Science.gov

Sample records for 3a radiological engineering

  1. Applying industrial engineering practices to radiology.

    PubMed

    Rosen, Len

    2004-01-01

    Seven hospitals in Oregon and Washington have successfully adopted the Toyota Production System (TPS). Developed by Taiichi Ohno, TPS focuses on finding efficiencies and cost savings in manufacturing processes. A similar effort has occurred in Canada, where Toronto's Hospital for Sick Children has developed a database for its diagnostic imaging department built on the principles of TPS applied to patient encounters. Developed over the last 5 years, the database currently manages all interventional patient procedures for quality assurance, inventory, equipment, and labor. By applying industrial engineering methodology to manufacturing processes, it is possible to manage these constraints, eliminate the obstacles to achieving streamlined processes, and keep the cost of delivering products and services under control. Industrial engineering methodology has encouraged all stakeholders in manufacturing plants to become participants in dealing with constraints. It has empowered those on the shop floor as well as management to become partners in the change process. Using a manufacturing process model to organize patient procedures enables imaging department and imaging centers to generate reports that can help them understand utilization of labor, materials, equipment, and rooms. Administrators can determine the cost of individual procedures as well as the total and average cost of specific procedure types. When Toronto's Hospital for Sick Children first implemented industrial engineering methodology to medical imaging interventional radiology patient encounters, it focused on materials management. Early in the process, the return on investment became apparent as the department improved its management of more than 500,000 dollars of inventory. The calculated accumulated savings over 4 years for 10,000 interventional procedures alone amounted to more than 140,000 dollars. The medical imaging department in this hospital is only now beginning to apply what it has learned to

  2. Idaho National Engineering and Environmental Laboratory Radiological Control Performance Indicator Report -- Fourth Quarter, Calendar Year 1998

    SciTech Connect

    Hinckley, F.L.

    1999-02-01

    This document provides a report of an analysis of the Radiological Control Program through the fourth quarter of Calendar Year (CY-98) and is the annual report for the Idaho National Engineering and Environmental Laboratory (INEEL). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation deep dose is 63.034 person-rem year to date, compared to a goal of 83.1 person-rem. During the fourth quarter, all areas experienced deletions of work resulting from the Maintenance Stand Down. This reduction in work is a primary factor in the difference in the year end dose and the ALARA goal. The work will be completed during CY-99. Beginning in CY-98, a numeric Radiological Performance Index (RPI) is being used to compare radiological performance. The RPI takes into consideration frequency and severity of events such as skin contaminations, clothing contaminations, spills, exposures to radiation exceeding limits, and positive internal dose. The RPI measures the cost of these events in cents per hour of radiological work performed. To make the RPI meaningful, tables have been prepared to show the facility that contributes to the values used. The data are compared on a quarterly basis to the prior year to show measurable performance.

  3. Clinical evaluation of using semantic searching engine for radiological imaging services in RIS-integrated PACS

    NASA Astrophysics Data System (ADS)

    Ling, Tonghui; Zhang, Kai; Yang, Yuanyuan; Hua, Yanqing; Zhang, Jianguo

    2015-03-01

    We had designed a semantic searching engine (SSE) for radiological imaging to search both reports and images in RIS-integrated PACS environment. In this presentation, we present evaluation results of this SSE about how it impacting the radiologists' behaviors in reporting for different kinds of examinations, and how it improving the performance of retrieval and usage of historical images in RIS-integrated PACS.

  4. An Engineering View on Megatrends in Radiology: Digitization to Quantitative Tools of Medicine

    PubMed Central

    Choi, Jaesoon; Yi, Jaeyoun; Choi, Seungwook; Park, Seyoun; Chang, Yongjun; Seo, Joon Beom

    2013-01-01

    Within six months of the discovery of X-ray in 1895, the technology was used to scan the interior of the human body, paving the way for many innovations in the field of medicine, including an ultrasound device in 1950, a CT scanner in 1972, and MRI in 1980. More recent decades have witnessed developments such as digital imaging using a picture archiving and communication system, computer-aided detection/diagnosis, organ-specific workstations, and molecular, functional, and quantitative imaging. One of the latest technical breakthrough in the field of radiology has been imaging genomics and robotic interventions for biopsy and theragnosis. This review provides an engineering perspective on these developments and several other megatrends in radiology. PMID:23482650

  5. Development of a Google-based search engine for data mining radiology reports.

    PubMed

    Erinjeri, Joseph P; Picus, Daniel; Prior, Fred W; Rubin, David A; Koppel, Paul

    2009-08-01

    The aim of this study is to develop a secure, Google-based data-mining tool for radiology reports using free and open source technologies and to explore its use within an academic radiology department. A Health Insurance Portability and Accountability Act (HIPAA)-compliant data repository, search engine and user interface were created to facilitate treatment, operations, and reviews preparatory to research. The Institutional Review Board waived review of the project, and informed consent was not required. Comprising 7.9 GB of disk space, 2.9 million text reports were downloaded from our radiology information system to a fileserver. Extensible markup language (XML) representations of the reports were indexed using Google Desktop Enterprise search engine software. A hypertext markup language (HTML) form allowed users to submit queries to Google Desktop, and Google's XML response was interpreted by a practical extraction and report language (PERL) script, presenting ranked results in a web browser window. The query, reason for search, results, and documents visited were logged to maintain HIPAA compliance. Indexing averaged approximately 25,000 reports per hour. Keyword search of a common term like "pneumothorax" yielded the first ten most relevant results of 705,550 total results in 1.36 s. Keyword search of a rare term like "hemangioendothelioma" yielded the first ten most relevant results of 167 total results in 0.23 s; retrieval of all 167 results took 0.26 s. Data mining tools for radiology reports will improve the productivity of academic radiologists in clinical, educational, research, and administrative tasks. By leveraging existing knowledge of Google's interface, radiologists can quickly perform useful searches. PMID:18392657

  6. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    SciTech Connect

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  7. Idaho National Engineering and Environmental Laboratory radiological control performance indicator report. Third quarter, calendar year 1997

    SciTech Connect

    1997-11-01

    This document provides a report and analysis of the Radiological Control Program through the third quarter of calendar year 1997 (CY-97) at the Idaho National Engineering and Environmental Laboratory (INEEL) under the direction of Lockheed Martin Idaho Technologies Company (LMITCO). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation exposure goal (deep dose) has been revised from 137 person-rem to 102.465 person-rem. Aggressive application of ALARA protective measures has resulted in a 66.834 person-rem deep dose compared to projected third quarter goal of 85.5 person-rem. Dose savings at the ICPP Tank Farm and rescheduling of some of the ROVER work account for most of the difference in the goal and actual dose year to date. Work at the ICPP Tank farm has resulted in about 14 rem dose savings. The RWMC has also reduced exposure by moving waste to new temporary storage facilities well ahead of schedule.

  8. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  9. An RL10A-3-3A rocket engine model using the Rocket Engine Transient Simulator (ROCETS) software

    NASA Technical Reports Server (NTRS)

    Binder, Michael

    1993-01-01

    The RL10 engine is a critical component of past, present, and future space missions. The paper discusses the RL10A-3-3A engine system and its model created using the ROCETS computer code. The simulation model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. A comparison of steady-state model predictions with test-stand data is presented together with a comparison of predicted start transient behavior with flight data.

  10. A transient model of the RL10A-3-3A rocket engine

    NASA Technical Reports Server (NTRS)

    Binder, Michael P.

    1995-01-01

    RL10A-3-3A rocket engines have served as the main propulsion system for Centaur upper stage vehicles since the early 1980's. This hydrogen/oxygen expander cycle engine continues to play a major role in the American launch industry. The Space Propulsion Technology Division at the NASA Lewis Research Center has created a computer model of the RL10 engine, based on detailed component analyses and available test data. This RL10 engine model can predict the performance of the engine over a wide range of operating conditions. The model may also be used to predict the effects of any proposed design changes and anticipated failure scenarios. In this paper, the results of the component analyses are discussed. Simulation results from the new system model are compared with engine test and flight data, including the start and shut-down transient characteristics.

  11. Idaho National Engineering Laboratory radiological control performance indicator report: First quarter -- calendar year 1996

    SciTech Connect

    Reavis, R.

    1996-06-01

    This report provides an analysis of the Radiological Control Program for the first quarter of Calendar Year 1996 (CY-1996), at the Idaho National Engineering Laboratory (INEL). The total INEL penetrating radiation exposure through the end of the first quarter was 49.9 person-rem (p-rem). The average penetrating radiation dose to an INEL radiation worker through the end of the first quarter was 0.091 rem. The maximum penetrating radiation dose to an INEL worker through the end of the first quarter was 1.133 rem. The maximum neutron radiation dose to an INEL worker through the end of the first quarter was 0.032 rem. The total number of INEL skin contaminations through the end of the first quarter was five, all resulted in Occurrence Reports (ORs). The total number of INEL clothing contaminations through the end of the first quarter was 18 of which 10 resulted in ORs. The total number of airborne radioactivity events exceeding 10% Derived Air Concentrations (DAC) through the end of the first quarter was zero. The total number of radioactive material intakes assigned a dose of 10 mrem or more was 10. No intakes met Department of Energy reportable criteria. The total INEL Contamination Area was 196,667 square feet, total High Contamination Area was 297,663 square feet, and total Airborne Radioactivity Area was 84,712 square feet. The total number of radioactive spills or releases was 12, four of which resulted in ORs.

  12. Radiological engineering services for the design of special contamination containments. Final report

    SciTech Connect

    1996-12-31

    The purpose of this study was to provide radiological engineering services for the design of special contamination containments. These containments were to be used during the replacement of leaking and damaged gaskets on the glove boxes in Technical Area-55 (TA-55). The damaged gaskets involved 18 windows and 5 interconnecting spool pieces in fuel processing glove boxes. The work scope included the design and manufacture of special contamination containment enclosures (containments), the preparation of procedures and tool lists to support gasket replacement while using the containments, and the training of appropriate TA-55 personnel in the proper installation, operation and removal of the containments. It was originally anticipated that two basic containment designs would be required, one for the windows and one for spool pieces. Upon examination of the glove boxes it was evident that the individual space envelopes and interferences associated with each glove box would require uniquely designed containments for effective gasket replacement. This resulted in 13 individual containment designs that accommodated the interferences and allowed gasket replacement within the containment. Successful use of the containments for glove box gasket replacement was a significant accomplishment. The operation has proven that a properly managed containment program can enhance routine maintenance of the glove boxes while preventing a contamination release. The ability to perform these operations in containments reduces costs by preventing a contaminant release and eliminating the associated cleanup expenses, reduced radioactive waste and fuel processing down time.

  13. An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software

    NASA Technical Reports Server (NTRS)

    Binder, Michael

    1993-01-01

    Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.

  14. Idaho National Engineering and Environmental Laboratory Radiological Control Performance Indicator Report - Third Quarter - Calendar Year 1998

    SciTech Connect

    Hinckley, F.L.

    1998-11-01

    The INEEL Radiological Control Performance Indicator Report is provided quarterly, in accordance with Article 133 of the INEEL Radiological Control Manual. Indicators are used to measure performance of the Radiological Control Program and as a motivation for improvement, not as goals in themselves. These indicators should be used by management as tools to focus on priorities, attention, and adherence to As-Low-As-Reasonably-Achievable (ALARA) practices. This document provides a report and an analysis of the Radiological Control Program through the third quarter of Calendar Year 1998 (CY-98) for Lockheed Martin Idaho Technologies Company (LMITCO). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The LMITCO collective occupational radiation deep dose is 47.0 person-rem year to date, compared to a year to date goal of 65.8 person-rem.

  15. Idaho National Engineering and Environmental Laboratory Radiological Control Performance Indicator Report - First Quarter, Calendar Year 1999

    SciTech Connect

    Hinckley, F.L.

    1999-05-01

    This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation deep dose is 63.034 person-rem year to date, compared to a goal of 83.1 person-rem. During the fourth quarter, all areas experienced deletions of work resulting from the Maintenance Stand Down. This reduction in work is a primary factor in the difference in the year end dose and the ALARA goal. The work will be completed during CY-99. Beginning in CY-98, a numeric Radiological Performance Index (RPI) is being used to compare radiological performance. The RPI takes into consideration frequency and severity of events such as skin contaminations, clothing contaminations, spills, exposures to radiation exceeding limits, and positive internal dose. The RPI measures the cost of these events in cents per hour of radiological work performed. To make the RPI meaningful, tables have been prepared to show the facility that contributes to the values used. The data are compared on a quarterly basis to the prior year to show measurable performance.

  16. RL10A-3-3A Rocket Engine Modeling Project

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Tomsik, Thomas; Veres, Joseph P.

    1997-01-01

    Two RL10A-3-3A rocket engines comprise the main propulsion system for the Centaur upper stage vehicle. Centaur is used with bod Titan and Atlas launch vehicles, carrying military and civilian payloads from high altitudes into orbit and beyond. The RL10 has delivered highly reliable service for the past 30 years. Recently, however, there have been two in-flight failures which have refocused attention on the RL10. This heightened interest has sparked a desire for an independent RL10 modeling capability within NASA and th Air Force. Pratt & Whitney, which presently has the most detailed model of the RL10, also sees merit in having an independent model which could be used as a cross-check with their own simulations. The Space Propulsion Technology Division (SPTD) at the NASA Lewis Research Center has developed a computer model of the RL10A-3-3A. A project team was formed, consisting of experts in the areas of turbomachinery, combustion, and heat transfer. The overall goal of the project was to provide a model of the entire RL10 rocket engine for government use. In the course of the project, the major engine components have been modeled using a combination of simple correlations and detailed component analysis tools (computer codes). The results of these component analyses were verified with data provided by Pratt & Whitney. Select modeling results and test data curves were then integrated to form the RL10 engine system model The purpose of this report is to introduce the reader to the RL10 rocket engine and to describe the engine system model. The RL10 engine and its application to U.S. launch vehicles are described first, followed by a summary of the SPTD project organization, goals, and accomplishments. Simulated output from the system model are shown in comparison with test and flight data for start transient, steady state, and shut-down transient operations. Detailed descriptions of all component analyses, including those not selected for integration with the

  17. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  18. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    SciTech Connect

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  19. A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines

    NASA Technical Reports Server (NTRS)

    Lampkin, B. A.

    1980-01-01

    A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.

  20. Diagnostic radiology

    SciTech Connect

    Leeds, N.E.; Jacobson, H.G.

    1986-10-17

    Developments in the burgeoning field of diagnostic radiology have continued apace. Four areas that represent either subspecialities or technological advances in diagnostic radiology will be considered in this report: ultrasonography, interventional radiology, nuclear radiology, and magnetic resonance. In no sense is the exclusion of other subdisciplines and modalities (eg, pediatric radiology, computed tomography) and indication of their of importance or their failure to include innovative concepts.

