Science.gov

Sample records for 360nm galaxy counts

  1. Vector perturbations of galaxy number counts

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Tansella, Vittorio

    2016-07-01

    We derive the contribution to relativistic galaxy number count fluctuations from vector and tensor perturbations within linear perturbation theory. Our result is consistent with the the relativistic corrections to number counts due to scalar perturbation, where the Bardeen potentials are replaced with line-of-sight projection of vector and tensor quantities. Since vector and tensor perturbations do not lead to density fluctuations the standard density term in the number counts is absent. We apply our results to vector perturbations which are induced from scalar perturbations at second order and give numerical estimates of their contributions to the power spectrum of relativistic galaxy number counts.

  2. SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS

    SciTech Connect

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.

  3. Combining cluster number counts and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Rosenfeld, Rogerio

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  4. Far-Ultraviolet Number Counts of Field Galaxies

    NASA Technical Reports Server (NTRS)

    Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.

    2010-01-01

    The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".

  5. Passive Evolution: Are the Faint Blue Galaxy Counts Produced by a Population of Eternally Young Galaxies?

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard J.; Silk, Joseph

    1996-11-01

    A constant-age population of blue galaxies, postulated in the model of Gronwall & Koo, seems to provide an attractive explanation of the excess of very blue galaxies in the deep galaxy counts. Such a population may be generated by a set of galaxies with cycling star formation rates or, at the other extreme, be maintained by the continual formation of new galaxies that fade after they reach the age specified in the Gronwall & Koo model. For both of these hypotheses, we have calculated the luminosity functions, including the respective selection criteria, the redshift distributions, and the number counts in the BJ and K bands. We find a substantial excess in the number of galaxies at low redshift (0 < z < 0.05) over that observed in the Canada-France-Hawaii redshift survey (Lilly et al.) and at the faint end of the Las Campanas luminosity function (Lin et al.). Passive or mild evolution fails to account for the deep galaxy counts because of the implications for low-redshift determinations of the I-selected redshift distribution and the r-selected luminosity function in samples where the faded counterparts of the star-forming galaxies would be detectable.

  6. The opacity of spiral disks from counts of distant galaxies.

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Gonzalez, R. A.; Allen, R. J.; van der Kruit, P. C.

    2004-12-01

    The numbers of distant galaxies seen in an HST image of a spiral galaxy is an indication of the average extinction by dust in the disk. This number of distant galaxies has to be calibrated for crowding effects and for this the ``Synthetic Field Method'' (SFM, Gonzalez et al. 1998) was developed. Synthetic fields are the science field with a dimmed Hubble Deep Field added. From the relation between the dimming and the number of synthetic galaxies, the average extinction in the science field can be derived. 32 HST/WFPC2 fields were analysed and from the numbers of distant galaxies an average radial extinction profile for spiral disks was constructed, for the whole sample, arm and disk regions and different Hubble types. When the average radial extinction profile is compared to the HI surface density profile, an estimate of the average gas-to-dust ratio as a function of radius can be obtained. The effects of the phase of the hydrogen and metallicity gradient in disks are discussed. The average radial extinction profile is compared to the light distribution of spiral disks. The relation between typical radii of light and dust and the relation between surface brightness and extinction is also explored. Combining the detailed images of dust emission from the Spitzer space telescope with the extinction measurements from counts in HST images could offer insight into the relative prominence of cold dust and possibly the dust geometry in the disk. Future work on dust extinction using the wealth of new imaging in the HST archive is briefly discussed. This research was supported by funding from STSCI, the Director's Discretionary Research Fund and the Kapteyn Institute.

  7. GALAXY COUNTS ON THE COSMIC MICROWAVE BACKGROUND COLD SPOT

    SciTech Connect

    Granett, Benjamin R.; Szapudi, Istvan; Neyrinck, Mark C.

    2010-05-01

    The cold spot on the cosmic microwave background (CMB) could arise due to a supervoid at low redshift through the integrated Sachs-Wolfe effect. We imaged the region with MegaCam on the Canada-France-Hawaii Telescope and present galaxy counts in photometric redshift bins. We rule out the existence of a 100 Mpc radius spherical supervoid with underdensity {delta} = -0.3 at 0.5 < z < 0.9 at high significance. The data are consistent with an underdensity at low redshift, but the fluctuations are within the range of cosmic variance and the low-density areas are not contiguous on the sky. Thus, we find no strong evidence for a supervoid. We cannot resolve voids smaller than a 50 Mpc radius; however, these can only make a minor contribution to the CMB temperature decrement.

  8. The Galaxy Counts-in-cells Distribution from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Yang, Abel; Saslaw, William C.

    2011-03-01

    We determine the galaxy counts-in-cells distribution from the Sloan Digital Sky Survey (SDSS) for three-dimensional spherical cells in redshift space as well as for two-dimensional projected cells. We find that cosmic variance in the SDSS causes the counts-in-cells distributions in different quadrants to differ from each other by up to 20%. We also find that within this cosmic variance, the overall galaxy counts-in-cells distribution agrees with both the gravitational quasi-equilibrium distribution and the negative binomial distribution. We also find that brighter galaxies are more strongly clustered than if they were randomly selected from a larger complete sample that includes galaxies of all luminosities. The results suggest that bright galaxies could be in dark matter halos separated by less than ~10 h -1 Mpc.

  9. Emission Features and Source Counts of Galaxies in Mid-Infrared

    NASA Technical Reports Server (NTRS)

    Xu, C.; Hacking, P. B.; Fang, F.; Shupe, D. L.; Lonsdale, C. J.; Lu, N. Y.; Helou, G.; Stacey, G. J.; Ashby, M. L. N.

    1998-01-01

    In this work we incorporate the newest ISO results on the mid-infrared spectral-energy-distributions (MIR SEDs) of galaxies into models for the number counts and redshift distributions of MIR surveys.

  10. A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES

    SciTech Connect

    Bethermin, Matthieu; Daddi, Emanuele; Sargent, Mark T.; Elbaz, David; Mullaney, James; Pannella, Maurilio; Hezaveh, Yashar; Le Borgne, Damien; Buat, Veronique; Charmandaris, Vassilis; Lagache, Guilaine; Scott, Douglas

    2012-10-01

    We reproduce the mid-infrared to radio galaxy counts with a new empirical model based on our current understanding of the evolution of main-sequence (MS) and starburst (SB) galaxies. We rely on a simple spectral energy distribution (SED) library based on Herschel observations: a single SED for the MS and another one for SB, getting warmer with redshift. Our model is able to reproduce recent measurements of galaxy counts performed with Herschel, including counts per redshift slice. This agreement demonstrates the power of our 2-Star-Formation Modes (2SFM) decomposition in describing the statistical properties of infrared sources and their evolution with cosmic time. We discuss the relative contribution of MS and SB galaxies to the number counts at various wavelengths and flux densities. We also show that MS galaxies are responsible for a bump in the 1.4 GHz radio counts around 50 {mu}Jy. Material of the model (predictions, SED library, mock catalogs, etc.) is available online.

  11. Measuring the Cosmic Equation of State with Counts of Galaxies.

    PubMed

    Newman; Davis

    2000-05-01

    The classical dN/dz test allows one to determine fundamental cosmological parameters from the evolution of the cosmic volume element. This test is applied by measuring the redshift distribution of a tracer whose evolution in number density is known. In the past, ordinary galaxies have been used for this; however, in the absence of a complete theory of galaxy formation, that method is fraught with difficulties. In this Letter, we propose studying instead the evolution of the apparent numbers of dark matter halos as a function of their circular velocity, observable via the line widths or rotation speeds of visible galaxies. Upcoming redshift surveys will allow the line width distribution of galaxies to be determined at both z approximately 1 and the present day. In the course of studying this test, we have devised a rapid, improved semianalytic method for calculating the circular velocity distribution of dark halos based on the analytic mass function of Sheth, Mo, & Tormen and the formation time distribution of Lacey & Cole. We find that if selection effects are well controlled and minimal external constraints are applied, the planned DEEP Redshift Survey could allow us to measure the cosmic equation-of-state parameter w to +/-10% (as little as 3% if Omegam has been well determined from other observations). This type of test also has the potential to provide a constraint on any evolution of w, such as that predicted by "tracker" models. PMID:10790059

  12. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties, Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, T.; Takeuchi, T. T.

    2001-12-01

    A new model of infrared galaxy counts and the cosmic background radiation (CBR) is developed by extending a model for optical/near-infrared galaxies. Important new characteristics of this model are that mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that the big grain dust temperature T dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T dust and total infrared luminosity L IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L IR-T dust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μ m) and CBR by this model. We found considerably different results from most of previous works based on the empirical L IR-T dust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40--80K). This indicates that intense starbursts of forming elliptical galaxies should have occurred at z ~ 2--3, in contrast to the previous results that significant starbursts beyond z ~ 1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE\\ detections of FIR CBR. The authors thank the financial support by the Japan Society for Promotion of Science.

  13. QUASAR-GALAXY CLUSTERING THROUGH PROJECTED GALAXY COUNTS AT z = 0.6-1.2

    SciTech Connect

    Zhang Shaohua; Zhou Hongyan; Wang Tinggui; Wang Huiyuan E-mail: twang@ustc.edu.cn

    2013-08-20

    We investigate the spatial clustering of galaxies around quasars at z = 0.6-1.2 using photometric data from Sloan Digital Sky Survey Stripe 82. The quasar and galaxy cross-correlation functions are measured through the projected galaxy number density n(r{sub p} ) on scales of 0.05 < r{sub p} < 20 h {sup -1} Mpc around quasars for a sample of 2300 quasars from Schneider et al. We detect strong clustering signals at all redshifts and find that the clustering amplitude increases significantly with redshift. We examine the dependence of quasar-galaxy clustering on quasar and galaxy properties and find that the clustering amplitude is significantly larger for quasars with more massive black holes or with bluer colors, while there is no dependence on quasar luminosity. We also show that quasars have a stronger correlation amplitude with blue galaxies than with red galaxies. We finally discuss the implications of our findings.

  14. A Bridge from Optical to Infrared Galaxies: Explaining Local Properties and Predicting Galaxy Counts and the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Takeuchi, Tsutomu T.

    2002-05-01

    We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z~2-3, in contrast to the previous results that significant starbursts beyond z~1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma

  15. Deep Galex Observations of the Coma Cluster: Source Catalog and Galaxy Counts

    NASA Technical Reports Server (NTRS)

    Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.

    2010-01-01

    We present a source catalog from deep 26 ks GALEX observations of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The observed field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX

  16. FAINT SUBMILLIMETER GALAXY COUNTS AT 450 {mu}m

    SciTech Connect

    Chen, Chian-Chou; Cowie, Lennox L.; Barger, Amy J.; Casey, Caitlin M.; Lee, Nicholas; Sanders, David B.; Williams, Jonathan P.; Wang, Wei-Hao

    2013-01-10

    We present the results of SCUBA-2 observations at 450 {mu}m and 850 {mu}m of the field lensed by the massive cluster A370. With a total survey area >100 arcmin{sup 2} and 1{sigma} sensitivities of 3.92 and 0.82 mJy beam{sup -1} at 450 and 850 {mu}m, respectively, we find a secure sample of 20 sources at 450 {mu}m and 26 sources at 850 {mu}m with a signal-to-noise ratio (S/N) > 4. Using the latest lensing model of A370 and Monte Carlo simulations, we derive the number counts at both wavelengths. The 450 {mu}m number counts probe a factor of four deeper than the counts recently obtained from the Herschel Space Telescope at similar wavelengths, and we estimate that {approx}47%-61% of the 450 {mu}m extragalactic background light resolved into individual sources with 450 {mu}m fluxes greater than 4.5 mJy. The faint 450 {mu}m sources in the 4{sigma} sample have positional accuracies of 3 arcsec, while brighter sources (S/N >6{sigma}) are good to 1.4 arcsec. Using a deep radio map (1{sigma} {approx} 6 {mu}Jy) we find that the percentage of submillimeter sources having secure radio counterparts is 85% for 450 {mu}m sources with intrinsic fluxes >6 mJy and 67% for 850 {mu}m sources with intrinsic fluxes >4 mJy. We also find that 67% of the >4{sigma} 450 {mu}m sources are detected at 850 {mu}m, while the recovery rate at 450 {mu}m of >4{sigma} 850 {mu}m sources is 54%. Combined with the source redshifts estimated using millimetric flux ratios, the recovered rate is consistent with the scenario where both 450 {mu}m and 20 cm emission preferentially select lower redshift dusty sources, while 850 {mu}m emission traces a higher fraction of dusty sources at higher redshifts. We identify potential counterparts in various wavelengths from X-ray to mid-infrared and measure the multiwavelength photometry, which we then use to analyze the characteristics of the sources. We find three X-ray counterparts to our robust submillimeter sample (S/N > 5), giving an active galactic nucleus

  17. Deep galaxy count predictions in the radio, infrared, and X-ray spectral bands

    NASA Technical Reports Server (NTRS)

    Treyer, Marie-Agnes; Silk, Joseph

    1993-01-01

    The existence of a dominant population of strongly evolving starburst sources at moderate redshift is a plausible explanation for the excess number of faint blue galaxies detected in deep sky surveys. Multiwavelength observations at faint magnitudes would allow the existence of such a population to be confirmed. We use observed luminosity correlations and physical properties of known starburst galaxies to predict their contribution to the deep radio, infrared, and X-ray counts, as well as to the diffuse extragalactic background radiation in these various spectral bands.

  18. The number counts and infrared backgrounds from infrared-bright galaxies

    NASA Technical Reports Server (NTRS)

    Hacking, P. B.; Soifer, B. T.

    1991-01-01

    Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum.

  19. The number counts and infrared backgrounds from infrared-bright galaxies

    SciTech Connect

    Hacking, P.B.; Soifer, B.T. California Institute of Technology, Pasadena )

    1991-02-01

    Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum. 22 refs.

  20. Deep galaxy counts in the K band with the Kech telescope

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Soifer, B. T.; Pahre, M. A.; Larkin, J. E.; Smith, J. D.; Neugebauer, G.; Smail, I.; Matthews, K.; Hogg, D. W.; Blandford, R. D.

    1995-01-01

    We present deep galaxy counts in the K (lambda 2.2 micrometer) band, obtained at the W. M. Kech 10 m telescope. The data reach limiting magnitudes K approximately 24 mag, about 5 times deeper than the deepest published K-band images to date. The counts are performed in three small (approximately 1 min), widely separated high-latitude fields. Extensive Monte Carlo tests were used to derive the comleteness corrections and minimize photometric biases. The counts continue to rise, with no sign of a turnover, down to the limits of our data, with the logarithmic slope of d log N/dm = 0.315 +/- 0.02 between K = 20 and 24 mag. This implies a cumulative surface density of approximately 5 x 10(exp 5) galaxies/sq deg, or approximately 2 x 10(exp 10) over the entire sky, down to K = 24 mag. Our counts are in good agreement with, although slightly lower than, those from the Hawaii Deep Survey by Cowie and collaborators; the discrepancies may be due to the small differences in the aperture corrections. We compare our counts with some of the available theoretical predictions. The data do not require models with a high value of Omega(sub 0), but can be well fitted by models with no (or little) evolution, and cosmologies with a low value of Omega(sub 0). Given the uncertainties in the models, it may be premature to put useful constrains on the value of Omega(sub 0) from the counts alone. Optical-to-IR colors are computed, using CCD data obtaind previously at Palomar. We find a few red galaxies with (r-K) approximately greater than 5 mag, or (i-K) approximately greater than 5 mag; these may be ellipticals at z approximately 1. While the redshift distribution of galaxies in our counts is still unknown, the flux limits reached would allow us to detect unobscured L(sub *) galaxies out to substantial redshifts (z greater than 3?).

  1. Simulations of deep galaxy fields. 1: Monte Carlo simulations of optical and near-infrared counts

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Lonsdale, Carol J.; Mazzei, Paola; De Zotti, Gianfranco

    1994-01-01

    Monte Carlo simulations of three-dimensional galaxy distributions are performed, following the 1988 prescription of Chokshi & Wright, to study the photometric properties of evolving galaxy populations in the optical and near-infrared bands to high redshifts. In this paper, the first of a series, we present our baseline model in which galaxy numbers are conserved, and in which no explicit 'starburst' population is included. We use the model in an attempt to simultaneously fit published blue and near-infrared photometric and spectroscopic observations of deep fields. We find that our baseline models, with a formation redshift, z(sub f), of 1000, and H(sub 0) = 50, are able to reproduce the blue counts to b(sub j) = 22, independent of the value of Omega(sub 0), and also to provide a satisfactory fit to the observed blue-band redshift distributions, but for no value of Omega(sub 0) do we achieve an acceptable fit to the fainter blue counts. In the K band, we fit the number counts to the limit of the present-day surveys only for an Omega(sub 0) = 0 cosmology. We investigate the effect on the model fits of varying the cosmological parameters H(sub 0), the formation red-shift z(sub f), and the local luminosity function. Changing H(sub 0) does not improve the fits to the observations. However, reducing the epoch of a galaxy formation used in our simulations has a substantial effect. In particular, a model with z(sub f) approximately equal to 5 in a low Omega(sub 0) universe improves the fit to the faintest photometric blue data without any need to invoke a new population of galaxies, substantial merging, or a significant starburst galaxy population. For an Omega(sub 0) = 1 universe, however, reducing z(sub f) is less successful at fitting the blue-band counts and has little effect at all at K. Varying the parameters of the local luminosity function can also have a significant effect. In particular the steep low end slope of the local luminosity function of Franceschini et

  2. Hubble Space Telescope Counts of Elliptical Galaxies: Constraints on Cosmological Models?

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Windhorst, Rogier A.; Phillipps, Steven; Bristow, Paul D.

    1996-04-01

    The interpretation of galaxy number counts in terms of cosmological models is fraught with difficulty because of uncertainties in the overall galaxy population (mix of morphological types, luminosity functions, etc.) and in the observations (loss of low surface brightness images, image blending, etc.). Many of these can be overcome if we use deep high- resolution imaging of a single class of high surface brightness galaxies, whose evolution is thought to be fairly well understood. This is now possible by selecting elliptical and S0 galaxies using Hubble Space Telescope images from the Medium Deep Survey and other ultradeep Wide Field and Planetary Camera 2 images. In the present paper, we examine whether such data can be used to discriminate between open and closed universes, or between conventional cosmological models and those dominated by a cosmological constant. We find, based on the currently available data, that unless elliptical galaxies undergo very strong merging since z ~ 1 (and/or very large errors exist in the morphological classifications), then flat models dominated by a cosmological constant are ruled out. However, both an Einstein-de Sitter ({OMEGA}_0_ = 1) model with standard passive stellar evolution and an open ({OMEGA}_0_ = 0.05) model with no net evolution (i.e., canceling stellar and dynamical evolution) predict virtually identical elliptical and S0 galaxy counts. Based on these findings and the recent reportings of H_0_ ~ 80 km s^- 1^ Mpc^-1^, we find that the maximum acceptable age of the universe is 13.3 Gyr, and a value of <= 9 Gyr is favored. A flat ({LAMBDA} not equal to 0) universe is therefore not a viable solution to the H_0_/globular cluster age problem.

  3. Faint blue counts from formation of dwarf galaxies at z approximately equals 1

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Rees, Martin J.

    1993-01-01

    The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.

