos. The approach is based on the comparison of results for fixed immunostained embryos with observations of live embryos carrying fluorescent Bcd (Bcd-GFP). We measure the noise using two-dimensional Singular Spectrum Analysis (2D SSA). We have found that the nucleus-to-nucleus noise in Bcd intensity, both for live (Bcd-GFP) and for fixed immunstained embryos, tends to be signal-independent. In addition, the character of the noise is sensitive to the nuclear masking technique used to extract quantitative intensities. Further, the method of decomposing the raw quantitative expression data into a signal (expression surface) and residual noise affects the character of the residual noise. We find that careful masking of confocal images and use of appropriate computational tools to decompose raw expression data into trend and noise makes it possible to extract and study the biological noise of gene expression. PMID:22723811

  16. Measuring gene expression noise in early Drosophila embryos: nucleus-to-nucleus variability

    PubMed Central

    Golyandina, Nina E.; Holloway, David M.; Lopes, Francisco J.P.; Spirov, Alexander V.; Spirova, Ekaterina N.; Usevich, Konstantin D.

    2012-01-01

    In recent years the analysis of noise in gene expression has widely attracted the attention of experimentalists and theoreticians. Experimentally, the approaches based on in vivo fluorescent reporters in single cells appear to be straightforward and effective tools for bacteria and yeast. However, transferring these approaches to multicellular organisms presents many methodological problems. Here we describe our approach to measure between-nucleus variability (noise) in the primary morphogenetic gradient of Bicoid (Bcd) in the precellular blastoderm stage of fruit fly (Drosophila) embryos. The approach is based on the comparison of results for fixed immunostained embryos with observations of live embryos carrying fluorescent Bcd (Bcd-GFP). We measure the noise using two-dimensional Singular Spectrum Analysis (2D SSA). We have found that the nucleus-to-nucleus noise in Bcd intensity, both for live (Bcd-GFP) and for fixed immunstained embryos, tends to be signal-independent. In addition, the character of the noise is sensitive to the nuclear masking technique used to extract quantitative intensities. Further, the method of decomposing the raw quantitative expression data into a signal (expression surface) and residual noise affects the character of the residual noise. We find that careful masking of confocal images and use of appropriate computational tools to decompose raw expression data into trend and noise makes it possible to extract and study the biological noise of gene expression. PMID:22723811

  17. Analysis of subthreshold antiproton production in [ital p]-nucleus and nucleus-nucleus collisions in the relativistic Boltzmann-Uehling-Uhlenbeck approach

    SciTech Connect

    Teis, S.; Cassing, W.; Maruyama, T.; Mosel, U. )

    1994-07-01

    We calculate the subthreshold production of antiprotons in the Lorentz-covariant relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) approach employing a weighted testparticle method to treat the antiproton propagation and absorption nonperturbatively. We find that the antiproton differential cross sections are highly sensitive to the baryon and antiproton self-energies in the dense baryonic environment. Adopting the baryon scalar and vector self-energies from the empirical optical potential for proton-nucleus elastic scattering and from Dirac-Brueckner calculations at higher density [rho][gt][rho][sub 0] we examine the differential antiproton spectra as a function of the antiproton self-energy. A detailed comparison with the available experimental data for [ital p]-nucleus and nucleus-nucleus reactions shows that the antiproton feels a moderately attractive mean field at normal nuclear matter density [rho][sub 0] which is in line with a dispersive potential extracted from the free annihilation cross section.

  18. Structure and Function in the Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Gasser, Susan M.

    2012-01-01

    Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein–protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function. PMID:22964839

  19. The Confined Hydrogen Atom with a Moving Nucleus

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  20. Medium Modified Nucleon-Nucleon Cross Sections in a Nucleus

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.

    1999-01-01

    A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo and other calculations. The method relies on extraction of these values from experiments and has been tested for absorption experiments to give excellent results.

  1. Possibility of synthesizing a doubly magic superheavy nucleus

    SciTech Connect

    Aritomo, Y.

    2007-02-15

    The possibility of synthesizing a doubly magic superheavy nucleus, {sup 298}114{sub 184}, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus {sup 304}114 has two advantages to achieving a high survival probability. First, because of low neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number in the nucleus approaches that of the double closed shell and the nucleus attains a large fission barrier. Because of these two effects, the survival probability of {sup 304}114 does not decrease until the excitation energy E{sup *}=50 MeV. These properties lead to a rather high evaporation residue cross section.

  2. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  3. Nucleon emission via electromagnetic excitation in relativistic nucleus-nucleus collisions: Re-analysis of the Weizsacker-Williams method

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.

  4. Inside a plant nucleus: discovering the proteins.

    PubMed

    Petrovská, Beáta; Šebela, Marek; Doležel, Jaroslav

    2015-03-01

    Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function. PMID:25697798

  5. Neutrino-Nucleus Reactions and Nucleosynthesis

    SciTech Connect

    Suzuki, Toshio; Chiba, Satoshi; Yoshida, Takashi; Honma, Michio; Higashiyama, Koji; Umeda, Hideyuki; Nomoto, Ken'ichi; Kajino, Toshitaka; Otsuka, Takaharu

    2008-05-21

    Neutrino-induced reactions on {sup 12}C, {sup 4}He as well as Fe and Ni isotopes are studied based on new shell model Hamiltonians for p-shell and fp-shell. Gamow-Teller and spin-dipole transitions are investigated, and applied to neutrino-nucleus reactions induced by both DAR and supernova neutrinos. The reaction cross sections are found to be enhanced compared with conventional Hamiltonians as well as previous calculations. The production yields of {sup 7}Li and {sup 11}B during supernova explosions are found to be enhanced, and the effects of neutrino oscillations and implications of the enhancement on the constraint on temperature for {nu}{sub {mu}}{sub ,{tau}} and {nu}-bar{sub {mu}}{sub ,{tau}} are discussed. Production of other light elements such as {sup 10}Be and {sup 10}B by neutrino processes is also discussed. Neutral current reactions on Ni and Fe isotopes induced by supernova neutrinos are investigated. Effects of neutrino-induced reactions on the production yields of heavy elements such as Mn are discussed.

