Science.gov

Sample records for 3clpro proteinase cleavage

  1. Profiling of Substrate Specificity of SARS-CoV 3CLpro

    PubMed Central

    Chuck, Chi-Pang; Chong, Lin-Tat; Chen, Chao; Chow, Hak-Fun; Wan, David Chi-Cheong; Wong, Kam-Bo

    2010-01-01

    Background The 3C-like protease (3CLpro) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection. Methodology/Principal Findings To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high β-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without β-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1' position prefers small residues, while P2' and P3' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence. Conclusions/Significance Our results demonstrated a strong structure-activity relationship between the 3CLpro and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors. PMID:20949131

  2. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites.

    PubMed Central

    Grakoui, A; McCourt, D W; Wychowski, C; Feinstone, S M; Rice, C M

    1993-01-01

    Processing of the hepatitis C virus (HCV) H strain polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position. Images PMID:8386278

  3. Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro)

    PubMed Central

    Tomar, Sakshi; Johnston, Melanie L.; St. John, Sarah E.; Osswald, Heather L.; Nyalapatla, Prasanth R.; Paul, Lake N.; Ghosh, Arun K.; Denison, Mark R.; Mesecar, Andrew D.

    2015-01-01

    All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CLpro) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CLpro from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CLpro is less efficient at processing a peptide substrate due to MERS-CoV 3CLpro being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CLpro enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CLpro is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CLpro were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CLpro undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CLpro from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CLpro dimerization. Activation of MERS-CoV 3CLpro through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CLpro inhibitors as antiviral agents. PMID:26055715

  4. An Emerging Role of Degrading Proteinases in Hypertension and the Metabolic Syndrome: Autodigestion and Receptor Cleavage

    PubMed Central

    2011-01-01

    One of the major challenges for hypertension research is to identify the mechanisms that cause the comorbidities encountered in many hypertensive patients, as seen in the metabolic syndrome. An emerging body of evidence suggests that human and experimental hypertensives may exhibit uncontrolled activity of proteinases, including the family of matrix metalloproteinases, recognized for their ability to restructure the extracellular matrix proteins and to play a role in hypertrophy. We propose a new hypothesis that provides a molecular framework for the comorbidities of hypertension, diabetes, capillary rarefaction, immune suppression, and other cell and organ dysfunctions due to early and uncontrolled extracellular receptor cleavage by active proteinases. The proteinase and signaling activity in hypertensives requires further detailed analysis of the proteinase expression, the mechanisms causing proenzyme activation, and identification of the proteinase substrate. This work may open the opportunity for reassessment of old interventions and development of new interventions to manage hypertension and its comorbidities. PMID:22081429

  5. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.

    PubMed

    Millien, Valentine Ongeri; Lu, Wen; Shaw, Joanne; Yuan, Xiaoyi; Mak, Garbo; Roberts, Luz; Song, Li-Zhen; Knight, J Morgan; Creighton, Chad J; Luong, Amber; Kheradmand, Farrah; Corry, David B

    2013-08-16

    Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies. PMID:23950537

  6. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3.

    PubMed Central

    Lobigs, M

    1993-01-01

    Flavivirus protein biosynthesis involves the proteolytic processing of a single polyprotein precursor by host- and virus-encoded proteinases. In this study, the requirement for the proteolytic function of the viral proteinase NS3 for correct processing of a polyprotein segment encompassing the Murray Valley encephalitis virus structural proteins is shown. The NS3-mediated cleavage in the structural polyprotein region presumably releases the capsid protein from its membrane anchor and triggers the appearance of the premembrane (prM) protein. This suggests that cleavage of prM by signal peptidase in the lumen of the endoplasmic reticulum is under control of a cytoplasmic cleavage catalyzed by a viral proteinase. The function of the viral proteinase is also essential for secretion of flaviviral spike proteins when expressed from cDNA via vaccinia virus recombinants or in COS cell transfections. This has important implications for the design of flavivirus subunit vaccines. Images Fig. 1 Fig. 2 Fig. 3 PMID:8392191

  7. Comparative cleavage sites within the reactive-site loop of native and oxidized alpha1-proteinase inhibitor by selected bacterial proteinases.

    PubMed

    Rapala-Kozik, M; Potempa, J; Nelson, D; Kozik, A; Travis, J

    1999-10-01

    Human alpha1-proteinase inhibitor (alpha1-PI) is responsible for the tight control of neutrophil elastase activity which, if down regulated, may cause local excessive tissue degradation. Many bacterial proteinases can inactivate alpha1-PI by hydrolytic cleavage within its reactive site, resulting in the down regulation of elastase, and this mechanism is likely to contribute to the connective tissue damage often associated with bacterial infections. Another pathway of the inactivation of alpha1-PI is reversible and involves oxidation of a critical active-site methionine residue that may influence inhibitor susceptibility to proteolytic inactivation. Hence, the aim of this work was to determine whether this oxidation event might affectthe rate and pattern of the cleavage of the alpha1-PI reactive-site loop by selected bacterial proteinases, including thermolysin, aureolysin, serralysin, pseudolysin, Staphylococcus aureus serine proteinase, streptopain, and periodontain. A shift of cleavage specificity was observed after alpha1-PI oxidation, with a preference for the Glu354-Ala355 bond by most of the proteinases tested. Only aureolysin and serralysin cleave the oxidized form of alpha1-PI faster than the native inhibitor, suggesting that bacteria which secrete these metalloproteinases may specifically take advantage of the host defense oxidative mechanism to accelerate elimination of alpha1-PI and, consequently, tissue degradation by neutrophil elastase. PMID:10595584

  8. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation

    PubMed Central

    Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay; Kasorn, Anongnard; Liu, Peng; Ye, Keqiang; Zhou, Jiaxi; Cao, Shannan; Gong, Haiyan; Jenne, Dieter E.; Remold-O’Donnell, Eileen; Xu, Yuanfu; Luo, Hongbo R.

    2014-01-01

    Caspase-3–mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8– or caspase-9–mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death. PMID:25180606

  9. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  10. Cleavage of type I procollagen by C- and N-proteinases is more rapid if the substrate is aggregated with dextran sulfate or polyethylene glycol.

    PubMed

    Hojima, Y; Behta, B; Romanic, A M; Prockop, D J

    1994-12-01

    The enzymes procollagen C- and N-proteinases specifically cleave carboxyl- and amino-terminal propeptides of procollagens. After cleavage of the propeptides, the resulting collagens self-assemble into fibrils. In most previous experiments with the enzymes, the substrate was monomeric type I procollagen. Here we have prepared aggregates of type I procollagen from chick embryo tendons by using 1 to 100 micrograms/ml of 500-kDa dextran sulfate or 3 to 5% (w/v) polyethylene glycol (M(r) 3350). Aggregation of the substrate with dextran sulfate increased its rate of cleavage by purified or crude C-proteinase from chick embryo tendons 10- to 15-fold. Aggregation of the substrate with 25 to 100 microgram/ml of dextran sulfate increased the rate of cleavage by purified N-proteinase about 4-fold. The rate of cleavage by crude N-proteinase was enhanced only about 2-fold, apparently because of partial precipitation of the enzyme by dextran sulfate. Using polyethylene glycol to aggregate the substrate increased the rate of cleavage by procollagen C-proteinases 5- to 20-fold. Aggregation with polyethylene glycol also increased the rate of cleavage by purified procollagen N-proteinases 2- to 5-fold. With crude N-proteinase, the rate of cleavage was increased only 1.5-fold. The results suggest that the rate of cleavage of the substrate by both enzymes is increased by the aggregation of the substrate itself by dextran sulfate or polyethylene glycol. The increased rates of cleavage seen after aggregation of substrate can be used to develop more sensitive assays for the enzymic activities. PMID:7887459

  11. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication.

    PubMed Central

    Xu, J; Mendez, E; Caron, P R; Lin, C; Murcko, M A; Collett, M S; Rice, C M

    1997-01-01

    Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication. PMID:9188600

  12. Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites.

    PubMed Central

    Chambers, T J; Grakoui, A; Rice, C M

    1991-01-01

    The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites. Images PMID:1833562

  13. Residue L143 of the Foot-and-Mouth Disease Virus Leader Proteinase Is a Determinant of Cleavage Specificity▿

    PubMed Central

    Mayer, Christina; Neubauer, David; Nchinda, Aloysius T.; Cencic, Regina; Trompf, Katja; Skern, Tim

    2008-01-01

    The foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) self-processes inefficiently at the Lpro/VP4 cleavage site LysLeuLys*GlyAlaGly (* indicates cleaved peptide bond) when the leucine at position P2 is replaced by phenylalanine. Molecular modeling and energy minimization identified the Lpro residue L143 as being responsible for this discrimination. The variant Lpro L143A self-processed efficiently at the Lpro/VP4 cleavage site containing P2 phenylalanine, whereas the L143M variant did not. Lpro L143A self-processing at the eIF4GII sequence AspPheGly*ArgGlnThr was improved but showed more-extensive aberrant processing. Residue 143 in Lpro is occupied only by leucine and methionine in all sequenced FMDV serotypes, implying that these bulky side chains are one determinant of the restricted specificity of Lpro. PMID:18305051

  14. Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication.

    PubMed

    Kobayashi, Mariko; Arias, Carolina; Garabedian, Alexandra; Palmenberg, Ann C; Mohr, Ian

    2012-10-01

    Although picornavirus RNA genomes contain a 3'-terminal poly(A) tract that is critical for their replication, the impact of encephalomyocarditis virus (EMCV) infection on the host poly(A)-binding protein (PABP) remains unknown. Here, we establish that EMCV infection stimulates site-specific PABP proteolysis, resulting in accumulation of a 45-kDa N-terminal PABP fragment in virus-infected cells. Expression of a functional EMCV 3C proteinase was necessary and sufficient to stimulate PABP cleavage in uninfected cells, and bacterially expressed 3C cleaved recombinant PABP in vitro in the absence of any virus-encoded or eukaryotic cellular cofactors. N-terminal sequencing of the resulting C-terminal PABP fragment identified a 3C(pro) cleavage site on PABP between amino acids Q437 and G438, severing the C-terminal protein-interacting domain from the N-terminal RNA binding fragment. Single amino acid substitution mutants with changes at Q437 were resistant to 3C(pro) cleavage in vitro and in vivo, validating that this is the sole detectable PABP cleavage site. Finally, while ongoing protein synthesis was not detectably altered in EMCV-infected cells expressing a cleavage-resistant PABP variant, viral RNA synthesis and infectious virus production were both reduced. Together, these results establish that the EMCV 3C proteinase mediates site-specific PABP cleavage and demonstrate that PABP cleavage by 3C regulates EMCV replication. PMID:22837200

  15. New Details of HCV NS3/4A Proteinase Functionality Revealed by a High-Throughput Cleavage Assay

    PubMed Central

    Cieplak, Piotr; Chudin, Eugene; Cheltsov, Anton V.; Chee, Mark S.; Kozlov, Igor A.; Strongin, Alex Y.

    2012-01-01

    Background The hepatitis C virus (HCV) genome encodes a long polyprotein, which is processed by host cell and viral proteases to the individual structural and non-structural (NS) proteins. HCV NS3/4A serine proteinase (NS3/4A) is a non-covalent heterodimer of the N-terminal, ∼180-residue portion of the 631-residue NS3 protein with the NS4A co-factor. NS3/4A cleaves the polyprotein sequence at four specific regions. NS3/4A is essential for viral replication and has been considered an attractive drug target. Methodology/Principal Findings Using a novel multiplex cleavage assay and over 2,660 peptide sequences derived from the polyprotein and from introducing mutations into the known NS3/4A cleavage sites, we obtained the first detailed fingerprint of NS3/4A cleavage preferences. Our data identified structural requirements illuminating the importance of both the short-range (P1–P1′) and long-range (P6-P5) interactions in defining the NS3/4A substrate cleavage specificity. A newly observed feature of NS3/4A was a high frequency of either Asp or Glu at both P5 and P6 positions in a subset of the most efficient NS3/4A substrates. In turn, aberrations of this negatively charged sequence such as an insertion of a positively charged or hydrophobic residue between the negatively charged residues resulted in inefficient substrates. Because NS5B misincorporates bases at a high rate, HCV constantly mutates as it replicates. Our analysis revealed that mutations do not interfere with polyprotein processing in over 5,000 HCV isolates indicating a pivotal role of NS3/4A proteolysis in the virus life cycle. Conclusions/Significance Our multiplex assay technology in light of the growing appreciation of the role of proteolytic processes in human health and disease will likely have widespread applications in the proteolysis research field and provide new therapeutic opportunities. PMID:22558217

  16. Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus.

    PubMed

    Wu, Andong; Wang, Yi; Zeng, Cong; Huang, Xingyu; Xu, Shan; Su, Ceyang; Wang, Min; Chen, Yu; Guo, Deyin

    2015-10-01

    Coronavirus 3C-like protease (3CLpro) is responsible for the cleavage of coronaviral polyprotein 1a/1ab (pp1a/1ab) to produce the mature non-structural proteins (nsps) of nsp4-16. The nsp5 of the newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as 3CLpro and its canonical cleavage sites (between nsps) were predicted based on sequence alignment, but the cleavability of these cleavage sites remains to be experimentally confirmed and putative non-canonical cleavage sites (inside one nsp) within the pp1a/1ab awaits further analysis. Here, we proposed a method for predicting coronaviral 3CLpro cleavage sites which balances the prediction accuracy and false positive outcomes. By applying this method to MERS-CoV, the 11 canonical cleavage sites were readily identified and verified by the biochemical assays. The Michaelis constant of the canonical cleavage sites of MERS-CoV showed that the substrate specificity of MERS-CoV 3CLpro is relatively conserved. Interestingly, nine putative non-canonical cleavage sites were predicted and three of them could be cleaved by MERS-CoV nsp5. These results pave the way for identification and functional characterization of new nsp products of coronaviruses. PMID:26036787

  17. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study

    PubMed Central

    Berry, Michael; Fielding, Burtram C.; Gamieldien, Junaid

    2015-01-01

    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CLpro provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally. PMID:26694449

  18. Internal cleavages of the autoinhibitory prodomain are required for membrane type 1 matrix metalloproteinase activation, although furin cleavage alone generates inactive proteinase.

    PubMed

    Golubkov, Vladislav S; Cieplak, Piotr; Chekanov, Alexei V; Ratnikov, Boris I; Aleshin, Alexander E; Golubkova, Natalya V; Postnova, Tatiana I; Radichev, Ilian A; Rozanov, Dmitri V; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y

    2010-09-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  19. Internal Cleavages of the Autoinhibitory Prodomain Are Required for Membrane Type 1 Matrix Metalloproteinase Activation, although Furin Cleavage Alone Generates Inactive Proteinase*

    PubMed Central

    Golubkov, Vladislav S.; Cieplak, Piotr; Chekanov, Alexei V.; Ratnikov, Boris I.; Aleshin, Alexander E.; Golubkova, Natalya V.; Postnova, Tatiana I.; Radichev, Ilian A.; Rozanov, Dmitri V.; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y.

    2010-01-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  20. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions.