  4. Comparative study of the lethal effects of near-UV light (360 nm) and 8-methoxypsoralen plus near-UV on plasmid DNA

    SciTech Connect

    Paramio, J.M.; Bauluz, C.; de Vidania, R. )

    1991-01-01

    The authors have studied the lethality produced on pBR322 by near-UV radiation and by 8-Methoxypsoralen plus near-UV (PUV treatment). Samples of pBR322 DNA were irradiated with increasing fluences of 360 nm-light either in the absence or presence of 400 molecules of 8-Methoxypsoralen (8-MOP) per plasmid molecule. They have estimated to what extent the global lethality of PUVA treatment is due to the presence of psoralen adducts in DNA or to radiation itself. In order to analyse the involvement of DNA repair mechanisms in the removal of plasmid lesions, several strains of E. coli (differing in their repair capacities) they are used as recipients of the treated plasmids. Results showed that excision and recombination participate in the repair of near-UV-induced plasmid lesions. Repair of PUV-induced lesions showed an even greater requirement of the excision pathway. Besides, a slight increase on plasmid mutation frequencies was observed after near-UV or PUV treatment in wild type and uvrA cells. Estimation of the contribution of 8-MOP to the global lethality of PUV treatment showed that only the excision pathway was involved in removing psoralen adducts from plasmid DNA, suggesting the involvement of the recombinational pathway in the repair of near-UV-derived lesions.

  5. The universe at faint magnitudes. I - Models for the galaxy and the predicted star counts

    NASA Astrophysics Data System (ADS)

    Bahcall, J. N.; Soneira, R. M.

    1980-09-01

    A detailed model is constructed for the disk and spheroid components of the Galaxy from which the distribution of visible stars and mass in the Galaxy is calculated. The application of star counts to the determination of galactic structure parameters is demonstrated. The possibility of detecting a halo component with the aid of star counts is also investigated quantitatively. The stellar luminosity functions and scale heights are determined from observations in the solar neighborhood. The global distribution of matter is assumed, based on studies of other galaxies, to be an exponential disk plus a de Vaucouleurs spheroid. The spheroid luminosity function is found to have the same shape as the disk luminosity function over the range of absolute magnitudes (+4 to + 12) that contributes significantly to the star counts for mV ≤ 30. The density of spheroid stars in the solar neighborhood is 1/800 of the value for the disk. The star counts calculated using the density variation of a de Vaucouleurs spheroid are consistent with the available data; the counts predicted with the aid of a Hubble law are inconsistent with observations at more than the two-sigma level of significance. The variations of the calculated star densities with apparent magnitude, latitude, and longitude agree well with the available star count data for the observationally well studied range of 4 ≲ mV ≲ 22. The calculated (B - V) color distributions are also in good agreement with existing data. The color data also indicate that QSOs comprise only a few percent of the total number of stellar objects to mV = 22 (mB = 22.5). The spheroid component is found to be approximately spherical. The scale lengths of the Galaxy model and computed total luminosity and M/L ratios for the disk and spheroid are in agreement with observations of other Sbc galaxies. Illustrative Fig. and a table of interesting characteristics (such as the mass and luminosity contained within various radii and the escape velocity

  6. Counts of galaxy clusters as cosmological probes: the impact of baryonic physics

    SciTech Connect

    Balaguera-Antolínez, Andrés; Porciani, Cristiano E-mail: porciani@astro.uni-bonn.de

    2013-04-01

    The halo mass function from N-body simulations of collisionless matter is generally used to retrieve cosmological parameters from observed counts of galaxy clusters. This neglects the observational fact that the baryonic mass fraction in clusters is a random variable that, on average, increases with the total mass (within an overdensity of 500). Considering a mock catalog that includes tens of thousands of galaxy clusters, as expected from the forthcoming generation of surveys, we show that the effect of a varying baryonic mass fraction will be observable with high statistical significance. The net effect is a change in the overall normalization of the cluster mass function and a milder modification of its shape. Our results indicate the necessity of taking into account baryonic corrections to the mass function if one wants to obtain unbiased estimates of the cosmological parameters from data of this quality. We introduce the formalism necessary to accomplish this goal. Our discussion is based on the conditional probability of finding a given value of the baryonic mass fraction for clusters of fixed total mass. Finally, we show that combining information from the cluster counts with measurements of the baryonic mass fraction in a small subsample of clusters (including only a few tens of objects) will nearly optimally constrain the cosmological parameters.

  7. Digitized POSS-II: Galaxy Number Counts in Two Colors Over a Multi-Plate Region

    NASA Astrophysics Data System (ADS)

    Weir, N.; Djorgovski, S.; Fayyad, U.

    1993-05-01

    We have developed a software system for the reduction and analysis of the Palomar-STScI Digital Sky Survey (cf. B.A.A.S. 23, p. 1434, and B.A.A.S. 24, pp. 741, 750, and 1139). This system, named SKICAT, uses a number of image processing and machine-learning based modules, and conducts pipeline processing of the plate scans, from raw pixel measurement, object classification, photometric matching of multiple plate images, to high-level catalog database manipulation using an X-windows based GUI. We are now in the process of implementing a variety of tools for the scientific and multivariate statistical analysis of the object catalogs. We will present our initial results on galaxy and star counts in two colors (photographic J and F, calibrated to Gunn g and r bands), for a multi-plate region near the north Galactic pole, covering up to 5 Survey fields ( ~ 125 square degrees), and up to 11 Survey fields ( ~ 275 square degrees) in a single color. The data have been uniformly calibrated using CCD sequences and plate overlaps over the range 16 < r < 20, within which we are over 90% complete. We also performed extensive tests to assure the accuracy of automatic galaxy classifications over this magnitude range. Previous results from the southern APM Survey implied dramatic evolution of galaxies at low redshift. We will present our new galaxy counts as function of magnitudes colors in the context of these measurements and galaxy evolution models. Acknowledgements: The POSS-II is partially funded by grants to Caltech from the Eastman Kodak Co., the National Geographic Society, the Samuel Oschin Foundation, the NSF grants AST 84-08225 and AST 87-19465, and the NASA grants NGL 05002140 and NAGW 1710. NW was supported in part by a NSF graduate fellowship and by IPAC. SD acknowledges a partial support from the NASA contract NAS5-31348, the NSF PYI award AST-9157412, the Caltech President's fund, and JPL. Work at JPL is performed under a contract with the NASA.

  8. Near-Infrared Faint Galaxies in the Subaru Deep Field: Comparing the Theory with Observations for Galaxy Counts, Colors, and Size Distributions to K ~ 24.5

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Yoshii, Yuzuru; Maihara, Toshinori; Iwamuro, Fumihide; Motohara, Kentaro

    2001-10-01

    Galaxy counts in the K band, (J-K) colors, and apparent size distributions of faint galaxies in the Subaru Deep Field (SDF) down to K~24.5 were studied in detail. Special attention has been paid to take into account various selection effects, including the cosmological dimming of surface brightness, to avoid any systematic bias that may be the origin of controversy in previously published results. We also tried to be very careful about systematic model uncertainties; we present a comprehensive survey of these systematic uncertainties and dependence on various parameters, and we have shown that the dominant factors to determine galaxy counts in this band are cosmology and number evolution. We found that the pure luminosity evolution (PLE) model is very consistent with all the SDF data down to K~22.5, without any evidence for number or size evolution in a low-density, Λ-dominated flat universe, which is now favored by various cosmological observations. On the other hand, a number evolution of galaxies with η~2, when invoked as the luminosity conserving mergers as φ*~(1+z)η and L*~(1+z)-η for all types of galaxies, is necessary to explain the data in the Einstein-de Sitter universe. If the popular Λ-dominated universe is taken for granted, our result then gives a strong constraint on the number evolution of giant elliptical or early-type galaxies to z~1-2 that must be met by any models in the hierarchically clustering universe, since such galaxies are the dominant population in this magnitude range (K<~22.5). A number evolution with η~1 is already difficult to reconcile with the data in this universe. On the other hand, number evolution of late-type galaxies and/or dwarf galaxies, which has been suggested by previous studies of optical galaxies, is allowed from the data. In the fainter magnitude range of K>~22.5, we found a slight excess of observed counts over the prediction of the PLE model when elliptical galaxies are treated as a single population. We

  9. Near-Infrared Galaxy Counts and Evolution from the Wide-Field ALHAMBRA Survey

    NASA Astrophysics Data System (ADS)

    Cristóbal-Hornillos, D.; Aguerri, J. A. L.; Moles, M.; Perea, J.; Castander, F. J.; Broadhurst, T.; Alfaro, E. J.; Benítez, N.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Fernández-Soto, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Martínez, V. J.; Masegosa, J.; del Olmo, A.; Prada, F.; Quintana, J. M.; Sánchez, S. F.

    2009-05-01

    The ALHAMBRA survey aims to cover 4 deg2 using a system of 20 contiguous, equal width, medium-band filters spanning the range 3500 Å-9700 Å plus the standard JHKs filters. Here we analyze deep near-IR number counts of one of our fields (ALH08) for which we have a relatively large area (0.5 deg2) and faint photometry (J = 22.4, H = 21.3, and K = 20.0 at the 50% of recovery efficiency for point-like sources). We find that the logarithmic gradient of the galaxy counts undergoes a distinct change to a flatter slope in each band: from 0.44 at [17.0, 18.5] to 0.34 at [19.5, 22.0] for the J band; for the H band 0.46 at [15.5, 18.0] to 0.36 at [19.0, 21.0], and in Ks the change is from 0.53 in the range [15.0, 17.0] to 0.33 in the interval [18.0, 20.0]. These observations together with faint optical counts are used to constrain models that include density and luminosity evolution of the local type-dependent luminosity functions. Our models imply a decline in the space density of evolved early-type galaxies with increasing redshift, such that only 30%-50% of the bulk of the present day red ellipticals was already in place at z ~ 1. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).

  10. Constraining the Luminous Red Galaxy Halo Occupation Distribution Using Counts-In-Cylinders

    NASA Astrophysics Data System (ADS)

    Reid, Beth A.; Spergel, David N.

    2009-06-01

    The low number density of the Sloan Digital Sky Survey (SDSS) luminous red galaxies (LRGs) suggests that LRGs occupying the same dark matter halo can be separated from pairs occupying distinct dark matter halos with high fidelity. We present a new technique, Counts-in-Cylinders (CiC), to constrain the parameters of the satellite contribution to the LRG halo occupation distribution once the parameters of the central galaxy contribution have been fixed. For a fiber-collision-corrected SDSS spectroscopic LRG subsample at 0.16 < z < 0.36, we find that the CiC multiplicity function is fitted by a halo model where the average number of satellites in a halo of mass M is = ((M - M cut)/M 1)α with M cut = 5.0+1.5 -1.3(+2.9 -2.6) × 1013 M sun, M 1 = 4.95+0.37 -0.26(+0.79 -0.53) × 1014 M sun, and α = 1.035+0.10 -0.17(+0.24 -0.31) at the 68% and 95% confidence levels using a WMAP3 cosmology and z = 0.2 halo catalog. Our method tightly constrains the fraction of LRGs that are satellite galaxies, 6.36+0.38 -0.39%, and the combination M cut/1014 M sun + α = 1.53+0.08 -0.09 at the 95% confidence level, though these constraints may be relaxed when cosmological parameters and the central galaxy parameters are allowed to vary simultaneously. We also find that mocks based on a halo catalog produced by a spherical overdensity finder reproduce both the measured CiC multiplicity function and the projected correlation function, while mocks based on a Friends-of-Friends halo catalog has a deficit of close pairs at ~1 h -1 Mpc separations. Because the CiC method relies on higher order statistics of close pairs, it is robust to the choice of halo finder, and yields mock catalogs reproducing Finger-of-God (FOG) features in the observations probed by the CiC group multiplicity function. In a companion paper, we will apply this technique to optimize FOG compression to eliminate the one-halo contribution to the LRG power spectrum.

  11. GALAXYCOUNT: a JAVA calculator of galaxy counts and variances in multiband wide-field surveys to 28 AB mag

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Bland-Hawthorn, J.

    2007-05-01

    We provide a consistent framework for estimating galaxy counts and variances in wide-field images for a range of photometric bands. The variances include both Poissonian noise and variations due to large-scale structure. We demonstrate that our statistical theory is consistent with the counts in the deepest multiband surveys available. The statistical estimates depend on several observational parameters (e.g. seeing, signal-to-noise ratio), and include a sophisticated treatment of detection completeness. The JAVA calculator is freely available1 and offers the user the option to adopt our consistent framework or a different scheme. We also provide a summary table of statistical measures in the different bands for a range of different fields of view. Reliable estimation of the background counts has profound consequences in many areas of observational astronomy. We provide two such examples. One is from a recent study of the Sculptor galaxy NGC300 where stellar photometry has been used to demonstrate that the outer disc extends to 10 effective radii, far beyond what was thought possible for a normal low-luminosity spiral. We confirm this finding by a re-analysis of the background counts. Secondly, we determine the luminosity function of the galaxy cluster Abell 2734, both through spectroscopically determined cluster membership, and through statistical subtraction of the background galaxies using the calculator and offset fields. We demonstrate very good agreement, suggesting that expensive spectroscopic follow-up, or off-source observations, may often be bypassed via determination of the galaxy background with GALAXYCOUNT.

  12. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  13. Counts and Sizes of Galaxies in the Hubble Deep Field South: Implications for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Satyapal, Shobita

    2000-06-01

    Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field data sets include the deepest observations ever made in the ultraviolet, optical, and near-infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes, and isophotal filling factors of the Hubble Deep Field South (HDF-S) images. The observed integrated galaxy counts reach over 500 galaxies per square arcminute at magnitudes AB < 30. We extend these counts to fainter levels and further into the infrared using galaxy-count models. It was determined from the HDF (North) and other deep Wide Field Planetary Camera 2 imaging that fainter galaxies are smaller. This trend continues to AB=29 in the high-resolution HDF-S Space Telescope Imaging Spectrograph (STIS) image, where galaxies have a typical half-light radius of 0.1". We have run extensive Monte Carlo simulations of the galaxy detection in the HDF-S, and we show that the small measured sizes are not due to selection effects until AB > 29. We compare observed sizes in the optical and near-infrared using the HDF-S Near Infrared Camera and Multi-Object Spectrometer image, showing that after taking into account the different point-spread functions and pixel sizes of the images, galaxies are smaller in the near-infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB < 30 galaxies, requiring deblending to detect the faintest objects. We discuss the implications of these data on several design concepts for the NGST near-infrared spectrography. We compare the effects of resolution

  14. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.; Kohno, K.; Aretxaga, I.; Austermann, J. E.; Ezawa, H.; Hughes, D. H.; Ikarashi, S.; Iono, D.; Kawabe, R.; Matsuo, H.; Matsuura, S.; Nakanishi, K.; Oshima, T.; Perera, T.; Scott, K. S.; Shirahata, M.; Takeuchi, T. T.; Tamura, Y.; Tanaka, K.; Tosaki, T.; Wilson, G. W.; Yun, M. S.

    2010-10-01

    We present number counts and clustering properties of millimeter-bright galaxies uncovered by the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE). We surveyed the AKARI Deep Field South (ADF-S), the Subaru/XMM Newton Deep Field (SXDF), and the SSA22 fields with an area of ~0.25 deg2 each with an rms noise level of ~0.4-1.0 mJy. We constructed differential and cumulative number counts, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z~2-3. The average mass of dark halos hosting bright 1.1 mm sources was calculated to be 1013-1014 Msolar. Comparison of correlation lengths of 1.1 mm sources with other populations and with a bias evolution model suggests that dark halos hosting bright 1.1 mm sources evolve into systems of clusters at present universe and the 1.1 mm sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  15. Galaxy formation in Lambda greater than 0 Friedmann models: Consequences for the number counts versus redshift test

    NASA Technical Reports Server (NTRS)

    Martel, Hugo

    1994-01-01

    We study the effect of the cosmological constant Lambda on galaxy formation using a simple spherical top-hat overdensity model. We consider models with Omega(sub 0) = 0.2, lambda(sub 0) = 0, and Omega(sub 0) = 0.2, lambda(sub 0) = 0.8 (where Omega(sub 0) is the density parameter, and lambda(sub 0) identically equal Lambda/3 H(sub 0 exp 2) where H(sub 0) is the Hubble constant). We adjust the initial power spectrum amplitude so that both models reproduce the same large-scale structures. The galaxy formation era in the lambda(sub 0) = 0 model occurs early (z approximately 6) and is very short, whereas in the lambda(sub 0) = 0.8 model the galaxy formation era starts later (z approximately 4), and last much longer, possibly all the way to the present. Consequently, galaxies at low redshift (z less than 1) are significantly more evolved in the lambda(sub 0) = 0 model than in the lambda(sub 0) = 0.8 model. This result implies that previous attempts to determine Lambda using the number counts versus redshift test are probably unreliable.

  16. Chemical and luminosity evolution, and counts of galaxies in a merger model

    NASA Technical Reports Server (NTRS)

    Colin, P.; Schramm, D. N.

    1993-01-01

    A merger model is applied to the chemical and luminosity evolution of galaxies. Two aspects are focused on. The first is the problem of abundance ratios as a function of metallicity. The second is related to the luminosity evolution of galaxies. In relation to the former, we calculate the evolution of several chemical elements exploring a broad space of possible star formation rates, including those derived using phenomenological arguments from a multiple merger galaxy formation scenario. We are able to reproduce the observed plateau in the ratio of the abundances of oxygen to iron versus metallicity as a direct consequence of one of the merging SFR used; we have utilized a standard Type II supernovae nucleosynthesis scenario coupled with a reasonable binary model for Type Ia supernovae and its consequent nucleosynthetic yields. Following the consequent luminosity effects in a straightforward way enables the estimation of the evolution of bolometric luminosity. We have used our recently developed code for photometric evolution of galaxies to make a preliminary computation of the number-magnitude relationship, assuming a standard picture of galaxy evolution, in the B and K bands.

  17. Primordial non-Gaussianity from the covariance of galaxy cluster counts

    SciTech Connect

    Cunha, Carlos; Huterer, Dragan; Dore, Olivier

    2010-07-15

    It has recently been proposed that the large-scale bias of dark matter halos depends sensitively on primordial non-Gaussianity of the local form. In this paper we point out that the strong scale dependence of the non-Gaussian halo bias imprints a distinct signature on the covariance of cluster counts. We find that using the full covariance of cluster counts results in improvements on constraints on the non-Gaussian parameter f{sub NL} of 3 (1) orders of magnitude relative to cluster counts (counts+clustering variance) constraints alone. We forecast f{sub NL} constraints for the upcoming Dark Energy Survey in the presence of uncertainties in the mass-observable relation, halo bias, and photometric redshifts. We find that the Dark Energy Survey can yield constraints on non-Gaussianity of {sigma}(f{sub NL}){approx}1-5 even for relatively conservative assumptions regarding systematics. Excess of correlations of cluster counts on scales of hundreds of megaparsecs would represent a smoking-gun signature of primordial non-Gaussianity of the local type.

  18. The 4 Ms CHANDRA Deep Field-South Number Counts Apportioned by Source Class: Pervasive Active Galactic Nuclei and the Ascent of Normal Galaxies

    NASA Technical Reports Server (NTRS)

    Lehmer, Bret D.; Xue, Y. Q.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Brusa, M.; Comastri, A.; Gilli, R.; Hornschemeier, A. E.; Luo, B.; Paolillo, M.; Ptak, A.; Shemmer, O.; Schneider, D. P.; Tozzi, P.; Vignali, C.