  1. Radiological engineering evaluation of the delay time line air scrubber located at the Clinton P. Anderson Meson Physics Facility (LAMPF)

    SciTech Connect

    Huneycutt, S.E.

    1996-05-01

    The purpose of this study was to determine the effects of the addition of an air scrubber to an already existing delay line and whether it would scrub {sup 11}CO{sub 2}. There were three main objectives of this study. The first objective was to determine the scrubbing efficiency of the scrubber. The scrubbing efficiency was then used to predict the dose rates in the scrubber area and compare those values with measurements from radiological surveys. The third objective was to determine if the shield blocks were effective in reducing the dose rates in the scrubber area. The activities were measured before and during scrubber operation and this information was used to calculate the scrubbing efficiency and the efficiency of {sup 11}CO{sub 2} removal was determined to be around 50%. Microshield was then used to predict dose rates and compared those values with measurements from radiological surveys. This was also used to determine the that the shield blocks around the scrubber were effective in reducing the dose rates from the radiation field produced by the radionuclides in the scrubber.

  2. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  3. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the ...

  4. Skeletal radiology

    SciTech Connect

    Bowerman, J.W.

    1982-01-01

    The main emphasis of the chapter on skeletal radiology is CAT scanning and its use in the diagnosis of neoplasms. Other topics that are discussed include infections, arthritis, trauma, and metabolic and endocrine diseases as they relate to skeletal radiology. (KRM)

  5. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1987-01-01

    This book is an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim is to show radiology as a dynamic subject. Orthopaedic Radiology is divided into two sections with the first part focusing on the principles of diagnostic imaging and interpretation and the second applying this information to practical clinical problems.

  6. Handbook of radiologic procedures

    SciTech Connect

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography.

  7. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.

    1993-07-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  8. Interventional radiology

    SciTech Connect

    Castaneda-Zuniga, W.R.

    1987-01-01

    This reference gives a step-by-step presentation of the elements of interventional radiology. CONTENTS: Introduction; Radiation protection; Embolotherapy; Interventional techniques in the management of gastrointestinal bleeding; Transluminal angioplasty; Thrombolytic therapy; Foreign body removal; Inferior vena cava filter placement; Percutaneous uroradiologic techniques; Interventional techniques in the biliary tract; Nonvascular gastrointestinal tract dilations; Percutaneous biopsy techniques; Drainage of abscess fluid collections in the abdomen.

  9. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1985-01-01

    This book provides an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim of the book is to show radiology as a dynamic subject which can help clinicians, while at the same time assisting radiologists to understand the needs of the orthopedic surgeon.

  10. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2013-05-28

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  11. INL@Work Radiological Search & Response Training

    SciTech Connect

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  12. Genitourinary radiology

    SciTech Connect

    McClennan, B.L.

    1982-01-01

    A literature review of genitourinary radiology highlights new findings in the field that have occurred in the past year. The physiology of contrast media, and the occasional life-threatening contrast medial reaction are discussed. Common urologic problems such as stones, infection, and obstruction are examined in order to interpret static radiographs in a more meaningful way. The field of interventional uroradiology continues to expand, with new procedures being tried and new indications for old procedures being developed. (KRM)

  13. Chest radiology

    SciTech Connect

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case.

  14. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis.

    PubMed

    Wang, Hai-Yan; Zhang, Ji; Zhang, Yue-Jing; Zhang, Bo; Liu, Chong-Xi; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2014-12-01

    Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime. PMID:25081559

  15. Informatics in radiology: Render: an online searchable radiology study repository.

    PubMed

    Dang, Pragya A; Kalra, Mannudeep K; Schultz, Thomas J; Graham, Steven A; Dreyer, Keith J

    2009-01-01

    Radiology departments are a rich source of information in the form of digital radiology reports and images obtained in patients with a wide spectrum of clinical conditions. A free text radiology report and image search application known as Render was created to allow users to find pertinent cases for a variety of purposes. Render is a radiology report and image repository that pools researchable information derived from multiple systems in near real time with use of (a) Health Level 7 links for radiology information system data, (b) periodic file transfers from the picture archiving and communication system, and (c) the results of natural language processing (NLP) analysis. Users can perform more structured and detailed searches with this application by combining different imaging and patient characteristics such as examination number; patient age, gender, and medical record number; and imaging modality. Use of NLP analysis allows a more effective search for reports with positive findings, resulting in the retrieval of more cases and terms having greater relevance. From the retrieved results, users can save images, bookmark examinations, and navigate to an external search engine such as Google. Render has applications in the fields of radiology education, research, and clinical decision support. PMID:19564253

  16. Good relationships between computational image analysis and radiological physics

    SciTech Connect

    Arimura, Hidetaka; Kamezawa, Hidemi; Jin, Ze; Nakamoto, Takahiro; Soufi, Mazen

    2015-09-30

    Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.

  17. Good relationships between computational image analysis and radiological physics

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Kamezawa, Hidemi; Jin, Ze; Nakamoto, Takahiro; Soufi, Mazen

    2015-09-01

    Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.

  18. Diagnostic radiology 1987

    SciTech Connect

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture.

  19. Pediatric radiology

    SciTech Connect

    Silverman, F.N.

    1982-01-01

    A literature review with 186 references of diagnostic pediatric radiology, a speciality restricted to an age group rather than to an organ system or technique of examination, is presented. In the present chapter topics follow the basic organ system divisions with discussions of special techniques within these divisions. The diagnosis of congenital malformations, infectious diseases and neoplasms are a few of the topics discussed for the head and neck region, the vertebrae, the cardiovascular system, the respiratory system, the gastrointestinal tract, the urinary tract, and the skeleton. (KRM)

  20. Dental radiology.

    PubMed

    Woodward, Tony M

    2009-02-01

    Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning "cheat sheet" to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed. PMID:19410234

  1. Battlefield radiology

    PubMed Central

    Graham, R N J

    2012-01-01

    With the increasing tempo of military conflicts in the last decade, much has been learnt about imaging battlefield casualties in the acute setting. Ultrasound in the form of focused abdominal sonography in trauma (FAST) has proven invaluable in emergency triage of patients for immediate surgery. Multidetector CT allows accurate determination of battlefield trauma injuries. It permits the surgeons and anaesthetists to plan their interventions more thoroughly and to be made aware of clinically occult injuries. There are common injury patterns associated with blast injury, gunshot wounds and blunt trauma. While this body of knowledge is most applicable to the battlefield, there are parallels with peacetime radiology, particularly in terrorist attacks and industrial accidents. This pictorial review is based on the experiences of a UK radiologist deployed in Afghanistan in 2010. PMID:22806621

  2. Radiological Work Planning and Procedure

    SciTech Connect

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  3. Current radiology. Volume 5

    SciTech Connect

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular.

  4. Integrating IT into the radiology environment.

    PubMed

    McDonald, Andrea

    2002-01-01

    Rather than perpetuating the struggle, "who controls the PACS, Radiology or Information Technology (IT)," Community Hospital of the Monterey Peninsula (CHOMP) took the approach of incorporating IT support within the Radiology Department. CHOMP faced the challenge of staffing Radiology computer systems and networks by using a two-pronged approach; promoting and training clinical staff in IT functions and transferring an experienced IT person into the Radiology Department. Roles and responsibilities are divided. CHOMP's IT Department supports the Radiology Department's desktop devices, PCs, printers, and standard peripherals; while the department's DICOM print and archive network, specialized hardware (e.g., Merge DICOM interface computers), and applications are supported by the Radiology Department. The IT Department provides operating system support for multi-user VMS, Unix, and NT-based systems, e.g. Sun Solaris for the DICOM archive, and Windows NT for Mitra PACS Broker, the HL7/DICOM interface engine. IT also supports network communications, i.e., network electronics (routers, switches, etc.), TCP/IP communications, and network traffic analysis; and OS operations support for major Radiology systems, e.g. back-ups and off-site tape storage. Radiology staff provides applications support and troubleshooting, including analyst functions for RIS; and are the first point of contact with the Radiology systems vendors, e.g., GE Medical, or Siemens. The Radiology Department's senior IT person, the Clinical Technology Coordinator, transferred from CHOMP's IT Department after 7 years in that department. She performs analysis and design associated with Radiology's computer systems, coordinates development of the department's strategic plan, evaluates vendor proposals, and assists the department with product and application selection. Her IT experience and growing knowledge of Radiology's clinical tasks enhances communications between the Radiology and IT departments. Formal

  5. Radiological Control Manual

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  6. [Virtual organization in the digital age of radiology - principle and solution for radiologic research?].

    PubMed

    Leppek, R; Krass, S; Bourquain, H; Lang, M; Wein, B; Mildenberger, P; Schaller, S; Klose, K J; Peitgen, H-O

    2003-11-01

    The research project "VICORA - Virtual Institute for Computer-Assisted Radiology", funded by the German Federal Ministry of Education and Research, was initiated in the year 2000. Its virtual organization brings together physical science, engineering, information technology, clinical radiology and the medical technology industry. In the German radiology research domain VICORA serves as a model for interdisciplinary collaboration for the changing radiology paradigm illustrated by a "radiologycube". The project does not only aim at scientific goals but also considers the infrastructure, components and human resource management within a virtual organization. The common rapid prototyping platform ILAB 4 ensures user-friendly and time-efficient software that assists with the routine radiology work-flow including full DICOM functionality. By offering a new work environment and collaborative culture based on telematics and knowledge exchange in radiology research, VICORA overcomes limitations of traditional research organization. PMID:14610709

  7. Common Interventional Radiology Procedures

    MedlinePlus

    ... of common interventional techniques is below. Common Interventional Radiology Procedures Angiography An X-ray exam of the ... into the vertebra. Copyright © 2016 Society of Interventional Radiology. All rights reserved. 3975 Fair Ridge Drive • Suite ...

  8. Mobile computing for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Sharma, Arjun; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Kung, Justin W; Loehfelm, Thomas W; Sherry, Steven J

    2013-12-01

    The rapid advances in mobile computing technology have the potential to change the way radiology and medicine as a whole are practiced. Several mobile computing advances have not yet found application to the practice of radiology, while others have already been applied to radiology but are not in widespread clinical use. This review addresses several areas where radiology and medicine in general may benefit from adoption of the latest mobile computing technologies and speculates on potential future applications. PMID:24200475

  9. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  10. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  11. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  12. Radiological evaluation of dysphagia

    SciTech Connect

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-11-21

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint.

  13. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3A: High pressure oxidizer turbo-pump preburner pump housing stress analysis report

    NASA Technical Reports Server (NTRS)

    Shannon, Robert V., Jr.

    1989-01-01

    The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer

  14. Radiological Defense. Textbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This textbook has been prepared under the direction of the Defense Civil Preparedness Agency (DCPA) Staff College for use as a student reference manual in radiological defense (RADEF) courses. It provides much of the basic technical information necessary for a proper understanding of radiological defense and summarizes RADEF planning and expected…

  15. Hazard control indices for radiological and non-radiological materials

    SciTech Connect

    Boothe, G.F.

    1994-12-21

    This document devises a method of comparing radiological and non-radiological hazard control levels. Such a comparison will be useful in determining the design control features for facilities that handle radioactive mixed waste. The design control features of interest are those that assure the protection of workers and the environment from unsafe airborne levels of radiological or non-radiological hazards.

  16. Enhanced radiological work planning

    SciTech Connect

    DECKER, W.A.

    1999-05-21

    The purpose of this standard is to provide Project Hanford Management Contractors (PHMC) with guidance for ensuring radiological considerations are adequately addressed throughout the work planning process. Incorporating radiological controls in the planning process is a requirement of the Hanford Site Radiological Control Manual (HSRCM-I), Chapter 3, Part 1. This standard is applicable to all PHMC contractors and subcontractors. The essential elements of this standard will be incorporated into the appropriate site level work control standard upon implementation of the anticipated revision of the PHMC Administration and Procedure System.

  17. The disaggregation of radiology.

    PubMed

    Brant-Zawadzki, Michael N; Enzmann, Dieter R

    2008-12-01

    The authors discuss certain market and political forces buffeting the traditional structure of radiology, both in practice and in the academic setting. These forces can be, to a certain degree, disruptive and produce fragmentation of what are now integrated radiology services and specialties. The potential fallout from the current rapidly changing environment of health care, including strategies for delivering care along service lines or within discrete episodes of care, may have a profound impact on the future of radiology. Understanding the dynamics of the current environment may help plan strategies for dealing with the potential impact on our specialty. PMID:19027680

  18. INEEL Radiological Control Performance Indicator Report - Quarterly

    SciTech Connect

    Hinckley, Frank Leroy

    1999-02-01

    This document provides a report of an analysis of the Radiological Control Program through the fourth quarter of Calendar Year (CY-98) and is the annual report for the Idaho National Engineering and Environmental Laboratory (INEEL). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation deep dose is 63.034 person-rem year to date, compared to a goal of 83.1 person-rem. During the fourth quarter, all areas experienced deletions of work resulting from the Maintenance Stand Down. This reduction in work is a primary factor in the difference in the year end dose and the ALARA goal. The work will be completed during CY-99. Beginning in CY-98, a numeric Radiological Performance Index (RPI) is being used to compare radiological performance. The RPI takes into consideration frequency and severity of events such as skin contaminations, clothing contaminations, spills, exposures to radiation exceeding limits, and positive internal dose. The RPI measures the cost of these events in cents per hour of radiological work performed. To make the RPI meaningful, tables have been prepared to show the facility that contributes to the values used. The data are compared on a quarterly basis to the prior year to show measurable performance.

  19. A PROPOSED FRAMEWORK FOR PLANNING DEACTIVATION AND DECOMMISSIONING ENGINEERING AND DESIGN ACTIVITIES TO MEET THE REQUIREMENTS OF DOE ORDER 413.3A, PROGRAM AND PROJECT MANAGEMENT FOR THE ACQUISITION OF CAPITAL ASSETS

    SciTech Connect

    Santos, J; John Gladden, J

    2007-11-06

    This paper provides guidance in applying the requirements of DOE O 413.3A to Deactivation and Decommissioning (D&D) projects. A list of 41 engineering and design activities relevant to D&D projects was generated. For several activities in this list, examples of the level of development and/or types of deliverables that might be expected at the completion of the conceptual, preliminary and final project design phases described in the Order are provided.

  20. 3.3 Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.; Moores, B. M.; Stieve, F.-E.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.3 Diagnostic Radiology' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  1. Radiologic Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the radiologic technology program in Georgia. The standards are divided into 12 categories; Foundations (philosophy, purpose, goals, program objectives, availability, evaluation); Admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning); Program…

  2. Society of Interventional Radiology

    MedlinePlus

    ... how interventional radiology research improves patients’ lives at Society of Interventional Radiology’s 2017 Annual Scientific Meeting; read ... comments to CMS on two MACRA coding issues; society is engaged with CMS as they develop codes ...

