Science.gov

Sample records for 320x240 pixel lec

  1. X-ray imaging using a 320 x 240 hybrid GaAs pixel detector

    SciTech Connect

    Irsigler, R.; Andersson, J.; Alverbro, J.

    1999-06-01

    The authors present room temperature measurements on 200 {micro}m thick GaAs pixel detectors, which were hybridized to silicon readout circuits. The whole detector array contains 320 x 240 square shaped pixel with a pitch of 38 {micro}m and is based on semi-insulating liquid-encapsulated Czochralski (LEC) GaAs material. After fabricating and dicing, the detector chips were indium bump flip chip bonded to CMOS readout circuits based on charge integration and finally evaluated. This readout chip was originally designed for the readout of flip chip bonded infrared detectors, but appears to be suitable for X-ray applications as well. A bias voltage between 50 V and 100 V was sufficient to operate the detector at room temperature. The detector array did respond to x-ray radiation by an increase in current due to production of electron hole pairs by the ionization processes. Images of various objects and slit patterns were acquired by using a standard X-ray source for dental imaging. The new X-ray hybrid detector was analyzed with respect to its imaging properties. Due to the high absorption coefficient for X-rays in GaAs and the small pixel size, the sensor shows a high modulation transfer function up to the Nyquist frequency.

  2. 320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging

    NASA Astrophysics Data System (ADS)

    Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.

    2012-10-01

    Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum < 10-3 mbar, the authors have pushed forward the development of the technology on fully operational QVGA readout circuits CMOS base wafers (320 x 240 pixels). In this outlook, the article reports on the electro optical performance obtained from this preliminary PLP based QVGA demonstrator. Apart from the response, noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.

  3. 320x240 and 640x480 UFPAs for TWS and DVE applications

    NASA Astrophysics Data System (ADS)

    Han, C. J.; Rawlings, Richard; Sweeney, Mike; Whicker, Steve; Peysha, Doug; Clarke, J. Elwood; Sullivan, Bill; Li, Chuan; Howard, Phillip

    2005-05-01

    DRS Technologies has designed and delivered Thermal Weapon Site (TWS) and Driver's Viewer Enhancer (DVE) system using its U3500 (320x240) and U6000 (640x480) 1-mil detector arrays. The detectors are modified to enhance its manufacturability, thermal time constant, package life time, and its reliability under shock and vibration to meet TWS and DVE requirements. The U6000 array operates at 30 Hz frame rate with NETD less than 50 mK normalized to F/1.0 optics. At a saving to the system weight and power, these arrays operate from -40°C to +65°C without the aid of a TE cooler. This is accomplished through a combination of sensor calibration and smart ROIC architecture.

  4. Enhanced amorphous silicon technology for 320 x 240 microbolometer arrays with a pitch of 35 μm

    NASA Astrophysics Data System (ADS)

    Mottin, Eric; Martin, Jean-Luc; Ouvrier-Buffet, Jean-Louis; Vilain, Michel; Bain, Astrid; Yon, Jean-Jacques; Tissot, Jean-Luc; Chatard, Jean-Pierre

    2001-10-01

    LETI LIR has been involved in Amorphous Silicon uncooled microbolometer development for years. This technology is now in production at Sofradir and first delivery have already been done to customers. From our background in modeling and material mastering LETI/LIR concentrate now on performance enhancement. This is a key point for cost reduction due to the fact that signal to noise ratio enhancement will allow us to decrease the pitch. A new approach of packaging is also described in this paper and first results are displayed. A new technological stack of amorphous silicon fully compatible with industrial process is presented. Electro-optical results obtained from an IRCMOS 320 X 240 with 35 μm pitch are presented. NETD close to 35 mK has been obtained with our new embodiment of amorphous silicon microbolometer technology.

  5. Advanced high-performance 320x240 VOx microbolometer uncooled IR focal plane

    NASA Astrophysics Data System (ADS)

    Howard, Philip E.; Clarke, John E.; Parrish, William J.; Woolaway, James T., II

    1999-07-01

    This paper describes Boeing's next-generation 320 X 320 uncooled IR focal plane product. The basic objectives have ben to at least double focal plane performance, improve focal pane operating stability, and significantly enhance the control interface between the focal pane and the camera. All of these basic objectives have been achieved. Focal plane temporal NETD equals 0.028 degrees C has been demonstrated at a frame rate of 60 Hz on the first lot of UFPAs produced, as well as a worst-case spatial NETD < 0.016 degrees C measured over 10 degrees C temperature calibration range. Operating stability improvement has been successfully demonstrated. The design has validated a 'smart sensor' UFPA/camera control interface that provides externally programmability of on-chip signal gain, on-chip pixel offset compensation, on-chip detector bias regulation, precision on-chip temperature measurement, and a 16 test- point Built In Test function. Based on Lot-1 test results, the next lot, which is now in wafer processing, is expected to achieve NETD < 0.02 degrees C at a 60 Hz frame rate. With an improved microbolometer Thermal Isolation Structure, currently in development at Boeing, NETD < 0.010 degrees C can be demonstrated before the end of this year.

  6. Design of ADC in 25 μm pixels pitch dedicated for IRFPA image processing at LETI

    NASA Astrophysics Data System (ADS)

    Tchagaspanian, M.; Villard, P.; Dupont, B.; Chammings, G.; Martin, J. L.; Pistre, C.; Lattard, D.; Chantre, C.; Arnaud, A.; Yon, J. J.; Simoens, F.; Tissot, J. L.

    2007-04-01

    LETI has been involved in IRFPA development since 1978, the design department (LETI/DCIS) has focused its work on new ROIC architecture since many years. The trend is to integrate advanced functions into the CMOS design in the aim of making cost efficient sensors. The purpose of this paper is to present the latest developments of an Analog to Digital Converter embedded in a 25μm pixel. The design is driven by several goals. It targets both long integration time and snapshot exposure, 100% of image frame time being available for integration. All pixels are integrating the IR signal at the same time. The IR signal is converted into digital by using a charge packet counter. High density 130nm CMOS allows to use many digital functions such as counting, memory and addressing. This new structure has been applied to 25μm pitch bolometer sensors with a dedicated 320 x 240 IRCMOS circuit. Due to smart image processing in the CMOS, the bolometer architecture requirements may become very simple and low cost. The room temperature sensitivity and the DC offset are solved directly in the pixel. This FPA targets low NETD (<50mK), a variation of 80 Kelvin for the FPA temperature, 14 bits output at 50/60Hz video rate.

  7. High-performance uncooled amorphous silicon VGA and XGA IRFPA with 17μm pixel-pitch

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Tinnes, S.; Durand, A.; Minassian, C.; Robert, P.; Vilain, M.

    2010-10-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon with 45μm, 35μm and 25μm, enables ULIS to develop VGA and XGA IRFPA formats with 17μm pixel-pitch to fulfill every applications. These detector keeps all the recent innovations developed on the 25μm pixel-pitch ROIC (detector configuration by serial link, low power consumption and wide electrical dynamic range). The specific appeal of these units lies in the high spatial resolution it provides while keeping the small thermal time constant. The reduction of the pixel-pitch turns the TEC-less VGA array into a product well adapted for high resolution and compact systems and the XGA a product well adapted for high resolution imaging systems. High electro-optical performances have been demonstrated with NETD < 50mK. We insist on NETD and wide thermal dynamic range trade-off, and on the high characteristics uniformity, achieved thanks to the mastering of the amorphous silicon technology as well as the ROIC design. This technology node paves the way to high end products as well as low end compact smaller formats like 320 x 240 and 160 x 120 or smaller.

  8. Caenorhabditis elegans galectins LEC-6 and LEC-10 interact with similar glycoconjugates in the intestine.

    PubMed

    Maduzia, Lisa L; Yu, Evan; Zhang, Yinhua

    2011-02-11

    Galectins are a family of metazoan proteins that show binding to various β-galactoside-containing glycans. Because of a lack of proper tools, the interaction of galectins with their specific glycan ligands in the cells and tissues are largely unknown. We have investigated the localization of galectin ligands in Caenorhabditis elegans using a novel technology that relies on the high binding specificity between galectins and their endogenous ligands. Fluorescently labeled recombinant galectin fusions are found to bind to ligands located in diverse tissues including the intestine, pharynx, and the rectal valve. Consistent with their role as galactoside-binding proteins, the interaction with their ligands is inhibited by galactose or lactose. Two of the galectins, LEC-6 and LEC-10, recognize ligands that co-localize along the intestinal lumen. The ligands for LEC-6 and LEC-10 are absent in three glycosylation mutants bre-1, fut-8, and galt-1, which have been shown to be required to synthesize the Gal-β1,4-Fuc modifications of the core N-glycans unique to C. elegans and several other invertebrates. Both galectins pull down the same set of glycoproteins in a manner dependent on the presence of these carbohydrate modifications. Endogenous LEC-6 and LEC-10 are expressed in the intestinal cells, but they are localized to different subcellular compartments that do not appear to overlap with each other or with the location of their glycan targets. An altered subcellular distribution of these ligands is found in mutants lacking both galectins. These results suggest a model where LEC-6 and LEC-10 interact with glycoproteins through specific glycans to regulate their cellular fate. PMID:21115491

  9. Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa.

    PubMed

    Boukerb, Amine M; Decor, Aude; Ribun, Sébastien; Tabaroni, Rachel; Rousset, Audric; Commin, Loris; Buff, Samuel; Doléans-Jordheim, Anne; Vidal, Sébastien; Varrot, Annabelle; Imberty, Anne; Cournoyer, Benoit

    2016-01-01

    LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewis(a) rather than Lewis(x). Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewis(a) showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great

  10. Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa

    PubMed Central

    Boukerb, Amine M.; Decor, Aude; Ribun, Sébastien; Tabaroni, Rachel; Rousset, Audric; Commin, Loris; Buff, Samuel; Doléans-Jordheim, Anne; Vidal, Sébastien; Varrot, Annabelle; Imberty, Anne; Cournoyer, Benoit

    2016-01-01

    LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewisa rather than Lewisx. Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewisa showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great variations

  11. T-LECS: The Control Software System for MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.

    2006-07-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.

  12. 47 CFR 51.705 - Incumbent LECs' rates for transport and termination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Incumbent LECs' rates for transport and... CARRIER SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.705 Incumbent LECs' rates for transport and termination. (a) An incumbent LEC's...

  13. 47 CFR 51.705 - Incumbent LECs' rates for transport and termination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Incumbent LECs' rates for transport and... CARRIER SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.705 Incumbent LECs' rates for transport and termination. (a) An incumbent LEC's...

  14. 47 CFR 51.911 - Access reciprocal compensation rates for competitive LECs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... competitive LECs. 51.911 Section 51.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Transitional Access Service Pricing § 51.911 Access... Competitive LECs operating in an area served by a Price Cap Carrier, no such Competitive LEC may increase...

  15. 47 CFR 51.705 - LECs' rates for transport and termination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false LECs' rates for transport and termination. 51... SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.705 LECs' rates for transport and termination. (a) Notwithstanding any...

  16. 47 CFR 51.705 - LECs' rates for transport and termination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false LECs' rates for transport and termination. 51... SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.705 LECs' rates for transport and termination. (a) Notwithstanding any...

  17. 47 CFR 51.705 - LECs' rates for transport and termination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false LECs' rates for transport and termination. 51... SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.705 LECs' rates for transport and termination. (a) Notwithstanding any...

  18. 47 CFR 51.707 - Default proxies for incumbent LECs' transport and termination rates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Default proxies for incumbent LECs' transport... (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.707 Default proxies for incumbent LECs' transport...

  19. 47 CFR 69.711 - Channel terminations between LEC end offices and customer premises.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and customer premises. 69.711 Section 69.711 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... terminations between LEC end offices and customer premises. (a) Scope. This paragraph governs requests for pricing flexibility with respect to channel terminations between LEC end offices and customer premises....

  20. 47 CFR 51.707 - Default proxies for incumbent LECs' transport and termination rates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Default proxies for incumbent LECs' transport... (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.707 Default proxies for incumbent LECs' transport...

  1. PIXEL PUSHER

    NASA Technical Reports Server (NTRS)

    Stanfill, D. F.

    1994-01-01

    Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.

  2. 47 CFR 69.709 - Dedicated transport and special access services other than channel terminations between LEC end...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... other than channel terminations between LEC end offices and customer premises. 69.709 Section 69.709... terminations between LEC end offices and customer premises. (a) Scope. This paragraph governs requests for... transport and special access services other than channel terminations between LEC end offices and...

  3. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation

    PubMed Central

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell–cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  4. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation.

    PubMed

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  5. Decreased tumorigenicity correlates with expression of altered cell surface carbohydrates in Lec9 CHO cells.

    PubMed Central

    Ripka, J; Shin, S; Stanley, P

    1986-01-01

    To investigate a role for surface carbohydrates in cellular malignancy, 15 different glycosylation-defective CHO cell mutants were examined for their tumorigenic and metastatic capacities after subcutaneous injection into nude mice. Most of the glycosylation mutants displayed similar or slightly decreased tumorigenicity compared with parental CHO cells. Neither parental CHO cells nor any of the mutants were observed to metastasize. However, independent isolates of one mutant type, Lec9, showed a dramatic reduction in tumor formation. The altered carbohydrates expressed at the surface of Lec9 cells appeared to be responsible for their loss of tumorigenicity, because revertants for lectin resistance were able to form tumors, and a double mutant (Lec9.Lec1) that expressed a Lec1 glycosylation phenotype also formed tumors. Finally, Lec9 cells were able to form tumors in gamma-irradiated nude mice, suggesting that recognition by an irradiation-sensitive host cell(s) was responsible for their reduced tumorigenicity in untreated nude mice. PMID:3785164

  6. Pixel Perfect

    SciTech Connect

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Sowa, Marianne B.

    2005-09-01

    cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.

  7. Single CRD containing lectin from Macrobrachium rosenbergii (MrLec) participates in innate immunity against pathogen infections.

    PubMed

    Huang, Xin; Li, Wen; Jin, Min; Ma, Fu-Tong; Huang, Ying; Shi, Yan-Ru; Zhao, Ling-Ling; Feng, Jin-Ling; Ren, Qian; Wang, Wen

    2016-04-01

    As a type of pattern-recognition proteins, lectins perform important functions in the innate immunity of crustaceans, including prawns. Although several reports showed that C-type lectin domain family (CLEC) importantly functions in host-pathogen interactions, limited research has focused on CLEC in Macrobrachium rosenbergii. In the present study, a new single CRD containing CLEC (designated as MrLec) was reported in freshwater prawns, M. rosenbergii. The full-length cDNA of MrLec consisted of 1027 bp with an open reading frame of 801 bp, which encoded a peptide of 266 amino acid residues. Genomic sequence for MrLec was also obtained from the M. rosenbergii, which contain 4 exons and 3 introns. MrLec was found to contain a single carbohydrate-recognition domain with an EPN motif. MrLec was ubiquitously distributed in various tissues of a normal prawn, particularly in the hepatopancreas and gills. MrLec expression in the gills was significantly upregulated after a challenge with Vibrio parahaemolyticus and downregulated at 24 h after MrLec RNA interference (MrLec-RNAi). The expression levels of some AMPs, including antilipopolysaccharide factor 1 (Alf1) and lysozyme 2 (Lyso2), also markedly decreased after MrLec-RNAi. Recombinant MrLec can agglutinate (Ca(2+)-dependent) and bind both Gram-negative and Gram-positive bacteria. Results suggested that MrLec participates in the recognition of invading pathogens and functions in the immune response of prawn against pathogen infections. PMID:26923244

  8. Functionalization of a Rigid Divalent Ligand for LecA, a Bacterial Adhesion Lectin**

    PubMed Central

    Fu, Ou; Pukin, Aliaksei V; Quarles van Ufford, H C; Kemmink, Johan; de Mol, Nico J; Pieters, Roland J

    2015-01-01

    The bacterial adhesion lectin LecA is an attractive target for interference with the infectivity of its producer P. aeruginosa. Divalent ligands with two terminal galactoside moieties connected by an alternating glucose-triazole spacer were previously shown to be very potent inhibitors. In this study, we chose to prepare a series of derivatives with various new substituents in the spacer in hopes of further enhancing the LecA inhibitory potency of the molecules. Based on the binding mode, modifications were made to the spacer to enable additional spacer–protein interactions. The introduction of positively charged, negatively charged, and also lipophilic functional groups was successful. The compounds were good LecA ligands, but no improved binding was seen, even though altered thermodynamic parameters were observed by isothermal titration calorimetry (ITC). PMID:26478841

  9. Structural Insight into Multivalent Galactoside Binding to Pseudomonas aeruginosa Lectin LecA.

    PubMed

    Visini, Ricardo; Jin, Xian; Bergmann, Myriam; Michaud, Gaelle; Pertici, Francesca; Fu, Ou; Pukin, Aliaksei; Branson, Thomas R; Thies-Weesie, Dominique M E; Kemmink, Johan; Gillon, Emilie; Imberty, Anne; Stocker, Achim; Darbre, Tamis; Pieters, Roland J; Reymond, Jean-Louis

    2015-11-20

    Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands. A model of the chelate bound GalAG2·LecA complex was also obtained rationalizing its unusually tight LecA binding (KD = 2.5 nM) and aggregation by lectin cross-linking. The very weak biofilm inhibition with divalent LecA inhibitors suggests that lectin aggregation is necessary for biofilm inhibition by GalAG2, pointing to multivalent glycoclusters as a unique opportunity to control P. aeruginosa biofilms. PMID:26295304

  10. 47 CFR 52.23 - Deployment of long-term database methods for number portability by LECs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Deployment of long-term database methods for... database methods for number portability by LECs. (a) Subject to paragraphs (b) and (c) of this section, all... LECs must provide a long-term database method for number portability in the 100 largest...

  11. 47 CFR 52.23 - Deployment of long-term database methods for number portability by LECs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Deployment of long-term database methods for... database methods for number portability by LECs. (a) Subject to paragraphs (b) and (c) of this section, all... LECs must provide a long-term database method for number portability in the 100 largest...

  12. 47 CFR 52.23 - Deployment of long-term database methods for number portability by LECs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Deployment of long-term database methods for... database methods for number portability by LECs. (a) Subject to paragraphs (b) and (c) of this section, all... LECs must provide a long-term database method for number portability in the 100 largest...

  13. 47 CFR 52.23 - Deployment of long-term database methods for number portability by LECs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Deployment of long-term database methods for... database methods for number portability by LECs. (a) Subject to paragraphs (b) and (c) of this section, all... LECs must provide a long-term database method for number portability in the 100 largest...

  14. 47 CFR 52.23 - Deployment of long-term database methods for number portability by LECs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Deployment of long-term database methods for... database methods for number portability by LECs. (a) Subject to paragraphs (b) and (c) of this section, all... LECs must provide a long-term database method for number portability in the 100 largest...

  15. Low susceptibility to N-ethyl-N-nitrosourea-induced transplacental carcinogenesis in Long-Evans Cinnamon (LEC) rats.

    PubMed

    Tsuchigauchi, Takeshi; Takahashi, Tetsuyuki; Ohnishi, Takamasa; Ogawa, Hirohisa; Bando, Yoshimi; Uehara, Hisanori; Takizawa, Tamotsu; Kaneda, Shinya; Nakai, Tokiko; Shiota, Hiroshi; Izumi, Keisuke

    2009-08-01

    The Long-Evans Cinnamon (LEC) rat, an animal model of Wilson's disease, is resistant to a variety of chemical carcinogenesis except liver and colon. In the present study, N-ethyl-N-nitrosourea (ENU)-induced transplacental carcinogenesis was examined in male and female LEC, Long-Evans Agouti (LEA), a sibling line of the LEC rat, and F344 rats (n=21). ENU was administered to pregnant rats as a single s.c. injection at a dose of 60 mg/kg body weight on the 17th day after conception. Cerebral/spinal gliomas and trigeminal/spinal nerve schwannomas developed in both LEA and F344 rats at 30 weeks of age, but no nervous system tumors developed in LEC rats, the difference being statistically significant. Lung adenomas also developed in LEA and F344 rats, but not in LEC rats. Semiquantitative RT-PCR demonstrated that metallothionein (MT)1a, MT2 and O(6)-methylguanine-DNA methyltransferase (MGMT) mRNA levels in the liver of LEC rats were higher than those in F344 and LEA rats. In addition, Western blot analysis showed that MT (MT1 plus MT2) in the liver of LEC rats was also higher than that in other strains. Present results suggest that high levels of MT and/or MGMT contribute to the resistance to nitrosamine-induced carcinogenesis in LEC rats. PMID:19763020

  16. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis.

    PubMed

    Wójcikowska, Barbara; Jaskóła, Karolina; Gąsiorek, Przemysław; Meus, Magdalena; Nowak, Katarzyna; Gaj, Małgorzata D

    2013-09-01

    The LEAFY COTYLEDON2 (LEC2) transcription factor with a plant-specific B3 domain plays a central role in zygotic and somatic embryogenesis (SE). LEC2 overexpression induced in planta leads to spontaneous somatic embryo formation, but impairs the embryogenic response of explants cultured in vitro under auxin treatment. The auxin-related functions of LEC2 appear during SE induction, and the aim of the present study was to gain further insights into this phenomenon. To this end, the effect of LEC2 overexpression on the morphogenic responses of Arabidopsis explants cultured in vitro under different auxin treatments was evaluated. The expression profiles of the auxin biosynthesis genes were analysed in embryogenic cultures with respect to LEC2 activity. The results showed that LEC2 overexpression severely modifies the requirement of cultured explants for an exogenous auxin concentration at a level that is effective in SE induction and suggested an increase in the auxin content in 35S::LEC2-GR transgenic explants. The assumption of an LEC2 promoted increase in endogenous auxin in cultured explants was further supported by the expression profiling of the genes involved in auxin biosynthesis. The analysis indicated that YUCCAs and TAA1, working in the IPA-YUC auxin biosynthesis pathway, are associated with SE induction, and that the expression of three YUCCA genes (YUC1, YUC4 and YUC10) is associated with LEC2 activity. The results also suggest that the IAOx-mediated auxin biosynthesis pathway involving ATR1/MYB34 and CYP79B2 does not seem to be involved in SE induction. We conclude that de novo auxin production via the tryptophan-dependent IPA-YUC auxin biosynthesis pathway is implicated in SE induction, and that LEC2 plays a key role in this mechanism. PMID:23722561

  17. Recent improvements and developments in uncooled systems at BAE SYSTEMS North America

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Butler, Neal R.; Kohin, Margaret; Gurnee, Mark N.; Whitwam, Jason T.; Breen, Tom

    2002-08-01

    BAE SYSTEMS has designed and developed MicroIR microbolometer focal plane arrays (FPAs) in three formats (160x120, 320x240, and 640x480) and with two different pixel sizes (46micrometers and 28micrometers ). In addition to successfully demonstrating these FPA technologies, BAE SYSTEMS has produced and delivered thousands of 320x240 (46micrometers pixel) imaging modules and camera cores for military, thermography, firefighting, security and numerous other applications throughout the world. Recently, BAE SYSTEMS has started production deliveries of 160x120 (46micrometers ) systems, demonstrated 320x240 and 640x480 second-generation (28micrometers ) imaging, and demonstrated second-generation thermoelectric cooler-less operation. This paper discusses these recent accomplishments and, when possible, provides quantitative NETD and performance data for our newly developed FPAs and systems. Video will be shown to demonstrate sensor performance capabilities.

  18. The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation

    PubMed Central

    2014-01-01

    Background The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. Results An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Conclusions Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm. PMID:24758406

  19. Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies.

    PubMed

    Bini, Davide; Marchetti, Roberta; Russo, Laura; Molinaro, Antonio; Silipo, Alba; Cipolla, Laura

    2016-06-24

    Molecular recognition of glycans plays an important role in glycomic and glycobiology studies. For example, pathogens have a number of different types of lectin for targeting host sugars. In bacteria, lectins exist sometimes as domains of bacterial toxins and exploit adhesion to glycoconjugates as a means of entering host cells. Herein, we describe the synthesis of three glycodendrons with the aim to dissect the fine structural details involved in the multivalent carbohydrate-protein interactions. LecA, from the pathogen Pseudomonas aeruginosa, has been used to characterize galactose dendrons interaction using one of the most widespread NMR technique for the elucidation of receptor-ligand binding in solution, the saturation transfer difference (STD) NMR. Furthermore, the effective hydrodynamic radius of each dendrimer recognized by LecA was estimated from the diffusion coefficients determined by pulsed-field-gradient stimulated echo (PFG-STE) NMR experiments. PMID:27185108

  20. Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac (banana).

    PubMed Central

    Koshte, V L; van Dijk, W; van der Stelt, M E; Aalberse, R C

    1990-01-01

    A lectin (BanLec-I) from banana (Musa paradisiac) with a binding specificity for oligomannosidic glycans of size classes higher than (Man)6GlcNAc was isolated and purified by affinity chromatography on a Sephadex G-75 column. It did not agglutinate untreated human or sheep erythrocytes, but it did agglutinate rabbit erythrocytes. BanLec-I stimulated T-cell proliferation. On size-exclusion chromatography, BanLec-I has a molecular mass of approx. 27 kDa, and on SDS/PAGE the molecular mass is approx. 13 kDa. The isoelectric point is 7.2-7.5. BanLec-I was found to be very effective as a probe in detecting glycoproteins, e.g. on nitrocellulose blots. Images Fig. 2. Fig. 4. Fig. 5. PMID:2268297

  1. SOI monolithic pixel detector

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  2. Partial gene deletion in LEC rat: An animal model for Wilson disease

    SciTech Connect

    Wu, J.; Forbes, J.R.; Cox, D.W.

    1994-09-01

    Wilson disease is an inherited disorder of copper transport in which incorporation of copper into ceruloplasmin and excretion of copper into bile are greatly reduced. Copper accumulates to a toxic level in the liver and also in the brain and kidney, causing a spectrum of hepatic and neurological abnormalities. We have recently cloned the gene for Wilson disease (designated ATP7B), which encodes a putative copper-transporting P-type ATPase. The inbred mutant Long-Evans Cinnamon (LEC) rat strain shows similarity to Wilson disease in many clinical and biochemical features. We have cloned cDNAs for the rat homologue (Atp7b) of the human Wilson disease gene (ATP7B) and have shown that the two genes have {approximately}82% identity at the amino acid sequence level. Rat cDNA sequences were used to identify a partial deletion in the Atp7b gene in the LEC rat. The deletion removes at least 750 bp of the coding region at the 3{prime} end, which includes the crucial ATP binding domain and extends downstream of the gene. The proximal breakpoint has been precisely localized at the cDNA level. Our results provide convincing evidence that the LEC rat is an animal model for Wilson disease. This model will be important for studying liver pathophysiology, for developing therapy for Wilson disease, and for studying the pathway of copper transport and its possible interaction with other heavy metals.

  3. Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa.

    PubMed

    Joachim, Ines; Rikker, Sebastian; Hauck, Dirk; Ponader, Daniela; Boden, Sophia; Sommer, Roman; Hartmann, Laura; Titz, Alexander

    2016-08-16

    Infections with the Gram-negative bacterium Pseudomonas aeruginosa result in a high mortality among immunocompromised patients and those with cystic fibrosis. The pathogen can switch from planktonic life to biofilms, and thereby shields itself against antibiotic treatment and host immune defense to establish chronic infections. The bacterial protein LecA, a C-type lectin, is a virulence factor and an integral component for biofilm formation. Inhibition of LecA with its carbohydrate ligands results in reduced biofilm mass, a potential Achilles heel for treatment. Here, we report the development and optimization of a fluorescence polarization-based competitive binding assay with LecA for application in screening of potential inhibitors. As a consequence of the low affinity of d-galactose for LecA, the fluorescent ligand was optimized to reduce protein consumption in the assay. The assay was validated using a set of known inhibitors of LecA and IC50 values in good agreement with the known Kd values were obtained. Finally, we employed the optimized assay to screen sets of synthetic thio-galactosides and natural blood group antigens and report their structure-activity relationship. In addition, we evaluated a multivalent fluorescent assay probe for LecA and report its applicability in an inhibition assay. PMID:27488655

  4. CfLec-3 from scallop: an entrance to non-self recognition mechanism of invertebrate C-type lectin

    PubMed Central

    Yang, Jialong; Huang, Mengmeng; Zhang, Huan; Wang, Lingling; Wang, Hao; Wang, Leilei; Qiu, Limei; Song, Linsheng

    2015-01-01

    A C-type lectin (CfLec-3) from Chlamys farreri with three carbohydrate-recognition domains (CRDs) was selected to dissect the possible mechanisms of PAMP binding and functional differentiation of invertebrate lectins. CfLec-3 distributed broadly, and its mRNA expression in hemocytes increased significantly after stimulations with LPS, PGN or β-glucan, but not poly(I:C). The recombinant CfLec-3 (rCfLec-3) could bind PAMPs and several microbes. rCfLec-3 mediated hemocytes phagocytosis against Escherichia coli and encapsulation towards agarose beads. Obvious functional differentiation occurred among the three CRDs, as CRD1 exhibited higher activity to bind PAMPs, while CRD2/3 were expert in promoting hemocyte mediated opsonisation. The tertiary structural differences were suspected to be associated with such functional differentiation. PAMP binding abilities of CfLec-3 were determined by Ca2+-binding site 2 motif. When Pro in this motif of each CRD was mutated into Ser, their PAMP binding abilities were deprived absolutely. rCRD2 acquired mannan binding capability when its EPD was replaced by EPN, but lost when EPN in rCRD3 was changed into EPD. The Pro in Ca2+-binding site 2 was indispensable for PAMPs binding, while Asn was determinant for specific binding to mannan. It shed new insight into PAMPs binding mechanism of invertebrate C-type lectins and their functional differentiation. PMID:25975813

  5. Antimicrobial functions of EsLecH, a C-type lectin, via JNK pathway in the Chinese mitten crab, Eriocheir sinensis.

    PubMed

    Zhu, You-Ting; Zhang, Xing; Wang, Shi-Chuang; Li, Wei-Wei; Wang, Qun

    2016-08-01

    C-type lectins (CTLs) are pattern recognition proteins that play significant roles in the innate immune system by identifying and eliminating pathogens. Here, we have reported a CTL (EsLecH) from the Chinese mitten crab that can bind to microorganisms and regulate antimicrobial peptide (AMP) expression via the c-Jun N-terminal kinase (JNK) pathway. EsLecH was found to have an N-terminal signal peptide and a single carbohydrate recognition domain. The EsLecH transcript was detected abundantly in various tissues, and it was significantly upregulated in hemocytes after challenging with lipopolysaccharides and bacteria. Recombinant (r)EsLecH could bind to microorganisms, but at different levels. Ca(2+) significantly increased rEsLecH binding affinity to microorganisms. Furthermore, growth inhibition by rEsLecH increased with increasing rEsLecH levels. Knockdown of EsLecH was accompanied by a significant reduction in AMP expression and JNK phosphorylation; AMP expression was reduced with JNK silencing and can not rescued by rEsLecH when absence of JNK. These results indicate that EsLecH could regulate AMPs via JNK signaling. PMID:27068761

  6. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  7. The Effects of Digital Video Quality on Learner Comprehension in an American Sign Language Assessment Environment

    ERIC Educational Resources Information Center

    Hooper, Simon; Miller, Charles; Rose, Susan; Veletsianos, George

    2007-01-01

    The effects of digital video frame rate and size on American Sign Language (ASL) learner comprehension were investigated. Fifty-one students were randomly assigned to one of three video-size treatment groups: 480x360, 320x240, and 240x180 pixels. Within each treatment, three 30-second videos of signed narratives at frame rates of 6, 12, and 18…

  8. Excretion of copper complexed with thiomolybdate into the bile and blood in LEC rats.

    PubMed

    Komatsu, Y; Sadakata, I; Ogra, Y; Suzuki, K T

    2000-02-01

    Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, was removed with ammonium tetrathiomolybdate (TTM), and the fate of the Cu complexed with TTM and mobilized from the liver was determined. TTM was injected intravenously as a single dose of 2, 10 or 50 mg TTM/kg body weight into LEC and Wistar (normal Cu metabolism) rats, and then the concentrations of Cu and molybdenum (Mo) in the bile and plasma were monitored with time after the injection. In Wistar rats, most of the Mo was excreted into the urine, only a small quantity being excreted into the bile, while Cu excreted into the urine decreased. However, in LEC rats, Cu and Mo were excreted into the bile and blood, and the bile is recognized for the first time as the major route of excretion. The Cu excreted into both the bile and plasma was accompanied by an equimolar amount of Mo. The relative ratio of the amounts of Cu excreted into the bile and plasma was 40/60 for the low and high dose groups, and 70/30 for the medium dose group. The systemic dispositions of the Cu mobilized from the liver and the Mo complexed with the Cu were also determined for the kidneys, spleen and brain together with their urinal excretion. Although Mo in the three organs and Cu in the kidneys and spleen were increased or showed a tendency to increase, Cu in the brain was not increased at all doses of TTM. PMID:10728780

  9. Cloning and Characterization of 5′ Flanking Regulatory Sequences of AhLEC1B Gene from Arachis Hypogaea L.

    PubMed Central

    Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei

    2015-01-01

    LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444

  10. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  11. Pixel-One

    NASA Astrophysics Data System (ADS)

    Pedichini, F.; Di Paola, A.; Testa, V.

    2010-07-01

    The early future of astronomy will be dominated by Extremely Large Telescopes where the focal lengths will be of the order of several hundred meters. This yields focal plane sizes of roughly one square meter to obtain a field of view of about 5 x 5 arcmin. When operated in seeing limited mode this field is correctly sampled with 1x1mm pixels. Such a sampling can be achieved using a peculiar array of tiny CMOS active photodiodes illuminated through microlenses or lightpipes. If the photodiode is small enough and utilizes the actual pixel technology, its dark current can be kept well below the sky background photocurrent, thus avoiding the use of cumbersome cryogenics systems. An active smart electronics will manage each pixel up to the A/D conversion and data transfer. This modular block is the Pixel-One. A 30x30 mm tile filled with 1000 Pixel-Ones could be the basic unit to mosaic very large focal planes. By inserting dispersion elements inside the optical path of the lenslet array one could also produce a low dispersed spectrum of each focal plane sub-aperture and, by using an array of few smart photodiodes, also get multi-wavelength information in the optical band for each equivalent focal plane pixel. An application to the E-ELT is proposed.

  12. Selecting Pixels for Kepler Downlink

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.; Haas, Michael R.

    2010-01-01

    The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.

  13. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB.