  6. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission. PMID:27330050

  7. Evolution of a protein folding nucleus.

    PubMed

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. PMID:26610273

  8. Neuropeptidomics of the Supraoptic Rat Nucleus

    PubMed Central

    2008-01-01

    The mammalian supraoptic nucleus (SON) is a neuroendocrine center in the brain regulating a variety of physiological functions. Within the SON, peptidergic magnocellular neurons that project to the neurohypophysis (posterior pituitary) are involved in controlling osmotic balance, lactation, and parturition, partly through secretion of signaling peptides such as oxytocin and vasopressin into the blood. An improved understanding of SON activity and function requires identification and characterization of the peptides used by the SON. Here, small-volume sample preparation approaches are optimized for neuropeptidomic studies of isolated SON samples ranging from entire nuclei down to single magnocellular neurons. Unlike most previous mammalian peptidome studies, tissues are not immediately heated or microwaved. SON samples are obtained from ex vivo brain slice preparations via tissue punch and the samples processed through sequential steps of peptide extraction. Analyses of the samples via liquid chromatography mass spectrometry and tandem mass spectrometry result in the identification of 85 peptides, including 20 unique peptides from known prohormones. As the sample size is further reduced, the depth of peptide coverage decreases; however, even from individually isolated magnocellular neuroendocrine cells, vasopressin and several other peptides are detected. PMID:18816085

  9. SUNrises on the International Plant Nucleus Consortium

    PubMed Central

    Graumann, Katja; Bass, Hank W.; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties. PMID:23324458

  10. Functional network inference of the suprachiasmatic nucleus.

    PubMed

    Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R

    2016-04-19

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  11. The LINC-less granulocyte nucleus

    PubMed Central

    Olins, Ada L.; Hoang, Thanh V.; Zwerger, Monika; Herrmann, Harald; Zentgraf, Hanswalter; Noegel, Angelika A.; Karakesisoglou, Iakowos; Hodzic, Didier; Olins, Donald E.

    2009-01-01

    The major blood granulocyte (neutrophil) is rapidly recruited to sites of bacterial and fungal infections. It is a highly malleable cell, allowing it to squeeze out of blood vessels and migrate through tight tissue spaces. The human granulocyte nucleus is lobulated and exhibits a paucity of nuclear lamins, increasing its capability for deformation. The present study examined the existence of protein connections between the nuclear envelope and cytoskeletal elements (the LINC complex) in differentiated cell states (i.e. granulocytic, monocytic and macrophage) of the human leukemic cell line HL-60, as well as in human blood leukocytes. HL-60 granulocytes exhibited a deficiency of several LINC complex proteins (i.e. nesprin 1 giant, nesprin 2 giant, SUN1, plectin and vimentin); whereas, the macrophage state revealed nesprin 1 giant, plectin and vimentin. Both states possessed SUN2 in the nuclear envelope. Parallel differences were observed with some of the LINC complex proteins in isolated human blood leukocytes, including macrophage cells derived from blood monocytes. The present study documenting the paucity of LINC complex proteins in granulocytic forms, in combination with previous data on granulocyte nuclear shape and nuclear envelope composition, suggest the hypothesis that these adaptations evolved to facilitate granulocyte cellular malleability. PMID:19019491

  12. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  13. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.

    PubMed Central

    Unitt, J F; McCormack, J G; Reid, D; MacLachlan, L K; England, P J

    1989-01-01

    1. The concentrations of free ATP, phosphocreatine (PCr), Pi, H+ and ADP (calculated) were monitored in perfused rat hearts by 31P n.m.r. before and during positive inotropic stimulation. Data were accumulated in 20 s blocks. 2. Administration of 0.1 microM-(-)-isoprenaline resulted in no significant changes in ATP, transient decreases in PCr, and transient increases in ADP and Pi. However, the concentrations of all of these metabolites returned to pre-stimulated values within 1 min, whereas cardiac work and O2 uptake remained elevated. 3. In contrast, in hearts perfused continuously with Ruthenium Red (2.5 micrograms/ml), a potent inhibitor of mitochondrial Ca2+ uptake, administration of isoprenaline caused significant decreases in ATP, and also much larger and more prolonged changes in the concentrations of ADP, PCr and Pi. In this instance values did not fully return to pre-stimulated concentrations. Administration of Ruthenium Red alone to unstimulated hearts had minor effects. 4. It is proposed that, in the absence of Ruthenium Red, the transmission of changes in cytoplasmic Ca2+ across the mitochondrial inner membrane is able to maintain the phosphorylation potential of the heart during positive inotropic stimulation, through activation of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) leading to enhanced NADH production. 5. This mechanism is unavailable in the presence of Ruthenium Red, and oxidative phosphorylation must be stimulated primarily by a fall in phosphorylation potential, in accordance with the classical concept of respiratory control. However, the full oxidative response of the heart to stimulation may not be achievable under such circumstances. PMID:2479373

  14. Magnetism of the spin-trimer compound CaNi 3(P 2O 7)2: Microscopic insight from combined 31P NMR and first-principles studies

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Kanungo, S.; Ghoshray, A.; Ghosh, M.; Ghoshray, K.

    2015-03-01

    Magnetization, 31P nuclear magnetic resonance study, and first-principles electronic structure calculations have been performed in the spin-1 trimer chain compound CaNi3(P2O7 )2. Two separate spectra arising from magnetically and crystallographically inequivalent P sites are observed. In the ordered state, the resonance lines for both the P sites (P1 and P2) are found to be split into two, which is clear microscopic evidence of the development of two-sublattice AFM order below TM. A nonnegligible contribution of ferromagnetic hyperfine field and dipolar field have also been seen in the ordered state. The first-principles calculations show that the intratrimer (J1) and intertrimer interactions (J2) are of weak ferromagnetic type with the values 2.85 and 1.49 meV, respectively, whereas the interchain interaction (J3) is of strong antiferromagnetic type with a value of 5.63 meV. The anisotropy of the imaginary part of dynamical spin susceptibility around TM along with the exponential decrement of 1 /T1 below TM indicate the probable participation of the Ni -3 d electron's orbital degrees of freedom in the ferrimagnetic transition. The dominance of orbital fluctuations over the spin fluctuations seems to be responsible for showing low value of the binding energy u of the local spin configuration (estimated from local spin models) and an unusually weak exponent in the power-law behavior of 1 /T1 below 50 K, in the paramagnetic state. Electronic structure calculations also reveal the importance of orbital degrees of freedom of Ni -3 d moments, which is consistent with our NMR data analysis.

  15. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, 31P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition

    PubMed Central

    2009-01-01

    Background Detergents are often used to isolate proteins, lipids as well as "detergent-resistant membrane domains" (DRMs) from cells. Different detergents affect different membrane structures according to their physico-chemical properties. However, the effects of different detergents on membrane lysis of boar spermatozoa and the lipid composition of DRMs prepared from the affected sperm membranes have not been investigated so far. Results Spermatozoa were treated with the selected detergents Pluronic F-127, sodium cholate, CHAPS, Tween 20, Triton X-100 and Brij 96V. Different patterns of membrane disintegration were observed by light and electron microscopy. In accordance with microscopic data, different amounts of lipids and proteins were released from the cells by the different detergents. The biochemical methods to assay the phosphorus and cholesterol contents as well as 31P NMR to determine the phospholipids were not influenced by the presence of detergents since comparable amounts of lipids were detected in the organic extracts from whole cell suspensions after exposure to each detergent. However, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry applied to identify phospholipids was essentially disturbed by the presence of detergents which exerted particular suppression effects on signal intensities. After separation of the membrane fractions released by detergents on a sucrose gradient only Triton X-100 and sodium cholate produced sharp turbid DRM bands. Only membrane solubilisation by Triton X-100 leads to an enrichment of cholesterol, sphingomyelin, phosphatidylinositol and phosphatidylethanolamine in a visible DRM band accompanied by a selective accumulation of proteins. Conclusion The boar sperm membranes are solubilised to a different extent by the used detergents. Particularly, the very unique DRMs isolated after Triton X-100 exposure are interesting candidates for further studies regarding the architecture of sperm. PMID

  16. Solid-State Nuclear Magnetic Resonance Measurements of HIV Fusion Peptide 13CO to Lipid 31P Proximities Support Similar Partially Inserted Membrane Locations of the α Helical and β Sheet Peptide Structures

    NASA Astrophysics Data System (ADS)

    Gabrys, Charles M.; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D.; Weliky, David P.