    PubMed Central

    Bartenschlager, R; Ahlborn-Laake, L; Mous, J; Jacobsen, H

    1993-01-01

    We have studied processing of the nonstructural (NS) polyprotein of the hepatitis C virus. A series of cDNAs corresponding to predicted NS2/3/4 or NS3/4 regions were constructed, and processing of the polyproteins was studied in an in vitro transcription-translation system. We report that a catalytically active serine-type proteinase is encoded by the NS3 region. Substitution of the serine residue of the putative catalytic triad (H, D, and S) by alanine blocked cleavage at the NS3/4 junction, while processing between NS2 and NS3 was not affected. Thus, cleavage at the NS2/3 junction is mediated either by cellular enzymes or by an NS-2 inherent proteinase activity. Deletion analysis of an NS3/4 cDNA construct mapped the amino terminus of the enzymatically active proteinase between amino acids 1049 and 1065 of the polyprotein. As internal deletions of variable segments of the presumed helicase domain prevented processing at the NS314 junction, a continuous NS3 region appears to be required for processing at this site. To analyze hepatitis C virus polyprotein cleavage in vivo, recombinant vaccinia viruses expressing NS2/3/4 or NS3/4/5 proteins were generated. In agreement with the in vitro data, cleavage between NS2 and NS3 was independent of a catalytically active NS3 proteinase, whereas substitution of the active-site serine residue by the amino acid alanine completely blocked processing at the NS3/4 and NS4/5 junctions. These results demonstrate that NS3 encodes the viral proteinase essential for generating the amino termini of NS4 and NS5. Images PMID:8389908

  1. Therapeutic Cleavage of Anti–Aquaporin-4 Autoantibody in Neuromyelitis Optica by an IgG-Selective Proteinase

    PubMed Central

    Tradtrantip, Lukmanee; Asavapanumas, Nithi

    2013-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of pathogenic IgG autoantibodies (NMO-IgG) to astrocyte water channel aquaporin-4 (AQP4). Astrocyte damage and downstream inflammation require NMO-IgG effector function to initiate complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we evaluated the potential therapeutic utility of the bacterial enzyme IdeS (IgG-degrading enzyme of Streptococcus pyogenes), which selectively cleaves IgG antibodies to yield Fc and F(ab′)2 fragments. In AQP4-expressing cell cultures, IdeS treatment of monoclonal NMO-IgGs and NMO patient sera abolished CDC and ADCC, even when IdeS was added after NMO-IgG was bound to AQP4. Binding of NMO-IgG to AQP4 was similar to that of the NMO-F(ab′)2 generated by IdeS cleavage. NMO-F(ab′)2 competitively displaced pathogenic NMO-IgG, preventing cytotoxicity, and the Fc fragments generated by IdeS cleavage reduced CDC and ADCC. IdeS efficiently cleaved NMO-IgG in mice in vivo, and greatly reduced NMO lesions in mice administered NMO-IgG and human complement. IgG-selective cleavage by IdeS thus neutralizes NMO-IgG pathogenicity, and yields therapeutic F(ab′)2 and Fc fragments. IdeS treatment, by therapeutic apheresis or direct administration, may be beneficial in NMO. PMID:23571414

  2. A substitution of cysteine for glycine 748 of the alpha 1 chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away.

    PubMed

    Vogel, B E; Doelz, R; Kadler, K E; Hojima, Y; Engel, J; Prockop, D J

    1988-12-15

    In previous work (Vogel, B. E., Minor, R. R., Freund, M., and Prockop, D. J. (1987) J. Biol. Chem. 262, 14737-14744), we identified a single-base mutation that converted the glycine at position 748 of the alpha 1 chain of type I procollagen to a cysteine in a proband with a lethal variant of osteogenesis imperfecta. In addition to posttranslational overmodification, the abnormal molecules displayed decreased thermal stability and a decreased rate of secretion. An unexplained finding was that procollagen was poorly processed to pCcollagen in postconfluent cultures of skin fibroblasts. Here, we show that the procollagen synthesized by the proband's cells is resistant to cleavage by procollagen N-proteinase, a conformation-sensitive enzyme. Since the only detectable defect in the molecule was the cysteine for glycine substitution, we assembled several space-filling models to try to explain how the structure of the N-proteinase cleavage site can be affected by an amino acid substitution over 700 amino acid residues or 225 nm away. The models incorporated a phase shift of a tripeptide unit in one or both of the alpha 1 chains. The most satisfactory models produced a flexible kink of 30 degrees or 60 degrees at the site of the cysteine substitution. Therefore, we examined the procollagen by electron microscopy. About 25% of the molecules had a kink not seen in control samples, and the kink was at the site of the cysteine substitution. PMID:3198624

  3. Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.

    PubMed

    Muramatsu, Tomonari; Kim, Yong-Tae; Nishii, Wataru; Terada, Takaho; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2013-05-01

    Like many other RNA viruses, severe acute respiratory syndrome coronavirus (SARS-CoV) produces polyproteins containing several non-structural proteins, which are then processed by the viral proteases. These proteases often exist within the polyproteins, and are excised by their own proteolytic activity ('autoprocessing'). It is important to investigate the autoprocessing mechanism of these proteases from the point of view of anti-SARS-CoV drug design. In this paper, we describe a new method for investigating the autoprocessing mechanism of the main protease (M(pro)), which is also called the 3C-like protease (3CL(pro)). Using our method, we measured the activities, under the same conditions, of the mature form and pro-forms with the N-terminal pro-sequence, the C-terminal pro-sequence or both pro-sequences, toward the pro-form with both N- and C-terminal pro-sequences. The data indicate that the pro-forms of the enzyme have proteolytic activity, and are stimulated by the same proteolytic activity. The stimulation occurs in two steps, with approximately eightfold stimulation by N-terminal cleavage, approximately fourfold stimulation by C-terminal cleavage, and 23-fold stimulation by the cleavage of both termini, compared to the pro-form with both the N- and C-terminal pro-sequences. Such cleavage mainly occurs in a trans manner; i.e. the pro-form dimer cleaves the monomeric form. The stimulation by N-terminal pro-sequence removal is due to the cis (intra-dimer and inter-protomer) effect of formation of the new N-terminus, whereas that by C-terminal cleavage is due to removal of its trans (inter-dimer) inhibitory effect. A numerical simulation of the maturation pathway is presented. PMID:23452147

  4. A proportion of proteinase 3 (PR3)-specific anti-neutrophil cytoplasmic antibodies (ANCA) only react with PR3 after cleavage of its N-terminal activation dipeptide

    PubMed Central

    Sun, J; Fass, D N; Viss, M A; Hummel, A M; Tang, H; Homburger, H A; Specks, U

    1998-01-01

    ANCA directed against PR3 are highly specific for Wegener's granulomatosis and microscopic polyangiitis, and have been implicated in the pathogenesis of small vessel vasculitis. Most PR3-ANCA are directed against conformational epitopes on PR3. This study was designed to determine whether the cleavage of the N-terminal activation dipeptide of PR3 is required for the binding of PR3-ANCA. Recombinant PR3 (rPR3) variants were expressed in the epithelial cell line, 293. As confirmed by radiosequencing, the rPR3 secreted into the 293 cell culture supernatant is N-terminally unprocessed. Two enzymatically inactive rPR3 mutants were expressed in 293 cells: rPR3-S176A and δ-rPR3-S176A. rPR3-S176A contains the N-propetide Ala-2-Glu-1, δ-rPR3-S176A does not. Culture supernatants of rPR3-S176A and δ-rPR3-S176A expressing 293 cells were used as sources of target antigen for PR3-ANCA testing by capture ELISA. Forty unselected consecutive PR3-ANCA+ sera were tested. With δ-rPR3-S176A as antigen all 40 were recognized, compared with only 34 of 40 when rPR3-S176A served as target antigen. The majority of the serum samples contained a mixture of antibodies reacting with epitopes accessible on the mature and on the proform of PR3. In conclusion, the cleavage of the N-terminal activation dipeptide of PR3 is not an absolute requirement for recognition by all PR3-ANCA. However, a substantial proportion of PR3-ANCA recognize (a) target antigen(s) exposed only after the conformational change of PR3 associated with the N-terminal processing. In 15% of sera this PR3-ANCA subset occurred exclusively. PR3-ANCA subtypes can be differentiated using specifically designed rPR3 variants as target antigens, and non-haematopoietic mammalian cells without regulated secretory pathway can be used for their expression. PMID:9822293

  5. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  6. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  7. Cloning, expression and characterization of the proteinase from human herpesvirus 6.

    PubMed Central

    Tigue, N J; Matharu, P J; Roberts, N A; Mills, J S; Kay, J; Jupp, R

    1996-01-01

    After the U53 gene encoding the proteinase from human herpesvirus 6 (HHV-6) was sequenced, it was expressed in Escherichia coli, and the activity of the purified, recombinant HHV-6 proteinase was characterized quantitatively by using synthetic peptide substrates mimicking the release and maturation cleavage sites in the polyprotein precursors of HHV-6, human cytomegalovirus (CMV), murine CMV, and Epstein-Barr virus. Despite sharing 40% identity with other betaherpesvirus proteinases such as human CMV proteinase, the one-chain HHV-6 enzyme was distinguished from these two-chain proteinases by the absence of an internal autocatalytic cleavage site. PMID:8648756

  8. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    SciTech Connect

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.

    1994-01-01

    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  9. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase.

    PubMed

    Athauda, Senarath B P; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-11-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe-Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 degrees C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15-Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  10. Antimicrobial action of histone H2B in Escherichia coli: evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase T.

    PubMed

    Kawasaki, Hiroaki; Koyama, Takumi; Conlon, J Michael; Yamakura, Fumiyuki; Iwamuro, Shawichi

    2008-01-01

    Previous studies have led to the isolation of histone H2B with antibacterial properties from an extract of the skin of the Schlegel's green tree frog Rhacophorus schlegelii and it is now demonstrated that the intact peptide is released into norepinephrine-stimulated skin secretions. In order to investigate the mechanism of action of this peptide, a maltose-binding protein (MBP)-fused histone H2B (MBP-H2B) conjugate was prepared and subjected to antimicrobial assay. The fusion protein showed bacteriostatic activity against Escherichia coli strain JCM5491 with a minimum inhibitory concentration of 11 microM. The lysate prepared from JCM5491 cells was capable of fragmenting MBP-H2B within the histone H2B region, but the lysate from the outer membrane proteinase T (OmpT) gene-deleted BL21(DE3) cells was not. FITC-labeled MBP-H2B (FITC-MBP-H2B) penetrated into the bacterial cell membrane of JCM5491 and ompT-transformed BL21(DE3) cells, but not into ompT-deleted BL21(DE3) cells. Gel retardation assay using MBP-H2B-deletion mutants indicated that MBP-H2B bound to DNA at a site within the N-terminal region of histone H2B. Consequently, it is proposed that the antimicrobial action of histone H2B involves, at least in part, penetration of an OmpT-produced N-terminal histone H2B fragment into the bacterial cell membrane with subsequent inhibition of cell functions. PMID:18706965

  11. Sensitive, hydrosoluble, macromolecular fluorogenic substrates for human immunodeficiency virus 1 proteinase.

    PubMed Central

    Anjuère, F; Monsigny, M; Lelièvre, Y; Mayer, R

    1993-01-01

    Hydrosoluble macromolecular fluorogenic substrates specific for the human immunodeficiency virus 1 (HIV-1) proteinase have been prepared. The fluoresceinyl peptide Ftc-epsilon-Ahx-Ser-Phe-Asn-Phe-Pro-Gln-Ile-Thr-(Gly)n, corresponding to the first cleavage site of HIV-1 gag-pol native precursor was linked to a water-soluble neutral (Lys)n derivative. The epsilon-aminohexanoyl residue (epsilon-Ahx) and the glycyl sequence were added in order to improve the stability of the substrate and the accessibility of the cleavage site to the HIV-1 proteinase respectively. This macro-molecular peptidic-substrate conjugate is significantly more water-soluble than the free peptide itself on a substrate molar concentration basis. The assay is based on the quantitative precipitation of the polymeric material by adding propan-2-ol whereas the fluorescent peptide moiety released upon proteolysis remains soluble in the supernatant. The proteinase activity is assessed by measuring the fluorescence of the supernatant. This assay allows the detection of a few fmol of HIV-1 proteinase, even in the presence of cell culture media, plasma or cell lysate and it gives accurate results within a large proteinase concentration range. The hydrosoluble macromolecular substrate is also suitable for determining the HIV-1 proteinase activity using 96-well microplates, allowing us to test accurately and rapidly numerous enzyme samples and/or the potency of new proteinase inhibitors. PMID:8489513

  12. The synthesis of inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast.

    PubMed Central

    Angliker, H; Wikstrom, P; Shaw, E; Brenner, C; Fuller, R S

    1993-01-01

    Peptidyl chloromethane and sulphonium salts containing multiple Arg and Lys residues were synthesized as potential inhibitors of prohormone and pro-protein processing proteinases. The potencies of these compounds were assayed by measuring the kinetics of inactivation of the yeast Kex2 proteinase, the prototype of a growing family of eukaryotic precursor processing proteinases. The most potent inhibitor, Pro-Nvl-Tyr-Lys-Arg-chloromethane, was based on cleavage sites in the natural Kex2 substrate pro-alpha-factor. This inhibitor exhibited a Ki of 3.7 nM and a second-order inactivation rate constant (k2/Ki) of 1.3 x 10(7) M-1.s-1 comparable with the value of kcat./Km obtained with Kex2 for the corresponding peptidyl methylcoumarinylamide substrate. The enzyme exhibited sensitivity to the other peptidyl chloromethanes over a range of concentrations, depending on peptide sequence and alpha-amino decanoylation, but was completely resistant to peptidyl sulphonium salts. Kinetics of inactivation by these new inhibitors of a set of 'control' proteinases, including members of both the trypsin and subtilisin families, underscored the apparent specificity of the compounds most active against Kex2 proteinase. PMID:8328974

  13. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  14. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  15. Posttranslational signal peptidase cleavage at the flavivirus C-prM junction in vitro.

    PubMed Central

    Stocks, C E; Lobigs, M

    1995-01-01

    We have investigated the cleavages at the flavivirus capsid-prM protein junction in vitro. When expressed in the absence of the flavivirus proteinase, capsid and prM, which are separated by an internal signal sequence, exist as a membrane-spanning precursor protein. Here we show the induction of posttranslational signal peptidase cleavage of prM by trypsin cleavage of a cytoplasmic region of this precursor protein. PMID:7494334

  16. Carboxy-terminal truncation of oryzacystatin II by oryzacystatin-insensitive insect digestive proteinases.

    PubMed

    Michaud, D; Cantin, L; Vrain, T C

    1995-10-01

    The biochemical interactions between digestive proteinases of the Coleoptera pest black vine weevil (Otiorynchus sulcatus) and two plant cysteine proteinase inhibitors, oryzacystatin I (OCI) and oryzacystatin II (OCII), were assessed using gelatin-polyacrylamide gel electrophoresis, OCI-affinity chromatography, and recombinant forms of the two plant inhibitors. The insect proteinases were resolved in gelatin-containing polyacrylamide gels as five major bands, only three of them being totally or partially inactivated by OCI and OCII. The maximal inhibitory effect of both OCs at pH 5.0 was estimated at 40% and the inhibition was stable with time despite the presence of OC-insensitive proteases, indicating the stability of the OCI and OCII effects. After removing OC-sensitive proteinases from the insect crude extract by OCI-affinity chromatography, the effects of the insect cystatin-insensitive proteases on the structural integrity of the free OCs were analyzed. While OCI remained stable, OCII was subjected to limited proteolysis leading to its gradual transformation into a approximately 10.5-kDa unstable intermediate, OCIIi. As shown by the degradation pattern of a glutathione S-transferase (GST)/OCII fusion protein, the appearance of OCIIi resulted from the C-terminal truncation of OCII. Either free or linked to GST, OCIIi was as active against papain and human cathepsin H as OCII, and the initial specificities of the inhibitor for these two cysteine proteinases were conserved after cleavage. Although these observations indicate the high conformational stability of OCII near its active (inhibitory) site, they also suggest a general conformational destabilization of this inhibitor following its initial cleavage, subsequently leading to its complete hydrolysis. This apparent susceptibility of OCII to proteolytic cleavage by the insect proteinases could have major implications when planning the use of this plant cystatin for insect pest control. PMID:7574723

  17. [Proteinase-proteinase inhibitor complex in rats under oxidative stress caused by administration of cobalt chloride].