    2012-01-01

    We present 0.5-2 keV, 2-8 keV, 4-8 keV, and 0.5-8 keV (hereafter soft, hard, ultra-hard, and full bands, respectively) cumulative and differential number-count (log N-log S ) measurements for the recently completed approx. equal to 4 Ms Chandra Deep Field-South (CDF-S) survey, the deepest X-ray survey to date. We implement a new Bayesian approach, which allows reliable calculation of number counts down to flux limits that are factors of approx. equal to 1.9-4.3 times fainter than the previously deepest number-count investigations. In the soft band (SB), the most sensitive bandpass in our analysis, the approx. equal to 4 Ms CDF-S reaches a maximum source density of approx. equal to 27,800 deg(sup -2). By virtue of the exquisite X-ray and multiwavelength data available in the CDF-S, we are able to measure the number counts from a variety of source populations (active galactic nuclei (AGNs), normal galaxies, and Galactic stars) and subpopulations (as a function of redshift, AGN absorption, luminosity, and galaxy morphology) and test models that describe their evolution. We find that AGNs still dominate the X-ray number counts down to the faintest flux levels for all bands and reach a limiting SB source density of approx. equal to 14,900 deg(sup -2), the highest reliable AGN source density measured at any wavelength. We find that the normal-galaxy counts rise rapidly near the flux limits and, at the limiting SB flux, reach source densities of approx. equal to 12,700 deg(sup -2) and make up 46% plus or minus 5% of the total number counts. The rapid rise of the galaxy counts toward faint fluxes, as well as significant normal-galaxy contributions to the overall number counts, indicates that normal galaxies will overtake AGNs just below the approx. equal to 4 Ms SB flux limit and will provide a numerically significant new X-ray source population in future surveys that reach below the approx. equal to 4 Ms sensitivity limit. We show that a future approx. equal to 10 Ms CDF

  19. Observed galaxy number counts on the lightcone up to second order: I. Main result

    SciTech Connect

    Bertacca, Daniele; Maartens, Roy; Clarkson, Chris E-mail: roy.maartens@gmail.com

    2014-09-01

    We present the galaxy number overdensity up to second order in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order that arise from observing on the past light cone, including all redshift effects, lensing distortions from convergence and shear, and contributions from velocities, Sachs-Wolfe, integrated SW and time-delay terms. This result will be important for accurate calculation of the bias on estimates of non-Gaussianity and on precision parameter estimates, introduced by nonlinear projection effects.

  20. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  1. Observed galaxy number counts on the lightcone up to second order: II. Derivation

    SciTech Connect

    Bertacca, Daniele; Maartens, Roy; Clarkson, Chris E-mail: roy.maartens@gmail.com

    2014-11-01

    We present a detailed derivation of the observed galaxy number over-density on cosmological scales up to second order in perturbation theory. We include all relativistic effects that arise from observing on the past lightcone. The derivation is in a general gauge, and applies to all dark energy models (including interacting dark energy) and to metric theories of modified gravity. The result will be important for accurate cosmological parameter estimation, including non-Gaussianity, since all projection effects need to be taken into account. It also offers the potential for new probes of General Relativity, dark energy and modified gravity. This paper accompanies Paper I which presents the key results for the concordance model in Poisson gauge.

  2. Measurements of Extragalactic Background Light from the Far UV to the Far IR from Deep Ground- and Space-based Galaxy Counts

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Andrews, Stephen K.; Davies, Luke J.; Robotham, Aaron S. G.; Wright, Angus H.; Windhorst, Rogier A.; Cohen, Seth; Emig, Kim; Jansen, Rolf A.; Dunne, Loretta

    2016-08-01

    We combine wide and deep galaxy number-count data from the Galaxy And Mass Assembly, COSMOS/G10, Hubble Space Telescope (HST) Early Release Science, HST UVUDF, and various near-, mid-, and far-IR data sets from ESO, Spitzer, and Herschel. The combined data range from the far UV (0.15 μm) to far-IR (500 μm), and in all cases the contribution to the integrated galaxy light (IGL) of successively fainter galaxies converges. Using a simple spline fit, we derive the IGL and the extrapolated IGL in all bands. We argue that undetected low-surface-brightness galaxies and intracluster/group light are modest, and that our extrapolated-IGL measurements are an accurate representation of the extragalactic background light (EBL). Our data agree with most earlier IGL estimates and with direct measurements in the far IR, but disagree strongly with direct estimates in the optical. Close agreement between our results and recent very high-energy experiments (H.E.S.S. and MAGIC) suggests that there may be an additional foreground affecting the direct estimates. The most likely culprit could be the adopted model of zodiacal light. Finally we use a modified version of the two-component model to integrate the EBL and obtain measurements of the cosmic optical background (COB) and cosmic infrared background of {24}-4+4 nW m‑2 sr‑1 and {26}-5+5 nW m‑2 sr‑1 respectively (48%:52%). Over the next decade, upcoming space missions such as Euclid and the Wide Field Infrared Space Telescope will have the capacity to reduce the COB error to <1%, at which point comparisons to the very high-energy data could have the potential to provide a direct detection and measurement of the reionization field.

  3. A galaxy model from two micron all sky survey star counts in the whole sky, including the plane

    SciTech Connect

    Polido, P.; Jablonski, F.; Lépine, J. R. D.

    2013-11-20

    We use the star count model of Ortiz and Lépine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and K{sub S} bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070{sub −800}{sup +2000} pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.

  4. Constraints on Photoionization Feedback from Number Counts of Ultra-faint High-redshift Galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Yue, B.; Ferrara, A.; Merlin, E.; Fontana, A.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.

    2016-06-01

    We exploit a sample of ultra-faint high-redshift galaxies (demagnified Hubble Space Telescope, HST, H 160 magnitude > 30) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function in the presence of photoionization feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including seven HST bands and deep K s and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects, and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-z galaxies constrain the cutoff halo circular velocity below which star formation is suppressed by photoionization feedback to {v}c{{cut}}\\lt 50 km s‑1. This circular velocity corresponds to a halo mass of ≈5.6 × 109 M ⊙ and ≈2.3 × 109 M ⊙ at z = 5 and 10, respectively: higher-mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.

  5. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  6. Cell counting.

    PubMed

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  7. Multiplicity Counting

    SciTech Connect

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  8. RBC count

    MedlinePlus

    ... Drugs that can increase the RBC count include: Gentamicin Methyldopa Lower-than-normal numbers of RBCs may be due to: Anemia Bleeding Bone marrow failure (for example, from radiation, toxins, or tumor) Deficiency of a hormone called erythropoietin (caused by ...

  9. Counting Penguins.

    ERIC Educational Resources Information Center

    Perry, Mike; Kader, Gary

    1998-01-01

    Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)

  10. Counting Populations

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    Scientists use sampling to get an estimate of things they cannot easily count. A population is made up of all the organisms of one species living together in one place at the same time. All of the people living together in one town are considered a population. All of the grasshoppers living in a field are a population. Scientists keep track of the…

  11. Reticulocyte Count Test

    MedlinePlus

    ... Reticulocyte Count Related tests: Red Blood Cell Count ; Hemoglobin ; Hematocrit ; Complete Blood Count ; Blood Smear ; Erythropoietin ; Vitamin ... on a complete blood count (CBC) , RBC count , hemoglobin or hematocrit , to help determine the cause To ...

  12. White Blood Cell Count

    MedlinePlus

    ... Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? Also ... Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , White ...

  13. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  14. MOIRCS Deep Survey. I: DRG Number Counts

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Konishi, Masahiro; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka; Katsuno; Yoshikawa, Tomohiro; Akiyama, Masayuki; Ichikawa, Takashi; Ouchi, Masami; Omata, Koji; Tanaka, Ichi; Nishimura, Tetsuo; Yamada, Toru

    2006-12-01

    We used very deep near-infrared imaging data taken with the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope to investigate the number counts of Distant Red Galaxies (DRGs). We observed a 4' × 7' field in the Great Observatories Origins Deep Survey-North (GOODS-N), and our data reached J=24.6 and K=23.2 (5σ, Vega magnitude). The surface density of DRGs selected by J - K > 2.3 is 2.35 ± 0.31 arcmin-2 at K < 22 and 3.54 ± 0.38 arcmin-2 at K < 23, respectively. These values are consistent with those in the GOODS-South and FIRES. Our deep and wide data suggest that the number counts of DRGs turn over at K ˜ 22, and the surface density of the faint DRGs with K > 22 is smaller than that expected from the number counts at the brighter magnitude. The result indicates that while there are many bright galaxies at 2 < z < 4 with the relatively old stellar population and/or heavy dust extinction, the number of faint galaxies with a similar red color is relatively small. Different behavior patterns of the number counts of the DRGs and bluer galaxies with 2 < zphot < 4 at K > 22 suggest that the mass-dependent color distribution, where most of the low-mass galaxies are blue, while more massive galaxies tend to have redder colors, had already been established at that epoch.

  15. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  16. Faint Blue Galaxies and the Epoch of Dwarf Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Babul, Arif; Ferguson, Henry C.

    1996-02-01

    Several independent lines of reasoning, both theoretical and observational, suggest that the very faint (B ≳ 24) galaxies seen in deep images of the sky are small low-mass galaxies that experienced a short starburst at redshifts 0.5 ≲ z ≲ 1 and have since faded into low-luminosity, low surface brightness (LSB) objects. We examine this hypothesis in detail in order to determine whether a model incorporating such dwarfs can account for the observed wavelength-dependent number counts, as well as redshift, color, and size distributions. Low-mass galaxies generically arise in large numbers in hierarchical clustering scenarios with realistic initial conditions. Generally, these galaxies are expected to form at high redshifts. Babul & Rees have argued that the formation epoch of these galaxies is, in fact, delayed until z ≲ 1 due to the photoionization of the gas by the metagalactic UV radiation at high redshifts. We combine these two elements, along with simple heuristic assumptions regarding star formation histories and efficiency, to construct our bursting dwarf model. The slope and the normalization of the mass function of the dwarf galaxies are derived from the initial conditions and are not adjusted to fit the data. We further augment the model with a phenomenological prescription for the formation and evolution of the locally observed population of galaxies (E, S0, Sab, Sbc, and Sdm types). We use spectral synthesis and Monte Carlo methods to generate realistic model galaxy catalogs for comparison with observations. We find that for reasonable choices of the star formation histories for the dwarf galaxies, the model results are in very good agreement with the results of the deep galaxy surveys. Such a dwarf-dominated model is also qualitatively supported by recent studies of faint galaxy gravitational lensing and clustering, by galaxy size distributions measured with the Hubble Space Telescope, and by the evidence for very modest evolution in regular galaxy

  17. The Big Pumpkin Count.

    ERIC Educational Resources Information Center

    Coplestone-Loomis, Lenny

    1981-01-01

    Pumpkin seeds are counted after students convert pumpkins to jack-o-lanterns. Among the activities involved, pupils learn to count by 10s, make estimates, and to construct a visual representation of 1,000. (MP)

  18. Tidally triggered galaxy formation. I - Evolution of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Lacey, Cedric; Silk, Joseph

    1991-11-01

    Motivated by accumulating evidence that large-scale galactic star formation is initiated and sustained by tidal interactions, a phenomenological model is developed for the galaxy luminosity function, commencing from a galaxy mass function that is predicted by a hierarchical model of structure formation such as the cold dark matter dominated cosmology. The epoch of luminous galaxy formation and the galactic star-formation rate are determined by the environment. Gas cooling and star-formation feedback are incorporated; the present epoch luminosity function of bright galaxies and the distribution of galaxy colors are well reproduced. Biasing, via the preferential formation of luminous galaxies in denser regions associated with groups of clusters, is a natural outcome of this tidally triggered star-formation model. A large frequency is inferred of 'failed' galaxies, prematurely stripped by supernova-driven winds, that populate groups and clusters in the form of low surface brightness gas-poor dwarfs, and of 'retarded' galaxies, below the threshold for effective star formation, in the field, detectable as gas-rich, extremely low surface brightness objects. Predictions are presented for the evolution with redshift of the distribution of characteristic star formation timescales, galaxy ages, and colors. Estimates are also made of galaxy number counts, and it is suggested that dwarf galaxies undergoing bursts of star formation at z of about 1 may dominate the counts at the faintest magnitudes.

  19. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  20. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  1. Galaxy masses

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Cappellari, Michele; de Jong, Roelof S.; Dutton, Aaron A.; Emsellem, Eric; Hoekstra, Henk; Koopmans, L. V. E.; Mamon, Gary A.; Maraston, Claudia; Treu, Tommaso; Widrow, Lawrence M.

    2014-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods all provide review material on galaxy masses in a self-consistent manner.

  2. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  3. Counting Sheep in Basque

    ERIC Educational Resources Information Center

    Araujo, Frank P.

    1975-01-01

    Demonstrates the interplay of a cognitive system, the Basque numerative system, and a behavioral one, counting sheep. The significant features of the Basque numerative system are analyzed; then it is shown how use of these features facilitates the counting of sheep on open ranges by Basque sheep farmers in California. (Author/RM)

  4. Complexities of Counting.

    ERIC Educational Resources Information Center

    Stake, Bernadine Evans

    This document focuses on one child's skip counting methods. The pupil, a second grade student at Steuben School, in Kankakee, Illinois, was interviewed as she made several attempts at counting twenty-five poker chips on a circular piece of paper. The interview was part of a larger study of "Children's Conceptions of Number and Numeral," funded by…

  5. The Makah Counting Workbook.

    ERIC Educational Resources Information Center

    Flinn, Arlington A., Jr.

    The first edition of the counting workbook centers around the numbers from 1 to 100 and focuses on number and set concepts. The workbook introduces the Makah spelling of each number and reinforces the spelling with exercises such as matching words to numbers, writing the words, counting symbols, and circling the correct number. Spaced throughout…

  6. Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-Body

    SciTech Connect

    Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H. /KIPAC, Menlo Park /SLAC

    2010-12-16

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-h{sup -1}Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  7. Sublattice counting and orbifolds

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Orlando, Domenico; Reffert, Susanne

    2010-06-01

    Abelian orbifolds of mathbb{C}3 are known to be encoded by hexagonal brane tilings. To date it is not known how to count all such orbifolds. We fill this gap by employing number theoretic techniques from crystallography, and by making use of Polya's Enumeration Theorem. The results turn out to be beautifully encoded in terms of partition functions and Dirichlet series. The same methods apply to counting orbifolds of any toric non-compact Calabi-Yau singularity. As additional examples, we count the orbifolds of the conifold, of the L aba theories, and of mathbb{C}4.

  8. Imprint of inflation on galaxy shape correlations

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian; Chisari, Nora Elisa; Dvorkin, Cora

    2015-10-01

    We show that intrinsic (not lensing-induced) correlations between galaxy shapes offer a new probe of primordial non-Gaussianity and inflationary physics which is complementary to galaxy number counts. Specifically, intrinsic alignment correlations are sensitive to an anisotropic squeezed limit bispectrum of the primordial perturbations. Such a feature arises in solid inflation, as well as more broadly in the presence of light higher spin fields during inflation (as pointed out recently by Arkani-Hamed and Maldacena). We present a derivation of the all-sky two-point correlations of intrinsic shapes and number counts in the presence of non-Gaussianity with general angular dependence, and show that a quadrupolar (spin-2) anisotropy leads to the analog in galaxy shapes of the well-known scale-dependent bias induced in number counts by isotropic (spin-0) non-Gaussianity. Moreover, in the presence of non-zero anisotropic non-Gaussianity, the quadrupole of galaxy shapes becomes sensitive to far superhorizon modes. These effects come about because long-wavelength modes induce a local anisotropy in the initial power spectrum, with which galaxies will correlate. We forecast that future imaging surveys could provide constraints on the amplitude of anisotropic non-Gaussianity that are comparable to those from the Cosmic Microwave Background (CMB). These are complementary as they probe different physical scales. The constraints, however, depend on the sensitivity of galaxy shapes to the initial conditions which we only roughly estimate from observed tidal alignments.

  9. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 counts, to finally calculate the GCMF, which can be fitted by a Schechter function, but whose fitted parameter values are different from the values found in the literature for the GSMF. Conclusions: This GCMF behavior follows the theoretical predictions from the cold dark matter models in which the less massive objects form first, followed later by more massive ones. In the range 0.5 galaxy mergers or as a strong evolution in the star formation history of these galaxies.

  10. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  11. Blood Count Tests

    MedlinePlus

    Your blood contains red blood cells (RBC), white blood cells (WBC), and platelets. Blood count tests measure the number and types of cells in your blood. This helps doctors check on your overall health. ...

  12. Blood Count Tests

    MedlinePlus

    ... white blood cells (WBC), and platelets. Blood count tests measure the number and types of cells in ... helps doctors check on your overall health. The tests can also help to diagnose diseases and conditions ...

  13. Inventory count strategies.

    PubMed

    Springer, W H

    1996-02-01

    An important principle of accounting is that asset inventory needs to be correctly valued to ensure that the financial statements of the institution are accurate. Errors is recording the value of ending inventory in one fiscal year result in errors to published financial statements for that year as well as the subsequent fiscal year. Therefore, it is important that accurate physical counts be periodically taken. It is equally important that any system being used to generate inventory valuation, reordering or management reports be based on consistently accurate on-hand balances. At the foundation of conducting an accurate physical count of an inventory is a comprehensive understanding of the process coupled with a written plan. This article presents a guideline of the physical count processes involved in a traditional double-count approach. PMID:10165241

  14. Calorie count - Alcoholic beverages

    MedlinePlus

    ... want to watch how much you drink. Cocktails mixed with soda, cream, or ice cream can have especially high calorie counts. If you find you are having trouble cutting back on alcohol , talk with your doctor. Here is a list ...

  15. Counting Knights and Knaves

    ERIC Educational Resources Information Center

    Levin,Oscar; Roberts, Gerri M.

    2013-01-01

    To understand better some of the classic knights and knaves puzzles, we count them. Doing so reveals a surprising connection between puzzles and solutions, and highlights some beautiful combinatorial identities.

  16. Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Walterbos, R.; Murdin, P.

    2000-11-01

    The Andromeda galaxy is the closest SPIRAL GALAXY to the MILKY WAY, just visible to the naked eye on a dark night as a faint smudge of light in the constellation Andromeda. The earliest records of the Andromeda nebula, as it is still often referred to, date back to AD 964, to the `Book of the Fixed Stars' published by the Persian astronomer AL-SÛFI. The first European to officially note the Andro...

  17. Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Materne, J.

    1980-09-01

    Among the 338 exotic, intriguing and/or fascinating objects contained in Arp's catalogue of peculiar galaxies, two, Arp 146 and 147, are calling special attention as a presumably separate class of objects displaying closed rings with almost empty interior. It is difficult to find out when, historically speaking, attention was called first to this type of object as a peculiar class, but certainly ga1axies with rings were widely found and recognized in the early sixties, ul}der others by Vorontsov-Velyaminov (1960), Sandage (1961) in the Hubble Atlas or de Vaucouleurs (1964) in the first reference catalogue of ga1axies. The most recent estimates by Arp and Madore (1977) from a search on about 200 Schmidt plates covering 7,000 square degrees give 3.6 per cent of ring galaxies among 2,784 peculiar galaxies found. However, despite the mythological perfection associated with a circle, some ordering is necessary before trying to understand the nature of such objects. This is particularly true because a large fraction of those galaxies with rings are probably normal spiral galaxies of type RS or S(r) as defined by de Vaucouleurs, where the spiral arms are simply "closing the circle". A good example of such "ordinary" galaxy is NGC 3081 in the Hubble Atlas .

  18. Weak lensing by galaxy troughs in DES Science Verification data

    DOE PAGESBeta

    Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; et al

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less

  19. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    SciTech Connect

    Gruen, D.

    2015-09-29

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  20. Weak lensing by galaxy troughs in DES Science Verification data

    NASA Astrophysics Data System (ADS)

    Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; Jarvis, M.; Kacprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.