    2013-10-01

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the -25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of -HFP-, i.e., a -25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was 13CO backbone labeled. Samples were then prepared that each contained a singly 13CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric - sheet structure. Proximity between the HFP 13CO nuclei and 31P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct 13CO shifts for the α helical and - sheet structures so that the proximities to 31P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the 13CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. -HFPmn- was a linear peptide that contained the 23 N-terminal residues of gp41. -HFPmn_V2E- contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The

  17. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions. PMID:27429160

  18. Multiple pion and kaon production in high energy nucleus-nucleus collisions: measurements versus specific models

    NASA Astrophysics Data System (ADS)

    Guptaroy, P.; de, Bh.; Bhattacharyya, S.; Bhattacharyya, D. P.

    The pion and kaon rapidity densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which modestly sufficient data for heavy nucleus collisions are available to date. In the light of two sets of models - one purely phenomenological and the other with a modest degree of a dynamical basis - we try to examine the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  19. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  20. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus.

  1. Quarkonium-nucleus bound states from lattice QCD

    SciTech Connect

    Beane, S.  R.; Chang, E.; Cohen, S.  D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M.  J.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  2. Determination of electron-nucleus collisions geometry with forward neutrons

    SciTech Connect

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  3. Nucleas (hadron) nucleus elastic scattering and geometrical picture

    SciTech Connect

    Aleem F.; Ali, S.; Saleem, M.

    1995-08-01

    A comprehensive explanation of nucleus-nucleus and hadron-nucleus elastic scattering is elusive ever since the measurements of these reactions were made. By proposing energy dependent hadronic form factors for deuteron and alpha, in analogy to that of the proton as suggested by Chou and Yang recently, the authors have fitted all the available data for alpha-alpha and deuteron-deuteron elastic scattering. In order to further verify the validity of the proposed form factor, they have also fitted the data for proton-alpha and proton-deuteron elastic scattering. It is concluded that the hadronic matter is expanding with an increase in energy. 30 refs., 11 figs.

  4. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  5. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-01

    Interaural phase and intensity are cues by which the barn owl determines, respectively, the azimuth and elevation of a sound source. Physiological studies indicate that phase and intensity are processed independently in the auditory brainstem of the barn owl. The phases of spectral components of a sound are encoded in nucleus magnocellularis (NM), one of the two cochlear nuclei. NM projects solely and bilaterally to nucleus laminaris (NL), wherein interaural phase difference is computed. The other cochlear nucleus, nucleus angularis (NA), encodes the amplitudes of spectral components of sounds. We report here the projections of NA and NL to the lateral lemniscal nuclei of the barn owl. The lateral lemniscal complex comprises nucleus olivaris superior (SO); nucleus lemnisci lateralis, pars ventralis (LLv); and nucleus ventralis lemnisci lateralis (VLV). At caudal levels, VLV may be divided into a posterior (VLVp) and an anterior (VLVa) subdivision on cytoarchitectonic grounds. At rostral levels, the cytoarchitectural differences diminish and the boundaries between the two subdivisions become obscured. Likewise, our data from anterograde tracing studies suggest that at caudal levels the terminal fields of NA and NL remain confined to VLVp and VLVa, respectively. They merge, however, at rostral levels. The data also suggest that NL projects to the medial portion of the ipsilateral SO and that NA projects bilaterally to all parts of SO and LLv. Studies with the retrograde transport of horseradish peroxidase confirm these projections. PMID:2463287

  6. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  7. Observation of the antimatter helium-4 nucleus.

    PubMed

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of 4He, the heaviest observed antinucleus to date. In total, 18 4He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation. PMID:21516103

  8. 2D model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore M.

    2003-10-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  9. Observation of the antimatter helium-4 nucleus

    SciTech Connect

    Agakishiev, H.; Tang, A.; et al.

    2011-04-24

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ({sup 4}He), also known as the anti-{alpha} ({alpha}), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the {alpha}-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of {sup 4}He, the heaviest observed antinucleus to date. In total, 18 {sup 4}He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) in 10{sup 9} recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of {sup 4}He in cosmic radiation.

  10. EOS: A time projection chamber for the study of nucleus-nucleus collisions at the Bevalac

    SciTech Connect

    Pugh, H.G.; Odyniec, G.; Rai, G.; Seidl, P.

    1986-12-01

    The conceptual design is presented for a detector to identify and measure (..delta..p/p approx. = 1%) most of the 200 or so mid-rapidity charged particles (p, d, t, /sup 3/He, /sup 4/He, ..pi../sup + -/, K/sup + -/) produced in each central nucleus-nucleus collision (Au + Au) at Bevalac energies, as well as K/sub 3//sup 0/ and ..lambda../sup 0/. The beam particles and heavy spectator fragments are excluded from the detection volume by means of a central vacuum pipe. Particle identification is achieved by a combination of dE/dx measurements in the TPC, and of time-of-flight measurements in a scintillator array. The TPC is single-ended and its end cap is entirely covered with cathode pads (about 25,000 pads and about 1000 anode wires). A non-uniform pad distribution is proposed to accommodate the high multiplicity of particles emitted at forward angles. The performance of the detector is assessed with regard to multihit capability, tracking, momentum resolution, particle identification, ..lambda../sup 0/ reconstruction, space charge effects, field non-uniformity, dynamic range, data acquisition rate, and data analysis rate. 72 refs., 48 figs., 11 tabs.

  11. Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.

  12. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function

    PubMed Central

    Vertes, Robert P.