    PubMed

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2000-01-01

    Mechanisms of proteinase-inhibitor proteinase system response was estimated following of cobalt chloride injection. The increase proteinase activity, which led to significant decrease of alpha-2-macroglobulin (alpha-2-MG) level was established that indicated to the removal of the proteinase in complex with alpha-2-MG from the organism. Increase of alpha-1-proteinase inhibitor (alpha-1-PI) trypsin-inhibitory activity in the kidneys testify about removal of oxidative alpha-1-PI. PMID:10979565

  18. Characterization of proteinases in trypanosomatids.

    PubMed

    Branquinha, M H; Vermelho, A B; Goldenberg, S; Bonaldo, M C

    1994-02-01

    Proteinases are important factors in the pathogenicity of many parasitic diseases. In this study, the proteolytic activities of 10 trypanosomatids from five different genera (Crithidia, Phytomonas, Endotrypanum, Trypanosoma and Leishmania) were determined by SDS-PAGE containing copolymerized gelatin as substrate. In almost all species we could detect two proteolytic classes, cysteine- and metalloproteinases, based on the inhibition of their activities by E-64 and 1,10-phenanthroline, respectively. In all cases, the metalloproteinase activities did not change over a broad pH range (from 5.5 to 10). E. schaudinni, T. mega, T. dionisii, C. luciliae, C. fasciculata, C. oncopelti and C. guilhermei expressed one or two metalloproteinases of 45-66 kDa, whereas in P. serpens and P. hyssopifolia a double band of this endopeptidase was detected at 94 kDa. In contrast, no metalloproteinase activity was observed in L. tarentolae. The optimal pH for the cysteine-proteinase activities was acidic (about 5.5). In E. schaudinni, T. mega and in Crithidia sp., these proteinases had an apparent molecular weight of 66-94 kDa, while L. tarentolae expressed a broad band from 29 to 45 kDa. In Phytomonas sp., this class of endopeptidase showed a unique feature, in that major cysteine-proteinases were found at 29-66 kDa, but multiple, low-activity bands were detected from 116 to 200 kDa. The most striking characteristic, however, was the very intense cysteine-proteinase activity expressed by T. dionisii (29-66 kDa). We conclude that these differences in the proteolytic profiles could be useful markers to characterize and compare trypanosomatids. PMID:8081271

  19. Immune challenge induces N-terminal cleavage of the Drosophila serpin Necrotic

    PubMed Central

    Pelte, Nadège; Robertson, Andrew S.; Zou, Zhen; Belorgey, Didier; Dafforn, Timothy R.; Jiang, Haobo; Lomas, David; Reichhart, Jean-Marc; Gubb, David

    2007-01-01

    The Drosophila Necrotic protein is a serine proteinase inhibitor, which regulates the Toll-mediated innate immune response. Necrotic specifically inhibits an extracellular serine proteinase cascade leading to activation of the Toll ligand, Spätzle. Necrotic carries a polyglutamine extension amino-terminal to the core serpin structure. We show here that cleavage of this N-terminal extension occurs following immune challenge. This modification is blocked in PGRP-SAsemmelweiss mutants after Gram-positive bacterial challenge and in persephone mutants after fungal or Gram-positive bacterial challenge, indicating that activation of either of the Toll pathway upstream branches induces N-terminal cleavage of the serpin. The absolute requirement of persephone gene product for this cleavage indicates that Gram-positive bacteria activate a redundant set of proteinases upstream of Toll. Both full-length Necrotic and the core serpin are active inhibitors of a range of serine proteinases: the highest affinity being for cathepsin G and elastases. We found a 13-fold increase in the specificity of the core serpin over that of full-length Necrotic for one of the tested proteinases (porcine pancreatic elastase). This finding indicates that cleavage of the Necrotic amino-terminal extension might modulate Toll activation following the initial immune response. PMID:16360948

  20. Thiol-activated serine proteinases from nymphal hemolymph of the African migratory locust, Locusta migratoria migratorioides.

    PubMed

    Hanzon, Jacob; Smirnoff, Patricia; Applebaum, Shalom W; Mattoo, Autar K; Birk, Yehudith

    2003-02-01

    Two unique serine proteinase isoenzymes (LmHP-1 and LmHP-2) were isolated from the hemolymph of African migratory locust (Locusta migratoria migratorioides) nymphs. Both have a molecular mass of about 23 kDa and are activated by thiol-reducing agents. PMSF abolishes enzymes activity only after thiol activation, while the cysteine proteinase inhibitors E-64, iodoacetamide, and heavy metals fail to inhibit the thiol-activated enzymes. The N-terminal sequence was determined for the more-abundant LmHP-2 isoenzyme. It exhibits partial homology to that of other insect serine proteinases and similar substrate specificity and inhibition by the synthetic and protein trypsin inhibitors pABA, TLCK, BBI, and STI. The locust trypsins LmHP-1 and LmHP-2 constitute a new category of serine proteases wherein the active site of the enzyme is exposed by thiol activation without cleavage of peptide bonds. PMID:12559979

  1. AN INACTIVE PRECURSOR OF STREPTOCOCCAL PROTEINASE

    PubMed Central

    Elliott, Stuart D.; Dole, Vincent P.

    1947-01-01

    1. Streptococcal proteinase is derived from an inactive precursor found in culture filtrates of proteinase-producing streptococci. 2. The precursor can be converted into the proteinase by low concentrations of trypsin but not by chymotrypsin. 3. In cultures grown in suitable media the conversion of precursor to proteinase is effected autocatalytically. This reaction occurs under reducing conditions and is initiated by active proteinase present in low concentrations with the precursor. 4. The autocatalytic reaction is suppressed or retarded by conditions which decrease the activity of the proteinase, e.g. by growing cultures at 22°C. instead of at 37°C. or by growing them under markedly aerobic conditions. It is also retarded in the presence of casein. PMID:19871616

  2. Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis.

    PubMed Central

    Jagels, M A; Travis, J; Potempa, J; Pike, R; Hugli, T E

    1996-01-01

    The anaerobic bacterium Porphyromonas gingivalis has been implicated as a primary causative agent in adult periodontitis. Several proteinases are produced by this bacterium, and it is suggested that they contribute to virulence and to local tissue injury resulting from infection by P. gingivalis. Cysteine proteinases with specificities to cleave either Arg-X or Lys-X peptide bonds (i.e., gingipains) have been characterized as predominant enzymes associated with vesicles shed from the surface of this bacterium. It has recently been demonstrated that these proteinases are capable of degrading the blood complement component C5, resulting in the generation of biologically active C5a. By using an affinity-purified rabbit antibody raised against residues 9 to 29 of the C5a receptor (C5aR; CD88), we demonstrate that noncysteinyl proteinases associated with vesicles obtained from P. gingivalis cleave the C5aR on human neutrophils. Proteolytic attack of the C5aR by enzymes from the P. gingivalis vesicles was inhibited by TPCK (tolylsullonyl phenylalanyl chloromethyl ketone), PMSF (phenylmethylsulfonyl fluoride), and dichloroisocoumarin, suggesting that serine proteinases are primarily responsible for this degradative activity. The purified vesicle proteinase Lys-gingipain but not Arg-gingipain also cleaved the N-terminal region of the C5aR on the human neutrophils. Lys-gingipain activity was essentially resistant to these inhibitors but was inhibited by TLCK (Nalpha-p-tosyl-L-lysine chloromethyl ketone) and iodoacetamide. A synthetic peptide that mimics the N-terminal region of C5aR (residues 9 to 29; PDYGHY DDKDTLDLNTPVDKT) was readily cleaved by chymotrypsin but not by trypsin, despite the presence of two potential trypsin (i.e., lysyl-X) cleavage sites. The specific sites of cleavage in the C5aR 9-29 peptide were determined by mass spectroscopy for both chymotrypsin and Lys-gingipain digests. This analysis demonstrated that the C5aR peptide is susceptible to cleavage at

  3. Reactive oxygen species and anti-proteinases.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Rehman, Ahmed Abdur; Ahsan, Haseeb; Khan, Fahim Halim

    2016-01-01

    Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases. PMID:26699123

  4. The cysteine proteinases of the pineapple plant.

    PubMed Central

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-01-01

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. Images Fig. 4. Fig. 5. PMID:2327970

  5. The cysteine proteinases of the pineapple plant.

    PubMed

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. PMID:2327970

  6. [Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis].

    PubMed

    Dunaevskiĭ, Ia E; Gruban', T N; Beliakova, G A; Belozerskiĭ, M A

    2006-01-01

    The presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen). PMID:17205798

  7. Dependence of vascular permeability enhancement on cysteine proteinases in vesicles of Porphyromonas gingivalis.

    PubMed Central

    Imamura, T; Potempa, J; Pike, R N; Travis, J

    1995-01-01

    Infection with Porphyromonas gingivalis is strongly associated with adult periodontitis, and proteinases are considered to be important virulent factors of the bacterium. In order to investigate the function of proteinases in disease development we examined vesicles, a biological carrier of these enzymes, for the generation of vascular permeability enhancement (VPE) activity, believed to correlate with the exudation of gingival crevicular fluid. The vesicles generated VPE activity from human plasma in a dose-dependent manner which could be inhibited 90% by antipain, a specific inhibitor of the Arg-specific cysteine proteinases (Arg-gingipains [RGPs] from P. gingivalis. Incubation of vesicles with high-molecular-weight-kininogen (HMWK)-deficient plasma did not result in VPE activity. On this basis, RGPs associated with vesicles were assumed to be responsible for most of the VPE activity generation via plasma prekallikrein activation and subsequent bradykinin production. The secondary pathway for VPE activity production was dependent on the direct release of bradykinin from HMWK by the concerted action of RGP and a Lys-specific cysteine proteinase (Lys-gingipain [KGP]), also associated with vesicles. These results indicate that RGP and KGP are biologically important VPE factors acting either via prekallikrein activation (RGP) and/or HMWK cleavage (RGP and KGP) to release BK and, thereby, contributing to the production of gingival crevicular fluid at periodontal sites infected with P. gingivalis. PMID:7729914

  8. Fibrinogen degradation by two neutral granulocyte proteinases. Influence of calcium on the generation of fibrinogen degradation products with anticlotting properties.

    PubMed

    Bingenhkeimer, C; Gramse, M; Egbring, R; Havemann, K

    1981-07-01

    Degradation of human fibrinogen by elastase-like proteinase, chymotrypsin-like proteinase and plasmin, was done in the presence and absence of calcium ions, respectively. The resulting fibrinogen degradation products were tested for their coagulant and anti-coagulant properties. The results show that 1. fibrinogenolysis is delayed in the presence of calcium ions. Higher enzyme concentrations are required to get unclottable split products when calcium ions are present. 2. The fibrinogen fragments obtained in the presence of calcium are different in their molecular weights and anticoagulant activities compared to those obtained in the absence of calcium ions. This effect of calcium is most striking during fibrinogen cleavage by chymotrypsin-like proteinase. Elastase and plasmin-induced fibrinogenolysis was substantially influenced by calcium only at a late degradation stage. PMID:6456216

  9. Monoclonal antibodies to the two most basic papaya proteinases.

    PubMed

    Goodenough, P W; Kilshaw, P J; McEwan, F; Owen, A J

    1986-08-01

    The proteinases from Carica papaya include papain, isoenzymes of chymopapain and two proteinases A and B distinguished by their unusually high pI. The identity of one of the most basic proteinases has been questioned. The present report describes the preparation and characterisation of two monoclonal antibodies that react specifically with papaya proteinases A and B respectively and a third that identifies a common structural feature found in papain and proteinase A. PMID:3545314

  10. Characterization and cloning of metallo-proteinase in the excretory/secretory products of the infective-stage larva of Trichinella spiralis.

    PubMed

    Lun, H M; Mak, C H; Ko, R C

    2003-05-01

    Inhibitor sensitivity assays using azocaesin and FTC-caesin as substrates showed that the excretory/secretory (E/S) products of the infective-stage larvae of Trichinella spiralis contained serine, metallo-, cysteine and aspartic proteinases. The activity of the metallo-proteinase was zinc ion dependent (within a range of ZnSO(4) concentrations). Gelatin-substrate gel electrophoresis revealed two bands of molecular mass 48 and 58 kDa which were sensitive to the metallo-proteinase inhibitor EDTA. The former peptide was probably a cleavage product of the latter. The authenticity of the 58 kDa metallo-proteinase as an E/S product was confirmed by immunoprecipitation. Using PCR and RACE reactions, a complete nucleotide sequence of the metallo-proteinase gene was obtained. It comprised 2,223 bp with an open reading frame encoding 604 amino acid residues. The 3' untranslated region consisted of 352 bp, including a polyadenylation signal AATAA. A consensus catalytic zinc-binding motif was present. The conserved domains suggest that the cloned metallo-proteinase belongs to the astacin family and occurs as a single copy gene with 11 introns and 10 exons. Cluster analysis showed that the sequence of the metallo-proteinase gene of T. spiralis resembles those of Caenorhabdites elegans and Strongyloides stercoralis. PMID:12743801

  11. When activity requires breaking up: LEKTI proteolytic activation cascade for specific proteinase inhibition.

    PubMed

    Furio, Laetitia; Hovnanian, Alain

    2011-11-01

    Lymphoepithelial Kazal-type related inhibitor (LEKTI) is a multidomain proteinase inhibitor whose defective expression causes Netherton syndrome (NS). LEKTI is encoded by SPINK5, which is also a susceptibility gene for atopic disease. In this issue, Fortugno et al. report an elegant and thorough study of the LEKTI proteolytic activation process in which they identify the precise nature of the cleavage sites used and the bioactive fragments generated. They propose a proteolytic activation model in human skin and confirm differential inhibition of kallikrein (KLK) 5, 7, and 14 by the major physiological LEKTI fragments. They show that these bioactive fragments inhibit KLK-mediated proteolysis of desmoglein 1 (DSG1) and suggest a fine-tuned inhibition process controlling target serine proteinase (SP) activity. PMID:21997416

  12. Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously.

    PubMed

    Gupta, Snehalata; Wang, Yang; Jiang, Haobo

    2005-03-01

    In the tobacco hornworm Manduca sexta, proteolytic activation of prophenoloxidase (proPO) is mediated by three proPO-activating proteinases (PAPs) and two serine proteinase homologs (SPHs) (Proceedings of the National Academy of Sciences, USA 95 (1998) 12220-12225; J. Biol. Chem. 278 (2003a) 3552-3561; Insect Biochem. Mol. Biol. 33 (2003b) 1049-1060). While our current data are consistent with the hypothesis that the SPHs serve as a cofactor/anchor for PAPs (Insect Biochemistry and Molecular Biology 33 (2003) 197-208; Insect Biochemistry and Molecular Biology 34 (2004) 731-742), roles of these clip-domain proteins (i.e. PAPs and SPHs) in proPO activation are poorly defined. To better understand this process, we further characterized the activation reaction using proPO, PAP-1 and SPHs. PAP-1 itself cleaved nearly 1/3 of proPO at Arg51 without generating much phenoloxidase (PO) activity. In the presence of SPHs, the cleavage of proPO became more complete while the increase in PO activity was over 20-fold, indicating that the extent of cleavage does not directly correlate with PO activity. Since SPHs and p-amidinophenyl methanesulfonyl fluoride (APMSF)-treated PAP-1 did not generate active PO by interacting with proPO, proteolytic cleavage is critical for proPO activation. After 1/5 of proPO was processed by PAP-1 alone which was then inactivated by M. sexta serpin-1J or APMSF, further incubation of the reaction mixture with SPHs failed to generate active PO either. Thus, SPHs cannot generate PO activity by simply binding to cleaved proPO. M. sexta proPO activation requires active PAP-1 and SPHs at the same time-one for limited proteolysis and the other as a cofactor, perhaps. Gel filtration chromatography and native gel electrophoresis revealed the PAP-SPH, proPO-PAP, and SPH-proPO associations, essential for generating high Mr, active PO at the site of infection. PMID:15705503

  13. The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor

    PubMed Central

    Steinberger, Jutta; Skern, Tim

    2016-01-01

    The leader proteinase (Lpro) of foot-and-mouth disease virus, inhibits the host innate immune response by at least three different mechanisms. The most well characterised is the prevention of the synthesis of cytokines such as interferons immediately after infection, brought about by specific proteolytic cleavage of the eukaryotic initiation factor 4G. This prevents the recruitment of capped cellular mRNA; the viral RNA can however be translated under these conditions. The two other mechanisms are the induction of NF-κB cleavage and the deubiquitination of immune signalling molecules. This review focuses on the structure-function relationships in Lpro responsible for these widely divergent activities. PMID:24670358

  14. Modification of cystatin C activity by bacterial proteinases and neutrophil elastase in periodontitis.

    PubMed Central

    Abrahamson, M; Wikström, M; Potempa, J; Renvert, S; Hall, A

    1997-01-01

    AIM: To study the interaction between the human cysteine proteinase inhibitor, cystatin C, and proteinases of periodontitis associated bacteria. METHODS: Gingival crevicular fluid samples were collected from discrete periodontitis sites and their cystatin C content was estimated by enzyme linked immunosorbent assay (ELISA). The interaction between cystatin C and proteolytic enzymes from cultured strains of the gingival bacteria Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans was studied by measuring inhibition of enzyme activity against peptidyl substrates, by detection of break down patterns of solid phase coupled and soluble cystatin C, and by N-terminal sequence analysis of cystatin C products resulting from the interactions. RESULTS: Gingival crevicular fluid contained cystatin C at a concentration of approximately 15 nM. Cystatin C did not inhibit the principal thiol stimulated proteinase activity of P gingivalis. Instead, strains of P gingivalis and P intermedia, but not A actinomycetemcomitans, released cystatin C modifying proteinases. Extracts of five P gingivalis and five P intermedia strains all hydrolysed bonds in the N-terminal region of cystatin C at physiological pH values. The modified cystatin C resulting from incubation with one P gingivalis strain was isolated and found to lack the eight most N-terminal residues. The affinity of the modified inhibitor for cathepsin B was 20-fold lower (Ki 5 nM) than that of full length cystatin C. A 50 kDa thiol stimulated proteinase, gingipain R, was isolated from P gingivalis and shown to be responsible for the Arg8-bond hydrolysis in cystatin C. The cathepsin B inhibitory activity of cystatin C incubated with gingival crevicular fluid was rapidly abolished after Val10-bond cleavage by elastase from exudate neutrophils, but cleavage at the gingipain specific Arg8-bond was also demonstrated. CONCLUSIONS: The physiological control of cathepsin B activity is impeded in

  15. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  16. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  17. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. [Character of changes in indicators of proteinase and proteinase inhibitor activity in gastroenterological pathology in children].