    2016-01-01

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ-15σ for the smallest angular scales) for troughs with the redshift range z ∈ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  1. Weak lensing by galaxy troughs in DES Science Verification data

    SciTech Connect

    Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Levy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miguel, R.; Mohr, J. J.; Nord, B.; Orgando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  2. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  3. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  4. Whose interests count?

    PubMed

    Brudney, Daniel; Lantos, John D

    2014-10-01

    Whose interests should count and how should various interests be balanced at the pediatric patient's bedside? The interests of the child patient clearly count. Recently, however, many authors have argued that the family's interests also count. But how should we think about the interests of others? What does it mean to talk about "the family" in this context? Does it really just mean the interests of each individual family member? Or is the family itself a moral entity that has interests of its own independent of the interests of each of its members? Are such interests important only as they affect the patient's interest or also for their own sake? In this special supplement to Pediatrics, a group of pediatricians, philosophers, and lawyers grapple with these questions. They examine these issues from different angles and reach different conclusions. Jointly, they demonstrate the ethical importance and, above all, the ethical complexity of the family's role at the bedside. PMID:25274878

  5. Photon counting digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  6. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  7. Accounting for What Counts

    ERIC Educational Resources Information Center

    Milner, Joseph O.; Ferran, Joan E.; Martin, Katharine Y.

    2003-01-01

    No Child Left Behind legislation makes it clear that outside evaluators determine what gets taught in the classroom. It is important to ensure they measure what truly counts in school. This fact is poignantly and sadly true for the under funded, poorly resourced, "low performing" schools that may be hammered by administration accountants in the…

  8. Making Research Count

    ERIC Educational Resources Information Center

    Appleby, Yvon; Kerwin, Marie; McCulloch, Sue

    2008-01-01

    Making research count in the education sector is often difficult to achieve as people, quite properly, question its relevance, purpose and impact. One of the significant barriers to research supporting practice in the lifelong learning sector is that funded research carried out in higher education institutions is frequently privileged above…

  9. What Counts as Evidence?

    ERIC Educational Resources Information Center

    Dougherty Stahl, Katherine A.

    2014-01-01

    Each disciplinary community has its own criteria for determining what counts as evidence of knowledge in their academic field. The criteria influence the ways that a community's knowledge is created, communicated, and evaluated. Situating reading, writing, and language instruction within the content areas enables teachers to explicitly…

  10. Counting digital filters

    NASA Technical Reports Server (NTRS)

    Zohar, S. (Inventor)

    1973-01-01

    Several embodiments of a counting digital filter of the non-recursive type are disclosed. In each embodiment two registers, at least one of which is a shift register, are included. The shift register received j sub x-bit data input words bit by bit. The kth data word is represented by the integer.

  11. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  12. Galaxy formation

    SciTech Connect

    Silk, J.

    1984-11-01

    Implications of the isotropy of the cosmic microwave background on large and small angular scales for galaxy formation are reviewed. In primeval adiabatic fluctuations, a universe dominated by cold, weakly interacting nonbaryonic matter, e.g., the massive photino is postulated. A possible signature of photino annihilation in our galactic halo involves production of cosmic ray antiprotons. If the density is near its closure value, it is necessary to invoke a biasing mechanism for suppressing galaxy formation throughout most of the universe in order to reconcile the dark matter density with the lower astronomical determinations of the mean cosmological density. A mechanism utilizing the onset of primordial massive star formation to strip gaseous protogalaxies is described. Only the densest, early collapsing systems form luminous galaxies. (ESA)

  13. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  14. Starburst Galaxy NGC 3310

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists using NASA's Hubble Space Telescope are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings.

    This month's Hubble Heritage image showcases the galaxy NGC 3310. It is one of several starburst galaxies, which are hotbeds of star formation, being studied by Dr. Gerhardt Meurer and a team of scientists at Johns Hopkins University, Laurel, Md.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://heritage.stsci.edu and http://oposite.stsci.edu/pubinfo/pr/2001/26 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Most galaxies form new stars at a fairly slow rate, but starburst galaxies blaze with extremely active star formation. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue and older stars redder, the colors relate to their ages.

    NGC 3310 is forming clusters of new stars at a prodigious rate. The new image shows several hundred star clusters, visible as the bright blue, diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy.

    The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more than one hundred million years. This suggests that the starburst 'turned on' more than 100 million years ago. It may have been triggered when NGC 3310 collided with a companion galaxy.

    These observations may change astronomers' view of starbursts. Starbursts were once

  15. Evolutionary phenomena in galaxies; Summer School, Puerto de la Cruz, Spain, July 4-15, 1988, Contributed Papers

    NASA Astrophysics Data System (ADS)

    Beckman, John E.; Pagel, Bernard E.

    1989-07-01

    Topics discussed in this symposium are on the Galaxy, the Magellanic Clouds, elliptical galaxies, the structure of spirals and galaxy interactions, and the gas and star formation in galaxies. Papers are presented on the Galactic evolution and the star counts in the Galaxy, the physical parameters of reflection nebulae in the Galaxy, chemical abundances in the LMC and SMC planetary nebulae, and the initial mass functions of Magellanic Cloud star clusters, the morphological properties of radio elliptical galaxies, and the synthetic integrated fluxes and colors for elliptical galaxies. Attention is also given to the magnetic fields in M31, NGC 7331, NGC 2841, NGC 6946, and our Galaxy, two high-velocity encounters of elliptical galaxies, evidence for high-velocity gas in giant H II regions, molecules in external galaxies, a photometric study of the double-ring structure of NGC 4736, and the chemical and dynamical evolution of galactic discs.

  16. COUNTS-IN-CYLINDERS IN THE SLOAN DIGITAL SKY SURVEY WITH COMPARISONS TO N-BODY SIMULATIONS

    SciTech Connect

    Berrier, Heather D.; Barton, Elizabeth J.; Bullock, James S.; Berrier, Joel C.; Zentner, Andrew R.; Wechsler, Risa H.

    2011-01-01

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h{sup -1} Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  17. Counting every quantum

    PubMed Central

    Sakitt, B.

    1972-01-01

    1. Human subjects were asked to rate both blanks and very dim flashes of light under conditions of complete dark adaptation at 7° in the periphery. The ratings used were 0, 1, 2, 3, 4, 5, and 6. 2. For one subject (B.S.) the distributions of ratings were approximately Poisson distributions. The data were consistent with each rating being the actual number of effective quantal absorptions plus the number of noise events. This subject was presumably able to count every rod signal (effective absorptions plus noise). 3. For two other subjects, the data were consistent with the ratings being one less (L.F.) and two less (K.D.) than the number of effective absorptions plus noise. They were able to count every rod signal beginning with 2 and 3 respectively. A fourth subject's erratic data could not be fitted. 4. The fraction of quanta incident at the cornea that resulted in a rod signal was estimated to be about 0·03 which is consistent with physical estimates of effective absorption for that retinal region. 5. A simulated forced choice experiment leads to an absolute threshold about 0·40 log units below the normal yes-no absolute threshold. This and other results indicate that subjects can use the sensory information they receive even when only 1, 2 or 3 quanta are effectively absorbed, depending on the individual. Humans may be able to count every action potential or every discrete burst of action potentials in some critical neurone. PMID:5046137

  18. Extragalatic zoo. I. [New galaxies

    SciTech Connect

    Schorn, R.A.

    1988-01-01

    The characteristics of various types of extragalactic objects are described. Consideration is given to cD galaxies, D galaxies, N galaxies, Markarian galaxies, liners, starburst galaxies, and megamasers. Emphasis is also placed on the isolated extragalatic H I region; the isolated extragalatic H II region; primeval galaxies or photogalaxies; peculiar galaxies; Arp galaxies; interacting galaxies; ring galaxies; and polar-ring galaxies. Diagrams of these objects are provided.

  19. Crashing galaxies, cosmic fireworks

    SciTech Connect

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined.

  20. Gamma-ray detected radio galaxies

    NASA Astrophysics Data System (ADS)

    Beckmann, Volker; Soldi, Simona; De Jong, Sandra; Kretschmer, Karsten; Savchenko, Volodymyr

    2016-07-01

    So far 15 radio galaxies have been detected in the gamma-ray domain by CGRO/EGRET and Fermi/LAT, with a few detections also in the VHE range. We search for distinguishing parameters and estimate the total number of gamma-ray emitting radio galaxies that are potentially detectable by Fermi/LAT. We use Fermi/LAT data in comparison with X-ray and hard X-ray data in order to constrain basic parameters such as the total power of the inverse Compton branch and the position of its peak. We search for possible correlations between the radio, UV, X-ray, and gamma-ray domain and derive the number counts distribution. We then compare their properties with those of the radio galaxies in the 3CRR and SMS4 catalogues. The data show no correlation between the peak of the inverse Compton emission and its luminosity. For the gamma-ray detected radio galaxies the luminosities in the various bands are correlated, except for the UV band, but there is no indication of a correlation of peak frequency or luminosity with the spectral slopes in the X-ray or gamma-ray band. The comparison with other bright radio galaxies shows that the gamma-ray detected objects are among those that have the largest X-ray but rather moderate radio fluxes. Their UV and X-ray luminosities are similar, but gamma-ray detected radio galaxies are predominantly of type FR-I, while the 3CRR sample contains mainly FR-II objects. The number counts of the so far gamma-ray detected radio galaxies shows a very shallow slope, indicating that potentially a fraction of radio galaxies has been missed so far or has not been identified as such, although the predicted number of 22 ± 7 is consistent with the observed 15 objects.

  1. Shaping galaxy evolution with galaxy structure

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond

    A fundamental pursuit of astronomy is to understand galaxy evolution. The enormous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5galaxies from quiescent galaxies. Our method indicates that the inner stellar mass is the most correlated parameter of quenching, implying that the process that quenches galaxies must also buildup their inner structure. Second, we explore the relationship between galactic bars and their host galaxies with Galaxy Zoo 2 at z˜0. The correlations of bar properties and galaxy properties are consistent with simulations of bar formation and evolution, indicating that bars affect their host galaxies. Finally, we investigate whether bars can drive supermassive black hole growth with data from Chandra and Galaxy Zoo: Hubble at 0.2galaxies to a matched sample of inactive, control galaxies shows that there is no statistically significant excess of bars in active hosts. Our result shows that bars are not the primary fueling mechanism of supermassive black hole

  2. Counting supersymmetric branes

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel

    2011-10-01

    Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.

  3. Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Blain, A. W.

    2009-12-01

    The Universe was a more exciting place at moderate to high redshifts z˜3, after reionization took place, but before the present day galaxy properties were firmly established. From a wide variety of directions, we are gaining insight into the Universe at these epochs. Less gas was sequestered into stars and had been ejected into the interstellar medium as weakly emitting, slowly cooling debris, because a significant amount of star formation and supermassive blackhole growth in active galactic nuclei (AGNs) was still to occur. Furthermore, the processes that shape today’s galaxies were at work, and can be seen in real time with the appropriate tools. The most active regions of galaxies at these redshifts are deeply obscured at ultraviolet and optical wavelengths by an opaque interstellar medium (ISM) that absorbs most of their radiation, and then re-emits at far-infrared (IR) wavelengths. This emission provides us with a very powerful probe of the regions within galaxies where the most intense activity takes place; both their total energy output, and from spectroscopy, about the physics and chemistry of the atomic and molecular gas that fuels, hides and surrounds these regions. This information is unique, but not complete: radio, mid- and near-IR, optical and X-ray observations each provide unique complementary views. Nevertheless, probing the obscured Universe, with the Atacama Large (Sub-)Millimeter Array (ALMA), James Webb Space Telescope (JWST), Herschel Space Observatory, Wide Field Infrared Survey Explorer (WISE), and missions and telescopes that are not yet in construction, like an actively cooled sub-10-m class IR space telescope and a 25-m class ground-based submillimeter/THz telescope (CCAT) will provide a more complete picture of in which neighborhoods, by what means and how quickly the most vigorous bursts of activity take place.

  4. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  5. High background photon counting lidar

    NASA Technical Reports Server (NTRS)

    Lentz, W. J.

    1992-01-01

    Photon counting with lidar returns is usually limited to low light levels, while wide dynamic range is achieved by counting for long times. The broad emission spectrum of inexpensive high-power semiconductor lasers makes receiver filters pass too much background light for traditional photon counting in daylight. Very high speed photon counting is possible, however, at more than 500 MHz which allows the construction of eyesafe lidar operating in the presence of bright clouds. Detector improvements are possible to count to 20 GHz producing a single shot dynamic range of ten decades.

  6. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  7. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  8. The Herschel-ATLAS: Extragalatic Number Counts from 250 to 500 Microns

    NASA Technical Reports Server (NTRS)

    Clements, D. L.; Rigby, E.; Maddox, S.; Dunne, L.; Mortier, A.; Amblard, A.; Auld, R.; Bonfield, D.; Cooray, A.; Dariush, A.; Dye, S.; Eales, S.; Gardner, Jonathan P.; Ibar, E.; Ivison, R.; Leeuw, L.; Sibthorpe, B.; Smith, D. J. B.; Temi, P.; Pascale, E.; Pohlen, M.

    2010-01-01

    Aims.The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 microns when completed, reaching flux limits (50-) from 32 to 145mJy. We here present galaxy number counts obtained for SPIRE observations of the first -14 sq. deg. observed at 250, 350 and 500 m. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100-200mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift.

  9. Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times {{10}12}{{M}⊙ } are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of {{Ω}matter}˜ 0.15 in a flat topology, with a 68% probability of being less than 0.44.

  10. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  11. Galaxy pairs in deep HST images: Evidence for evolution in the galaxy merger rate

    NASA Technical Reports Server (NTRS)

    Burkey, Jordan M.; Keel, William C.; Windhorst, Rogier A.; Franklin, Barbara E.

    1994-01-01

    We use four deep serendipitous fields observed with the Hubble Space Telescope (HST) Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and z approximately equals 0.7. Since most mergers occur between members of bound pairs, the merger rate is given to a good approximation by (half) the rate of disappearance of galaxies in pairs. An objective criterion for pair membership shows that 34% +/- 9% of our HST galaxies with I = 18-22 belong to pairs, compared to 7% locally. This means that about 13% of the galaxy population has disappeared due to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1 approximately less than z approximately less than 0.7). Our pair fraction is a lower limit: correction for pair members falling below our detection threshold might raise the fraction to approximately 50%. Since we address only two-galaxy merging, these values do not include physical systems of higher multiplicity. Incorporating I-band field-galaxy redshift distributions, the pair fraction grows with redshift as alpha(1 + z)(exp 3.5 +/- 0.5) and the merger rate as (1 + z)(exp 2.5 +/- 0.5). This may have significant implications for the interpretation of galaxy counts (disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (which evolve approximately as (1 + z)(exp 3), the similarity in the power law is necessary but not sufficient evidence for a causal relation), statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a 'typical' galaxy.

  12. Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.

    PubMed

    Milgrom, Mordehai

    2013-07-26

    The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0. PMID:23931350

  13. Thousand Papers and Counting

    NASA Astrophysics Data System (ADS)

    2005-04-01

    , adaptive optics instruments for small-field high spatial-resolution imaging, high-resolution spectroscopy and multi-object spectroscopy. The VLT was also designed from the beginning with the use of interferometry as a major goal. The VLT Interferometer (VLTI) combines starlight captured by two or three UTs or ATs, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. The impressive battery of top-ranking instruments, coupled with the enormous light-collecting power of the VLT and what is certainly the best overall efficiency for an observatory of this size, has provided a real research bonanza of outstanding scientific results, some of which have been true breakthroughs. They include the amazing new knowledge about the Black Hole at the Galactic Centre, the first image of an exoplanet, the discovery of the most distant group of galaxies, the detection of spatially resolved emission from an Active Galactic Nucleus, the study of resolved stellar populations in nearby galaxies, etc. Other important discoveries deal with accurate cosmochronological dating by means of Uranium and Thorium spectral lines, high-redshift galaxy rotation curves, micro-quasars, properties of the optical counterparts of gamma-ray bursts, high-redshift supernovae and trans-neptunian objects. These and other results are among the 1,000 scientific papers published in the six years of operation. The large impact of VLT-based results is demonstrated by their citation rates, which are among the best of ground-based observatories. Some refereed papers based on VLT data have a citation mark close to 250 only three or four years after publication. Jason Spyromilio, Director of the La Silla Paranal Observatory, believes this is only the beginning: "With second generation instruments to be installed and the start of operations of the Auxiliary Telescopes, providing the Very Large Telescope Interferometer a further boost, I have no doubt that the VLT will

  14. Making environmental DNA count.

    PubMed

    Kelly, Ryan P

    2016-01-01

    The arc of reception for a new technology or method--like the reception of new information itself--can pass through predictable stages, with audiences' responses evolving from 'I don't believe it', through 'well, maybe' to 'yes, everyone knows that' to, finally, 'old news'. The idea that one can sample a volume of water, sequence DNA out of it, and report what species are living nearby has experienced roughly this series of responses among biologists, beginning with the microbial biologists who developed genetic techniques to reveal the unseen microbiome. 'Macrobial' biologists and ecologists--those accustomed to dealing with species they can see and count--have been slower to adopt such molecular survey techniques, in part because of the uncertain relationship between the number of recovered DNA sequences and the abundance of whole organisms in the sampled environment. In this issue of Molecular Ecology Resources, Evans et al. (2015) quantify this relationship for a suite of nine vertebrate species consisting of eight fish and one amphibian. Having detected all of the species present with a molecular toolbox of six primer sets, they consistently find DNA abundances are associated with species' biomasses. The strength and slope of this association vary for each species and each primer set--further evidence that there is no universal parameter linking recovered DNA to species abundance--but Evans and colleagues take a significant step towards being able to answer the next question audiences tend to ask: 'Yes, but how many are there?' PMID:26768195

  15. Compton suppression gamma-counting: The effect of count rate

    USGS Publications Warehouse

    Millard, H.T., Jr.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  16. Large-scale inhomogeneities and galaxy statistics

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    The density fluctuations associated with the formation of large-scale cosmic pancake-like and filamentary structures are evaluated using the Zel'dovich approximation for the evolution of nonlinear inhomogeneities in the expanding universe. It is shown that the large-scale nonlinear density fluctuations in the galaxy distribution due to pancakes modify the standard scale-invariant correlation function xi(r) at scales comparable to the coherence length of adiabatic fluctuations. The typical contribution of pancakes and filaments to the J3 integral, and more generally to the moments of galaxy counts in a volume of approximately (15-40 per h Mpc)exp 3, provides a statistical test for the existence of large scale inhomogeneities. An application to several recent three dimensional data sets shows that despite large observational uncertainties over the relevant scales characteristic features may be present that can be attributed to pancakes in most, but not all, of the various galaxy samples.

  17. Information of Structures in Galaxy Distribution

    NASA Astrophysics Data System (ADS)

    Fang, Fan

    2006-06-01

    We introduce an information-theoretic measure, the Rényi information, to describe the galaxy distribution in space. We discuss properties of the information measure and demonstrate its relationship with the probability distribution function and multifractal descriptions. Using the First Look Survey galaxy samples observed by the Infrared Array Camera on board the Spitzer Space Telescope, we present measurements of the Rényi information, as well as the counts-in-cells distribution and multifractal properties of galaxies in mid-infrared wavelengths. Guided by a multiplicative cascade simulation based on a binomial model, we verify our measurements and discuss the spatial selection effects on measuring information of the spatial structures. We derive structure scan functions at scales where selection effects are small for the Spitzer samples. We discuss the results and the potential of applying the Rényi information to the measurement of other spatial structures.

  18. Cinematique et dynamique des galaxies spirales barrees

    NASA Astrophysics Data System (ADS)

    Hernandez, Olivier

    The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.