    2016-01-01

    The hippocampus receives two major external inputs from the diencephalon, that is, from the supramammillary nucleus (SUM) and nucleus reuniens (RE) of the midline thalamus. These two afferents systems project to separate, nonoverlapping, regions of the hippocampus. Specifically, the SUM distributes to the dentate gyrus (DG) and to CA2 of the dorsal and ventral hippocampus, whereas RE projects to CA1 of the dorsal and ventral hippocampus and to the subiculum. SUM and RE fibers to the hippocampus participate in common as well as in separate functions. Both systems would appear to amplify signals from other sources to their respective hippocampal targets. SUM amplifies signals from the entorhinal cortex (EC) to DG, whereas RE may amplify them from CA3 (and EC) to CA1 of the hippocampus. This “amplification” may serve to promote the transfer, encoding, and possibly storage of information from EC to DG and from CA3 and EC to CA1. Regarding their unique actions on the hippocampus, the SUM is a vital part of an ascending brainstem to hippocampal system generating the theta rhythm of the hippocampus, whereas RE importantly routes information from the medial prefrontal cortex to the hippocampus to thereby mediate functions involving both structures. In summary, although, to date, SUM and RE afferents to the hippocampus have not been extensively explored, the SUM and RE exert a profound influence on the hippocampus in processes of learning and memory. PMID:26072237

  13. Modulation of medial geniculate nucleus neuronal activity by electrical stimulation of the nucleus accumbens.

    PubMed

    Barry, K M; Paolini, A G; Robertson, D; Mulders, W H A M

    2015-11-12

    Dysfunctional sensory gating has been proposed to result in the generation of phantom perceptions. In agreement, it has been recently suggested that tinnitus, a phantom perception of sound commonly associated with hearing loss, is the result of a breakdown of circuitry involving the limbic system and the medial geniculate nucleus (MGN) of the thalamus. In humans with tinnitus, structural changes and abnormal activity have been found to occur in the auditory pathway as well as parts of the limbic system such as the nucleus accumbens (NAc). However, at present, no studies have been conducted on the influence of the NAc on the MGN. We investigated the functional connectivity between the NAc and MGN single neurons. Bipolar electrical stimulation was delivered to the NAc while recording single neuron activity in MGN in anesthetized Wistar rats. Histological analysis was used to confirm placement of electrodes. NAc electrical stimulation generally decreased spontaneous firing rates in MGN neurons and, in a limited number of neurons, caused an increase in firing rate. This suggests that NAc can modulate the activity of auditory neurons in the MGN and may play a role in the development of tinnitus. PMID:26349008

  14. Pion production at 180/sup 0/ in nucleus-nucleus collisions

    SciTech Connect

    Chessin, S.A.

    1983-05-01

    A survey experiment of pion production at 180/sup 0/ in nucleus-nucleus collisions is presented. Beams of 1.05 GeV/A and 2.1 GeV/A protons, alphas, and carbon were used, as well as proton beams of 0.80 GeV, 3.5 GeV, and 4.89 GeV, and argon beams of 1.05 GeV/A and 1.83 GeV/A. This is the first such experiment to use the heavier beams. Targets used ranged from carbon to lead. An in-depth review of the literature, both experimental and theoretical, is also presented. The systematics of the data are discussed, and comparisons are made both with prior experiments and with the predictions of the models reviewed. The cross sections appear consistent with a simple single nucleon-nucleon collision picture, without the need for collective or other exotic effects. Suggestions for future work are made.

  15. Multiple-scattering effects in nucleus-nucleus reactions with Glauber theory

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shinya; Ebata, Shuichiro; Horiuchi, Wataru; Kimura, Masaaki

    2014-09-01

    A study of new unstable nuclei has become possible in new radioactive beam facilities. In order to understand the relationship between reaction observables and nuclear structure, we need reaction theory which exactly reflects the nuclear structure. The Glauber theory is a powerful tool of analyzing high energy nuclear reactions. The theory describes the multiple scattering processes, whereas the optical limit approximation (OLA), which is widely used, ignores those processes. Those effects are expected to play an important role in the nuclear collision involving unstable nuclei (see for example Phys. Rev. C 54, 1843 (1996)). Here we apply the Glauber theory to nucleus-nucleus reactions. The wave functions are generated by the Skyrme-Hartree-Fock method and are expressed in a Slater determinant that allows us to evaluate the complete Glauber amplitude easily. We calculate total reaction cross sections, elastic cross sections and differential elastic cross sections for 16~24O, 40~70Ca, 56,58Ni, 100~140Sn, 190~214Pb on proton, 4He, 12C targets and compare with experimental data. The Glauber theory gives much better description than the OLA, especially at larger scattering angles.

  16. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  17. Red nucleus connectivity as revealed by constrained spherical deconvolution tractography.

    PubMed

    Milardi, Demetrio; Cacciola, Alberto; Cutroneo, Giuseppina; Marino, Silvia; Irrera, Mariangela; Cacciola, Giorgio; Santoro, Giuseppe; Ciolli, Pietro; Anastasi, Giuseppe; Calabrò, Rocco Salvatore; Quartarone, Angelo

    2016-07-28

    Previous Diffusion Tensor Imaging studies have demonstrated that the human red nucleus is widely interconnected with sensory-motor and prefrontal cortices. In this study, we assessed red nucleus connectivity by using a multi-tensor model called non- negative Constrained Spherical Deconvolution (CSD), which is able to resolve more than one fiber orientation per voxel. Connections of the red nuclei of fifteen volunteers were studied at 3T using CSD axonal tracking. We found significant connectivity between RN and the following cortical and subcortical areas: cerebellar cortex, thalamus, paracentral lobule, postcentral gyrus, precentral gyrus, superior frontal gyrus and dentate nucleus. We confirmed that red nucleus is tightly linked with the cerebral cortex and has dense subcortical connections with thalamus and cerebellar cortex. These findings may be useful in a clinical context considering that RN is involved in motor control and it is known to have potential to compensate for injury of the corticospinal tract. PMID:27181514

  18. Active diffusion positions the nucleus in mouse oocytes.

    PubMed

    Almonacid, Maria; Ahmed, Wylie W; Bussonnier, Matthias; Mailly, Philippe; Betz, Timo; Voituriez, Raphaël; Gov, Nir S; Verlhac, Marie-Hélène

    2015-04-01

    In somatic cells, the position of the cell centroid is dictated by the centrosome. The centrosome is instrumental in nucleus positioning, the two structures being physically connected. Mouse oocytes have no centrosomes, yet harbour centrally located nuclei. We demonstrate how oocytes define their geometric centre in the absence of centrosomes. Using live imaging of oocytes, knockout for the formin 2 actin nucleator, with off-centred nuclei, together with optical trapping and modelling, we discover an unprecedented mode of nucleus positioning. We document how active diffusion of actin-coated vesicles, driven by myosin Vb, generates a pressure gradient and a propulsion force sufficient to move the oocyte nucleus. It promotes fluidization of the cytoplasm, contributing to nucleus directional movement towards the centre. Our results highlight the potential of active diffusion, a prominent source of intracellular transport, able to move large organelles such as nuclei, providing in vivo evidence of its biological function. PMID:25774831

  19. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-10-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell

  20. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  1. Nucleus management in manual small incision cataract surgery by phacosection.