    PubMed

    Dovgun, O B; Tebloeva, L T; Shumeĭko, N K; Rudenskaia, G N

    1998-01-01

    The aim of this study was to determine trypsin-lake proteinase activity, chymotrypsin-like proteinase activity, trypsin, alpha 1-antitrypsin and alpha 2-macroglobulin levels in blood serum at the children with gastroenterological pathology. These parameters did not chang at the children with functional disorder of stomach and duodenum. The stable balance between proteinases and inhibitors was determined only at the duration of the disease not more 5 years. The absence of normal levels these enzymes after traditional treatment was explain the necessity to continue the therapy at home with control of enzymes' levels. PMID:9703629

  20. [Effect of adrenal stress on activity of proteinase and alpha-1-proteinase inhibitor in rats].

    PubMed

    Samokhina, L M; Kaliman, P A

    1994-01-01

    The effect of adrenal stress on the proteinase and alpha-1-proteinase inhibitor activities in blood serum and cytosols of the rat organs were investigated. The reliable change was marked only in the alpha-1-PI level research of lung tissue cytosol. The proteolysis suppression was revealed in the heart and kidney tissue, while the proteolysis activation was revealed in serum and less in the lung tissue cytosol. Changes in proteinase level in the myocardium and kidney tissue play the primary role in respect to those of the other research liquids under study. PMID:7747353

  1. Inhibition of proteinase K by phosphorylated sugars.

    PubMed

    Orstan, A; Gafni, A

    1991-11-01

    Proteolysis of lactate dehydrogenase, aldolase and the synthetic substrate N-succinylalanylalanylalanyl-p-nitroanilide by proteinase K is inhibited by glucose-6-phosphate and fructose-1,6-biphosphate. Analysis of the kinetic data obtained with the synthetic substrate indicates that the inhibition is a mixed-type and that more than one inhibitor molecule binds to proteinase K. Glucose and fructose are ineffective as inhibitors. In the presence of 0.2-4 mM fructose-1,6-biphosphate, aldolase becomes more susceptible to proteolysis, probably as a result of a conformational change induced by the substrate. PMID:1815500

  2. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. a paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors

    PubMed Central

    Olson, Steven T.; Richard, Benjamin; Izaguirre, Gonzalo; Schedin-Weiss, Sophia; Gettins, Peter G. W.

    2010-01-01

    Serpin family protein proteinase inhibitors regulate the activity of serine and cysteine proteinases by a novel conformational trapping mechanism that may itself be regulated by cofactors to provide a finely-tuned time and location-dependent control of proteinase activity. The serpin, antithrombin, together with its cofactors, heparin and heparan sulfate, perform a critical anticoagulant function by preventing the activation of blood clotting proteinases except when needed at the site of a vascular injury. Here, we review the detailed molecular understanding of this regulatory mechanism that has emerged from numerous X-ray crystal structures of antithrombin and its complexes with heparin and target proteinases together with mutagenesis and functional studies of heparin-antithrombin-proteinase interactions in solution. Like other serpins, antithrombin achieves specificity for its target blood clotting proteinases by presenting recognition determinants in an exposed reactive center loop as well as in exosites outside the loop. Antithrombin reactivity is repressed in the absence of its activator because of unfavorable interactions that diminish the favorable RCL and exosite interactions with proteinases. Binding of a specific heparin or heparan sulfate pentasaccharide to antithrombin induces allosteric activating changes that mitigate the unfavorable interactions and promote template bridging of the serpin and proteinase. Antithrombin has thus evolved a sophisticated means of regulating the activity of blood clotting proteinases in a time and location-dependent manner that exploits the multiple conformational states of the serpin and their differential stabilization by glycosaminoglycan cofactors. PMID:20685328

  3. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    PubMed Central

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized. PMID:26999188

  4. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells.

    PubMed

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized. PMID:26999188

  5. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops. PMID:23813339

  6. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  7. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59.

    PubMed Central

    Lu, Y; Lu, X; Denison, M R

    1995-01-01

    Gene 1 of the murine coronavirus, MHV-A59, encodes approximately 800 kDa of protein products within two overlapping open reading frames (ORFs 1a and 1b). The gene is expressed as a polyprotein that is processed into individual proteins, presumably by virus-encoded proteinases. ORF 1a has been predicted to encode proteins with similarity to viral and cellular proteinases, such as papain, and to the 3C proteinases of the picornaviruses (A. E. Gorbalenya, A. P. Donchenko, V. M. Blinov, and E. V. Koonin, FEBS Lett. 243:103-114, 1989; A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, Nucleic Acids Res. 17:4847-4861, 1989). We have cloned into a T7 transcription vector a cDNA fragment containing the putative 3C-like proteinase domain of MHV-A59, along with portions of the flanking hydrophobic domains. The construct was used to express a polypeptide in a combined in vitro transcription-translation system. Major polypeptides with molecular masses of 38 and 33 kDa were detected at early times, whereas polypeptides with molecular masses of 32 and 27 kDa were predominant after 30 to 45 min and appeared to be products of specific proteolysis of larger precursors. Mutations at the putative catalytic histidine and cysteine residues abolished the processing of the 27-kDa protein. Translation products of the pGpro construct were able to cleave the 27-kDa protein in trans from polypeptides expressed from the noncleaving histidine or cysteine mutants. The amino-terminal cleavage of the 27-kDa protein occurred at a glutamine-serine dipeptide as previously predicted. This study provides experimental confirmation that the coronaviruses express an active proteinase within the 3C-like proteinase domain of gene 1 ORF 1a and that this proteinase utilizes at least one canonical QS dipeptide as a cleavage site in vitro. PMID:7745703

  8. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies.

    PubMed Central

    Amberg, S M; Nestorowicz, A; McCourt, D W; Rice, C M

    1994-01-01

    Several of the cleavages required to generate the mature nonstructural proteins from the flaviviral polyprotein are known to be mediated by a complex consisting of NS2B and a serine proteinase domain located in the N-terminal one-third of NS3. These cleavages typically occur after two basic residues followed by a short side chain residue. Cleavage at a similar dibasic site in the structural region is believed to produce the C terminus of the virion capsid protein. To study this cleavage, we developed a cell-free trans cleavage assay for yellow fever virus (YF)-specific proteolytic activity by using a substrate spanning the C protein dibasic site. Cleavage at the predicted site was observed when the substrate was incubated with detergent-solubilized lysates from YF-infected BHK cells. NS2B and the NS3 proteinase domain were the only YF-specific proteins required for this cleavage. Cell fractionation studies demonstrated that the YF-specific proteolytic activity was membrane associated and that activity could be detected only after detergent solubilization. Previous cell-free studies led to a hypothesis that processing in the C-prM region involves (i) translation of C followed by translocation and core glycosylation of prM by using an internal signal sequence, (ii) signalase cleavage to produce a membrane-anchored form of the C protein (anchC) and the N terminus of prM, and (iii) NS2B-3-mediated cleavage at the anchC dibasic site to produce the C terminus of the virion C protein. However, the results of in vivo transient-expression studies do not support this temporal cleavage order. Rather, expression of a YF polyprotein extending from C through the N-terminal one-third of NS3 revealed that C-prM processing, but not translocation, was dependent on an active NS2B-3 proteinase. This suggests that signalase-mediated cleavage in the lumen of the endoplasmic reticulum may be dependent on prior cleavage at the anchC dibasic site. Possible pathways for processing in the C

  9. CONSERVED SEQUENCE IN THE AGGRECAN INTERGLOBULAR DOMAIN MODULATES CLEAVAGE BY ADAMTS-4 AND ADAMTS-5

    PubMed Central

    Miwa, Hazuki E; Gerken, Thomas A; Huynh, Tru D; Duesler, Lori R; Cotter, Meghan; Hering, Thomas M.

    2008-01-01

    Background Cleavage of aggrecan by ADAMTS proteinases at specific sites within highly conserved regions may be important to normal physiological enzyme functions, as well as pathological degradation. Methods To examine ADAMTS selectivity, we assayed ADAMTS-4 and -5 cleavage of recombinant bovine aggrecan mutated at amino acids N-terminal or C-terminal to the interglobular domain cleavage site. Results Mutations of conserved amino acids from P18 to P12 to increase hydrophilicity resulted in ADAMTS-4 cleavage inhibition. Mutation of Thr, but not Asn within the conserved N-glycosylation motif Asn-Ile-Thr from P6 to P4 enhanced cleavage. Mutation of conserved Thr residues from P22 to P17 to increase hydrophobicity enhanced ADAMTS-4 cleavage. A P4′ Ser377Gln mutant inhibited cleavage by ADAMTS-4 and -5, while a neutral Ser377Ala mutant and species mimicking mutants Ser377Thr, Ser377Asn, and Arg375Leu were cleaved normally by ADAMTS-4. The Ser377Thr mutant, however, was resistant to cleavage by ADAMTS-5. Conclusion We have identified multiple conserved amino acids within regions N- and C-terminal to the site of scission that may influence enzyme-substrate recognition, and may interact with exosites on ADAMTS-4 and ADAMTS-5. General Significance Inhibition of the binding of ADAMTS-4 and ADAMTS-5 exosites to aggrecan should be explored as a therapeutic intervention for osteoarthritis. PMID:19101611

  10. High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family.

    PubMed

    Kukreja, Muskan; Shiryaev, Sergey A; Cieplak, Piotr; Muranaka, Norihito; Routenberg, David A; Chernov, Andrei V; Kumar, Sonu; Remacle, Albert G; Smith, Jeffrey W; Kozlov, Igor A; Strongin, Alex Y

    2015-08-20

    Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design. PMID:26256476

  11. Predicting proteinase specificities from free energy calculations.

    PubMed

    Mekonnen, Seble Merid; Olufsen, Magne; Smalås, Arne O; Brandsdal, Bjørn O

    2006-10-01

    The role of the primary binding residue (P1) in complexes between three different subtilases (subtilisin Carlsberg, thermitase and proteinase K) and their canonical protein inhibitor eglin c have been studied by free energy calculations. Based on the crystal structures of eglin c in complex with subtilisin Carlsberg and thermitase, and a homology model of the eglin c-proteinase K complex, a total of 57 mutants have been constructed and docked into their host proteins. The binding free energy was then calculated using molecular dynamics (MD) simulations combined with the linear interaction energy (LIE) method for all complexes differing only in the nature of the amino acid at the P1 position. LIE calculations for 19 different complexes for each subtilase were thus carried out excluding proline. The effects of substitutions at the P1 position on the binding free energies are found to be very large, and positively charged residues (Arg, Lys and His) are particularly deleterious for all three enzymes. The charged variants of the acidic side chains are found to bind more favorably as compared to their protonated states in all three subtilases. Furthermore, hydrophobic amino acids are accommodated most favorably at the S1-site in all three enzymes. Comparison of the three series of binding free energies shows only minor differences in the 19 computed relative binding free energies among these subtilases. This is further reflected in the correlation coefficient between the 23 relative binding free energies obtained, including the possible protonation states of ionizable side chains, but excluding the P1 Pro, for subtilisin Carlsberg versus thermitase (0.95), subtilisin versus proteinase K (0.94) and thermitase versus proteinase K (0.96). PMID:16386933

  12. Role for different cell proteinases in cancer invasion and cytolysis.

    PubMed Central

    Zucker, S.; Beck, G.; DiStefano, J. F.; Lysik, R. M.

    1985-01-01

    The crucial role of non-plasminogen dependent serine proteinases is tissue invasive and cytolytic functions of Walker 256 cancer cells has been documented using a rat urinary bladder invasion and a 125I-labelled fibroblast cytolysis assay. The invasive capacity of these cancer cells was abrogated by non toxic concentrations of the serine proteinase inhibitors, diisopropylfluorophosphate and phenylmethylsulfonylfluoride, but not by metallo or cysteine proteinase inhibitors. Although tumour cell collagenase activity and plasminogen activator were demonstrated, these proteolytic enzymes were not essential in these in vitro assays. These results suggest that different categories of proteinases play specific roles in the complicated process of cancer invasion. PMID:2992566

  13. [Effect of pentoxyphylline on certain indicators of the proteinase-proteinase inhibitor system in rats upon administration of cycloheximide].

    PubMed

    Samokhin, A A; Kaliman, P A; Samokhinka, L M

    2001-01-01

    The pentoxifylline influence on neutral proteinase, alpha-2-macroglobulin, trypsin-alpha-1-proteinase inhibitor and elastaseinhibitory activity under cycloheximide injection has been investigated. Two hours after cycloheximide injection the activity of neutral proteinases increases in rats serum, lungs, heart, liver and kidneys. The preliminary injection of pentoxifylline prevents increase of neutral proteinases activity. Cycloheximide also decreases alpha-2-macroglobulin activity in serum and liver and trypsin-, elastaseinhibitory activity of alpha-1-proteinase inhibitor in all investigated organs. At using pentoxifylline the alpha-2-macroglobulin activity doesn't change in liver and increases in serum in comparison with only cycloheximide and there are no observed any alpha-1 inhibitor proteinase activity changes in rats serum and organs. PMID:12035527

  14. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  15. Manduca sexta proprophenoloxidase activating proteinase-3 (PAP3) stimulates melanization by activating proPAP3, proSPHs, and proPOs

    PubMed Central

    Wang, Yang; Lu, Zhiqiang; Jiang, Haobo

    2014-01-01

    Melanization participates in various insect physiological processes including antimicrobial immune responses. Phenoloxidase (PO), a critical component of the enzyme system catalyzing melanin formation, is produced as an inactive precursor prophenoloxidase (proPO) and becomes active via specific proteolytic cleavage by proPO activating proteinase (PAP). In Manduca sexta, three PAPs can activate proPOs in the presence of two serine proteinase homologs (SPH1 and SPH2). While the hemolymph proteinases (HPs) that generate the active PAPs are known, it is unclear how the proSPHs (especially proSPH1) are activated. In this study, we isolated from plasma of bar-stage M. sexta larvae an Ile-Glu-Ala-Arg-p-nitroanilide hydrolyzing enzyme that cleaved the proSPHs. This proteinase, PAP3, generated active SPH1 and SPH2, which function as cofactors for PAP3 in proPO activation. Cleavage of the purified recombinant proSPHs by PAP3 yielded 38 kDa bands similar in mobility to the SPHs formed in vivo. Surprisingly, PAP3 also can activate proPAP3 to stimulate melanization in a direct positive feedback loop. The enhanced proPO activation concurred with the cleavage activation of proHP6, proHP8, proPAP1, proPAP3, proSPH1, proSPH2, proPOs, but not proHP14 or proHP21. These results indicate that PAP3, like PAP1, is a key factor of the self-reinforcing mechanism in the proPO activation system, which is linked to other immune responses in M. sexta. PMID:24768974

  16. Secreted Aspartic Proteinase Family of Candida tropicalis

    PubMed Central

    Zaugg, Christophe; Borg-von Zepelin, Margarete; Reichard, Utz; Sanglard, Dominique; Monod, Michel

    2001-01-01

    Medically important yeasts of the genus Candida secrete aspartic proteinases (Saps), which are of particular interest as virulence factors. Like Candida albicans, Candida tropicalis secretes in vitro one dominant Sap (Sapt1p) in a medium containing bovine serum albumin (BSA) as the sole source of nitrogen. Using the gene SAPT1 as a probe and under low-stringency hybridization conditions, three new closely related gene sequences, SAPT2 to SAPT4, encoding secreted proteinases were cloned from a C. tropicalis λEMBL3 genomic library. All bands identified by Southern blotting of EcoRI-digested C. tropicalis genomic DNA with SAPT1 could be assigned to a specific SAP gene. Therefore, the SAPT gene family of C. tropicalis is likely to contain only four members. Interestingly, the SAPT2 and SAPT3 gene products, Sapt2p and Sapt3p, which have not yet been detected in C. tropicalis cultures in vitro, were produced as active recombinant enzymes with the methylotrophic yeast Pichia pastoris as an expression system. As expected, reverse transcriptase PCR experiments revealed a strong SAPT1 signal with RNA extracted from cells grown in BSA medium. However, a weak signal was obtained with all other SAPT genes under several conditions tested, showing that these SAPT genes could be expressed at a basic level. Together, these experiments suggest that the gene products Sapt2p, Sapt3p, and Sapt4p could be produced under conditions yet to be described in vitro or during infection. PMID:11119531

  17. Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis.