  19. The luminosity function of galaxies in compact groups

    NASA Technical Reports Server (NTRS)

    Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

    1994-01-01

    We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

  20. The Radio Luminosity Function and Galaxy Evolution of Abell 2256

    NASA Astrophysics Data System (ADS)

    Forootaninia, Zahra

    2015-05-01

    This thesis presents a study of the radio luminosity function and the evolution of galaxies in the Abell 2256 cluster (z=0.058, richness class 2). Using the NED database and VLA deep data with an rms sensitivity of 18 mu Jy.beam--1, we identified 257 optical galaxies as members of A2256, of which 83 are radio galaxies. Since A2256 is undergoing a cluster-cluster merger, it is a good candidate to study the radio activity of galaxies in the cluster. We calculated the Univariate and Bivariate radio luminosity functions for A2256, and compared the results to studies on other clusters. We also used the SDSS parameter fracDev to roughly classify galaxies as spirals and ellipticals, and investigated the distribution and structure of galaxies in the cluster. We found that most of the radio galaxies in A2256 are faint, and are distributed towards the outskirts of the cluster. On the other hand, almost all very bright radio galaxies are ellipticals which are located at the center of the cluster. We also found there is an excess in the number of radio spiral galaxies in A2256 compared to the number of radio ellipticals, counting down to a radio luminosity of log(luminosity)=20.135 W/Hz..

  1. Young Children Counting at Home

    ERIC Educational Resources Information Center

    Griffiths, Rose

    2007-01-01

    Learning to count is something that most children start to do by the time they are about two, and parents know from first-hand experience that family members play a big part in helping with this complex process. In this article, the author describes a project involving families sharing effective counting activities. The project called "Getting…

  2. Preschooler's Counting in Peer Interaction.

    ERIC Educational Resources Information Center

    Curtis, Reagan P.

    For this experiment, part of a larger study on preschoolers' counting competence, 3-, 4-, and 5-year-olds played a counting game with their peers after becoming familiar with the game during structured interviews with an adult. It was expected that the symmetrical nature of peer interaction would allow children to display quantitative knowledge in…

  3. Star counts as an indicator of galactic structure and quasar evolution

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Soneira, R. M.

    1980-01-01

    A detailed model of the stellar content of the Galaxy is described briefly. Illustrative applications of the model are made, using existing data, to indicate how star counts can be used to determine some parameters of galactic structure, to detect a massive (stellar) halo, and to constrain models of quasar evolution.

  4. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  5. SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS

    SciTech Connect

    Patanchon, Guillaume; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Netterfield, Calvin B.; Olmi, Luca

    2009-12-20

    We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion-limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyze BLAST observations of a roughly 10 deg{sup 2} map centered on the Great Observatories Origins Deep Survey South field. We provide estimates of number counts at the three BLAST wavelengths 250, 350, and 500 mum; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power laws. We observe a generally very steep slope for the counts of about -3.7 at 250 mum, and -4.5 at 350 and 500 mum, over the range approx0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well suited for analysis of data from the Herschel satellite.

  6. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  7. Uncertainty in measurements by counting

    NASA Astrophysics Data System (ADS)

    Bich, Walter; Pennecchi, Francesca

    2012-02-01

    Counting is at the base of many high-level measurements, such as, for example, frequency measurements. In some instances the measurand itself is a number of events, such as spontaneous decays in activity measurements, or objects, such as colonies of bacteria in microbiology. Countings also play a fundamental role in everyday life. In any case, a counting is a measurement. A measurement result, according to its present definition, as given in the 'International Vocabulary of Metrology—Basic and general concepts and associated terms (VIM)', must include a specification concerning the estimated uncertainty. As concerns measurements by counting, this specification is not easy to encompass in the well-known framework of the 'Guide to the Expression of Uncertainty in Measurement', known as GUM, in which there is no guidance on the topic. Furthermore, the issue of uncertainty in countings has received little or no attention in the literature, so that it is commonly accepted that this category of measurements constitutes an exception in which the concept of uncertainty is not applicable, or, alternatively, that results of measurements by counting have essentially no uncertainty. In this paper we propose a general model for measurements by counting which allows an uncertainty evaluation compliant with the general framework of the GUM.

  8. Neutral Hydrogen in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  9. FAINT END OF 1.3 mm NUMBER COUNTS REVEALED BY ALMA

    SciTech Connect

    Hatsukade, Bunyo; Ohta, Kouji; Seko, Akifumi; Yabe, Kiyoto; Akiyama, Masayuki

    2013-06-01

    We present the faint end of number counts at 1.3 mm (238 GHz) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Band 6 observations were carried out targeting 20 star-forming galaxies at z ∼ 1.4 in the Subaru/XMM-Newton Deep Survey field. In the observations, we serendipitously detect 15 sources (≥3.8σ, S{sub 1.3} {sub mm} = 0.15-0.61 mJy) other than the targeted sources. We create number counts by using these ''sub-mJy sources'', which probe the faintest flux range among surveys at millimeter wavelengths. The number counts are consistent with (flux-scaled) number counts at 850 μm and 870 μm obtained with gravitational lensing clusters. The ALMA number counts agree well with model predictions, which suggest that these sub-mJy populations are more like ''normal'' star-forming galaxies than ''classical'' submillimeter galaxies with intense star-forming activity. In this flux range, ∼80% of the extragalactic background light at 1.3 mm is resolved into individual sources.

  10. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  11. Mice can count and optimize count-based decisions.

    PubMed

    Çavdaroğlu, Bilgehan; Balcı, Fuat

    2016-06-01

    Previous studies showed that rats and pigeons can count their responses, and the resultant count-based judgments exhibit the scalar property (also known as Weber's Law), a psychophysical property that also characterizes interval-timing behavior. Animals were found to take a nearly normative account of these well-established endogenous uncertainty characteristics in their time-based decision-making. On the other hand, no study has yet tested the implications of scalar property of numerosity representations for reward-rate maximization in count-based decision-making. The current study tested mice on a task that required them to press one lever for a minimum number of times before pressing the second lever to collect the armed reward (fixed consecutive number schedule, FCN). Fewer than necessary number of responses reset the response count without reinforcement, whereas emitting responses at least for the minimum number of times reset the response counter with reinforcement. Each mouse was tested with three different FCN schedules (FCN10, FCN20, FCN40). The number of responses emitted on the first lever before pressing the second lever constituted the main unit of analysis. Our findings for the first time showed that mice count their responses with scalar property. We then defined the reward-rate maximizing numerical decision strategies in this task based on the subject-based estimates of the endogenous counting uncertainty. Our results showed that mice learn to maximize the reward-rate by incorporating the uncertainty in their numerosity judgments into their count-based decisions. Our findings extend the scope of optimal temporal risk-assessment to the domain of count-based decision-making. PMID:26463617

  12. White blood cell counting system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  13. A Galaxy Blazes With Star Formation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst 'turned on' more than 100 million years ago.

  14. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  15. LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS

    SciTech Connect

    Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen

    2013-08-01

    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase ({approx}10%) in detected cluster number counts (due to a {approx}50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in {approx}2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a {approx}55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors.

  16. Complete Blood Count (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Metabolic Panel (BMP) Blood Test: Hemoglobin Basic Blood Chemistry Tests Word! Complete Blood Count (CBC) Medical Tests ...

  17. Counting Triangles to Sum Squares

    ERIC Educational Resources Information Center

    DeMaio, Joe

    2012-01-01

    Counting complete subgraphs of three vertices in complete graphs, yields combinatorial arguments for identities for sums of squares of integers, odd integers, even integers and sums of the triangular numbers.

  18. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  19. Counting on Using a Number Game

    ERIC Educational Resources Information Center

    Betts, Paul

    2015-01-01

    Counting all and counting on are distinct counting strategies that can be used to compute such quantities as the total number of objects in two sets (Wright, Martland, and Stafford 2010). Given five objects and three more objects, for example, children who use counting all to determine quantity will count both collections; that is, they count…

  20. A Bayesian Approach to Constraining Dwarf Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Lotz, J. M.; Ferguson, H. C.

    2001-12-01

    We use a Bayesian - maximum likelihood analysis of the Hubble Deep Field to constrain the epoch of dwarf galaxy formation. Late formation of dwarf galaxies arises as a natural consequence of proposed solutions to the "over-cooling" problem in hierarchical structure formation. Although dwarf-sized halos are among the first objects to collapse out of a cold dark matter dominated universe, photo-ionization from the inter-galactic UV background and stellar feedback at early epochs may suppress or delay significant star formation in dwarf galaxies until redshifts ~ 1. Such late-forming dwarf galaxies may make up a portion of the population of the faint blue galaxies observed at intermediate redshifts. Previous attempts to understand the nature of the faint blue galaxy population have fit the binned number counts, luminosity functions, color and size distributions and compared the results to a handful of possible scenarios. Our approach sums the likelihood of observing each object in the HDF catalog given a dwarf galaxy formation scenario and computes the total likelihood of the given dwarf formation scenario. The parameters of the input model are then varied, and the model with the maximum total likelihood is determined. This technique does not bin the data in any way, tests a wide range of input model parameters, and allows us to quantify the goodness-of-fit and constraints on dwarf galaxy evolution.

  1. DEMOGRAPHICS OF BULGE TYPES WITHIN 11 Mpc AND IMPLICATIONS FOR GALAXY EVOLUTION

    SciTech Connect

    Fisher, David B.; Drory, Niv

    2011-06-01

    We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc sphere using Spitzer 3.6 {mu}m and Hubble Space Telescope data. We find that whether counting by number, star formation rate, or stellar mass, the dominant galaxy type in the local universe has pure disk characteristics (either hosting a pseudobulge or being bulgeless). Galaxies that contain either a pseudobulge or no bulge combine to account for over 80% of the number of galaxies above a stellar mass of 10{sup 9} M{sub sun}. Classical bulges and elliptical galaxies account for {approx}1/4, and disks for {approx}3/4 of the stellar mass in the local 11 Mpc. About 2/3 of all star formation in the local volume takes place in galaxies with pseudobulges. Looking at the fraction of galaxies with different bulge types as a function of stellar mass, we find that the frequency of classical bulges strongly increases with stellar mass, and comes to dominate above 10{sup 10.5} M{sub sun}. Galaxies with pseudobulges dominate at 10{sup 9.5}-10{sup 10.5} M{sub sun}. Yet lower-mass galaxies are most likely to be bulgeless. If pseudobulges are not a product of mergers, then the frequency of pseudobulges in the local universe poses a challenge for galaxy evolution models.

  2. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  3. Questions on Pure Luminosity Evolution for Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    He, Ping; Zhang, Yuan-Zhong

    1999-02-01

    The explanation for the existence of an excess population of faint blue galaxies (FBGs) has been a mystery for nearly two decades and remains one of the grand astronomical issues to date. Existing models cannot explain all of the observational data, such as galaxy number counts in the optical and infrared passbands and the redshift distributions of galaxies. Here, by modeling the morphological number counts derived from the Hubble Space Telescope, as well as the number counts in optical and infrared passbands and the redshift and color distributions of galaxies obtained from ground-based observations, we show that the ``FBG problem'' cannot be resolved if elliptical galaxies are assumed to have formed in an instantaneous burst of star formation at high redshift with no subsequent star formation events, which is the conventional scenario for formation and evolution of ellipticals. There exist great discrepancies between the observed B-K color distribution and the predicted distribution for ellipticals by such a pure luminosity evolution (PLE) model in the context of the conventional scenario. Neither can the mild evolution (i.e., the star formation events have lasted for a longer time than those of the instantaneous burst and passive evolution since the formation of galaxies) for ellipticals be accepted in the context of PLE assumption. The introduction of dust extinction also cannot save the PLE models. This conclusion holds for each of the three cosmological models under consideration: flat, open, and Λ-dominated. Hence, our investigation suggests that PLE assumption for elliptical galaxies is questionable, and number evolution may be essential for ellipticals.

  4. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  5. An approach to measuring the density of the environment of galaxies: results and comparisons with other measurements

    NASA Astrophysics Data System (ADS)

    Ortega-Minakata, R. A.; Torres-Papaqui, J. P.; Andernach, H.

    2014-10-01

    With the aim of obtaining a homogeneous and reliable measurement of the density of the environment of a large sample of galaxies, we developed a code that counts the number of neighboring galaxies around a target galaxy. As targets, we selected a large sample of 666,387 galaxies from the spectroscopic catalogue of the SDSS-DR7 with redshifts between 0.03 and 0.30 and more luminous than absolute magnitude of -19 in the SDSS r band. The photometric catalogue of the SDSS-DR7 was used to extract and count the neighboring galaxies from, including about 24M objects, also more luminous than an r-band absolute magnitude of -19, for which a photometric redshift was available to serve as a distance estimate. The code counts all galaxies within an absolute distance of 1.5 Mpc around the target (translated to an apparent radius and a redshift range around that of the target). We avoid galaxies close to the survey edges, leaving 527,074 target galaxies for which we have a measurement of environmental density. We present our results and compare them to other measurements of the density of the environment of galaxies, such as those in the MaxBCG catalogue of brightest cluster galaxies. As a control of our method, we apply it to a sample of galaxies from the 2MIG catalogue of isolated galaxies, and also to a sample of galaxies from a compilation of members of Abell clusters. We aim to use our results to test the morphology-local density relation and to study the relationship between the different types of emission-line activity of galaxies and their ambient density.

  6. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  7. The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models

    NASA Astrophysics Data System (ADS)

    Power, C.; Baugh, C. M.; Lacey, C. G.

    2010-07-01

    Accurately predicting how the cosmic abundance of neutral hydrogen evolves with redshift is a challenging problem facing modellers of galaxy formation. We investigate the predictions of four currently favoured semi-analytical galaxy formation models applied to the Millennium simulation for the mass function of cold neutral gas (atomic and molecular) in galaxies as a function of redshift, and we use these predictions to construct number counts for the next generation of all-sky neutral atomic hydrogen (HI) surveys. Despite the different implementations of the physical ingredients of galaxy formation, we find that the model predictions are broadly consistent with one another; the key differences reflect how the models treat active galactic nuclei feedback and how the time-scale for star formation evolves with redshift. The models produce mass functions of cold gas in galaxies that are generally in good agreement with HI surveys at . Interestingly, we find that these mass functions do not evolve significantly with redshift. Adopting a simple conversion factor for cold gas mass to HI mass that we apply to all galaxies at all redshifts, we derive mass functions of HI in galaxies from the predicted mass functions of cold gas, which we use to predict the number counts of sources likely to be detected by HI surveys on next generation radio telescopes such as the Square Kilometre Array and its pathfinders. We find the number counts peak at galaxies deg at for a year long HI hemispheric survey on a 1/10/100 per cent SKA with a 30 deg field of view, corresponding to an integration time of 12 h. On a full SKA with a 200 deg field of view (equivalent to an integration time of 80 h) the number counts peak at galaxies deg at . We show also how adopting a conversion factor for cold gas mass to HI mass that varies from galaxy to galaxy impacts on number counts. In addition, we examine how the typical angular sizes of galaxies vary with redshift. These decline strongly with

  8. LINEAR COUNT-RATE METER

    DOEpatents

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  9. Photon Counting - One More Time

    NASA Astrophysics Data System (ADS)

    Stanton, Richard H.

    2012-05-01

    Photon counting has been around for more than 60 years, and has been available to amateurs for most of that time. In most cases single photons are detected using photomultiplier tubes, "old technology" that became available after the Second World War. But over the last couple of decades the perfection of CCD devices has given amateurs the ability to perform accurate photometry with modest telescopes. Is there any reason to still count photons? This paper discusses some of the strengths of current photon counting technology, particularly relating to the search for fast optical transients. Technology advances in counters and photomultiplier modules are briefly mentioned. Illustrative data are presented including FFT analysis of bright star photometry and a technique for finding optical pulses in a large file of noisy data. This latter technique is shown to enable the discovery of a possible optical flare on the polar variable AM Her.

  10. Kentucky Kids Count 2001 County Data Book: Families Count.

    ERIC Educational Resources Information Center

    Salley, Valerie

    This Kids Count county data book is the eleventh in a series to measure the well-being of Kentucky's children and focuses on the vital role that families play in ensuring their children's success. Included at the beginning of this document is an executive summary of the databook providing an overview of the statewide data for six child and family…

  11. Two-fluid simulations of galaxy formation

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Summers, F. J.; Davis, Marc

    1994-01-01

    We investigate the formation of galaxies and larger structure with a simulation modeling two gravitationally coupled fluids representing dark matter and baryons. The baryon gas dynamics are calculated with a smoothed particle hydrodynamics (SPH) method, and the physics modeled includes thermal pressure, shock heating, and radiative cooling. We simulate a 16 Mpc periodic cube with 64(exp 3) particles in each fluid and 10% baryon mass fraction. We confirm, for the first time experimentally, disk formation as a natural consequence of hierarchical clustering in a large-scale cosmological environment. The majority of isolated galaxies exhibit centrifugally supported disks. A power-law relation between cold baryonic mass and maximum rotation velocity is found, M varies as nu(sub rot)(exp alpha) with alpha = 2.5 after correcting for differential numerical resolution. Both the spatial and velocity distributions of the simulated galaxies are biased with respect to the dark matter. A counts-in-cells analysis indicates that an unphysical degree of merging in the central cluster is likely responsible for the antibias signal in the correlation function. A robust, scale-dependent velocity bias is measured. The ratio of galaxy to dark matter pairwise velocity dispersions on a scale of 1 Mpc is 0.7. The amplitude is only mildly dependent on redshift or mass cutoff and scales with separation as r(exp 0.2). The degree to which these results depend on numerical parameters is discussed. Mass resolution plays a key role in controlling the resulting fraction of cold, dense baryons. The mass fraction associated with galaxies decreases by a factor of approximately greater than 3 when the mass per particle is increased by a factor 8. Photoionization and energy input from supernova will have to be included to determine more carefully the fraction of highly dissipated material and the characteristics of the stellar component of galaxies.

  12. Galaxy redshift surveys with sparse sampling

    SciTech Connect

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.

    2013-12-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.

  13. STEALTH GALAXIES IN THE HALO OF THE MILKY WAY

    SciTech Connect

    Bullock, James S.; Stewart, Kyle R.; Kaplinghat, Manoj; Tollerud, Erik J.; Wolf, Joe

    2010-07-10

    We predict that there is a population of low-luminosity dwarf galaxies orbiting within the halo of the Milky Way (MW) that have surface brightnesses low enough to have escaped detection in star-count surveys. The overall count of stealth galaxies is sensitive to the presence (or lack) of a low-mass threshold in galaxy formation. These systems have luminosities and stellar velocity dispersions that are similar to those of known ultrafaint dwarf galaxies but they have more extended stellar distributions (half-light radii greater than about 100 pc) because they inhabit dark subhalos that are slightly less massive than their higher surface brightness counterparts. As a result, the typical peak surface brightness is fainter than 30 mag arcsec{sup -2}. One implication is that the inferred common mass scale for MW dwarfs may be an artifact of selection bias. If there is no sharp threshold in galaxy formation at low halo mass, then ultrafaint galaxies like Segue 1 represent the high-mass, early-forming tail of a much larger population of objects that could number in the hundreds and have typical peak circular velocities of about 8 km s{sup -1} and masses within 300 pc of about 5 million solar masses. Alternatively, if we impose a low-mass threshold in galaxy formation in order to explain the unexpectedly high densities of the ultrafaint dwarfs, then we expect only a handful of stealth galaxies in the halo of the MW. A complete census of these objects will require deeper sky surveys, 30 m class follow-up telescopes, and more refined methods to identify extended, self-bound groupings of stars in the halo.