    PubMed

    Ravindra, M S

    2009-01-01

    Nucleus management is critical in manual small incision cataract surgery (MSICS), as the integrity of the tunnel, endothelium and posterior capsule needs to be respected. Several techniques of nucleus management are in vogue, depending upon the specific technique of MSICS. Nucleus can be removed in toto or bisected or trisected into smaller segments. The pressure in the eye can be maintained at the desired level with the use of an anterior chamber maintainer or kept at atmospheric levels. In MSICS, unlike phacoemulsification, there is no need to limit the size of the tunnel or restrain the size of capsulorrhexis. Large well-structured tunnels and larger capsulorrhexis provide better control on the surgical maneuvers. Safety and simplicity of MSICS has made it extremely popular. The purpose of this article is to describe nucleus management by phacosection in MSICS. PMID:19075409

  2. Under Pressure: Mechanical Stress Management in the Nucleus

    PubMed Central

    Belaadi, Néjma; Aureille, Julien; Guilluy, Christophe

    2016-01-01

    Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery. PMID:27314389

  3. Acts and knowledge management in the NUCLEUS hospital information system.

    PubMed Central

    Kanoui, H.; Joubert, M.; Favard, R.; Maury, G.; Pelletier, M.

    1995-01-01

    NUCLEUS is a project completed in June 1995 in the frame of the European Community programme AIM (Advanced Informatics in Medicine). The main result of NUCLEUS is a prototype of an integrated patient dossier. Together with this patient dossier, facilities have been developed for its customisation by the various categories of end-users. A semantic model has been designed to guide and control the exploitation of data, and ensures the overall integrity of the information system. PMID:8563297

  4. Phosphorus speciation by (31)P NMR spectroscopy in bracken (Pteridium aquilinum (L.) Kuhn) and bluebell (Hyacinthoides non-scripta (L.) Chouard ex Rothm.) dominated semi-natural upland soil.

    PubMed

    Ebuele, Victor O; Santoro, Anna; Thoss, Vera

    2016-10-01

    Access to P species is a driver for plant community composition based on nutrient acquisition. Here we investigated the distribution and accumulation of soil inorganic P (Pi) and organic P (Po) forms in a bracken and bluebell dominated upland soil for the period between bluebell above ground dominance until biomass is formed from half bluebells and half bracken. Chemical characterisation and (31)P Nuclear Magnetic Resonance spectroscopy was used to determine the organic and inorganic P species. Total P concentration in soils was 0.87gkg(-1), while in plants (above- and below-ground parts) total P ranged between 0.84-4.0gkg(-1) and 0.14-2.0gkg(-1) for bluebell and bracken, respectively. The P speciation in the plant samples was reflected in the surrounding soil. The main forms of inorganic P detected in the NaOH-EDTA soil extracts were orthophosphate (20.0-31.5%), pyrophosphate (0.6-2.5%) and polyphosphate (0.4-7.0%). Phytate (myo-IP6) was the most dominant organic P form (23.6-40.0%). Other major peaks were scyllo-IP6 and α- and β- glycerophosphate (glyP). In bluebells and bracken the main P form detected was orthophosphate ranging from (21.7-80.4%) and 68.5-81.1%, in above-ground and below-ground biomass, respectively. Other detected forms include α-glyP (4.5-14.4%) and β-glyP (0.9-7.7%) in bluebell, while in bracken they were detected only in stripe and blade in ranges of 2.5-5.5% and 4.4-9.6%, respectively. Pyrophosphate, polyphosphate, scyllo-IP6, phosphonates, found in soil samples, were not detected in any plant parts. In particular, the high abundance of phytate in the soil and in bluebell bulbs, may be related to a mechanism through which bluebells create a recalcitrant phosphorus store which form a key part of their adaptation to nutrient poor conditions. PMID:27288285

  5. International Halley Watch: Discipline specialists for near-nucleus studies

    NASA Technical Reports Server (NTRS)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  6. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  7. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  8. [The role of the nucleus accumbens in psychiatric disorders].

    PubMed

    Mavridis, I

    2015-01-01

    The nucleus accumbens is the most inferior part of the striatum and is mainly connected to the limbic system. It is neurochemically and immunohistochemically divided into a shell laterally and a core medially. As a functionally central structure between amygdala, basal ganglia, mesolimbic dopaminergic regions, mediodorsal thalamus and prefrontal cortex, the nucleus accumbens appears to play a modulative role in the flow of the information from the amygdaloid complex to these regions. Dopamine is a major neurotransmitter of the nucleus accumbens and this nucleus has a modulative function to the amygdala-basal ganglia-prefrontal cortex circuit. Together with the prefrontal cortex and amygdala, nucleus accumbens consists a part of the cerebral circuit which regulates functions associated with effort. It is anatomically located in a unique way to serve emotional and behavioral components of feelings. It is considered as a neural interface between motivation and action, having a key-role in food intake, sexual behavior, reward-motivated behavior, stress-related behavior and substance-dependence. It is involved in several cognitive, emotional and psychomotor functions, altered in some psychopathology. Moreover it is involved in some of the commonest and most severe psychiatric disorders, such as depression, schizophrenia, obsessive-compulsive disorder and other anxiety disorders, as well as in addiction, including drugs abuse, alcoholism and smoking. Nucleus accumbens has also a role in other psychiatric disorders such as bipolar disorder, attention deficit/ hyperactivity disorder and post-traumatic stress disorder. Because of its rich dopaminergic projections, this nucleus has been subject of many studies in animals as well as in humans, connecting its malfunction with the disturbed reward process observed in depression. Neuromodulation interventions targeting the nucleus accumbens are nowadays applied in strictly selected patients suffering from treatment

  9. The deafferented reticular thalamic nucleus generates spindle rhythmicity.

    PubMed

    Steriade, M; Domich, L; Oakson, G; Deschênes, M

    1987-01-01

    The hypothesis that nucleus reticularis thalami (RE) is the generator of spindle rhythmicity during electroencephalogram (EEG) synchronization was tested in acutely prepared cats. Unit discharges and focal waves were extracellularly recorded in the rostral pole of RE nucleus, which was completely disconnected by transections from all other thalamic nuclei. In some experiments, additional transections through corona radiata created a triangular island in which the rostral RE pole survived with the caudate nucleus, putamen, basal forebrain nuclei, prepyriform area, and the adjacent cortex. Similar results were obtained in two types of experiments: brain stem-transected preparations that exhibited spontaneous spindle sequences, and animals under ketamine anesthesia in which transient spindling was repeatedly precipitated during recording by very low doses of a short-acting barbiturate. Both spindle-related rhythms (7- to 16-Hz waves grouped in sequences that recur with a rhythm of 0.1-0.3 Hz) are seen in focal recordings of the deafferented RE nucleus. The presence of spindling rhythmicity in the disconnected RE nucleus contrasts with total absence of spindles in cortical EEG leads and in thalamic recordings behind the transection. Oscillations within the same frequency range as that of spontaneous spindles can be evoked in the deafferented RE nucleus by subcortical white matter stimulation. In deafferented RE cells, the burst structure consists of an initially biphasic acceleration-deceleration pattern, eventually leading to a long-lasting tonic tail. Quantitative group data show that the burst parameters of disconnected RE cells are very similar to those of RE neurons with intact connections. In the deafferented RE nucleus, spike bursts of RE neurons recur periodically (0.1-0.3 Hz) in close time-relation with simultaneously recorded focal spindle sequences. The burst occurrence of deafferented RE cells is greatly reduced after systemic administration of bicuculline

  10. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  11. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  12. Heterogeneous calretinin expression in the avian cochlear nucleus angularis.