    PubMed

    Shamamian, P; Schwartz, J D; Pocock, B J; Monea, S; Whiting, D; Marcus, S G; Mignatti, P

    2001-11-01

    Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis. PMID:11598905

  18. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization

    PubMed Central

    Owen, Caroline A.

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3) increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and 5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes. PMID:18329945

  19. Cleavage-quasi cleavage in ferritic and martensitic steels

    SciTech Connect

    Odette, G.R.; Edsinger, K.V.; Lucas, G.E.

    1997-12-31

    Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage in a low alloy pressure vessel steel and two 8--12 Cr martensitic steels as a function of temperature. While differences between the steels were observed, they shared some common characteristics that differ from the conventional view of cleavage. Most notably cleavage does not occur as a single weakest link event; rather it is the consequence of a critical condition when a previously nucleated dispersion of microcracks suddenly coalesce to form a large, rapidly propagating macroscopic crack. It is argued that the critical event can be treated as a bridging instability. The stabilizing effect of the ductile ligaments separating the cleavage facets increases with increasing temperature. Indeed, even in the ductile tearing regime cleavage facets form a significant fraction of nuclei for larger microvoids.

  20. Substrate Cleavage Analysis of Furin and Related Proprotein Convertases

    PubMed Central

    Remacle, Albert G.; Shiryaev, Sergey A.; Oh, Eok-Soo; Cieplak, Piotr; Srinivasan, Anupama; Wei, Ge; Liddington, Robert C.; Ratnikov, Boris I.; Parent, Amelie; Desjardins, Roxane; Day, Robert; Smith, Jeffrey W.; Lebl, Michal; Strongin, Alex Y.

    2008-01-01

    We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R↓ and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R↓ motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins. PMID:18505722

  1. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases.

    PubMed Central

    Rauber, P; Angliker, H; Walker, B; Shaw, E

    1986-01-01

    A synthesis of peptidylfluoromethanes is described that utilizes the conversion of phthaloyl amino acids into their fluoromethane derivatives. These can be deblocked and elongated. The inactivation of chymotrypsin by Cbz-Phe-CH2F (benzyloxycarbonylphenylalanylfluoromethane) was found to be considerably slower than that of the analogous chloromethane. The fluoromethane analogue inactivates chymotrypsin with an overall rate constant that is 2% of that observed for the inactivation of the enzyme with the chloromethane. However, the result is the same. The reagent complexes in a substrate-like manner, with Ki = 1.4 X 10(-4) M, and alkylates the active-centre histidine residue. Cbz-Phe-Phe-CH2F and Cbz-Phe-Ala-CH2F were investigated as inactivators of the cysteine proteinase cathepsin B. The difference in reactivity between fluoromethyl ketones and chloromethyl ketones is less pronounced in the case of the cysteine proteinase than for the serine proteinase. Covalent bond formation takes place in this case also, as demonstrated by the use of a radiolabelled reagent. PMID:3827817

  2. Fractionation and purification of the thiol proteinases from papaya latex.

    PubMed

    Dekeyser, P M; De Smedt, S; Demeester, J; Lauwers, A

    1994-06-01

    Three cysteine proteinases, i.e. chymopapain, papaya proteinase IV and proteinase III, were purified to homogeneity from papaya latex using a combination of ion-exchange chromatography and hydrophobic interaction chromatography. During the purification procedure, the thiol-groups of the active center were reversibly blocked as mixed disulfides with 2-thiopyridone. Homogeneity was proved electrophoretically by native polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate (SDS)-PAGE and rechromatography on a Mono S 5/5 column at pH 5.0. PMID:7952030

  3. Kinetic analysis of papaya proteinase omega.

    PubMed

    Sumner, I G; Vaughan, A; Eisenthal, R; Pickersgill, R W; Owen, A J; Goodenough, P W

    1993-08-01

    Papaya proteinase omega (pp omega) has been purified from dried latex both by immunoaffinity and traditional methods. Kinetic analysis revealed that (1), the pp omega-catalysed hydrolysis of N-benzoyl-L-arginine p-nitroanilide (BApNA) has a lower specificity (kcat/Km) than the same reaction catalysed by papain; (2), the pp omega-catalysed hydrolysis of a tripeptide substrate having phenylalanine at the second position (S2-site) showed a more similar specificity to that catalysed by papain; (3), the significant difference between the two enzymes is that steady state kinetics with both L-BApNA and a tripeptide enables the identification in pp omega of other ionizations affecting binding. The active sites of papain and pp omega can therefore be distinguished by pH-dependence of kcat/Km. PMID:8393709

  4. Patterns of neutrophil serine protease-dependent cleavage of surfactant protein D in inflammatory lung disease.

    PubMed

    Cooley, Jessica; McDonald, Barbara; Accurso, Frank J; Crouch, Erika C; Remold-O'Donnell, Eileen

    2008-04-01

    The manuscript presents definitive studies of surfactant protein D (SP-D) in the context of inflammatory lung fluids. The extent of SP-D depletion in bronchoalveolar lavage fluid (BALF) of children affected with cystic fibrosis (CF) is demonstrated to correlate best with the presence of the active neutrophil serine protease (NSP) elastase. Novel C-terminal SP-D fragments of 27 kDa and 11 kDa were identified in patient lavage fluid in addition to the previously described N-terminal, 35-kDa fragment by the use of isoelectrofocusing, modified blotting conditions, and region-specific antibodies. SP-D cleavage sites were identified. In vitro treatment of recombinant human SP-D dodecamers with NSPs replicated the fragmentation, but unexpectedly, the pattern of SP-D fragments generated by NSPs was dependent on calcium concentration. Whereas the 35- and 11-kDa fragments were generated when incubations were performed in low calcium (200 microM CaCl(2)), incubations in physiological calcium (2 mM) with higher amounts of elastase or proteinase-3 generated C-terminal 27, 21, and 14 kDa fragments, representing cleavage within the collagen and neck regions. Studies in which recombinant SP-D cleavage by individual NSPs was quantitatively evaluated under low and high calcium conditions showed that the most potent NSP for cleaving SP-D is elastase, followed by proteinase-3, followed by cathepsin G. These relative potency findings were considered in the context of other studies that showed that active NSPs in CF BALF are in the order: elastase, followed by cathepsin G, followed by proteinase-3. The findings support a pre-eminent role for neutrophil elastase as the critical protease responsible for SP-D depletion in inflammatory lung disease. PMID:18211966

  5. The short transcript of Leishmania RNA virus is generated by RNA cleavage.

    PubMed Central

    MacBeth, K J; Patterson, J L

    1995-01-01

    Leishmania RNA virus 1 produces a short viral RNA transcript corresponding to the 5' end of positive-sense single-stranded RNAs both in virally infected cells and in in vitro polymerase assays. We hypothesized that this short transcript was generated via cleavage of full-length positive-sense single-stranded RNA. A putative cleavage site was mapped by primer extension analysis to nucleotide 320 of the viral genome. To address the hypothesis that the short transcript is generated via cleavage at this site, two substrate RNAs that possessed viral sequence encompassing the putative cleavage site were created. When incubated with sucrose-purified viral particles, these substrate RNAs were site-specifically cleaved. The cleavage site of the in vitro-processed RNAs also mapped to viral nucleotide 320. The short-transcript-generating activity could be specifically abolished by proteinase K treatment of sucrose-purified viral particles and high concentrations of EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], suggesting that the activity requires a proteinaceous factor and possibly intact viral particles. The cleavage activity is directly associated with short-transcript-generating activity, since only viral particle preparations which were capable of generating the short transcript in polymerase assays were also active in the cleavage assay. Furthermore, the short-transcript-generating activity is independent of the viral polymerase's transcriptase and replicase activities. We present a working model whereby cleavage of Leishmaniavirus RNA transcripts functions in the maintenance of a low-level persistent infection. PMID:7745692

  6. Multiple forms of calcium-dependent proteinase in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1986-01-01

    Four calcium-dependent proteinase (CDP) activities in lobster muscles have been resolved by high performance liquid chromatography. These activities differ in molecular weight and net charge. Though optimum activity occurred at high (5 and 10 mM) calcium at pH 6.8, the enzymes differ in activation at lower calcium concentrations. Only one of the CDPs is active at 100 ..mu..M calcium; none are active at 10 ..mu..M and below. Although all four CDPs are inhibited by the cysteine proteinase inhibitors leupeptin, E-64, and iodoacetamide, they show a differential response to the aspartic proteinase inhibitor pepstatin and the serine proteinase inhibitor PMSF. In contrast to CDPs from vertebrate tissues, crustacean muscles contain multiple forms that require calcium at millimolar levels. 17 refs., 6 figs.

  7. Expression of human α1-proteinase inhibitor in Aspergillus niger

    PubMed Central

    Karnaukhova, Elena; Ophir, Yakir; Trinh, Loc; Dalal, Nimish; Punt, Peter J; Golding, Basil; Shiloach, Joseph

    2007-01-01

    Background Human α1-proteinase inhibitor (α1-PI), also known as antitrypsin, is the most abundant serine protease inhibitor (serpin) in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd) product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI) could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger), a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2), separated by dibasic processing site (N-V-I-S-K-R) that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s) secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size glycoprotein of high

  8. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  9. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  10. The induction of proteinases in corn and soybean by anoxia

    SciTech Connect

    VanToai, T.; Hwang, Shihying )

    1989-04-01

    This study characterized the anaerobic changes in proteinase activities in corn and soybean roots and to investigate the possibility that these changes might contribute to the differential anaerobiosis tolerance of the two species. After 24 h of anoxia, crude protein extracts from H60 corn and Keller soybean root tips (10cm) were assayed for proteinase activities at pH range from 4.5 to 9.5. Turnover of aberrant proteins was studied in seedlings labelled with {sup 3}H-leucine for 12 h under: (a) puromycin (0.64 mM) in air, (b) ethanol (1%) in air, (c) nitrogen and (d) air. After the treatment, the labelled proteins remaining in roots were determined every 2 h for 6 h. In both corn and soybean, activities of alkali proteinases increased, and activities of acid proteinases declined under anoxia. Neutral proteinases increase in anoxic corn roots, but decline in anoxic soybean roots. The protein turnover rate in corn treated with puromycin, ethanol and nitrogen was much higher than in control roots. The protein turnover rate in soybean roots treated with puromycin, ethanol was similar to the rate of the control. The results indicated that: (a) anoxic corn can degrade aberrant proteins, but anoxic soybean cannot, (b) the degradation of aberrant proteins in anoxic corn is accomplished by neutral proteinases, and (c) the accumulation of aberrant proteins in soybean might contribute to the susceptibility of this species to anoxia.

  11. [Effect of quercetin on some indicators of the proteinase-proteinase inhibitor system in rats upon administration of cobalt chloride to them].

    PubMed

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2001-01-01

    The results of quercetin effect on some changes of proteinase--proteinase inhibitor system parameters in rats under cobalt chloride injection are shown. It was established that preliminary quercetin administration prevened neutral proteinase activation and alpha-2-macroglobulin activity decreasing after 2 h of cobalt chloride influence. PMID:12199071

  12. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels.

    PubMed

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D

    2001-08-01

    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology. PMID:11545387

  13. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  14. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  15. Response of digestive cysteine proteinases from the Colorado potato beetle (Leptinotarsa decemlineata) and the black vine weevil (Otiorynchus sulcatus) to a recombinant form of human stefin A.

    PubMed

    Michaud, D; Nguyen-Quoc, B; Vrain, T C; Fong, D; Yelle, S

    1996-01-01

    The effects of the cystatins, human stefin A (HSA) and oryzacystatin I (OCI) on digestive cysteine proteinases of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the black vine weevil (BVW), Otiorynchus sulcatus, were assessed using complementary inhibition assays, cystatin-affinity chromatography, and recombinant forms of the two inhibitors. For both insects, either HSA and OCI used in excess (10 or 20 microM) caused partial and stable inhibition of total proteolytic (azocaseinase) activity, but unlike for OCI the HSA-mediated inhibitions were significantly increased when the inhibitor was used in large excess (100 microM). As demonstrated by complementary inhibition assays, this two-step inhibition of the insect proteases by HSA was due to the differential inactivation of two distinct cysteine proteinase populations in either insect extracts, the rapidly (strongly) inhibited population corresponding to the OCI-sensitive fraction. After removing the cystatin-sensitive proteinases from CPB and BVW midgut extracts using OCI- (or HSA-) affinity chromatography, the effects of the insect "non-target" proteases on the structural integrity of the two cystatins were assessed. While OCI remained essentially stable, HSA was subjected to hydrolysis without the accumulation of detectable stable intermediates, suggesting the presence of multiple exposed cleavage sites sensitive to the action of the insect proteases on this cystatin. This apparent susceptibility of HSA to proteolytic cleavage may partially explain its low efficiency to inactivate the insect OCI-insensitive cysteine proteinases when not used in large excess. It could also have major implications when planning the use of cystatin-expressing transgenic plants for the control of coleopteran pests. PMID:8920105

  16. Proteinases in the joint: clinical relevance of proteinases in joint destruction

    PubMed Central

    Rengel, Yvonne; Ospelt, Caroline; Gay, Steffen

    2007-01-01

    Proteinases are involved in essential steps in cartilage and bone homeostasis. Consequently, efforts have been made to establish their potential role in the pathology of rheumatic conditions such as rheumatoid arthritis, osteoarthritis and spondyloarthritis. Matrix metalloproteinases (MMPs) are sensitive markers of disease severity and response to treatment, and therefore they have potential in the assessment of rheumatic diseases. Despite disappointing early results with synthetic inhibitors of MMPs, there is still much scope for developing effective and safe MMPs inhibitors, and consequently to deliver new options to inhibit joint destruction. PMID:18001502

  17. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    PubMed Central

    2011-01-01

    Background Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing eight genera. We mapped these activity profiles on an independently obtained molecular phylogeny of the symbionts and show that total proteinase activity in lower attine symbionts peaks at ca. pH 6. The higher attine symbionts that have no known free-living relatives had much higher proteinase activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles of lower attine gardens and may thus represent the ancestral type of proteinase production, whereas serine proteinase activity dominated the activity profiles of the higher attine gardens reared by Trachymyrmex and Sericomyrmex, suggesting that there may be trade-offs in the production of these enzyme classes. Remarkably, the single symbiont that is shared by species of the crown group of Atta and Acromyrmex leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent

  18. Developing novel anthelmintics from plant cysteine proteinases

    PubMed Central

    Behnke, Jerzy M; Buttle, David J; Stepek, Gillian; Lowe, Ann; Duce, Ian R

    2008-01-01

    Intestinal helminth infections of livestock and humans are predominantly controlled by treatment with three classes of synthetic drugs, but some livestock nematodes have now developed resistance to all three classes and there are signs that human hookworms are becoming less responsive to the two classes (benzimidazoles and the nicotinic acetylcholine agonists) that are licensed for treatment of humans. New anthelmintics are urgently needed, and whilst development of new synthetic drugs is ongoing, it is slow and there are no signs yet that novel compounds operating through different modes of action, will be available on the market in the current decade. The development of naturally-occurring compounds as medicines for human use and for treatment of animals is fraught with problems. In this paper we review the current status of cysteine proteinases from fruits and protective plant latices as novel anthelmintics, we consider some of the problems inherent in taking laboratory findings and those derived from folk-medicine to the market and we suggest that there is a wealth of new compounds still to be discovered that could be harvested to benefit humans and livestock. PMID:18761736

  19. Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization

    PubMed Central

    Seidah, Nabil G.; Mowla, Seyed J.; Hamelin, Josée; Mamarbachi, Aida M.; Benjannet, Suzanne; Touré, Barry B.; Basak, Ajoy; Munzer, Jon Scott; Marcinkiewicz, Jadwiga; Zhong, Mei; Barale, Jean-Christophe; Lazure, Claude; Murphy, Richard A.; Chrétien, Michel; Marcinkiewicz, Mieczyslaw

    1999-01-01

    Using reverse transcriptase–PCR and degenerate oligonucleotides derived from the active-site residues of subtilisin/kexin-like serine proteinases, we have identified a highly conserved and phylogenetically ancestral human, rat, and mouse type I membrane-bound proteinase called subtilisin/kexin-isozyme-1 (SKI-1). Computer databank searches reveal that human SKI-1 was cloned previously but with no identified function. In situ hybridization demonstrates that SKI-1 mRNA is present in most tissues and cells. Cleavage specificity studies show that SKI-1 generates a 28-kDa product from the 32-kDa brain-derived neurotrophic factor precursor, cleaving at an RGLT↓SL bond. In the endoplasmic reticulum of either LoVo or HK293 cells, proSKI-1 is processed into two membrane-bound forms of SKI-1 (120 and 106 kDa) differing by the nature of their N-glycosylation. Late along the secretory pathway some of the membrane-bound enzyme is shed into the medium as a 98-kDa form. Immunocytochemical analysis of stably transfected HK293 cells shows that SKI-1 is present in the Golgi apparatus and within small punctate structures reminiscent of endosomes. In vitro studies suggest that SKI-1 is a Ca2+-dependent serine proteinase exhibiting a wide pH optimum for cleavage of pro-brain-derived neurotrophic factor. PMID:9990022

  20. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    PubMed

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  1. Digestive Duet: Midgut Digestive Proteinases of Manduca sexta Ingesting Nicotiana attenuata with Manipulated Trypsin Proteinase Inhibitor Expression

    PubMed Central

    Zavala, Jorge A.; Giri, Ashok P.; Jongsma, Maarten A.; Baldwin, Ian T.