  14. On the Morphology of the HST Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Giavalisco, Mauro; Livio, Mario; Bohlin, Ralph C.; Macchetto, F. Duccio; Stecher, Theodore P.

    1996-08-01

    Deep imaging with the Hubble Space Telescope (HST) has revealed a population of rapidly evolving galaxies, which account for < 50% of the total counts at I <~ 22.5, are well distinct from the passively evolving normal ellipticals and spirals, and have morphologies that elude the traditional Hubble classification scheme. This classification has been derived from the morphological properties of local galaxies observed at optical wavelengths. Since galaxy morphology is a function of the wavelength and of the localization and intensity of the star-formation activity, the appearance of galaxies at large redshifts is subject to k- correction and evolutionary effects of the stellar populations, even if the underlying dynamics does not change significantly. In addition, the strong dependence of the surface brightness on redshift as σ ~(1 +z)^-4^ implies that the observed morphology of distant galaxies is also affected by the limiting surface brightness that can be reached. This paper shows how local galaxies observed at UV wavelengths with the Ultraviolet Imaging Telescope (UIT) would appear to HST if placed at cosmological distances, with the UV light redshifted to the optical wavelengths. The simulated distant galaxies have morphologies that are of later type or more irregular than their local (optical) counterparts, and some are in qualitative agreement with those revealed by the faint HST surveys, suggesting that dynamical evolution has played a minor role in the evolution of the majority of the galaxies over a large fraction of the Hubble time. However, the dependence of galaxy morphology on the star-formation activity and on the wavelength must be properly understood before any conclusion on the overall morphological evolution of galaxies can be derived.

  15. Magnification bias corrections to galaxy-lensing cross-correlations

    SciTech Connect

    Ziour, Riad; Hui, Lam

    2008-12-15

    Galaxy-galaxy or galaxy-quasar lensing can provide important information on the mass distribution in the Universe. It consists of correlating the lensing signal (either shear or magnification) of a background galaxy/quasar sample with the number density of a foreground galaxy sample. However, the foreground galaxy density is inevitably altered by the magnification bias due to the mass between the foreground and the observer, leading to a correction to the observed galaxy-lensing signal. The aim of this paper is to quantify this correction. The single most important determining factor is the foreground redshift z{sub f}: the correction is small if the foreground galaxies are at low redshifts but can become non-negligible for sufficiently high redshifts. For instance, we find that for the multipole l=1000, the correction is above 1%x(5s{sub f}-2)/b{sub f} for z{sub f} > or approx. 0.37, and above 5%x(5s{sub f}-2)/b{sub f} for z{sub f} > or approx. 0.67, where s{sub f} is the number count slope of the foreground sample and b{sub f} its galaxy bias. These considerations are particularly important for geometrical measures, such as the Jain and Taylor ratio or its generalization by Zhang et al. Assuming (5s{sub f}-2)/b{sub f}=1, we find that the foreground redshift should be limited to z{sub f} < or approx. 0.45 in order to avoid biasing the inferred dark energy equation of state w by more than 5%, and that even for a low foreground redshift (<0.45), the background samples must be well separated from the foreground to avoid incurring a bias of similar magnitude. Lastly, we briefly comment on the possibility of obtaining these geometrical measures without using galaxy shapes, using instead magnification bias itself.

  16. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  17. The onset of galactic winds in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Forman, W.; Jones, C.; Tucker, W.; David, L. P.

    1990-01-01

    Researchers report on a program using Einstein x ray observations of the x ray spectra and surface brightness profiles (or extents) of a large sample of early-type (elliptical and SO) galaxies for which the goal is to determine the critical optical luminosity for which galactic winds are important. For galaxies in which the x ray emission is dominated by hydrostatic coronae, the x ray spectra will be relatively soft (characterized by a temperature of approx. 10 to the 7th power K), while for galaxies with a galactic wind, the emission will be dominated by the spectrally harder discrete sources (since the x ray emission from the wind is essentially negligible). In this new sample of 180 galaxies, there are 28 early type galaxies with sufficient counts to obtain a spectrum with the Einstein Image Proportional Counter (IPC). This sample more than doubles the total number of early-type galaxies in earlier compilations (Forman, Jones, and Tucker 1985; Canizares et al. 1987). The new spectral observations will help determine the critical optical luminosity for the onset of galactic winds which is important for understanding the chemical evolution of galaxies and of the intergalactic medium. The implications of galactic winds for the heavy element enrichment and energy content of the intracluster medium are discussed.

  18. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  19. The environment of barred galaxies in the low-redshift universe

    SciTech Connect

    Lin, Ye; Sodi, Bernardo Cervantes; Li, Cheng; Wang, Lixin; Wang, Enci E-mail: leech@shao.ac.cn

    2014-12-01

    We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ∼50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  20. Carbon fiber counting. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A method was developed for characterizing the number and lengths of carbon fibers accidentally released by the burning of composite portions of civil aircraft structure in a jet fuel fire after an accident. Representative samplings of carbon fibers collected on transparent sticky film were counted from photographic enlargements with a computer aided technique which also provided fiber lengths.

  1. Wiskids Count Data Book, 2003.

    ERIC Educational Resources Information Center

    Cranley, M. Martha; Bianchi, J. P.; Eleson, Charity; Hall, Linda; Jacobson, Bob; Jackson, Kristin; Peacock, Jon

    This WisKids Count data book provides a statistical portrait of the well-being of Wisconsin's children. In addition to demographic data indicating changing communities, the indicators and data are organized into five overarching goals: (1) Healthy Families and Children Thrive, including births to single women, infant deaths, and health care…

  2. South Carolina Kids Count, 2001.

    ERIC Educational Resources Information Center

    Holmes, A. Baron

    This Kids Count report examines statewide trends in the well-being of South Carolina's children. The statistical portrait is based on 42 indicators in the areas of demographics, family, economic status, health, readiness and early school performance, scholastic achievement, and adolescent risk behaviors. The indicators are: (1) population; (2)…

  3. KIDS COUNT Data Brief, 2009

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, 2009

    2009-01-01

    This 2009 KIDS COUNT Data Brief features highlights of the enhanced, mobile-friendly Data Center; data on the 10 key indicators of child well-being for all U.S. states, the District of Columbia, and many cities, counties, and school districts; and a summary of this year's essay, which calls for improvements to the nation's ability to design and…

  4. Counting a Culture of Mealworms

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    Math is not the only topic that will be discussed when young children are asked to care for and count "mealworms," a type of insect larvae (just as caterpillars are the babies of butterflies, these larvae are babies of beetles). The following activity can take place over two months as the beetles undergo metamorphosis from larvae to adults. As the…

  5. Shakespeare Live! and Character Counts.

    ERIC Educational Resources Information Center

    Brookshire, Cathy A.

    This paper discusses a live production of Shakespeare's "Macbeth" (in full costume but with no sets) for all public middle school and high school students in Harrisonburg and Rockingham, Virginia. The paper states that the "Character Counts" issues that are covered in the play are: decision making, responsibility and citizenship, trustworthiness,…

  6. Meal Counting and Claiming Manual.

    ERIC Educational Resources Information Center

    Food and Nutrition Service (USDA), Washington, DC.

    This manual contains information about the selection and implementation of a meal counting and claiming system for the National School Lunch Program (NSLP) and the School Breakfast Program (BSP). Federal reimbursement is provided for each meal that meets program requirements and is served to an eligible student. Part 1 explains the six elements of…

  7. What Really Counts in Schools.

    ERIC Educational Resources Information Center

    Eisner, Elliot W.

    1991-01-01

    Brains are biological, but minds are cultural achievements. What really counts in schools is teaching children the excitement of exploring ideas, helping youngsters formulate their own problems and resolution strategies, developing multiple literacy forms, imparting the importance of wonder, creating a sense of community, and recognizing each…

  8. South Carolina Kids Count, 2000.

    ERIC Educational Resources Information Center

    Holmes, A. Baron

    This Kids Count report examines statewide trends in the well-being of South Carolina's children. The statistical portrait is based on 41 indicators in the areas of demographics, family, economic status, health, readiness and early school performance, scholastic achievement, and adolescent risk behaviors. The indicators are: (1) population; (2)…

  9. Oklahoma Kids Count Factbook, 2002.

    ERIC Educational Resources Information Center

    Ingraham, Sandy

    This Kids Count Factbook details county and statewide trends in the well-being of children in Oklahoma. The statistical portrait is based on seven indicators or benchmarks of child well-being: (1) low birthweight infants; (2) infant mortality; (3) births to young teens; (4) child abuse and neglect; (5) child and teen death; (6) high school…

  10. On Counting the Rational Numbers

    ERIC Educational Resources Information Center

    Almada, Carlos

    2010-01-01

    In this study, we show how to construct a function from the set N of natural numbers that explicitly counts the set Q[superscript +] of all positive rational numbers using a very intuitive approach. The function has the appeal of Cantor's function and it has the advantage that any high school student can understand the main idea at a glance…

  11. KIDS COUNT New Hampshire, 2000.

    ERIC Educational Resources Information Center

    Shemitz, Elllen, Ed.

    This Kids Count report presents statewide trends in the well-being of New Hampshire's children. The statistical report is based on 22 indicators of child well-being in 5 interrelated areas: (1) children and families (including child population, births, children living with single parent, and children experiencing parental divorce); (2) economic…

  12. Automatic Crater Counts on Mars

    NASA Astrophysics Data System (ADS)

    Plesko, C.; Brumby, S.; Asphaug, E.; Chamberlain, D.; Engel, T.

    2004-03-01

    We present results of an automated crater counting technique for THEMIS data. Algorithms were developed using GENIE machine learning software. The technique detects craters, generalizes well to new data, and is used to rapidly produce R-plots and statistical data.

  13. Verbal Counting in Bilingual Contexts

    ERIC Educational Resources Information Center

    Donevska-Todorova, Ana

    2015-01-01

    Informal experiences in mathematics often include playful competitions among young children in counting numbers in as many as possible different languages. Can these enjoyable experiences result with excellence in the formal processes of education? This article discusses connections between mathematical achievements and natural languages within…

  14. Oklahoma Kids Count Factbook '96.

    ERIC Educational Resources Information Center

    Ingraham, Sandy

    This data book presents findings of the Kids Count Project on current conditions faced by Oklahoma children age birth through 18. This second annual factbook organizes state and county data over a period of time to enable conditions for children in each county to be compared and ranked. The benchmark indicators studied include low birthweight…

  15. Kids Count Data Sheet, 2000.

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, Baltimore, MD.

    Data from the 50 United States are listed for 1997 from Kids Count in an effort to track state-by-state the status of children in the United States and to secure better futures for all children. Data include percent low birth weight babies; infant mortality rate; child death rate; rate of teen deaths by accident, homicide, and suicide; teen birth…

  16. Kids Count in Colorado! 2003.

    ERIC Educational Resources Information Center

    Boeke, Kaye

    This Kids Count report examines state, county, and regional trends in the well-being of Colorado's children. The first part of the report is presented in four chapters. Chapter 1 includes findings regarding the increasing diversity of the child population, linguistic isolation, the impact of parental unemployment, child poverty, and the affordable…

  17. Galaxy NGC5474

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  18. Infrared Polarimetry of Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, T. J.

    2005-12-01

    Imaging polarimetry at near infrared wavelengths can probe the magnetic field geometry in external galaxies in regions of high extinction inaccessible to optical techniques. Polarization of starlight from deep into dustlanes, blowouts, and dust enshrouded nuclei can be measured. A total of twelve galaxies showing only interstellar polarization have been observed to date. Normal galaxies such as NGC 4565 show a magnetic field geometry lying in the plane of the disk and a polarization strength very similar to what is observed in the Milky Way. Ultraluminous galaxies and galaxies with starburst nuclei show a polar magnetic field geometry in the nucleus, causing a crossed polaroid effect and reduced polarization. Interestingly, galaxies with active disks, but otherwise normal, such as NGC 891 show the effects of blowouts in the polarization maps.

  19. Classic Galaxy with Glamour

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue).

    This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy.

    Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  20. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  1. ROSAT PSPC observations of two starburst galaxies

    NASA Astrophysics Data System (ADS)

    Junkes, N.; Pietsch, W.; Hensler, G.

    1993-12-01

    We present results from ROSAT observations of NGC 1808 and NGC 2903. Exposures of 10 ksec each with the Position-Sensitive Proportional Counter (PSPC) detector show X-ray sources at the central positions of both galaxies which are classified as nuclear starburst galaxies. Both targets, NGC 1808 and NGC 2903 appear slightly extended in X-ray maps in the energy band 0.1-2.4 keV. The X-ray spectrum of NGC 1808 shows almost complete absorption below 0.5 keV, indicating an extremely high hydrogen column density towards that source (NH approx. = 8 x 1021/sq cm resulting from model fits on the PSPC spectrum). In the case of NGC 2903, the number of counts in the ROSAT band is significantly lower than expected from a previous EINSTEIN (HEAO 2) investigation of the source.

  2. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  3. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  4. The first source counts at 18 μm from the AKARI NEP Survey

    NASA Astrophysics Data System (ADS)

    Pearson, Chris P.; Serjeant, S.; Oyabu, S.; Matsuhara, H.; Wada, T.; Goto, T.; Takagi, T.; Lee, H. M.; Im, M.; Ohyama, Y.; Kim, S. J.; Murata, K.

    2014-10-01

    We present the first galaxy counts at 18 μm using the Japanese AKARI satellite's survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8 deg2, respectively. We describe a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 per cent completeness) of 0.15 and 0.3 mJy for the NEP-Deep and NEP-Wide surveys, respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4 mJy consistent with previous mid-infrared surveys with ISO and Spitzer at 15 and 24 μm. We compare our results with galaxy evolution models confirming the striking divergence from the non-evolving scenario. The models and observations are in broad agreement implying that the source counts are consistent with a strongly evolving population of luminous infrared galaxies at redshifts higher than unity. Integrating our source counts down to the limit of the NEP survey at the 150 μJy level we calculate that AKARI has resolved approximately 55 per cent of the 18 μm cosmic infrared background relative to the predictions of contemporary source count models.

  5. Cluster evolution and microwave source counts

    NASA Technical Reports Server (NTRS)

    Markevitch, M.; Blumenthal, G. R.; Forman, W.; Jones, C.; Sunyaev, R. A.

    1994-01-01

    We present the modeled counts for the expected Sunyaev-Zel'dovich microwave sources associated with clusters of galaxies, predicted for experiments with arcminute-scale spatial resolution, assuming self-similar cluster evolution, for different spectra of the primordial density fluctuations and values of the cosmological density parameter Omega. Our simulations show that the source counts should be a powerful test of the evolution of very high redshift clusters. Experiments with 1 - 2 min spatial resolution, with moderate sensitivity but covering a large area of the sky, would be most effective for studying the SZ source population. Recent arcminute-scale radio experiments, the Owens Valley Radio Observatory (OVRO) RING experiment and VLA deep imaging, achieved sensitivity and sky coverage close to that needed for the detection of negative sources associated with very distant clusters. From the absence of cluster detections in these experiments, we rule out, with 90% confidence, models with Omega less than 0.3 and n = +1 as predicting too many bright sources; or there is no hot gas in clusters more distant than z(sub max) = 5 in such models. If the single negative source detected in the RING experiment is a distant cluster, the Omega = 1, n = -2 model also may be ruled out as it predicts too few sources. The new generation of telescopes, including the new SUZIE and Ryle instruments, will soon be able to detect distant clusters. The cluster population in the past has been modeled by scaling the observed present-day sample of X-ray clusters back to high redshifts, an approach which makes the best use of the observed cluster gas parameters, and makes the simulations robust to the assumed evolution at very early epochs. Although the pure self-similar model may be incompatible with the variety of observed evolutionary effects, we show that reasonable modifications to the intracluster gas history in that model, proposed to reconcile the self-similar evolution of cluster

  6. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  7. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  8. Ripples in disk galaxies

    SciTech Connect

    Schweizer, F.; Seitzer, P.

    1988-05-01

    Evidence is presented that ripples occur not only in ellipticals but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. It is argued that the ripples cannot usually have resulted from transient spiral waves or other forced vibrations in existing disks, but instead consist of extraneous sheetlike matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers but also through mass transfer from neighbor galaxies. The implications of ripples in early-type disk galaxies are addressed. 40 references.

  9. Starbursts in colliding galaxies.

    NASA Astrophysics Data System (ADS)

    Mirabel, I. F.; Duc, P. A.

    Global starbursts are a consequence of rapid changes in the dynamics of the interstellar gas. The most violent starbursts take place in the nuclear regions of galaxies, when galaxy-galaxy encounters cause a sudden reduction of angular momentum, with the subsequent infall to the central regions of a large fraction of the overall interstellar gas. Although starbursts are also observed in the central regions of isolated barred spiral galaxies, most of the starbursts with bolometric luminosities above 1012Lsun occur in mergers. Super-starbursts in galactic nuclei seem to require high infall rates of interstellar gas that can only be produced during mergers. The authors discuss the phenomenon of extranuclear starbursts in relation to the formation of dwarf galaxies during galaxy-galaxy collisions. As a consequence of tidal interactions a fraction of the less gravitationally bound atomic hydrogen that populates the outskirts of disk galaxies may escape into the intergalactic medium. It is found that the ejected gas may assemble again and collapse, leading to the formation of intergalactic starbursts, namely, tidal dwarf galaxies.

  10. From tidal dwarf galaxies to satellite galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, F.; Duc, P.-A.

    2006-09-01

    The current popular cosmological models have granted the population of dwarf satellite galaxies a key role: their number, location, and masses constrain both the distribution of dark matter and the physical evolution of their hosts. In the past years, there has been increasing observational evidence that objects with masses of dwarf galaxies can form in the tidal tails of colliding galaxies, as well as speculations that they could become satellite-like galaxies orbiting around their progenitors and thus be cosmologically important. Yet, whether the so-called "Tidal Dwarf Galaxy" (TDG) candidates are really long-lived objects and not transient features only present in young interacting systems is still largely an open question to which numerical simulations may give precise answers. We present here a set of 96 N-body simulations of colliding galaxies with various mass ratios and encounter geometries, including gas dynamics and star formation. We study the formation and long-term evolution of their TDG candidates. Among the 593 substructures initially identified in tidal tails, about 75% fall back onto their progenitor or are disrupted in a few 108 years. The remaining 25% become long-lived bound objects that typically survive more than 2 Gyr with masses above 108 M⊙. These long-lived, satellite-like objects, are found to form in massive gaseous accumulations originally located in the outermost regions of the tidal tails. Studying the statistical properties of the simulated TDGs, we infer several basic properties that dwarf galaxies should meet to have a possible tidal origin and apply these criteria to the Local Group dwarfs. We further found that the presence of TDGs would foster the anisotropy observed in the distribution of classical satellite galaxies around their host. Identifying the conditions fulfilled by interacting systems that were able to form long-lived tidal dwarfs - a spiral merging with a galaxy between 1/4 and 8 times its mass, on a prograde orbit

  11. Gas in void galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn Joyce

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, and provide an observational test for theories of cosmological structure formation. We investigate the neutral hydrogen properties (i.e. content, morphology, kinematics) of void galaxies, both individually and systematically, using a combination of observations and simulations, to form a more complete understanding of the nature of these systems. We investigate in detail the H I morphology and kinematics of two void galaxies. One is an isolated polar disk galaxy in a diffuse cosmological wall situated between two voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies. We also examine KK 246, the only confirmed galaxy located within the nearby Tully Void. It is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, and a general misalignment between the H I and optical major axes. The relative isolation and extreme underdense environment make these both very interesting cases for examining the role of gas accretion in galaxy evolution. To study void galaxies as a population, we have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. We have imaged this new Void Galaxy Survey in H I at the Westerbork Synthesis Radio Telescope with a typical resolution of 8 kpc, probing a volume of 1.2 Mpc and 12,000 km s^-1 surrounding each galaxy. We reach H I mass limits of 2 x 10^8 M_sun and column density sensitivities of 5 x 10^19 cm^-2

  12. Two Galaxies for a Unique Event

    NASA Astrophysics Data System (ADS)

    2009-04-01

    of the image is clearly demonstrated by the remarkable number of background galaxies seen, as well as the huge numbers of individual stars that can be counted within NGC 55. The second image shows another galaxy belonging to the Sculptor group. This is NGC 7793, which has a chaotic spiral structure, unlike the class of grand-design spiral galaxies to which our Milky Way belongs. The image shows how difficult it is to identify any particular spiral arm in these chaotic structures, although it is possible to guess at a general rotating pattern. NGC 7793 is located slightly further away than NGC 55, about 12.5 million light-years from us, and is about half the size of NGC 55. NGC 7793 was observed with one of the workhorses of the ESO Paranal Observatory, the FORS instrument, attached to the Very Large Telescope.