    PubMed

    Bloom, S; Williams, A; MacLeod, K M

    2014-08-01

    Multiple calcium-binding proteins (CaBPs) are expressed at high levels and in complementary patterns in the auditory pathways of birds, mammals, and other vertebrates, but whether specific members of the CaBP family can be used to identify neuronal subpopulations is unclear. We used double immunofluorescence labeling of calretinin (CR) in combination with neuronal markers to investigate the distribution of CR-expressing neurons in brainstem sections of the cochlear nucleus in the chicken (Gallus gallus domesticus). While CR was homogeneously expressed in cochlear nucleus magnocellularis, CR expression was highly heterogeneous in cochlear nucleus angularis (NA), a nucleus with diverse cell types analogous in function to neurons in the mammalian ventral cochlear nucleus. To quantify the distribution of CR in the total NA cell population, we used antibodies against neuronal nuclear protein (NeuN), a postmitotic neuron-specific nuclear marker. In NA neurons, NeuN label was variably localized to the cell nucleus and the cytoplasm, and the intensity of NeuN immunoreactivity was inversely correlated with the intensity of CR immunoreactivity. The percentage of CR + neurons in NA increased from 31 % in embryonic (E)17/18 chicks, to 44 % around hatching (E21), to 51 % in postnatal day (P) 8 chicks. By P8, the distribution of CR + neurons was uniform, both rostrocaudal and in the tonotopic (dorsoventral) axis. Immunoreactivity for the voltage-gated potassium ion channel Kv1.1, used as a marker for physiological type, showed broad and heterogeneous postsynaptic expression in NA, but did not correlate with CR expression. These results suggest that CR may define a subpopulation of neurons within nucleus angularis. PMID:24752525

  13. Identification by stopped-exchange solution /sup 31/P NMR spectroscopy of the stepwise formation of (AgL/sub n/)PF/sub 6/ (n = 1-4). Comparison of metal-phosphorus coupling constants for triphenylphosphine and 5-phenyldibenzophosphole

    SciTech Connect

    Alyea, E.C.; Malito, J.; Nelson, J.H.

    1987-12-16

    The coordination properties of 5-phenyldibenzophosphate (PhDBP) have been studied extensively. The stepwise formation of (L/sub n/Ag)/sup +/PF/sub 6//sup -/ (n = 1-4) for L = PhDBP and PhP/sub 3/ observed in situ by stopped-exchange solution /sup 31/P NMR spectroscopy is reported herein. The relative coordinating properties of PhDBP and PhP/sub 3/ are compared. 21 references, 1 figure, 2 tables.

  14. Calculated dynamical evolution of the nucleus of comet Hartley 2

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    2013-04-01

    The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the

  15. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.

    PubMed

    Zhang, Qiao; Kota, Krishna P; Alam, Samer G; Nickerson, Jeffrey A; Dickinson, Richard B; Lele, Tanmay P

    2016-06-01

    Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces. PMID:26496460

  16. Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments.

    PubMed

    Rak, Kristen; Völker, Johannes; Jürgens, Lukas; Völker, Christine; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Jablonka, Sibylle; Mlynski, Robert; Radeloff, Andreas; Hagen, Rudolf

    2015-08-01

    The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss. PMID:25960344

  17. Magnetic Manipulation of Nanorods in the Nucleus of Living Cells

    PubMed Central

    Celedon, Alfredo; Hale, Christopher M.; Wirtz, Denis

    2011-01-01

    The organization of chromatin in the cell nucleus is crucial for gene expression regulation. However, physically probing the nuclear interior is challenging because high forces have to be applied using minimally invasive techniques. Here, magnetic nanorods embedded in the nucleus of living cells are subjected to controlled rotational forces, producing micron-sized displacements in the nuclear interior. The resulting time-dependent rotation of the nanorods is analyzed in terms of viscoelastic parameters of the nucleus, in wild-type and Lamin A/C deficient cells. This method and analysis reveal that Lamin A/C knockout, together perhaps with other changes that result from the knockout, induce significant decreases in the nuclear viscosity and elasticity. PMID:22004741

  18. The Potential Roles of Actin in The Nucleus

    PubMed Central

    Falahzadeh, Khadijeh; Banaei-Esfahani, Amir; Shahhoseini, Maryam

    2015-01-01

    Over the past few decades, actin’s presence in the nucleus has been demonstrated. Actin is a key protein necessary for different nuclear processes. Although actin is well known for its functional role in dynamic behavior of the cytoskeleton, emerging studies are now highlighting new roles for actin. At the present time there is no doubt about the presence of actin in the nucleus. A number of studies have uncovered the functional involvement of actin in nuclear processes. Actin as one of the nuclear components has its own structured and functional rules, such as nuclear matrix association, chromatin remodeling, transcription by RNA polymerases I, II, III and mRNA processing. In this historical review, we attempt to provide an overview of our current understanding of the functions of actin in the nucleus. PMID:25870830

  19. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. PMID

  20. Morphometric study of dentate nucleus of cerebellum in Bangladeshi cadaver.

    PubMed

    Haque, M A; Khalil, M; Sultana, S Z; Mannan, S; Uddin, M M; Hossain, M; Ara, A; Choudhury, S; Shammi, N J

    2015-01-01

    This cross sectional descriptive study was done by using nonprobability sampling technique and performed by examining 63 (sixty three) cerebellum. Out of them 40 postmortem human cerebellum collected from Bangladeshi cadavers of both sexes (male 25 and female 15) age ranging from 5 to 60 years and 23 cerebellums from caesarian section of intrauterine death cases of both sexes (male 14 and female 9) age ranging from 34 to 41 weeks of gestation. Specimens were collected from dead bodies autopsied on different dates from April' 2009 to September' 2009 at the autopsy laboratory of department of Forensic Medicine and prenatal cases from Gynaecology and Obstetrics Department of Mymensingh Medical College, Mymensingh. The collected specimens were grouped into three age groups like Group A (28 to 42 weeks of gestation), Group B (5 to 30 years) and Group C (31 to 60 years) and, two sex groups (male and female) and two sides (right and left). A transverse section was made at the level of horizontal fissure, and length and breadth of dentate nucleus were measured by divider and scale. The mean (±SD) length and breadth of dentate nucleus was 8.619±2.995mm and 14.770±3.604mm respectively and it was observed that length and breadth of dentate nucleus increased with age upto certain level then slightly decreased in the late age Group C. In this study, differences of the mean length of dentate nucleus on both right and left sides were statistically moderately significant between age Groups A&B. The differences of mean breadth of dentate nucleus on both right and left side were statistically highly significant between age Groups A&B and moderately significant between age Groups A&C on right side and only significant on left side. The differences between male & female were statistically insignificant in length and breadth of dentate nucleus. PMID:25725664

  1. Final State Interactions Effects in Neutrino-Nucleus Interactions

    SciTech Connect

    Golan, Tomasz; Juszczak, Cezary; Sobczyk, Jan T.