  3. Basic bone radiology

    SciTech Connect

    Griffiths, H.J.

    1987-01-01

    This clinical book surveys the skeletal system as seen through radiological imaging. It emphasizing abnormalities, disease, and trauma, and includes vital information on bones, bone growth, and the cells involved in bone pathology. It covers many bone diseases and injuries which are rarely covered in medical texts, as well as descriptions of radiologic procedures that specifically relate to the skeleton. This edition includes many illustrations, information on MR imaging and CT scanning, and discussions of osteoporosis, dysplasias, and metabolic bone disease.

  4. Interventional Radiology in China

    SciTech Connect

    Teng Gaojun Xu Ke; Ni Caifang; Li Linsun

    2008-03-15

    With more than 3000 members, the Chinese Society of Interventional Radiology (CSIR) is one of the world's largest societies for interventional radiology (IR). Nevertheless, compared to other societies such as CIRSE and SIR, the CSIR is a relatively young society. In this article, the status of IR in China is described, which includes IR history, structure and patient management, personnel, fellowship, training, modalities, procedures, research, turf battle, and insightful visions for IR from Chinese interventional radiologists.

  5. [Instruction in dental radiology].

    PubMed

    van der Sanden, W J M; Kreulen, C M; Berkhout, W E R

    2016-04-01

    The diagnostic use of oral radiology is an essential part of daily dental practice. Due to the potentially harmful nature of ionising radiation, the clinical use of oral radiology in the Netherlands is framed by clinical practice guidelines and regulatory requirements. Undergraduate students receive intensive theoretical and practical training in practical and theoretical radiology, with the aim of obtaining the 'Eindtermen Stralingshygiëne voor Tandartsen en Orthodontisten'-certificate, which is required for legal permission to use oral radiology in dental practice. It is recommended that the curriculum be expanded to include the areas of knowledge required to qualify for the 'Eindtermen Stralingshygiëne voor het gebruik van CBCT-toestellen door tandartsen' (the certificate for the use of conebeam radiology by dentists). The general dental practitioner is faced with changing laws and regulations in all areas of practice. One of the most significant legal changes in the field of dental radiology was the introduction of the new radiation protection and safety rules in 2014. Moreover, a large group of dentists is also being confronted with the transition from conventional to digital images, with all its challenges and changes in everyday practice. PMID:27073811

  6. Mechanism of interactions of α-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe†

    PubMed Central

    Tsalkova, Tamara N.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into α-helix A‥ The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN), 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and α-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of BADAN-modified enzyme is characterized by an S50 of 18.2 ± 0.7, compared with the value of 2.2 ± 0.3 for the ANF-induced spin transition, thus revealing an additional low affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer. PMID:17198380

  7. The impact of tech aides in radiology.

    PubMed

    Sferrella, Sheila M; Story, Cathleen P

    2004-01-01

    As the staffing shortage continues to impact radiology departments and outpatient imaging centers, managers look for ways to solve staffing issues internally. Lehigh Valley Hospital and Health Network investigated the feasibility of adding a position of radiology tech aide. This proposal was driven by a desire to improve retention of staff, improve employee satisfaction and reduce turnover. A 6-month pilot program was conducted at the network's highest-volume facility. One tech aide underwent extensive training and eventually began performing some of the tasks identified in the analysis. Each area within radiology worked with an intern to identify each step in its work process. Each step identified led to the question, "What happens if?" The workflow process provided a detailed look a the number of steps required for a technologist to perform a study from start to finish. In May 2002, the administrator submitted a project proposal to management engineering to evaluate radiologic technologists' workloads and identify tasks that could be performed by a tech aide. Activity-Based Management (ABM)--a process that emphasizes activities over resources--was utilized to study work activities. The analysis identified the appropriate tasks and revealed that 5 FTEs were needed to assist the technologists in all areas of radiology. A workflow was completed for each area within radiology. Some areas identified bottlenecks, which caused delays in the process and some redundant work for the staff. Data were presented to the network administration. Staffing realities, labor pool availability within the existing network staff, and detailed task identifications also were provided. A total of 5 FTE tech aides were approved. The final program included in-depth tech-aide training; effective and open communication between management and technologists; and a collaborative, education-oriented relationship between technologists and tech aides. PMID:15098899

  8. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  9. Radiological worker training

    SciTech Connect

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  10. Westinghouse radiological containment guide

    SciTech Connect

    Aitken, S.B.; Brown, R.L.; Cantrell, J.R.; Wilcox, D.P.

    1994-03-01

    This document provides uniform guidance for Westinghouse contractors on the implementation of radiological containments. This document reflects standard industry practices and is provided as a guide. The guidance presented herein is consistent with the requirements of the DOE Radiological Control Manual (DOE N 5480.6). This guidance should further serve to enable and encourage the use of containments for contamination control and to accomplish the following: Minimize personnel contamination; Prevent the spread of contamination; Minimize the required use of protective clothing and personal protective equipment; Minimize the generation of waste.

  11. Successful Transformational Radiology Leaders.

    PubMed

    Douget, Karen

    2015-01-01

    Transformational radiology leaders elevate subordinates, expand self-awareness, develop lasting relationships, strive to exceed expectations, and uphold the vision and goals of the organization. In order for radiology leaders to become more transformational in their leadership style there are four fundamental elements they must learn: idealized influence, individualized consideration, inspirational motivation, and intellectual stimulation. Leaders can utilize personality and self-assessments to learn more about themselves, identify areas of strengths and weaknesses, and learn to be more effective when leading employees. PMID:26710553

  12. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  13. Radiologic Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a radiologic technology program. The guide contains four major sections. The General Information section contains an introduction giving an overview and defining purpose and objectives; a program description,…

  14. PACS for GU radiology

    NASA Astrophysics Data System (ADS)

    Hayrapetian, Alek S.; Barbaric, Zoran L.; Weinberg, Wolfram S.; Chan, Kelby K.; Loloyan, Mansur; Taira, Ricky K.; Huang, H. K.

    1991-07-01

    The authors have developed a PACS module for genito-urinary radiology. This module is based on image acquisition subsystem, database and storage server/cluster controllers, communication networks, display workstation and local database, and dedicated digitizer and printer. The design guideline for this system is generality and flexibility. As such this module serves as a prototype for future PACS module designs.

  15. Radiology of spinal curvature

    SciTech Connect

    De Smet, A.A.

    1985-01-01

    This book offers the only comprehensive, concise summary of both the clinical and radiologic features of thoracic and lumbar spine deformity. Emphasis is placed on idiopathic scoliosis, which represents 85% of all patients with scoliosis, but less common areas of secondary scoliosis, kyphosis and lordosis are also covered.

  16. Radiology of thoracic diseases

    SciTech Connect

    Swensen, S.J.; Pugatch, R.D.

    1989-01-01

    This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

  17. Practical interventional radiology

    SciTech Connect

    Von Sonnenberg, E.; Mueller, P.R.

    1988-01-01

    This book describes techniques employed in interventional radiology with emphasis on imaging leading to intervention. Includes the entire array of procedures available to the radiologist, discussing the indications, materials, technique, results, and complications for each. Covers the chest, abdomen, bone, pediatric considerations, and nursing care.

  18. Radiological Safety Handbook.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    Written to be used concurrently with the U.S. Army's Radiological Safety Course, this publication discusses the causes, sources, and detection of nuclear radiation. In addition, the transportation and disposal of radioactive materials are covered. The report also deals with the safety precautions to be observed when working with lasers, microwave…

  19. Radiological Defense Manual.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    Originally prepared for use as a student textbook in Radiological Defense (RADEF) courses, this manual provides the basic technical information necessary for an understanding of RADEF. It also briefly discusses the need for RADEF planning and expected postattack emergency operations. There are 14 chapters covering these major topics: introduction…

  20. Research Training in Radiology.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    Radiology today is a major clinical specialty of medicine in terms of the number and complexity of patient examinations, and the financial resources, physician manpower, and supporting personnel required for performing its functions. It reached its present status because it provides accurate methods of diagnosis for so many diseases. However, this…

  1. Radiology Technician (AFSC 90370).

    ERIC Educational Resources Information Center

    Sobczak, James

    This five-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for radiology technicians. Covered in the individual volumes are radiographic fundamentals (x-ray production; primary beams; exposure devices; film, film holders, and darkrooms; control of film quality; and environmental safety);…

  2. Ethical problems in radiology: radiological consumerism.

    PubMed

    Magnavita, N; Bergamaschi, A

    2009-10-01

    One of the causes of the increasing request for radiological examinations occurring in all economically developed countries is the active role played by the patient-consumer. Consumerism places the radiologist in an ethical dilemma, between the principle of autonomy on the one hand and the ethical principles of beneficence, nonmaleficence and justice on the other. The choice made by radiologists in moral dilemmas is inspired by an adherence to moral principles, which in Italy and elsewhere refer to the Judaeo-Christian tradition or to neo-Darwinian relativism. Whatever the choice, the radiologist is bound to adhere to that choice and to provide the patient with all the relevant information regarding his or her state of health. PMID:19662338

  3. Radiologic technology educators and andragogy.

    PubMed

    Galbraith, M W; Simon-Galbraith, J A

    1984-01-01

    Radiologic technology educators are in constant contact with adult learners. However, the theoretical framework that radiologic educators use to guide their instruction may not be appropriate for adults. This article examines the assumptions of the standard instructional theory and the most modern approach to adult education-- andragogy . It also shows how these assumptions affect the adult learner in a radiologic education setting. PMID:6729091

  4. Poul Erik Andersen's radiological work on Osteochondrodysplasias and interventional radiology

    PubMed Central

    Andersen, Poul Erik

    2011-01-01

    Poul Erik Andersen is a Professor and Interventional Radiologist at the University of Southern Denmark, Odense and Odense University Hospital, Denmark. His innovative and expertise is primarily in vascular interventions where he has introduced and developed many procedures at Odense University Hospital. His significant experience and extensive scientific work has led to many posts in the Danish Society of Interventional Radiology, the European Society of Radiology and the Cardiovascular and Interventional Radiological Society of Europe, where he is a fellow and has passed the European Board of Interventional Radiology - The European qualification in Interventional Radiology. PMID:22022640

  5. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  6. Data mining in radiology

    PubMed Central

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-01-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  7. Conjoined twins: Radiological experience.

    PubMed

    Watson, Sarah G; McHugh, Kieran

    2015-10-01

    Imaging plays a key role in the management of conjoined twins. Pre-operative multi-modality studies are vital to assess operability and to aid surgical planning. Technical advances in imaging such as high-resolution isovolumetric magnetic resonance imaging (MRI) techniques and three-dimensional modeling now result in extremely accurate anatomical information. Varied information from a comprehensive radiological work-up enables the surgeons to plan the safest possible operative procedure, helps the anesthetic team before and during surgery, and guides the intensive care team in the post-operative phase. This article will review the radiological techniques used in our institution, highlighting potential pitfalls with the various imaging modalities. PMID:26382258

  8. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  9. 75 FR 4402 - Strengthening the Center for Devices and Radiological Health's 510(k) Review Process; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... not always initially provide sufficient engineering and design information for their devices under... HUMAN SERVICES Food and Drug Administration Strengthening the Center for Devices and Radiological Health's 510(k) Review Process; Public Meeting; Request for Comments AGENCY: Food and Drug...

  10. Multilingual retrieval of radiology images.

    PubMed

    Kahn, Charles E

    2009-01-01

    The multilingual search engine ARRS GoldMiner Global was created to facilitate broad international access to a richly indexed collection of more than 200,000 radiologic images. Images are indexed according to key-words and medical concepts that appear in the unstructured text of their English-language image captions. GoldMiner Global exploits the Unicode standard, which allows the accurate representation of characters and ideographs from virtually any language and which supports both left-to-right and right-to-left text directions. The user interface supports queries in Arabic, Chinese, French, German, Italian, Japanese, Korean, Portuguese, Russian, or Spanish. GoldMiner Global incorporates an interface to the United States National Library of Medicine that translates queries into English-language Medical Subject Headings (MeSH) terms. The translated MeSH terms are then used to search the image index and retrieve relevant images. Explanatory text, pull-down menu choices, and navigational guides are displayed in the selected language; search results are displayed in English. GoldMiner Global is freely available on the World Wide Web. PMID:19019997

  11. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  12. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for thier care. The report is mainly for the use of pediatricians, radiologists, radiologic technicians, and other personnel who order or use radiological methods in examining children, Appendices contain methods for estimating doses to various organs, and doses from various examinations in pediatric radiology. The Council has adopted some units of the SI system of nomenclature. A glossary of terms is included. (KRM)

  13. Characterization of radiological emergencies

    SciTech Connect

    Chester, C.V.

    1985-01-01

    Several severe radiological emergencies were reviewed to determine the likely range of conditions which must be coped with by a mobile teleoperator designed for emergencies. The events reviewed included accidents at TMI (1978), SL-1 (1961), Y-12 (1958), Bethesda (1982), Chalk River (1952 and 1958), Lucens (1969). The important conditions were: radiation fields over 10,000 R/h, severe contamination, possible critical excursion, possible inert atmosphere, temperatures from 50/sup 0/C to -20/sup 0/C, 100% relative humidity, 60-cm-high obstacles, stairs, airlocks, darkness, and lack of electric power.

  14. Small bowel radiology

    SciTech Connect

    Antes, G.; Eggemann, F.

    1987-01-01

    This book deals mainly with technique, experiences and results of the biphasic small bowel enema (enteroclysis) with barium and methyl cellulose. The method allows the evaluation of both morphology and function of the small bowel. The introduction describes the examination technique, basic patterns, interpretation and indications, while the atlas shows a broad spectrum of small bowel diseases (Crohn's disease, other inflammatory diseases, tumors, motility disorders, obstructions and malformations). The possibilities of small bowel radiology are demonstrated with reference to clinical findings and differential diagnoses.

  15. Smart Radiological Dosimeter

    SciTech Connect

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  16. Radiological Toolbox User's Manual

    SciTech Connect

    Eckerman, KF

    2004-07-01

    A toolbox of radiological data has been assembled to provide users access to the physical, chemical, anatomical, physiological and mathematical data relevant to the radiation protection of workers and member of the public. The software runs on a PC and provides users, through a single graphical interface, quick access to contemporary data and the means to extract these data for further computations and analysis. The numerical data, for the most part, are stored within databases in SI units. However, the user can display and extract values using non-SI units. This is the first release of the toolbox which was developed for the U.S. Nuclear Regulatory Commission.