    PubMed

    Johansson, Emma M V; Crusz, Shanika A; Kolomiets, Elena; Buts, Lieven; Kadam, Rameshwar U; Cacciarini, Martina; Bartels, Kai-Malte; Diggle, Stephen P; Cámara, Miguel; Williams, Paul; Loris, Remy; Nativi, Cristina; Rosenau, Frank; Jaeger, Karl-Erich; Darbre, Tamis; Reymond, Jean-Louis

    2008-12-22

    The human pathogenic bacterium Pseudomonas aeruginosa produces a fucose-specific lectin, LecB, implicated in tissue attachment and the formation of biofilms. To investigate if LecB inhibition disrupts these processes, high-affinity ligands were obtained by screening two 15,536-member combinatorial libraries of multivalent fucosyl-peptide dendrimers. The most potent LecB-ligands identified were dendrimers FD2 (C-Fuc-LysProLeu)(4)(LysPheLysIle)(2)LysHisIleNH(2) (IC(50) = 0.14 microM by ELLA) and PA8 (OFuc-LysAlaAsp)(4)(LysSerGlyAla)(2)LysHisIleNH(2) (IC(50) = 0.11 microM by ELLA). Dendrimer FD2 led to complete inhibition of P. aeruginosa biofilm formation (IC(50) approximately 10 microM) and induced complete dispersion of established biofilms in the wild-type strain and in several clinical P. aeruginosa isolates. These experiments suggest that LecB inhibition by high-affinity multivalent ligands could represent a therapeutic approach against P. aeruginosa infections by inhibition of biofilm formation and dispersion of established biofilms. PMID:19101469

  14. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt’s Lymphoma Cells to Trigger Apoptosis through Multiple Pathways

    PubMed Central

    Hasan, Imtiaj; Sugawara, Shigeki; Fujii, Yuki; Koide, Yasuhiro; Terada, Daiki; Iimura, Naoya; Fujiwara, Toshiyuki; Takahashi, Keisuke G.; Kojima, Nobuhiko; Rajia, Sultana; Kawsar, Sarkar M. A.; Kanaly, Robert A.; Uchiyama, Hideho; Hosono, Masahiro; Ogawa, Yukiko; Fujita, Hideaki; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2015-01-01

    MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galβ1-4Glc). MytiLec revealed β-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt’s lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface. PMID:26694420

  15. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt's Lymphoma Cells to Trigger Apoptosis through Multiple Pathways.

    PubMed

    Hasan, Imtiaj; Sugawara, Shigeki; Fujii, Yuki; Koide, Yasuhiro; Terada, Daiki; Iimura, Naoya; Fujiwara, Toshiyuki; Takahashi, Keisuke G; Kojima, Nobuhiko; Rajia, Sultana; Kawsar, Sarkar M A; Kanaly, Robert A; Uchiyama, Hideho; Hosono, Masahiro; Ogawa, Yukiko; Fujita, Hideaki; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2015-12-01

    MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galβ1-4Glc). MytiLec revealed β-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt's lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface. PMID:26694420

  16. Spectrally tunable pixel sensors

    NASA Astrophysics Data System (ADS)

    Langfelder, G.; Buffa, C.; Longoni, A. F.; Zaraga, F.

    2013-01-01

    They are here reported the developments and experimental results of fully operating matrices of spectrally tunable pixels based on the Transverse Field Detector (TFD). Unlike several digital imaging sensors based on color filter arrays or layered junctions, the TFD has the peculiar feature of having electrically tunable spectral sensitivities. In this way the sensor color space is not fixed a priori but can be real-time adjusted, e.g. for a better adaptation to the scene content or for multispectral capture. These advantages come at the cost of an increased complexity both for the photosensitive elements and for the readout electronics. The challenges in the realization of a matrix of TFD pixels are analyzed in this work. First experimental results on an 8x8 (x 3 colors) and on a 64x64 (x 3 colors) matrix will be presented and analyzed in terms of colorimetric and noise performance, and compared to simulation predictions.

  17. Pilot-scale Limestone Emission Control (LEC) process: A development project. Volume 1, Main report and appendices A, B, C, and D: Final report

    SciTech Connect

    Prudich, M.E.; Appell, K.W.; McKenna, J.D.

    1994-03-01

    ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. A nominal 5,000 acfm LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. A total of over 90 experimental trials have been performed using the pilot-scale moving-bed LEC dry scrubber as a part of this research project with run times ranging up to a high of 125 hours. SO{sub 2} removal efficiencies as high as 99.9% were achievable for all experimental conditions studied during which sufficient humidification was added to the LEC bed. The LEC process and conventional limestone scrubbing have been compared on an equatable basis using flue gas conditions that would be expected at the outlet of the electrostatic precipitator (ESP) of a 500 MW coal-fired power plant. The LEC was found to have a definite economic advantage in both direct capital costs and operating costs. Based on the success and findings of the present project, the next step in LEC process development will be a full-scale commercial demonstration unit.

  18. Cinnamide Derivatives of d‐Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa †

    PubMed Central

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Wagner, Stefanie; Audfray, Aymeric; Prestel, Andreas; Möller, Heiko M.; Imberty, Anne

    2015-01-01

    Abstract Pseudomonas aeruginosa is an opportunistic Gram‐negative pathogen with high antibiotic resistance. Its lectin LecB was identified as a virulence factor and is relevant in bacterial adhesion and biofilm formation. Inhibition of LecB with carbohydrate‐based ligands results in a decrease in toxicity and biofilm formation. We recently discovered two classes of potent drug‐like glycomimetic inhibitors, that is, sulfonamides and cinnamides of d‐mannose. Here, we describe the chemical synthesis and biochemical evaluation of more than 20 derivatives with increased potency compared to the unsubstituted cinnamide. The structure–activity relationship (SAR) obtained and the extended biophysical characterization allowed the experimental determination of the binding mode of these cinnamides with LecB. The established surface binding mode now allows future rational structure‐based drug design. Importantly, all glycomimetics tested showed extended receptor residence times with half‐lives in the 5–20 min range, a prerequisite for therapeutic application. Thus, the glycomimetics described here provide an excellent basis for future development of anti‐infectives against this multidrug‐resistant pathogen. PMID:27308201

  19. Cinnamide Derivatives of d-Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa.

    PubMed

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Wagner, Stefanie; Audfray, Aymeric; Prestel, Andreas; Möller, Heiko M; Imberty, Anne; Titz, Alexander

    2015-12-01

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen with high antibiotic resistance. Its lectin LecB was identified as a virulence factor and is relevant in bacterial adhesion and biofilm formation. Inhibition of LecB with carbohydrate-based ligands results in a decrease in toxicity and biofilm formation. We recently discovered two classes of potent drug-like glycomimetic inhibitors, that is, sulfonamides and cinnamides of d-mannose. Here, we describe the chemical synthesis and biochemical evaluation of more than 20 derivatives with increased potency compared to the unsubstituted cinnamide. The structure-activity relationship (SAR) obtained and the extended biophysical characterization allowed the experimental determination of the binding mode of these cinnamides with LecB. The established surface binding mode now allows future rational structure-based drug design. Importantly, all glycomimetics tested showed extended receptor residence times with half-lives in the 5-20 min range, a prerequisite for therapeutic application. Thus, the glycomimetics described here provide an excellent basis for future development of anti-infectives against this multidrug-resistant pathogen. PMID:27308201

  20. The CMS pixel system

    NASA Astrophysics Data System (ADS)

    Bortoletto, Daniela; CMS Collaboration

    2007-09-01

    The CMS hybrid pixel detector is located at the core of the CMS tracker and will contribute significantly to track and vertex reconstruction. The detector is subdivided into a three-layer barrel, and two end-cap disks on either side of the interaction region. The system operating in the 25-ns beam crossing time of the LHC must be radiation hard, low mass, and robust. The construction of the barrel modules and the forward disks has started after extensive R&D. The status of the project is reported.

  1. The ALICE Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mercado-Perez, Jorge

    2002-07-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well.

  2. A single CRD C-type lectin from Eriocheir sinensis (EsLecB) with microbial-binding, antibacterial prophenoloxidase activation and hem-encapsulation activities.

    PubMed

    Fang, Zi-Yan; Li, Dan; Li, Xue-Jie; Zhang, Xing; Zhu, You-Ting; Li, Wei-Wei; Wang, Qun

    2016-03-01

    C-type lectins (CTLs) exist widely in crustaceans. To date, thirteen CTLs have been reported in crustaceans, and play significant roles in pathogen recognition, encapsulation of hemocytes and antimicrobial activity in the innate immune response. Based on the initial expressed sequence tags (EST) of a hepatopancreatic cDNA library, a novel CTL, designated as EsLecB, with a 470 bp open reading frame encodes a polypeptide of 156 amino acids, including a signal peptide of 19 amino acid residues and one carbohydrate-recognition domain of 131 aa residues, was cloned from the crustacean Eriocheir sinensis. By qRT-PCR analysis, EsLecB was detected in all tested tissues, and showed highest expression in hemocytes, hepatopancreas and heart. The expression of EsLecB was up-regulated following injections of PAMPs or bacteria. The recombinant protein (rEsLecB) expressed in Escherichia coli had a calcium-independent but carbohydrate-dependent microbial-binding and microbial-agglutinating, microorganism growth inhibitory and hem-encapsulation activities. Moreover, the rEsLecB could stimulate the activation of prophenoloxidase in vitro. These results indicated that EsLecB, as an antibacterial pattern recognition receptor is involved in innate immunity, and may act as an upstream detector of the prophenoloxidase activating system, which can detect pathogen invasion in E. sinensis. PMID:26826423

  3. Imaging properties of pixellated scintillators with deep pixels

    NASA Astrophysics Data System (ADS)

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2014-09-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

  4. Imaging properties of pixellated scintillators with deep pixels

    PubMed Central

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2015-01-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors. PMID:26236070

  5. A BeppoSAX/LECS X-ray observation of alpha Centauri

    NASA Astrophysics Data System (ADS)

    Mewe, R.; Guedel, M.; Favata, F.; Kaastra, J. S.

    1998-12-01

    We present the X-ray spectrum of the nearby binary alpha Cen AB (G2V + K1V) that has been obtained from observations with the low-energy concentrator (LECS) onboard the BeppoSAX X-ray astronomy satellite. SAX combines, in contrast to previous satellites, simultaneous coverage of the 0.1-10 keV energy range with sufficient spectral resolution to determine emission measure distributions and elemental abundances of soft coronal sources. The analysis of the spectrum using the SPEX plasma emission code shows a two-temperature structure of the corona which is confirmed by a differential emission measure analysis. It reveals a soft ( ~ 0.1 keV) component as detected previously by \\hboxEUVE and ROSAT and a hard ( ~ 0.5 keV) component comparable to that seen by EINSTEIN, \\hboxEUVE, and ASCA. The derived coronal Fe abundance of 0.7 +/- 0.3 (relative to solar photospheric) is consistent with the solar photospheric abundance but marginally (3hbox {\\sigma^2 CrB}ma) different from the value of the metal-rich photosphere of alpha Cen. The abundance ratios Mg/Fe and Si/Fe are consistent (within 1hbox {\\sigma^2 CrB}ma) with solar photospheric and coronal values, whereas the O/Fe ratio (3+/- 2) appears too high but the uncertainty is large. The X-ray flux in the 0.1-2.4 keV band is comparable to the average of previous observations with other instruments and to that derived from the ASCA observations if the different passbands of the instruments are taken into account. The two-temperature structure is reminiscent of recently determined emission measure distributions of the solar corona; the hotter component may be evidence for flare heating.

  6. Uncooled microbolometer detector: recent developments at ULIS

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Legras, O.; Trouilleau, C.; Crastes, A.; Fièque, B.

    2005-10-01

    Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Firefighting, predictive maintenance, process control and thermography are a few of the industrial applications which could take benefit from uncooled infrared detector. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 x 120 and 384 x 288 arrays production. Besides a wide-band version from uncooled 320 x 240 / 45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 x 240 infrared focal plane arrays with a pixel pitch of 45 μm.

  7. Uncooled microbolometer detector: recent developments at ULIS

    NASA Astrophysics Data System (ADS)

    Trouilleau, C.; Crastes, A.; Fièque, B.; Legras, O.; Tissot, J. L.

    2005-10-01

    Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Fire-fighting, predictive maintenance. process control and thermography are a few of the industrial applications which could take benefit from uncooled infrared detector. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 x 120 and 384 x 288 arrays production. Besides a wide-band version from uncooled 320 x 240 / 45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 x 240 infrared focal plane arrays with a pixel pitch of 45 μm.

  8. Uncooled microbolometer detector: recent development at Ulis

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Trouilleau, C.; Crastes, A.; Fièque, B.; Legras, O.

    2005-10-01

    Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Firefighting, predictive maintenance, process control and thermography are a few of the industrial applications which could take benefit from uncooled infrared detector. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 x 120 and 384 x 288 arrays production. Besides a wide-band version from uncooled 320 x 240 / 45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 x 240 infrared focal plane arrays with a pixel pitch of 45 μm.

  9. Uncooled microbolometer detector: recent developments at Ulis

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Trouilleau, C.; Fieque, B.; Crastes, A.; Legras, O.

    2005-09-01

    Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Fire-fighting, predictive maintenance, process control and thermography are a few of the industrial applications which could take benefit from uncooled infrared detector. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 x 120 and 384 x 288 arrays production. Besides a wide-band version from uncooled 320 x 240 / 45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 x 240 infrared focal plane arrays with a pixel pitch of 45 μm.

  10. Pixelation Effects in Weak Lensing

    NASA Technical Reports Server (NTRS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-01-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  11. Pixelation Effects in Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-11-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  12. Characterization of Multisugar-Binding C-Type Lectin (SpliLec) from a Bacterial-Challenged Cotton Leafworm, Spodoptera littoralis

    PubMed Central

    Seufi, AlaaEddeen M.; Galal, Fatma H.; Hafez, Elsayed E.

    2012-01-01

    Background Various proteins that display carbohydrate-binding activity in a Ca2+-dependent manner are classified into the C-type lectin family. They have one or two C-type carbohydrate-recognition domains (CRDs) composed of 110–130 amino acid residues in common. C-type lectins mediate cell adhesion, non-self recognition, and immuno-protection processes in immune responses and thus play significant roles in clearance of invaders, either as cell surface receptors for microbial carbohydrates or as soluble proteins existing in tissue fluids. The lectin of Spodoptera littoralis is still uncharacterized. Methodology A single orf encoding a deduced polypeptide consisting of an 18-residue signal peptide and a 291-residue mature peptide, termed SpliLec, was isolated from the haemolymph of the cotton leafworm, S. littoralis, after bacterial challenge using RACE-PCR. Sequence analyses of the data revealed that SpliLec consists of two CRDs. Short-form CRD1 and long-form CRD2 are stabilized by two and three highly conserved disulfide bonds, respectively. SpliLec shares homology with some dipteran lectins suggesting possible common ancestor. The purified SpliLec exhibited a 140-kDa molecular mass with a subunit molecular mass of 35 kDa. The hemagglutination assays of the SpliLec confirmed a thermally stable, multisugar-binding C-type lectin that binds different erythrocytes. The purified SpliLec agglutinated microorganisms and exhibited comparable antimicrobial activity against gram (+) and gram (−) bacteria too. Conclusions Our results suggested an important role of the SpliLec gene in cell adhesion and non-self recognition. It may cooperate with other AMPs in clearance of invaders of Spodoptera littoralis. PMID:22916161

  13. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis).

    PubMed

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M A; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels. PMID:27187419

  14. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis)

    PubMed Central

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M. A.; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic “mytilectin family” in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5′ end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5′UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3′UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels. PMID:27187419

  15. THE KEPLER PIXEL RESPONSE FUNCTION

    SciTech Connect

    Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.; Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.; Klaus, Todd; Gilliland, Ronald L.

    2010-04-20

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.

  16. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Watt, J.; Bates, R.; Campbell, M.; Mathieson, K.; Mikulec, B.; O'Shea, V.; Passmore, M.-S.; Schwarz, C.; Smith, K. M.; Whitehill, C.; XIMAGE Project

    2001-03-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 μm thick SI-LEC GaAs detector patterned in a 64×64 array of 170 μm pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO 3 have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Ω3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Ω3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and image processing are given, showing a marked reduction in patient dose and dead time compared with film.

  17. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  18. Expression, purification, and characterization of avian Thy-1 from Lec1 mammalian and Tn5 insect cells.

    PubMed

    Mehndiratta, Promod; Walton, Wendy J; Hare, Joan T; Pulido, Silvia; Parthasarathy, Gopalakrishnan; Emmett, Mark R; Marshall, Alan G; Logan, Timothy M

    2004-02-01

    Structural studies of asparagine-linked glycoproteins are complicated by the oligosaccharide heterogeneity inherent to individual glycosylation sites. Herein, we report the cloning of a novel isoform of avian Thy-1 and the subsequent expression, purification, and characterization of a soluble form of Thy-1 from Lec1 mammalian and Tn5 insect cells. The novel isoform of Thy-1 differs from the previously reported chicken isoform by eight amino acid residues, but these changes do not alter the secondary structure content, the disulfide bond pattern, or the sites of glycosylation. The disulfide linkage pattern and glycoform distribution on each N-glycosylation site of recombinant chicken Thy-1 from both cell lines were determined by a combination of amino-terminal sequencing and mass spectrometry. The mass spectral data showed that the amino-terminal glutamine was modified to pyroglutamate. Recombinant Thy-1 from Lec1 cells contained (GlcNAc)(2)(Man)(5) on asparagine 60, whereas the oligosaccharides on asparagine 23 and 100 contained approximately 80% (GlcNAc)(2)(Man)(4) and approximately 20% (GlcNAc)(2)(Man)(5). The glycoforms on Thy-1 expressed in Tn5 cells were more heterogeneous, with the oligosaccharides ranging over (GlcNAc)(2)(Fuc)(0-2)(Man)(2-3) on each site. The ability to generate recombinant glycoproteins with restricted carbohydrate heterogeneity is the first step toward the systematic study of structure-function relationships in intact glycoproteins. PMID:14711516

  19. Local Pixel Bundles: Bringing the Pixels to the People

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2014-12-01

    The automated galaxy-based alignment software package developed for the Frontier Fields program (hst2galign, see Anderson & Ogaz 2014 and http://www.stsci.edu/hst/campaigns/frontier-fields/) produces a direct mapping from the pixels of the flt frame of each science exposure into a common master frame. We can use these mappings to extract the flt-pixels in the vicinity of a source of interest and package them into a convenient "bundle". In addition to the pixels, this data bundle can also contain "meta" information that will allow users to transform positions from the flt pixels to the reference frame and vice-versa. Since the un-resampled pixels in the flt frames are the only true constraints we have on the astronomical scene, the ability to inter-relate these pixels will enable many high-precision studies, such as: point-source-fitting and deconvolution with accurate PSFs, easy exploration of different image-combining algorithms, and accurate faint-source finding and photometry. The data products introduced in this ISR are a very early attempt to provide the flt-level pixel constraints in a package that is accessible to more than the handful of experts in HST astrometry. The hope is that users in the community might begin using them and will provide feedback as to what information they might want to see in the bundles and what general analysis packages they might find useful. For that reason, this document is somewhat informally written, since I know that it will be modified and updated as the products and tools are optimized.

  20. Numerical simulation of the LEC-growth of GaAs crystals with account of high-pressure gas convection

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Leister, H.-J.; Müller, G.

    1997-10-01

    The influence of the inert gas pressure on the growth of 4 GaAs crystals by the liquid encapsulated Czochralski method (LEC) process is studied for a range of the Ar gas pressure up to 10 bar by using our finite-volume computer code STHAMAS. Up to the pressure of 0.6 bar we are considering laminar convection. For the pressure range from 5 to 10 bar we are using the buoyancy extended standard k-ε turbulence model with wall functions to simulate the gas flow. The numerical results show that the Argon gas pressure has a strong influence on the consumption of heater power in qualitative agreement with our experimental results. The convex curvature of the growth interface and the maximum thermal stress (von Mises criterion) are found to increase with increasing gas pressure both in the laminar and turbulent evaluations.

  1. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  2. Advances in uncooled technology at BAE SYSTEMS

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Kohin, Margaret; Leary, Arthur R.; Blackwell, Richard J.; Rumbaugh, Roy N.

    2003-09-01

    BAE SYSTEMS has made tremendous progress in uncooled technology and systems in the last year. In this paper we present performance results and imagery from our latest 640x480 and 320x240 small pixel focal plane arrays. Both were produced using submicron lithography and have achieved our lowest NETDs to date. Testing of the 320x240 devices has shown TNETDs of 30mK at F/1. Video imagery from our 640 x 480 uncooled camera installed in a POINTER Unattended Aerial Vehicle is also shown. In addition, we introduce our newest commercial imaging camera core, the SCC500 and show its vastly improved characteristics. Lastly, plans for future advancements are outlined.

  3. Microradiography with Semiconductor Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiří; Holý, Tomáš; Platkevič, Michal; Pospíšil, Stanislav; Vavřík, Daniel; Vykydal, Zdeněk

    2007-11-01

    High resolution radiography (with X-rays, neutrons, heavy charged particles, …) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  4. Developments in uncooled IR technology at BAE SYSTEMS

    NASA Astrophysics Data System (ADS)

    Gurnee, Mark N.; Kohin, Margaret; Blackwell, Richard J.; Butler, Neal R.; Whitwam, Jason T.; Backer, Brian S.; Leary, Arthur R.; Nielson, Thomas

    2001-10-01

    Uncooled microbolometer thermal imaging sensor technology has begun to successfully address military, government and commercial applications in the real world. BAE SYSTEMS, located in Lexington MA, has been involved in the design and development of uncooled IR technology since the early 1980s. Our current MicroIRTM products are based on vanadium oxide (VOx) microbolometers. Thousands of uncooled microbolometer thermal imaging sensors are now being produced and sold annually. A the same time, applied research and development on the technology continues to improve the basic products and make them suitable for new applications. In this paper we report on the status and improvements achieved in the MicroIRTM product line, based on 320 X 240 element and 160 X 120 element FPA's with 46 μm pixel pitch. Other near term MicroIRTM products include 320 X 240 and 640 X 480 FPA's with 28 micrometers pixel pitch and measured sensitivities below 50 mK. In the systems area we discuss development and testing of a Light Thermal Weapon Sight (LTWS) for the U.S. Army, being developed by BAE SYSTEMS in partnership with Thales, based upon our uncooled MicroIRTM focal plane arrays (FPA) and systems. The LTWS prototypes were based upon our Standard Imaging Module SIM200, which employs our LAM2C, 320 X 240 element, microbolometer FPA. Finally we discuss the 480 X 640 element FPA and its application to the Heavy Thermal Weapon Sight application.

  5. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  6. Representing SAR complex image pixels

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes. Furthermore, these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values, with constituent components comprised of integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  7. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  8. Low complexity pixel-based halftone detection

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Han, Seong Wook; Jarno, Mielikainen; Lee, Chulhee

    2011-10-01

    With the rapid advances of the internet and other multimedia technologies, the digital document market has been growing steadily. Since most digital images use halftone technologies, quality degradation occurs when one tries to scan and reprint them. Therefore, it is necessary to extract the halftone areas to produce high quality printing. In this paper, we propose a low complexity pixel-based halftone detection algorithm. For each pixel, we considered a surrounding block. If the block contained any flat background regions, text, thin lines, or continuous or non-homogeneous regions, the pixel was classified as a non-halftone pixel. After excluding those non-halftone pixels, the remaining pixels were considered to be halftone pixels. Finally, documents were classified as pictures or photo documents by calculating the halftone pixel ratio. The proposed algorithm proved to be memory-efficient and required low computation costs. The proposed algorithm was easily implemented using GPU.

  9. The FPGA Pixel Array Detector

    NASA Astrophysics Data System (ADS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-02-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested.

  10. Investigation of asymmetry effects in a heater-magnet module for TMF VGF and LEC growth by three-dimensional numerical modeling

    NASA Astrophysics Data System (ADS)

    Kasjanow, H.; Nacke, B.; Eichler, St.; Jockel, D.; Frank-Rotsch, Ch.; Lange, P.; Kießling, F.-M.; Rudolph, P.

    2008-04-01

    Three-dimensional (3D) electromagnetic computer modeling is used to analyze the effects of asymmetry at the crystal growth by the vertical gradient freeze (VGF) and liquid encapsulation Czochralski (LEC) methods under traveling magnetic fields (TMF). Based on the results a heater-magnet module (HMM), combining the generation of heat and induction of magnetic field, was developed and optimized. It will be shown that asymmetry effects are caused by the designs of the heater-magnet coils and bus bars. They are enforced when a TMF of higher frequencies is used. It can be concluded that for VGF arrangements without container rotation the module design must be modified. Compared to that in case of LEC the effect of asymmetry can be effectively graduated by crucible and crystal rotations.

  11. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  12. Pilot-scale limestone emission control (LEC) process: A development project. Volume 1: Main report and appendices A, B, C, and D. Final report

    SciTech Connect

    Not Available

    1994-03-01

    ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. The primary goal of the current study is the demonstration of the techno/economic capability of the LEC system as a post-combustion FGD process capable of use in both existing and future coal-fired boiler facilities burning high-sulfur coal. A nominal 5,000 acfm LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. The pilot plant was normally operated on the slipstream of the Ohio Univ. boiler plant flue gas, but also had the capability of operating at higher inlet SO{sub 2} concentrations (typically equivalent to 3-1/2% sulfur coal) than those normally available from the flue gas slipstream. This was accomplished by injecting SO{sub 2} gas into the slipstream inlet. The pilot plant was instrumented to provide around-the-clock operation and was fully outfitted with temperature, SO{sub 2}, gas flow and pressure drop monitors.

  13. Optimizing the Multivalent Binding of the Bacterial Lectin LecA by Glycopeptide Dendrimers for Therapeutic Purposes.

    PubMed

    Bouvier, Benjamin

    2016-06-27

    Bacterial lectins are nonenzymatic sugar-binding proteins involved in the formation of biofilms and the onset of virulence. The weakness of individual sugar-lectin interactions is compensated by the potentially large number of simultaneous copies of such contacts, resulting in high overall sugar-lectin affinities and marked specificities. Therapeutic compounds functionalized with sugar residues can compete with the host glycans for binding to lectins only if they are able to take advantage of this multivalent binding mechanism. Glycopeptide dendrimers, featuring treelike topologies with sugar moieties at their leaves, have already shown great promise in this regard. However, optimizing the dendrimers' amino acid sequence is necessary to match the dynamics of the lectin active sites with that of the multivalent ligands. This work combines long-time-scale coarse-grained simulations of dendrimers and lectins with a reasoned exploration of the dendrimer sequence space in an attempt to suggest sequences that could maximize multivalent binding to the galactose-specific bacterial lectin LecA. These candidates are validated by simulations of mixed dendrimer/lectin solutions, and the effects of the dendrimers on lectin dynamics are discussed. This approach is an attractive first step in the conception of therapeutic compounds based on the dendrimer scaffold and contributes to the understanding of the various classes of multivalency that underpin the ubiquitous "sugar code". PMID:27223679

  14. Making a trillion pixels dance

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Hu, Bin; Toh, Kenny; Bollepalli, Srinivas; Wagner, Stephan; Borodovsky, Yan

    2008-03-01

    In June 2007, Intel announced a new pixelated mask technology. This technology was created to address the problem caused by the growing gap between the lithography wavelength and the feature sizes patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade ago, Optical Proximity Correction (OPC) was introduced to bridge this gap, but as this gap continued to increase, one could not rely on the same basic set of techniques to maintain image quality. The computational lithography group at Intel sought to alleviate this problem by experimenting with additional degrees of freedom within the mask. This paper describes the resulting pixelated mask technology, and some of the computational methods used to create it. The first key element of this technology is a thick mask model. We realized very early in the development that, unlike traditional OPC methods, the pixelated mask would require a very accurate thick mask model. Whereas in the traditional methods, one can use the relatively coarse approximations such as the boundary layer method, use of such techniques resulted not just in incorrect sizing of parts of the pattern, but in whole features missing. We built on top of previously published domain decomposition methods, and incorporated limitations of the mask manufacturing process, to create an accurate thick mask model. Several additional computational techniques were invoked to substantially increase the speed of this method to a point that it was feasible for full chip tapeout. A second key element of the computational scheme was the comprehension of mask manufacturability, including the vital issue of the number of colors in the mask. While it is obvious that use of three or more colors will give the best image, one has to be practical about projecting mask manufacturing capabilities for such a complex mask. To circumvent this serious issue, we eventually settled on a two color mask - comprising plain glass and etched

  15. Pixelated filters for spatial imaging

    NASA Astrophysics Data System (ADS)

    Mathieu, Karine; Lequime, Michel; Lumeau, Julien; Abel-Tiberini, Laetitia; Savin De Larclause, Isabelle; Berthon, Jacques

    2015-10-01

    Small satellites are often used by spatial agencies to meet scientific spatial mission requirements. Their payloads are composed of various instruments collecting an increasing amount of data, as well as respecting the growing constraints relative to volume and mass; So small-sized integrated camera have taken a favored place among these instruments. To ensure scene specific color information sensing, pixelated filters seem to be more attractive than filter wheels. The work presented here, in collaboration with Institut Fresnel, deals with the manufacturing of this kind of component, based on thin film technologies and photolithography processes. CCD detectors with a pixel pitch about 30 μm were considered. In the configuration where the matrix filters are positioned the closest to the detector, the matrix filters are composed of 2x2 macro pixels (e.g. 4 filters). These 4 filters have a bandwidth about 40 nm and are respectively centered at 550, 700, 770 and 840 nm with a specific rejection rate defined on the visible spectral range [500 - 900 nm]. After an intense design step, 4 thin-film structures have been elaborated with a maximum thickness of 5 μm. A run of tests has allowed us to choose the optimal micro-structuration parameters. The 100x100 matrix filters prototypes have been successfully manufactured with lift-off and ion assisted deposition processes. High spatial and spectral characterization, with a dedicated metrology bench, showed that initial specifications and simulations were globally met. These excellent performances knock down the technological barriers for high-end integrated specific multi spectral imaging.

  16. PIXEL 2010 - A Résumé

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2011-09-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This résumé attempts to extract the main statements of the results and developments presented at this conference.

  17. Predicting human gaze beyond pixels.

    PubMed

    Xu, Juan; Jiang, Ming; Wang, Shuo; Kankanhalli, Mohan S; Zhao, Qi

    2014-01-01

    A large body of previous models to predict where people look in natural scenes focused on pixel-level image attributes. To bridge the semantic gap between the predictive power of computational saliency models and human behavior, we propose a new saliency architecture that incorporates information at three layers: pixel-level image attributes, object-level attributes, and semantic-level attributes. Object- and semantic-level information is frequently ignored, or only a few sample object categories are discussed where scaling to a large number of object categories is not feasible nor neurally plausible. To address this problem, this work constructs a principled vocabulary of basic attributes to describe object- and semantic-level information thus not restricting to a limited number of object categories. We build a new dataset of 700 images with eye-tracking data of 15 viewers and annotation data of 5,551 segmented objects with fine contours and 12 semantic attributes (publicly available with the paper). Experimental results demonstrate the importance of the object- and semantic-level information in the prediction of visual attention. PMID:24474825

  18. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  19. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  20. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  1. Proceedings of PIXEL98 -- International pixel detector workshop

    SciTech Connect

    Anderson, D.F.; Kwan, S.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  2. Serial Pixel Analog-to-Digital Converter

    SciTech Connect

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  3. Dead pixel replacement in LWIR microgrid polarimeters.

    PubMed

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data. PMID:19547086

  4. Dead pixel replacement in LWIR microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; Boger, James K.; Black, Wiley T.; Bowers, David L.; Fetrow, Matthew P.

    2007-06-01

    LWIR imaging arrays are often affected by nonresponsive pixels, or “dead pixels.” These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  5. Equivalence of a Bit Pixel Image to a Quantum Pixel Image

    NASA Astrophysics Data System (ADS)

    Ortega, Laurel Carlos; Dong, Shi-Hai; Cruz-Irisson, M.

    2015-11-01

    We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight. All qubits are linear superposition, changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit. Classically, these states are just bytes represented in a binary matrix, having code combinations of 1 or 0 at all pixel locations. This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods. Supported partially by the project 20150964-SIP-IPN, Mexico

  6. Infrared astronomy - Pixels to spare

    SciTech Connect

    Mccaughrean, M. )

    1991-07-01

    An infrared CCD camera containing an array with 311,040 pixels arranged in 486 rows of 640 each is tested. The array is a chip of platinum silicide (PtSi), sensitive to photons with wavelengths between 1 and 6 microns. Observations of the Hubble Space Telescope, Mars, Pluto and moon are reported. It is noted that the satellite's twin solar-cell arrays, at an apparent separation of about 1 1/4 arc second, are well resolved. Some two dozen video frames were stacked to make each presented image of Mars at 1.6 microns; at this wavelength Mars appears much as it does in visible light. A stack of 11 images at a wavelength of 1.6 microns is used for an image of Jupiter with its Great Red Spot and moons Io and Europa.

  7. [Hadamard transform spectrometer mixed pixels' unmixing method].

    PubMed

    Yan, Peng; Hu, Bing-Liang; Liu, Xue-Bin; Sun, Wei; Li, Li-Bo; Feng, Yu-Tao; Liu, Yong-Zheng

    2011-10-01

    Hadamard transform imaging spectrometer is a multi-channel digital transform spectrometer detection technology, this paper based on digital micromirror array device (DMD) of the Hadamard transform spectrometer working principle and instrument structure, obtained by the imaging sensor mixed pixel were analyzed, theory derived the solution of pixel aliasing hybrid method, simulation results show that the method is simple and effective to improve the accuracy of mixed pixel spectrum more than 10% recovery. PMID:22250574

  8. Method for fabricating pixelated silicon device cells

    SciTech Connect

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  9. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  10. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  11. Diagnosis of abnormal biliary copper excretion by positron emission tomography with targeting of 64Copper-asialofetuin complex in LEC rat model of Wilson’s disease

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev

    2014-01-01

    Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203

  12. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  13. Soil moisture variability within remote sensing pixels

    NASA Astrophysics Data System (ADS)

    Charpentier, Michael A.; Groffman, Peter M.

    1992-11-01

    The effects of topography and the level of soil moisture on the variability of soil moisture within remote sensing pixels were assessed during the First ISLSCP Field Experiment (FIFE) during 1987 and 1989. Soil moisture data from flat, sloped, and valley-shaped pixels were obtained over a wide range of moisture conditions. Relative elevation data were obtained for each study area to create digital elevation models with which to quantify topographic variability. Within-pixel soil moisture variability was shown to increase with increased topographic heterogeneity. The flat pixel had significantly lower standard deviations and fewer outlier points than the slope and valley pixels. Most pixel means had a positive skewness, indicating that most pixels will have areas of markedly higher than average soil moisture. Soil moisture variability (as indicated by the coefficient of variation) decreased as soil moisture levels increased. However, the absolute value of the standard deviation of soil moisture was independent of wetness. The data suggest that remote sensing will reflect soil moisture conditions less accurately on pixels with increased topographic variability and less precisely when the soil is dry. These differences in the inherent accuracy and precision of remote sensing soil moisture data should be considered when evaluating error sources in analyses of energy balance or biogeochemical processes that utilize soil moisture data produced by remote sensing.