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  2. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  3. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE PAGESBeta

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  4. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  5. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  6. Counting the number of correlated pairs in a nucleus

    SciTech Connect

    Vanhalst, Maarten; Cosyn, Wim; Ryckebusch, Jan

    2011-09-15

    We suggest that the number of correlated nucleon pairs in an arbitrary nucleus can be estimated by counting the number of proton-neutron, proton-proton, and neutron-neutron pairs residing in a relative S state. We present numerical calculations of those amounts for the nuclei {sup 4}He, {sup 9}Be, {sup 12}C, {sup 27}Al, {sup 40}Ca, {sup 48}Ca, {sup 56}Fe, {sup 63}Cu, {sup 108}Ag, and {sup 197}Au. The results are used to predict the values of the ratios of the per-nucleon electron-nucleus inelastic scattering cross section to the deuteron in the kinematic regime where correlations dominate.

  7. Examination of the fission time of the Z =120 nucleus

    NASA Astrophysics Data System (ADS)

    Sikdar, A. K.; Ray, A.; Chatterjee, A.

    2016-04-01

    We show that the large difference in the measured lifetime for asymmetric fission of the highly excited (T ≈1.5 -MeV ) Z =120 nucleus as measured by the atomic techniques (crystal blocking and x-ray methods) with those measured by the nuclear techniques (mass-angle distribution and prefission neutron multiplicity) cannot be due to the different sensitivities of the atomic and nuclear techniques in different time domains. The claim of formation of a superheavy Z =120 nucleus with a high fission barrier on the basis of an observed long fission time by the atomic techniques is in direct conflict with all other available measurements and calculations.

  8. Hypertrophy of the Inferior Olivary Nucleus Impacts Perception of Gravity

    PubMed Central

    Tarnutzer, Alexander A.; Palla, Antonella; Marti, Sarah; Schuknecht, Bernhard; Straumann, Dominik

    2012-01-01

    Interruption of the dentato-olivary projections, interconnecting the dentate nucleus (DN) and the contralateral inferior olivary nucleus (ION), is predicted to interfere with the DN’ role in estimating direction of gravity. In a patient with pendular nystagmus due to hypertrophy of the ION secondary to predominantly right-sided ponto-mesencephalic hemorrhage, perceived vertical shifted from clockwise to counter-clockwise deviations within 4 months. We hypothesize that synchronized oscillations of ION neurons induce a loss of inhibitory control, leading to hyperactivity of the contralateral DN and, as a result, to perceived vertical roll–tilt to the side of the over-active DN. PMID:22593754

  9. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    SciTech Connect

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  10. Scaling and asymptotic properties of evaporated neutron inclusive cross sections in high energy hadron-nucleus and nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Galoyan, A. S.; Ribon, A.; Uzhinsky, V. V.

    2015-09-01

    New properties of the evaporated neutron ( E < 30 MeV) energy spectra in hadron-nucleus interactions have been found. Particularly, the spectra approach the asymptotic regime, namely, they weakly depend on the collision energy at momenta of projectile protons larger than 5-6 GeV/ c; the spectra for various nuclei are similar, and can be approximately described by the function A n f( E). Experimental data on neutron spectra in the case of projectile π-mesons show analogous behavior, but the statistics of the data do not allow one to draw clear conclusions. In our analysis we used ITEP experimental data on inclusive cross sections of neutrons produced in interactions of π-mesons and protons with various nuclei in the energy range from 747 MeV up to 8.1 GeV. The observed properties allow one to predict neutron yields in the nucleus-nucleus interactions at high and super high energies. Predictions for the NICA/MPD experiment at JINR are presented. It is shown that the FTF (Fritiof)-model of the Geant4 toolkit qualitatively reproduces the observed regularities. For the first time estimates of the neutron energy flows are obtained at both RHIC and LHC energies.

  11. Changes of reactions of neurones in dorsal raphe nucleus and locus coeruleus to electroacupuncture by hypothalamic arcuate nucleus stimulation.

    PubMed

    Yin, Q H; Mao, J R; Guo, S Y

    1988-01-01

    In this experiment the role of the hypothalamic arcuate nucleus (ARC) in acupuncture analgesia and its mechanisms were studied with behavioural and electrophysiological methods. After ARC stimulation the analgesic effect of acupuncture was enhanced significantly and the responses of neurones to electroacupuncture were increased in the dorsal raphe nucleus (DR) and reduced in the locus coeruleus (LC), which could be reversed by intraperitoneal injection of naloxone. The results indicate that ARC might participate in acupuncture analgesia via changing the responses of DR and LC neurones to electroacupuncture, a process in which opiate-like substances (probably beta-endorphin) are involved. PMID:3192102

  12. Active processes in cometary nucleus and new meteoroid swarms

    NASA Astrophysics Data System (ADS)

    Ibadinov, Kh. I.; Buriev, A. M.; Safarov, A. G.; Rahmonov, A. A.

    2015-07-01

    Based on the catalogs of comets capable of nucleus splitting and comets with abnormal tail 30 short-Jupiter-family comets were identified, which are capable of producing meteoroid swarms that do not intersect the Earth's orbit, but are of interest for drafting of space missions and studying the distribution of meteoroid streams.

  13. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  14. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  15. Nucleus to Mitochondria: Lost in Transcription, Found in Translation.

    PubMed

    St-Pierre, Julie; Topisirovic, Ivan

    2016-06-20

    Mitochondrial genes reside in the nucleus and mitochondria. In a recent paper in Nature, Couvillion et al. (2016) describe their development of a "mitoribosome profiling" approach and demonstrate that changes in expression of nuclear- and mitochondrial-encoded genes are coordinated at the level of translation during metabolic adaptation to fuel source changes. PMID:27326927

  16. Brackett Gamma Imaging of the Nucleus of M83

    NASA Astrophysics Data System (ADS)

    Crosthwaite, L. P.; Turner, J. L.; Beck, S. C.; Meier, D. S.