  13. A photon-counting multichannel spectrometer. [for astronomical optical spectroscopy

    NASA Technical Reports Server (NTRS)

    Shectman, S. A.; Hiltner, W. A.

    1977-01-01

    A multichannel detector system is described in which the positions of individual photon events in a high-gain image intensifier are decoded in the output of a video detector. The high-gain intensifier consists of a pair of three-stage electrostatic image-tube assemblies each containing three fiber-optically-coupled tubes potted in a rugged package with an internal high-voltage supply. Operation of the electrooptical system is discussed along with the pulse-detection process and the operation of the spectrograph in which the image-tube assembly is mounted. It is noted that the spectrometer detects 1.0 count/sec per A for an object of magnitude 13.0 at the peak of its response in the visual band when no light is lost on the slit, that a 10% coincidence correction is reached at an overall count rate of 860 per sec, and that the response follows an exponential law up to count rates of about 4000 per sec. The measured spectrum of the Seyfert galaxy NGC 5548 is provided as an example of the raw data produced by the instrument on a 1.5 meter telescope.

  14. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    merger candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. Finally, our sample contains several examples of late-type dwarfs and 'transition' types that are potential precursors of nucleated early-type dwarfs. All the above processes--mass loss, mergers, astration--are likely to have contributed to the formation of the current population of diffuse early-type dwarfs. A few new redshifts of dwarf galaxies are reported in this paper.

  15. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Astrophysics Data System (ADS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-10-01

    candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. galaxies are reported in this paper.

  16. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  17. Luminous red galaxies in the Sloan digital sky survey

    NASA Astrophysics Data System (ADS)

    Loh, Yeong-Shang

    2004-04-01

    We determine the luminosity function and evolution of 22,562 Luminous Red Galaxies (LRG) with 0.08 < z < 0.44 from the Sloan Digital Sky Survey (SDSS). The universal field galaxy luminosity function with a steep exponential bright end cut-off expected from a Schechter form is confirmed to z ˜ 0.4. We do not discern any evolution in the comoving number density of these luminous early-type galaxies, once biases due to photometric errors are taken into account. Using 2099 deg2 of SDSS imaging data, we search for bright early-type galaxies within 1 h-1 Mpc of LRG with 0.12 < z < 0.38 to study the bright end of the luminosity distribution at this scale. The brightest galaxies (nearly always an LRG) in LRG fields are too bright if other members in the same field are drawn from an exponentially decaying luminosity function. The luminosity gap between the brightest and the second brightest galaxy is large (˜0.8 mag). When the LRG fields were split into group-like and cluster- like environments, the former gives a larger gap. The gap shows little evolution with redshifts, putting stringent constraints on the scenario of the growth of Brightest Cluster (or Group) Galaxies by recent cannibalism of cluster members. We calibrate the observed color-magnitude-redshift relation for early-type galaxies. We use LRGs as spectroscopic references and measure the color of imaging galaxies that clustered around each LRG. We bin these galaxies in redshift and perform an optimal background subtraction to recover the color-magnitude relation. The observed scatter around this color-magnitude relation is also measured. We study the environments of LRG by counting the number of early-type galaxies brighter than M* within 1 h-1 Mpc of the LRG. LRGs are binned in redshift and treated as a single population to infer the evolution trend of their environments. Both the rich optical clusters and moderately X-ray bright clusters host at least one LRG. However, LRG are most common in group

  18. Imaging by terahertz photon counting

    NASA Astrophysics Data System (ADS)

    Ikushima, Kenji; Komiyama, Susumu

    2010-08-01

    Photon counting method is indispensable in visible/near-infrared optical measurements for detecting extremely weak radiation. The method, however, has been inaccessible in terahertz region, where the photon energies are more than 100 times smaller and catching individual photons is difficult. Here we review photon counting measurements of terahertz waves, by incorporating a semiconductor quantum-dot terahertz-photon detector into a scanning terahertz microscope. By using a quantum Hall effect detector as well, measurements cover the intensity dynamic range more than six orders of magnitude. Applying the measurement system to the study of semiconductor quantum Hall effect devices, we image extremely weak cyclotron radiation emitted by nonequilibrium electrons. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled. Besides semiconductor electric devices studied here, the experimental method will find application in diverse areas of molecular dynamics, microthermography, and cell activities.

  19. Bayesian Kernel Mixtures for Counts

    PubMed Central

    Canale, Antonio; Dunson, David B.

    2011-01-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437

  20. Bayesian Kernel Mixtures for Counts.

    PubMed

    Canale, Antonio; Dunson, David B

    2011-12-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437

  1. 1/Nc Countings in Baryons

    SciTech Connect

    Jose Goity

    2004-05-01

    The 1/N{sub c} power countings for baryon decays and configuration mixings are determined by means of a non-relativistic quark picture. Such countings are expected to be robust as the quark masses are decreased towards the chiral limit. It is shown that excited baryons have natural widths of {Omicron}(N{sub c}{sup 0}). These dominant widths are due to the decays that proceed directly to the ground state baryons, with cascade decays being suppressed to {Omicron}(1/N{sub c}). Configuration mixings, defined as mixings between states belonging to different O(3) x SU(2N{sub f}) multiplets, are shown to be sub-leading in an expansion in 1/{radical}N{sub c}, except for certain mixings between excited multiplets belonging to the mixed-symmetric spin-flavor representation and different O(3) representations, where the mixings are of zeroth order in 1/N{sub c}.

  2. Stability of fringe counting interferometers

    NASA Technical Reports Server (NTRS)

    Edgerton, J. W.; Andrew, K. L.

    1974-01-01

    Two configurations of an automatic bidirectional, fringe-counting corner-cube interferometer are compared. They differ only in the method of quadrature phase introduction. The one using polarization coding has good phase stability at optical path differences as large as 955 mm, the one using adjacent beams has such poor phase stability as to render it useless at path differences greater than 700 mm. A useful well-defined alignment procedure is given for the corner-cube interferometer.

  3. Approximate Counting of Graphical Realizations

    PubMed Central

    2015-01-01

    In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994

  4. Approximate Counting of Graphical Realizations.

    PubMed

    Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos

    2015-01-01

    In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994

  5. Bars Triggered By Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2015-05-01

    Galaxy mergers drive galaxy evolution and are a key mechanism by which galaxies grow and transform. Unlike galaxy mergers where two galaxies combine into one remnant, galaxy flybys occur when two independent galaxy halos interpenetrate but detach at a later time; these one-time events are surprisingly common and can even out-number galaxy mergers at low redshift for massive halos. Although these interactions are transient and occur far outside the galaxy disk, flybys can still drive a rapid and large pertubations within both the intruder and victim halos. We explored how flyby encounters can transform each galaxy using a suite of N-body simulations. We present results from three co-planar flybys between disk galaxies, demonstrating that flybys can both trigger strong bar formation and can spin-up dark matter halos.

  6. Simulating Galaxies and Active Galactic Nuclei in the LSST Image Simulation Effort

    NASA Astrophysics Data System (ADS)

    Pizagno, James; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Chang, C.; Gibson, R. R.; Gilmore, K.; Grace, E.; Hannel, M.; Jernigan, J. G.; Jones, L.; Kahn, S. M.; Krughoff, S. K.; Lorenz, S.; Marshall, S.; Shmakova, S. M.; Sylvestri, N.; Todd, N.; Young, M.

    2011-01-01

    We present an extragalactic source catalog, which includes galaxies and Active Galactic Nuclei, that is used for the Large Survey Synoptic Telescope Imaging Simulation effort. The galaxies are taken from the De Lucia et. al. (2006) semi-analytic modeling (SAM) of the Millennium Simulation. The LSST Image Simulation effort requires full SED information and galaxy morphological information, which is added to the catalog by fitting Bruzual & Charlot (2003) stellar population models, with Cardelli, Clayton, Mathis (1989) dust models, to the BVRIK colors provided by the De Lucia et. al. (2006) SAM. Galaxy morphology is modeled as a double Sersic profile for the disk and bulge. Galaxy morphological information and number counts are matched to existing observations. The catalog contains galaxies with a limiting r-band magnitude of mr=28, which results in roughly 1E6 galaxies per square degree. An existing AGN catalog (MacLeod et. al. 2010) is matched to galaxy hosts in the galaxy catalog using SDSS observations. AGN are morphologically modeled as variable point sources located at the center of the host galaxy. We demonstrate how this extragalactic source catalog allows LSST to plan for extended object extraction, variable extragalactic source detection, sensitivity level determination after image stacking, and perform various other cosmological tests.

  7. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  8. Evolution of galaxy habitability

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Hong, S. E.

    2016-08-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4 × 1010M⊙. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expect that ~1.4 ×109 planets similar to present-day Earth have existed so far in our galaxy.

  9. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  10. The Quest for Dusty Primeval Galaxies

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and the 'main sequence' star-formation timescales to show that the observed high abundance of galaxies with stellar masses ? a few >10^10 M_⊙ at redshift z >? 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ >? 10^2 M_⊙ yr^‑1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z<3 in the far-IR band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ˜ 10, elucidating that the number density at z 30 M_⊙ yr^‑1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ? 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  11. GALAXIES: SNAPSHOTS IN TIME

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sequence of NASA Hubble Space Telescope (HST) images of remote galaxies offers tantalizing initial clues to the evolution of galaxies in the universe. [far left column] These are traditional spiral and elliptical-shaped galaxies that make up the two basic classes of island star cities that inhabit the universe we see in our current epoch (14 billion years after the birth of the universe in the Big Bang). Elliptical galaxies contain older stars, while spirals have vigorous ongoing star formation in their dusty, pancake-shaped disks. Our Milky Way galaxy is a typical spiral, or disk-shaped galaxy, on the periphery of the great Virgo cluster. Both galaxies in this column are a few tens of millions of light-years away, and therefore represent our current stage of the universe s evolution. [center left column] These galaxies existed in a rich cluster when the universe was approximately two-thirds its present age. Elliptical galaxies (top) appear fully evolved because they resemble today's descendants. By contrast, some spirals have a frothier appearance, with loosely shaped arms of young star formation. The spiral population appears more disrupted due to a variety of possible dynamical effects that result from dwelling in a dense cluster. [center right column] Distinctive spiral structure appears more vague and disrupted in galaxies that existed when the universe was nearly one-third its present age. These objects do not have the symmetry of current day spirals and contain irregular lumps of starburst activity. However, even this far back toward the beginning of time, the elliptical galaxy (top) is still clearly recognizable. However, the distinction between ellipticals and spirals grows less certain with increasing distance. [far right column] These extremely remote, primeval objects existed with the universe was nearly one-tenth its current age. The distinction between spiral and elliptical galaxies may well disappear at this early epoch. However, the object in

  12. Galaxy Messier 83

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  13. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  14. Insights on galaxy formation

    NASA Astrophysics Data System (ADS)

    Bullock, James Steven

    1999-12-01

    Recent advances in theoretical modeling coupled with a wealth of new observational data, provide a unique opportunity for gaining insight into process of galaxy formation. I present results which test and develop current theories. The analysis utilizes state of the art theoretical modeling and makes predictions aimed at comparisons with some of the latest and upcoming observational data sets. In part I, I discuss an analysis of the structure and properties of dark matter halos (believed to govern the dynamical evolution of galaxies). The results make use of very high-resolution N-body simulations, and are derived from a new hierarchical halo finder, designed especially for these projects and to complement advancements in simulation technology. I present information on the dark matter halo substructure, density profiles, angular momentum structure, and collision rates. In part II, I discuss some aspects of galaxy formation theory in light of new observational data. The discussion includes an investigation of the nature of high-redshift galaxies, the local velocity function of galaxies, and the use of gamma ray telescopes to probe the extra-galactic background light-the latter analysis is done in the context of semi-analytic modeling of galaxy formation. The most important conclusions of this thesis are as follows. (1)Dark matter halos at high redshift are much less concentrated than previously believed. implying that quiescently star-forming galaxies at high redshift are larger and dimmer than expected. (2)The observed bright. abundant. and highly clustered high- redshift (Lyman-break) galaxies are likely starbursts driven by collisions between relatively small galaxies at z ~ 3. And (3)there is a real possibility of using the growing advances in γ-ray astronomy to probe many poorly constrained processes of galaxy formation, including the stellar initial mass function and the star formation history of the universe.

  15. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  16. What I Need to Know about Carbohydrate Counting and Diabetes

    MedlinePlus

    ... URL Español What I need to know about Carbohydrate Counting and Diabetes Page Content On this page: ... counting? Points to Remember Clinical Trials What is carbohydrate counting? Carbohydrate * counting, also called carb counting, is ...

  17. Markarian Galaxies. I. The Optical Database and Atlas

    NASA Astrophysics Data System (ADS)

    Petrosian, Artashes; McLean, Brian; Allen, Ronald J.; MacKenty, John W.

    2007-05-01

    A database for the entire Markarian catalog is presented that combines extensive new measurements of their optical parameters with a literature and database search. The measurements were made using images extracted from the STScI Digitized Sky Survey (DSS) of Fpg(red) and Jpg(blue) band photographic sky survey plates obtained by the Palomar and UK Schmidt telescopes. We provide accurate coordinates, morphological type, spectral and activity classes, red and blue apparent magnitudes, apparent diameters, axial ratios, and position angles, as well as number counts of neighboring objects in a circle of radius 50 kpc. Special attention was paid to the individual descriptions of the galaxies in the original Markarian lists, which clarified many cases of misidentifications of the objects, particularly among interacting systems, larger galaxies with knots of star formation, possible stars, and cases of stars projected on galaxies. The total number of individual Markarian objects in the database is now 1544. We also include redshifts that are now available for 1524 objects with UV-excess radiation, as well as galactic color excess E(B-V) values and their 2MASS or DENIS infrared magnitudes. The database also includes extensive notes that summarize information about the membership of Markarian galaxies in different systems of galaxies and about new and revised activity classes and redshifts. An atlas of several interesting subclasses of Markarian galaxies is also presented.

  18. Are spiral galaxies heavy smokers

    SciTech Connect

    Davies, J.; Disney, M.; Phillipps, S )

    1990-07-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass.

  19. Low white blood cell count and cancer

    MedlinePlus

    Neutropenia and cancer; Absolute neutrophil count and cancer; ANC and cancer ... A person with cancer can get a low white blood cell count from the cancer or from treatment for the cancer. Cancer may ...

  20. Galaxy 'Hunting' Made Easy

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Galaxies found under the Glare of Cosmic Flashlights Astronomers using ESO's Very Large Telescope have discovered in a single pass about a dozen otherwise invisible galaxies halfway across the Universe. The discovery, based on a technique that exploits a first-class instrument, represents a major breakthrough in the field of galaxy 'hunting'. ESO PR Photo 40a/07 ESO PR Photo 40a/07 Newly Found Galaxies (SINFONI/VLT) The team of astronomers led by Nicolas Bouché have used quasars to find these galaxies. Quasars are very distant objects of extreme brilliance, which are used as cosmic beacons that reveal galaxies lying between the quasar and us. The galaxy's presence is revealed by a 'dip' in the spectrum of the quasar - caused by the absorption of light at a specific wavelength. The team used huge catalogues of quasars, the so-called SDSS and 2QZ catalogues, to select quasars with dips. The next step was then to observe the patches of the sky around these quasars in search for the foreground galaxies from the time the Universe was about 6 billion years old, almost half of its current age. "The difficulty in actually spotting and seeing these galaxies stems from the fact that the glare of the quasar is too strong compared to the dim light of the galaxy," says Bouché. This is where observations taken with SINFONI on ESO's VLT made the difference. SINFONI is an infrared 'integral field spectrometer' that simultaneously delivers very sharp images and highly resolved colour information (spectra) of an object on the sky. ESO PR Photo 32e/07 ESO PR Photo 40b/07 Chasing 'Hidden' Galaxies (Artist's Impression) With this special technique, which untangles the light of the galaxy from the quasar light, the team detected 14 galaxies out of the 20 pre-selected quasar patches of sky, a hefty 70% success rate. "This high detection rate alone is a very exciting result," says Bouché. "But, these are not just ordinary galaxies: they are most notable ones, actively forming a lot of

  1. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  2. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  3. Featured Image: Spitzer Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    These three galaxies (click for a full view!) were imaged as a part of the Spitzer Survey of Stellar Structure in Galaxies (S4G), a recent survey of 2352 nearby galaxies with deep imaging at 3.6 and 4.5 m. The bottom panels show false-color near-UV and far-UV images previously obtained with GALEX. The top panels show the new images obtained with Spitzer as part of S4G. The three galaxies shown here represent three types of galaxies that have a high concentration of mass in their centers, yet still have a high specific star-formation rate (the star formation rate per unit stellar mass):Barred galaxies with a prominent ring around their nucleus, like NGC 7552Interacting systems, like NGC 2782Galaxies with compact bulges and smooth extended disks, like NGC 3642To learn why this is the case, and to see more results from S4G, see the original paper below.CitationJuan Carlos Muoz-Mateos et al 2015 ApJS 219 3. doi:10.1088/0067-0049/219/1/3

  4. DC KIDS COUNT e-Databook Indicators

    ERIC Educational Resources Information Center

    DC Action for Children, 2012

    2012-01-01

    This report presents indicators that are included in DC Action for Children's 2012 KIDS COUNT e-databook, their definitions and sources and the rationale for their selection. The indicators for DC KIDS COUNT represent a mix of traditional KIDS COUNT indicators of child well-being, such as the number of children living in poverty, and indicators of…

  5. Count-doubling time safety circuit

    DOEpatents

    Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.

  6. SPERM COUNT DISTRIBUTIONS IN FERTILE MEN

    EPA Science Inventory

    Sperm concentration and count are often used as indicators of environmental impacts on male reproductive health. Existing clinical databases may be biased towards subfertile men with low sperm counts and less is known about expected sperm count distributions in cohorts of fertil...