  14. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  15. Performance improvements for VOx microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Murphy, Daniel F.; Ray, Michael; Wyles, Jessica; Asbrock, James F.; Hewitt, C.; Wyles, Richard; Gordon, Eli; Sessler, T.; Kennedy, Adam; Baur, Stefan T.; Van Lue, David; Anderson, Steven; Chin, Richard; Gonzales, H.; Le Pere, C.; Ton, S.; Kostrzewa, Thomas

    2004-08-01

    Raytheon is producing high-quality 320 x 240 microbolometer FPAs with 25 μm pitch pixels. The 320 x 240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50 μm pixels. Typical NETD values for these FPAs are <50mK with an f/1 aperture and operating at 30 Hz frame rates. Pixel operability is greater than 99.9% on most FPAs, and uncorrected responsivity nonuniformity is less than 4% (sigma/mean). These 25 μm microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. These arrays have produced excellent image quality, and are currently fielded in a variety of demonstration systems. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased, and also has enabled the development of a large-format 640 x 480 FPA array. Raytheon is producing these arrays with excellent sensitivity and typical NETD values of <50mK with an f/1 aperture and operating at 30 Hz frame rates. These arrays have excellent operability and image quality. Several dual FOV prototype 640 x 480 systems have been delivered under the LCMS and UAV programs. RVS has developed a flexible uncooled front end (UFE) electronics that will serve as the basis for the camera engine systems using 320 x 240 arrays. RVS has developed a 640 x 480 Common Uncooled Engine (CUE) which is intended for small pixel, high performance applications. The CUE is the ideal cornerstone for ground and airborne systems, multi-mode sensor, weapon sight or seeker architectures, and commercial surveillance.

  16. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types

    PubMed Central

    Terada, Daiki; Kawai, Fumihiro; Noguchi, Hiroki; Unzai, Satoru; Hasan, Imtiaj; Fujii, Yuki; Park, Sam-Yong; Ozeki, Yasuhiro; Tame, Jeremy R. H.

    2016-01-01

    MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt’s lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects. PMID:27321048

  17. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types.

    PubMed

    Terada, Daiki; Kawai, Fumihiro; Noguchi, Hiroki; Unzai, Satoru; Hasan, Imtiaj; Fujii, Yuki; Park, Sam-Yong; Ozeki, Yasuhiro; Tame, Jeremy R H

    2016-01-01

    MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects. PMID:27321048

  18. X-Ray induced cataract is preceded by LEC loss, and coincident with accumulation of cortical DNA, and ROS; similarities with age-related cataracts

    PubMed Central

    Zitnik, Galynn; Tsai, Ryan; Wolf, Norman

    2010-01-01

    Purpose To compare age-related cataractous (ARC) changes in unirradiated mice lenses to those induced by head-only X-irradiation of 3 month-old mice. Methods lens epithelial cells (LECs) as well as partially degraded cortical DNA were visualized in fixed sections using 4',6-diamidino-2-phenylindole (DAPI) staining, and in fresh lenses using the vital stain Hoechst 33342. reactive oxygen species (ROS) activity was also visualized directly in fresh lenses using the vital dye Dihydrorhodamine (DHR). In fixed lenses an antibody specific for 8-OH Guanosine (8-OH-G) lesions was used to visualize DNA oxidative adducts from ROS damage. Alpha smooth muscle actin was visualized using specific antibodies to determine if myofibroblasts were present. Fluorescence was quantified using Laser Scanning Confocal Microscopy (LSCM). The degree of lens opacity and cataract formation was determined by slit lamp, or from digitalized images of light reflections taken with a low magnification light microscope. Results Using DNA- and ROS-specific vital fluorescent dyes, and laser scanning confocal microscopy we have previously described 4 changes in the aging rodent lenses: 1) a significantly decreased density of surface LECs in lenses from old compared to younger mice and rats; 2) a very large increase in retained cortical nuclei and DNA fragments in the secondary lens fibers of old rodent lenses; 3) increased cortical ROS in old rodent lenses; 4) increased cataract concomitantly with the cortical DNA and ROS increases. In the current study we report that these same 4 changes also occur in an accelerated fashion in mice given head-only X-irradiation at 3 months of age. In addition to vital staining of fresh lenses, we also examined sections from fixed eyes stained with DAPI or hematoxylin and eosin (H&E) and found the same loss of surface LECs and accumulation of undigested nuclei and debris in secondary lens fibers occur with age or following X-irradiation. In addition sections from fixed

  19. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  20. Pixel multichip module development at Fermilab

    SciTech Connect

    Turqueti, M A; Cardoso, G; Andresen, J; Appel, J A; Christian, D C; Kwan, S W; Prosser, A; Uplegger, L

    2005-10-01

    At Fermilab, there is an ongoing pixel detector R&D effort for High Energy Physics with the objective of developing high performance vertex detectors suitable for the next generation of HEP experiments. The pixel module presented here is a direct result of work undertaken for the canceled BTeV experiment. It is a very mature piece of hardware, having many characteristics of high performance, low mass and radiation hardness driven by the requirements of the BTeV experiment. The detector presented in this paper consists of three basic devices; the readout integrated circuit (IC) FPIX2A [2][5], the pixel sensor (TESLA p-spray) [6] and the high density interconnect (HDI) flex circuit [1][3] that is capable of supporting eight readout ICs. The characterization of the pixel multichip module prototype as well as the baseline design of the eight chip pixel module and its capabilities are presented. These prototypes were characterized for threshold and noise dispersion. The bump-bonds of the pixel module were examined using an X-ray inspection system. Furthermore, the connectivity of the bump-bonds was tested using a radioactive source ({sup 90}Sr), while the absolute calibration of the modules was achieved using an X-ray source. This paper provides a view of the integration of the three components that together comprise the pixel multichip module.

  1. It's not the pixel count, you fool

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  2. Performances of THz cameras with enhanced sensitivity in sub-terahertz region

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Ishi, Tsutomu; Kurashina, Seiji; Sudou, Takayuki; Morimoto, Takao; Miyoshi, Masaru; Doi, Kohei; Goto, Hideki; Sasaki, Tokuhito; Isoyama, Goro; Kato, Ryukou; Irizawa, Akinori; Kawase, Keigo

    2015-05-01

    Uncooled microbolometer-type 640x480 and 320x240 Terahertz (THz) focal plane arrays (FPAs) with enhanced sensitivity in sub-THz region are developed, and incorporated into 640x480 and 320x240 cameras, respectively. The pixel in the THz-FPA has such a structure that an area sensitive to electromagnetic wave is suspended above read-out integrated circuit (ROIC). A thin metallic layer is formed on the top of the sensitive area, while a thick metallic layer is formed on the surface of ROIC. The structure composed of the thin metallic layer and the thick metallic layer behaves as an optical cavity. The THz-FPAs reported in this paper have a modified pixel structure which has several times longer optical-cavity length than NEC's previous pixel does, by forming a thick SiN layer on the ROIC. The extended optical-cavity structure is favorable for detecting electromagnetic wave with lower frequency. Consequently, the Minimum Detectable Power per pixel (MDP) is improved ten times in sub-THz region, especially 0.5-0.6 THz. This paper presents spectral frequency dependences of MDP values for THz-FPA with the modified pixel structure and THz-FPA with the previous pixel structure, using THz free electron laser (FEL) developed by Osaka University. The modification of pixel structure extends high sensitivity region to lower frequency region, such as sub-THz region, and the wider spectral coverage of THz camera surely expands its applicability

  3. Per-Pixel Lighting Data Analysis

    SciTech Connect

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  4. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  5. Monolithic Active-Pixel Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Cunningham, Thomas J.; Krabach, Timothy N.; Staller, Craig O.

    1995-01-01

    Monolithic arrays of active-pixel junction field-effect (JFET) devices made from InGaAs proposed for use as imaging sensors sensitive to light in visible and short-wavelength infrared parts of electromagnetic spectrum. Each pixel of such array comprises photodetector monolithically integrated with JFET output-amplifier circuit of source-follower type - structure similar to charge-coupled device (CCD). Sizes of instruments reduced because large cooling systems not needed.

  6. Design of the small pixel pitch ROIC

    NASA Astrophysics Data System (ADS)

    Liang, Qinghua; Jiang, Dazhao; Chen, Honglei; Zhai, Yongcheng; Gao, Lei; Ding, Ruijun

    2014-11-01

    Since the technology trend of the third generation IRFPA towards resolution enhancing has steadily progressed,the pixel pitch of IRFPA has been greatly reduced.A 640×512 readout integrated circuit(ROIC) of IRFPA with 15μm pixel pitch is presented in this paper.The 15μm pixel pitch ROIC design will face many challenges.As we all known,the integrating capacitor is a key performance parameter when considering pixel area,charge capacity and dynamic range,so we adopt the effective method of 2 by 2 pixels sharing an integrating capacitor to solve this problem.The input unit cell architecture will contain two paralleled sample and hold parts,which not only allow the FPA to be operated in full frame snapshot mode but also save relatively unit circuit area.Different applications need more matching input unit circuits. Because the dimension of 2×2 pixels is 30μm×30μm, an input stage based on direct injection (DI) which has medium injection ratio and small layout area is proved to be suitable for middle wave (MW) while BDI with three-transistor cascode amplifier for long wave(LW). By adopting the 0.35μm 2P4M mixed signal process, the circuit architecture can make the effective charge capacity of 7.8Me- per pixel with 2.2V output range for MW and 7.3 Me- per pixel with 2.6V output range for LW. According to the simulation results, this circuit works well under 5V power supply and achieves less than 0.1% nonlinearity.

  7. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  8. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  9. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  10. Spatial clustering of pixels of a multispectral image

    DOEpatents

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  11. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels.

    PubMed

    Kim, Han-Shin; Cha, Eunji; Kim, YunHye; Jeon, Young Ho; Olson, Betty H; Byun, Youngjoo; Park, Hee-Deung

    2016-01-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications. PMID:27141909

  12. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels

    PubMed Central

    Kim, Han-Shin; Cha, Eunji; Kim, YunHye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung

    2016-01-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications. PMID:27141909

  13. Regioisomerism in cationic sulfonyl-substituted [Ir(C^N)2(N^N)](+) complexes: its influence on photophysical properties and LEC performance.

    PubMed

    Ertl, Cathrin D; Gil-Escrig, Lidón; Cerdá, Jesús; Pertegás, Antonio; Bolink, Henk J; Junquera-Hernández, José M; Prescimone, Alessandro; Neuburger, Markus; Constable, Edwin C; Ortí, Enrique; Housecroft, Catherine E

    2016-08-01

    A series of regioisomeric cationic iridium complexes of the type [Ir(C^N)2(bpy)][PF6] (bpy = 2,2'-bipyridine) is reported. The complexes contain 2-phenylpyridine-based cyclometallating ligands with a methylsulfonyl group in either the 3-, 4- or 5-position of the phenyl ring. All the complexes have been fully characterized, including their crystal structures. In acetonitrile solution, all the compounds are green emitters with emission maxima between 493 and 517 nm. Whereas substitution meta to the Ir-C bond leads to vibrationally structured emission profiles and photoluminescence quantum yields of 74 and 77%, placing a sulfone substituent in a para position results in a broad, featureless emission band, an enhanced quantum yield of 92% and a shorter excited-state lifetime. These results suggest a larger ligand-centred ((3)LC) character of the emissive triplet state in the case of meta substitution and a more pronounced charge transfer (CT) character in the case of para substitution. Going from solution to the solid state (powder samples and thin films), the emission maxima are red-shifted for all the complexes, resulting in green-yellow emission. Data obtained from electrochemical measurements and density functional theory calculations parallel the photophysical trends. Light-emitting electrochemical cells (LECs) based on the complexes were fabricated and evaluated. A maximum efficiency of 4.5 lm W(-1) at a maximum luminance of 940 cd m(-2) was observed for the LEC with the complex incorporating the sulfone substituent in the 4-position when operated under pulsed current driving conditions. PMID:27171612

  14. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  15. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    EPA Science Inventory

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  16. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Katoh, Kouji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2011-06-01

    Since authors have successfully demonstrated uncooled infrared (IR) focal plane array (FPA) with 23.5 um pixel pitch, it has been widely utilized for commercial applications such as thermography, security camera and so on. One of the key issues for uncooled IR detector technology is to shrink the pixel size. The smaller the pixel pitch, the more the IR camera products become compact and the less cost. This paper proposes a new pixel structure with a diaphragm and beams which are placed in different level, to realize an uncooled IRFPA with smaller pixel pitch )<=17 μm). The upper level consists of diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to place on the adjacent pixels. The test devices of this pixel design with 12 um, 15 um and 17 um pitch have been fabricated on the Si ROIC of QVGA (320 × 240) with 23.5 um pitch. Their performances reveal nearly equal to the IRFPA with 23.5 um pitch. For example, noise equivalent temperature difference (NETD) of 12 μm pixel is 63.1 mK with thermal time constant of 14.5 msec. In addition, this new structure is expected to be more effective for the existing IRFPA with 23.5 um pitch in order to improve the IR responsivity.

  17. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  18. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  19. Optical links for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stucci, Stefania

    2016-07-01

    With the expected increase in the instantaneous luminosity of the LHC in the next few years, the off-detector optical read-out system of the outer two layers of the Pixel Detector of the ATLAS experiment will reach its bandwidth limits. The bandwidth will be increased with new optical receivers, which had to be redesigned since commercial solutions could not be used. The new design allows for a wider operational range in terms of data frequency and input optical power to match the on-detector transmitters of the present Pixel Detector. We report on the design and testing of prototypes of these components and the plans for the installation in the Pixel Detector read-out chain in 2015.

  20. SVGA AMOLED with world's highest pixel pitch

    NASA Astrophysics Data System (ADS)

    Prache, Olivier; Wacyk, Ihor

    2006-05-01

    We present the design and early evaluation results of the world's highest pixel pitch full-color 800x3x600- pixel, active matrix organic light emitting diode (AMOLED) color microdisplay for consumer and environmentally demanding applications. The design premises were aimed at improving small area uniformity as well as reducing the pixel size while expanding the functionality found in existing eMagin Corporations' microdisplay products without incurring any power consumption degradation when compared to existing OLED microdisplays produced by eMagin. The initial results of the first silicon prototype presented here demonstrate compliance with all major objectives as well as the validation of a new adaptive gamma correction technique that can operate automatically over temperature.

  1. Vivid, full-color aluminum plasmonic pixels

    PubMed Central

    Olson, Jana; Manjavacas, Alejandro; Liu, Lifei; Chang, Wei-Shun; Foerster, Benjamin; King, Nicholas S.; Knight, Mark W.; Nordlander, Peter; Halas, Naomi J.; Link, Stephan

    2014-01-01

    Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1. PMID:25225385

  2. Likelihood Analysis for Mega Pixel Maps

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    1999-01-01

    The derivation of cosmological parameters from astrophysical data sets routinely involves operations counts which scale as O(N(exp 3) where N is the number of data points. Currently planned missions, including MAP and Planck, will generate sky maps with N(sub d) = 10(exp 6) or more pixels. Simple "brute force" analysis, applied to such mega-pixel data, would require years of computing even on the fastest computers. We describe an algorithm which allows estimation of the likelihood function in the direct pixel basis. The algorithm uses a conjugate gradient approach to evaluate X2 and a geometric approximation to evaluate the determinant. Monte Carlo simulations provide a correction to the determinant, yielding an unbiased estimate of the likelihood surface in an arbitrary region surrounding the likelihood peak. The algorithm requires O(N(sub d)(exp 3/2) operations and O(Nd) storage for each likelihood evaluation, and allows for significant parallel computation.

  3. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  4. Power Studies for the CMS Pixel Tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.; /Fermilab

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  5. K2flix: Kepler pixel data visualizer

    NASA Astrophysics Data System (ADS)

    Barentsen, Geert

    2015-03-01

    K2flix makes it easy to inspect the CCD pixel data obtained by NASA's Kepler space telescope. The two-wheeled extended Kepler mission, K2, is affected by new sources of systematics, including pointing jitter and foreground asteroids, that are easier to spot by eye than by algorithm. The code takes Kepler's Target Pixel Files (TPF) as input and turns them into contrast-stretched animated gifs or MPEG-4 movies. K2flix can be used both as a command-line tool or using its Python API.

  6. Development of a CMOS SOI Pixel Detector

    SciTech Connect

    Arai, Y.; Hazumi, M.; Ikegami, Y.; Kohriki, T.; Tajima, O.; Terada, S.; Tsuboyama, T.; Unno, Y.; Ushiroda, Y.; Ikeda, H.; Hara, K.; Ishino, H.; Kawasaki, T.; Miyake, H.; Martin, E.; Varner, G.; Tajima, H.; Ohno, M.; Fukuda, K.; Komatsubara, H.; Ida, J.; /NONE - OKI ELECTR INDUST TOKYO

    2008-08-19

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 {micro}m fully-depleted-SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5 mm{sup 2} consisting of 20 x 20 {micro}m{sup 2} pixels have been designed and manufactured. Performance tests with a laser light illumination and a {beta} ray radioactive source indicate successful operation of the detector. We also briefly discuss the back gate effect as well as the simulation study.

  7. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  8. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2015-12-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R&D, not hiding the difficulties.

  9. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  10. Pixel telescope test in STAR at RHIC

    NASA Astrophysics Data System (ADS)

    Sun, Xiangming; Szelezniak, Michal; Greiner, Leo; Matis, Howard; Vu, Chinh; Stezelberger, Thorsten; Wieman, Howard

    2007-10-01

    The STAR experiment at RHIC is designing a new inner vertex detector called the Heavy Flavor Tracker (HFT). The HFT's innermost two layers is called the PIXEL detector which uses Monolithic Active Pixel Sensor technology (MAPS). To test the MAPS technology, we just constructed and tested a telescope. The telescope uses a stack of three MIMOSTAR2 chips, Each MIMOSTAR2 sensor, which was designed by IPHC, is an array of 132x128 pixels with a square pixel size of 30 μ. The readout of the telescope makes use of the ALICE DDL/SIU cards, which is compatible with the future STAR data acquisition system called DAQ1000. The telescope was first studied in a 1.2 GeV/c electron beam at LBNL's Advanced Light Source. Afterwards, the telescope was outside the STAR magnet, and then later inside it, 145 cm away from STAR's center. We will describe this first test of MAPS technology in a collider environment, and report on the occupancy, particle flux, and performance of the telescope.

  11. Digital-pixel focal plane array development

    NASA Astrophysics Data System (ADS)

    Brown, Matthew G.; Baker, Justin; Colonero, Curtis; Costa, Joe; Gardner, Tom; Kelly, Mike; Schultz, Ken; Tyrrell, Brian; Wey, Jim

    2010-01-01

    Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.

  12. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    SciTech Connect

    Fahim, Farah

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  13. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  14. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    SciTech Connect

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  15. Impact of CT detector pixel-to-pixel crosstalk on image quality

    NASA Astrophysics Data System (ADS)

    Engel, Klaus J.; Spies, Lothar; Vogtmeier, Gereon; Luhta, Randy

    2006-03-01

    In Computed Tomography (CT), the image quality sensitively depends on the accuracy of the X-ray projection signal, which is acquired by a two-dimensional array of pixel cells in the detector. If the signal of X-ray photons is spread out to neighboring pixels (crosstalk), a decrease of spatial resolution may result. Moreover, streak and ring artifacts may emerge. Deploying system simulations for state-of-the-art CT detector configurations, we characterize origin and appearance of these artifacts in the reconstructed CT images for different scenarios. A uniform pixel-to-pixel crosstalk results in a loss of spatial resolution only. The Modulation Transfer Function (MTF) is attenuated, without affecting the limiting resolution, which is defined as the first zero of the MTF. Additional streak and ring artifacts appear, if the pixel-to-pixel crosstalk is non-uniform. Parallel to the system simulations we developed an analytical model. The model explains resolution loss and artifact level using the first and second derivative of the X-ray profile acquired by the detector. Simulations and analytical model are in agreement to each other. We discuss the perceptibility of ring and streak artifacts within noisy images if no crosstalk correction is applied.

  16. ACS/WFC Pixel Stability – Bringing the Pixels Back to the Science

    NASA Astrophysics Data System (ADS)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  17. The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons.

    PubMed

    Casoni, Francesca; Dupin, Lucie; Vergoten, Gérard; Meyer, Albert; Ligeour, Caroline; Géhin, Thomas; Vidal, Olivier; Souteyrand, Eliane; Vasseur, Jean-Jacques; Chevolot, Yann; Morvan, François

    2014-12-01

    A library of 24 new mannose-centered tetragalactoclusters with four different linkers (di- and triethyleneglycol with phosphodiester or phosphorothioate linkages) and six different aromatic aglycons (O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl) was synthesized. Their interactions with LecA were evaluated on a DNA Directed Immobilization (DDI) based glycocluster array allowing the determination of their IC50 against lactose and the evaluation of their dissociation constant (Kd). Finally, the docking simulations confirm the experimental results and demonstrated that the better affinity of O-biphenyl- and O-naphthyl-galactoside is due to a double interaction between the aromatic ring and the histidine 50 and proline 51 of LecA. PMID:25295668

  18. Noise in a CMOS digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Chi, Zhang; Suying, Yao; Jiangtao, Xu

    2011-11-01

    Based on the study of noise performance in CMOS digital pixel sensor (DPS), a mathematical model of noise is established with the pulse-width-modulation (PWM) principle. Compared with traditional CMOS image sensors, the integration time is different and A/D conversion is implemented in each PWM DPS pixel. Then, the quantitative calculating formula of system noise is derived. It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region. In this model, photodiode shot noise does not vary with luminance, but dark current shot noise does. According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator, the total noise can be reduced. These results serve as a guideline for the design of PWM DPS.

  19. Radiation experience with the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  20. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  1. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  2. Effect of mixed (boundary) pixels on crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Chhikara, R. S.

    1984-01-01

    In estimating acreage proportions of crop types in a segment using Landsat data, considerable problem is caused by the presence of mixed pixels. Due to lack of understanding of their spectral characteristics, mixed pixels have been treated in the past as pure while clustering and classifying the segment data. This paper examines this approach of treating mixed pixels as pure pixels and the effect of mixed pixels on the bias and variance of a crop type proportion estimate. First, the spectral response of a boundary pixel is modeled and an analytical expression for the bias and variance of a proportion estimate is obtained. This is followed by a numerical illustration of the effect of mixed pixels on bias and variance. It is shown that as the size of the mixed pixel class increases in a segment, the variance increases, however, such increase does not always affect the bias of the proportion estimate.

  3. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  4. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  5. Status of the CMS pixel project

    SciTech Connect

    Uplegger, Lorenzo; /Fermilab

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance.

  6. Pixelated diffraction signatures for explosive detection

    NASA Astrophysics Data System (ADS)

    O'Flynn, Daniel; Reid, Caroline; Christodoulou, Christiana; Wilson, Matt; Veale, Matthew C.; Seller, Paul; Speller, Robert

    2012-06-01

    Energy dispersive X-ray diffraction (EDXRD) is a technique which can be used to improve the detection and characterisation of explosive materials. This study has performed EDXRD measurements of various explosive compounds using a novel, X-ray sensitive, pixelated, energy resolving detector developed at the Rutherford Appleton Laboratory, UK (RAL). EDXRD measurements are normally performed at a fixed scattering angle, but the 80×80 pixel detector makes it possible to collect both spatially resolved and energy resolved data simultaneously. The detector material used is Cadmium Telluride (CdTe), which can be utilised at room temperature and gives excellent spectral resolution. The setup uses characteristics from both energy dispersive and angular dispersive scattering techniques to optimise specificity and speed. The purpose of the study is to develop X-ray pattern "footprints" of explosive materials based on spatial and energy resolved diffraction data, which can then be used for the identification of such materials hidden inside packages or baggage. The RAL detector is the first energy resolving pixelated detector capable of providing an energy resolution of 1.0-1.5% at energies up to 150 keV. The benefit of using this device in a baggage scanner would be the provision of highly specific signatures to a range of explosive materials. We have measured diffraction profiles of five explosives and other compounds used to make explosive materials. High resolution spectra have been obtained. Results are presented to show the specificity of the technique in finding explosives within baggage.

  7. Uncooled infrared sensor development trends and challenges

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George D.; Han, C. J.

    2011-10-01

    Uncooled infrared sensor markets have grown dramatically over the past decade due to significant improvements in sensor performance, producibility and cost reductions. Current uncooled sensors are dominated by VOx and amorphous silicon based microbolometers with spectral responses in the 7-14 μm wavelength region (LWIR). The majority of uncooled microbolometer focal plane array (UFPA) formats currently in production are 160x120, 320x240, 640x480 with 20 to 38 um pixel pitch. Most suppliers have reported good UFPA performance with less than 50 mK NETD(f/1 optics, 30 -60 Hz frame rates). Recently, 17 μm pixel pitch UFPAs have been introduced to the market. The smaller detector pixel pitch allows manufacturing of larger format such as 1024x768 UFPAs without photolithographic stitching. In the past, uncooled IR sensor developments were primarily driven by military needs; however, as low cost uncooled sensors began to proliferate in the commercial market, uncooled sensors with FPA formats of 320x240 and smaller are rapidly becoming commodity items. Reduction of sensor system size, weight, and power (SWaP) as well as cost is the key driver for the next generation of uncooled sensors. This paper presents a brief overview of the uncooled sensors status, developmental trends and challenges facing the industry.

  8. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  9. Detection and evaluation of mixed pixels in Landsat agricultural scenes

    NASA Technical Reports Server (NTRS)

    Merickel, M. B.; Lundgren, J. C.; Lennington, R. K.

    1982-01-01

    A major problem area encountered in the identification and estimation of agricultural crop proportions in Landsat imagery involves the large proportion of the pixels which are mixed pixels, whose spectral response is influenced by more than one ground cover type. The development of methods for the detection and estimation of crop proportions in mixed pixels is presently reported. The procedure designated CASCADE, based on the estimation of the gradient image for the detection of mixed pixels, considers the consequences of a linear mixing model and is found to provide a method for the allocation of mixed pixels to the surrounding homogeneous region.

  10. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  11. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  12. How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2011-01-01

    In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will

  13. Content-dependent block noise reduction for mobile displays

    NASA Astrophysics Data System (ADS)

    Kim, Ga-Hee; Lee, Yoon-Gyoo; Kim, Han-Eol; Kim, Choon-Woo

    2012-01-01

    Number of pixels on mobile displays is rapidly increasing. Recently, mobile displays with more than one million pixels have been introduced into markets. However, most of multimedia contents to be displayed on mobile displays have much smaller pixel counts. For example, number of pixels for a T-DMB(terrestrial digital multimedia broadcasting) sequence is 320x240. When enlargement is applied to input sequence, perceived image quality would be degraded. Increase in visibility of block noise is one of the major reasons for image quality degradation on mobile displays. This paper presents a simple and computationally efficient method to reduce visibility of block noise on enlarged multimedia sequences. In proposed method, a simple low pass filtering is selectively applied to the pixels of block noises for reduction of block noise visibility as well as faithful reproduction of image details.

  14. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  15. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  16. Small pixel uncooled imaging FPAs and applications

    NASA Astrophysics Data System (ADS)

    Blackwell, Richard; Franks, Glen; Lacroix, Daniel; Hyland, Sandra; Murphy, Robert

    2010-04-01

    BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper will review the latest advancements in microbolometer technology at BAE Systems, including the development status of 17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon stations, vehicle situational awareness sensors and mast/pole mounted sensors.

  17. Single-pixel complementary compressive sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Lan, Ruo-Ming; Liu, Xue-Feng; Yao, Xu-Ri; Yu, Wen-Kai; Zhai, Guang-Jie

    2016-05-01

    A new type of compressive spectroscopy technique employing a complementary sampling strategy is reported. In a single sequence of spectral compressive sampling, positive and negative measurements are performed, in which sensing matrices with a complementary relationship are used. The restricted isometry property condition necessary for accurate recovery of compressive sampling theory is satisfied mathematically. Compared with the conventional single-pixel spectroscopy technique, the complementary compressive sampling strategy can achieve spectral recovery of considerably higher quality within a shorter sampling time. We also investigate the influence of the sampling ratio and integration time on the recovery quality.

  18. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    NASA Astrophysics Data System (ADS)

    Sadygov, Z.; Ahmadov, F.; Khorev, S.; Sadigov, A.; Suleymanov, S.; Madatov, R.; Mehdiyeva, R.; Zerrouk, F.

    2016-07-01

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  19. Efficient single pixel imaging in Fourier space

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai

    2016-08-01

    Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.

  20. Further applications for mosaic pixel FPA technology

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  1. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  2. The LAMBDA photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.; Epple, M.; Zuvic, M.; Lampert, M.-O.; Fritzsch, T.; Rothermund, M.

    2013-03-01

    The Medipix3 photon-counting detector chip has a number of novel features that are attractive for synchrotron experiments, such as a high frame rate with zero dead time and high spatial resolution. DESY are developing a large-area Medipix3-based detector array (LAMBDA). A single LAMBDA module consists of 2 by 6 Medipix3 chips on a ceramic carrier board, bonded to either a single large silicon sensor or two smaller high-Z sensors. The readout system fits behind the carrier board to allow module tiling, and uses a large on-board RAM and multiple 10 Gigabit Ethernet links to permit high-speed readout. Currently, the first large silicon modules have been constructed and read out at low speed, and the firmware for highspeed readout is being developed. In addition to these silicon sensors, we are developing a germanium hybrid pixel detector in collaboration with Canberra for higher-energy beamlines. Canberra have produced a set of 256-by-256-pixel planar germanium sensors with 55μm pitch, and these are currently being bonded to Medipix3 readout chips by Fraunhofer IZM (Berlin).

  3. Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation

    NASA Astrophysics Data System (ADS)

    Gao, Qinquan; Asthana, Akshay; Tong, Tong; Rueckert, Daniel; Edwards, Philip "Eddie"

    2014-03-01

    We propose a learning-based approach to segment the seminal vesicles (SV) via random forest classifiers. The proposed discriminative approach relies on the decision forest using high-dimensional multi-scale context-aware spatial, textual and descriptor-based features at both pixel and super-pixel level. After affine transformation to a template space, the relevant high-dimensional multi-scale features are extracted and random forest classifiers are learned based on the masked region of the seminal vesicles from the most similar atlases. Using these classifiers, an intermediate probabilistic segmentation is obtained for the test images. Then, a graph-cut based refinement is applied to this intermediate probabilistic representation of each voxel to get the final segmentation. We apply this approach to segment the seminal vesicles from 30 MRI T2 training images of the prostate, which presents a particularly challenging segmentation task. The results show that the multi-scale approach and the augmentation of the pixel based features with the super-pixel based features enhances the discriminative power of the learnt classifier which leads to a better quality segmentation in some very difficult cases. The results are compared to the radiologist labeled ground truth using leave-one-out cross-validation. Overall, the Dice metric of 0:7249 and Hausdorff surface distance of 7:0803 mm are achieved for this difficult task.

  4. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  5. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  6. How big is an OMI pixel?

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Sihler, Holger; Tilstra, Lieuwe G.; Stammes, Piet

    2016-08-01

    The Ozone Monitoring Instrument (OMI) is a push-broom imaging spectrometer, observing solar radiation backscattered by the Earth's atmosphere and surface. The incoming radiation is detected using a static imaging CCD (charge-coupled device) detector array with no moving parts, as opposed to most of the previous satellite spectrometers, which used a moving mirror to scan the Earth in the across-track direction. The field of view (FoV) of detector pixels is the solid angle from which radiation is observed, averaged over the integration time of a measurement. The OMI FoV is not quadrangular, which is common for scanning instruments, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels. This has consequences for pixel-area-dependent applications, like cloud fraction products, and visualisation.The shapes and sizes of OMI FoVs were determined pre-flight by theoretical and experimental tests but never verified after launch. In this paper the OMI FoV is characterised using collocated MODerate resolution Imaging Spectroradiometer (MODIS) reflectance measurements. MODIS measurements have a much higher spatial resolution than OMI measurements and spectrally overlap at 469 nm. The OMI FoV was verified by finding the highest correlation between MODIS and OMI reflectances in cloud-free scenes, assuming a 2-D super-Gaussian function with varying size and shape to represent the OMI FoV. Our results show that the OMPIXCOR product 75FoV corner coordinates are accurate as the full width at half maximum (FWHM) of a super-Gaussian FoV model when this function is assumed. The softness of the function edges, modelled by the super-Gaussian exponents, is different in both directions and is view angle dependent.The optimal overlap function between OMI and MODIS reflectances is scene dependent and highly dependent on time differences between overpasses, especially with clouds in the scene. For partially clouded scenes, the optimal overlap function was

  7. Pixel-level robust digital image correlation.

    PubMed

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2013-12-01

    Digital Image Correlation (DIC) is a well-established non-contact optical metrology method. It employs digital image analysis to extract the full-field displacements and strains that occur in objects subjected to external stresses. Despite recent DIC progress, many problematic areas which greatly affect accuracy and that can seldomly be avoided, received very little attention. Problems posed by the presence of sharp displacement discontinuities, reflections, object borders or edges can be linked to the analysed object's properties and deformation. Other problematic areas, such as image noise, localized reflections or shadows are related more to the image acquisition process. This paper proposes a new subset-based pixel-level robust DIC method for in-plane displacement measurement which addresses all of these problems in a straightforward and unified approach, significantly improving DIC measurement accuracy compared to classic approaches. The proposed approach minimizes a robust energy functional which adaptively weighs pixel differences in the motion estimation process. The aim is to limit the negative influence of pixels that present erroneous or inconsistent motions by enforcing local motion consistency. The proposed method is compared to the classic Newton-Raphson DIC method in terms of displacement accuracy in three experiments. The first experiment is numerical and presents three combined problems: sharp displacement discontinuities, missing image information and image noise. The second experiment is a real experiment in which a plastic specimen is developing a lateral crack due to the application of uniaxial stress. The region around the crack presents both reflections that saturate the image intensity levels leading to missing image information, as well as sharp motion discontinuities due to the plastic film rupturing. The third experiment compares the proposed and classic DIC approaches with generic computer vision optical flow methods using images from

  8. Development of pixel detectors for SSC vertex tracking

    SciTech Connect

    Kramer, G. . Electro-Optical and Data Systems Group); Atlas, E.L.; Augustine, F.; Barken, O.; Collins, T.; Marking, W.L.; Worley, S.; Yacoub, G.Y. ) Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Nygren,

    1991-04-01

    A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 {times} 256 pixels, each 30 {mu}m square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs.

  9. Research of IRFPAs' reliability evaluation by bad pixel

    NASA Astrophysics Data System (ADS)

    Hao, Lichao; Huang, Aibo; Lai, Canxiong; Chen, Xing; Hao, Mingming; Chen, Honglei; Lu, Guoguang; Huang, Yun; En, Yunfei

    2015-10-01

    Reliability is an important index to ensure the application of infrared focal plane arrays (IRFPAs) in complex environment, and it becomes a major bottleneck problem of IRFPAs' development. Because of the characteristics such as type, nature, quantity, location and distribution et al, bad pixel which contains initial bad pixel and used bad pixel has outstanding advantage for failure analysis and reliability evaluation of IRFPAs. In this paper, the structure of IRPFAs has been introduced in detail, and the damage mechanisms of used bad pixel also have been analyzed deeply. At the same time, the feasibility to study IRPFAs' damage stress, failure position, damage mechanism has been discussed all around. The research of bad pixel can be used to optimize the structure and process, meanwhile it also can improve the accuracy of bad pixel identification and replacements.

  10. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  11. CMB component separation in the pixel domain

    SciTech Connect

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-15

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of 'homogeneous' subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum C{sub l} at l{<=}30 and provides results similar to WMAP for larger l. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the 'axis of evil' is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high l power spectrum.