    2008-01-01

    Background The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs) on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. Methodology/ Principal Findings Second and third instars larvae that fed on NaTPI-producing (WT) genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. Conclusions/ Significance Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance. PMID:18431489

  2. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog.

    PubMed

    Zhao, Y; Botella, M A; Subramanian, L; Niu, X; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-08-01

    Diverse functions for three soybean (Glycine max L. Merr.) cysteine proteinase inhibitors (CysPIs) are inferred from unique characteristics of differential regulation of gene expression and inhibitory activities against specific Cys proteinases. Based on northern blot analyses, we found that the expression in leaves of one soybean CysPI gene (L1) was constitutive and the other two (N2 and R1) were induced by wounding or methyl jasmonate treatment. Induction of N2 and R1 transcript levels in leaves occurred coincidentally with increased papain inhibitory activity. Analyses of kinetic data from bacterial recombinant CysPI proteins indicated that soybean CysPIs are noncompetitive inhibitors of papain. The inhibition constants against papain of the CysPIs encoded by the wound and methyl jasmonate-inducible genes (57 and 21 nM for N2 and R1, respectively) were 500 to 1000 times lower than the inhibition constant of L1 (19,000 nM). N2 and R1 had substantially greater inhibitory activities than L1 against gut cysteine proteinases of the third-instar larvae of western corn rootworm and Colorado potato beetle. Cysteine proteinases were the predominant digestive proteolytic enzymes in the guts of these insects at this developmental stage. N2 and R1 were more inhibitory than the epoxide trans-epoxysuccinyl-L-leucylamide-(4-guanidino)butane (E-64) against western corn rootworm gut proteinases (50% inhibition concentration = 50, 200, and 7000 nM for N2, R1, and E-64, respectively). However, N2 and R1 were less effective than E-64 against the gut proteinases of Colorado potato beetle. These results indicate that the wound-inducible soybean CysPIs, N2 and R1, function in host plant defense against insect predation, and that substantial variation in CysPI activity against insect digestive proteinases exists among plant CysPI proteins. PMID:8756506

  3. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog.

    PubMed Central

    Zhao, Y; Botella, M A; Subramanian, L; Niu, X; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-01-01

    Diverse functions for three soybean (Glycine max L. Merr.) cysteine proteinase inhibitors (CysPIs) are inferred from unique characteristics of differential regulation of gene expression and inhibitory activities against specific Cys proteinases. Based on northern blot analyses, we found that the expression in leaves of one soybean CysPI gene (L1) was constitutive and the other two (N2 and R1) were induced by wounding or methyl jasmonate treatment. Induction of N2 and R1 transcript levels in leaves occurred coincidentally with increased papain inhibitory activity. Analyses of kinetic data from bacterial recombinant CysPI proteins indicated that soybean CysPIs are noncompetitive inhibitors of papain. The inhibition constants against papain of the CysPIs encoded by the wound and methyl jasmonate-inducible genes (57 and 21 nM for N2 and R1, respectively) were 500 to 1000 times lower than the inhibition constant of L1 (19,000 nM). N2 and R1 had substantially greater inhibitory activities than L1 against gut cysteine proteinases of the third-instar larvae of western corn rootworm and Colorado potato beetle. Cysteine proteinases were the predominant digestive proteolytic enzymes in the guts of these insects at this developmental stage. N2 and R1 were more inhibitory than the epoxide trans-epoxysuccinyl-L-leucylamide-(4-guanidino)butane (E-64) against western corn rootworm gut proteinases (50% inhibition concentration = 50, 200, and 7000 nM for N2, R1, and E-64, respectively). However, N2 and R1 were less effective than E-64 against the gut proteinases of Colorado potato beetle. These results indicate that the wound-inducible soybean CysPIs, N2 and R1, function in host plant defense against insect predation, and that substantial variation in CysPI activity against insect digestive proteinases exists among plant CysPI proteins. PMID:8756506

  4. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry. PMID:15236611

  5. Effects of leupeptin on proteinase and germination of castor beans

    SciTech Connect

    Alpi, A.; Beevers, H.

    1981-10-01

    Leupeptin, tripeptide inhibitor of some proteinases, was shown previously to maintain the stability of several enzymes (isocitrate lyase, fumarase, and catalase) in crude extracts of castor bean endosperm. This reagent is now shown to inhibit the breakdown of water-soluble and crystalloid-storage proteins of the protein bodies isolated from castor beans by the SH-proteinase and it also inhibits the endopeptidase from mung beans. When suitably introduced into the endosperm of dry castor beans it strongly inhibits germination and seedling development. Application of leupeptin to endosperm halves removed from the seed prevents the normal development of enzymes concerned with gluconeogenesis from fat and drastically curtails sugar production. The results suggest that the SH-proteinase is intimately involved in the mobilization of storage proteins.

  6. A Monoclonal Antibody (MCPR3-7) Interfering with the Activity of Proteinase 3 by an Allosteric Mechanism*

    PubMed Central

    Hinkofer, Lisa C.; Seidel, Susanne A. I.; Korkmaz, Brice; Silva, Francisco; Hummel, Amber M.; Braun, Dieter; Jenne, Dieter E.; Specks, Ulrich

    2013-01-01

    Proteinase 3 (PR3) is an abundant serine protease of neutrophil granules and a major target of autoantibodies (PR3 anti-neutrophil cytoplasmic antibodies) in granulomatosis with polyangiitis. Some of the PR3 synthesized by promyelocytes in the bone marrow escapes the targeting to granules and occurs on the plasma membrane of naive and primed neutrophils. This membrane-associated PR3 antigen may represent pro-PR3, mature PR3, or both forms. To discriminate between mature PR3 and its inactive zymogen, which have different conformations, we generated and identified a monoclonal antibody called MCPR3-7. It bound much better to pro-PR3 than to mature PR3. This monoclonal antibody greatly reduced the catalytic activity of mature PR3 toward extended peptide substrates. Using diverse techniques and multiple recombinant PR3 variants, we characterized its binding properties and found that MCPR3-7 preferentially bound to the so-called activation domain of the zymogen and changed the conformation of mature PR3, resulting in impaired catalysis and inactivation by α1-proteinase inhibitor (α1-antitrypsin). Noncovalent as well as covalent complexation between PR3 and α1-proteinase inhibitor was delayed in the presence of MCPR3-7, but cleavage of certain thioester and paranitroanilide substrates with small residues in the P1 position was not inhibited. We conclude that MCPR3-7 reduces PR3 activity by an allosteric mechanism affecting the S1′ pocket and further prime side interactions with substrates. In addition, MCPR3-7 prevents binding of PR3 to cellular membranes. Inhibitory antibodies targeting the activation domain of PR3 could be exploited as highly selective inhibitors of PR3, scavengers, and clearers of the PR3 autoantigen in granulomatosis with polyangiitis. PMID:23902773

  7. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  8. Cloning of a Locusta cDNA encoding a precursor peptide for two structurally related proteinase inhibitors.

    PubMed

    Kromer, E; Nakakura, N; Lagueux, M

    1994-03-01

    Two peptides of respectively 35 and 36 residues were recently isolated from Locusta migratoria and their full structural characteristics were established by Edman degradation and mass spectrometry. These peptides were subsequently shown to have a proteinase inhibiting activity. We report here the cloning and characterization of a cDNA encoding a 92-residue precursor with three distinct domains: (I) a typical signal peptide of 19 residues; (II) the peptide sequence of the 35-residue inhibitor separated by a Lys-Arg dipeptide cleavage site from (III) the peptide sequence of the 36-residue inhibitor. We show by Northern blot analysis that the gene encoding this precursor is mainly transcribed in the cells of the fat body. PMID:8019577

  9. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  10. The thiol proteinases from the latex of Carica papaya L. II. The primary structure of proteinase omega.

    PubMed

    Dubois, T; Kleinschmidt, T; Schnek, A G; Looze, Y; Braunitzer, G

    1988-08-01

    The complete primary structure of the proteinase omega isolated from the latex of the Carica papaya fruits is given. The polypeptide chain contains 216 amino-acid residues, the alignment of which was deduced from sequence analyses of the native enzyme, the tryptic, chymotryptic, peptic and thermolysinolytic peptides and facilitated due to the considerable degree of homology with papain and actinidin. The location of the three disulfide bridges could be established with the help of peptic and thermolysinolytic fragments. Proteinase omega shares 148 identical amino-acid residues (68.5%) with papain and 108 ones (50%) with actinidin, including the three disulfide bridges and the free cysteine residue required for activity, as well as most of the other amino-acid residues involved in the catalytic mechanism and two thirds of the glycine residues which are of structural significance. The homology with other cysteine proteinases of different origin is discussed. PMID:3063283

  11. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage

    PubMed Central

    Humoud, Majid N.; Doyle, Nicole; Royall, Elizabeth; Willcocks, Margaret M.; Sorgeloos, Frederic; van Kuppeveld, Frank; Roberts, Lisa O.; Goodfellow, Ian G.; Langereis, Martijn A.

    2016-01-01

    ABSTRACT In response to stress such as virus infection, cells can stall translation by storing mRNAs away in cellular compartments called stress granules (SGs). This defense mechanism favors cell survival by limiting the use of energy and nutrients until the stress is resolved. In some cases it may also block viral propagation as viruses are dependent on the host cell resources to produce viral proteins. Human norovirus is a member of the Caliciviridae family responsible for gastroenteritis outbreaks worldwide. Previous studies on caliciviruses have identified mechanisms by which they can usurp the host translational machinery, using the viral protein genome-linked VPg, or regulate host protein synthesis through the mitogen-activated protein kinase (MAPK) pathway. Here, we examined the effect of feline calicivirus (FCV) infection on SG accumulation. We show that FCV infection impairs the assembly of SGs despite an increased phosphorylation of eukaryotic initiation factor eIF2α, a hallmark of stress pathway activation. Furthermore, SGs did not accumulate in FCV-infected cells that were stressed with arsenite or hydrogen peroxide. FCV infection resulted in the cleavage of the SG-nucleating protein Ras-GTPase activating SH3 domain-binding protein (G3BP1), which is mediated by the viral 3C-like proteinase NS6Pro. Using mutational analysis, we identified the FCV-induced cleavage site within G3BP1, which differs from the poliovirus 3C proteinase cleavage site previously identified. Finally, we showed that NS6Pro-mediated G3BP1 cleavage impairs SG assembly. In contrast, murine norovirus (MNV) infection did not impact arsenite-induced SG assembly or G3BP1 integrity, suggesting that related caliciviruses have distinct effects on the stress response pathway. IMPORTANCE Human noroviruses are a major cause of viral gastroenteritis, and it is important to understand how they interact with the infected host cell. Feline calicivirus (FCV) and murine norovirus (MNV) are used as

  12. Isolation and characterization of selective and potent human Fab inhibitors directed to the active-site region of the two-component NS2B-NS3 proteinase of West Nile virus.

    PubMed

    Shiryaev, Sergey A; Radichev, Ilian A; Ratnikov, Boris I; Aleshin, Alexander E; Gawlik, Katarzyna; Stec, Boguslaw; Frisch, Christian; Knappik, Achim; Strongin, Alex Y

    2010-05-01

    There is a need to develop inhibitors of mosquito-borne flaviviruses, including WNV (West Nile virus). In the present paper, we describe a novel and efficient recombinant-antibody technology that led us to the isolation of inhibitory high-affinity human antibodies to the active-site region of a viral proteinase. As a proof-of-principal, we have successfully used this technology and the synthetic naive human combinatorial antibody library HuCAL GOLD(R) to isolate selective and potent function-blocking active-site-targeting antibodies to the two-component WNV NS (non-structural protein) 2B-NS3 serine proteinase, the only proteinase encoded by the flaviviral genome. First, we used the wild-type enzyme in antibody screens. Next, the positive antibody clones were counter-screened using an NS2B-NS3 mutant with a single mutation of the catalytically essential active-site histidine residue. The specificity of the antibodies to the active site was confirmed by substrate-cleavage reactions and also by using proteinase mutants with additional single amino-acid substitutions in the active-site region. The selected WNV antibodies did not recognize the structurally similar viral proteinases from Dengue virus type 2 and hepatitis C virus, and human serine proteinases. Because of their high selectivity and affinity, the identified human antibodies are attractive reagents for both further mutagenesis and structure-based optimization and, in addition, for studies of NS2B-NS3 activity. Conceptually, it is likely that the generic technology reported in the present paper will be useful for the generation of active-site-specific antibody probes for multiple enzymes. PMID:20156198

  13. Modulation of the electrostatic charge at the active site of foot-and-mouth-disease-virus leader proteinase, an unusual papain-like enzyme.

    PubMed Central

    Schlick, Petra; Kronovetr, Jakub; Hampoelz, Bernhard; Skern, Tim

    2002-01-01

    The leader proteinase (L(pro)) of foot-and-mouth-disease virus is an unusual papain-like cysteine proteinase. Synthesized without an N-terminal pro precursor region, it frees itself from the growing polypeptide chain by cleavage at its own C-terminus. It also possesses a unique electrostatic environment around the active site, essentially due to Asp(163), which orients the catalytic histidine residue, and Asp(164); the equivalent residues in papain are Asn(175) and Ser(176). The importance of these residues for L(pro) activity was examined by site-directed mutagenesis. Replacement of Asp(163) with asparagine reduced activity by five-fold towards a hexapeptide substrate and slightly delayed self-processing when expressed in rabbit reticulocyte lysates. However, no effect on the cleavage of the only known cellular substrate of L(pro), eukaryotic initiation factor 4GI (eIF4GI), was observed. In contrast, replacement of Asp(164) by either alanine, asparagine or lysine abrogated activity towards the hexapeptide. Furthermore, in all cases, the onset of both self-processing and eIF4GI cleavage were significantly delayed; the reaction rates were also diminished compared with those of the wild-type enzyme. The alanine-substituted enzyme was least affected, followed by those substituted with asparagine and lysine. The double mutant protein in which both aspartate residues were replaced by asparagine was most severely affected; it failed to complete either self-processing or eIF4GI cleavage within 3 h, compared with the 8 min required by the wild-type enzyme. Hence, we propose that the electrostatic charge of Asp(164), and to a lesser extent that of Asp(163), is extremely important for L(pro) to attain full activity upon synthesis. PMID:11964149

  14. High-Resolution Analysis and Functional Mapping of Cleavage Sites and Substrate Proteins of Furin in the Human Proteome

    PubMed Central

    Shiryaev, Sergey A.; Chernov, Andrei V.; Golubkov, Vladislav S.; Thomsen, Elliot R.; Chudin, Eugene; Chee, Mark S.; Kozlov, Igor A.; Strongin, Alex Y.; Cieplak, Piotr

    2013-01-01

    Background There is a growing appreciation of the role of proteolytic processes in human health and disease, but tools for analysis of such processes on a proteome-wide scale are limited. Furin is a ubiquitous proprotein convertase that cleaves after basic residues and transforms secretory proproteins into biologically active proteins. Despite this important role, many furin substrates remain unknown in the human proteome. Methodology/Principal Findings We devised an approach for proteinase target identification that combines an in silico discovery pipeline with highly multiplexed proteinase activity assays. We performed in silico analysis of the human proteome and identified over 1,050 secretory proteins as potential furin substrates. We then used a multiplexed protease assay to validate these tentative targets. The assay was carried out on over 3,260 overlapping peptides designed to represent P7-P1’ and P4-P4’ positions of furin cleavage sites in the candidate proteins. The obtained results greatly increased our knowledge of the unique cleavage preferences of furin, revealed the importance of both short-range (P4-P1) and long-range (P7-P6) interactions in defining furin cleavage specificity, demonstrated that the R-X-R/K/X-R↓ motif alone is insufficient for predicting furin proteolysis of the substrate, and identified ∼490 potential protein substrates of furin in the human proteome. Conclusions/Significance The assignment of these substrates to cellular pathways suggests an important role of furin in development, including axonal guidance, cardiogenesis, and maintenance of stem cell pluripotency. The novel approach proposed in this study can be readily applied to other proteinases. PMID:23335997

  15. Serine proteinases from barley malt may degrade beta-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley seed proteinases are critically important to seed germination and malting in that they generate amino acids from seed N reserves, supporting embryo growth during germination and yeast fermentation during brewing. However, relatively little is known regarding the endogenous protein substrate ...