  17. Patient-centered Radiology.

    PubMed

    Itri, Jason N

    2015-10-01

    Patient-centered care (ie, care organized around the patient) is a model in which health care providers partner with patients and families to identify and satisfy patients' needs and preferences. In this model, providers respect patients' values and preferences, address their emotional and social needs, and involve them and their families in decision making. Radiologists have traditionally been characterized as "doctor-to-doctor" consultants who are distanced from patients and work within a culture that does not value patient centeredness. As medicine becomes more patient driven and the trajectory of health care is toward increasing patient self-reliance, radiologists must change the perception that they are merely consultants and become more active participants in patient care by embracing greater patient interaction. The traditional business model for radiology practices, which devalues interaction between patients and radiologists, must be transformed into a patient-centered model in which radiologists are reintegrated into direct patient care and imaging processes are reorganized around patients' needs and preferences. Expanding radiology's core assets to include direct patient care may be the most effective deterrent to the threat of commoditization. As the assault on the growth of Medicare spending continues, with medical imaging as a highly visible target, radiologists must adapt to the changing landscape by focusing on their most important consumer: the patient. This may yield substantial benefits in the form of improved quality and patient safety, reduced costs, higher-value care, improved patient outcomes, and greater patient and provider satisfaction. PMID:26466190

  18. Radiological sinonasal anatomy

    PubMed Central

    Alrumaih, Redha A.; Ashoor, Mona M.; Obidan, Ahmed A.; Al-Khater, Khulood M.; Al-Jubran, Saeed A.

    2016-01-01

    Objectives: To assess the prevalence of common radiological variants of sinonasal anatomy among Saudi population and compare it with the reported prevalence of these variants in other ethnic and population groups. Methods: This is a retrospective cross-sectional study of 121 computerized tomography scans of the nose and paranasal sinuses of patients presented with sinonasal symptoms to the Department of Otorhinolarngology, King Fahad Hospital of the University, Khobar, Saudi Arabia, between January 2014 and May 2014. Results: Scans of 121 patients fulfilled inclusion criteria were reviewed. Concha bullosa was found in 55.4%, Haller cell in 39.7%, and Onodi cell in 28.9%. Dehiscence of the internal carotid artery was found in 1.65%. Type-1 and type-2 optic nerve were the prevalent types. Type-II Keros classification of the depth of olfactory fossa was the most common among the sample (52.9%). Frontal cells were found in 79.3%; type I was the most common. Conclusions: There is a difference in the prevalence of some radiological variants of the sinonasal anatomy between Saudi population and other study groups. Surgeon must pay special attention in the preoperative assessment of patients with sinonasal pathology to avoid undesirable complications. PMID:27146614

  19. Common problems in gastrointestinal radiology

    SciTech Connect

    Thompson, W.M.

    1989-01-01

    This book covers approximately 70 common diagnostic problems in gastro-intestinal radiology. Each problem, includes a short illustrated case history, a discussion of the radiologic findings, a general discussion of the case, the differential diagnosis, a description of the management of the problem or procedure used, and, where appropriate, the results of the therapy suggested.

  20. Handbooks in radiology: Nuclear medicine

    SciTech Connect

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine.

  1. Radiological Technology. Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    This curriculum guide was designed for use in postsecondary radiological technology education programs in Georgia. Its purpose is to provide for the development of entry level skills in radiological technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…

  2. Radiological Worker Computer Based Training

    Energy Science and Technology Software Center (ESTSC)

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  3. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  4. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  5. The yearbook of diagnostic radiology. 1987

    SciTech Connect

    Bragg, D.G.

    1987-01-01

    This book contains seven selections. They are: Neuroradiology; Cardiovascular and Interventional Radiology; The Thorax; The Abdomen; The Musculoskeletal System; Pediatric Radiology; and Radiation Physics.

  6. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  7. ICPP radiological and toxicological sabotage analysis

    SciTech Connect

    Kubiak, V.R.; Mortensen, F.G.

    1995-10-01

    In June of 1993, the Department of Energy (DOE) issued Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} which states that all significant radiological and toxicological hazards at Department facilities must be examined for potential sabotage. This analysis has been completed at the Idaho Chemical Processing Plant (ICPP). The ICPP radiological and toxicological hazards include spent government and commercial fuels, Special Nuclear Materials (SNM), high-level liquid wastes, high-level solid wastes, and process and decontamination chemicals. The analysis effort included identification and assessment of quantities of hazardous materials present at the facility; identification and ranking of hazardous material targets; development of worst case scenarios detailing possible sabotage actions and hazard releases; performance of vulnerability assessments using table top and computer methodologies on credible threat targets; evaluation of potential risks to the public, workers, and the environment; evaluation of sabotage risk reduction options; and selection of cost effective prevention and mitigation options.

  8. Radiology and the mobile device: Radiology in motion.

    PubMed

    Panughpath, Sridhar G; Kalyanpur, Arjun

    2012-10-01

    The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available. PMID:23833412

  9. Risk management in radiology departments

    PubMed Central

    Craciun, Horea; Mankad, Kshitij; Lynch, Jeremy

    2015-01-01

    Medical imaging and interventional radiology sustained prompt changes in the last few years, mainly as a result of technology breakthroughs, rise in workload, deficit in workforce and globalization. Risk is considered to be the chance or possibility of incurring loss or of a negative event happening that may cause injury to patients or medical practitioners. There are various causes of risks leading to harm and injury in radiology departments, and it is one of the objectives of this paper to scrutinize some of the causes. This will drive to consideration of some of the approaches that are used in managing risks in radiology. This paper aims at investigating risk management in radiology, and this will be achieved through a thorough assessment of the risk control measures that are used in the radiology department. It has been observed that the major focus of risk management in such medical setting is to reduce and eliminate harm and injury to patients through integration of various medical precautions. The field of Radiology is rapidly evolving due to technology advances and the globalization of healthcare. This ongoing development will have a great impact on the level of quality of care and service delivery. Thus, risk management in radiology is essential in protecting the patients, radiologists, and the medical organization in terms of capital and widening of the reputation of the medical organization with the patients. PMID:26120383

  10. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    SciTech Connect

    Harpring, L; Frank Heckendorn, F

    2007-11-06

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process.

  11. The radiologically isolated syndrome.

    PubMed

    Lebrun, C

    2015-10-01

    Even prior to the introduction of criteria defining the radiologically isolated syndrome (RIS), longitudinal clinical data from individuals with incidentally identified T2 lesions suggestive of multiple sclerosis (MS) were described. Healthy individuals who do not exhibit signs of neurological dysfunction may have a brain MRI performed for a reason other than suspicion of MS that reveals unexpected anomalies highly suggestive of demyelinating plaques given their size, location, and morphology. These healthy subjects lack a history or symptomatology suggestive of MS and fulfill formal criteria for RIS, a recently described MS subtype that shares the phenotype of at-risk individuals for future demyelinating events. A formal description of RIS was first introduced in 2009 by Okuda et al., and defines a cohort of individuals who are at risk for future demyelinating events. European or North American observational studies have found that up to 30-45% of patients presenting with RIS will present with neurological symptoms, either acute or progressive. The median time to clinical conversion differs between studies. It was 2.3 years for a series of French patients and 5.4 years for an American cohort. Most patients who developed clinical symptoms had prior radiological progression. The presence of asymptomatic lesions in the cervical cord indicated an increased risk of progression, either to relapsing or to progressive MS. The consortium studying the epidemiology of RIS worldwide (RISC) presented their first retrospective cohort last year. Data were available for 451 RIS subjects (F: 354 [78.5%]). The mean age at RIS diagnosis was 37.2 years with a mean clinical follow-up time of 4.4 years. The observed 5-year conversion rate to the first clinical event was 34%. Of the converters within this time period, 9.6% fulfilled criteria for primary progressive MS. In the multivariate model, age, sex (male), and lesions within the cervical or thoracic spinal cord were identified as

  12. Conversion of Radiology Reporting Templates to the MRRT Standard.

    PubMed

    Kahn, Charles E; Genereaux, Brad; Langlotz, Curtis P

    2015-10-01

    In 2013, the Integrating the Healthcare Enterprise (IHE) Radiology workgroup developed the Management of Radiology Report Templates (MRRT) profile, which defines both the format of radiology reporting templates using an extension of Hypertext Markup Language version 5 (HTML5), and the transportation mechanism to query, retrieve, and store these templates. Of 200 English-language report templates published by the Radiological Society of North America (RSNA), initially encoded as text and in an XML schema language, 168 have been converted successfully into MRRT using a combination of automated processes and manual editing; conversion of the remaining 32 templates is in progress. The automated conversion process applied Extensible Stylesheet Language Transformation (XSLT) scripts, an XML parsing engine, and a Java servlet. The templates were validated for proper HTML5 and MRRT syntax using web-based services. The MRRT templates allow radiologists to share best-practice templates across organizations and have been uploaded to the template library to supersede the prior XML-format templates. By using MRRT transactions and MRRT-format templates, radiologists will be able to directly import and apply templates from the RSNA Report Template Library in their own MRRT-compatible vendor systems. The availability of MRRT-format reporting templates will stimulate adoption of the MRRT standard and is expected to advance the sharing and use of templates to improve the quality of radiology reports. PMID:25776768

  13. Self-citation: comparison between Radiología, European Radiology and Radiology for 1997-1998.

    PubMed

    Miguel, Alberto; Martí-Bonmatí, Luis

    2002-01-01

    Self-citation, considered as the number of times a paper cites other papers in the same journal, is an important criteria of journal quality. Our objective is to evaluate the self-citation in the official journal of the Spanish Society of Radiology (Radiología), and to compare it with the European Radiology and Radiology journals. Papers published in Radiología, European Radiology, and Radiology during 1997 and 1998 were analyzed. The Self Citation Index, considered as the ratio between self-references and total number of references per article, for the journals Radiología (SCIR), European Radiology (SCIER), and Radiology (SCIRY), were obtained and expressed as percentages. Also, the number of references to Radiología in European Radiology and Radiology papers were calculated. Stratification of the index per thematic area and article type was also performed. Mean SCIR, SCIER, and SCIRY values were compared with the ANOVA and the Student-Newman-Keuls tests. The self-citation index was statistically higher in Radiology (23.2%; p<0.0001) than in Radiología (1.8%) and European Radiology (0.8%). There were no statistically significant differences between SCIR and SCIER indexes ( p=0.25). In the stratification per thematic areas and article type, self-citation in Radiology was statistically higher ( p<0.0001), with the only exception of "Radioprotection" area ( p=0.2), to SCIR and SCIER. Although there were no statistically significant differences, by thematic areas SCIR was always larger than SCIER, with the only exception of the "Genitourinary imaging" area, and by article type SCIR also went greater to SCIER, except in review articles. Radiología, The Spanish official radiological journal, although not included in Index Medicus and its database Medline, had a larger number of self-citing than European Radiology in the period 1997-1998. PMID:11868105

  14. 5.3 Applied Radiological Protection

    NASA Astrophysics Data System (ADS)

    Almén, A.; Valentin, J.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.3 Applied Radiological Protection' of the Chapter '5 Medical Radiological Protection' with the contents:

  15. Multimedia in the radiology environment

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Ramaswamy, Mohan R.; Arenson, Ronald L.

    1994-05-01

    Accessibility of multimedia information related to radiology in a timely manner is a key to success in practicing radiology in the future. In this paper we describe the concept of multimedia in the radiology environment and its implementation in our department at UCSF. This paper emphasizes the various types of databases related to radiology including HIS, RIS, PACS image database, digital voice dictation system, electronic mail and library information system. A method to interconnect these databases is through a comprehensive network architecture that also is described. As an application, we introduce the concept of a departmental image file server, for any of the 150 Macintosh users in the department to access this multimedia information.

  16. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (ESTSC)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  17. Environmental Tools and Radiological Assessment

    EPA Science Inventory

    This presentation details two tools (SADA and FRAMES) available for use in environmental assessments of chemicals that can also be used for radiological assessments of the environment. Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporate...

  18. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  19. Radiological Society of North America

    MedlinePlus

    ... Plan your RSNA 2016 experience as you discover programming options, add courses to your agenda, and plan ... the future of ethics and professionalism in radiology. One Year After ICD-10: The Conversion Went Well, ...

  20. Negotiating the radiologically isolated syndrome.

    PubMed

    Cummings, A; Chataway, J

    2014-10-01

    Multiple sclerosis, always challenging, hands down a particular gauntlet with the concept of the radiologically isolated syndrome. This article discusses what it is, recent developments in the field and how these patients should be managed. PMID:25291606

  1. Radiological cleanup of Enewetak Atoll

    SciTech Connect

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  2. Radiological instrument. Patent Application

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1985-10-10

    This patent application discloses a radiological measuring instrument including an angularly variable radiation-sensitive structure comprised of two blocks of material having a different index of refraction with one of the materials comprising a radiochromic substance whose refractive index changes through anomolous dispersion as a result of being exposed to radiation. The ratio of the two indices of refraction is selected to be close to unity, with the radiation-sensitive structure being pivotally adjusted so that light is directed into one end of the block comprising the material having the greater index of refraction. This element, moreover, is selected to be clear and transparent with the incident angle being close to the critical angle where total reflection of all incident light occurs. A portion of the incident light is furthermore projected through the clear transparent block without reflection, with the two beams emerging from the other end of the block, where they are detected. Exposure to radiation changes the index of refraction of the radiochromic block and accordingly the reflected energy emerging therefrom. Calibrated readjustment of the angle of incidence provides a measure of the sensed radiation.

  3. [Controlling in outpatient radiology].

    PubMed

    Baum, T

    2015-12-01

    Radiology is among the medical disciplines which require the highest investment costs in the healthcare system. The need to design efficient workflows to ensure maximum utilization of the equipment has long been known. In order to be able to establish a sound financial plan prior to a project or equipment purchase, the costs of an examination have to be broken down by modality and compared with the reimbursement rates. Obviously, the same holds true for operative decisions when scarce human resources have to be allocated. It is the task of controlling to review the economic viability of the different modalities and ideally, the results are incorporated into the management decision-making processes. The main section of this article looks at the recognition and allocation of direct and indirect costs in a medical center (Medizinisches Versorgungszentrum - MVZ) in the German North Rhine region. The profit contribution of each examination is determined by deducting the costs from the income generated by the treatment of patients with either private or statutory health insurance. PMID:26538134

  4. Radiological design guide

    SciTech Connect

    Evans, R.A.

    1994-08-16

    The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

  5. Radiology of congenital heart disease

    SciTech Connect

    Amplatz, K.