  12. Pixel-level plasmonic microcavity infrared photodetector.

    PubMed

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  13. 196 Million Pixels: An Immersive Visualization Experience

    NASA Astrophysics Data System (ADS)

    Reed, P. J.; Vandenberg, A.; Wang, G.

    2011-12-01

    Georgia State University (GSU) has recently implemented one of the world's largest high-resolution, tiled visualization walls specifically designed for researcher accessibility and display of data in an interactive, immersive, exploratory and collaborative experience. The Visualization Wall, comprised of 48 individual high-resolution monitors, is able to analyze, evaluate, and present data using the latest earth science research software packages. Multi-core processing and 24 graphical processing units (GPU's) allow the system to process and view data using research software applications at high resolution (+196 million pixels), while maintaining an interactive experience for the user. A Windows platform solves many application compatibility obstacles but also presents a new host of problems when scaling applications across multiple monitors. Continuous data set visualization, frame rate slowing, and graphic performance have been a challenge with the Visualization Wall. To overcome these obstacles, GSU has implemented several innovative solutions including Google Code projects, hardware accelerated browsers, and open-source software such as SAGE.

  14. High-MTF hybrid ferroelectric IRFPA

    NASA Astrophysics Data System (ADS)

    Evans, Scott B.; Hayden, Terrence

    1998-07-01

    Low cost, uncooled hybrid infrared focal plane arrays (IRFPA's) are in full-scale production at Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems and Electronics Group. Detectors consist of reticulated ceramic barium strontium titanate (BST) arrays of 320 X 240 pixels on 48.5 micrometer pitch. The principal performance shortcoming of the hybrid arrays has been low MTF due to thermal crosstalk between pixels. In the past two years, significant improvements have been made to increase MTF making hybrids more competitive in performance with monolithic arrays. The improvements are (1) the reduction of the thickness of the IR absorbing layer electrode that maintains electrical continuity and increases thermal isolation between pixels, (2) reduction of the electrical crosstalk from the ROIC, and (3) development of a process to increase the thermal path-length between pixels called 'elevated optical coat.' This paper describes all three activities and their efficacy. Also discussed is the uncooled IRFPA production capability at RSC.

  15. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  16. Impact of aperturing and pixel size on XPCS using AGIPD

    NASA Astrophysics Data System (ADS)

    Becker, J.; Graafsma, H.

    2012-02-01

    A case study for the Adaptive Gain Integrating Pixel Detector (AGIPD) at the European XFEL employing the intensity autocorrelation technique was performed using the detector simulation tool HORUS. The study compares the AGIPD (pixel size of (200 μm)2) to a possible apertured version of the detector and to a hypothetical system with 100 μm pixel size and investigates the influence of intensity fluctuations and incoherent noise on the quality of the acquired data.

  17. The status of the CMS forward pixel detector

    SciTech Connect

    Tan, Ping; /Fermilab

    2006-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system. It provides precise measurements of space points to allow effective pattern recognition in multiple track environments near the LHC interaction point. The end disks of the pixel detector, known as the Forward Pixel detector, are constructed mainly by the US-CMS collaborators. The design techniques, readout electronics, test beam activities, and construction status are reviewed.

  18. Data encoding efficiency in pixel detector readout with charge information

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wang, Xinkang

    2016-04-01

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  19. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  20. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  1. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  2. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  3. Dead pixel correction techniques for dual-band infrared imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong T.; Mould, Nick; Regens, James L.

    2015-07-01

    We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

  4. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  5. Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation

    NASA Astrophysics Data System (ADS)

    Sourbron, S.; Dujardin, M.; Makkat, S.; Luypaert, R.

    2007-01-01

    Quantification of haemodynamic parameters with a deconvolution analysis of bolus-tracking data is an ill-posed problem which requires regularization. In a previous study, simulated data without structural errors were used to validate two methods for a pixel-by-pixel analysis: standard-form Tikhonov regularization with either the L-curve criterion (LCC) or generalized cross validation (GCV) for selecting the regularization parameter. However, problems of image artefacts were reported when the methods were applied to patient data. The aim of this study was to investigate the nature of these problems in more detail and evaluate strategies of optimization for routine application in the clinic. In addition we investigated to which extent the calculation time of the algorithm can be minimized. In order to ensure that the conclusions are relevant for a larger range of clinical applications, we relied on patient data for evaluation of the algorithms. Simulated data were used to validate the conclusions in a more quantitative manner. We conclude that the reported problems with image quality can be removed by appropriate optimization of either LCC or GCV. In all examples this could be achieved with LCC without significant perturbation of the values in pixels where the regularization parameter was originally selected accurately. GCV could not be optimized for the renal data, and in the CT data only at the cost of image resolution. Using the implementations given, calculation times were sufficiently short for routine application in the clinic.

  6. Estimation of proportions in mixed pixels through their region characterization

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    A region of mixed pixels can be characterized through the probability density function of proportions of classes in the pixels. Using information from the spectral vectors of a given set of pixels from the mixed pixel region, expressions are developed for obtaining the maximum likelihood estimates of the parameters of probability density functions of proportions. The proportions of classes in the mixed pixels can then be estimated. If the mixed pixels contain objects of two classes, the computation can be reduced by transforming the spectral vectors using a transformation matrix that simultaneously diagonalizes the covariance matrices of the two classes. If the proportions of the classes of a set of mixed pixels from the region are given, then expressions are developed for obtaining the estmates of the parameters of the probability density function of the proportions of mixed pixels. Development of these expressions is based on the criterion of the minimum sum of squares of errors. Experimental results from the processing of remotely sensed agricultural multispectral imagery data are presented.

  7. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  8. Synchrotron beam test with a photon-counting pixel detector.

    PubMed

    Brönnimann, C; Florin, S; Lindner, M; Schmitt, B; Schulze-Briese, C

    2000-09-01

    Synchrotron beam measurements were performed with a single-photon-counting pixel detector to investigate the influence of threshold settings on charge sharing. Improvement of image homogeneity by adjusting the threshold of each pixel individually was demonstrated. With a flat-field correction, the homogeneity could be improved. A measurement of the point spread function is reported. PMID:16609212

  9. Novel integrated CMOS pixel structures for vertex detectors

    SciTech Connect

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  10. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  11. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  12. Rectangular pixels for efficient color image sampling

    NASA Astrophysics Data System (ADS)

    Singh, Tripurari; Singh, Mritunjay

    2011-01-01

    We present CFA designs that faithfully capture images with specified luminance and chrominance bandwidths. Previous academic research has mostly been concerned with maximizing PSNR of reconstructed images without regard to chrominance bandwidth and cross-talk. Commercial systems, on the other hand, pay close attention to both these parameters as well as to the visual quality of reconstructed images. They commonly sacrifice resolution by using a sufficiently aggressive OLPF to achieve low cross-talk and artifact free images. In this paper, we present the so called Chrominance Bandwidth Ratio, r, model in an attempt to capture both the chrominance bandwidth and the cross-talk between the various signals. Next, we examine the effect of tuning photosite aspect ratio, a hitherto neglected design parameter, and show the benefit of setting it at a different value than the pixel aspect ratio of the display. We derive panchromatic CFA patterns that provably minimize the photo-site count for all values of r. An interesting outcome is a CFA design that captures full chrominance bandwidth, yet uses fewer photosites than the venerable color-stripe design. Another interesting outcome is a low cost practical CFA design that captures chrominance at half the resolution of luminance using only 4 unique filter colors, that lends itself to efficient linear demosaicking, and yet vastly outperforms the Bayer CFA with identical number of photosites demosaicked with state of the art compute-intensive nonlinear algorithms.

  13. CMB component separation in the pixel domain

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-01

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of “homogeneous” subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum Cℓ at ℓ≤30 and provides results similar to WMAP for larger ℓ. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the “axis of evil” is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high ℓ power spectrum.

  14. Singlet mega-pixel resolution lens

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Hung; Lin, Hoang Yan; Chang, Horng

    2008-03-01

    There always exist some new challenges for lens designers to keep their old-line technology update. To minimize lens volume is one of the most notified examples. In this paper we designed a single thick lens, constructed by using one oblique (reflective) surface, apart from two conventional refractive surfaces, to bend the optical path of the optical system to achieve this goal. Detail design procedure, including system layout and lens performance diagrams, will be presented. Following the first order layout, we applied aspherical form to the two refractive surfaces in order to correct the spherical aberration up to an acceptable condition. Then, the reduced aberrations such as coma, astigmatism, field curvature and distortion can easily be corrected with some calculations related to spherical aberration as shown in the publication of H. H. Hopkins (1950). Plastic material is used in the design, because the aspherical surfaces can then be manufactured in a more cost effective way. The final specification of the design is: EFL is 4.6 mm, the F number is 2.8, the over all thickness of lens is 3.6 mm, its MTF is 0.3 at 227 lp/mm in center field and chief ray angle is less than 15 degrees. Lens data as well as optical performance curves are also presented in the paper. In conclusion we have successfully finished a mega-pixel resolution lens design and its overall thickness is compatible with the state of the art.

  15. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  16. Attenuating Stereo Pixel-Locking via Affine Window Adaptation

    NASA Technical Reports Server (NTRS)

    Stein, Andrew N.; Huertas, Andres; Matthies, Larry H.

    2006-01-01

    For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as 'pixel-locking,' which produces artificially-peaked histograms of sub-pixel disparity. These peaks correspond to the introduction of erroneous ripples or waves in the 3D reconstruction of truly Rat surfaces. Since stereo vision is a common input modality for autonomous vehicles, these inaccuracies can pose a problem for safe, reliable navigation. This paper proposes a new method for sub-pixel stereo disparity estimation, based on ideas from Lucas-Kanade tracking and optical flow, which substantially reduces the pixel-locking effect. In addition, it has the ability to correct much larger initial disparity errors than previous approaches and is more general as it applies not only to the ground plane.

  17. Using an Active Pixel Sensor In A Vertex Detector

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Chen, Yandong; Gareus, Robin; Kleinfelder, Stuart; Oldenburg, Markus; Retiere, Fabrice; Ritter, HansGeorg; Wieman, Howard H.; Wurzel, Samuel E.; Yamamoto, Eugene

    2004-04-22

    Research has shown that Active Pixel CMOS sensors can detect charged particles. We have been studying whether this process can be used in a collider environment. In particular, we studied the effect of radiation with 55 MeV protons. These results show that a fluence of about 2 x 10{sup 12} protons/cm{sup 2} reduces the signal by a factor of two while the noise increases by 25%. A measurement 6 months after exposure shows that the silicon lattice naturally repairs itself. Heating the silicon to 100 C reduced the shot noise and increased the collected charge. CMOS sensors have a reduced signal to noise ratio per pixel because charge diffuses to neighboring pixels. We have constructed a photogate to see if this structure can collect more charge per pixel. Results show that a photogate does collect charge in fewer pixels, but it takes about 15 ms to collect all of the electrons produced by a pulse of light.

  18. DC-DC powering for the CMS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  19. Operational experience with the ATLAS Pixel Detector at the LHC

    NASA Astrophysics Data System (ADS)

    Lapoire, C.; Atlas Collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy is sufficiently low and hit efficiency exceed the design specification.

  20. Detector apparatus having a hybrid pixel-waveform readout system

    SciTech Connect

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  1. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    SciTech Connect

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  2. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  3. The pixel tracking telescope at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; Vigani, Luigi; Dinardo, Mauro E.

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100×150 μm2 pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  4. Resolution and sensitivity improvements for VOx microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Murphy, Daniel F.; Kennedy, Adam; Ray, Michael; Wyles, Richard; Wyles, Jessica; Asbrock, James F.; Hewitt, C.; Van Lue, David; Sessler, T.; Anderson, John S.; Bradley, Daryl; Chin, Richard; Gonzales, H.; Le Pere, C.; Kostrzewa, Thomas

    2003-09-01

    Raytheon Vision Systems (RVS) has achieved a significant technical breakthrough in uncooled FPAs by reducing the pixel size by a factor of two while maintaining state-of-the-art sensitivity. Raytheon is producing high-quality 320 x 240 microbolometer FPAs with 25 μm pitch pixels. The 320 x 240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50 μm pixels. The array average NETD value for these FPAs is about 30 mK with an f/1 aperture and operating at 30 Hz frame rates. Pixel operability is greater than 99% on most FPAs, and uncorrected responsivity nonuniformity is less than 4% (sigma/mean). These 25 μm microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. This state-of-the-art performance has been achieved as a result of an advanced micro machining fabrication process, which allows maximization of both the thermal isolation and the optical fill-factor. These arrays have produced excellent image quality, and are currently fielded in demonstration systems. The reduction in pixel size offers several potential benefits for IR systems. For a given system resolution (IFOV) requirement, the 25 μm pxiels allow a factor of two reduction in both the focal length and aperture size of the sensor optics. These FPAs are applicable to wide-field-of-view, long-range surveillance and targeting missions. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased, and also has enabled the development of a large-format 640 x 480 FPA array. Raytheon is producing these arrays with very good sensitivity. These arrays have excellent operability and image quality. Several dual FOV prototype systems have been delivered under the LCMS and UAV programs, and are under evaluation at NVESD. Raytheon Vision Systems (RVS) has developed a flexible uncooled front end (UFE) electronics that will serve as the basis for camera engine systems using 320 x 240

  5. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  6. Monolithic pixel detectors in silicon on insulator technology

    NASA Astrophysics Data System (ADS)

    Bisello, Dario

    2013-05-01

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  7. Active-Pixel Image Sensors With Programmable Resolution

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.; Fossum, Eric R.; Pain, Bedabrata; Nakamura, Junichi; Matthies, Larry H.

    1996-01-01

    Active-pixel image sensors with programmable resolution proposed for use in applications in which speed and efficiency of processing of image data enhanced by providing those data at varying resolutions. Such applications include modeling of biological vision, stereoscopic range-finding, recognition of patterns, tracking targets, and progressive transmission of compressed images. In target-tracking application, sensor initially forms low-resolution image from which area of interest identified, then sensor set at high resolution for examination of identified area. Outputs of contiguous pixels combined. Sensor of this type made to act as though it comprised fewer and larger pixels.

  8. Vertically integrated pixel readout chip for high energy physics

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  9. Pixel detectors in 3D technologies for high energy physics

    SciTech Connect

    Deptuch, G.; Demarteau, M.; Hoff, J.; Lipton, R.; Shenai, A.; Yarema, R.; Zimmerman, T.; /Fermilab

    2010-10-01

    This paper reports on the current status of the development of International Linear Collider vertex detector pixel readout chips based on multi-tier vertically integrated electronics. Initial testing results of the VIP2a prototype are presented. The chip is the second embodiment of the prototype data-pushed readout concept developed at Fermilab. The device was fabricated in the MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  10. Characterization of a Depleted Monolithic Active Pixel Sensor (DMAPS) prototype

    NASA Astrophysics Data System (ADS)

    Obermann, T.; Havranek, M.; Hemperek, T.; Hügging, F.; Kishishita, T.; Krüger, H.; Marinas, C.; Wermes, N.

    2015-03-01

    New monolithic pixel detectors integrating CMOS electronics and sensor on the same silicon substrate are currently explored for particle tracking in future HEP experiments, most notably at the LHC . The innovative concept of Depleted Monolithic Active Pixel Sensors (DMAPS) is based on high resistive silicon bulk material enabling full substrate depletion and the application of an electrical drift field for fast charge collection, while retaining full CMOS capability for the electronics. The technology (150 nm) used offers quadruple wells and allows to implement the pixel electronics with independently isolated N- and PMOS transistors. Results of initial studies on the charge collection and sensor performance are presented.

  11. Dual collection mode optical microscope with single-pixel detection

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  12. Modulation transfer function measurement technique for small-pixel detectors

    NASA Technical Reports Server (NTRS)

    Marchywka, Mike; Socker, Dennis G.

    1992-01-01

    A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.

  13. Consequences of Mixed Pixels on Temperature Emissivity Separation

    SciTech Connect

    Heasler, Patrick G.; Foley, Michael G.; Thompson, Sandra E.

    2007-02-01

    This report investigates the effect that a mixed pixel can have on temperature/emissivity seperation (i.e. temperature/emissivity estimation using long-wave infra-red data). Almost all temperature/emissivity estimation methods are based on a model that assumes both temperature and emissivity within the imaged pixel is homogeneous. A mixed pixel has heterogeneous temperature/emissivity and therefore does not satisfy the assumption. Needless to say, this heterogeneity causes biases in the estimates and this report quantifies the magnitude of the biases.

  14. DRS uncooled VOx infrared detector development and production status

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Hess, Cory

    2010-04-01

    Significant progress has been made over the past decade on uncooled focal plane array (UFPA) technology development and production capacity at DRS as well as other domestic and overseas suppliers. This resulted in the proliferation of uncooled IR detectors in commercial and military markets. The uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. In the military arena, uncooled detectors are fielded among diverse systems such as weapon sights, driver enhancement viewers, helmet-mounted sights, airborne and ground surveillance sensors including UAVs and robot vehicles. Pixel dimensions have continually decreased with an increase in pixel performance. This paper presents an overview of the DRS 25- and 17-micron pixel pitch uncooled VOx detector technology development and production status. The DRS uncooled FPA products include 320x240 and 640x480 arrays while the larger 1024x768 17-micron pitch array is at engineering prototype quantities. Current production of the 25-micron pitch 320x240 and 640x480 arrays exceeds 5,000 units per month, supporting U.S. military systems such as Army thermal weapon sights (TWS) and driver vision enhancers (DVE). Next generation systems are moving towards the 17-micron pixel pitch detectors. Advancement in small pixel technology has enabled the 17-micron pitch detectors performance to surpass their 25-micron pitch counterparts. To meet future production demand of the 17-micron pitch UFPAs, DRS has made significant investment in production infrastructure to upgrade its tools. These investments include a new DUV stepper, coater, and plasma etcher plus improvements in its manufacturing techniques to enhance yield. These advanced tools reduce the minimum line width in production below 0.35μm and are now being used to manufacture the 17-micron 320x240 and 640x480 arrays. To further technology development, DRS continues to engage in R&D activities

  15. Sub-pixel radiometry: a three-part study in generating synthetic imagery that incorporates sub-pixel variation

    NASA Astrophysics Data System (ADS)

    Paul, Sarah; Goodenough, Adam A.; Brown, Scott D.; Salvaggio, Carl

    2010-04-01

    A pixel represents the limit of spatial knowledge that can be represented in an image. It is represented as a single (perhaps spectral) digital count value that represents the energy propagating from a spatial portion of a scene. In any captured image, that single value is the result of many factors including the composition of scene optical properties within the projected pixel, the characteristic point spread function (or, equivalently, modulation transfer function) of the system, and the sensitivity of the detector element itself. This presentation examines the importance of sub-pixel variability in the context of generating synthetic imagery for remote sensing applications. The study was performed using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool, an established ray-tracing based synthetic modeling system whose approach to sub-pixel computations was updated during this study. The paper examines three aspects of sub-pixel variability of interest to the remote sensing community. The first study simply looks at sampling frequency relative to structural frequency in a scene and the effects of aliasing on an image. The second considers the task of modeling a sub-pixel target whose signature would be mixed with background clutter, such as a small, hot target in a thermal image. The final study looks at capturing the inherent spectral variation in a single class of material, such as grass in hyperspectral imagery. Through each study we demonstrate in a quantitative fashion, the improved capabilities of DIRSIG's sub-pixel rendering algorithms.

  16. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  17. Characterization of a three side abuttable CMOS pixel sensor with digital pixel and data compression for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Guilloux, F.; Değerli, Y.; Flouzat, C.; Lachkar, M.; Monmarthe, E.; Orsini, F.; Venault, P.

    2016-02-01

    CMOS monolithic pixel sensor technology has been chosen to equip the new ALICE trackers for HL-LHC . PIXAM is the final prototype from an R&D program specific to the Muon Forward Tracker which intends to push significantly forward the performances of the mature rolling shutter architecture. By implementing a digital pixel allowing to readout of a group of rows in parallel, the PIXAM sensor increases the rolling shutter readout speed while keeping the same power consumption as that of analogue pixel sensors. This paper will describe shortly the ASIC architecture and will focus on the analogue and digital performances of the sensor, obtained from laboratory measurements.

  18. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  19. Coherence experiments in single-pixel digital holography.

    PubMed

    Liu, Jung-Ping; Guo, Chia-Hao; Hsiao, Wei-Jen; Poon, Ting-Chung; Tsang, Peter

    2015-05-15

    In optical scanning holography (OSH), the coherence properties of the acquired holograms depend on the single-pixel size, i.e., the active area of the photodetector. For the first time, to the best of our knowledge, we have demonstrated coherent, partial coherent, and incoherent three-dimensional (3D) imaging by experiment in such a single-pixel digital holographic recording system. We have found, for the incoherent mode of OSH, in which the detector of the largest active area is applied, the 3D location of a diffusely reflecting object can be successfully retrieved without speckle noise. For the partial coherent mode employing a smaller pixel size of the detector, significant speckles and randomly distributed bright spots appear among the reconstructed images. For the coherent mode of OSH when the size of the pixel is vanishingly small, the bright spots disappear. However, the speckle remains and the signal-to-noise ratio is low. PMID:26393741

  20. Two-dimensional pixel array image sensor for protein crystallography

    SciTech Connect

    Beuville, E.; Beche, J.-F.; Cork, C.

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  1. ARCONS: a 1024 pixel superconducting integral field spectrograph

    NASA Astrophysics Data System (ADS)

    O'Brien, Kieran; Mazin, Ben; McHugh, Sean; Meeker, Seth; Marsden, Danica; Bumble, Bruce

    2012-09-01

    ARCONS, the Array Camera for Optical to Near-infrared Spectrophotometry, was recently commissioned at the Coude focus of the 200-inch Hale Telescope at the Palomar Observatory. At the heart of this unique instrument is a 1024-pixel Microwave Kinetic Inductance Detector (MKID), exploiting the Kinetic Inductance effect to measure the energy of the incoming photon to better than several percent. The ground-breaking instrument is lens coupled with a pixel scale of 0.23"/pixel, with each pixel recording the arrival time (< 2 _μsec) and energy of a photon (~10%) in the optical to near-IR (0.4-1.1 microns) range. The scientific objectives of the instrument include the rapid follow-up and classi_cation of the transient phenomena

  2. DAQ hardware and software development for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  3. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  4. MTF study of planar small pixel pitch quantum IR detectors

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  5. FPIX2, the BTeV pixel readout chip

    SciTech Connect

    David C. Christian et al.

    2003-12-10

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  6. Pixel readout electronics for LHC and biomedical applications

    NASA Astrophysics Data System (ADS)

    Blanquart, L.; Bonzom, V.; Comes, G.; Delpierre, P.; Fischer, P.; Hausmann, J.; Keil, M.; Lindner, M.; Meuser, S.; Wermes, N.

    2000-01-01

    The demanding requirements for pixel readout electronics for high-energy physics experiments and biomedical applications are reviewed. Some examples of the measured analog performance of prototype chips are given. The readout architectures of the PIxel Readout for the ATlas Experiment (PIRATE) chip suited for LHC experiments and of the Multi Picture Element Counter (MPEC) counting chip targeted for biomedical applications are presented. First results with complete chip-sensor assemblies are also shown.

  7. A Chip and Pixel Qualification Methodology on Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Petkov, Mihail; Nguyen, Duc N.; Novak, Frank

    2004-01-01

    This paper presents a qualification methodology on imaging sensors. In addition to overall chip reliability characterization based on sensor s overall figure of merit, such as Dark Rate, Linearity, Dark Current Non-Uniformity, Fixed Pattern Noise and Photon Response Non-Uniformity, a simulation technique is proposed and used to project pixel reliability. The projected pixel reliability is directly related to imaging quality and provides additional sensor reliability information and performance control.

  8. Application-specific architectures of CMOS monolithic active pixel sensors

    NASA Astrophysics Data System (ADS)

    Szelezniak, Michal; Besson, Auguste; Claus, Gilles; Colledani, Claude; Degerli, Yavuz; Deptuch, Grzegorz; Deveaux, Michael; Dorokhov, Andrei; Dulinski, Wojciech; Fourches, Nicolas; Goffe, Mathieu; Grandjean, Damien; Guilloux, Fabrice; Heini, Sebastien; Himmi, Abdelkader; Hu, Christine; Jaaskelainen, Kimmo; Li, Yan; Lutz, Pierre; Orsini, Fabienne; Pellicioli, Michel; Shabetai, Alexandre; Valin, Isabelle; Winter, Marc

    2006-11-01

    Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e -, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.

  9. Accelerating sub-pixel marker segmentation using GPU

    NASA Astrophysics Data System (ADS)

    Handel, Holger

    2009-02-01

    Sub-pixel accurate marker segmentation is an important task for many computer vision systems. The 3D-positions of markers are used in control loops to determine the position of machine tools or robot end-effectors. Accurate segmentation of the marker position in the image plane is crucial for accurate reconstruction. Many subpixel segmentation algorithms are computationally intensive, especially when the number of markers increases. Modern graphics hardware with its massively parallel architecture provides a powerful tool for many image segmentation tasks. Especially, the time consuming sub-pixel refinement steps in marker segmentation can benefit from the recent progress. This article presents an implementation of a sub-pixel marker segmentation framework using the GPU to accelerate the processing time. The image segmentation chain consists of two stages. The first is a pre-processing stage which segments the initial position of the marker with pixel accuracy, the second stage refines the initial marker position to sub-pixel accuracy. Both stages are implemented as shader programs on the GPU. The flexible architecture allows it to combine different pre-processing and sub-pixel refinement algorithms. Experimental results show that significant speed-up can be achieved compared to CPU implementations, especially when the number of markers increases.

  10. High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays.

    PubMed

    Olson, Jana; Manjavacas, Alejandro; Basu, Tiyash; Huang, Da; Schlather, Andrea E; Zheng, Bob; Halas, Naomi J; Nordlander, Peter; Link, Stephan

    2016-01-26

    Chromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photobleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow the short-wavelength side of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral line shape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity. PMID:26639191

  11. Active Pixel Sensor Characterization for the STAR Detector

    NASA Astrophysics Data System (ADS)

    King, Jake

    2004-10-01

    The STAR collaboration is studying matter at high temperatures and densities. If a significant improvement to the measurement of particle trajectories can be made, charmed mesons that decay away from the primary collision point could be identified. To achieve this goal, STAR is building a vertex detector consisting of a new technology Â- active pixel sensors. (APS) An APS is an implementation of standard CMOS technology in which each pixel has a photodiode directly above the epitaxial layer. Incident particles produce electron-hole pairs in the epitaxial layer, and these electrons accumulate on the photodiode. Charge from the photodiode is digitized to identify the position of the incident particle. It is important to characterize the signal to noise, readout time, and resolution on several different pixel sizes so that the vertex detector can be optimized for cost and speed. Larger pixels result in a faster data acquisition, while smaller pixels have better resolution. We will present studies of 5, 10, 20 and 30μm square pixel geometries that measure charge distribution and collection. We will also display the results of using a field emission scanning electron microscope with energies from 1 to 30 keV. This tool has the potential to probe regions of the APS integrated circuit and contribute to understanding its properties.

  12. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  13. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  14. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated. PMID:27007242

  15. Frequency distribution signatures and classification of within-object pixels

    PubMed Central

    Stow, Douglas A.; Toure, Sory I.; Lippitt, Christopher D.; Lippitt, Caitlin L.; Lee, Chung-rui

    2011-01-01

    The premise of geographic object-based image analysis (GEOBIA) is that image objects are composed of aggregates of pixels that correspond to earth surface features of interest. Most commonly, image-derived objects (segments) or objects associated with predefined land units (e.g., agricultural fields) are classified using parametric statistical characteristics (e.g., mean and standard deviation) of the within-object pixels. The objective of this exploratory study was to examine the between- and within-class variability of frequency distributions of multispectral pixel values, and to evaluate a quantitative measure and classification rule that exploits the full pixel frequency distribution of within object pixels (i.e., histogram signatures) compared to simple parametric statistical characteristics. High spatial resolution Quickbird satellite multispectral data of Accra, Ghana were evaluated in the context of mapping land cover and land use and socioeconomic status. Results show that image objects associated with land cover and land use types can have characteristic, non-normal frequency distributions (histograms). Signatures of most image objects tended to match closely the training signature of a single class or sub-class. Curve matching approaches to classifying multi-pixel frequency distributions were found to be slightly more effective than standard statistical classifiers based on a nearest neighbor classifier. PMID:22408575

  16. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  17. Intrinsic pixel size variation in an LSST prototype sensor

    NASA Astrophysics Data System (ADS)

    Baumer, M. A.; Roodman, A.

    2015-05-01

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) have motivated a search for new and unexpected sources of systematic error in the LSST camera. Flat field images are a rich source of data on sensor anomalies, although such effects are typically dwarfed by shot noise in a single flat field. After combining many (0~50) such images into 'ultraflats' to reduce the impact of shot noise, we perform photon transfer analysis on a pixel-by-pixel basis and observe no spatial structure in pixel linearity or gain at light levels of 100 ke- and below. At 125 ke-, a columnar structure is observed in the gain map—we attribute this to a flux-dependent charge-transfer inefficiency. We also probe small-scale variations in effective pixel size by analyzing pixel-neighbor correlations in ultraflat images, where we observe clear evidence of intrinsic variation in effective pixel size in an LSST prototype sensor near the ~ .3% level.

  18. Polycrystalline CVD diamond pixel array detector for nuclear particles monitoring

    NASA Astrophysics Data System (ADS)

    Pacilli, M.; Allegrini, P.; Girolami, M.; Conte, G.; Spiriti, E.; Ralchenko, V. G.; Komlenok, M. S.; Khomic, A. A.; Konov, V. I.

    2013-02-01

    We report the 90Sr beta response of a polycrystalline diamond pixel detector fabricated using metal-less graphitic ohmic contacts. Laser induced graphitization was used to realize multiple squared conductive contacts with 1mm × 1mm area, 0.2 mm apart, on one detector side while on the other side, for biasing, a 9mm × 9mm large graphite contact was realized. A proximity board was used to wire bonding nine pixels at a time and evaluate the charge collection homogeneity among the 36 detector pixels. Different configurations of biasing were experimented to test the charge collection and noise performance: connecting the pixel at the ground potential of the charge amplifier led to best results and minimum noise pedestal. The expected exponential trend typical of beta particles has been observed. Reversing the bias polarity the pulse height distribution (PHD) does not changes and signal saturation of any pixel was observed around ±200V (0.4 V/μm). Reasonable pixels response uniformity has been evidenced even if smaller pitch 50÷100 μm structures need to be tested.

  19. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  20. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  1. Pixel-to-pixel correspondence alignment method of a 2CCD camera by using absolute phase map

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Liu, Yue; Bai, Xuefei; Wang, Zhangying; Zhang, Zonghua

    2015-06-01

    An alignment method of a 2CCD camera to build pixel-to-pixel correspondence between the infrared (IR) CCD sensor and the visible CCD sensor by using the absolute phase data is presented. Vertical and horizontal sinusoidal fringe patterns are generated by software and displayed on a liquid crystal display screen. The displayed fringe patterns are captured simultaneously by the IR sensor and the visible sensor of the 2CCD camera. The absolute phase values of each pixel at IR and visible channels are calculated from the captured fringe pattern images by using Fourier transform and the optimum three-fringe number selection method. The accurate pixel corresponding relationship between the two sensors can be determined along the vertical and the horizontal directions by comparing the obtained absolute phase data in IR and visible channels. Experimental results show the high accuracy, effectiveness, and validity of the proposed 2CCD alignment method. By using the continuous absolute phase information, this method can determine the pixel-to-pixel correspondence with high resolution.

  2. Smart pixel imaging with computational-imaging arrays

    NASA Astrophysics Data System (ADS)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  3. VeloPix: the pixel ASIC for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Poikela, T.; De Gaspari, M.; Plosila, J.; Westerlund, T.; Ballabriga, R.; Buytaert, J.; Campbell, M.; Llopart, X.; Wyllie, K.; Gromov, V.; van Beuzekom, M.; Zivkovic, V.

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 along with the other subsystems of LHCb in order to enable full readout at 40 MHz, with the data fed directly to the software triggering algorithms. The upgraded VELO is a lightweight hybrid pixel detector operating in vacuum in close proximity to the LHC beams. The readout will be provided by a dedicated front-end ASIC, dubbed VeloPix, matched to the LHCb readout requirements and the 55 × 55 μm VELO pixel dimensions. The chip is closely related to the Timepix3, from the Medipix family of ASICs. The principal challenge that the chip has to meet is a hit rate of up to 900 Mhits/s, resulting in a required output bandwidth of more than 16 Gbit/s. The occupancy across the chip is also very non-uniform, and the radiation levels reach an integrated 400 Mrad over the lifetime of the detector.VeloPix is a binary pixel readout chip with a data driven readout, designed in 130 nm CMOS technology. The pixels are combined into groups of 2 × 4 super pixels, enabling a shared logic and a reduction of bandwidth due to combined address and time stamp information. The pixel hits are combined with other simultaneous hits in the same super pixel, time stamped, and immediately driven off-chip. The analog front-end must be sufficiently fast to accurately time stamp the data, with a small enough dead time to minimize data loss in the most occupied regions of the chip. The data is driven off chip with a custom designed high speed serialiser. The current status of the ASIC design, the chip architecture and the simulations will be described.

  4. Amorphous silicon based large format uncooled FPA microbolometer technology

    NASA Astrophysics Data System (ADS)

    Schimert, T.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Ajmera, S.; Hanson, C.; Syllaios, A. J.

    2008-04-01

    This paper presents recent developments in next generation microbolometer Focal Plane Array (FPA) technology at L-3 Communications Infrared Products (L-3 CIP). Infrared detector technology at L-3 CIP is based on hydrogenated amorphous silicon (a-Si:H) and amorphous silicon germanium(a-SiGe:H). Large format high performance, fast, and compact IR FPAs are enabled by a low thermal mass pixel design; favorable material properties; an advanced ROIC design; and wafer level packaging. Currently at L-3 CIP, 17 micron pixel FPA array technology including 320x240, 640 x 480 and 1024 x768 arrays is under development. Applications of these FPAs range from low power microsensors to high resolution near-megapixel imager systems.

  5. Gas pixel detectors for X-ray polarimetry applications

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Angelini, F.; Baldini, L.; Bitti, F.; Brez, A.; Cavalca, F.; Del Prete, M.; Kuss, M.; Latronico, L.; Omodei, N.; Pinchera, M.; Massai, M. M.; Minuti, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tenze, A.; Costa, E.; Soffitta, P.

    2006-05-01

    We discuss a new class of micro pattern gas detectors, the gas pixel detector (GPD), in which a complete integration between the gas amplification structure and the read-out electronics has been reached. An application-specific integrated circuit (ASIC) built in deep sub-micron technology has been developed to realize a monolithic device that is, at the same time, the pixelized charge collecting electrode and the amplifying, shaping and charge measuring front-end electronics. The CMOS chip has the top metal layer patterned in a matrix of 80 μm pitch hexagonal pixels, each of them directly connected to the underneath electronics chain which has been realized in the remaining five layers of the 0.35 μm VLSI technology. Results from tests of a first prototype of such detector with 2 k pixels and a full scale version with 22 k pixels are presented. The application of this device for Astronomical X-ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation is shown. Results from a full MonteCarlo simulation for two astronomical sources, the Crab Nebula and the Hercules X1, are also reported.