    2004-12-01

    The gas-rich nucleus of barred spiral galaxy, M83, is a hotbed of star formation, with a total infrared luminosity of 4 X 109 Lo. We have observed the nucleus of M83 with the near infrared spectrometer, NIRSPEC, on Keck 2 to obtain high resolution Brγ recombination line spectra of the nucleus. Simultaneous imaging with the SCAM camera in a broadband K filter shows the position of the slit on the near-infrared galaxy. This allows us to map the nucleus with a continuum reference. The SCAM image shows a bright peak at the nucleus and a complex semi-circular arc of emission to the southwest. We stepped the 0.5'' X 24'' length slit in small declination increments to map a 20'' X 20'' region just west of the nucleus. Individual spectra were used to form a ra-dec-lambda cube and an integrated intensity map of Brγ . A total of 1.1 X 10-16 W m-2 of Brγ emission is detected in the map, in good agreement with previous low resolution observations (Turner, Ho, & Beck 1987, ApJ, 313, 644). This is not corrected for extinction within the molecular clouds in M83 or to the nebulae themselves and is therefore a lower limit to the true Brγ flux. Extinction is estimated to be at least a magnitude in the near-IR as measured in larger (4'') beams (Turner et al.) The bulk of the Brγ emission extends along the northern portion of the near-IR continuum semi-circle. Twenty percent of the total Brγ emission comes from single a 3'' (FWHM) source located 5'' west of the near-IR nucleus. The complementary NIRSPEC Brα data we have obtained will eventually allow us to evaluate the near-IR extinction on subarcsecond sizescales and obtain an extinction-corrected estimate of the Lyman continuum rate and therefore the number of ionizing stars.

  17. Morphometric analysis of the supraoptic nucleus in the human brain.

    PubMed Central

    Hofman, M A; Goudsmit, E; Purba, J S; Swaab, D F

    1990-01-01

    The supraoptic nucleus (SON) in the human hypothalamus is an elongated, densely packed collection of large neurosecretory cells. The size, shape and cellular morphology of the dorsolateral part of the SON was examined in relation to sex and age in adult subjects. In this region, the following parameters were measured: length of the rostrocaudal axis, maximum cross-sectional area, volume, numerical cell density, total cell number and the mean diameter of the cell nuclei. No sexual differences were observed in any of these parameters with the exception that males have a more elongated SON than females. In contrast to absolute size, sex-linked differences were found in the way the morphometric parameters are interrelated. Of the parameters investigated, only the number of cells in the SON showed significant changes with ageing. A striking increase in the total number of cells, by about 30%, was found between 40 and 65 years of age. A further increase in cell number was observed after the age of 65 years, as a result of which the nucleus contained, on average, 1.4 times as many cells in old subjects (65-90 years) as in young individuals (20-40 years). These findings suggest that a substantial proliferation of glial cells takes place in the human supraoptic nucleus with advancing age. Finally, the morphology of the SON was compared with that of other hypothalamic regions--the suprachiasmatic nucleus (SCN) and the paraventricular nucleus (PVN)--using the same material as that used in previous investigations in this series (Hofman et al. 1988; Hofman & Swaab, 1989). PMID:2272907

  18. Structures and functions in the crowded nucleus: new biophysical insights

    NASA Astrophysics Data System (ADS)

    Hancock, Ronald

    2014-09-01

    Concepts and methods from the physical sciences have catalysed remarkable progress in understanding the cell nucleus in recent years. To share this excitement with physicists and encourage their interest in this field, this review offers an overview of how the physics which underlies structures and functions in the nucleus is becoming more clear thanks to methods which have been developed to simulate and study macromolecules, polymers, and colloids. The environment in the nucleus is very crowded with macromolecules, making entropic (depletion) forces major determinants of interactions. Simulation and experiments are consistent with their key role in forming membraneless compartments such as nucleoli, PML and Cajal bodies, and discrete "territories" for chromosomes. The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like a polymer melt. Looped conformations are predicted in crowded conditions, and have been confirmed experimentally and are central to the regulation of gene expression. Polymer theory has revealed how the chromosomes are so highly compacted in the nucleus, forming a "crumpled globule" with fractal properties which avoids knots and entanglements in DNA while allowing facile accessibility for its replication and transcription. Entropic repulsion between looped polymers can explain the confinement of each chromosome to a discrete region of the nucleus. Crowding and looping are predicted to facilitate finding the specific targets of factors which modulate activities of DNA. Simulation shows that entropic effects contribute to finding and repairing potentially lethal double-strand breaks in DNA by increasing the mobility of the broken ends, favouring their juxtaposition for repair. Signaling pathways are strongly influenced by crowding, which favours a processive mode of response (consecutive reactions without releasing substrates). This new information contributes to understanding the sometimes counter-intuitive consequences.

  19. Cytoskeletal tension induces the polarized architecture of the nucleus

    PubMed Central

    Kim, Dong-Hwee; Wirtz, Denis

    2016-01-01

    The nuclear lamina is a thin filamentous meshwork that provides mechanical support to the nucleus and regulates essential cellular processes such as DNA replication, chromatin organization, cell division, and differentiation. Isolated horizontal imaging using fluorescence and electron microscopy has long suggested that the nuclear lamina is composed of structurally different A-type and B-type lamin proteins and nuclear lamin-associated membrane proteins that together form a thin layer that is spatially isotropic with no apparent difference in molecular content or density between the top and bottom of the nucleus. Chromosomes are condensed differently along the radial direction from the periphery of the nucleus to the nuclear center; therefore, chromatin accessibility for gene expression is different along the nuclear radius. However, 3D confocal reconstruction reveals instead that major lamin protein lamin A/C forms an apically polarized Frisbee-like dome structure in the nucleus of adherent cells. Here we show that both A-type lamins and transcriptionally active chromatins are vertically polarized by the tension exercised by the perinuclear actin cap (or actin cap) that is composed of highly contractile actomyosin fibers organized at the apical surface of the nucleus. Mechanical coupling between actin cap and lamina through LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes induces an apical distribution of transcription-active subnucleolar compartments and epigenetic markers of transcription-active genes. This study reveals that intranuclear structures, such as nuclear lamina and chromosomal architecture, are apically polarized through the extranuclear perinuclear actin cap in a wide range of somatic adherent cells. PMID:25701041

  20. Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Horiuchi, W.; Takashina, M.; Yamamoto, Y.; Sakuragi, Y.

    2012-04-01

    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 50-400 MeV/u. The GOP is derived from the microscopic folding model with the complex G-matrix interaction CEG07 and the global density presented by the São Paulo group. The folding model accounts for realistic complex optical potentials of nucleus-nucleus systems well and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 8-22C, 12-24O, 16-38Ne, 20-40Mg, 22-48Si, 26-52S, 30-62Ar, and 34-70Ca, scattered by stable target nuclei of 12C, 16O, 28Si, 40Ca 58Ni, 90Zr, 120Sn, and 208Pb at incident energies of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers, and the projectile atomic number, while the range parameters depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.