    1986-01-01

    This is a text on the radiologic diagnosis of congenital heart disease and its clinical manifestations. The main thrust of the book is the logical approach which allows an understanding of the complex theory of congenital heart disease. The atlas gives a concise overview of the entire field of congenital heart disease. Emphasis is placed on the understanding of the pathophysiology and its clinical and radiological consequences. Surgical treatment is included since it provides a different viewpoint of the anatomy.

  6. Radiological training for tritium facilities

    SciTech Connect

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  7. Financial accounting for radiology executives.

    PubMed

    Seidmann, Abraham; Mehta, Tushar

    2005-03-01

    The authors review the role of financial accounting information from the perspective of a radiology executive. They begin by introducing the role of pro forma statements. They discuss the fundamental concepts of accounting, including the matching principle and accrual accounting. The authors then explore the use of financial accounting information in making investment decisions in diagnostic medical imaging. The paper focuses on critically evaluating the benefits and limitations of financial accounting for decision making in a radiology practice. PMID:17411806

  8. Radiological Features of Hepatocellular Carcinoma

    PubMed Central

    Shah, Samir; Shukla, Akash; Paunipagar, Bhawan

    2014-01-01

    Present article is a review of radiological features of hepatocellular carcinoma on various imaging modalities. With the advancement in imaging techniques, biopsy is rarely needed for diagnosis of hepatocellular carcinoma (HCC), unlike other malignancies. Imaging is useful not only for diagnosis but also for surveillance, therapy and assessing response to treatment. The classical and the atypical radiological features of HCC have been described. PMID:25755613

  9. FDH radiological design review guidelines

    SciTech Connect

    Millsap, W.J.

    1998-09-29

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

  10. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  11. Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.

    PubMed

    Do, Bao H; Wu, Andrew; Biswal, Sandip; Kamaya, Aya; Rubin, Daniel L

    2010-11-01

    Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material. PMID:20801868

  12. Radiology practice models: the 2008 ACR Forum.

    PubMed

    Gunderman, Richard B; Weinreb, Jeffrey C; Van Moore, Arl; Hillman, Bruce J; Neiman, Harvey L; Thrall, James H

    2008-09-01

    The 2008 ACR Forum brought together a diverse group of participants from clinical radiology, radiology leadership and practice management, managed care, economics, law, and entrepreneurship in Washington, DC, in January 2008 to discuss current models of radiology practice and anticipate new ones. It addressed what forces shape the practice of radiology, how these forces are changing, and how radiology practices can most effectively respond to them in the future. PMID:18755435

  13. DOE standard: Radiological control

    SciTech Connect

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  14. A Simulation Learning Approach to Training First Responders for Radiological Emergencies ? A Continuation of Work

    SciTech Connect

    Lake, Joe E; Cross, Butch; Sanders, Robert Lon

    2008-01-01

    Real-time gaming engines, such as Epic Game's Unreal Engine[1], provide an excellent resource as a training environment. These engines provide an alternate reality that can accurately depict not only real world geometry, but they can also achieve realistic physical effects such as radiation fields and blast physics. The real time photorealistic graphics available through the Unreal Engine add to its applicability to this project's needs. Moreover, this engine provides a very efficient means to modify the game's physics modeling, visual effects, and game play structure to fit the ever-evolving needs of a training curriculum. To this end, we have worked to extend the Unreal Engine to incorporate radiation effects dependent on distance from a radiological source, similar to what one would experience in the real world. In order to help better prepare first responders for using the radiological detection equipment vital for mission success, we have continued work, previously described by Sanders and Rhodes [2], on a Geiger counter readout display being implemented and added to the interface's Heads Up Display (HUD) as well as incorporating a physically accurate model within the engine that will allow the first responder to acclimate themselves to the sounds and possible size of the device. Moreover, the Karma Physics Engine, which works in conjunction with the Unreal Engine 2, accurately simulates fluid physics, blast effects, and basic player movements. It is this physics engine that has been the focus of our continued efforts and has been extended to include realistic modeling of radiological effects.

  15. Evaluation of an open source tool for indexing and searching enterprise radiology and pathology reports

    NASA Astrophysics Data System (ADS)

    Kim, Woojin; Boonn, William

    2010-03-01

    Data mining of existing radiology and pathology reports within an enterprise health system can be used for clinical decision support, research, education, as well as operational analyses. In our health system, the database of radiology and pathology reports exceeds 13 million entries combined. We are building a web-based tool to allow search and data analysis of these combined databases using freely available and open source tools. This presentation will compare performance of an open source full-text indexing tool to MySQL's full-text indexing and searching and describe implementation procedures to incorporate these capabilities into a radiology-pathology search engine.

  16. [Radiological examinations that have disappeared].

    PubMed

    Puylaert, Carl B A J; Puylaert, Julien B C M

    2011-01-01

    If a radiologist from 1950 could travel in time to 2011, he or she would be baffled to see how few of the radiological examinations he was familiar with, remain. We review the radiological examinations that have disappeared since X-rays were discovered, and include the causes of their disappearance. Barium studies have mainly been replaced by endoscopy, oral cholecystography by ultrasound, and intravenous urography by CT-scan. Angiography by means of a direct puncture of carotid artery and aorta has been replaced by Seldinger angiography. Pneumencephalography and myelography have been replaced by CT and MRI. Bronchography has been replaced by bronchoscopy and CT-scan, arthrography by MRI and arthroscopy. Many other radiological examinations have been replaced by ultrasound, CT or MRI. PMID:21447222

  17. Radiological control manual. Revision 1

    SciTech Connect

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  18. How to Start Interventional Radiology

    PubMed Central

    Ghanaati, Hossein; Firouznia, Kavous; Jalali, Amir Hossein; Shakiba, Madjid

    2013-01-01

    Interventional techniques aim to find safer and better ways to treat vascular diseases even in many instances, the interventional radiology solutions has been considered the only treatment option for the patients. Interventional radiologists are specialists who perform minimally invasive procedures instead of surgery or other treatments. These procedures apply various imaging and catheterization procedures in order to diagnose and treat diseases. In each country, interventional radiology practice establishment of varies according to local factors, but following a standard strategy seems better to set up this facility. According to above mentioned points, we decided to establish this specialty in our hospital since 2001 as the pioneer center in Iran. In this presentation we will discuss about our experience for start interventional radiology. PMID:24693402

  19. Interventional Radiology in Liver Transplantation

    SciTech Connect

    Karani, John B. Yu, Dominic F.Q.C.; Kane, Pauline A.

    2005-04-15

    Radiology is a key specialty within a liver transplant program. Interventional techniques not only contribute to graft and recipient survival but also allow appropriate patient selection and ensure that recipients with severe liver decompensation, hepatocellular carcinoma or portal hypertension are transplanted with the best chance of prolonged survival. Equally inappropriate selection for these techniques may adversely affect survival. Liver transplantation is a dynamic field of innovative surgical techniques with a requirement for interventional radiology to parallel these developments. This paper reviews the current practice within a major European center for adult and pediatric transplantation.

  20. Analysis of radiology business models.

    PubMed

    Enzmann, Dieter R; Schomer, Donald F

    2013-03-01

    As health care moves to value orientation, radiology's traditional business model faces challenges to adapt. The authors describe a strategic value framework that radiology practices can use to best position themselves in their environments. This simplified construct encourages practices to define their dominant value propositions. There are 3 main value propositions that form a conceptual triangle, whose vertices represent the low-cost provider, the product leader, and the customer intimacy models. Each vertex has been a valid market position, but each demands specific capabilities and trade-offs. The underlying concepts help practices select value propositions they can successfully deliver in their competitive environments. PMID:23245438

  1. Managing Generational Differences in Radiology.

    PubMed

    Eastland, Robin; Clark, Kevin R

    2015-01-01

    Diversity can take many forms. One type of recent focus is generational differences and intergenerational issues. Much research exists regarding generational differences in the workplace and in healthcare as a whole. Very little has been done on generational differences within the field of radiology. An analysis of current research of generational differences within radiology, nursing, and healthcart in general was performed to identify current trends and establish similarities and discordance in available studies. An emphasis was placed on how generational differences influence education, teamwork, and patient care, along with what challenges and opportunities exist for managers, leaders, and organizations. PMID:26314182

  2. Commit to Sit in Radiology.

    PubMed

    Pittsenbargar, Jared; Amos, Gwendolyn; Gaudet, Jo-Anne

    2015-01-01

    At Houston Methodist Hospital, Commit to Sit is a program that encourages radiology professionals to communicate with patients in a way that demonstrates compassion, respect, empathy, and competence in order to foster a trusting relationship. Using active and empathic listening, dialogue is received and understood in the way it was intended, creating a patient centric environment resulting in high quality, safe patient care with improved outcomes. The implicit understanding derived from results and outcomes confirms the fact that patients prefer the radiology staff to sit while communicating with them. This understanding allows the voice of the patient to be heard and should be a consistent practice among all staff. PMID:26485897

  3. [Radiological media and modern supporting tools in radiology].

    PubMed

    Sachs, A; Pokieser, P

    2014-01-01

    Radiology is a field with a high demand on information. Nowadays, a huge variety of electronic media and tools exists in addition to the classical media. Asynchronous and synchronous e-learning are constantly growing and support radiology with case collections, webinars and online textbooks. Various internet resources, social media and online courses have been established. Dynamic websites show a variety of interactive elements and it is easier and faster to access large amounts of data. Social media have an exponentially growing number of users and enable an efficient collaboration as well as forming professional networks. Massive open online courses (MOOCs) complete the offer of education and increase the opportunity to take part in educational activities. Apart from the existing variety of resources it is essential to focus on a critical selection for using these radiological media. It is reasonable to combine classical and electronic media instead of a one-sided use. As dynamic as the progress in the field of radiological media and its tools may be, the personal contact remains and should be maintained. PMID:24449282

  4. Natural Language Processing Technologies in Radiology Research and Clinical Applications.

    PubMed

    Cai, Tianrun; Giannopoulos, Andreas A; Yu, Sheng; Kelil, Tatiana; Ripley, Beth; Kumamaru, Kanako K; Rybicki, Frank J; Mitsouras, Dimitrios

    2016-01-01

    The migration of imaging reports to electronic medical record systems holds great potential in terms of advancing radiology research and practice by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to the heterogeneity of how these data are formatted. Indeed, although there is movement toward structured reporting in radiology (ie, hierarchically itemized reporting with use of standardized terminology), the majority of radiology reports remain unstructured and use free-form language. To effectively "mine" these large datasets for hypothesis testing, a robust strategy for extracting the necessary information is needed. Manual extraction of information is a time-consuming and often unmanageable task. "Intelligent" search engines that instead rely on natural language processing (NLP), a computer-based approach to analyzing free-form text or speech, can be used to automate this data mining task. The overall goal of NLP is to translate natural human language into a structured format (ie, a fixed collection of elements), each with a standardized set of choices for its value, that is easily manipulated by computer programs to (among other things) order into subcategories or query for the presence or absence of a finding. The authors review the fundamentals of NLP and describe various techniques that constitute NLP in radiology, along with some key applications. PMID:26761536

  5. Counseling in radiologic technology programs.

    PubMed

    Warner, S L

    1975-01-01

    Rarely do radiologic technology programs have adequate faculty to provide full-time counselors for the student's personal, professional, and academic problems. The problems of using educational or administrative personnel as part-time couselors are discussed and the utilization of interested staff technologists in the role of student counselor is recommended. PMID:1188083

  6. 100-DR-1 radiological surveys

    SciTech Connect

    Naiknimbalkar, N.M.

    1994-01-28

    This report summarizes and documents the results of the radiological surveys conducted over the surface of the 100-DR-1 Operable Unit, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology using the Ultrasonic Ranging and Data System (USRADS). The 100-DR-1 radiological survey field task consisted of two activities: characterization of the operable unit-specific background conditions and the radiological survey of the operable unit surface area. The survey methodology was based on utilization of USRADS for automated recording of the gross gamma radiation levels at or near 6 in. and at 3 ft from the surface soil. The purpose of the survey is to identify the location of unidentified subsurface radioactive material areas and any surface contamination associated with these areas. The radiological surveys were conducted using both a digital count rate meter with a NaI detector reporting in counts per minute (CPM) and a dose rate meter reporting micro-Roentgen per hour (uR) connected to a CHEMRAD Tennessee Corp. Series 2000 USRADS. The count rate meter was set for gross counting, i.e., Window ``out``. The window setting allows detection of low, intermediate, and high energy photons. The USRADS equipment is used to record the detector readings verses the location of the readings, generate a map of the survey area, and save the data on computer storage media.

  7. International Data on Radiological Sources

    SciTech Connect

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  8. Radiologic Technology Occupations. Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide delineates the tasks and performance standards for radiologic technology occupations. It includes job seeking skills, work attitudes, energy conservation practices, and safety. The guide is centered around the three domains of learning: psychomotor, cognitive, and affective. For each duty, the following are provided: task, standard of…

  9. Radiological Defense Officer. Student Workbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This student workbook includes the necessary administrative materials, briefs, exercises and answer sheets for the quizzes and final course examination as needed by the students during the conduct of the Radiological Defense Officer course. Among the briefs included are the following: (1) Reporting Forms; (2) Forecasting Dose Rates; (3) Dose…

  10. University Curriculums and Fellowships in Radiological Health.

    ERIC Educational Resources Information Center

    Villforth, John C.

    This booklet describes the academic programs funded through the Radiological Health Training Grants Program. Graduate Programs for the training of radiological health specialists at 28 universities and undergraduate (two year and four year) radiological technical programs at seven institutions are described. Program descriptions include degree(s)…

  11. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  12. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  13. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  14. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  15. The 1985 year book of diagnostic radiology

    SciTech Connect

    Bragg, D.G.

    1984-01-01

    This book provides reviews of 343 significant articles from 79 journals. Topics include the following: expanding use of nuclear magnetic resonance imaging; sonography and pediatric radiology; radiographic evaluation of skeletal stress injuries; cost effectiveness of radiographic procedures; radiologic manifestations of iatrogenic complications; breast cancer diagnosis; interventional radiology and underutilization; and computed tomography in diagnosis and staging of neoplasms.

  16. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  17. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  18. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  19. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  20. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  1. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  2. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  3. Radiological/toxicological sabotage assessments at the Savannah River Site

    SciTech Connect

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-11-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC`s approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs).

  4. [Radiation protection in interventional radiology].