  16. FUSARIUM SPECIES SYNTHESIZE ALKALINE PROTEINASES IN INFESTED BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) that is infested with Fusarium head blight (FHB, `scab') is unsuitable for malting and brewing because it may contain mycotoxins and has unacceptable malting quality. Fungal proteinases are apparently involved in plant-microbe interactions, because they degrade the storag...

  17. Identification and characterization of cysteine proteinases of Trypanosoma evansi.

    PubMed

    Yadav, S C; Kumar, R; Kumar, S; Tatu, U; Singh, R K; Gupta, A K

    2011-09-01

    Trypanosoma evansi is a causative agent of 'surra', a common haemoprotozoan disease of livestock in India causing high morbidity and mortality in disease endemic areas. The proteinases released by live and dead trypanosomes entail immunosuppression in the infected host, which immensely contribute in disease pathogenesis. Cysteine proteinases are identified in the infectious cycle of trypanosomes such as cruzain from Trypanosoma cruzi, rhodesain or brucipain from Trypanosoma brucei rhodesiense and congopain from Trypanosoma congelense. These enzymes localised in lysosome-like organelles, flagellar pocket and on cell surface, which play a critical role in the life cycle of protozoan parasites, viz. in host invasion, nutrition and alteration of the host immune response. The paper describes the identification of cysteine proteinases of T. evansi lysate, activity profile at different pH optima and inhibition pattern using a specific inhibitor, besides the polypeptide profile of an antigen. Eight proteinases of T. evansi were identified in the molecular weight (MW) ranges of 28-170 kDa using gelatin substrate-polyacrylamide gel electrophoresis (GS-PAGE), and of these proteinases, six were cysteine proteinases, as they were inhibited by L-3-carboxy-2,3-transepoxypropionyl-lecuylamido (4-guanidino)-butane (E-64), a specific inhibitor. These proteolytic enzymes were most reactive in acidic pH between 3.0 and 5.5 in the presence of dithiothreitol and completely inactive at alkaline pH 10.0. Similarly, the GS-PAGE profile of the serum samples of rats infected with T. evansi revealed strong proteolytic activity only at the 28-kDa zone at pH 5.5, while no proteolytic activity was observed in serum samples of uninfected rats. Further, the other zones of clearance, which were evident in T. evansi antigen zymogram, could not be observed in the serum samples of rats infected with T. evansi. The polypeptide pattern of the whole cell lysate antigen revealed 12-15 polypeptide bands

  18. Purification and characterization of a novel cysteine proteinase (periodontain) from Porphyromonas gingivalis. Evidence for a role in the inactivation of human alpha1-proteinase inhibitor.

    PubMed

    Nelson, D; Potempa, J; Kordula, T; Travis, J

    1999-04-30

    Periodontal disease is characterized by inflammation of the periodontium manifested by recruitment of neutrophils, which can degranulate, releasing powerful proteinases responsible for destruction of connective tissues, and eventual loss of tooth attachment. Although the presence of host proteinase inhibitors (serpins) should minimize tissue damage by endogenous proteinases, this is not seen clinically, and it has been speculated that proteolytic inactivation of serpins may contribute to progression of the disease. A major pathogen associated with periodontal disease is the Gram-negative anaerobe Porphyromonas gingivalis, and in this report, we describe a novel proteinase that has been isolated from culture supernatants of this organism that is capable of inactivating the human serpin, alpha1-proteinase inhibitor, the primary endogenous regulator of human neutrophil elastase. This new enzyme, referred to as periodontain, belongs to the cysteine proteinase family based on inhibition studies and exists as a 75-kDa heterodimer. Furthermore, periodontain shares significant homology to streptopain, a proteinase from Streptococcus pyogenes, and prtT, a putative proteinase from P. gingivalis. Clearly, the presence of this enzyme, which rapidly inactivates alpha1-proteinase inhibitor, could result in elevated levels of human neutrophil elastase clinically detected in periodontal disease and should be considered as a potential virulence factor for P. gingivalis. PMID:10212191

  19. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein

  20. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    PubMed

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  1. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review.

    PubMed

    Sadat-Mekmene, Leila; Genay, Magali; Atlan, Danièle; Lortal, Sylvie; Gagnaire, Valérie

    2011-03-15

    Lactobacillus helveticus is a lactic acid bacterium very used in fermented milks and cheese. The rapid growth of L. helveticus in milk is supported by an efficient cell envelope proteinase (CEP) activity, due to subtilisin-like serine proteases. These enzymes play also crucial roles in texture and flavor formation in dairy products as well as in generating in situ bioactive peptides. In L. helveticus, several genes encoding putative CEPs were detected and characterized by a large intraspecific diversity; little is known about regulation of expression of CEP-encoding genes. Anchored at the bacterial surface, CEPs are large-sized enzymes (> 150 kDa) hydrolyzing β- and α(s1)-casein as well. Substrate cleavages occur after almost all types of amino acids residues, but mass spectrometry analysis revealed L. helveticus strains with specific profiles of substrate hydrolysis, which could explain identification of strains associated with interesting technological properties. In this review, the most recent data regarding CEP-encoding genes, CEP activities toward caseins and L. helveticus strain diversity are discussed. PMID:21354644

  2. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2.

    PubMed Central

    Bohm, S K; Kong, W; Bromme, D; Smeekens, S P; Anderson, D C; Connolly, A; Kahn, M; Nelken, N A; Coughlin, S R; Payan, D G; Bunnett, N W

    1996-01-01

    We used PCR to amplify proteinase activated receptor-2 (PAR-2) from human kidney cDNA. The open reading frame comprised 1191 bp and encoded a protein of 397 residues with 83% identity with mouse PAR-2. In KNRK cells (a line of kirsten murine sarcoma virus-transformed rat kidney epithelial cells) transfected with this cDNA, trypsin and activating peptide (AP) corresponding to the tethered ligand exposed by trypsin cleavage (SLIGKV-NH2) induced a prompt increase in cytosolic calcium ion concentration ([Ca2+]i). Human PAR-2 (hPAR-2) resided both on the plasma membrane and in the Golgi apparatus. hPAR-2 mRNA was highly expressed in human pancreas, kidney, colon, liver and small intestine, and by A549 lung and SW480 colon adenocarcinoma cells. Hybridization in situ revealed high expression in intestinal epithelial cells throughout the gut. Trypsin and AP stimulated an increase in [Ca2+]i in a rat intestinal epithelial cell line (hBRIE 380) and stimulated amylase secretion in isolated pancreatic acini. In A549 cells, which also responded to trypsin and AP with mobilization of cytosolic Ca2+, AP inhibited colony formation. Thus PAR-2 may serve as a trypsin sensor in the gut. Its expression by cells and tissues not normally exposed to pancreatic trypsin suggests that other proteases could serve as physiological activators. PMID:8615752

  3. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis.

    PubMed

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U; Kegel, Johanna; Haller, Hermann; Haubitz, Marion; Kirsch, Torsten

    2015-11-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  4. Lipoprotein(a) binds to fibronectin and has serine proteinase activity capable of cleaving it.

    PubMed Central

    Salonen, E M; Jauhiainen, M; Zardi, L; Vaheri, A; Ehnholm, C

    1989-01-01

    The plasma concentration of human lipoprotein(a) [Lp(a)] is correlated with the risk of heart disease. A distinct feature of the Lp(a) particle is the apolipoprotein (a) [apo(a)], which is associated with apoB-100, the main protein component of low-density lipoprotein. We now report that apo(a), which has extensive homology to plasminogen, binds to immobilized fibronectin. The binding of Lp(a) was localized to the C-terminal heparin-binding domain of fibronectin. Incubation of Lp(a) with fibronectin resulted in fragmentation of fibronectin. The cleavage pattern, as visualized by gel electrophoresis and immunoblotting, was reproducibly obtained with Lp(a) purified from five different individuals and was distinct from that obtained upon proteolysis of fibronectin by plasmin or kallikrein. The use of synthetic peptide substrates demonstrated that the amino acid specificity for Lp(a) was arginine rather than lysine. The proteolytic activity of Lp(a) was localized to apo(a) and experiments with inhibitors indicated that the proteolytic activity was of serine proteinase-type. Images PMID:2531657

  5. Cleavage mechanism in vanadium alloys

    SciTech Connect

    Odette, G.R.; Donahue, E.; Lucas, G.E.

    1997-12-31

    The effect specimen geometry, loading rate and irradiation on the ductile-to-brittle transition in a V-4Ti-4Cr alloy were evaluated and modeled. Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage, as well as the CTOD at fracture initiation. This alloy undergoes normal stress-controlled transgranular cleavage below a transition temperature that depends primarily on the tensile properties and constraint. Thus an equivalent yield stress model is in good agreement with observed effects of loading rate and irradiation hardening. Predicted effects of specimen geometry based on a critical stress-area criteria and FEM simulations of crack tip fields were also found to be in agreement with experiment. Some interesting characteristics of the fracture process are also described.

  6. Centralspindlin in Rappaport's cleavage signaling.

    PubMed

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  7. The NS3 proteinase domain of hepatitis C virus is a zinc-containing enzyme.

    PubMed Central

    Stempniak, M; Hostomska, Z; Nodes, B R; Hostomsky, Z

    1997-01-01

    NS3 proteinase of hepatitis C virus (HCV), contained within the N-terminal domain of the NS3 protein, is a chymotrypsin-like serine proteinase responsible for processing of the nonstructural region of the HCV polyprotein. In this study, we examined the sensitivity of the NS3 proteinase to divalent metal ions, which is unusual behavior for this proteinase class. By using a cell-free coupled transcription-translation system, we found that HCV polyprotein processing can be activated by Zn2+ (and, to a lesser degree, by Cd2+, Pb2+, and Co2+) and inhibited by Cu2+ and Hg2+ ions. Elemental analysis of the purified NS3 proteinase domain revealed the presence of zinc in an equimolar ratio. The zinc content was unchanged in a mutated NS3 proteinase in which active-site residues His-57 and Ser-139 were replaced with Ala, suggesting that the zinc atom is not directly involved in catalysis but rather may have a structural role. Based on data from site-directed mutagenesis combined with zinc content determination, we propose that Cys-97, Cys-99, Cys-145, and His-149 coordinate the structural zinc in the HCV NS3 proteinase. A similar metal binding motif is found in 2A proteinases of enteroviruses and rhinoviruses, suggesting that these 2A proteinases and HCV NS3 proteinase are structurally related. PMID:9060645

  8. MOLECULAR CLONING OF TRYPSIN-LIKE CDNAS AND COMPARISON OF PROTEINASE ACTIVITIES IN THE SALIVARY GLANDS AND GUT OF THE TARNISHED PLANT BUG LYGUS LINEOLARIS (HEMIPTERA: MIRIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using specific proteinase inhibitors, we demonstrated that serine proteinases in the tarnished plant bug, Lygus lineolaris, are major proteinases in both salivary glands and gut tissues. Gut proteinases were less sensitive to inhibition than proteinases from the salivary glands. Up to 80% azocaseina...

  9. Ozone inactivation of human alpha 1-proteinase inhibitor

    SciTech Connect

    Johnson, D.A.

    1980-06-01

    Ozone decreased the trypsin, chymotrypsin, and elastase inhibitory activities of human alpha 1-proteinase inhibitor both in plasma and in solutions of the pure inhibitor. The total loss of porcine elastase inhibitory activity required 18 mol of ozone/mol of pure alpha 1-PI and approximately 850 mol of ozone/mol of alpha 1-PI in plasma. A corresponding loss of the ability to inhibit human leukocyte elastase was observed. Inactivated alpha 1-PI contains four residues of methionine sulfoxide, in addition to oxidized tryosine and tryptophan. Electrophoretic analysis demonstrated that the ozone-inactivated alpha 1-PI did not form normal complexes with serine proteinases. These findings suggest that the inhalation of ozone could inactivate alpha 1-PI on the airspace side of the lung to create a localized alpha 1-PI deficiency, which might contribute to the development of emphysema.

  10. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    PubMed Central

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  11. Structural characterization of the papaya cysteine proteinases at low pH.

    PubMed

    Huet, Joëlle; Looze, Yvan; Bartik, Kristin; Raussens, Vincent; Wintjens, René; Boussard, Paule

    2006-03-10

    Current control of gastrointestinal nematodes relies primarily on the use of synthetic drugs and encounters serious problems of resistance. Oral administration of plant cysteine proteinases, known to be capable of damaging nematode cuticles, has recently been recommended to overcome these problems. This prompted us to examine if plant cysteine proteinases like the four papaya proteinases papain, caricain, chymopapain, and glycine endopeptidase that have been investigated here can survive acidic pH conditions and pepsin degradation. The four papaya proteinases have been found to undergo, at low pH, a conformational transition that instantaneously converts their native forms into molten globules that are quite unstable and rapidly degraded by pepsin. As shown by activity measurements, the denatured state of these proteinases which finally results from acid treatment is completely irreversible. It is concluded that cysteine proteinases from plant origin may require to be protected against both acid denaturation and proteolysis to be effective in the gut after oral administration. PMID:16434027

  12. Neutrophil-derived Oxidants and Proteinases as Immunomodulatory Mediators in Inflammation

    PubMed Central

    Witko-Sarsat, V.

    1994-01-01

    Neutrophils generate potent microbicidal molecules via the oxygen-dependent pathway, leading to the generation of reactive oxygen intermediates (ROI), and via the non-oxygen dependent pathway, consisting in the release of serine proteinases and metalloproteinases stored in granules. Over the past years, the concept has emerged that both ROI and proteinases can be viewed as mediators able to modulate neutrophil responses as well as the whole inflammatory process. This is well illustrated by the oxidative regulation of proteinase activity showing that oxidants and proteinases acts is concert to optimize the microbicidal activity and to damage host tissues. ROI and proteinases can modify the activity of several proteins involved in the control of inflammatory process. Among them, tumour necrosis factor-α and interleukin-8, are elective targets for such a modulation. Moreover, ROI and proteinases are also able to modulate the adhesion process of neutrophils to endothelial cells, which is a critical step in the inflammatory process. PMID:18472951

  13. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  14. [Occurrence and function of a proteinase inhibitor in the hemolymph of insects].

    PubMed

    Hanschke, R; Hanschke, M

    1975-01-01

    The presence of proteinase inhibitor has been proved in the hemolymph of a number of insect species from seven different insect orders. The amount of proteinase inhibitor in the hemolymph significantly increases after injection of inactivated bacteria into the hemocoelom of Galleria mellonella-larvae. Moreover the larvae show an increased resistance against normally lethal concentrations of trypsin, chymotrypsin, pronase P and extracellular proteinase produced by Pseudomonas aeruginosa. It is discussed that the proteinase inhibitor is one of the factors acting in the antibacterial defense system in the hemolymph of Galleria mellonella-larvae. PMID:811027

  15. Serine proteinase inhibition by the active site titrant N alpha-(N, N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester. A comparative study.