  6. Super pixel density based clustering automatic image classification method

    NASA Astrophysics Data System (ADS)

    Xu, Mingxing; Zhang, Chuan; Zhang, Tianxu

    2015-12-01

    The image classification is an important means of image segmentation and data mining, how to achieve rapid automated image classification has been the focus of research. In this paper, based on the super pixel density of cluster centers algorithm for automatic image classification and identify outlier. The use of the image pixel location coordinates and gray value computing density and distance, to achieve automatic image classification and outlier extraction. Due to the increased pixel dramatically increase the computational complexity, consider the method of ultra-pixel image preprocessing, divided into a small number of super-pixel sub-blocks after the density and distance calculations, while the design of a normalized density and distance discrimination law, to achieve automatic classification and clustering center selection, whereby the image automatically classify and identify outlier. After a lot of experiments, our method does not require human intervention, can automatically categorize images computing speed than the density clustering algorithm, the image can be effectively automated classification and outlier extraction.

  7. Pixel classification based color image segmentation using quaternion exponent moments.

    PubMed

    Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying

    2016-02-01

    Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature. PMID:26618250

  8. Multiport solid-state imager characterization at variable pixel rates

    SciTech Connect

    Yates, G.J.; Albright, K.A.; Turko, B.T.

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  9. Operational experience with the ATLAS Pixel detector at the LHC

    NASA Astrophysics Data System (ADS)

    Deluca, C.

    2011-12-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of pico-seconds lifetime particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97.5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution.

  10. Visual mining business service using pixel bar charts

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Casati, Fabio

    2004-06-01

    Basic bar charts have been commonly available, but they only show highly aggregated data. Finding the valuable information hidden in the data is essential to the success of business. We describe a new visualization technique called pixel bar charts, which are derived from regular bar charts. The basic idea of a pixel bar chart is to present all data values directly instead of aggregating them into a few data values. Pixel bar charts provide data distribution and exceptions besides aggregated data. The approach is to represent each data item (e.g. a business transaction) by a single pixel in the bar chart. The attribute of each data item is encoded into the pixel color and can be accessed and drilled down to the detail information as needed. Different color mappings are used to represent multiple attributes. This technique has been prototyped in three business service applications-Business Operation Analysis, Sales Analysis, and Service Level Agreement Analysis at Hewlett Packard Laboratories. Our applications show the wide applicability and usefulness of this new idea.

  11. Method and apparatus of high dynamic range image sensor with individual pixel reset

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)

    2001-01-01

    A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.

  12. Virus based Full Colour Pixels using a Microheater

    NASA Astrophysics Data System (ADS)

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-09-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future.

  13. Wire Bond Encapsulation for the CMS Forward Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Higginbotham, Sam; CMS Collaboration

    2015-04-01

    The Phase 1 upgrade of the pixel tracker for the CMS experiment will require the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. Electrical connections between the custom readout chips and support ASIC's that constitute the front-end of the pixel data acquisition system are made via wire bonds to a thin printed circuit board. Part of the assembly process carried out at Purdue University includes the partial encapsulation of the wire bonds for mechanical protection, prevention of electrolytic corrosion, and to damp oscillations due to Lorentz forces from transient current pulses in large magnetic fields. We present the details of the robotic assembly process which allows the deposition of the viscous encapsulant compound with 100 micron precision.

  14. Modulation transfer function measurement technique for small-pixel detectors.

    PubMed

    Marchywka, M; Socker, D G

    1992-12-01

    A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-microm-pixel CCD. Pixel response functions are derived from the MTF results. PMID:20802584

  15. Virus based Full Colour Pixels using a Microheater.

    PubMed

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-01-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature's inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future. PMID:26334322

  16. Depleted CMOS pixels for LHC proton-proton experiments

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2016-07-01

    While so far monolithic pixel detectors have remained in the realm of comparatively low rate and radiation applications outside LHC, new developments exploiting high resistivity substrates with three or four well CMOS process options allow reasonably large depletion depths and full CMOS circuitry in a monolithic structure. This opens up the possibility to target CMOS pixel detectors also for high radiation pp-experiments at the LHC upgrade, either in a hybrid-type fashion or even fully monolithic. Several pixel matrices have been prototyped with high ohmic substrates, high voltage options, and full CMOS electronics. They were characterized in the lab and in test beams. An overview of the necessary development steps and different approaches as well as prototype results are presented in this paper.

  17. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  18. Velocity map imaging using an in-vacuum pixel detector

    NASA Astrophysics Data System (ADS)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J. J.

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256×256 square pixels, 55×55 μm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 μs. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  19. Calibration analysis software for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  20. Recent Developments of HEP Pixel Detector Readout Chips

    NASA Astrophysics Data System (ADS)

    Caminada, Lea

    This article reviews the development of readout integrated circuits for hybrid pixel particle physics detectors. The 250-nm feature size chips in the presently operating ATLAS and CMS experiments are compared with the current state of the art in 130-nm feature size represented by the FE-I4 chip that will be used to add a new beam pipe layer for the ATLAS experiment in 2013 and the upgrade options of the CMS pixel readout chip. This includes a discussion of the array and pixel size, analog performance, readout architecture, power consumption, power distribution options and radiation hardness. Finally, recent work in 65-nm feature size as a means to continue the evolution of readout chip technology towards smaller feature size, higher rate, and lower power is presented.

  1. Visual mining geo-related data using pixel bar charts

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Keim, Daniel A.; Dayal, Umeshwar; Wright, Peter; Schneidewind, Joern

    2005-03-01

    A common approach to analyze geo-related data is using bar charts or x-y plots. They are intuitive and easy to use. But important information often gets lost. In this paper, we introduce a new interactive visualization technique called Geo Pixel Bar Charts, which combines the advantages of Pixel Bar Charts and interactive maps. This technique allows analysts to visualize large amounts of spatial data without aggregation and shows the geographical regions corresponding to the spatial data attribute at the same time. In this paper, we apply Geo Pixel Bar Charts to visually mining sales transactions and Internet usage from different locations. Our experimental results show the effectiveness of this technique for providing data distribution and exceptions from the map.

  2. Virus based Full Colour Pixels using a Microheater

    PubMed Central

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-01-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future. PMID:26334322

  3. Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1993-01-01

    The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.

  4. Pixel Detectors For Diffraction Experiments At The Swiss Light Source

    SciTech Connect

    Huelsen, G.; Eikenberry, E.F.; Schmitt, B.; Schulze-Briese, C.; Tomizaki, T.; Stampanoni, M.; Willmott, P.; Patterson, B.; Broennimann, Ch.; Horisberger, R.; Toyokawa, H.; Borchert, G. L.

    2004-05-12

    The PILATUS detector (Pixel Apparatus for the SLS) is a large, quantum-limited area X-ray detector for protein crystallography which is currently under construction. Its basic units are modules with 16 CMOS chips bump-bonded to a large, continuously sensitive silicon sensor with 157x366 pixels of 217x217 {mu}m2, leading to an active area of 34x80 mm2. With a counting circuit in each pixel, X-rays are detected in single photon counting mode, leading to excellent, noise-free data. The main properties of the detector are an energy range of 6 to 30 keV, no back-ground due to leakage current or readout-noise, fast read-out time of 6.7 ms, a rate/pixel >104/s and a PSF of one pixel. PILATUS detectors are installed at the SLS X06SA protein crystallography beamline, and at both the surface diffraction (SD) station and the radiography and tomography (XTM) station of beamline X04SA. The detectors are operated at room temperature and thus are very easy to use. Experiments benefit from the ability to detect very weak diffraction spots with high precision. At the SD station and at the XTM station, which is equipped with a Bragg magnifier, diffraction, radiography and tomography experiments showed promising results. At beamline X06SA, a three-module array (1120x157 pixels) with a readout time of 6.7 ms was tested. This system was used to collect fine phi-sliced protein crystal data in continuous sample rotation mode in which the crystal was continuously rotated with a slow angular velocity of 0.04 deg./s without any shutter operation. Exposure time per frame ranged from 100 ms to a few seconds, depending on the crystal. These initial experiments show the potential of this method.

  5. Mapping Pixel Windows To Vectors For Parallel Processing

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    1996-01-01

    Mapping performed by matrices of transistor switches. Arrays of transistor switches devised for use in forming simultaneous connections from square subarray (window) of n x n pixels within electronic imaging device containing np x np array of pixels to linear array of n(sup2) input terminals of electronic neural network or other parallel-processing circuit. Method helps to realize potential for rapidity in parallel processing for such applications as enhancement of images and recognition of patterns. In providing simultaneous connections, overcomes timing bottleneck or older multiplexing, serial-switching, and sample-and-hold methods.

  6. Highly Reflective Multi-stable Electrofluidic Display Pixels

    NASA Astrophysics Data System (ADS)

    Yang, Shu

    Electronic papers (E-papers) refer to the displays that mimic the appearance of printed papers, but still owning the features of conventional electronic displays, such as the abilities of browsing websites and playing videos. The motivation of creating paper-like displays is inspired by the truths that reading on a paper caused least eye fatigue due to the paper's reflective and light diffusive nature, and, unlike the existing commercial displays, there is no cost of any form of energy for sustaining the displayed image. To achieve the equivalent visual effect of a paper print, an ideal E-paper has to be a highly reflective with good contrast ratio and full-color capability. To sustain the image with zero power consumption, the display pixels need to be bistable, which means the "on" and "off" states are both lowest energy states. Pixel can change its state only when sufficient external energy is given. There are many emerging technologies competing to demonstrate the first ideal E-paper device. However, none is able to achieve satisfactory visual effect, bistability and video speed at the same time. Challenges come from either the inherent physical/chemical properties or the fabrication process. Electrofluidic display is one of the most promising E-paper technologies. It has successfully demonstrated high reflectivity, brilliant color and video speed operation by moving colored pigment dispersion between visible and invisible places with electrowetting force. However, the pixel design did not allow the image bistability. Presented in this dissertation are the multi-stable electrofluidic display pixels that are able to sustain grayscale levels without any power consumption, while keeping the favorable features of the previous generation electrofluidic display. The pixel design, fabrication method using multiple layer dry film photoresist lamination, and physical/optical characterizations are discussed in details. Based on the pixel structure, the preliminary

  7. The BTeV pixel detector and trigger system

    SciTech Connect

    Simon Kwan

    2002-12-03

    BTeV is an approved forward collider experiment at the Fermilab Tevatron dedicated to the precision studies of CP violation, mixing, and rare decays of beauty and charm hadrons. The BTeV detector has been designed to achieve these goals. One of the unique features of BTeV is a state-of-the-art pixel detector system, designed to provide accurate measurements of the decay vertices of heavy flavor hadrons that can be used in the first trigger level. The pixel vertex detector and the trigger design are described. Recent results on some of the achievements in the R and D effort are presented.

  8. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    NASA Astrophysics Data System (ADS)

    Seabroke, G. M.; Prod'Homme, T.; Hopkinson, G.; Burt, D.; Robbins, M.; Holland, A.

    2011-02-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  9. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  10. Development of a high density pixel multichip module at Fermilab

    SciTech Connect

    Cardoso, G.

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  11. Pixel multichip module design for a high energy physics experiment

    SciTech Connect

    Guilherme Cardoso et al.

    2003-11-05

    At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

  12. Development of a high density pixel multichip module at Fermilab

    SciTech Connect

    Sergio Zimmermann et al.

    2001-09-11

    At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

  13. The BTeV pixel and microstrip detector

    SciTech Connect

    Simon W Kwan

    2003-06-04

    The BTeV pixel detector is one of the most crucial elements in the BTeV experiment. While the pixel detector is technically challenging, we have made great progress towards identifying viable solutions for individual components of the system. The forward silicon tracker is based on more mature technology and its design has benefited from the experience of other experiments. Nevertheless, we have started an R&D program on the forward silicon tracker and first results are expected some time next year.

  14. Impact of defective pixels in AMLCDs on the perception of medical images

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Sneyders, Yuri

    2006-03-01

    With LCD displays, each pixel has its own individual transistor that controls the transmittance of that pixel. Occasionally, these individual transistors will short or alternatively malfunction, resulting in a defective pixel that always shows the same brightness. With ever increasing resolution of displays the number of defect pixels per display increases accordingly. State of the art processes are capable of producing displays with no more than one faulty transistor out of 3 million. A five Mega Pixel medical LCD panel contains 15 million individual sub pixels (3 sub pixels per pixel), each having an individual transistor. This means that a five Mega Pixel display on average will have 5 failing pixels. This paper investigates the visibility of defective pixels and analyzes the possible impact of defective pixels on the perception of medical images. JND simulations were done to study the effect of defective pixels on medical images. Our results indicate that defective LCD pixels can mask subtle features in medical images in an unexpectedly broad area around the defect and therefore may reduce the quality of diagnosis for specific high-demanding areas such as mammography. As a second contribution an innovative solution is proposed. A specialized image processing algorithm can make defective pixels completely invisible and moreover can also recover the information of the defect so that the radiologist perceives the medical image correctly. This correction algorithm has been validated with both JND simulations and psycho visual tests.

  15. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    NASA Astrophysics Data System (ADS)

    Zumbiehl, A.; Hage-Ali, M.; Fougeres, P.; Koebel, J. M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P.

    2001-08-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a "pseudo-Monte Carlo" simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios ( W/ L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  16. Pixelated Single-crystal Diamond Detector for fast neutron measurements

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Cazzaniga, C.; Croci, G.; Tardocchi, M.; Perelli Cippo, E.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Grosso, G.; Gorini, G.

    2015-03-01

    Single-crystal Diamond Detectors (SDDs), due to their high radiation hardness, fast response time and small size, are good candidates as fast neutron detectors in those environments where the high neutron flux is an issue, such as spallation neutron sources and the next generation thermonuclear fusion plasmas, i.e. the ITER experiment. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interactions with 12C. Recent measurements have demonstrated the SDD capability of measuring the neutron flux with a good energy resolution and at high rates. In this work a novel detector based on a 12-pixels SDD matrix will be presented. Each pixel is equipped with an independent electronic chain: the fast shaping preamplifier coupled to a digitizer is able to combine the high rate capability and the good energy resolution. Two CAEN digitizers are compared and the possibility of performing good energy resolution measurements (<2%) and at high rates (>1 MHz per channel) is described. Each pixel was characterized and calibrated using an 241Am source: the energy resolution was evaluated and gives a mean value of 1.73% at 5.5 MeV. The good energy resolution achieved and its uniformity between pixels are the demonstration of the capability of this novel detector as a spectrometer. This system will be installed during the next Deuterium-Tritium campaign on a collimated vertical line of sight at JET for 14 MeV neutron measurements.

  17. Sub-pixel phase-measuring interferometry with interlace stitching

    NASA Technical Reports Server (NTRS)

    Mooney, James T.

    2005-01-01

    Measurement of mid spatial frequency figure error is critical to large precision optics for missions such as TPF-C. This presentation introduces a technique for increasing the spatial sampling resolution to meet these requirements using conventional video resolution phase-measuring interferometer. Technique involves sub-pixel data shifts, interlaced stitching and PSF deconvolution.

  18. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  19. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  20. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-05-01

    Recent observations of the photosphere using high spatial and temporal resolutions show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A new pixel dynamics method uses spectrographic images to characterize photospheric absorption line profiles by variations in line displacement, width, asymmetry, and peakedness and is applied to quiet-sun regions, active regions with no eruption, and an active region with an ongoing eruption. Using Stokes I images from SOLIS/VSM on 2012 March 13, variations in line width and peakedness of Fe I 6301.5 Å are shown to have a strong spatial and temporal relationship with an M7.9 X-ray flare originating from NOAA 11429. This relationship is observed as a flattening in the line profile as the X-ray flare approaches peak intensity and was not present in area scans of a non-eruptive active region on 2011 April 14. These results are used to estimate dynamic plasma properties on sub-pixel scales and provide both spatial and temporal information of sub-pixel activity at the photosphere. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties.

  1. The NUC and blind pixel eliminating in the DTDI application

    NASA Astrophysics Data System (ADS)

    Su, Xiao Feng; Chen, Fan Sheng; Pan, Sheng Da; Gong, Xue Yi; Dong, Yu Cui

    2013-12-01

    AS infrared CMOS Digital TDI (Time Delay and integrate) has a simple structure, excellent performance and flexible operation, it has been used in more and more applications. Because of the limitation of the Production process level, the plane array of the infrared detector has a large NU (non-uniformity) and a certain blind pixel rate. Both of the two will raise the noise and lead to the TDI works not very well. In this paper, for the impact of the system performance, the most important elements are analyzed, which are the NU of the optical system, the NU of the Plane array and the blind pixel in the Plane array. Here a reasonable algorithm which considers the background removal and the linear response model of the infrared detector is used to do the NUC (Non-uniformity correction) process, when the infrared detector array is used as a Digital TDI. In order to eliminate the impact of the blind pixel, the concept of surplus pixel method is introduced in, through the method, the SNR (signal to noise ratio) can be improved and the spatial and temporal resolution will not be changed. Finally we use a MWIR (Medium Ware Infrared) detector to do the experiment and the result proves the effectiveness of the method.

  2. Use of silicon pixel detectors in double electron capture experiments

    NASA Astrophysics Data System (ADS)

    Cermak, P.; Stekl, I.; Shitov, Yu A.; Mamedov, F.; Rukhadze, E. N.; Jose, J. M.; Cermak, J.; Rukhadze, N. I.; Brudanin, V. B.; Loaiza, P.

    2011-01-01

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R&D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2νEC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify α/β/γ particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  3. Thin Film on CMOS Active Pixel Sensor for Space Applications

    PubMed Central

    Schulze Spuentrup, Jan Dirk; Burghartz, Joachim N.; Graf, Heinz-Gerd; Harendt, Christine; Hutter, Franz; Nicke, Markus; Schmidt, Uwe; Schubert, Markus; Sterzel, Juergen

    2008-01-01

    A 664 × 664 element Active Pixel image Sensor (APS) with integrated analog signal processing, full frame synchronous shutter and random access for applications in star sensors is presented and discussed. A thick vertical diode array in Thin Film on CMOS (TFC) technology is explored to achieve radiation hardness and maximum fill factor.

  4. Influence of TFT-LCD pixel structure on holographic representation

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Tian, Ailing; Liu, Bingcai

    2008-09-01

    As a new holographic display device, TFT-LCD (Thin Film Transistor Liquid Crystal Displays) is key technical component of holographic representation for easy controlled by computer. With the development of exquisite processing technology, that it instead of the traditional holographic plate become historical necessity and would be the development direction of holographic optics. Based on principles of holography and display character of LCD, the property which the LCD was used as a holographic plate was analyzed. The emphasis on discuss influence of LCD black matrix on holographic representation. First, analyzed on LCD pixel structure, the LCD pixel structure mathematical model was established. LCD was character representation by pixel structure parameters. Then, the influence of LCD pixels structure on holographic representation was analyzed by computer simulation. Meanwhile, the SONY LCX023 was chosen for holographic plate, the He-Ne laser which the wavelength is 0.6328um was holographic representation light source. The holographic representation system was established for test influence of LCD on holographic representation. Final, compared between computer simulations and optical experimental results, the mathematical model of LCD was proved to be true. When aperture ratio is 0.625, the holographic representation wouldn't be distinguished between representation images. At the same time, some useful results was acquired for improve application effects of LCD in holographic representation.

  5. Preliminary simulation study of a coincidence Avalanche Pixel Sensor

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Cellier, R.; Pittet, P.; Quiquerez, L.; Savoy-Navarro, A.

    2015-06-01

    In this paper a preliminary study of coincidence Avalanche Pixel Sensors (APiX) for High Energy Physics (HEP) applications is presented. In this preliminary work, some PEB prevention techniques found in literature have been studied by TCAD simulations adopting 2D Cylindrical geometrical models and 130nm CMOS process technological data.

  6. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  7. Optimization of Focusing by Strip and Pixel Arrays

    SciTech Connect

    Burke, G J; White, D A; Thompson, C A

    2005-06-30

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting strips and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.

  8. Metamaterial-based single pixel imaging system (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Padilla, Willie; Watts, Claire M.; Nadell, Christian; Montoya, John A.; Krishna, Sanjay

    2015-09-01

    Single pixel cameras are useful imaging devices where it is difficult or infeasible to fashion focal plan arrays. For example in the Far Infrared (FIR) it is difficult to perform imaging by conventional detector arrays, owing to the cost and size of such an array. The typical single pixel camera uses a spatial light modulator (SLM) - placed in the conjugate image plane - and is used to sample various portions of the image. The spatially modulated light emerging from the SLM is then sent to a single detector where the light is condensed with suitable optics for detection. Conventional SLMs are either based on liquid crystals or digital mirror devices. As such these devices are limited in modulation speeds of order 30 kHz. Further there is little control over the type of light that is modulated. We present metamaterial based spatial light modulators which provide the ability to digitally encode images - with various measurement matrix coefficients - thus permitting high speed and fidelity imaging capability. In particular we use the Hadamard matrix and related S-matrix to encode images for single pixel imaging. Metamaterials thus permit imaging in regimes of the electromagnetic spectrum where conventional SLMs are not available. Additionally, metamaterials offer several salient features that are not available with commercial SLMs. For example, metamaterials may be used to enable hyperspectral, polarimetric, and phase sensitive imaging. We present the theory and experimental results of single pixel imaging with digital metamaterials in the far infrared and highlight the future of this exciting field.

  9. Spectral Information Retrieval for Sub-Pixel Building Edge Detection

    NASA Astrophysics Data System (ADS)

    Avbelj, J.

    2012-07-01

    Building extraction from imagery has been an active research area for decades. However, the precise building detection from hyperspectral (HSI) images solely is a less often addressed research question due to the low spatial resolution of data. The building boundaries are usually represented by spectrally mixed pixels, and classical edge detector algorithms fail to detect borders with sufficient completeness. The idea of the proposed method is to use fraction of materials in mixed pixels to derive weights for adjusting building boundaries. The building regions are detected using seeded region growing and merging in a HSI image; for the initial seed point selection the digital surface model (DSM) is used. Prior to region growing, the seeds are statistically tested for outliers on the basis of their spectral characteristics. Then, the border pixels of building regions are compared in spectrum to the seed points by calculating spectral dissimilarity. From this spectral dissimilarity the weights for weighted and constrained least squares (LS) adjustment are derived. We used the Spectral Angle Mapper (SAM) for spectral similarity measure, but the proposed boundary estimation method could benefit from soft classification or spectral unmixing results. The method was tested on a HSI image with spatial resolution of 4 m, and buildings of rectangular shape. The importance of constraints to the relations between building parts, e.g. perpendicularity is shown on example with a building with inner yards. The adjusted building boundaries are compared to the laser DSM, and have a relative accuracy of boundaries 1/4 of a pixel.

  10. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGESBeta

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; et al

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixelmore » cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  11. Design of a reconfigurable optical microprocessor for smart pixel applications

    NASA Astrophysics Data System (ADS)

    Vagheeswar, V. S.; Krishna Kumar, Shankar Raman; Chokhani, Arvind; Beyette, Fred R., Jr.

    2003-12-01

    The ever increasing demand for communication bandwidth and system interconnectivity has been a motivating factor behind the integration of optoelectronics device and conventional data processing circuitry. Over the last two decades, fiber optic components have become the dominant technology in the telecommunications industry. In last 5 years, optical interconnection techniques have been suggested as a solution to the interconnect density and bandwidth problems faced by electrical systems at the cabinet, PC-board and even chip level. Based on the smart pixel architectures in the last decade, the proposed chip monolithically integrates optical sensors with silicon CMOS based circuitry. This project incorporates an instruction fetch unit (IFU), that fetches the instructions from an external host computer, and a 2D-array of one-bit smart pixels called the processing element (PE). Each PE consists of an ALU, control logic, dual port register memory bank, photoreceiver circuit and associated driver circuits. By tiling these smart pixels in 2D, it is possible to form a programmable smart pixel array that is well suited to read optical page-oriented data types. The CASPR chip contains a 4x4 array of PEs connected to a single IFU. Inter PE communication has been established through nearest neighbor communication. Simultaneous communication to all the PEs is possible through global communication. The instruction set for this architecture is 17-bit long. The chip has been successfully fabricated in 0.5´ technology. We present in this paper the design and initial test results from the recent fabrication.

  12. Rework of flip chip bonded radiation pixel detectors

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S.

    2008-06-01

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process.

  13. Sub-pixel localization of highways in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda

    1995-01-01

    Roads and highways show up clearly in many bands of AVIRIS images. A typical lane in the U.S. is 12 feet wide, and the total width of a four lane highway, including 18 feet of paved shoulders, is 19.8 m. Such a highway will cover only a portion of any 20x20 m AVIRIS pixel that it traverses. The other portion of these pixels wil be usually covered by vegetation. An interesting problem is to precisely determine the location of a highway within the AVIRIS pixels that it traverses. This information may be used for alignment and spatial calibration of AVIRIS images. Also, since the reflection properties of highway surfaces do not change with time, and they can be determined once and for all, such information can be of help in calculating and filtering out the atmospheric noise that contaminates AVIRIS measurements. The purpose of this report is to describe a method for sub-pixel localization of highways.

  14. Commissioning and Alignment of the Pixel Luminosity Telescope of CMS

    NASA Astrophysics Data System (ADS)

    Riley, Grant; CMS Collaboration

    2015-04-01

    The Pixel Luminosity Telescope (PLT) is one of the newest additions to the CMS detector at the LHC. It consists of 16 3-layer telescopes of silicon pixel detectors pointing toward the interaction point at the center of CMS. The pixel detectors are based on the same technology as the silicon pixel detector of CMS. The chips have an additional output, called a fast-out. This fast-out is sent whenever a hit is detected, and will be used to measure the luminosity. The fast-out can also be used to self trigger the the PLT allowing for measurement of the systematics and beam backgrounds. The PLT is expected to significantly improve the precision of the luminosity measurement that is fundamental for particle searches and cross section measurements with the CMS detector. Furthermore, with reconstructed particle trajectories, measurements of beam backgrounds and the location of the interaction point centroid can be obtained. First experiences with the PLT detector before and after installation are presented and the track reconstruction is discussed.

  15. Overview of the BTeV Pixel Detector

    SciTech Connect

    Jeffrey A Appel

    2002-12-10

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton

  16. Remote Sensing Classification Uncertainty: Validating Probabilistic Pixel Level Classification

    NASA Astrophysics Data System (ADS)

    Vrettas, Michail; Cornford, Dan; Bastin, Lucy; Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Ninyerola, Miquel

    2013-04-01

    There already exists an extensive literature on classification of remotely sensed imagery, and indeed classification more widely, that considers a wide range of probabilistic and non-probabilistic classification methodologies. Although for many probabilistic classification methodologies posterior class probabilities are produced per pixel (observation) these are often not communicated at the pixel level, and typically not validated at the pixel level. Most often the probabilistic classification in converted into a hard classification (of the most probable class) and the accuracy of the resulting classification is reported in terms of a global confusion matrix, or some score derived from this. For applications where classification accuracy is spatially variable and where pixel level estimates of uncertainty can be meaningfully exploited in workflows that propagate uncertainty validating and communicating the pixel level uncertainty opens opportunities for more refined and accountable modelling. In this work we describe our recent work applying and validation of a range of probabilistic classifiers. Using a multi-temporal Landsat data set of the Ebro Delta in Catalonia, which has been carefully radiometrically and geometrically corrected, we present a range of Bayesian classifiers from simple Bayesian linear discriminant analysis to a complex variational Gaussian process based classifier. Field study derived labelled data, classified into 8 classes, which primarily consider land use and the degree of flooding in what is a rice growing region, are used to train the pixel level classifiers. Our focus is not so much on the classification accuracy, but rather the validation of the probabilistic classification made by all methods. We present a range of validation plots and scores, many of which are used for probabilistic weather forecast verification, but are new to remote sensing classification including of course the standard measures of misclassification, but also

  17. Dependent video coding using a tree representation of pixel dependencies

    NASA Astrophysics Data System (ADS)

    Amati, Luca; Valenzise, Giuseppe; Ortega, Antonio; Tubaro, Stefano

    2011-09-01

    Motion-compensated prediction induces a chain of coding dependencies between pixels in video. In principle, an optimal selection of encoding parameters (motion vectors, quantization parameters, coding modes) should take into account the whole temporal horizon of a GOP. However, in practical coding schemes, these choices are made on a frame-by-frame basis, thus with a possible loss of performance. In this paper we describe a tree-based model for pixelwise coding dependencies: each pixel in a frame is the child of a pixel in a previous reference frame. We show that some tree structures are more favorable than others from a rate-distortion perspective, e.g., because they entail a large descendance of pixels which are well predicted from a common ancestor. In those cases, a higher quality has to be assigned to pixels at the top of such trees. We promote the creation of these structures by adding a special discount term to the conventional Lagrangian cost adopted at the encoder. The proposed model can be implemented through a double-pass encoding procedure. Specifically, we devise heuristic cost functions to drive the selection of quantization parameters and of motion vectors, which can be readily implemented into a state-of-the-art H.264/AVC encoder. Our experiments demonstrate that coding efficiency is improved for video sequences with low motion, while there are no apparent gains for more complex motion. We argue that this is due to both the presence of complex encoder features not captured by the model, and to the complexity of the source to be encoded.

  18. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  19. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  20. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; French, M.; Manolopoulos, S.; Tyndel, M.; Allport, P.; Bates, R.; O'Shea, V.; Hall, G.; Raymond, M.

    2003-03-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to tape. Because of the large number of pixels, data reduction is needed on the sensor itself or just outside. This brings in stringent requirements on the temporal noise as well as to the sensor uniformity, expressed as a Fixed Pattern Noise (FPN). A pixel architecture with an additional transistor is proposed. This architecture, coupled to correlated double sampling of the signal will allow cancellation of the two dominant noise sources, namely the reset or kTC noise and the FPN. A prototype has been designed in a standard 0.25 μm CMOS technology. It has also a structure for electrical calibration of the sensor. The prototype is functional and detailed tests are under way.

  1. Hardware architecture of high-performance digital hologram generator on the basis of a pixel-by-pixel calculation scheme.

    PubMed

    Seo, Young-Ho; Lee, Yoon-Hyuk; Yoo, Ji-Sang; Kim, Dong-Wook

    2012-06-20

    In this paper we propose a hardware architecture for high-speed computer-generated hologram generation that significantly reduces the number of memory access times to avoid the bottleneck in the memory access operation. For this, we use three main schemes. The first is pixel-by-pixel calculation, rather than light source-by-source calculation. The second is a parallel calculation scheme extracted by modifying the previous recursive calculation scheme. The last scheme is a fully pipelined calculation scheme and exactly structured timing scheduling, achieved by adjusting the hardware. The proposed hardware is structured to calculate a row of a computer-generated hologram in parallel and each hologram pixel in a row is calculated independently. It consists of and input interface, an initial parameter calculator, hologram pixel calculators, a line buffer, and a memory controller. The implemented hardware to calculate a row of a 1920×1080 computer-generated hologram in parallel uses 168,960 lookup tables, 153,944 registers, and 19,212 digital signal processing blocks in an Altera field programmable gate array environment. It can stably operate at 198 MHz. Because of three schemes, external memory bandwidth is reduced to approximately 1/20,000 of the previous ones at the same calculation speed. PMID:22722274

  2. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  3. A virtual pixel technology to enhance the resolution of monitors and for other purposes

    NASA Astrophysics Data System (ADS)

    Kading, Benjamin; Straub, Jeremy

    2015-05-01

    Current monitor and television displays utilize pixels to display an approximation of the real world collected by a camera or generated computationally. This paper proposes a virtual pixel technology which incorporates coloring LCD combination. Each physical pixel's configuration is based on a weighted average of the virtual pixels it contributes to. This allows lower pixel density displays to produce the approximation of a higher pixel density, while lowering production cost. The paper provides an overview of the proposed technology, discusses its application to monitors and extension to other areas and concludes with a discussion of the next steps to its development.

  4. High throughput optoelectronic smart pixel systems using diffractive optics

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  5. Sub-pixel image classification for forest types in East Texas

    NASA Astrophysics Data System (ADS)

    Westbrook, Joey

    Sub-pixel classification is the extraction of information about the proportion of individual materials of interest within a pixel. Landcover classification at the sub-pixel scale provides more discrimination than traditional per-pixel multispectral classifiers for pixels where the material of interest is mixed with other materials. It allows for the un-mixing of pixels to show the proportion of each material of interest. The materials of interest for this study are pine, hardwood, mixed forest and non-forest. The goal of this project was to perform a sub-pixel classification, which allows a pixel to have multiple labels, and compare the result to a traditional supervised classification, which allows a pixel to have only one label. The satellite image used was a Landsat 5 Thematic Mapper (TM) scene of the Stephen F. Austin Experimental Forest in Nacogdoches County, Texas and the four cover type classes are pine, hardwood, mixed forest and non-forest. Once classified, a multi-layer raster datasets was created that comprised four raster layers where each layer showed the percentage of that cover type within the pixel area. Percentage cover type maps were then produced and the accuracy of each was assessed using a fuzzy error matrix for the sub-pixel classifications, and the results were compared to the supervised classification in which a traditional error matrix was used. The overall accuracy of the sub-pixel classification using the aerial photo for both training and reference data had the highest (65% overall) out of the three sub-pixel classifications. This was understandable because the analyst can visually observe the cover types actually on the ground for training data and reference data, whereas using the FIA (Forest Inventory and Analysis) plot data, the analyst must assume that an entire pixel contains the exact percentage of a cover type found in a plot. An increase in accuracy was found after reclassifying each sub-pixel classification from nine classes

  6. Stainless steel display evaluation

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  7. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  8. High-resolution digital readout for uncooled smart IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ringh, Ulf; Jansson, Christer; Liddiard, Kevin C.; Reinhold, Olaf

    1997-11-01

    This paper discusses the development of a high resolution digital readout from a 2D array of uncooled IR detectors. The need for a high resolution analogue to digital converter (ADC) is described and anew concept is presented. Experimental VLSI arrays have been designed using 0.8 micrometers CMOS technology and the pixel size is 40 micrometers X 40 micrometers . The concept has been demonstrated by using 320 parallel 16 bit ADCs in a 320 X 240 readout array with a frame rate of 30 Hz. High linearity and low noise is obtained and the power consumption for each ADC is 0.5 mW. The high digital resolution allows for digital offset correction off the local plane. A 16 X 16 version of the readout circuit has been postprocessed with uncooled IR detectors. These are currently under evaluation.

  9. New SOFRADIR 10μm pixel pitch infrared products

    NASA Astrophysics Data System (ADS)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  10. Using Trained Pixel Classifiers to Select Images of Interest

    NASA Technical Reports Server (NTRS)

    Mazzoni, D.; Wagstaff, K.; Castano, R.

    2004-01-01

    We present a machine-learning-based approach to ranking images based on learned priorities. Unlike previous methods for image evaluation, which typically assess the value of each image based on the presence of predetermined specific features, this method involves using two levels of machine-learning classifiers: one level is used to classify each pixel as belonging to one of a group of rather generic classes, and another level is used to rank the images based on these pixel classifications, given some example rankings from a scientist as a guide. Initial results indicate that the technique works well, producing new rankings that match the scientist's rankings significantly better than would be expected by chance. The method is demonstrated for a set of images collected by a Mars field-test rover.