    PubMed

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses. PMID:26913507

  5. Radiology applications of financial accounting.

    PubMed

    Leibenhaut, Mark H

    2005-03-01

    A basic knowledge of financial accounting can help radiologists analyze business opportunities and examine the potential impacts of new technology or predict the adverse consequences of new competitors entering their service area. The income statement, balance sheet, and cash flow statement are the three basic financial statements that document the current financial position of the radiology practice and allow managers to monitor the ongoing financial operations of the enterprise. Pro forma, or hypothetical, financial statements can be generated to predict the financial impact of specific business decisions or investments on the profitability of the practice. Sensitivity analysis, or what-if scenarios, can be performed to determine the potential impact of changing key revenue, investment, operating cost or financial assumptions. By viewing radiology as both a profession and a business, radiologists can optimize their use of scarce economic resources and maximize the return on their financial investments. PMID:17411807

  6. Interventional radiology in the elderly

    PubMed Central

    Katsanos, Konstantinos; Ahmad, Farhan; Dourado, Renato; Sabharwal, Tarun; Adam, Andreas

    2009-01-01

    Interventional radiological percutaneous procedures are becoming all the more important in the curative or palliative management of elderly frail patients with multiple underlying comorbidities. They may serve either as alternative primary minimally invasive therapies or adjuncts to traditional surgical treatments. The present report provides a concise review of the most important interventional radiological procedures with a special focus on the treatment of the primary debilitating pathologies of the elderly population. The authors elaborate on the scientific evidence and latest developments of thermoablation of solid organ malignancies, palliative stent placement for gastrointestinal tract cancer, airway stenting for tracheobronchial strictures, endovascular management of aortic and peripheral arterial vascular disease, and cement stabilization of osteoporotic vertebral fractures. The added benefits of high technical and clinical success coupled with lower procedural mortality and morbidity are highlighted. PMID:19503761

  7. Virtual management of radiology examinations in the virtual radiology environment using common object request broker architecture services.

    PubMed

    Martinez, R; Rozenblit, J; Cook, J F; Chacko, A K; Timboe, H L

    1999-05-01

    In the Department of Defense (DoD), US Army Medical Command is now embarking on an extremely exciting new project--creating a virtual radiology environment (VRE) for the management of radiology examinations. The business of radiology in the military is therefore being reengineered on several fronts by the VRE Project. In the VRE Project, a set of intelligent agent algorithms determine where examinations are to routed for reading bases on a knowledge base of the entire VRE. The set of algorithms, called the Meta-Manager, is hierarchical and uses object-based communications between medical treatment facilities (MTFs) and medical centers that have digital imaging network picture archiving and communications systems (DIN-PACS) networks. The communications is based on use of common object request broker architecture (CORBA) objects and services to send patient demographics and examination images from DIN-PACS networks in the MTFs to the DIN-PACS networks at the medical centers for diagnosis. The Meta-Manager is also responsible for updating the diagnosis at the originating MTF. CORBA services are used to perform secure message communications between DIN-PACS nodes in the VRE network. The Meta-Manager has a fail-safe architecture that allows the master Meta-Manager function to float to regional Meta-Manager sites in case of server failure. A prototype of the CORBA-based Meta-Manager is being developed by the University of Arizona's Computer Engineering Research Laboratory using the unified modeling language (UML) as a design tool. The prototype will implement the main functions described in the Meta-Manager design specification. The results of this project are expected to reengineer the process of radiology in the military and have extensions to commercial radiology environments. PMID:10342205

  8. U.S. national response assets for radiological incidents.

    PubMed

    Remick, Alan L; Crapo, John L; Woodruff, Charles R

    2005-11-01

    The federal government has had the ability to respond to incidents of national significance for decades. Since 11 September 2001, there have been enhancements to existing federal assets and the creation of new federal assets. This presentation will provide an overview of the more significant federal assets. Pivotal to a response of national significance is the U.S. Department of Energy (DOE) Federal Radiological Monitoring and Assessment Center, which organizes and coordinates federal agency monitoring activities during an emergency. DOE manages the Federal Radiological Monitoring and Assessment Center during the emergency phase, and the Environmental Protection Agency (EPA) manages the response during the recovery phase once the emergency is terminated. EPA monitoring teams provide support during both the emergency and recovery phases of an emergency. Other DOE teams are available to respond to major nuclear power plant events, transportation accidents, or terrorism events involving the use of radiological materials, including the Radiological Assistance Program, the Aerial Measuring System, the National Atmospheric Release Advisory Center, and the Radiation Emergency Assistance Center/Training Site. For incidents involving a nuclear weapon, an improvised nuclear device, or a radiological dispersal device, DOE assets such as the Nuclear Emergency Support Team and the Accident Response Group could provide capabilities for weapon or device search, recovery, and removal. The Radiological Triage System harnesses the weapons scientists and engineers at the DOE national laboratories to provide gamma spectroscopy interpretation for agencies responding to an incident. In recent years, National Guard Weapons of Mass Destruction-Civil Support Teams have been created to support state and local response to terrorism events. The Civil Support Teams normally come under direct control of the state and can respond without requiring authorization from the U.S. Department of

  9. Radiology of occupational chest disease

    SciTech Connect

    Solomon, A. ); Kreel, L.

    1989-01-01

    Radiologic manifestations of occupational lung disease are summarized and classified in this book according to the ILO system. The interpretation of chest roentgenograms outlines the progression of each disease and is accompanied with clinically-oriented explanations. Some of the specific diseases covered include asbestosis, coal worker's pneumoconiosis, silicosis, non-mining inhalation of silica and silicates, beryllium induced disease, inhalation of organics and metallics, and occupationally induced asthma.

  10. Differential diagnosis in pediatric radiology

    SciTech Connect

    Grunebaum, M.

    1986-01-01

    This work presents 415 tables of differential diagnosis applicable to pediatric radiology, emphasizing clinical presentation and the findings of conventional radiographs. The six chapters cover the respiratory, cardiovascular, urinary, gastrointestinal, and skeletal systems, and the head. The first few tables in each chapter cover major clinical signs, the next few deal with the newborn period only, and the remainder deal with radiographic differential diagnoses seen in children. An index and brief reference list complete the book.

  11. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  12. Radiology uses of the Internet.

    PubMed

    Krug, H; Cheng, D

    1995-01-01

    The Internet promises to be an essential resource for radiology administrators. In addition to offering remarkable access to colleagues all over the world, the Internet offers specialized information resources for radiology, many of which are described in this article. The Internet is many networks that communicate with each other and whose general purpose is to share information. Although there are several consortium organizations that support and regulate it, no single body or organization "owns" the Internet. Many employees and students at large teaching centers already have access to the Internet through their institution's connection. Individuals and small institutions can contract with independent service providers for Internet access. Internet functions covered in this article include: e-mail, listservs, newsgroups, file transfer protocols, Gopher, and the World Wide Web. The rapid pace of information exchange is making the world of radiology smaller and more intimate. Communication and knowledge are becoming so accessible that individuals are privy to the most minute happenings in the industry. Sharing information on the Internet will benefit not only individual users and the industry, but also patients. PMID:10161227

  13. A Simulation Learning Approach to Training First Responders for Radiological Emergencies

    SciTech Connect

    Sanders, Robert Lon; Rhodes, Graham S.

    2007-01-01

    This paper describes the application of simulation learning technology, popularized by the emerging serious games industry, for training first responders to properly act in the event of a radiological emergency. Using state-of-the-art video game production tools and runtime engines as an enabling technology, simulation learning combines interactive virtual worlds based on validated engineering models with engaging storylines and scenarios that invoke the emotional response-and the corresponding human stress level-that first responders would encounter during a real-world emergency. For the application discussed here, in addition to providing engaging instruction about the fundamentals of radiological environments and the proper usage of radiological equipment, simulation learning prepares first responders to perform effectively under high stress and enables them to practice in teams.

  14. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  15. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  16. Home-based radiology transcription and a productivity pay plan.

    PubMed

    Kerr, K

    1997-01-01

    Shands Hospital in Gainesville, Fla., decided to evaluate the way it provided transcription services in its radiology department. It identified four goals: increased productivity, decreased operating expense, finding much needed space in the radiology department and increasing employee morale. The department performs 165,000 procedures annually, with 66 radiologists, 29 faculty, and 37 residents and fellows on staff. Six FTEs comprised the transcription pool in the radiology department, with transcription their only duty. Transcriptionists were paid an hourly rate based on their years of service, not their productivity. Evaluation and measurement studies were undertaken by the hospital's management systems engineering department. The transcriptionists' hours were then changed to provide coverage during the periods of heaviest dictation. The productivity level of the transcription staff was also measured and various methods of measurement reviewed. The goal was a pure incentive pay plan that would reward employees for every increase in productivity. The incentive pay plan was phased in over a three-month period. Transcriptionists were paid for work performed, with no base pay beyond minimum wage. The move to home-based transcription was planned. The necessary equipment was identified and various issues specific to working at home were addressed. Approximately six months later, the transcriptionists were set up to work at home. The astounding results achieved are presented: 28% increase in productivity, operational cost savings exceeding $25,000 and a space savings of 238 square feet. PMID:10164979

  17. Radiological Assistance Program Flight Planning Tool

    SciTech Connect

    Messick, C.; Pham, M.; Ridgeway, J.; Smith, R.

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  18. Implementation of a Radiological Safety Coach program

    SciTech Connect

    Konzen, K.K.; Langsted, J.M.

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  19. Radiological Assistance Program Flight Planning Tool

    Energy Science and Technology Software Center (ESTSC)

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this responsemore » time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.« less

  20. Managerial accounting applications in radiology.

    PubMed

    Lexa, Frank James; Mehta, Tushar; Seidmann, Abraham

    2005-03-01

    We review the core issues in managerial accounting for radiologists. We introduce the topic and then explore its application to diagnostic imaging. We define key terms such as fixed cost, variable cost, marginal cost, and marginal revenue and discuss their role in understanding the operational and financial implications for a radiology facility by using a cost-volume-profit model. Our work places particular emphasis on the role of managerial accounting in understanding service costs, as well as how it assists executive decision making. PMID:17411809

  1. Radiological Evaluation of Bowel Ischemia.

    PubMed

    Dhatt, Harpreet S; Behr, Spencer C; Miracle, Aaron; Wang, Zhen Jane; Yeh, Benjamin M

    2015-11-01

    Intestinal ischemia, which refers to insufficient blood flow to the bowel, is a potentially catastrophic entity that may require emergent intervention or surgery in the acute setting. Although the clinical signs and symptoms of intestinal ischemia are nonspecific, computed tomography (CT) findings can be highly suggestive in the correct clinical setting. In our article, we review the CT diagnosis of arterial, venous, and nonocclusive intestinal ischemia. We discuss the vascular anatomy, pathophysiology of intestinal ischemia, CT techniques for optimal imaging, key and ancillary radiological findings, and differential diagnosis. PMID:26526436

  2. Childhood arthritis: classification and radiology.

    PubMed

    Johnson, Karl; Gardner-Medwin, Janet

    2002-01-01

    Childhood arthritis has now been reclassified into a single internationally recognized entity of juvenile idiopathic arthritis (JIA). Radiology provides an important role in the management of JIA, in helping in the differential diagnosis, monitoring disease progression and detecting complications. Traditionally, plain radiographs have been the imaging investigation of choice but magnetic resonance imaging (MRI) and ultrasound are now providing a more effective and safer alternative. The appropriate use of sequences in MR imaging is important in the early detection of joint abnormalities in JIA. PMID:11798203

  3. Radiology.

    PubMed

    Patel, Ketan; Wallace, Roxanne; Busconi, Brian D

    2011-04-01

    Hip and groin pain are a common complaint among athletes of all ages, and may result from an acute injury or from chronic, repetitive trauma. Hip injuries can be intraarticular, extraarticular, or both. Labral abnormalities may occur in asymptomatic patients as well as in those with incapacitating symptoms and signs. Athletic hip injury leading to disabling intraarticular hip pain most commonly involves labral tear. The extraarticular causes are usually the result of overuse activity, leading to inflammation, tendonitis, or bursitis. In clinical practice, the term athletic pubalgia is used to describe exertional pubic or groin pain. PMID:21419955

  4. Offsite dose calculation manual guidance: Standard radiological effluent controls for pressurized water reactors

    SciTech Connect

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-01, which allows Radiological Effect Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft from (NUREG-0471 and -0473) for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. Also included for completeness are: (1) radiological environmental monitoring program guidance previously which had been available as a Branch Technical Position (Rev. 1, November 1979); (2) existing ODCM guidance; and (3) a reproduction of generic Letter 89-01.

  5. Pediatric Interventional Radiology: Vascular Interventions.

    PubMed

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2016-07-01

    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery. PMID:26964551

  6. Local area networks for radiology.

    PubMed

    Dwyer, S J; Mankovich, N J; Cox, G G; Bauman, R A

    1988-11-01

    This article is a tutorial on local area networks (LAN) for radiology applications. LANs are being implemented in radiology departments for the management of text and images, replacing the inflexible point-to-point wiring between two devices (computer-to-terminal). These networks enable the sharing of computers and computer devices, reduce equipment costs, and provide improved reliability. Any LAN must include items from the following four categories: transmission medium, topology, data transmission mode, and access protocol. Media for local area networks are twisted pair, coaxial, and optical fiber cables. The topology of these networks include the star, ring, bus, tree, and circuit-switching. Data transmission modes are either analog signals or digital signals. Access protocol methods include the broadcast bus system and the ring system. A performance measurement for a LAN is the throughput rate as a function of the number of active computer nodes. Standards for LANs help to ensure that products purchased from multiple manufacturers will operate successfully. PMID:3154655

  7. Radiation exposure in interventional radiology

    NASA Astrophysics Data System (ADS)

    Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.

  8. [The quality offensive in radiology].

    PubMed

    Mödder, U; Strasser, G; Strasser, E; Rex, B

    1998-04-01

    The Institute of Diagnostic Radiology at the Heinrich-Heine-University Duesseldorf has recently defined and implemented more than thirty organizational changes as a result of a quality control project. The aim was to improve quality and efficiency of the Radiology service. The project was carried out in cooperation with an external consulting firm. To date the positive impact of this project on our work has been so profound that we would like to communicate some of the results in form of this report. During the first phase of the project quality circles were formed to define the various quality criteria and aims of a good service. Today these represent the core of a new quality policy for the Institute. In a second phase all members of staff cooperatively developed precise plans of action for implementation of the necessary changes. Main achievements are the reduction of organizational and communicational deficits obstructing the work process, enhancement of interaction between junior and senior medical staff, upgrading of the role and field of action of the radiography staff and last but not least improvements of cooperation between secretarial and medical staff. PMID:9622816

  9. 76 FR 49458 - TRICARE; Hospital Outpatient Radiology Discretionary Appeal Adjustments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... of the Secretary TRICARE; Hospital Outpatient Radiology Discretionary Appeal Adjustments AGENCY... hospitals of an opportunity for net adjusted payments for radiology services for which TRICARE payments were... radiology services specified in the regulation as being reimbursed under the allowable charge...

  10. 76 FR 64960 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on November 1, 2011 in... INFORMATION: The role and functions of the Federal Radiological Preparedness Coordinating Committee...