  7. Cluster galaxies die hard

    NASA Astrophysics Data System (ADS)

    Weinmann, Simone M.; Kauffmann, Guinevere; von der Linden, Anja; De Lucia, Gabriella

    2010-08-01

    We investigate how the specific star formation rates of galaxies of different masses depend on cluster-centric radius and on the central/satellite dichotomy in both field and cluster environments. Recent data from a variety of sources, including the cluster catalogue of von der Linden et al., are compared to the semi-analytic models of De Lucia & Blaizot. We find that these models predict too many passive satellite galaxies in clusters, too few passive central galaxies with low stellar masses and too many passive central galaxies with high masses. We then outline a series of modifications to the model necessary to solve these problems: (a) instead of instantaneous stripping of the external gas reservoir after a galaxy becomes a satellite, the gas supply is assumed to decrease at the same rate that the surrounding halo loses mass due to tidal stripping and (b) the active galactic nuclei (AGN) feedback efficiency is lowered to bring the fraction of massive passive centrals in better agreement with the data. We also allow for radio mode AGN feedback in satellite galaxies. (c) We assume that satellite galaxies residing in host haloes with masses below 1012h-1Msolar do not undergo any stripping. We highlight the fact that in low-mass galaxies, the external reservoir is composed primarily of gas that has been expelled from the galactic disc by supernovae-driven winds. This gas must remain available as a future reservoir for star formation, even in satellite galaxies. Finally, we present a simple recipe for the stripping of gas and dark matter in satellites that can be used in models where subhalo evolution is not followed in detail.

  8. A Calibration of NICMOS Camera 2 for Low Count Rates

    NASA Astrophysics Data System (ADS)

    Rubin, D.; Aldering, G.; Amanullah, R.; Barbary, K.; Dawson, K. S.; Deustua, S.; Faccioli, L.; Fadeyev, V.; Fakhouri, H. K.; Fruchter, A. S.; Gladders, M. D.; de Jong, R. S.; Koekemoer, A.; Krechmer, E.; Lidman, C.; Meyers, J.; Nordin, J.; Perlmutter, S.; Ripoche, P.; Schlegel, D. J.; Spadafora, A.; Suzuki, N.

    2015-05-01

    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z\\gt 1 SNe Ia. Unlike conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count rates. However, observations at faint count rates rely on extrapolations. Here instead, we provide a new zero-point calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with the Wide Field Camera 3 (WFC3) in the low count-rate regime using z∼ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR spectral energy distributions, uniform colors, and their extended nature gives a superior signal-to-noise ratio at the same count rate than would stars. The use of extended objects also allows greater tolerances on point-spread function profiles. We find space telescope magnitude zero points (after the installation of the NICMOS cooling system, NCS) of 25.296\\+/- 0.022 for F110W and 25.803\\+/- 0.023 for F160W, both in agreement with the calibration extrapolated from count rates ≳1000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843\\+/- 0.025 for F110W and 25.498\\+/- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zero points. To avoid human bias, our cross-calibration was “blinded” in that the fitted zero-point differences were hidden until the analysis was finalized. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, under programs

  9. Galaxy evolution. Galactic paleontology.

    PubMed

    Tolstoy, Eline

    2011-07-01

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution. PMID:21737732

  10. Turbulence and Star Formation in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hollyday, Gigja; Hunter, Deidre Ann; Little Things Team

    2015-01-01

    We are interested in understanding the nature and role of turbulence in the interstellar medium of dwarf irregular galaxies. Turbulence, resulting from a variety of processes, is a potential source for cloud formation, and thus star formation. We have undertaken an indirect analysis of turbulence via the third (skewness) and fourth (kurtosis) moments of the distribution of atomic hydrogen gas densities using the LITTLE THINGS data for a 40-count sample of nearby (<10.3 Mpc) dwarf galaxies. We followed the formulism used by Burkhart et al. (2010) in a study of the SMC. We found that there is evidence of turbulence in dwarf galaxies at a level comparable to that found in the SMC, but we have found no correlation between integrated star formation rates and integrated kurtosis values nor a clear correlation between kurtosis as a function of radius with gas surface density and star formation profiles. We are grateful for a summer internship provided by the Research Experiences for Undergraduates program at Northern Arizona University, run by Dr. Kathy Eastwood and Dr. David Trilling and funded by the National Science Foundation through grant AST-1004107.

  11. Effects of simulated cosmological magnetic fields on the galaxy population

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark

    2016-02-01

    We investigate the effects of varying the intensity of the primordial magnetic seed field on the global properties of the galaxy population in ideal magnetohydrodynamic cosmological simulations performed with the moving-mesh code AREPO. We vary the seed field in our calculations in a range of values still compatible with the current cosmological upper limits. We show that above a critical intensity of ≃10-9 G, the additional pressure arising from the field strongly affects the evolution of gaseous structures, leading to a suppression of the cosmic star formation history, which is stronger for larger seed fields. This directly reflects into a lower total galaxy count above a fixed stellar mass threshold at all redshifts, and a lower galaxy number density at fixed stellar mass and a less massive stellar component at fixed virial mass at all mass scales. These signatures may be used, in addition to the existing methods, to derive tighter constraints on primordial magnetic seed field intensities.

  12. Determination of the Cosmic Radio Background from the Radio-Infrared Relation in Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Barker, Michael K.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We use the radioactive flux correlation for star forming galaxies in the local universe to derive their contribution to the cosmic radio background (CRB). The CRB from these galaxies is therefore determined by the evolution of the comoving infrared luminosity density with redshift, which is constrained by galaxy number counts at various infrared wavelengths and by the cosmic infrared background. The research of ED was supported by NASA NRA 99-OSS-01 Astrophysics Theory Program. MB acknowledges the support of the "Research Opportunities for Undergraduates in the Laboratory for Astronomy and Solar Physics" for the summer student internship program at NASA/GSFC.

  13. Extreme value statistics of weak lensing shear peak counts

    NASA Astrophysics Data System (ADS)

    Reischke, R.; Maturi, M.; Bartelmann, M.

    2016-02-01

    The statistics of peaks in weak gravitational lensing maps is a promising technique to constrain cosmological parameters in present and future surveys. Here we investigate its power when using general extreme value statistics which is very sensitive to the exponential tail of the halo mass function. To this end, we use an analytic method to quantify the number of weak lensing peaks caused by galaxy clusters, large-scale structures and observational noise. Doing so, we further improve the method in the regime of high signal-to-noise ratios dominated by non-linear structures by accounting for the embedding of those counts into the surrounding shear caused by large-scale structures. We derive the extreme value and order statistics for both overdensities (positive peaks) and underdensities (negative peaks) and provide an optimized criterion to split a wide field survey into subfields in order to sample the distribution of extreme values such that the expected objects causing the largest signals are mostly due to galaxy clusters. We find good agreement of our model predictions with a ray-tracing N-body simulation. For a Euclid-like survey, we find tight constraints on σ8 and Ωm with relative uncertainties of ˜10-3. In contrast, the equation of state parameter w0 can be constrained only with a 10 per cent level, and wa is out of reach even if we include redshift information.

  14. Clues to (Radio) Galaxy Formation from Deep HST Images

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.

    We review recent clues from deep HST images on the formation and evolution of galaxies, and of μJy and mJy radio sources in particular. Constraints from the radio source counts over 7 dex in flux and 1 dex in frequency are discussed. We review recent results from deep HST primary and parallel surveys relevant to (radio) galaxy formation. The WFPC2 galaxy counts as a function of morphological type for B < ~ 27 mag show that E/S0's and Sabc's are only marginally above the non-evolving predictions. The faint blue galaxy counts are dominated by Sd/Irr's, and are explained by a combination of a moderately steep local luminosity function undergoing strong luminosity evolution plus low-luminosity lower-redshift dwarf galaxies. Deep WFPC2 images in the medium-band filter F410M yielded 18 faint, compact Lyα emitting candidates at z ≃ 2.4 surrounding the radio galaxy 53W002 at z𢐲.390, as well as 18 more z ≃ 2.4 candidates in three random parallel fields. These objects appear to be star-forming spheroids smaller (rhl ≍ 0''.1 or 0.5-1 kpc) and fainter (MV (z=0)=-17--> -21) than the bulges of typical galaxies seen today. They may the building blocks from which many of the luminous nearby galaxies were formed through repeated hierarchical mergers. HST/PC images in BV I - as well as in redshifted Lyα - of 53W002 show several morphological components: (1) a blue AGN with < ~ 20-25% of the total continuum light; (2) an r1/4-like light distribution with colors indicating a stellar population age ~0.4 Gyr; and (3) two small blue clouds roughly aligned with the radio axis and the main stellar population. We show that both reflected AGN light and jet-induced starformation likely play a role in explaining its "alignment effect". We discuss a possible formation and evolution scenario of 53W002 in context of its surrounding sub-galactic objects, and argue that it will end up like a giant elliptical today.

  15. Galaxy clustering in the Two Micron All Sky Redshift Survey

    NASA Astrophysics Data System (ADS)

    Westover, Michael

    To make cosmological measurements using the galaxy distribution we must first understand galaxy biasing the way in which the galaxy distribution differs from the underlying matter distribution. Here I present studies of galaxy biasing using the Two Micron All Sky Redshift Survey, a near-infrared selected survey not subject to many of the selection effects that limit other samples. The relationship between galaxy bias and luminosity is steeper for our near- infrared selected sample than it is for optical samples, with b/b [low *] 0.73 + 0.24 L/L [low *] . I found no dependence upon luminosity in the relative bias between early and late morphologically typed galaxies once the mean dependence of bias upon luminosity was removed. I tested the relative biasing between early- and late-type galaxies using joint counts in cells. I found that a power law biasing model with b PL = 0.86-0.91 was a better fit than linear models. I did not see a significant increase in the quality of the fit when stochasticity was added to the model, in contrast with results from color- and spectral type-selected samples. I tested the hierarchical scaling hypothesis and confirmed that the scale factors S 3 , S 4 , and S 5 are independent of scale, as expected for a matter distribution evolved from Gaussian initial perturbations. There was no increase in the scale factors at large cell sizes as seen in some earlier surveys. I also measured the generalized dimensions D q using a multifractal analysis and found smaller values than have been seen in optically-selected surveys and simulations, indicating that galaxies in the near-infrared selected sample may be more likely to reside in filamentary rather than sheet-like structures.

  16. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  17. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  18. Tidal Dwarf Galaxies In Gas-rich Interacting Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul

    2014-01-01

    Galaxy-galaxy interactions in gas-rich galaxy groups or pairs can form tidal bridges and tails. These tidal arms can contain kinematically decoupled structures with active star formation in the same mass range as dwarf galaxies, so-called tidal dwarf galaxies (TDGs). They differ from ordinary dwarf galaxies by their lack of dark matter and higher metallicity content. Compact groups of galaxies are an ideal environment to study the origin and evolution of TDGs since the high spatial volume density of member galaxies allows for frequent and efficient interactions between galaxies forming tidal tails. Hunsberger et al. (1996) identified 47 TDG candidates in Hickson compact groups (HCGs) and estimated that more than 50% of all dwarf galaxies in compact groups are former TDGs. Statistical considerations based on observations of interacting galaxies illustrate that a significant fraction of today's dwarf galaxies could have had a tidal origin. In their early evolution, TDGs can easily be distinguished from classical dwarf galaxies as they are still embedded in large tidal structures and show ongoing star formation, identified via strong Hα emission in these aggregates. Simulations of interacting galaxies, and of TDGs in particular, have shown that TDGs can survive their first starburst event and turn into long-lived dwarf sized objects. Preliminary results from deep Hα imaging with the SOAR telescope to detect new TDGs in a sample of 10 Hickson compact groups will be presented.

  19. Kids Count in Delaware, Families Count in Delaware: Fact Book, 2003.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count and Families Count indicators have been combined into four new categories: health and health behaviors, educational involvement and achievement, family environment and…

  20. Differential Density Statistics of the Galaxy Distribution and the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Albani, V. V. L.; Iribarrem, A. S.; Ribeiro, M. B.; Stoeger, W. R.

    2007-03-01

    This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number density statistics of the galaxy distribution as discussed in Ribeiro, namely, the differential density γ and the integral differential density γ*. By applying the theory advanced by Ribeiro & Stoeger, which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts dN/dz are extracted from the LF and used to calculate both γ and γ* with various cosmological distance definitions, namely, area distance, luminosity distance, galaxy area distance, and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey, and γ and γ* are calculated for two cosmological models: Einstein-de Sitter and an Ωm0=0.3, ΩΛ0=0.7 standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in Ribeiro, as well as showing that plots of γ and γ* against the luminosity and redshift distances indicate that the CNOC2 galaxy distribution follows a power-law pattern for redshifts higher than 0.1. These findings support Ribeiro's theoretical proposition that using different cosmological distance measures in statistical analyses of galaxy surveys can lead to significant ambiguity in drawing conclusions about the behavior of the observed large-scale distribution of galaxies.

  1. CONFRONTING COLD DARK MATTER PREDICTIONS WITH OBSERVED GALAXY ROTATIONS

    SciTech Connect

    Obreschkow, Danail; Meyer, Martin; Power, Chris; Staveley-Smith, Lister; Ma, Xiangcheng; Zwaan, Martin; Drinkwater, Michael J.

    2013-04-01

    The rich statistics of galaxy rotations as captured by the velocity function (VF) provide invaluable constraints on galactic baryon physics and the nature of dark matter (DM). However, the comparison of observed galaxy rotations against cosmological models is prone to subtle caveats that can easily lead to misinterpretations. Our analysis reveals full statistical consistency between {approx}5000 galaxy rotations, observed in line-of-sight projection, and predictions based on the standard cosmological model ({Lambda}CDM) at the mass-resolution of the Millennium simulation (H I line-based circular velocities above {approx}50 km s{sup -1}). Explicitly, the H I linewidths in the H I Parkes All Sky Survey (HIPASS) are found to be consistent with those in S{sup 3}-SAX, a post-processed semi-analytic model for the Millennium simulation. Previously found anomalies in the VF can be plausibly attributed to (1) the mass-limit of the Millennium simulation, (2) confused sources in HIPASS, (3) inaccurate inclination measurements for optically faint sources, and (4) the non-detectability of gas-poor early-type galaxies. These issues can be bypassed by comparing observations and models using linewidth source counts rather than VFs. We investigate if and how well such source counts can constrain the temperature of DM.

  2. Somatic Cell Counts in Bovine Milk

    PubMed Central

    Dohoo, I. R.; Meek, A. H.

    1982-01-01

    Factors which influence somatic cell counts in bovine milk are reviewed and guidelines for their interpretation are presented. It is suggested that the thresholds of 300 000 and 250 000 cells/mL be used to identify infected quarters and cows respectively. However, it is stressed that somatic cell counts are general indicators of udder health which are subject to the influence of many factors. Therefore the evaluation of several successive counts is preferable to the interpretation of an individual count. Relationships between somatic cell counts and both milk production and milk composition are discussed. Subclinical mastitis reduces milk quality and decreases yield although the relationship between production loss and somatic cell count requires clarification. Finally the availability of somatic cell counting programs in Canada is presented. PMID:17422127

  3. Supernovae in paired galaxies

    NASA Astrophysics Data System (ADS)

    Nazaryan, T. A.; Petrosian, A. R.; Hakobyan, A. A.; Adibekyan, V. Zh.; Kunth, D.; Mamon, G. A.; Turatto, M.; Aramyan, L. S.

    2014-07-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies.

  4. The First Galaxies

    NASA Astrophysics Data System (ADS)

    Bromm, Volker

    2009-03-01

    An important open frontier in astrophysics is to understand how the first sources of light, the first stars and galaxies, ended the cosmic dark ages at redshifts z ≃ 15 - 20. Their formation signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding the assembly process of the first galaxies with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. The key drivers in building up the primordial galaxies are the feedback effects from the first stars, due to their input of radiation and of heavy chemical elements in the wake of supernova explosions. In addition, the conditions inside the first galaxies are governed by the gravitationally-driven turbulence generated during the virialization of the dark matter host halo. Our theoretical predictions will be tested with upcoming near-infrared observatories, such as the James Webb Space Telecope, in the decade ahead.

  5. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; Cohen, Seth; Belini, Andrea; Holwerda, Benne W.; Straughn, Amber; Mechtley, Matthew

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  6. Chandra Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Trinchieri, Ginevra

    2016-01-01

    We present the new results from the Chandra Galaxy Atlas prpject. We have systematically analyzed the archival Chandra data of 50 early type galaxies to study their hot ISM. Taking full advantage of the Chandra capabilities, we produced spatially resolved data products with additional spectral information. We will make these products publicly available and use them for our focused science goals, e.g., gas morphology, scaling relation, X-ray based mass profile, circum-nuclear gas.

  7. Life in the Galaxy?

    NASA Astrophysics Data System (ADS)

    Shostak, G. S.

    The arguments for and against the SETI (Search for Extra Terrestrial Intelligence) program are discussed. Based on apparently reasonable assumptions regarding the number of civilizations likely to exist in the Galaxy, it seems that ten million years would be sufficient time for an ambitious group of aliens to colonize the Galaxy; since no concrete evidence of aliens has turned up, the assumptions have to be reconsidered. The views of Sagan, Hart, Drake and a number of other researchers are noted.

  8. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  9. Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Reddy, Naveen; Daddi, Emanuele; Sargent, Mark T.

    2016-07-01

    In this chapter, we discuss the current status of observational and computational studies on galaxy formation and evolution. In particular, a joint analysis of star-formation rates (SFRs), stellar masses, and metallicities of galaxies throughout cosmic time can shed light on the processes by which galaxies build up their stellar mass and enrich the environment with heavy elements. Comparison of such observations and the results of numerical simulations can give us insights on the physical importance of various feedback effects by supernovae and active galactic nuclei. In Sect. 1, we first discuss the primary methods used to deduce the SFRs, stellar masses, and (primarily) gas-phase metallicities in high-redshift galaxies. Then, we show how these quantities are related to each other and evolve with time. In Sect. 2, we further examine the distribution of SFRs in galaxies following the `Main Sequence' paradigm. We show how the so-called `starbursts' display higher specific SFRs and SF efficiencies by an order of magnitude. We use this to devise a simple description of the evolution of the star-forming galaxy population since z ˜3 that can successfully reproduce some of the observed statistics in the infrared (IR) wavelength. We also discuss the properties of molecular gas. In Sect. 3, we highlight some of the recent studies of high-redshift galaxy formation using cosmological hydrodynamic simulations. We discuss the physical properties of simulated galaxies such as luminosity function and escape fraction of ionizing photons, which are important statistics for reionization of the Universe. In particular the escape fraction of ionizing photons has large uncertainties, and studying gamma-ray bursts (which is the main topic of this conference) can also set observational constraints on this uncertain physical parameter as well as cosmic star formation rate density.

  10. Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Darren Robert

    This thesis describes a system that, given approximately-centered images of spiral galaxies, produces quantitative descriptions of spiral galaxy structure without the need for per-image human input. This structure information consists of a list of spiral arm segments, each associated with a fitted logarithmic spiral arc and a pixel region. This list-of-arcs representation allows description of arbitrary spiral galaxy structure: the arms do not need to be symmetric, may have forks or bends, and, more generally, may be arranged in any manner with a consistent spiral-pattern center (non-merging galaxies have a sufficiently well-defined center). Such flexibility is important in order to accommodate the myriad structure variations observed in spiral galaxies. From the arcs produced from our method it is possible to calculate measures of spiral galaxy structure such as winding direction, winding tightness, arm counts, asymmetry, or other values of interest (including user-defined measures). In addition to providing information about the spiral arm "skeleton" of each galaxy, our method can enable analyses of brightness within individual spiral arms, since we provide the pixel regions associated with each spiral arm segment. For winding direction, arm tightness, and arm count, comparable information is available (to various extents) from previous efforts; to the extent that such information is available, we find strong correspondence with our output. We also characterize the changes to (and invariances in) our output as a function of modifications to important algorithm parameters. By enabling generation of extensive data about spiral galaxy structure from large-scale sky surveys, our method will enable new discoveries and tests regarding the nature of galaxies and the universe, and will facilitate subsequent work to automatically fit detailed brightness models of spiral galaxies.