  11. Compressive sensing spectroscopy with a single pixel camera.

    PubMed

    Starling, David J; Storer, Ian; Howland, Gregory A

    2016-07-01

    Spectrometry requires high spectral resolution and high photometric precision while also balancing cost and complexity. We address these requirements by employing a compressive-sensing camera capable of improving signal acquisition speed and sensitivity in limited signal scenarios. In particular, we implement a fast single pixel spectrophotometer with no moving parts and measure absorption and emission spectra comparable with commercial products. Our method utilizes Hadamard matrices to sample the spectra and then minimizes the total variation of the signal. The experimental setup includes standard optics and a grating, a low-cost digital micromirror device, and an intensity detector. The resulting spectrometer produces a 512 pixel spectrum with low mean-squared error and up to a 90% reduction in data acquisition time when compared with a standard spectrophotometer. PMID:27409210

  12. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    SciTech Connect

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  13. Sub-pixel resolution with the Multispectral Thermal Imager (MTI).

    SciTech Connect

    Decker, Max Louis; Smith, Jody Lynn; Nandy, Prabal

    2003-06-01

    The Multispectral Thermal Imager Satellite (MTI) has been used to test a sub-pixel sampling technique in an effort to obtain higher spatial frequency imagery than that of its original design. The MTI instrument is of particular interest because of its infrared detectors. In this spectral region, the detector size is traditionally the limiting factor in determining the satellite's ground sampling distance (GSD). Additionally, many over-sampling techniques require flexible command and control of the sensor and spacecraft. The MTI sensor is well suited for this task, as it is the only imaging system on the MTI satellite bus. In this super-sampling technique, MTI is maneuvered such that the data are collected at sub-pixel intervals on the ground. The data are then processed using a deconvolution algorithm using in-scene measured point spread functions (PSF) to produce an image with synthetically-boosted GSD.

  14. Measurement results of DIPIX pixel sensor developed in SOI technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed Imran; Arai, Yasuo; Idzik, Marek; Kapusta, Piotr; Miyoshi, Toshinobu; Turala, Michal

    2013-08-01

    The development of integration type pixel detectors presents interest for physics communities because it brings optimization of design, simplicity of production-which means smaller cost, and reduction of detector material budget. During the last decade a lot of research and development activities took place in the field of CMOS Silicon-On-Insulator (SOI) technology resulting in improvement in wafer size, wafer resistivity and MIM capacitance. Several ideas have been tested successfully and are gradually entering into the application phase. Some of the novel concepts exploring SOI technology are pursued at KEK; several prototypes of dual mode integration type pixel (DIPIX) have been recently produced and described. This report presents initial test results of some of the prototypes including tests obtained with the infrared laser beams and Americium (Am-241) source. The Equivalent Noise Charge (ENC) of 86 e - has been measured. The measured performance demonstrates that SOI technology is a feasible choice for future applications.

  15. Digital mammography: tradeoffs between 50- and 100-micron pixel size

    NASA Astrophysics Data System (ADS)

    Freedman, Matthew T.; Steller Artz, Dorothy E.; Jafroudi, Hamid; Lo, Shih-Chung B.; Zuurbier, Rebecca A.; Katial, Raj; Hayes, Wendelin S.; Wu, Chris Y.; Lin, Jyh-Shyan; Steinman, Richard M.; Tohme, Walid G.; Mun, Seong K.

    1995-05-01

    Improvements in mammography equipment related to a decrease in pixel size of digital mammography detectors raise questions of the possible effects of these new detectors. Mathematical modeling suggested that the benefits of moving from 100 to 50 micron detectors were slight and might not justify the cost of these new units. Experiments comparing screen film mammography, a storage phosphor 100 micron digital detector, a 50 micron digital breast spot device, 100 micron film digitization and 50 micron film digitization suggests that object conspicuity should be better for digital compared to conventional systems, but that there seemed to be minimal advantage to going from 100 to 50 microns. The 50 micron pixel system appears to provide a slight advantage in object contrast and perhaps in shape definition, but did not allow smaller objects to be detected.

  16. Digital pixel sensor array with logarithmic delta-sigma architecture.

    PubMed

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-01-01

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia. PMID:23959239

  17. Current progress on pixel level packaging for uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, G.; Rabaud, W.; Yon, J.-J.; Carle, L.; Goudon, V.; Vialle, C.; Becker, Sébastien; Hamelin, Antoine; Arnaud, A.

    2012-06-01

    Vacuum packaging is definitely a major cost driver for uncooled IRFPA and a technological breakthrough is still expected to comply with the very low cost infrared camera market. To address this key issue, CEA-LETI is developing a Pixel Level Packaging (PLP) technology which basically consists in capping each pixel under vacuum in the direct continuation of the wafer level bolometer process. Previous CEA-LETI works have yet shown the feasibility of PLP based microbolometers that exhibit the required thermal insulation and vacuum achievement. CEA-LETI is still pushing the technology which has been now applied for the first time on a CMOS readout circuit. The paper will report on the recent progress obtained on PLP technology with particular emphasis on the optical efficiency of the PLP arrangement compared to the traditional microbolometer packaging. Results including optical performances, aging studies and compatibility with CMOS readout circuit are extensively presented.

  18. Validity Assessment of Pixel Linear Spectral Mixing Through Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mobasheri, M. R.; Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    In order to understand the characteristics of the data collected by hyperspectral imaging systems, it is important to discuss the physics behind the scene radiance field incident on the imaging system. A dominant effect in hyperspectral remote sensing is the mixing of radiant energies contributed from different materials present in a given pixel. The basic assumption of mixture modelling is that within a given scene, the surface is covered by a small number of distinct materials that have relatively constant spectral properties. It is most common to assume that the radiance reflected by different materials in a pixel can spectrally combine in a linear additive manner to produce the pixel radiance/reflectance, even when that might not be the case e.g. where the mixing process leads to nonlinear combinations of the radiance and where the linear assumption fails to hold. This can occur where there is significant relative three-dimensional structure within a given pixel. Without detailed knowledge of the dimensional structure, it can be very difficult to correctly ``un-mix'' the contributions of the various materials. This work aims to evaluate the correctness of the linear assumption in the mixture modelling using some laboratory measurements. Study was conducted using some sheets made of cellulose materials of different colours in 400-800 nm spectral range. Experimental results have shown that a correction term must be applied to the gains and offsets in the linear model. The obtained results can be extended to satellite sensors that acquire images in the above mentioned spectral range.

  19. Readout chip for the CMS pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Rossini, Marco

    2014-11-01

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  20. Influence of pixel geometry on the 1/f noise coefficient

    NASA Astrophysics Data System (ADS)

    Généreux, Francis; Paultre, Jacques-Edmond; Tremblay, Bruno; Provençal, Francis; Alain, Christine

    2013-06-01

    This paper presents a systematic study of the 1/f noise coefficient as a function of pixel geometry for microbolometer structures. Structures with various VOx widths, electrode gaps, electrode widths and via hole sizes were fabricated and characterized. The experimental results show that the 1/f noise coefficient is adversely affected by current non uniformity, in agreement with model predictions. Design parameters that significantly impact current non uniformity are identified and approaches to minimize their importance are proposed.

  1. Analysis of the production of ATLAS indium bonded pixel modules

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Bulgheroni, A.; Corda, G.; Di Gioia, S.; Fiorello, A.; Gemme, C.; Koziel, M.; Manca, F.; Meroni, C.; Nechaeva, P.; Paoloni, A.; Rossi, L.; Rovani, A.; Ruscino, E.

    2006-09-01

    The ATLAS collaboration is currently building 1500 pixel modules using the indium bump bonding technique developed by SELEX Sistemi Integrati (former AMS). The indium deposition and flip-chip process are described together with an overview of the chip stripping machine that allows defective modules to be reworked. The production is half-way through at the time of this writing. This paper also discusses the problems encountered during production and the adopted solutions.

  2. Characterization of indium and solder bump bonding for pixel detectors

    SciTech Connect

    Selcuk Cihangir and Simon Kwan

    2000-09-28

    A review of different bump-bonding processes used for pixel detectors is given. A large scale test on daisy-chained components from two vendors has been carried out at Fermilab to characterize the yield of these processes. The vendors are Advanced Interconnect Technology Ltd. (AIT) of Hong Kong and MCNC in North Carolina, US. The results from this test are presented and technical challenges encountered are discussed.

  3. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  4. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  5. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    SciTech Connect

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao Qihua; Li Yixin; Street, Robert A.; Lu Jengping

    2009-07-15

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of {approx}10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical

  6. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping

    2009-01-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill

  7. Pixelated spectral filter for integrated focal plane array in the long-wave IR.

    SciTech Connect

    Kemme, Shanalyn A.; Cruz-Cabrera, Alvaro Augusto; Boye, Robert R.; Samora, Sally; Carter, Tony Ray; Briggs, Ronald D.

    2010-03-01

    We present the design, fabrication, and characterization of a pixelated, hyperspectral arrayed component for Focal Plane Array (FPA) integration in the Long-Wave IR. This device contains tens of pixels within a single super-pixel which is tiled across the extent of the FPA. Each spectral pixel maps to a single FPA pixel with a spectral FWHM of 200nm. With this arrayed approach, remote sensing data may be accumulated with a non-scanning, 'snapshot' imaging system. This technology is flexible with respect to individual pixel center wavelength and to pixel position within the array. Moreover, the entire pixel area has a single wavelength response, not the integrated linear response of a graded cavity thickness design. These requirements bar tilted, linear array technologies where the cavity length monotonically increases across the device.

  8. High-precision measurement of pixel positions in a charge-coupled device.

    PubMed

    Shaklan, S; Sharman, M C; Pravdo, S H

    1995-10-10

    The high level of spatial uniformity in modern CCD's makes them excellent devices for astrometric instruments. However, at the level of accuracy envisioned by the more ambitious projects such as the Astrometric Imaging Telescope, current technology produces CCD's with significant pixel registration errors. We describe a technique for making high-precision measurements of relative pixel positions. We measured CCD's manufactured for the Wide Field Planetary Camera II installed in the Hubble Space Telescope. These CCD's are shown to have significant step-and-repeat errors of 0.033 pixel along every 34th row, as well as a 0.003-pixel curvature along 34-pixel stripes. The source of these errors is described. Our experiments achieved a per-pixel accuracy of 0.011 pixel. The ultimate shot-noise limited precision of the method is less than 0.001 pixel. PMID:21060522

  9. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  10. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    PubMed Central

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  11. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  12. Hyperspectral pixel classification from coded-aperture compressive imaging

    NASA Astrophysics Data System (ADS)

    Ramirez, Ana; Arce, Gonzalo R.; Sadler, Brian M.

    2012-06-01

    This paper describes a new approach and its associated theoretical performance guarantees for supervised hyperspectral image classification from compressive measurements obtained by a Coded Aperture Snapshot Spectral Imaging System (CASSI). In one snapshot, the two-dimensional focal plane array (FPA) in the CASSI system captures the coded and spectrally dispersed source field of a three-dimensional data cube. Multiple snapshots are used to construct a set of compressive spectral measurements. The proposed approach is based on the concept that each pixel in the hyper-spectral image lies in a low-dimensional subspace obtained from the training samples, and thus it can be represented as a sparse linear combination of vectors in the given subspace. The sparse vector representing the test pixel is then recovered from the set of compressive spectral measurements and it is used to determine the class label of the test pixel. The theoretical performance bounds of the classifier exploit the distance preservation condition satisfied by the multiple shot CASSI system and depend on the number of measurements collected, code aperture pattern, and similarity between spectral signatures in the dictionary. Simulation experiments illustrate the performance of the proposed classification approach.

  13. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-06-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired.

  14. Demosaiced pixel super-resolution for multiplexed holographic color imaging.

    PubMed

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  15. Pixel diamond detectors for excimer laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  16. A CMOS active pixel sensor for retinal stimulation

    NASA Astrophysics Data System (ADS)

    Prydderch, Mark L.; French, Marcus J.; Mathieson, Keith; Adams, Christopher; Gunning, Deborah; Laudanski, Jonathan; Morrison, James D.; Moodie, Alan R.; Sinclair, James

    2006-02-01

    Degenerative photoreceptor diseases, such as age-related macular degeneration and retinitis pigmentosa, are the most common causes of blindness in the western world. A potential cure is to use a microelectronic retinal prosthesis to provide electrical stimulation to the remaining healthy retinal cells. We describe a prototype CMOS Active Pixel Sensor capable of detecting a visual scene and translating it into a train of electrical pulses for stimulation of the retina. The sensor consists of a 10 x 10 array of 100 micron square pixels fabricated on a 0.35 micron CMOS process. Light incident upon each pixel is converted into output current pulse trains with a frequency related to the light intensity. These outputs are connected to a biocompatible microelectrode array for contact to the retinal cells. The flexible design allows experimentation with signal amplitudes and frequencies in order to determine the most appropriate stimulus for the retina. Neural processing in the retina can be studied by using the sensor in conjunction with a Field Programmable Gate Array (FPGA) programmed to behave as a neural network. The sensor has been integrated into a test system designed for studying retinal response. We present the most recent results obtained from this sensor.

  17. Digital pixel readout integrated circuit architectures for LWIR

    NASA Astrophysics Data System (ADS)

    Shafique, Atia; Yazici, Melik; Kayahan, Huseyin; Ceylan, Omer; Gurbuz, Yasar

    2015-06-01

    This paper presents and discusses digital pixel readout integrated circuit architectures for long wavelength infrared (LWIR) in CMOS technology. Presented architectures are designed for scanning and staring arrays type detectors respectively. For scanning arrays, digital time delay integration (TDI) is implemented on 8 pixels with sampling rate up to 3 using CMOS 180nm technology. Input referred noise of ROIC is below 750 rms electron meanwhile power dissipation is appreciably under 30mW. ROIC design is optimized to perform at room as well as cryogenic temperatures. For staring type arrays, a digital pixel architecture relying on coarse quantization with pulse frequency modulation (PFM) and novel approach of extended integration is presented. It can achieve extreme charge handling capacity of 2.04Ge- with 20 bit output resolution and power dissipation below 350 nW in CMOS 90nm technology. Efficient mechanism of measuring the time to estimate the remaining charge on integration capacitor in order to achieve low SNR has employed.

  18. Simulation of charge transport in pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  19. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  20. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  1. Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns

    NASA Astrophysics Data System (ADS)

    Lombardo, David; Shah, Piyush; Guo, Pengfei; Sarangan, Andrew

    2016-04-01

    Pixelated wiregrids are of great interest in polarimetric imagers, but there are no straightforward methods available for combining the uniform exposures of laser interference with a masking system to achieve pixels at different rotational angles. In this work we demonstrate a 266nm deep-UV interference lithography combined with a traditional i-line contact lithography to create such pixels. Aluminum wiregrids are first made, following by etching to create the pixels, and then a planarizing molybdenum film is used before patterning subsequent pixel arrays. The etch contrast between the molybdenum and the aluminum enables the release of the planarizing layer.

  2. Preliminary Results from Small-Pixel CdZnTe and CdTe Arrays

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Sharma, D. P.; Meisner, J.; Austin, R. A.

    1999-01-01

    We have evaluated 2 small-pixel (0.75 mm) Cadmium-Zinc-Telluride arrays, and one Cadmium-Telluride array, all fabricated for MSFC by Metorex (Finland) and Baltic Science Institute (Riga, Latvia). Each array was optimized for operating temperature and collection bias. It was then exposed to Cadmium-109 and Iron-55 laboratory isotopes, to measure the energy resolution for each pixel and was then scanned with a finely-collimated x-ray beam, of width 50 micron, to examine pixel to pixel and inter-pixel charge collections efficiency. Preliminary results from these array tests will be presented.

  3. Single-pixel camera with one graphene photodetector.

    PubMed

    Li, Gongxin; Wang, Wenxue; Wang, Yuechao; Yang, Wenguang; Liu, Lianqing

    2016-01-11

    Consumer cameras in the megapixel range are ubiquitous, but the improvement of them is hindered by the poor performance and high cost of traditional photodetectors. Graphene, a two-dimensional micro-/nano-material, recently has exhibited exceptional properties as a sensing element in a photodetector over traditional materials. However, it is difficult to fabricate a large-scale array of graphene photodetectors to replace the traditional photodetector array. To take full advantage of the unique characteristics of the graphene photodetector, in this study we integrated a graphene photodetector in a single-pixel camera based on compressive sensing. To begin with, we introduced a method called laser scribing for fabrication the graphene. It produces the graphene components in arbitrary patterns more quickly without photoresist contamination as do traditional methods. Next, we proposed a system for calibrating the optoelectrical properties of micro/nano photodetectors based on a digital micromirror device (DMD), which changes the light intensity by controlling the number of individual micromirrors positioned at + 12°. The calibration sensitivity is driven by the sum of all micromirrors of the DMD and can be as high as 10(-5)A/W. Finally, the single-pixel camera integrated with one graphene photodetector was used to recover a static image to demonstrate the feasibility of the single-pixel imaging system with the graphene photodetector. A high-resolution image can be recovered with the camera at a sampling rate much less than Nyquist rate. The study was the first demonstration for ever record of a macroscopic camera with a graphene photodetector. The camera has the potential for high-speed and high-resolution imaging at much less cost than traditional megapixel cameras. PMID:26832270

  4. Optical differentiation wavefront sensor based on binary pixelated transmission filters

    NASA Astrophysics Data System (ADS)

    Qiao, J.; Travinsky, A.; Ding, G.; Dorrer, C.

    2015-03-01

    High-resolution wavefront sensors are used in a wide range of applications. The Shack-Hartmann sensor is the industry standard and mostly used for this kind of analysis. However, with this sensor the analysis can only be performed for narrowband radiation, the recoverable curvature of the wavefront slopes is also restricted by the size of a single lens in the microlens array. The high-resolution Shack Hartmann wavefront sensor (>128×128) is also significantly expensive. The optical differentiation wavefront sensor, on the other hand, consists of only simple and therefore inexpensive components, offers greater signal to noise ratio, allows for high-resolution analysis of wavefront curvature, and is potentially capable of performing broadband measurements. When a transmission mask with linear attenuation along a spatial direction modulates the far field of an optical wave, the spatial wavefront slope along that direction can be recovered from the fluence in the near field after modulation. With two orthogonal measurements one can recover the complete wavefront of the optical wave. In this study the characteristics of such a wavefront sensor are investigated when the linear transmission modulation is implemented with a pixelated binary filter. Such a filter can be produced as a gray-scale quasi-continuous transmission pattern constructed using arrays of small (e.g., 10-micron) transparent or opaque pixels and therefore it can simply be fabricated by conventional lithography techniques. Simulations demonstrate the potential ability of such a pixelated filter to match the performance of a filter with continuously varying transmission, while offering the advantage of better transmission control and reduction of fabrication costs.

  5. Study of silicon pixel sensor for synchrotron radiation detection

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Jie; Jia, Yun-Cong; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2016-03-01

    The silicon pixel sensor (SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection (SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process, excellent SPS characteristics with dark current of 2 nA/cm2, full depletion voltage < 50 V and breakdown voltage >150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high (<20% for X-ray photon energy >10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. Supported by Prefabrication Research of Beijing Advanced Photon Source (R&D for BAPS) and National Natural Science Foundation of China (11335010)

  6. High quality GPU rendering with displaced pixel shading

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Choi, Jae

    2006-03-01

    Direct volume rendering via consumer PC hardware has become an efficient tool for volume visualization. In particular, the volumetric ray casting, the most frequently used volume rendering technique, can be implemented by the shading language integrated with graphical processing units (GPU). However, to produce high-quality images offered by GPU-based volume rendering, a higher sampling rate is usually required. In this paper, we present an algorithm to generate high quality images with a small number of slices by utilizing displaced pixel shading technique. Instead of sampling points along a ray with the regular interval, the actual surface location is calculated by the linear interpolation between the outer and inner points, and this location is used as the displaced pixel for the iso-surface illumination. Multi-pass and early Z-culling techniques are applied to improve the rendering speed. The first pass simply locates and stores the exact surface depth of each ray using a few pixel instructions; then, the second pass uses instructions to shade the surface at the previous position. A new 3D edge detector from our previous research is integrated to provide more realistic rendering results compared with the widely used gradient normal estimator. To implement our algorithm, we have made a program named DirectView based on DirectX 9.0c and Microsoft High Level Shading Language (HLSL) for volume rendering. We tested two data sets and discovered that our algorithm can generate smoother and more accurate shading images with a small number of intermediate slices.

  7. Charge amplitude distribution of the Gossip gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S. M.; Timmermans, J.; Visschers, J. L.

    2007-12-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2/DME (dimethyl-ether) and Ar/iC 4H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  8. A new pixels flipping method for huge watermarking capacity of the invoice font image.

    PubMed

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Xu, Qishuai; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606

  9. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing.

    PubMed

    Sandeau, Laure; Vuillaume, Cassandre; Contié, Sylvain; Grinenval, Eva; Belloni, Federico; Rigneault, Hervé; Owens, Roisin M; Fournet, Margaret Brennan

    2015-02-01

    A novel CMOS bio-pixel array which integrates assay substrate and assay readout is demonstrated for multiplex and multireplicate detection of a triplicate of cytokines with single digit pg ml(-1) sensitivities. Uniquely designed large area bio-pixels enable individual assays to be dedicated to and addressed by single pixels. A capability to simultaneously measure a large number of targets is provided by the 128 available pixels. Chemiluminescent assays are carried out directly on the pixel surface which also detects the emitted chemiluminescent photons, facilitating a highly compact sensor and reader format. The high sensitivity of the bio-pixel array is enabled by the high refractive index of silicon based pixels. This in turn generates a strong supercritical angle luminescence response significantly increasing the efficiency of the photon collection over conventional farfield modalities. PMID:25490928

  10. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  11. A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image

    PubMed Central

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606

  12. Monolithic pixel detectors in a deep submicron SOI process

    SciTech Connect

    Deptuch, Grzegorz; /Fermilab

    2009-10-01

    A compact charge-signal processing chain, composed of a two-stage semi-gaussian preamplifier-signal shaping filter, a discriminator and a binary counter, implemented in a prototype pixel detector using 0.20 {micro}m CMOS Silicon on Insulator process, is presented. The gain of the analog chain was measured 0.76 V/fC at the signal peaking time about 300 ns and the equivalent noise charge referred to the input of 80 e{sup -1}.

  13. Wire bond vibration of forward pixel tracking detector of CMS

    SciTech Connect

    Atac, M.; Gobbi, B.; Kwan, S.; Pischalnikov, Y.; Spencer, E.; Sellberg, G.; Pavlicek, V.; /Fermilab

    2006-10-01

    Wire bonds of the Forward Pixel (FPix) tracking detectors are oriented in the direction that maximizes Lorentz Forces relative to the 4 Tesla field of the Compact Muon Solenoid (CMS) Detector's magnet. The CMS Experiment is under construction at the Large Hadron Collider at CERN, Geneva, Switzerland. We were concerned about Lorentz Force oscillating the wires at their fundamental frequencies and possibly fracturing or breaking them at their heels, as happened with the CDF wire bonds. This paper reports a study to understand what conditions break such bonds.

  14. Independent pixel and Monte Carlo estimates of stratocumulus albedo

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Gollmer, Steven; HARSHVARDHAN

    1994-01-01

    Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the class of 'bounded cascade' models. In this model the cloud top and base are fixed, so that all variations in cloud shape are ignored. The model generates random variations in liquid water along a single horizontal direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated. The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the mesoscale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus, horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models. This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the smaller

  15. FITPix — fast interface for Timepix pixel detectors

    NASA Astrophysics Data System (ADS)

    Kraus, V.; Holik, M.; Jakubek, J.; Kroupa, M.; Soukup, P.; Vykydal, Z.

    2011-01-01

    The semiconductor pixel detector Timepix contains an array of 256 × 256 square pixels with pitch 55 μm. In addition to high spatial granularity the single quantum counting detector Timepix can provide also energy or time information in each pixel. This device is a powerful tool for radiation and particle detection, imaging and tracking. A new readout interface for silicon pixel detectors of the Medipix family has been developed in our group in order to provide a higher frame rate and enhanced flexibility of operation. The interface consists of a field programmable gate array, a USB 2.0 interface chip, DAC, ADC and a circuit which generates bias voltage for the sensor. The main control system is placed in the FPGA circuit which fully controls the Timepix device. This approach offers an easy way how to include new functionality and extended operation. The interface for Timepix supports all operation modes of the detector (counting, TOT, timing). The FITPix is a successor of the USB 1.22 Interface and the electronic readout is built with the latest available components, which allows achieving up to 90 frames per second with a single detector. The frame rate is about 20 times faster compared to the previous system while it maintains all same capabilities supported. In addition FITPix newly enables an adjustable clock frequency and hardware triggering which is a useful tool when there is the need for synchronized operation of multiple devices. Three modes of hardware trigger have been implemented: hardware trigger which starts the measurement, hardware trigger which terminates the measurement and hardware trigger which controls measurement fully. The entire system is fully powered through the USB bus. FITPix supports also readout from several detectors in chain in which case just an external power source is required. FITPix is a fully flexible device and the user needs no other equipment. FITPix combines high performance and mobility and it opens new fields of

  16. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  17. Memory color assisted illuminant estimation through pixel clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Quan, Shuxue

    2010-01-01

    The under constrained nature of illuminant estimation determines that in order to resolve the problem, certain assumptions are needed, such as the gray world theory. Including more constraints in this process may help explore the useful information in an image and improve the accuracy of the estimated illuminant, providing that the constraints hold. Based on the observation that most personal images have contents of one or more of the following categories: neutral objects, human beings, sky, and plants, we propose a method for illuminant estimation through the clustering of pixels of gray and three dominant memory colors: skin tone, sky blue, and foliage green. Analysis shows that samples of the above colors cluster around small areas under different illuminants and their characteristics can be used to effectively detect pixels falling into each of the categories. The algorithm requires the knowledge of the spectral sensitivity response of the camera, and a spectral database consisted of the CIE standard illuminants and reflectance or radiance database of samples of the above colors.

  18. Multilayer fluorescence imaging on a single-pixel detector

    PubMed Central

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-01-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect.

  19. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  20. The pixel detector for the CMS phase-II upgrade

    NASA Astrophysics Data System (ADS)

    Dinardo, M. E.

    2015-04-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb-1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R&D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R&D effort are presented and discussed in this article.

  1. Influence of TFT-LCD Pixels Structure on Holographic Encoding

    NASA Astrophysics Data System (ADS)

    Hongjun, Wang; Ailing, Tian; Bingcai, Liu; Chunhui, Wang

    The LCD is proposed as a new hologram loader with the advantage that the hologram image is controlled digitally with no any mechanical moving and rotating elements. Different hologram image can be readily introduced by changing the coded image displayed on the LCD. A basic problem in which LCD is a hologram image loader is limited LCD's pixel number. In CGH, the sample point number have great impact on holographic representation. So the choice of sample point number is very important. When the LCD is phase hologram image loader, the phase on hologram image was decided by phase distribution of recorded wavefront on LCD plane. In phase hologram encoding, the pixel spacing is sampling interval of recorded wavefront. Based on sampling theory, the frequency band can be obtained by spectrum analysis. For different wavefront shape, A model was developed for phase rate, the spectrum distribution was got, the phase rate which can be recorded by LCD can be got. A didactic example is included to illustrate the computational procedure.

  2. Multilayer fluorescence imaging on a single-pixel detector.

    PubMed

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-07-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect. PMID:27446679

  3. A CMOS Active Pixel Sensor for Charged Particle Detection

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  4. Amplifier based broadband pixel for sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  5. Large format, small pixel pitch and hot detectors at SOFRADIR

    NASA Astrophysics Data System (ADS)

    Reibel, Y.; Rouvie, A.; Nedelcu, A.; Augey, T.; Pere-Laperne, N.; Rubaldo, L.; Billon-Lanfrey, D.; Gravrand, O.; Rothman, J.; Destefanis, G.

    2013-10-01

    Recently Sofradir joined a very small circle of IR detector manufacturers with expertise every aspect of the cooled and uncooled IR technologies, all under one roof by consolidating all IR technologies available in France. These different technologies are complementary and are used depending of the needs of the applications mainly concerning the detection range needs as well as their ability to detect in bad weather environmental conditions. SNAKE (InGaAs) and SCORPIO LW (MCT) expand Sofradir's line of small pixel pitch TV format IR detectors from the mid-wavelength to the short and long wavelengths. Our dual band MW-LW QWIP detectors (25μm, 384×288 pixels) benefit to tactical platforms giving an all-weather performance and increasing flexibility in the presence of battlefield obscurants. In parallel we have been pursuing further infrared developments on future MWIR detectors, such as the VGA format HOT detector that consumes 2W and the 10μm pitch IR detector which gives us a leading position in innovation. These detectors are designed for long-range surveillance equipment, commander or gunner sights, ground-to-ground missile launchers and other applications that require higher resolution and sensitivity to improve reconnaissance and target identification. This paper discusses the system level performance in each detector type.

  6. A generic readout environment for prototype pixel detectors

    NASA Astrophysics Data System (ADS)

    Turqueti, Marcos; Rivera, Ryan; Prosser, Alan; Kwan, Simon

    2010-11-01

    Pixel detectors for experimental particle physics research have been implemented with a variety of readout formats and potentially generate massive amounts of data. Examples include the PSI46 device for the Compact Muon Solenoid (CMS) experiment which implements an analog readout, the Fermilab FPIX2.1 device with a digital readout, and the Fermilab Vertically Integrated Pixel device. The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the various needs of these devices to support laboratory test bench as well as test beam applications. The system is called CAPTAN (Compact And Programmable daTa Acquisition Node) and is characterized by its flexibility, versatility and scalability by virtue of several key architectural features. These include a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and a core group of boards that provide specific processing and readout capabilities for the system. System software based on distributed computing techniques supports an expandable network of CAPTANs. In this paper, we describe the system architecture and give an overview of its capabilities.

  7. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  8. Monolithic active pixel matrix with binary counters (MAMBO III) ASIC

    SciTech Connect

    Khalid, Farah; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond; /Fermilab

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  9. Pixel structure for asymmetry removal in ToF 3D camera

    NASA Astrophysics Data System (ADS)

    Kang, Byongmin; Shin, Jungsoon; Choi, Jaehyuk; Kim, James D. K.

    2014-03-01

    Most of time-of-flight (ToF) cameras have a 2-tap pixel structure for demodulating a reflected near infrared (NIR) from objects. In order to eliminate the asymmetry between two taps in the pixel, a ToF camera needs another measurement, which collects photo-generated electrons from reflected NIR by inverting the phase of clock signals to transfer gates. This asymmetry removal needs additional frame memories and suppresses the frame rate due to the additional timing budget. In this paper, we propose novel asymmetry removal scheme without timing and area overheads by employing 2×2 shared 2-tap pixels with cross-connected transfer gates. The 2-tap pixel is shared with neighbor pixels and transfer gates in the pixel are cross-connected between upper and lower pixels. In order to verify the proposed pixel architecture, an electron charge generated in floating diffusion is simulated. And then we try to calculate a depth from camera to objects using simulated electron charge and measure a linearity of depth. In simulation result, proposed pixel architecture has more linear graph than conventional pixel structure along the real distance of objects.

  10. Hardware solutions for the 65k pixel X-ray camera module of 75 μm pixel size

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Maj, P.; Grybos, P.; Koziol, A.

    2016-02-01

    We present three hardware solutions designed for a detector module built with a 2 cm × 2 cm hybrid pixel detector built from a single 320 or 450 μ m thick silicon sensor designed and fabricated by Hamamatsu and two UFXC32k readout integrated circuits (128 × 256 pixels with 75μ m pitch, designed in CMOS 130 nm at AGH-UST). The chips work in a single photon counting mode and provide ultra-fast X-ray imaging. The presented hardware modules are designed according to requirements of various tests and applications: ṡDevice A: a fast and flexible system for tests with various radiation sources. ṡDevice B: a standalone, all-in-one imaging device providing three standard interfaces (USB 2.0, Ethernet, Camera Link) and up to 640 MB/s bandwidth. ṡDevice C: a prototype large-area imaging system. The paper shows the readout system structure for each case with highlighted circuit board designs with details on power distribution and cooling on both FR4 and LTCC (low temperature co-fired ceramic) based circuits.

  11. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel

  12. A Medium-Format, Mixed-Mode Pixel Array Detector for Kilohertz X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Tate, M. W.; Chamberlain, D.; Green, K. S.; Philipp, H. T.; Purohit, P.; Strohman, C.; Gruner, S. M.

    2013-03-01

    An x-ray pixel array detector (PAD) capable of framing up to 1 kHz is described. This hybrid detector is constructed from a 3-side buttable, 128×128 pixel module based upon the mixed-mode pixel array detector (MMPAD) chip developed jointly by Cornell and Area Detector Systems Corporation (Poway, CA). The chip uses a charge integrating front end for a high instantaneous count rate yet with single photon sensitivity. In-pixel circuitry utilizing a digital overflow counter extends the per frame dynamic range to >4×107 x-rays/pixel. Results are shown from a base configuration of a 2×3 module array (256×384 pixels).

  13. Progress on the FDM Development at SRON: Toward 160 Pixels

    NASA Astrophysics Data System (ADS)

    den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.

    2014-08-01

    SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.

  14. Measurement of pixel response functions of a fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Hara, Takuji; Yamada, Yoshiyuki

    2014-07-01

    We describe the measurement of detailed and precise Pixel Response Functions (PRFs) of a fully depleted CCD. Measurements were performed under different physical conditions, such as different wavelength light sources or CCD operating temperatures. We determined the relations between these physical conditions and the forms of the PRF. We employ two types of PRFs: one is the model PRF (mPRF) that can represent the shape of a PRF with one characteristic parameter and the other is the simulated PRF (sPRF) that is the resultant PRF from simulating physical phenomena. By using measured, model, and simulated PRFs, we determined the relations between operational parameters and the PRFs. Using the obtained relations, we can now estimate a PRF under conditions that will be encountered during the course of Nano-JASMINE observations. These estimated PRFs will be utilized in the analysis of the Nano-JASMINE data.

  15. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. PMID:26256630

  16. Transillumination imaging through biological tissue by single-pixel detection

    NASA Astrophysics Data System (ADS)

    Durán, Vicente; Soldevila, Fernando; Irles, Esther; Clemente, Pere; Tajahuerce, Enrique; Andrés, Pedro; Lancis, Jesús

    2015-07-01

    One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection and benefits from the compressive sensing strategy. As a proof of concept, we experimentally retrieve the image of a transilluminated target both sandwiched between two holographic diffusers and embedded in a 6mm-thick sample of chicken breast.

  17. Per-Pixel, Dual-Counter Scheme for Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit

    2013-01-01

    Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.

  18. Simulation of the dynamic inefficiency of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Bartók, M.

    2015-05-01

    The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to prevail in the harshest environment in terms of particle fluence and radiation. There are several mechanisms that may decrease the efficiency of the detector. These are mainly caused by data acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of instantaneous luminosity the inefficiency reached 2% (in the region closest to the interaction point) which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-driven method has been developed to simulate dynamic inefficiency, which has been shown to successfully simulate the effects.