  11. 77 FR 24213 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on May 3, 2012 in... role and functions of the Federal Radiological Preparedness Coordinating Committee (FRPCC)...

  12. 75 FR 27563 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on June 3, 2010 in... the Federal Radiological Preparedness Coordinating Committee (FRPCC) are described in 44 CFR...

  13. 75 FR 56127 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee is holding a public meeting on September 28, 2010 in Arlington... . SUPPLEMENTARY INFORMATION: The role and functions of the Federal Radiological Preparedness...

  14. 77 FR 7597 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on February 24, 2012 in... . SUPPLEMENTARY INFORMATION: The role and functions of the Federal Radiological Preparedness...

  15. 75 FR 28188 - Airworthiness Directives; General Electric Company CF34-1A, -3A, -3A1, -3A2, -3B, and -3B1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... 7, 2010 (75 FR 910), we published a final rule AD, FR Doc, E9-30471, in the Federal Register. That... (GE) CF34-1A, -3A, -3A1, -3A2, -3B, and -3B1 turbofan engines. The GE alert service bulletin...

  16. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated in special units of curie, rad, roentgen,...

  17. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  18. Curricular Guidelines for Dental Auxiliary Radiology.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1981

    1981-01-01

    AADS curricular guidelines suggest objectives for these areas of dental auxiliary radiology: physical principles of X-radiation in dentistry, related radiobiological concepts, principles of radiologic health, radiographic technique, x-ray films and intensifying screens, factors contributing to film quality, darkroom, and normal variations in…

  19. Radiological assistance program: Region I. Part I

    SciTech Connect

    Musolino, S.V.; Kuehner, A.V.; Hull, A.P.

    1985-07-15

    The purpose of the Radiological Assistance Program (RAP) is to make DOE resources available and provide emergency assistance to state and local agencies in order to control radiological hazards, protect the public health and safety, and minimize the loss of property. This plan is an integral part of a nationwide program of radiological assistance established by the US DOE, and is implemented on a regional basis. The Brookhaven Area Office (BHO) Radiological Assistance Program is applicable to DOE Region I, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia. The BHO RAP-1 has been developed to: (a) ensure the availability of an effective radiological assistance capability to ensure the protection of persons and property; (b) provide guidelines to RAP-1 Team personnel for the evaluation of radiological incidents and implementation of corrective actions; (c) maintain liaison with other DOE installations, Federal, State and local organizations which may become involved in radiological assistance operations in Region I; and (d) encourage development of a local capability to cope with radiological incidents.

  20. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  1. Radiological Defense. Planning and Operations Guide. Revised.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    This guide is a reprint of published and draft materials from the Federal Civil Defense Guide. This guide is intended to assist the student in planning, developing, implementing and operating a local, county, or state radiological defense (RADEF) system. The state and local radiological defense program objectives are to create an effective and…

  2. Nevada Test Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01

    This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  3. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  4. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  5. Radiological health aspects of uranium milling

    SciTech Connect

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  6. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  7. Monitor displays in radiology: Part 2

    PubMed Central

    Indrajit, IK; Verma, BS

    2009-01-01

    Monitor displays play an important role in modern radiology practice. Practicing radiologists need to be familiar with the various performance parameters of medical-grade displays. A certain amount of technical knowledge is useful when making purchasing decisions since the right choice of equipment can have a great impact on the accuracy, efficiency, and speed in the radiology department. PMID:19881061

  8. Radiological Illustration of Spontaneous Ovarian Hyperstimulation Syndrome

    PubMed Central

    Mittal, Kartik; Koticha, Raj; Dey, Amit K.; Anandpara, Karan; Agrawal, Rajat; Sarvothaman, Madhva P.; Thakkar, Hemangini

    2015-01-01

    Summary Background The role of radiology is of utmost importance not only in diagnosing s-OHSS but also in ruling out other cystic ovarian diseases and to determine the underlying etiology and course of the disease. We presented a radiological algorithm for diagnosing the various causes of s-OHSS. Case Report A 26-year-old female, gravida one was referred to radiology department with history of lower abdominal pain, nausea and vomiting since 2 days which was gradual in onset and progression. The patient had no significant medical and surgical history. Conclusions This article illustrates and emphasizes that diagnosis of s-OHSS and its etiology can be completely evaluated radiologically. Biochemical markers will confirm the radiological diagnosis. PMID:25960820

  9. Radiologic sciences. Faculty needs assessment.

    PubMed

    Powers, Kevin J

    2005-01-01

    A total of 326 programs are represented in the data collected. Based on the average number of full- and part-time faculty members reported per program, this survey represents more than 1500 faculty positions. Based on the forecast of retirement and career change for all faculty members, there will be a turnover of 700 to 800 positions over the next 5 to 10 years. Part-time/adjunct faculty vacancies are expected to create the greatest number of opportunities for technologists to make the transition to education, with approximately one third of current part-time/adjunct educators planning on leaving radiologic sciences education within 5 years. To encourage retention of part-time/adjunct educators, annual evaluations should be modified to recognize the important educational role these instructors play. There is a need to create enthusiasm and interest in education as a career pathway for radiologic technologists. Resources are needed that help radiologic technologists make the transition to teaching. Finally, the retention of educators must be emphasized. Program applicant trends indicate radiologic technology students are older, have prior postsecondary education experience or are making a career change. This data emphasizes the need for educators, both full time and part time, to understand the characteristics and needs of the adult learner. Adult learners bring a wealth of education, experience and life skills that create both opportunities and challenges in the classroom and clinical setting. All categories of respondents indicated that their current salaries were greater than those of program graduates in their firstjob. Of interest is that 1 in 5 (20%) of part-time/adjunct educators indicated the opposite--that program graduates earn more in their firstjob than educators earn. When asked about salaries if working full time in clinical practice, the majority of all groups indicated their salary would be about the same or would decrease. Only 20% of program

  10. [Radiological assessment of bone quality].

    PubMed

    Ito, Masako

    2016-01-01

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;micro-CT or synchrotron-CT is available to analyze micro- or nano-structural property of bone samples ex vivo, and multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo. For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available aw sell se radiography and DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone. PMID:26728530

  11. Radiological Control Technician: Phase 1, Site academic training lesson plans

    SciTech Connect

    Not Available

    1992-10-01

    This volume provides lesson plans for training radiological control technicians. Covered here is basic radiological documentation, counting errors, dosimetry, environmental monitoring, and radiation instruments.

  12. AP600 containment purge radiological analysis

    SciTech Connect

    O`Connor, M.; Schulz, J.; Tan, C.

    1995-02-01

    The AP600 Project is a passive pressurized water reactor power plant which is part of the Design Certification and First-of-a-Kind Engineering effort under the Advanced Light Water Reactor program. Included in this process is the design of the containment air filtration system which will be the subject of this paper. We will compare the practice used by previous plants with the AP600 approach to meet the goals of industry standards in sizing the containment air filtration system. The radiological aspects of design are of primary significance and will be the focus of this paper. The AP600 Project optimized the design to combine the functions of the high volumetric flow rate, low volumetric flow rate, and containment cleanup and other filtration systems into one multi-functional system. This achieves a more simplified, standardized, and lower cost design. Studies were performed to determine the possible concentrations of radioactive material in the containment atmosphere and the effectiveness of the purge system to keep concentrations within 10CFR20 limits and within offsite dose objectives. The concentrations were determined for various reactor coolant system leakage rates and containment purge modes of operation. The resultant concentrations were used to determine the containment accessibility during various stages of normal plant operation including refueling. The results of the parametric studies indicate that a dual train purge system with a capacity of 4,000 cfm per train is more than adequate to control the airborne radioactivity levels inside containment during normal plant operation and refueling, and satisfies the goals of ANSI/ANS-56.6-1986 and limits the amount of radioactive material released to the environment per ANSI/ANS 59.2-1985 to provide a safe environment for plant personnel and offsite residents.

  13. Nevada Test Site Area 25. Radiological survey and cleanup project, 1974-1983. Final report

    SciTech Connect

    McKnight, R.K.; Rosenberry, C.E.; Orcutt, J.A.

    1984-01-01

    This report describes radiological survey, decontamination and decommissioning of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The cleanup was part of the Surplus Facilities Management Program funded by the Department of Energy's Richland Operations Office. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for alpha and beta plus gamma radiation contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 12 figures.

  14. DOE Radiological Control Manual Core Training Program

    SciTech Connect

    Scott, H.L.; Maisler, J.

    1993-12-31

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program.

  15. Evidence-based Practice of Radiology.

    PubMed

    Lavelle, Lisa P; Dunne, Ruth M; Carroll, Anne G; Malone, Dermot E

    2015-10-01

    Current health care reform in the United States is producing a shift in radiology practice from the traditional volume-based role of performing and interpreting a large number of examinations to providing a more affordable and higher-quality service centered on patient outcomes, which is described as a value-based approach to the provision of health care services. In the 1990 s, evidence-based medicine was defined as the integration of current best evidence with clinical expertise and patient values. When these methods are applied outside internal medicine, the process is called evidence-based practice (EBP). EBP facilitates understanding, interpretation, and application of the best current evidence into radiology practice, which optimizes patient care. It has been incorporated into "Practice-based Learning and Improvement" and "Systems-based Practice," which are two of the six core resident competencies of the Accreditation Council for Graduate Medical Education and two of the 12 American Board of Radiology milestones for diagnostic radiology. Noninterpretive skills, such as systems-based practice, are also formally assessed in the "Quality and Safety" section of the American Board of Radiology Core and Certifying examinations. This article describes (a) the EBP framework, with particular focus on its relevance to the American Board of Radiology certification and maintenance of certification curricula; (b) how EBP can be integrated into a residency program; and (c) the current value and likely place of EBP in the radiology information technology infrastructure. Online supplemental material is available for this article. PMID:26466187

  16. Estimating radiological background using imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce; Schweppe, John E.; Stave, Sean; Jordan, David; Kulisek, Jonathan; Stewart, Trevor; Seifert, Carolyn

    2014-06-01

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km - 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRlS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  17. Estimating radiological background using imaging spectroscopy

    SciTech Connect

    Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

    2014-06-13

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  18. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  19. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  20. CDC Grand Rounds: radiological and nuclear preparedness.

    PubMed

    2010-09-17

    Radiological and nuclear disasters are infrequent, but when they occur, they result in large and demonstrable health burdens. Several scenarios can result in the public's exposure to radiation. For example, radiation sources used in health care or other industries can be lost or misused. Incidents in the nuclear power industry, such as those at Chernobyl and Three Mile Island, require significant public health response. In addition, radiological terrorism can involve the use of a radiological dispersal device (RDD) or an improvised nuclear device (IND). State and local health agencies are expected to perform essential public health functions in response to any of these emergencies. PMID:20847721

  1. Interventional radiology of the abdomen. Second edition

    SciTech Connect

    Ferrucci, J.T.; Wittenberg, J.; Mueller, P.R.; Simeone, J.F.

    1985-01-01

    This book differs from several other presently available texts on interventional radiology in that it is explicitly not derived from the principles of catheter angiography. Abdominal interventional radiology depends as much, if not more, on ultrasonographic and computed tomographic guidance and, while perhaps less glamorous, also on conventional fluoroscopic guidance (for procedures such as urinary and biliary manipulations). Thus, while technical aspects of catheter design and manipulation can never be minimized, they are not the sole elements of successful interventional radiology in the abdomen. Relevant anatomy and pathophysiology, along with clinical aspects of medical and surgical care and thorough patient follow-up are of equal concern.

  2. Radiological considerations: percutaneous laser disc decompression.

    PubMed

    Botsford, J A

    1993-10-01

    Diagnostic radiology is an integral part of percutaneous laser disc decompression (PLDD). All physicians involved in PLDD patient selection and treatment must be familiar with the imaging techniques unique to this procedure to ensure a successful outcome. The following review is based on the cumulative experience gained in performing over 150 PLDD procedures. It discusses the function of diagnostic radiology in all facets of PLDD including patient selection, intraoperative imaging, postoperative evaluation, and analysis of complications. Fundamental radiologic concepts that apply to PLDD are explained and protocols suggested to optimize results and avoid complications. PMID:10146513

  3. Hospital preparedness for chemical and radiological disasters.

    PubMed

    Moore, Brooks L; Geller, Robert J; Clark, Charlotte

    2015-02-01

    Hospital planning for chemical or radiological events is essential but all too often treated as a low priority. Although some other types of disasters like hurricanes and tornadoes may be more frequent, chemical and radiological emergencies have the potential for major disruptions to clinical care. Thorough planning can mitigate the impact of a chemical or radiological event. Planning needs to include all 4 phases of an event: mitigation (preplanning), preparation, response, and recovery. Mitigation activities should include the performance of a hazards vulnerability analysis and identification of local subject-matter experts and team leaders. PMID:25455661

  4. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  5. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiologic services, particularly ionizing radiology procedures, must be free from hazards for patients and... qualified full-time, part-time, or consulting radiologist must supervise the ionizing radiology services and... osteopathy who is qualified by education and experience in radiology. (2) Only personnel designated...

  6. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiologic services, particularly ionizing radiology procedures, must be free from hazards for patients and... qualified full-time, part-time, or consulting radiologist must supervise the ionizing radiology services and... osteopathy who is qualified by education and experience in radiology. (2) Only personnel designated...

  7. 5.2 Conceptual Radiological Protection and International Recommendations

    NASA Astrophysics Data System (ADS)

    Almén, A.; Valentin, J.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.2 Conceptual Radiological Protection and International Recommendations' of the Chapter '5 Medical Radiological Protection' with the contents:

  8. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for radiological protection. 72.126 Section 72... WASTE General Design Criteria § 72.126 Criteria for radiological protection. (a) Exposure control... radiation exposure. (b) Radiological alarm systems. Radiological alarm systems must be provided...

  9. [Fibrous dysplasia of the skull. Radiologic diagnosis].

    PubMed

    Amato, C; Moschini, M; Colavita, N; Tagliaferri, G

    1993-09-01

    The authors examined 11 patients with fibrous dysplasia of the skull pointing out its radiologic features and preferential sites. Conventional radiology, CT and MR imaging were used. As for conventional radiology, tangential scans which of great value to depict the most typical morphologic patterns. Lesions of the skull base were most frequent in the sphenoid (7 of 11 cases), where 5 of 7 exhibited a sclerotic pattern. Bone changes in the skull vault were: mixed (3 cases), pagetoid (2 cases), "ground glass" (1 case) and lytic (1 case): none of these cases was of the sclerotic type. A typical feature of vault lesions was the widening of diploic space associated with expansion of the outer bone and integrity of the inner bone. Radiologic findings, often associated with suggestive clinical manifestations, always allowed a diagnostic hypothesis; histopathologic confirmation was needed only in a few cases (4 of 11 patients). PMID:8210526

  10. RADIOLOGICAL RISK ASSESSMENT METHODOLOGY DEVELOPMENT/IMPROVEMENTS

    EPA Science Inventory

    The office is developing improved methodologies and guidance for evaluating human health risks associated with exposure to environmental radiological contaminants. These activities involve coordination with numerous federal agencies and the development and communication of vari...

  11. Radiological emergency: Malaysian preparedness and response.

    PubMed

    Yusof, Mohd Abd Wahab; Ali, Hamrah Mohd

    2011-07-01

    Planning and preparation in advance for radiological emergencies can help to minimise potential public health and environmental threats if and when an actual emergency occurs. During the planning process, emergency response organisations think through how they would respond to each type of incident and the resources that will be needed. In Malaysia, planning, preparation for and response to radiological emergencies involve many parties. In the event of a radiological emergency and if it is considered a disaster, the National Security Council, the Atomic Energy Licensing Board and the Malaysian Nuclear Agency (Nuclear Malaysia) will work together with other federal agencies, state and local governments, first responders and international organisations to monitor the situation, contain the release, and clean up the contaminated site. Throughout the response, these agencies use their protective action guidelines. This paper discusses Malaysian preparedness for, and response to, any potential radiological emergency. PMID:21729940

  12. Corporate social responsibility of future radiology professionals.

    PubMed

    Collins, Sandra K; Collins, Kevin S

    2011-01-01

    Plagued by difficult economic times, many radiology managers may find themselves faced with ethical dilemmas surrounding ongoing organizational pressures to maintain high levels of productivity with restricted resources. This often times tests the level of moral resilience and corporate social consciousness of even the most experienced radiology professionals. A study was conducted to determine what Corporate Social Responsibility (CSR) orientation and viewpoint future radiology professionals may have. The results of the study indicate that these study participants may initially consider patient care more important than profit maximization. Study results indicate that these specific future radiology professionals will not need laws, legal sanctions, and intensified rules to force them to act ethically. However,they may need ongoing training as to the necessity of profit maximization if they seek the highest quality of care possible for their patients. PMID:21366145

  13. Data Standards in Tele-radiology

    PubMed Central

    Fatehi, Mansoor; Safdari, Reza; Ghazisaeidi, Marjan; Jebraeily, Mohamad; Habibi-koolaee, Mahdi

    2015-01-01

    Data standards play an important role to provide interoperability among different system. As other applications of telemedicine, the tele-radiology needs these standards to work properly. In this article, we conducted a review to introduce some data standards about tele-radiology. By searching PUBMED and Google Scholar database, we find more relevant articles about data standards in tele-radiology. Three categories of standards identified, including data interchange, document and terminology standards. Data interchange standards, including those which facilitate the understanding of the format of a massage between systems, such as DICOM and HL7. Document standards, including those which facilitate the contents of a massage, such as DICOM SR and HL7 CDA. And terminology standards, including those which facilitate the understanding of concepts of the domain. Since, the harmonization between different standards are important to meet interoperability, so the more effort is needed to conduct harmonization between tele-radiology standards and other domain. PMID:26236084

  14. Radiology of syndromes and metabolic disorders

    SciTech Connect

    Taybi, H.; Lachman, R.

    1989-01-01

    The authors describe both the clinical and radiologic manifestations of 700 syndromes. They provide illustrations describing each syndrome and descriptions of those syndromes discovered since publication of a previous edition.

  15. Radiological safety training for uranium facilities

    SciTech Connect

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  16. Apparatus for safeguarding a radiological source

    SciTech Connect

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  17. Radiological dose assessment for vault storage concepts

    SciTech Connect

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  18. Leadership and management in quality radiology

    PubMed Central

    2007-01-01

    The practice of medical imaging and interventional radiology are undergoing rapid change in recent years due to technological advances, workload escalation, workforce shortage, globalisation, corporatisation, commercialisation and commoditisation of healthcare. These professional and economical changes are challenging the established norm but may bring new opportunities. There is an increasing awareness of and interest in the quality of care and patient safety in medical imaging and interventional radiology. Among the professional organisations, a range of quality systems are available to address individual, facility and system needs. To manage the limited resources successfully, radiologists and professional organisations must be leaders and champion for the cause of quality care and patient safety. Close collaboration with other stakeholders towards the development and management of proactive, long-term, system-based strategies and infrastructures will underpin a sustainable future in quality radiology. The International Radiology Quality Network can play a useful facilitating role in this worthwhile but challenging endeavour. PMID:21614284

  19. Data Standards in Tele-radiology.

    PubMed

    Fatehi, Mansoor; Safdari, Reza; Ghazisaeidi, Marjan; Jebraeily, Mohamad; Habibi-Koolaee, Mahdi

    2015-06-01

    Data standards play an important role to provide interoperability among different system. As other applications of telemedicine, the tele-radiology needs these standards to work properly. In this article, we conducted a review to introduce some data standards about tele-radiology. By searching PUBMED and Google Scholar database, we find more relevant articles about data standards in tele-radiology. Three categories of standards identified, including data interchange, document and terminology standards. Data interchange standards, including those which facilitate the understanding of the format of a massage between systems, such as DICOM and HL7. Document standards, including those which facilitate the contents of a massage, such as DICOM SR and HL7 CDA. And terminology standards, including those which facilitate the understanding of concepts of the domain. Since, the harmonization between different standards are important to meet interoperability, so the more effort is needed to conduct harmonization between tele-radiology standards and other domain. PMID:26236084

  20. Rumors and gossip in radiology.

    PubMed

    Dowd, S B; Davidhizar, R

    1997-01-01

    Rumors and gossip have long been popular topics in literature. Social scientists have even studied the topic and defined four main types of rumor: wish rumors; fear or bogey rumors; wedge-driving or aggressive rumors; and anticipatory rumors. In general, people believe rumor and gossip are synonymous. Rumormongering--the spreading of rumors--occurs among all cultures and types of people. Both men and women gossip and women's gossip is not more vindicative than men's, as is often thought. With such new means of communication as the Internet, transmitting rumor is possible beyond the traditional oral and written forms. Rumor is spread in both the higher and lower levels of an organization. Typically, disproving a rumor is more difficult than proving a rumor. The financial impact of a rumor must be considered also. If people believe, for example, that a radiology department does not have its act together or offers poor customer service, the department may lose revenue because people have lost confidence in it. Originally, the word gossip had positive implications. It referred to a family friend or the woman who delivered a child and announced the event to the community. Because well-intentioned gossip often turns into a damaging story, various approaches for stopping rumors have been identified. They include analyzing the grapevine, identifying the habitual spreaders of rumor and keeping employees informed. In most cases, a person of authority who provides facts can stop or at least slow down rumors spreading at the employee level. PMID:10175327

  1. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  2. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  3. Public participation in radiological surveillance.

    PubMed

    Hanf, R W; Schreckhise, R G; Patton, G W; Poston, T M; Jaquish, R E

    1997-10-01

    In 1989, Pacific Northwest National Laboratory developed a program, for the U.S. Department of Energy, to involve local citizens in environmental surveillance at the Hanford Site. The Community-Operated Environmental Surveillance Program was patterned after similar community-involvement efforts at the Nevada Test Site and the Three Mile Island nuclear facility. Its purpose is to increase the flow of information to the public, thereby enhancing the public's awareness and understanding of surveillance activities. The program consists of two components: radiological air monitoring at nine offsite locations and agricultural product sampling at selected locations near the site. At each air-monitoring station, two local school teachers collect air particulate samples and operate equipment to monitor ambient radiation levels. Atmospheric tritium samples (as water vapor) are also collected at some locations. Four of the air-monitoring stations include large, colorful informational displays for public viewing. These displays provide details on station equipment, sample types, and sampling purposes. Instruments in the displays also monitor, record, and show real-time ambient radiation readings (measured with a pressurized ionization chamber) and meteorological conditions. Agricultural products, grown primarily by middle-school-aged students, are obtained from areas downwind of the site. Following analysis of these samples, environmental surveillance staff visit the schools to discuss the results with the students and their teachers. The data collected by these air and agricultural sampling efforts are summarized with other routinely collected sitewide surveillance data and reported annually in the Hanford Site environmental report. PMID:9314235

  4. Radiological maps for Trabzon, Turkey.

    PubMed

    Kurnaz, A; Kucukomeroglu, B; Damla, N; Cevik, U

    2011-04-01

    The activity concentrations and absorbed gamma dose rates due to primordial radionuclides and (137)Cs have been ascertained in 222 soil samples in 18 counties of the Trabzon province of Turkey using a HPGe detector. The mean activity concentrations of (238)U, (232)Th, (40)K and (137)Cs in soil samples were 41, 35, 437 and 21 Bq kg(-1), respectively. Based on the measured concentrations of these radionuclides, the mean absorbed gamma dose in air was calculated as 59 nGy h(-1) and hence, the mean annual effective dose due to terrestrial gamma radiation was calculated as 72 μSv y(-1). In addition, outdoor in situ gamma dose rate (D) measurements were performed in the same 222 locations using a portable NaI detector and the annual effective dose was calculated to be 66 μSv y(-1) from these results. The results presented in this study are compared with other parts of Turkey. Radiological maps of the Trabzon province were composed using the results obtained from the study. PMID:21382657

  5. Display considerations for quantitative radiology.

    PubMed

    Badano, Aldo

    2007-01-01

    The early prediction of the response to treatment using quantitative imaging holds great promise for streamlining the development, assessment, approval and personalization of new therapies. However, to realize this potential, quantitative radiology needs to develop an understanding of several limitations that might hinder the application of quantitation tools and techniques. Among these limitations, the fidelity of the display device used to interpret the image data is a significant factor that affects the accuracy and precision of quantitative visual tasks, particularly those involving large, volumetric, multi-dimensional and multi-modality image sets. This paper reviews several aspects of display performance and display image quality that are likely to contribute negatively to the robustness of quantitative imaging methods. Display characteristics that will be addressed include the grayscale and color performance of different classes of display devices, the angular distribution of the emissions of liquid crystal technologies, and the temporal response for stack mode viewing. The paper will also summarize current efforts for the metrology, standardization and image quality assessment methods for display devices.: PMID:24980719

  6. Radiological Safety Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2009-12-22

    Version 03 RSAC-6.2 can be used to model complex accidents and radiological consequences to individuals from the release of radionuclides to the atmosphere. A user can generate a fission product inventory; decay and ingrow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Doses are calculated through the inhalation, immersion, ground surface and ingestion pathways. New to RSAC-6.2 are the abilitiesmore » to calculate inhalation from release to a room, inhalation from resuspension of activities, and a new model for dry deposition. Doses can now be calculated as close as 10 meters from the release point. RSAC-6.2 has been subjected to extensive independent verification and validation for use in performing safety-related dose calculations to support safety analysis reports. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. RSAC-6, Rev. 6.2 (03/11/02) corrects an earlier issue with RSAC-6, compiled with F77L-EM/32 Fortran 77 Version 5.10, which would not allow the executable to run with XP or VISTA Windows operating systems. Because this version is still in use at some facilities, it is being released through RSICC in addition to the new RSAC 7 (CCC-761).« less

  7. Gastrointestinal Lymphoma: Radiologic-Pathologic Correlation.

    PubMed

    Manning, Maria A; Somwaru, Alexander S; Mehrotra, Anupamjit K; Levine, Marc S

    2016-07-01

    Extranodal lymphoma is a heterogeneous group of hematologic neoplasms that can affect every abdominal organ, with distinctive pathologic, radiologic, and clinical features. The radiologic findings are closely related to the underlying pathophysiology, and an understanding of these characteristic features should facilitate recognition of extranodal lymphoma and its various subtypes. Within the abdomen, lymphoma is found most commonly in the gastrointestinal tract, especially the stomach. This article presents the findings in gastrointestinal tract lymphoma. PMID:27265607

  8. Radiologic Professionalism in Modern Health Care.

    PubMed

    Hryhorczuk, Anastasia L; Hanneman, Kate; Eisenberg, Ronald L; Meyer, Elaine C; Brown, Stephen D

    2015-10-01

    Modern radiology is at the forefront of technological progress in medicine, a position that often places unique challenges on its professional character. This article uses "Medical Professionalism in the New Millennium: A Physician Charter," a document published in 2002 and endorsed by several major radiology organizations, as a lens for exploring professional challenges in modern radiology. The three main tenets of the Charter emphasize patient welfare, patient autonomy, and the reduction of disparities in health care distribution. This article reviews the ways in which modern technology and financial structures potentially create stressors on professionalism in radiology, while highlighting the opportunities they provide for radiologists seeking to fulfill the professional goals articulated in the Charter. Picture archiving and communication systems (PACS) and voice recognition systems have transformed the speed of radiology and enhanced the ability of radiologists to improve patient care but also have brought new tensions to the workplace. Although teleradiology may improve global access to radiologists, it may also promote the commoditization of radiology, which diminishes the professional stature of radiologists. Social media and patient portals provide radiologists with new forums for interacting with the public and patients, potentially promoting patient welfare. However, patient privacy and autonomy are important considerations. Finally, modern financial structures provide radiologists with both entrepreneurial opportunities as well as the temptation for unprofessional conduct. Each of these advances carries the potential for professional growth while testing the professional stature of radiology. By considering the risks and benefits of emerging technologies in the modern radiology world, radiologists can chart an ethical and professional future path. PMID:26466185

  9. Radiological interventions in malignant biliary obstruction

    PubMed Central

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Srivastava, Deep Narayan; Gupta, Arun Kumar

    2016-01-01

    Malignant biliary obstruction is commonly caused by gall bladder carcinoma, cholangiocarcinoma and metastatic nodes. Percutaneous interventions play an important role in managing these patients. Biliary drainage, which forms the major bulk of radiological interventions, can be palliative in inoperable patients or pre-operative to improve liver function prior to surgery. Other interventions include cholecystostomy and radiofrequency ablation. We present here the indications, contraindications, technique and complications of the radiological interventions performed in patients with malignant biliary obstruction. PMID:27247718

  10. Radiological interventions in malignant biliary obstruction.

    PubMed

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Srivastava, Deep Narayan; Gupta, Arun Kumar

    2016-05-28

    Malignant biliary obstruction is commonly caused by gall bladder carcinoma, cholangiocarcinoma and metastatic nodes. Percutaneous interventions play an important role in managing these patients. Biliary drainage, which forms the major bulk of radiological interventions, can be palliative in inoperable patients or pre-operative to improve liver function prior to surgery. Other interventions include cholecystostomy and radiofrequency ablation. We present here the indications, contraindications, technique and complications of the radiological interventions performed in patients with malignant biliary obstruction. PMID:27247718