  19. CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Fant, A.; Gasiorek, P.; Esbrand, C.; Griffiths, J. A.; Metaxas, M. G.; Royle, G. J.; Speller, R.; Venanzi, C.; van der Stelt, P. F.; Verheij, H.; Li, G.; Theodoridis, S.; Georgiou, H.; Cavouras, D.; Hall, G.; Noy, M.; Jones, J.; Leaver, J.; Machin, D.; Greenwood, S.; Khaleeq, M.; Schulerud, H.; Østby, J. M.; Triantis, F.; Asimidis, A.; Bolanakis, D.; Manthos, N.; Longo, R.; Bergamaschi, A.

    2007-12-01

    Re-invented in the early 1990s, on both sides of the Atlantic, Monolithic Active Pixel Sensors (MAPS) in a CMOS technology are today the most sold solid-state imaging devices, overtaking the traditional technology of Charge-Coupled Devices (CCD). The slow uptake of CMOS MAPS started with low-end applications, for example web-cams, and is slowly pervading the high-end applications, for example in prosumer digital cameras. Higher specifications are required for scientific applications: very low noise, high speed, high dynamic range, large format and radiation hardness are some of these requirements. This paper will present a brief overview of the CMOS Image Sensor technology and of the requirements for scientific applications. As an example, a sensor for X-ray imaging will be presented. This sensor was developed within a European FP6 Consortium, intelligent imaging sensors (I-ImaS).

  20. Spatial optical phase-modulating metadevice with subwavelength pixelation.

    PubMed

    Cencillo-Abad, Pablo; Plum, Eric; Rogers, Edward T F; Zheludev, Nikolay I

    2016-08-01

    Dynamic control over optical wavefronts enables focusing, diffraction and redirection of light on demand, however, sub-wavelength resolution is required to avoid unwanted diffracted beams that are present in commercial spatial light modulators. Here we propose a realistic metadevice that dynamically controls the optical phase of reflected beams with sub-wavelength pixelation in one dimension. Based on reconfigurable metamaterials and nanomembrane technology, it consists of individually moveable metallic nanowire actuators that control the phase of reflected light by modulating the optical path length. We demonstrate that the metadevice can provide on-demand optical wavefront shaping functionalities of diffraction gratings, beam splitters, phase-gradient metasurfaces, cylindrical mirrors and mirror arrays - with variable focal distance and numerical aperture - without unwanted diffraction. PMID:27505842

  1. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  2. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors. PMID:27519099

  3. Towards a new generation of pixel detector readout chips

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Alozy, J.; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile-ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  4. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  5. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.

    PubMed

    Fuchs, Franz G; Hjelmervik, Jon M

    2016-02-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results. PMID:26731454

  6. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  7. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry

    SciTech Connect

    Zhang, Zhigang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan E-mail: wgchu@nanoctr.cn; Wu, Xiaoping; Dong, Fengliang; Chu, Weiguo E-mail: wgchu@nanoctr.cn

    2014-10-15

    Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.

  8. Improving class separability using extended pixel planes: a comparative study

    PubMed Central

    Orlov, Nikita V.; Eckley, D. Mark; Shamir, Lior; Goldberg, Ilya G.

    2011-01-01

    In this work we explored class separability in feature spaces built on extended representations of pixel planes (EPP) produced using scale pyramid, subband pyramid, and image transforms. The image transforms included Chebyshev, Fourier, wavelets, gradient and Laplacian; we also utilized transform combinations, including Fourier, Chebyshev and wavelets of the gradient transform, as well as Fourier of the Laplacian transform. We demonstrate that all three types of EPP promote class separation. We also explored the effect of EPP on suboptimal feature libraries, using only textural features in one case and only Haralick features in another. The effect of EPP was especially clear for these suboptimal libraries, where the transform-based representations were found to increase separability to a greater extent than scale or subband pyramids. EPP can be particularly useful in new applications where optimal features have not yet been developed. PMID:23074356

  9. Correcting saturated pixels in images based on human visual characteristics

    NASA Astrophysics Data System (ADS)

    Fu, Jun; Peng, Hui; Chen, Xi; Mou, Xuanqin

    2013-01-01

    This paper presents a correcting method for saturated images which is operated in the YCbCr color space. The algorithm is based on two human visual characteristics, one is the visual sensitivities to color differences and the other is the Hunt effect. During the process of correcting colors, MacAdam ellipse model mapped to the YCbCr color space is used to search the nearest color. And during the process of the quantification of the YCbCr components for digital implementation, the regions with high luminance are set to have less saturation based on the Hunt effect. Experimental results show that the proposed method is more effective in correcting saturated pixels, especially for the optimization of the region with less luminance and more colorfulness.

  10. MOSAD IR focal plane per pixel A/D development

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Kennedy, James J.; Chu, Muren

    1996-06-01

    An on focal plane digital readout development suggested by the Army Night Vision & Electronics Sensors Directorate is proceeding under a combined program with the development of two color HCT detector arrays. The on focal plane A/D process is based on the Amain patented multiplexed oversample A/D, MOSAD, technology. In the first year of the program, prototype on focal plane analog to digital converters for both staring arrays and scanning arrays were built and demonstrated. The prototypes included a 2 loop double ended switched MOSAD and a 1 loop single ended MOSAD. Results from the original experimental prototypes showed conclusively that better than 14 bits could be achieved and that well capacity could be increased to support high background HCT needs approaching 10(superscript 9) electrons. In the second year, a 64 X 64 staring array for HCT LWIR detectors, 50 micron centers, was built based on these original prototype designs. The layout of the per pixel MOSAD A/D staring array used Orbit 1.2 micron CMOS process and achieved a pixel size of 40 microns with a well capacity of 1.9 X 10(superscript 8) electrons. Integration capacitors were built using Orbit's normal double poly capacitors with a standard buffered direct inject TIA detector interface configuration. Preliminary testing has been completed indicating complete functionality. Fermionics LWIR HCT detectors with cutoff at 9 microns have been built for attachment to the readout but indium bumping was not completed in time to report system level testing results. However, some noise tests have been performed using on array current mirrors. These tests indicate that better than 12 bits has been achieved, but lower noise current sources will be required for a more accurate measurement.

  11. Signal processing algorithms for staring single pixel hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris; Rossacci, Michael; O'Donnell, Erin; D'Amico, Francis M.

    2006-08-01

    Remote sensing of chemical warfare agents (CWA) with stand-off hyperspectral sensors has a wide range of civilian and military applications. These sensors exploit the spectral changes in the ambient photon flux produced thermal emission or absorption after passage through a region containing the CWA cloud. In this work we focus on (a) staring single-pixel sensors that sample their field of view at regular intervals of time to produce a time series of spectra and (b) scanning single or multiple pixel sensors that sample their FOV as they scan. The main objective of signal processing algorithms is to determine if and when a CWA enters the FOV of the sensor. We shall first develop and evaluate algorithms for staring sensors following two different approaches. First, we will assume that no threat information is available and we design an adaptive anomaly detection algorithm to detect a statistically-significant change in the observed spectrum. The algorithm processes the observed spectra sequentially-in-time, estimates adaptively the background, and checks whether the next spectrum differs significantly from the background based on the Mahalanobis distance or the distance from the background subspace. In the second approach, we will assume that we know the spectral signature of the CWA and develop sequential-in-time adaptive matched filter detectors. In both cases, we assume that the sensor starts its operation before the release of the CWA; otherwise, staring at a nearby CWA-free area is required for background estimation. Experimental evaluation and comparison of the proposed algorithms is accomplished using data from a long-wave infrared (LWIR) Fourier transform spectrometer.

  12. The data acquisition system of the Belle II Pixel Detector

    NASA Astrophysics Data System (ADS)

    Münchow, D.; Dingfelder, J.; Geßler, T.; Konorov, I.; Kühn, W.; Lange, S.; Lautenbach, K.; Levit, D.; Liu, Z.; Marinas, C.; Schnell, M.; Spruck, B.; Zhao, J.

    2014-08-01

    At the future Belle II experiment the DEPFET (DEPleted Field Effect Transistor) pixel detector will consist of about 8 million channels and is placed as the innermost detector. Because of its small distance to the interaction region and the high luminosity in Belle II, for a trigger rate of about 30 kHz with an estimated occupancy of about 3 % a data rate of about 22 GB/s is expected. Due to the high data rate, a data reduction factor higher than 30 is needed in order to stay inside the specifications of the event builder. The main hardware to reduce the data rate is a xTCA based Compute Node (CN) developed in cooperation between IHEP Beijing and University Giessen. Each node has as main component a Xilinx Virtex-5 FX70T FPGA and is equipped with 2 × 2 GB RAM , GBit Ethernet and 4 × 6.25 Gb/s optical links. An ATCA carrier board is able to hold up to four CN and supplies high bandwidth connections between the four CNs and to the ATCA backplane. To achieve the required data reduction on the CNs, regions of interest (ROI) are used. These regions are calculated in two independent systems by projecting tracks back to the pixel detector. One is the High Level Trigger (HLT) which uses data from the Silicon Vertex Detector (SVD), a silicon strip detector, and outer detectors. The other is the Data Concentrator (DATCON) which calculates ROIs based on SVD data only, in order to get low momentum tracks. With this information, only PXD data inside these ROIs will be forwarded to the event builder, while data outside of these regions will be discarded. First results of the test beam time in January 2014 at DESY with a Belle II vertex detector prototype and full DAQ chain will be presented.

  13. 2D Sub-Pixel Disparity Measurement Using QPEC / Medicis

    NASA Astrophysics Data System (ADS)

    Cournet, M.; Giros, A.; Dumas, L.; Delvit, J. M.; Greslou, D.; Languille, F.; Blanchet, G.; May, S.; Michel, J.

    2016-06-01

    In the frame of its earth observation missions, CNES created a library called QPEC, and one of its launcher called Medicis. QPEC / Medicis is a sub-pixel two-dimensional stereo matching algorithm that works on an image pair. This tool is a block matching algorithm, which means that it is based on a local method. Moreover it does not regularize the results found. It proposes several matching costs, such as the Zero mean Normalised Cross-Correlation or statistical measures (the Mutual Information being one of them), and different match validation flags. QPEC / Medicis is able to compute a two-dimensional dense disparity map with a subpixel precision. Hence, it is more versatile than disparity estimation methods found in computer vision literature, which often assume an epipolar geometry. CNES uses Medicis, among other applications, during the in-orbit image quality commissioning of earth observation satellites. For instance the Pléiades-HR 1A & 1B and the Sentinel-2 geometric calibrations are based on this block matching algorithm. Over the years, it has become a common tool in ground segments for in-flight monitoring purposes. For these two kinds of applications, the two-dimensional search and the local sub-pixel measure without regularization can be essential. This tool is also used to generate automatic digital elevation models, for which it was not initially dedicated. This paper deals with the QPEC / Medicis algorithm. It also presents some of its CNES applications (in-orbit commissioning, in flight monitoring or digital elevation model generation). Medicis software is distributed outside the CNES as well. This paper finally describes some of these external applications using Medicis, such as ground displacement measurement, or intra-oral scanner in the dental domain.

  14. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    NASA Technical Reports Server (NTRS)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post

  15. IV and CV curves for irradiated prototype BTeV silicon pixel sensors

    SciTech Connect

    Maria R. Coluccia et al.

    2002-07-16

    The authors present IV and CV curves for irradiated prototype n{sup +}/n/p{sup +} silicon pixel sensors, intended for use in the BTeV experiment at Fermilab. They tested pixel sensors from various vendors and with two pixel isolation layouts: p-stop and p-spray. Results are based on exposure with 200 MeV protons up to 6 x 10{sup 14} protons/cm{sup 2}.

  16. Electronic holographic device based on macro-pixel with local coherence

    NASA Astrophysics Data System (ADS)

    Moon, Woonchan; Kwon, Jaebeom; Kim, Hwi; Hahn, Joonku

    2015-09-01

    Holography has been regarded as one of the most ideal technique for three-dimensional (3D) display because it records and reconstructs both amplitude and phase of object wave simultaneously. Nevertheless, many people think that this technique is not suitable for commercialization due to some significant problems. In this paper, we propose an electronic holographic 3D display based on macro-pixel with local coherence. Here, the incident wave within each macro-pixel is coherent but the wave in one macro-pixel is not mutually coherent with the wave in the other macro-pixel. This concept provides amazing freedom in distribution of the pixels in modulator. The relative distance between two macro-pixels results in negligible change of interference pattern in observation space. Also it is possible to make the sub-pixels in a macro-pixel in order to enlarge the field of view (FOV). The idea has amazing effects to reduce the data capacity of the holographic display. Moreover, the dimension of the system is can be remarkably downsized by micro-optics. As a result, the holographic display will be designed to have full parallax with large FOV and screen size. We think that the macro-pixel idea is a practical solution in electronic holography since it can provide reasonable FOV and large screen size with relatively small amount of data.

  17. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  18. Denoising of brain MRI images using modified PDE based on pixel similarity

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Song, Enmin; Zhang, Lijuan; Min, Zhifang; Xu, Xiangyang; Huang, Chih-Cheng

    2008-03-01

    Although various image denoising methods such as PDE-based algorithms have made remarkable progress in the past years, the trade-off between noise reduction and edge preservation is still an interesting and difficult problem in the field of image processing and analysis. A new image denoising algorithm, using a modified PDE model based on pixel similarity, is proposed to deal with the problem. The pixel similarity measures the similarity between two pixels. Then the neighboring consistency of the center pixel can be calculated. Informally, if a pixel is not consistent enough with its surrounding pixels, it can be considered as a noise, but an extremely strong inconsistency suggests an edge. The pixel similarity is a probability measure, its value is between 0 and 1. According to the neighboring consistency of the pixel, a diffusion control factor can be determined by a simple thresholding rule. The factor is combined into the primary partial differential equation as an adjusting factor for controlling the speed of diffusion for different type of pixels. An evaluation of the proposed algorithm on the simulated brain MRI images was carried out. The initial experimental results showed that the new algorithm can smooth the MRI images better while keeping the edges better and achieve higher peak signal to noise ratio (PSNR) comparing with several existing denoising algorithms.

  19. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  20. A high fill-factor low dark leakage CMOS image sensor with shared-pixel design

    NASA Astrophysics Data System (ADS)

    Seo, Min-Woong; Yasutomi, Keita; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    We have developed and evaluated the high responsivity and low dark leakage CMOS image sensor with the ring-gate shared-pixel design. A ring-gate shared-pixel design with a high fill factor makes it possible to achieve the low-light imaging. As eliminating the shallow trench isolation in the proposed pixel, the dark leakage current is significantly decreased because one of major dark leakage sources is removed. By sharing the in-pixel transistors such as a reset transistor, a select transistor, and a source follower amplifier, each pixel has a high fill-factor of 43 % and high sensitivity of 144.6 ke-/lx·sec. In addition, the effective number of transistors per pixel is 1.75. The proposed imager achieved the relatively low dark leakage current of about 104.5 e-/s (median at 60°C), corresponding to a dark current density Jdark_proposed of about 30 pA/cm2. In contrast, the conventional type test pixel has a large dark leakage current of 2450 e-/s (median at 60°C), corresponding to Jdark_conventional of about 700 pA/cm2. Both pixels have a same pixel size of 7.5×7.5 μm2 and are fabricated in same process.

  1. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    PubMed Central

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed. PMID:22389592

  2. Reducing the effect of pixel crosstalk in phase only spatial light modulators.

    PubMed

    Persson, Martin; Engström, David; Goksör, Mattias

    2012-09-24

    A method for compensating for pixel crosstalk in liquid crystal based spatial light modulators is presented. By modifying a commonly used hologram generating algorithm to account for pixel crosstalk, the intensity errors in obtained diffraction spot intensities are significantly reduced. We also introduce a novel method for characterizing the pixel crosstalk in phase-only spatial light modulators, providing input for the hologram generating algorithm. The methods are experimentally evaluated and an improvement of the spot uniformity by more than 100% is demonstrated for an SLM with large pixel crosstalk. PMID:23037382

  3. Supervised pixel classification using a feature space derived from an artificial visual system

    NASA Technical Reports Server (NTRS)

    Baxter, Lisa C.; Coggins, James M.

    1991-01-01

    Image segmentation involves labelling pixels according to their membership in image regions. This requires the understanding of what a region is. Using supervised pixel classification, the paper investigates how groups of pixels labelled manually according to perceived image semantics map onto the feature space created by an Artificial Visual System. Multiscale structure of regions are investigated and it is shown that pixels form clusters based on their geometric roles in the image intensity function, not by image semantics. A tentative abstract definition of a 'region' is proposed based on this behavior.

  4. Methodological Study of a Single Photon Counting Pixel Detector at SPring-8

    SciTech Connect

    Toyokawa, H.; Suzuki, M.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Huelsen, G.; Kraft, P.

    2007-01-19

    PILATUS (Pixel Apparatus for the SLS) is a challenging project to develop a large area single photon counting pixel detector for synchrotron radiation experiments. SPring-8 examined the PLATUS single module detectors in collaboration with the Paul Scherrer Institute. The PILATUS-II single module detector has a desired performance with almost zero defective pixels and a fast frame rate up to 100 Hz using a newly developed PCI readout system on a Linux-PC. The maximum counting rate achieves more than 2 x 106 X-rays/s/pixel.

  5. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alon; Luo, Wei; Khademhosseinieh, Bahar; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2013-04-01

    Pixel-size limitation of lensfree on-chip microscopy can be circumvented by utilizing pixel-super-resolution techniques to synthesize a smaller effective pixel, improving the resolution. Here we report that by using the two-dimensional pixel-function of an image sensor-array as an input to lensfree image reconstruction, pixel-super-resolution can improve the numerical aperture of the reconstructed image by ~3 fold compared to a raw lensfree image. This improvement was confirmed using two different sensor-arrays that significantly vary in their pixel-sizes, circuit architectures and digital/optical readout mechanisms, empirically pointing to roughly the same space-bandwidth improvement factor regardless of the sensor-array employed in our set-up. Furthermore, such a pixel-count increase also renders our on-chip microscope into a Giga-pixel imager, where an effective pixel count of ~1.6-2.5 billion can be obtained with different sensors. Finally, using an ultra-violet light-emitting-diode, this platform resolves 225 nm grating lines and can be useful for wide-field on-chip imaging of nano-scale objects, e.g., multi-walled-carbon-nanotubes.

  6. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  7. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy

    PubMed Central

    Greenbaum, Alon; Luo, Wei; Khademhosseinieh, Bahar; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2013-01-01

    Pixel-size limitation of lensfree on-chip microscopy can be circumvented by utilizing pixel-super-resolution techniques to synthesize a smaller effective pixel, improving the resolution. Here we report that by using the two-dimensional pixel-function of an image sensor-array as an input to lensfree image reconstruction, pixel-super-resolution can improve the numerical aperture of the reconstructed image by ~3 fold compared to a raw lensfree image. This improvement was confirmed using two different sensor-arrays that significantly vary in their pixel-sizes, circuit architectures and digital/optical readout mechanisms, empirically pointing to roughly the same space-bandwidth improvement factor regardless of the sensor-array employed in our set-up. Furthermore, such a pixel-count increase also renders our on-chip microscope into a Giga-pixel imager, where an effective pixel count of ~1.6–2.5 billion can be obtained with different sensors. Finally, using an ultra-violet light-emitting-diode, this platform resolves 225 nm grating lines and can be useful for wide-field on-chip imaging of nano-scale objects, e.g., multi-walled-carbon-nanotubes.

  8. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    PubMed

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed. PMID:22389592

  9. Analysis and study of the interlaced encoding pixels in Hadamard transform spectral imager based on DMD

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Hu, Bingliang; Feng, Dazheng; Fan, Xiaohui; Qian, Qingming

    2012-03-01

    The key innovation in Hadamard transform spectral imager (HTSI) introduced recently is the use of digital micro-mirror device (DMD) to encode spectral information. However, because the size of individual micro-mirrors does not match the detector pixel size or for other unavoidable errors in the optical design and the system assembling, an interlaced encoding phenomenon appears on some pixels of the encoded images obtained from the detector. These interlaced encoding pixels are not encoded based on Hadamard transform, so they should be processed specially in spectrum recovery. This paper analyzes the interlaced encoding phenomenon and proposes a positioning method and a decoding method for the interlaced encoding pixels on the encoded images. In our experiment, we direct a beam of laser into our HTSI and fill the entire field of view; by observing the column vector, which is made up of the gray values of a pixel on the encoded images from the detector in sequence, the interlaced encoding pixels can be distinguished easily and a coefficient is obtained simultaneously, which denotes the ratio of the area between the left part and the right part of the interlaced encoding pixel. By substituting the coefficient and the encoded gray values of the interlaced pixel into its encoding equation, we can recover the spectral elements of the interlaced pixel with ease. By comparing the spectral curve of the interlaced encoding pixels recovered by the method mentioned in this paper and the spectral curves of its two adjacent pixels, we find the decoding results are quite effective.

  10. a Comparison of Sub-Pixel Mapping Methods for Coastal Areas

    NASA Astrophysics Data System (ADS)

    Liu, Qingxiang; Trinder, John; Turner, Ian

    2016-06-01

    This paper presents the comparisons of three soft classification methods and three sub-pixel mapping methods for the classification of coastal areas at sub-pixel level. Specifically, SPOT-7 multispectral images covering the coastal area of Perth are selected as the experiment dataset. For the soft classification, linear spectral unmixing model, supervised fully-fuzzy classification method and the support vector machine are applied to generate the fraction map. Then for the sub-pixel mapping, the sub-pixel/pixel attraction model, pixel swapping and wavelets method are compared. Besides, the influence of the correct fraction constraint is explored. Moreover, a post-processing step is implemented according to the known spatial knowledge of coastal areas. The accuracy assessment of the fraction values indicates that support vector machine generates the most accurate fraction result. For sub-pixel mapping, wavelets method outperforms the other two methods with overall classification accuracy of 91.79% and Kappa coefficient of 0.875 after the post-processing step and it also performs best for waterline extraction with mean distance of 0.71m to the reference waterline. In this experiment, the use of correct fraction constraint decreases the classification accuracy of sub-pixel mapping methods and waterline extraction. Finally, the post-processing step improves the accuracy of sub-pixel mapping methods, especially for those with correct coefficient constraint. The most significant improvement of overall accuracy is as much as 4% for the sub-pixel/pixel attraction model with correct coefficient constraint.

  11. Adhesive Testing for the BTeV Pixel Detector

    SciTech Connect

    Lei, C.M.; Kwan, Simon; Hicks, D.; Hahn, Eileen; Hoffman, Jay; Austin, Sharon; Jones, Renee; /Fermilab

    2005-12-01

    The basic unit of the BTeV pixel detector is a multi-chip module which is comprised of a silicon sensor module bump-bonded to a number of readout chips. The pixel module will then be glued to a high intensity interconnect (HDI) cable using electrically conductive adhesive, and then onto a substrate using another kind of adhesive with reasonable thermal conductivity. This report is mostly addressed to the need of the latter--the substrate adhesive. The aim of this technical note is to summarize the testing efforts and results of this substrate adhesive covering a period since 2001 till the end of 2004. The substrate will serve two purposes: mechanical support and cooling of the modules. Stresses and strains will be generated when there is a thermal change on the substrate. In addition, since there are many kinds of materials, with different coefficient of thermal expansion (CTE), being glued together to form the complete detector assembly, the substrate may get distorted due to the CTE mismatches. As stress is directly proportional to the material modulus, a significant amount of effort was concentrated in understanding the adhesive modulus. There are other constraints which need to be considered as well. For instance, the detector will be placed in a vacuum close to the beam, and it will be exposed to significant radiation during operation. As there are so many requirements on the adhesive, it is certainly not that easy to find one that meets all the demands. With a reasonable screening that the adhesive candidates being radiation hard and have low outgassing, searching for suitable adhesives was focused on those with low modulus. That is because (1) a mechanically reliable and fail-proof adhesive structure with low stress is needed, and (2) the leaking current characteristics of the modules will increase if mechanical stresses are too high. However, much of the technical information needed is usually not available from the vendor and therefore testing on our own

  12. EDITORIAL: Micro-pixellated LEDs for science and instrumentation

    NASA Astrophysics Data System (ADS)

    Dawson, Martin D.; Neil, Mark A. A.

    2008-05-01

    This Cluster Issue of Journal of Physics D: Applied Physics highlights micro-pixellated gallium nitride light-emitting diodes or `micro-LEDs', an emerging technology offering considerable attractions for a broad range of scientific and instrumentation applications. It showcases the results of a Research Councils UK (RCUK) Basic Technology Research programme (http://bt-onethousand.photonics.ac.uk), running from 2004-2008, which has drawn together a multi-disciplinary and multi-institutional research partnership to develop these devices and explore their potential. Images of LEDs Examples of GaN micro-pixel LEDs in operation. Images supplied courtesy of the Guest Editors. The partnership, of physicists, engineers and chemists drawn from the University of Strathclyde, Heriot-Watt University, the University of Sheffield and Imperial College London, has sought to move beyond the established mass-market uses of gallium nitride LEDs in illumination and lighting. Instead, it focuses on specialised solid-state micro-projection devices the size of a match-head, containing up to several thousand individually-addressable micro-pixel elements emitting light in the ultraviolet or visible regions of the spectrum. Such sources are pattern-programmable under computer control and can project into materials fixed or high-frame rate optical images or spatially-controllable patterns of nanosecond excitation pulses. These materials can be as diverse as biological cells and tissues, biopolymers, photoresists and organic semiconductors, leading to new developments in optical microscopy, bio-sensing and chemical sensing, mask-free lithography and direct writing, and organic electronics. Particular areas of interest are multi-modal microscopy, integrated forms of organic semiconductor lasers, lab-on-a-chip, GaN/Si optoelectronics and hybrid inorganic/organic semiconductor structures. This Cluster Issue contains four invited papers and ten contributed papers. The invited papers serve to set

  13. Optimization of convergent collimators for pixelated SPECT systems

    SciTech Connect

    Capote, Ricardo M.; Matela, Nuno; Conceicao, Raquel C.; Almeida, Pedro

    2013-06-15

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60-300 keV) and high energy radiation (300-511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to the

  14. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  15. Development and characterization of the latest X-ray SOI pixel sensor for a future astronomical mission

    NASA Astrophysics Data System (ADS)

    Nakashima, Shinya; Gando Ryu, Syukyo; Tanaka, Takaaki; Go Tsuru, Takeshi; Takeda, Ayaki; Arai, Yasuo; Imamura, Toshifumi; Ohmoto, Takafumi; Iwata, Atsushi

    2013-12-01

    We have been developing active pixel sensors based on silicon-on-insulator technology for future X-ray astronomy missions. Recently we fabricated the new prototype named “XRPIX2”, and investigated its spectroscopic performance. For comparison and evaluation of different chip designs, XRPIX2 consists of 3 pixel types: Small Pixel, Large Pixel 1, and Large Pixel 2. In Small Pixel, we found that the gains of the 68% pixels are within 1.4% of the mean value, and the energy resolution is 656 eV (FWHM) for 8 keV X-rays, which is the best spectroscopic performance in our development. The pixel pitch of Large Pixel 1 and Large Pixel 2 is twice as large as that of Small Pixel. Charge sharing events are successfully reduced for Large Pixel 1. Moreover Large Pixel 2 has multiple nodes for charge collection in a pixel. We confirmed that the multi-nodes structure is effective to increase charge collection efficiency.

  16. Beam test results for the BTeV silicon pixel detector

    SciTech Connect

    Jeffrey A. Appel, G. Chiodini et al.

    2000-09-28

    The authors report the results of the BTeV silicon pixel detector tests carried out in the MTest beam at Fermilab in 1999--2000. The pixel detector spatial resolution has been studied as a function of track inclination, sensor bias, and readout threshold.

  17. Controlled pixelation of inverse opaline structures towards reflection-mode displays.

    PubMed

    Lee, Su Yeon; Kim, Shin-Hyun; Hwang, Hyerim; Sim, Jae Young; Yang, Seung-Man

    2014-04-16

    Pixelated inverse opals with red, green, and blue colors were prepared by hybridizing convective assembly of colloidal particles and photolithography techniques. The brilliant structural colors, high mechanical stability, and small feature size of the pixels were simultaneously accomplished, thereby providing color reflectors potentially useful for display devices. Moreover, this hybridized method provides a general means to create multi-colored photonic crystals. PMID:24458607

  18. Characterization of pixel crosstalk and impact of Bayer patterning by quantum efficiency measurement

    NASA Astrophysics Data System (ADS)

    Vaillant, Jérôme; Mornet, Clémence; Decroux, Thomas; Hérault, Didier; Schanen, Isabelle

    2011-01-01

    Development of small pixels for high resolution image sensors implies a lot of challenges. A high level of performance should be guaranteed whereas the overall size must be reduced and so the degree of freedom in design and process. One key parameter of this constant improvement is the knowledge and the control of the crosstalk between pixels. In this paper, we present an advance in crosstalk characterization method based on the design of specific color patterns and the measurement of quantum efficiency. In a first part, we describe the color patterns designed to isolate one pixel or to simulate un-patterned colored pixels. These patterns have been implemented on test-chip and characterized. The second part deals with the characterization setup for quantum efficiency. Indeed, the use of spectral measurements allows us to discriminate pixels based on the color filter placed on top of them and to probe the crosstalk as a function of the depth in silicon, thanks to the photon absorption length variation with the wavelength. In the last part, results are presented showing the impact of color filters patterning, i.e. pixels in a Bayer pattern versus un-patterned pixels. The crosstalk directions and amplitudes are also analyzed in relation to pixel layout.

  19. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    PubMed Central

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  20. Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping

    EPA Science Inventory

    This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...

  1. DISPLAY OF PIXEL LOSS AND REPLICATION IN REPROJECTING RASTER DATA FROM THE SINUSOIDAL PROJECTION

    EPA Science Inventory

    Recent studies show the sinusoidal projection to be a superior planar projection for representing global raster datasets. This study uses the sinusoidal projection as a basis for evaluating pixel loss and replication in eight other planar map projections. The percent of pixels ...

  2. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  3. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  4. First Light with a 67-Million-Pixel WFI Camera

    NASA Astrophysics Data System (ADS)

    1999-01-01

    The newest astronomical instrument at the La Silla observatory is a super-camera with no less than sixty-seven million image elements. It represents the outcome of a joint project between the European Southern Observatory (ESO) , the Max-Planck-Institut für Astronomie (MPI-A) in Heidelberg (Germany) and the Osservatorio Astronomico di Capodimonte (OAC) near Naples (Italy), and was installed at the 2.2-m MPG/ESO telescope in December 1998. Following careful adjustment and testing, it has now produced the first spectacular test images. With a field size larger than the Full Moon, the new digital Wide Field Imager is able to obtain detailed views of extended celestial objects to very faint magnitudes. It is the first of a new generation of survey facilities at ESO with which a variety of large-scale searches will soon be made over extended regions of the southern sky. These programmes will lead to the discovery of particularly interesting and unusual (rare) celestial objects that may then be studied with large telescopes like the VLT at Paranal. This will in turn allow astronomers to penetrate deeper and deeper into the many secrets of the Universe. More light + larger fields = more information! The larger a telescope is, the more light - and hence information about the Universe and its constituents - it can collect. This simple truth represents the main reason for building ESO's Very Large Telescope (VLT) at the Paranal Observatory. However, the information-gathering power of astronomical equipment can also be increased by using a larger detector with more image elements (pixels) , thus permitting the simultaneous recording of images of larger sky fields (or more details in the same field). It is for similar reasons that many professional photographers prefer larger-format cameras and/or wide-angle lenses to the more conventional ones. The Wide Field Imager at the 2.2-m telescope Because of technological limitations, the sizes of detectors most commonly in use in

  5. High-sensitivity active pixel sensor with variable threshold photodetector

    NASA Astrophysics Data System (ADS)

    Jo, Sung-Hyun; Bae, Myunghan; Choi, Byoung-Soo; Lyu, Hong-Kun; Shin, Jang-Kyoo

    2015-05-01

    A novel high-sensitivity active pixel sensor (APS) with a variable threshold photodetector has been presented and for the first time, a simple SPICE model for the variable threshold photodetector is presented. Its SPICE model is in good agreement with measurements and is more simpler than the conventional model. The proposed APS has a gate/body-tied PMOSFET-type photodetector with an overlapping control gate that makes it possible to control the sensitivity of the proposed APS. It is a hybrid device composed of a metal-oxide-semiconductor field-effect transistor (MOSFET), a lateral bipolar junction transistor (BJT) and a vertical BJT. Using sufficient overlapping control gate bias to operate the MOSFET in inversion mode, the variable threshold photodetector allows for increasing the photocurrent gain by 105 at low light intensities when the control gate bias is -3 V. Thus, the proposed APS with a variable threshold photodetector has better low-light-level sensitivity than the conventional APS operating mode, and it has a variable sensitivity which is determined by the control gate bias. The proposed sensor has been fabricated by using 0.35 μm 2-poly 4-metal standard complementary MOS (CMOS) process and its characteristics have been evaluated.

  6. Cloud Motion Vectors from MISR using Sub-pixel Enhancements

    NASA Technical Reports Server (NTRS)

    Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu

    2007-01-01

    The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.

  7. Ultrahigh-temperature emitter pixel development for scene projectors

    NASA Astrophysics Data System (ADS)

    Sparkman, Kevin; LaVeigne, Joe; McHugh, Steve; Lannon, John; Goodwin, Scott

    2014-05-01

    To meet the needs of high fidelity infrared sensors, under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) has developed new infrared emitter materials capable of achieving extremely high temperatures. The current state of the art arrays based on the MIRAGE-XL generation of scene projectors is capable of producing imagery with mid-wave infrared (MWIR) apparent temperatures up to 700K with response times of 5 ms. The Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology (TandE/SandT) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentations (PEO STRI) has contracted with SBIR and its partners to develop a new resistive array based on these new materials, using a high current Read-In Integrated Circuit (RIIC) capable of achieving higher temperatures as well as faster frame rates. The status of that development will be detailed within this paper, including performance data from prototype pixels.

  8. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  9. Development of a cadmium telluride pixel detector for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Cook, Walter R.; Mao, Peter H.; Rana, Vikram R.; Ishikawa, Shin-Nosuke; Ushio, Masayoshi; Aono, Hiroyuki; Watanabe, Shin; Sato, Goro; Kokubun, Motohide; Takahashi, Tadayuki

    2009-08-01

    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO).

  10. Fast pixel shifting phase unwrapping algorithm in quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Mingfei; Shan, Yanke; Yan, Keding; Xue, Liang; Wang, Shouyu; Liu, Fei

    2014-11-01

    Quantitative interferometric microscopy is an important method for observing biological samples such as cells and tissues. In order to obtain continuous phase distribution of the sample from the interferogram, phase extracting and phase unwrapping are both needed in quantitative interferometric microscopy. Phase extracting includes fast Fourier transform method and Hilbert transform method, etc., almost all of them are rapid methods. However, traditional unwrapping methods such as least squares algorithm, minimum network flow method, etc. are time-consuming to locate the phase discontinuities which lead to low processing efficiency. Other proposed high-speed phase unwrapping methods always need at least two interferograms to recover final phase distributions which cannot realize real time processing. Therefore, high-speed phase unwrapping algorithm for single interferogram is required to improve the calculation efficiency. Here, we propose a fast phase unwrapping algorithm to realize high-speed quantitative interferometric microscopy, by shifting mod 2π wrapped phase map for one pixel, then multiplying the original phase map and the shifted one, then the phase discontinuities location can be easily determined. Both numerical simulation and experiments confirm that the algorithm features fast, precise and reliable.

  11. Pixelated source optimization for optical lithography via particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Sikun; Wang, Xiangzhao; Yan, Guanyong; Yang, Chaoxing

    2016-01-01

    Source optimization is one of the key techniques for achieving higher resolution without increasing the complexity of mask design. An efficient source optimization approach is proposed on the basis of particle swarm optimization. The pixelated sources are encoded into particles, which are evaluated by using the pattern error as the fitness function. Afterward, the optimization is implemented by updating the velocities and positions of these particles. This approach is demonstrated using three mask patterns, including a periodic array of contact holes, a vertical line/space design, and a complicated pattern. The pattern errors are reduced by 69.6%, 51.5%, and 40.3%, respectively. Compared with the source optimization approach via genetic algorithm, the proposed approach leads to faster convergence while improving the image quality at the same time. Compared with the source optimization approach via gradient descent method, the proposed approach does not need the calculation of gradients, and it has a strong adaptation to various lithographic models, fitness functions, and resist models. The robustness of the proposed approach to initial sources is also verified.

  12. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  13. MONOLITHIC ACTIVE PIXEL MATRIX WITH BINARY COUNTERS IN AN SOI PROCESS.

    SciTech Connect

    DUPTUCH,G.; YAREMA, R.

    2007-06-07

    The design of a Prototype monolithic active pixel matrix, designed in a 0.15 {micro}m CMOS SOI Process, is presented. The process allowed connection between the electronics and the silicon volume under the layer of buried oxide (BOX). The small size vias traversing through the BOX and implantation of small p-type islands in the n-type bulk result in a monolithic imager. During the acquisition time, all pixels register individual radiation events incrementing the counters. The counting rate is up to 1 MHz per pixel. The contents of counters are shifted out during the readout phase. The designed prototype is an array of 64 x 64 pixels and the pixel size is 26 x 26 {micro}m{sup 2}.

  14. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  15. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  16. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  17. [Study on the nonlinear characteristics of the mixed pixel's reflectance in hyperspectral space].

    PubMed

    Zhu, Feng; Gong, Hui-Li; Sun, Tian-Lin; Zhao, Yun-Sheng

    2013-03-01

    Under the experimental condition of the 50 degree incidence zenith angle and 45 degree detection azimuth, 24 groups of reflectance spectral of the mixed pixel of lotus and water body acquired using the reflex platform and FieldSpec 3 Hi-Res portable spectrum instrument. The hyperspectral space was built based on the reflectance character. The relationship between similarity and the index of lotus area ratio was analyzed using the linear, logarithm and quadratic curve fitting, and the goodness of fitting is 63.6%, 76.2% and 82.9% respectively. According to the real relationship of the mixed pixel spectral vector and the reference spectral, the best fitting model has nonlinear characteristics. The idea that the mixed pixel may have the critical value was proposed on the base of the analysis. The research result will help understand the mixed pixel further, and provide a new direction for unmixing the mixed pixel. PMID:23705444

  18. Electrical characterization of irradiated prototype silicon pixel sensors for BTeV

    SciTech Connect

    Maria Rita Coluccia et al.

    2002-11-13

    The pixel detector in the BteV experiment at the Tevatron (Fermi Laboratory) is an important detector component for high-resolution tracking and vertex identification. For this task the hybrid pixel detector has to work in a very harsh radiation environment with up to 10{sup 14} minimum ionizing particles/cm{sup 2}/year. Radiation hardness of prototype n{sup +}/n/p{sup +} silicon pixel sensors has been investigated. We present Electrical characterization curves for irradiated prototype n{sup +}/n/p{sup +} sensors, intended for use in the BTeV experiment. We tested pixel sensors from various vendors and with two pixel isolation techniques: p-stop and p-spray. Results are based on irradiation with 200 MeV protons up to 6 x 10{sup 14} protons/cm{sup 2}.

  19. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  20. Photon counting pixel architecture for x-ray and gamma-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Ng, Li; Rowlands, J. A.; Karim, Karim S.

    2007-03-01

    Photon counting is emerging as an alternative detection technique to conventional photon integration. In photon counting systems, the value of each image pixel is equal to the number of photons that are absorbed by the radiation detector. The proposed pixel architecture provides a method for energy windowing and serial readout for low-dose gamma-ray imaging. Each pixel is comprised of a radiation detector and integrated analog and digital circuitry. A prototype was developed on a printed circuit board (PCB) using discrete electronic components. In this research, we present the experimental results for the operation of the photon counting pixel with energy windowing and investigate the compromise between pixel noise level and photon count rate.

  1. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.; Goodier, B. G.

    1981-01-01

    The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data.

  2. Reproducibility of pixel values for two photostimulable phosphor plates in consecutive standardized scannings.

    PubMed

    Freitas, Patrícia; Yaedú, Renato Yassutaka Faria; Rubira-Bullen, Izabel Regina Fischer; Escarpinati, Maurício; Vieira, Marcelo Costa; Schiabel, Homero; Lauris, José Roberto

    2006-01-01

    The objective of the present study was to determine the reproducibility of the pixel values obtained with the Digora system (Soredex, Finland). Exposures were standardized, with variation in exposure and scanning time of two photostimulable phosphor plates containing a stepwedge image. The smallest variation in pixel values ranged from 50 to 75%, with the widest variations being observed in less dense steps. A significant difference in pixel values was observed in terms of X-ray exposure and scanning times and between the two plates themselves (ANOVA, p < 0.01). Using the present methodology, the reproducibility of pixel values was not satisfactory for the tested white photostimulable plates. This wide variation in digitalization might be influenced by the amount of X-rays that sensitized the plates. It may be important to establish the reproducibility of the pixel values in quantitative studies using digital image. PMID:17119702

  3. Defective pixels in medical LCD displays: problem analysis and fundamental solution.

    PubMed

    Kimpe, Tom

    2006-03-01

    Over the past few years, traditional CRT displays have gradually been replaced by active matrix LCD displays. Each pixel in an LCD display has its own individual transistor that controls the transmittance of that pixel. Occasionally, these individual transistors will short or malfunction, resulting in a defective pixel that always shows the same brightness. This article shows how defective LCD pixels can interfere with subtle features in medical images. A defective pixel affects a broad area around it therefore possibly reducing the quality of diagnosis specifically for highly demanding applications such as mammography. A specialized image processing algorithm provides an innovative solution making these defects completely invisible and recovers information from the defect so the radiologist perceives the medical image correctly. PMID:16333716

  4. Laser pixelation of thick scintillators for medical imaging applications: x-ray studies

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Kudrolli, Haris; Marton, Zsolt; Singh, Bipin; Nagarkar, Vivek V.

    2013-09-01

    To achieve high spatial resolution required in nuclear imaging, scintillation light spread has to be controlled. This has been traditionally achieved by introducing structures in the bulk of scintillation materials; typically by mechanical pixelation of scintillators and fill the resultant inter-pixel gaps by reflecting materials. Mechanical pixelation however, is accompanied by various cost and complexity issues especially for hard, brittle and hygroscopic materials. For example LSO and LYSO, hard and brittle scintillators of interest to medical imaging community, are known to crack under thermal and mechanical stress; the material yield drops quickly with large arrays with high aspect ratio pixels and therefore the pixelation process cost increases. We are utilizing a novel technique named Laser Induced Optical Barriers (LIOB) for pixelation of scintillators that overcomes the issues associated with mechanical pixelation. In this technique, we can introduce optical barriers within the bulk of scintillator crystals to form pixelated arrays with small pixel size and large thickness. We applied LIOB to LYSO using a high-frequency solid-state laser. Arrays with different crystal thickness (5 to 20 mm thick), and pixel size (0.8×0.8 to 1.5×1.5 mm2) were fabricated and tested. The width of the optical barriers were controlled by fine-tuning key parameters such as lens focal spot size and laser energy density. Here we report on LIOB process, its optimization, and the optical crosstalk measurements using X-rays. There are many applications that can potentially benefit from LIOB including but not limited to clinical/pre-clinical PET and SPECT systems, and photon counting CT detectors.

  5. High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications

    SciTech Connect

    Izadi, Mohammad Hadi; Karim, Karim S.

    2006-05-15

    The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltages at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.

  6. Focal plane array readout integrated circuit with per-pixel analog-to-digital and digital-to-analog conversion

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart; Hottes, Alison; Pease, R. Fabian W.

    2000-07-01

    A pixel array readout integrated circuit (ROIC) containing per-pixel analog-to-digital conversion (ADC) and digital-to- analog conversion (DAC) for infrared detectors is presented with design and test result details. Fabricated in a standard 0.35 micron, 3.3 volt CMOS technology. the prototype consists of a linear array of 64 pixels, containing over 100 transistors per 30 by 30 micron pixel. The 8-bit per-pixel ADC is a Nyquist-rate single-slope design consisting of a three stage comparator and an 8 bit memory. This fully pixel- parallel ADC architecture operates in full-frame 'snapshot' mode and can reach over 1,000 frames per second. Each pixel also contains cascoded current source, globally biased to subtract an identical, fixed amount of current from each pixel in order to remove a common background signal by 'charge skimming.' It operates over more than 3 decades of current cancellation (approximately 10 pA to > 10 nA). As well, each pixel contains a 4 to 6+ bit current-mode DAC, intended to trim-out pixel-to-pixel variations in background current. It consists of 16 unit-cells of switched cascoded current sources per pixel, organized as two separately biased weights and controlled by a 16-bit per-pixel memory. The DAC operates over more than 4 decades of current cancellation (< 10 pA to approximately equals 100 nA) per least significant bit (LSB).

  7. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  8. No Pixel Left Behind - Peeling Away NASA's Satellite Swaths

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Schmaltz, J. E.; Roberts, J. T.; Alarcon, C.; Huang, T.; McGann, M.; Murphy, K. J.

    2014-12-01

    Discovery and identification of Earth Science products should not be the majority effort of scientific research. Search aides based on text metadata go to great lengths to simplify this process. However, the process is still cumbersome and requires too much data download and analysis to down select to valid products. The EOSDIS Global Imagery Browse Services (GIBS) is attempting to improve this process by providing "visual metadata" in the form of full-resolution visualizations representing geophysical parameters taken directly fromt he data. Through the use of accompanying interpretive information such as color legends and the natural visual processing of the human eye, researchers are able to search and filter through data products in a more natural and efficient way. The GIBS "visual metadata" products are generated as representations of Level 3 data or as temporal composites of the Level 2 granule- or swath-based data products projected across a geographic or polar region. Such an approach allows for low-latency tiled access to pre-generated imagery products. For many GIBS users, the resulting image suffices for a basic representation of the underlying data. However, composite imagery presents an insurmountable problem: for areas of spatial overlap within the composite, only one observation is visually represented. This is especially problematic in the polar regions where a significant portion of sensed data is "lost." In response to its user community, the GIBS team coordinated with its stakeholders to begin developing an approach to ensure that there is "no pixel left behind." In this presentation we will discuss the use cases and requirements guiding our efforts, considerations regarding standards compliance and interoperability, and near term goals. We will also discuss opportunities to actively engage with the GIBS team on this topic to continually improve our services.

  9. 128 x 128 Pixel long wavelength infrared acquisition camera

    SciTech Connect

    LeVan, P.D.; Colucci, D.; Cowan, W.D.; Figie, B.D.; Stewart, E.J.

    1994-12-31

    This paper describes a Phillips Laboratory internal design for a high sensitivity, large field of view infrared acquisition camera. Currently, the acquisition of a satellite with the 1.5 meter telescope of the Starfire Optical Range typically requires a sunlit target and dark sky. However, the level of thermal radiation from such a satellite is often sufficiently high in the Long Wavelength Infrared (LWIR) to permit detection with ground based telescopes irrespective of target illumination. The drawbacks of LWIR acquisition include the high levels of thermal radiation from both the telescope and the atmosphere which pose two constraints: (1), the ``background signal`` usually exceeds the target signal and must be removed on time scales over which it is relatively constant, and (2), associated with the background signal is a noise level that dominates all system noise sources. The background signal level at the detector array for the application varies between 10{sup 15} to 10{sup 16} photons sec{sup {minus}1} cm{sup {minus}2}, depending on the infrared bandpass used. The optical design for the LWIR acquisition camera maps a 128 x 128 pixel detector array onto a two milliradian (mrad) scene. The optical design uses two aspheric lenses, one to re-image the field onto a cold field stop, and the telescope pupil onto a cryogenic chopping mirror and collocated radiation stop. The second lens re-images the field stop onto the detector array. Aberrations are designed to be better than diffraction limited over the entire two mrad field of view. The end product of the acquisition system is a video display of the infrared scene, with the background signal removed. A user then positions mouse-driven cross hairs over a target in the scene. The resulting position and time update is used to revise the target ephemeris, and to provide pointing information for target acquisition by other SOR tracking platforms.

  10. Pixel-based ant colony algorithm for source mask optimization

    NASA Astrophysics Data System (ADS)

    Kuo, Hung-Fei; Wu, Wei-Chen; Li, Frederick

    2015-03-01

    Source mask optimization (SMO) was considered to be one of the key resolution enhancement techniques for node technology below 20 nm prior to the availability of extreme-ultraviolet tools. SMO has been shown to enlarge the process margins for the critical layer in SRAM and memory cells. In this study, a new illumination shape optimization approach was developed on the basis of the ant colony optimization (ACO) principle. The use of this heuristic pixel-based ACO method in the SMO process provides an advantage over the extant SMO method because of the gradient of the cost function associated with the rapid and stable searching capability of the proposed method. This study was conducted to provide lithographic engineers with references for the quick determination of the optimal illumination shape for complex mask patterns. The test pattern used in this study was a contact layer for SRAM design, with a critical dimension and a minimum pitch of 55 and 110 nm, respectively. The optimized freeform source shape obtained using the ACO method was numerically verified by performing an aerial image investigation, and the result showed that the optimized freeform source shape generated an aerial image profile different from the nominal image profile and with an overall error rate of 9.64%. Furthermore, the overall average critical shape difference was determined to be 1.41, which was lower than that for the other off-axis illumination exposure. The process window results showed an improvement in exposure latitude (EL) and depth of focus (DOF) for the ACO-based freeform source shape compared with those of the Quasar source shape. The maximum EL of the ACO-based freeform source shape reached 7.4% and the DOF was 56 nm at an EL of 5%.

  11. Efficient implementation of the adaptive scale pixel decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.

    2016-08-01

    Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.

  12. A 128 × 128 Pixel Complementary Metal Oxide Semiconductor Image Sensor with an Improved Pixel Architecture for Detecting Modulated Light Signals

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Oya, Yu; Kagawa, Keiichiro; Nunoshita, Masahiro; Ohta, Jun; Watanabe, Kunihiro

    A complementary metal oxide semiconductor (CMOS) image sensor for the detection of modulated light under background illumination has been developed. When an object is illuminated by a modulated light source under background illumination the sensor enables the object alone to be captured. This paper describes improvements in pixel architecture for reducing fixed pattern noise (FPN) and improving the sensitivity of the image sensor. The improved 128 × 128 pixel CMOS image sensor with a column parallel analog-to-digital converter (ADC) circuit was fabricated using 0.35-mm CMOS technology. The resulting captured images are shown and the properties of improved pixel architecture are described. The image sensor has FPN of 1/28 that of the previous image sensor and an improved pixel architecture comprising a common in-pixel amp and a correlated double sampling (CDS) circuit. The use of a split photogate increases the sensitivity of the image sensor to 1.3 times that of the previous image sensor.

  13. Automatic Extraction of Closed Pixel Clusters for Target Cueing in Hyperspectral Images

    SciTech Connect

    Paglieroni, D W; Perkins, D E

    2001-06-05

    Traditional algorithms for automatic target cueing (ATC) in hyperspectral images, such as the RX algorithm, treat anomaly detection as a simple hypothesis testing problem. Each decision threshold gives rise to a different set of anomalous pixels. The clustered Rx algorithm generates target cues by grouping anomalous pixels into spatial clusters, and retaining only those clusters that satisfy target specific spatial constraints. It produces one set of target cues for each of several decision thresholds, and conservatively requires {Omicron}(K{sup 2}) operations per pixel, where K is the number of spectral bands (which varies from hundreds to thousands in hyperspectral images). A novel ATC algorithm, known as ''Pixel Cluster Cueing'' (PCC), is discussed. PCC groups pixels into clusters based on spectral similarity and spatial proximity, and then selects only those clusters that satisfy target-specific spatial constraints as target cues. PCC requires only {Omicron}(K) operations per pixel, and it produces only one set of target cues because it is not an anomaly detection algorithm, i.e., it does not use a decision threshold to classify individual pixels as anomalies. PCC is compared both computationally and statistically to the RX algorithm.

  14. Simultaneous real-time visible and infrared video with single-pixel detectors.

    PubMed

    Edgar, Matthew P; Gibson, Graham M; Bowman, Richard W; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J; Welsh, Stephen S; Padgett, Miles J

    2015-01-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a 'single-pixel camera' to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics. PMID:26001092

  15. Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction

    NASA Technical Reports Server (NTRS)

    Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.

    2013-01-01

    The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.

  16. 640 x 480 pixel uncooled infrared FPA with SOI diode detectors

    NASA Astrophysics Data System (ADS)

    Ueno, Masashi; Kosasayama, Yasuhiro; Sugino, Takaki; Nakaki, Yoshiyuki; Fujii, Yoshio; Inoue, Hiromoto; Kama, Keisuke; Seto, Toshiki; Takeda, Munehisa; Kimata, Masafumi

    2005-05-01

    This paper describes the structure and performance of a 25-micron pitch 640 x 480 pixel uncooled infrared focal plane array (IR FPA) with silicon-on-insulator (SOI) diode detectors. The uncooled IR FPA is a thermal type FPA that has a temperature sensor of single crystal PN junction diodes formed in an SOI layer. In the conventional pixel structure, the temperature sensor and two support legs for thermal isolation are made in the lower level of the pixel, and an IR absorbing structure is made in the upper pixel level to cover almost the entire pixel area. The IR absorption utilizes IR reflections from the lower level. Since the reflection from the support leg portions is not perfect due to the slits in the metal reflector, the reflection becomes smaller as the support leg section increases in reduced pixel pitches. In order to achieve high thermal isolation and high IR absorption simultaneously, we have developed a new pixel structure that has an independent IR reflector between the lower and upper levels. The structure assures perfect IR reflection and thus improves IR absorption. The FPA shows a noise equivalent temperature difference (NETD) of 40 mK (f/1.0) and a responsivity non-uniformity of less than 0.9%. The good uniformity is due to the high uniformity of the electrical characteristics of SOI diodes made of single crystal silicon (Si). We have confirmed that the SOI diodes architecture is suitable for large format uncooled IR FPAs.

  17. Simultaneous real-time visible and infrared video with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-05-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics.

  18. Human vision-based algorithm to hide defective pixels in LCDs

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Coulier, Stefaan; Van Hoey, Gert

    2006-02-01

    Producing displays without pixel defects or repairing defective pixels is technically not possible at this moment. This paper presents a new approach to solve this problem: defects are made invisible for the user by using image processing algorithms based on characteristics of the human eye. The performance of this new algorithm has been evaluated using two different methods. First of all the theoretical response of the human eye was analyzed on a series of images and this before and after applying the defective pixel compensation algorithm. These results show that indeed it is possible to mask a defective pixel. A second method was to perform a psycho-visual test where users were asked whether or not a defective pixel could be perceived. The results of these user tests also confirm the value of the new algorithm. Our "defective pixel correction" algorithm can be implemented very efficiently and cost-effectively as pixel-dataprocessing algorithms inside the display in for instance an FPGA, a DSP or a microprocessor. The described techniques are also valid for both monochrome and color displays ranging from high-quality medical displays to consumer LCDTV applications.

  19. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  20. Development of a mixed pixel filter for improved dimension estimation using AMCW laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Sohn, Hoon; Cheng, Jack C. P.

    2016-09-01

    Accurate dimension estimation is desired in many fields, but the traditional dimension estimation methods are time-consuming and labor-intensive. In the recent decades, 3D laser scanners have become popular for dimension estimation due to their high measurement speed and accuracy. Nonetheless, scan data obtained by amplitude-modulated continuous-wave (AMCW) laser scanners suffer from erroneous data called mixed pixels, which can influence the accuracy of dimension estimation. This study develops a mixed pixel filter for improved dimension estimation using AMCW laser scanners. The distance measurement of mixed pixels is firstly formulated based on the working principle of laser scanners. Then, a mixed pixel filter that can minimize the classification errors between valid points and mixed pixels is developed. Validation experiments were conducted to verify the formulation of the distance measurement of mixed pixels and to examine the performance of the proposed mixed pixel filter. Experimental results show that, for a specimen with dimensions of 840 mm × 300 mm, the overall errors of the dimensions estimated after applying the proposed filter are 1.9 mm and 1.0 mm for two different scanning resolutions, respectively. These errors are much smaller than the errors (4.8 mm and 3.5 mm) obtained by the scanner's built-in filter.

  1. Simultaneous real-time visible and infrared video with single-pixel detectors

    PubMed Central

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-01-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics. PMID:26001092

  2. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  3. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING S0 GALAXY NGC 5195 (M51B)

    SciTech Connect

    Lee, Joon Hyeop; Kim, Sang Chul; Ree, Chang Hee; Kim, Minjin; Jeong, Hyunjin; Lee, Jong Chul; Kyeong, Jaemann E-mail: sckim@kasi.re.kr E-mail: mkim@kasi.re.kr E-mail: jclee@kasi.re.kr

    2012-08-01

    We report the properties of the interacting S0 galaxy NGC 5195 (M51B), revealed in a pixel analysis using the Hubble Space Telescope/Advanced Camera for Surveys images in the F435W, F555W, and F814W (BVI) bands. We analyze the pixel color-magnitude diagram (pCMD) of NGC 5195, focusing on the properties of its red and blue pixel sequences and the difference from the pCMD of NGC 5194 (M51A; the spiral galaxy interacting with NGC 5195). The red pixel sequence of NGC 5195 is redder than that of NGC 5194, which corresponds to the difference in the dust optical depth of 2 < {Delta}{tau}{sub V} < 4 at fixed age and metallicity. The blue pixel sequence of NGC 5195 is very weak and spatially corresponds to the tidal bridge between the two interacting galaxies. This implies that the blue pixel sequence is not an ordinary feature in the pCMD of an early-type galaxy, but that it is a transient feature of star formation caused by the galaxy-galaxy interaction. We also find a difference in the shapes of the red pixel sequences on the pixel color-color diagrams (pCCDs) of NGC 5194 and NGC 5195. We investigate the spatial distributions of the pCCD-based pixel stellar populations. The young population fraction in the tidal bridge area is larger than that in other areas by a factor >15. Along the tidal bridge, young populations seem to be clumped particularly at the middle point of the bridge. On the other hand, the dusty population shows a relatively wide distribution between the tidal bridge and the center of NGC 5195.

  4. Simulating urban land cover changes at sub-pixel level in a coastal city

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang

    2014-10-01

    The simulation of urban expansion or land cover changes is a major theme in both geographic information science and landscape ecology. Yet till now, almost all of previous studies were based on grid computations at pixel level. With the prevalence of spectral mixture analysis in urban land cover research, the simulation of urban land cover at sub-pixel level is being put into agenda. This study provided a new approach of land cover simulation at sub-pixel level. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover data through supervised classification. Then the two classified land cover data were utilized to extract the transformation rule between 2002 and 2007 using logistic regression. The transformation possibility of each land cover type in a certain pixel was taken as its percent in the same pixel after normalization. And cellular automata (CA) based grid computation was carried out to acquire simulated land cover on 2007. The simulated 2007 sub-pixel land cover was testified with a validated sub-pixel land cover achieved by spectral mixture analysis in our previous studies on the same date. And finally the sub-pixel land cover of 2017 was simulated for urban planning and management. The results showed that our method is useful in land cover simulation at sub-pixel level. Although the simulation accuracy is not quite satisfactory for all the land cover types, it provides an important idea and a good start in the CA-based urban land cover simulation.

  5. Study on pixel matching method of the multi-angle observation from airborne AMPR measurements

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han

    2015-10-01

    For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.

  6. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  7. SMARTPIX, a photon-counting pixel detector for synchrotron applications based on Medipix3RX readout chip and active edge pixel sensors

    NASA Astrophysics Data System (ADS)

    Ponchut, C.; Collet, E.; Hervé, C.; Le Caer, T.; Cerrai, J.; Siron, L.; Dabin, Y.; Ribois, J. F.

    2015-01-01

    Photon-counting pixel detectors are now routinely used on synchrotron beamlines. Many applications benefit from their noiseless mode of operation, single-pixel point spread function and high frame rates. One of their drawbacks is a discontinuous detection area due to the space-consuming wirebonded connections of the readout chips. Moreover, charge sharing limits their efficiency and their energy discrimination capabilities. In order to overcome these issues the ESRF is developing SMARTPIX,a scalable and versatile pixel detector system with minimized dead areas and with energy resolving capabilities based on the MEDIPIX3RX readout chip. SMARTPIX exploits the through-silicon via technology implemented on MEDIPIX3RX, the active edge sensor processing developed in particular at ADVACAM, and the on-chip analog charge summing feature of MEDIPIX3RX. This article reports on system architecture, unit module structure, data acquisition electronics, target characteristics and applications.

  8. Restoration of hot pixels in digital imagers using lossless approximation techniques

    NASA Astrophysics Data System (ADS)

    Hadar, O.; Shleifer, A.; Cohen, E.; Dotan, Y.

    2015-09-01

    During the last twenty years, digital imagers have spread into industrial and everyday devices, such as satellites, security cameras, cell phones, laptops and more. "Hot pixels" are the main defects in remote digital cameras. In this paper we prove an improvement of existing restoration methods that use (solely or as an auxiliary tool) some average of the surrounding single pixel, such as the method of the Chapman-Koren study 1,2. The proposed method uses the CALIC algorithm and adapts it to a full use of the surrounding pixels.

  9. Service cylinder electronics for the CMS Forward Pixel Phase 1 Upgrade

    NASA Astrophysics Data System (ADS)

    Durgut, Suleyman; CMS Collaboration

    2016-03-01

    The Phase 1 upgrade of the CMS forward pixel detector includes three disks on each side of the interaction point containing a total of 672 modules for a total of about 45 million pixels. A description will be given of the readout, powering, and control chain electronics that are located in the service cylinders outside of the acceptance of the CMS tracker. The status of the production of all the electronics components of the forward pixel service cylinders will be discussed along with the description of the tests performed for quality assurance purposes.

  10. Improved AC pixel electrode circuit for active matrix of organic light-emitting display

    NASA Astrophysics Data System (ADS)

    Si, Yujuan; Lang, Liuqi; Chen, Wanzhong; Liu, Shiyong

    2004-05-01

    In this paper, a modified four-transistor pixel circuit for active-matrix organic light-emitting displays (AMOLED) was developed to improve the performance of OLED device. This modified pixel circuit can provide an AC driving mode to make the OLED working in a reversed-biased voltage during the certain cycle. The optimized values of the reversed-biased voltage and the characteristics of the pixel circuit were investigated using AIM-SPICE. The simulated results reveal that this circuit can provide a suitable output current and voltage characteristic, and little change was made in luminance current.

  11. Beam test results of the BTeV silicon pixel detector

    SciTech Connect

    Gabriele Chiodini et al.

    2000-09-28

    The authors have described the results of the BTeV silicon pixel detector beam test. The pixel detectors under test used samples of the first two generations of Fermilab pixel readout chips, FPIX0 and FPIX1, (indium bump-bonded to ATLAS sensor prototypes). The spatial resolution achieved using analog charge information is excellent for a large range of track inclination. The resolution is still very good using only 2-bit charge information. A relatively small dependence of the resolution on bias voltage is observed. The resolution is observed to depend dramatically on the discriminator threshold, and it deteriorates rapidly for threshold above 4000e{sup {minus}}.

  12. Design and test of clock distribution circuits for the Macro Pixel ASIC

    NASA Astrophysics Data System (ADS)

    Gaioni, L.; De Canio, F.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.

    2016-07-01

    Clock distribution circuits account for a significant fraction of the power dissipation of the Macro Pixel ASIC (MPA), designed for the pixel layer readout of the so-called Pixel-Strip module in the innermost part of the CMS tracker at the High Luminosity LHC. A test chip including low power clock distribution circuits of the MPA has been designed in a 65 nm CMOS technology and thoroughly tested. This work summarizes the experimental results relevant to the prototype chip, focusing particularly on the power and speed performance and compares such results with those coming from circuit simulations.

  13. Overview and present status of the CMS Phase 1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Lipinski, M.

    2016-07-01

    During Run 2 of the LHC a significant luminosity increase to 2 ×1034cm-2s-1 is foreseen. As the innermost tracking device of CMS, the silicon pixel detector has to cope with large particle fluxes and radiation damage. To maintain the present high tracking efficiency, the current pixel detector will be replaced during an extended winter shutdown in 2016/2017. The design of the new detector is described, with a special focus on the construction and testing of the pixel modules.

  14. Automated procedures for the assembly of the CMS Phase 1 upgrade pixel modules

    NASA Astrophysics Data System (ADS)

    Wade, Alex; CMS Collaboration

    2016-03-01

    The Phase 1 upgrade of the pixel tracker for the CMS experiment requires the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. The precision assembly of modules in this volume is made possible using several robotic processes for dispensing epoxy,positioning of sensor components, automatic wire-bonding and robotic deposition of elastomer for wire bond encapsulation. We will describe the these processes in detail, along with the measurements that quanitfy the quality of assembled modules, and describe the subsequent steps in which the sensor modules are used in the construction of the Phase 1 pixel tracker. With support from USCMS.

  15. Latest pixel size reduction of uncooled IR-FPA at CEA, LETI

    NASA Astrophysics Data System (ADS)

    Becker, Sebastien; Imperinetti, Pierre; Yon, Jean-Jacques; Ouvrier-Buffet, Jean-Louis; Goudon, Valérie; Hamelin, Antoine; Vialle, Claire; Arnaud, Agnès.

    2012-10-01

    Recent developments at the Infrared Lab (LIR) of CEA, LETI have been concentrated on the pixel size reduction of uncooled infrared detectors. With the support from French company ULIS, we have successfully demonstrated the technological integration of 12μm pixels on a commercial TV-format read-out circuit (VGA-ROIC) supplied by ULIS. The 12μm pixel has been designed, processed and characterized in CEA, LETI and first results showed exceptional performances. This paper presents the characterization and associated imagery results.

  16. 128 x 128 pixel uncooled bolometric FPA for IR detection and imaging

    NASA Astrophysics Data System (ADS)

    Jerominek, Hubert; Pope, Timothy D.; Alain, Christine; Zhang, Rose; Lehoux, Mario; Picard, Francis; Fuchs, R. Wayne; Grenier, Carol; Rouleau, Yves; Cayer, Felix; Savard, Simon; Bilodeau, Ghislain; Couillard, Jean-Francois; Larouche, Carl; Ngo, Linh P.

    1998-10-01

    An uncooled IR camera making use of a 128 X 128 pixel bolometric FPA is presented. The reconfigurable bolometric focal plane array consist of 50 micrometer X 50 micrometer pixels and simple on-chip CMOS readout electronics which can be operated in random access, independent row and column clocking, and self-scanning modes. Depending on the selected pixel format and frame rate, the FPA's NETD varies from 0.52 degrees Celsius down to 0.10 degrees Celsius. The modular IR camera is software configured and provides RS170A analog video and 12-bit TTL format digital outputs.

  17. Uncooled long-wave infrared small pixel focal plane array and system challenges

    NASA Astrophysics Data System (ADS)

    Lohrmann, Dieter; Littleton, Roy; Reese, Colin; Murphy, Dan; Vizgaitis, Jay

    2013-06-01

    There is a strong motivation for smaller pixels based on end-user demand for lower-cost, higher-resolution camera systems both for military and commercial applications. Uncooled detector technology fits the need for a low size, weight, and power system. We explore the tradeoffs and challenges to achieving pixel designs smaller than the current 17-μm state-of-the-art detectors without loss in sensitivity or resolution. For illustration we consider a 12-μm design. We also address modulation transfer function issues as the pixel size shrinks, and examine the difference between the performance of present devices and the theoretical performance limit for uncooled detectors.

  18. Improving Kepler Pipeline Sensitivity with Pixel Response Function Photometry.

    NASA Astrophysics Data System (ADS)

    Morris, Robert L.; Bryson, Steve; Jenkins, Jon Michael; Smith, Jeffrey C

    2014-06-01

    We present the results of our investigation into the feasibility and expected benefits of implementing PRF-fitting photometry in the Kepler Science Processing Pipeline. The Kepler Pixel Response Function (PRF) describes the expected system response to a point source at infinity and includes the effects of the optical point spread function, the CCD detector responsivity function, and spacecraft pointing jitter. Planet detection in the Kepler pipeline is currently based on simple aperture photometry (SAP), which is most effective when applied to uncrowded bright stars. Its effectiveness diminishes rapidly as target brightness decreases relative to the effects of noise sources such as detector electronics, background stars, and image motion. In contrast, PRF photometry is based on fitting an explicit model of image formation to the data and naturally accounts for image motion and contributions of background stars. The key to obtaining high-quality photometry from PRF fitting is a high-quality model of the system's PRF, while the key to efficiently processing the large number of Kepler targets is an accurate catalog and accurate mapping of celestial coordinates onto the focal plane. If the CCD coordinates of stellar centroids are known a priori then the problem of PRF fitting becomes linear. A model of the Kepler PRF was constructed at the time of spacecraft commissioning by fitting piecewise polynomial surfaces to data from dithered full frame images. While this model accurately captured the initial state of the system, the PRF has evolved dynamically since then and has been seen to deviate significantly from the initial (static) model. We construct a dynamic PRF model which is then used to recover photometry for all targets of interest. Both simulation tests and results from Kepler flight data demonstrate the effectiveness of our approach. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science

  19. Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure.

    PubMed

    Zhang, Jie; Xiong, Tao; Tran, Trac; Chin, Sang; Etienne-Cummings, Ralph

    2016-04-18

    We present a low power all-CMOS implementation of temporal compressive sensing with pixel-wise coded exposure. This image sensor can increase video pixel resolution and frame rate simultaneously while reducing data readout speed. Compared to previous architectures, this system modulates pixel exposure at the individual photo-diode electronically without external optical components. Thus, the system provides reduction in size and power compare to previous optics based implementations. The prototype image sensor (127 × 90 pixels) can reconstruct 100 fps videos from coded images sampled at 5 fps. With 20× reduction in readout speed, our CMOS image sensor only consumes 14μW to provide 100 fps videos. PMID:27137331

  20. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.