    PubMed

    Ascenzi, P; Balliano, G; Gallina, C; Polticelli, F; Bolognesi, M

    2000-02-01

    Kinetics for the hydrolysis of the chromogenic active-site titrant N alpha-(N,N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester (Dmc-azaOrn-ONp) catalysed by bovine beta-trypsin, bovine alpha-thrombin, bovine Factor Xa, human alpha-thrombin, human Factor Xa, human Lys77-plasmin, human urinary kallikrein, Mr 33 000 and Mr 54 000 species of human urokinase, porcine pancreatic beta-kallikrein-A and -B and Ancrod (the coagulating serine proteinase from the Malayan pit viper Agkistrodon rhodostoma venom) have been obtained between pH 6.0 and 8.0, at 21.0 degrees C, and analysed in parallel with those for the enzymatic cleavage of N alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester (Dmc-azaLys-ONp). The enzyme kinetics are consistent with the minimum three-step catalytic mechanism of serine proteinases, the rate-limiting step being represented by the deacylation process. Bovine beta-trypsin kinetics are modulated by the acid-base equilibrium of the His57 catalytic residue (pKa approximately 6.9). Dmc-azaOrn-ONp and Dmc-azaLys-ONp bind stoichiometrically to the serine proteinase active site, and allow the reliable determination of the active enzyme concentration between 1.0 x 10-6 M and 3.0 x 10-4 M. The affinity and the reactivity for Dmc-azaOrn-ONp (expressed by Ks and k+2/Ks, respectively) of the serine proteinases considered are much lower than those for Dmc-azaLys-ONp. The very different affinity and reactivity properties for Dmc-azaOrn-ONp and Dmc-azaLys-ONp have been related to the different size of the ornithine/lysine side chains, and to the ensuing different positioning of the active-site titrants upon binding to the enzyme catalytic centre (i.e. to P1-S1 recognition). These data represent the first detailed comparative investigation on the catalytic properties of serine proteinases towards an ornithine derivative (i. e. Dmc-azaOrn-ONp). PMID:10672036

  16. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    SciTech Connect

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward ({sup 3}H)-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics.

  17. Mutation detection by chemical cleavage.

    PubMed

    Cotton, R G

    1999-02-01

    Detection and amplification of mutations in genes in a cheap, 100% effective manner is a major objective in modern molecular genetics. This ideal is some way away and many methods are used each of which have their own particular advantages and disadvantages. Sequencing is often thought of as the 'gold standard' for mutation detection. This perception is distorted due to the fact that this is the ONLY method of mutation identification but this does not mean it is the best for mutation detection. The fact that many scanning methods detect 5-10% of mutant molecules in a wild type environment immediately indicates these methods are advantageous over sequencing. One such method, the Chemical Cleavage method, is able to cut the costs of detecting a mutation on order of magnitude and guarantees mutation detection as evidenced by track record and the fact that each mutation has two chances of being detected. PMID:10084109

  18. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  19. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi.

    PubMed

    Porter, P; Susarla, S C; Polikepahad, S; Qian, Y; Hampton, J; Kiss, A; Vaidya, S; Sur, S; Ongeri, V; Yang, T; Delclos, G L; Abramson, S; Kheradmand, F; Corry, D B

    2009-11-01

    Active fungal proteinases are powerful allergens that induce experimental allergic lung disease strongly resembling atopic asthma, but the precise relationship between proteinases and asthma remains unknown. Here, we analyzed dust collected from the homes of asthmatic children for the presence and sources of active proteinases to further explore the relationship between active proteinases, atopy, and asthma. Active proteinases were present in all houses and many were derived from fungi, especially Aspergillus niger. Proteinase-active dust extracts were alone insufficient to initiate asthma-like disease in mice, but conidia of A. niger readily established a contained airway mucosal infection, allergic lung disease, and atopy to an innocuous bystander antigen. Proteinase produced by A. niger enhanced fungal clearance from lung and was required for robust allergic disease. Interleukin 13 (IL-13) and IL-5 were required for optimal clearance of lung fungal infection and eosinophils showed potent anti-fungal activity in vitro. Thus, asthma and atopy may both represent a protective response against contained airway infection due to ubiquitous proteinase-producing fungi. PMID:19710638

  20. COMPARATIVE ANALYSIS OF PROTEINASE ACTIVITIES OF BACILLUS THURINGIENSIS-RESISTANT AND -SUSCEPTIBLE OSTRINIA NUBILALIS (LEPIDOPTERA: CRAMBIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteinase activities were compared in soluble and membrane fractions of gut tissues of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis larvae. The soluble trypsin-like proteinase activity of the resistant strain was reduced 56%, significantly lower than that of the susceptibl...

  1. [Activity of Ca(2+)-dependent neutral proteinases in rat organs under cobalt and mercury chloride injection].

    PubMed

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2003-01-01

    The activity of Ca(2+)-dependent neutral proteinases in rats under cobalt and mercury chloride injection was investigated. The calpains activity increase in the lungs, heart, liver and kidneys was revealed after 2 h cobalt chloride action. The mercury chloride gives a reliable increase of calcium-dependent neutral proteinases only in the kidneys. PMID:14574747

  2. ANALYSIS OF MIDGUT PROTEINASES FROM BACILLUS THURINGIENSIS-SUSCEPTIBLE AND -RESISTANT HELIOTHIS VIRESCENS (LEPIDOPTERA: NOCTUIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects with altered proteinases can avoid intoxication by Bacillus thuringiensis (Bt) toxins. Therefore, proteinase activities from gut extracts of Bt-susceptible (YDK) and -resistant (YHD2-B, CXC and KCBhyb) H. virescens strains were compared. The overall pH of gut extracts from YDK and CXC were...

  3. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease

    PubMed Central

    Owen, Caroline A

    2008-01-01

    Since the early 1960s, a compelling body of evidence has accumulated to show that proteinases play critical roles in airspace enlargement in chronic obstructive pulmonary disease (COPD). However, until recently the causative enzymes and their exact roles in pathologic processes in COPD have not been clear. Recent studies of gene-targeted mice in murine models of COPD have confirmed roles for proteinases not only in airspace enlargement, but also in airway pathologies in COPD. These studies have also shed light on the specific proteinases involved in COPD pathogenesis, and the mechanisms by which these proteinases injure the lung. They have also identified important interactions between different classes of proteinases, and between proteinases and other molecules that amplify lung inflammation and injury. This review will discuss the biology of proteinases and the mechanisms by which they contribute to the pathogenesis of COPD. In addition, I will discuss the potential of proteinase inhibitors and anti-inflammatory drugs as new treatment strategies for COPD patients. PMID:18686734

  4. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study.

    PubMed

    Berry, Michael; Fielding, Burtram C; Gamieldien, Junaid

    2015-12-01

    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CL(pro) provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally. PMID:26694449

  5. The thiol proteinases from the latex of Carica papaya L. I. Fractionation, purification and preliminary characterization.

    PubMed

    Dubois, T; Jacquet, A; Schnek, A G; Looze, Y

    1988-08-01

    Three thiol proteinases, namely papain, chymopapain and proteinase omega were purified to homogeneity from the latex of Carica papaya L. During the purification procedure, the thiol function of the cysteinyl residues were protected either as mixed disulfides with cysteamine or 2-thiopyridone or as S-sulphenylthiosulfate derivative or after blocking with p-chloromercuribenzoic acid. In marked contrast with earlier publications, chymopapain also was found to be a monothiol proteinase as papain and proteinase omega. The active sites of chymopapain and proteinase omega could not be distinguished from that of papain neither by the analysis of the pH dependence of kcat/Km nor by the examination of the pH dependence of the fluorescence emission spectra. PMID:3214554

  6. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes.

    PubMed Central

    Dougherty, W G; Semler, B L

    1993-01-01

    Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216

  7. Activation of Proteinase 3 Contributes to Nonalcoholic Fatty Liver Disease and Insulin Resistance

    PubMed Central

    Toonen, Erik JM; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine TN; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo AB

    2016-01-01

    Activation of inflammatory pathways is known to accompany development of obesity-induced nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive proinflammatory mediators interleukin (IL)-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In this study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human α-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin-resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3-deficient mice showed strongly reduced levels of lipids in the liver after being fed a high-fat diet. Moreover, these mice were resistant to high–fat–diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1–/– mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with α-1 antitrypsin during the last 10 d of a 16-wk high-fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential. PMID:27261776

  8. AN ELECTROPHORETIC STUDY OF A STREPTOCOCCAL PROTEINASE AND ITS PRECURSOR

    PubMed Central

    Shedlovsky, Theodore; Elliott, S. D.

    1951-01-01

    An electrophoretic study of crystalline preparations of a streptococcal proteinase and its precursor established their isoelectric points at pH values of 8.42 and 7.35 respectively (ionic strength 0.10). Preparations of the proteinase appeared to be electrophoretically homogeneous over a pH range of 5 to 8.5. Precursor preparations contained a relatively low concentration of the active enzyme visible as a separate peak in electrophoretic patterns of sufficiently concentrated solutions. Autocatalytic conversion of precursor to active enzyme was complete and resulted in a corresponding change in the electrophoretic pattern. Treatment of precursor preparations with trypsin produced incomplete conversion to the active enzyme and resulted in the formation of a modified precursor protein. This differed from the parent substance in electrophoretic mobility and in susceptibility to trypsin, but resembled it in immunological specificity and, as previously shown, in susceptibility to conversion to active enzyme by autocatalysis. Serological reactions of precursor and active enzyme components withdrawn from the cell after electrophoresis are described. It appears that the precursor protein may have two antigenic groups, one specific, the other shared by the active enzyme which behaves as a single antigen. PMID:14888818

  9. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    SciTech Connect

    Odem, R.R.; Willand, J.L.; Polakoski, K.L. )

    1990-02-01

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm.

  10. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin.

    PubMed Central

    Grütter, M G; Fendrich, G; Huber, R; Bode, W

    1988-01-01

    Orthorhombic crystals of the complex formed between bovine alpha-chymotrypsin and a recombinant human mucous proteinase inhibitor (SLPI) were grown. Data to 2.3 A resolution were collected on the area-detector diffractometer FAST. The crystal structure of the complex was solved by Patterson search techniques using chymotrypsin as a search model. A cyclic procedure of modeling and crystallographic refinement enabled the determination of the SLPI structure. The current crystallographic R-value is 0.19. SLPI has a boomerang-like shape with both wings comprising two well separated domains of similar architecture. In each domain the polypeptide chain is arranged like a stretched spiral. Two internal strands form a regular beta-hairpin loop which is accompanied by two external strands linked by the proteinase binding segment. The polypeptide segment of each domain is interconnected by four disulfide bridges with a connectivity pattern hitherto unobserved. The reactive site loop of the second domain has elastase and chymotrypsin binding properties. It contains the scissile peptide bond between Leu72I and Met73I and has a similar conformation to that observed in other serine proteinase protein inhibitors. Eight residues of this loop, two of the adjacent hairpin loop, the C-terminal segment and Trp30I are in direct contact with the cognate enzyme. The binding loop of the first domain (probably with anti-trypsin activity) is disordered due to proteolytic cleavage occurring in the course of crystallization. PMID:3366116

  11. Inactivation of α1-proteinase inhibitor by Candida albicans aspartic proteases favors the epithelial and endothelial cell colonization in the presence of neutrophil extracellular traps.

    PubMed

    Gogol, Mariusz; Ostrowska, Dominika; Klaga, Kinga; Bochenska, Oliwia; Wolak, Natalia; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej; Rapala-Kozik, Maria

    2016-01-01

    Candida albicans, a causative agent of opportunistic fungal infections in immunocompromised patients, uses ten secreted aspartic proteases (SAPs) to deregulate the homeostasis of the host organism on many levels. One of these deregulation mechanisms involves a SAP-dependent disturbance of the control over proteolytic enzymes of the host by a system of dedicated proteinase inhibitors, with one important example being the neutrophil elastase and alpha1-proteinase inhibitor (A1PI). In this study, we found that soluble SAPs 1-4 and the cell membrane-anchored SAP9 efficiently cleaved A1PI, with the major cleavage points located at the C-terminal part of A1PI in a close vicinity to the reactive-site loop that plays a critical role in the inhibition mechanism. Elastase is released by neutrophils to the environment during fungal infection through two major processes, a degranulation or formation of neutrophil extracellular traps (NET). Both, free and NET-embedded elastase forms, were found to be controlled by A1PI. A local acidosis, resulting from the neutrophil activity at the infection sites, favors A1PI degradation by SAPs. The deregulation of NET-connected elastase affected a NET-dependent damage of epithelial and endothelial cells, resulting in the increased susceptibility of these host cells to candidal colonization. Moreover, the SAP-catalyzed cleavage of A1PI was found to decrease its binding affinity to a proinflammatory cytokine, interleukin-8. The findings presented here suggest a novel strategy used by C. albicans for the colonization of host tissues and overcoming the host defense. PMID:26641639

  12. Experiments on schistosity and slaty cleavage

    USGS Publications Warehouse

    Becker, George Ferdinand

    1904-01-01

    Schistosity as a structure is important, and it is a part of the business of geologists to explain its origin. Slaty cleavage has further and greater importance as a possible tectonic feature. Scarcely a great mountain range exists, or has existed, along the course of which belts of slaty rock are not found, the dip of the cleavage usually approaching verticality. Are these slate belts equivalent to minutely distributed step faults of great total throw, or do they indicate compression perpendicular to the cleavage without attendant relative dislocation? Evidently the answer to this question is of first importance in the interpretation of orogenic phenomena.

  13. kuzbanian-mediated cleavage of Drosophila Notch

    PubMed Central

    Lieber, Toby; Kidd, Simon; Young, Michael W.

    2002-01-01

    Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch. PMID:11799064

  14. Isolation and characterization of human plasma alpha 1-proteinase inhibitor and a conformational study of its interaction with proteinases.

    PubMed Central

    Saklatvala, J; Wood, G C; White, D D

    1976-01-01

    1. alpha 1-Proteinase inhibitor was isolated from human plasma by a five-step procedure. Isoelectric focusing showed that six components focused between pH4.85 and 4.95. 2. The mol.wt. of the inhibitor was 52000 by sedimentation equilibrium and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The amino acid and carbohydrate compositions of the inhibitor were also determined. 3. The far-u.v.c.d. (circular-dichroism) spectrum indicated that the inhibitor had about 36% alpha-helical content. 4. The loss of proteinase-inhibitory activity when the inhibitor was exposed to pH values less than 5.0 or greater than 10.5 was accompanied by small changes in the far-u.v.c.d. spectrum and large changes in the near-u.v.c.d. spectrum. The change at alkaline pH was associated with ionization of tyrosine residues. 5. Interaction of inhibitor with chymotrypsin caused perturbation of the c.d. spectrum and this was used to follow the interaction and show a 1:1 stoicheiometry. 6. C.d., electrophoresis and isoelectric focusing showed that the inhibitor-enzyme complex is degraded by free enzyme. 7. Parallel studies with trypsin indicated that it too forms a 1:1 complex with inhibitor and is degraded by excess of enzyme. Images PLATE 2 PLATE 3 PLATE 4 PLATE 5 PLATE 6 PLATE 1 PMID:9069

  15. Limited proteolysis by macrophage elastase inactivities human. cap alpha. /sub 1/-proteinase inhibitor

    SciTech Connect

    Banda, M.J.; Clark, E.J.; Werb, Z.

    1980-12-01

    Ever since the initial description of ..cap alpha../sub 1/-proteinase inhibitor (..cap alpha../sub 1/PI), the role of this plasma glycoprotein and its allelic polymorphism in disease and in healthy physiology has been the subject of much investigation, ..cap alpha../sub 1/PI inactivates a number of serine proteinases, including granulocyte elastase, and thus affords protection from the connective tissue degradation mediated by this class of proteinases. Because an imbalance in the ratio between ..cap alpha../sub 1/PI and proteinase may contribute to the development of destructive lung diseases, proteinases have been implicated in the pathogenesis of pulmonary emphysema. Both macrophages and polymorphonuclear leukocytes have been implicated in disruption of the ..cap alpha../sub 1/PI-proteinase balance. In this report, a new mechanism for alteration of the ..cap alpha../sub 1/PI-proteinase balance is demonstrated. It was found that the purified form of macrophage elastase catalytically degrades and inactivates ..cap alpha../sub 1/PI so that it no longer inhibits the elastinolytic activity of granulocyte elastase.

  16. α-1-Antitrypsin variants and the proteinase/antiproteinase imbalance in chronic obstructive pulmonary disease

    PubMed Central

    Sinden, Nicola J.; Baker, Michael J.; Smith, David J.; Kreft, Jan-Ulrich; Dafforn, Timothy R.

    2014-01-01

    The excessive activities of the serine proteinases neutrophil elastase and proteinase 3 are associated with tissue damage in chronic obstructive pulmonary disease. Reduced concentrations and/or inhibitory efficiency of the main circulating serine proteinase inhibitor α-1-antitrypsin result from point mutations in its gene. In addition, α-2-macroglobulin competes with α-1-antitrypsin for proteinases, and the α-2-macroglobulin-sequestered enzyme can retain its catalytic activity. We have studied how serine proteinases partition between these inhibitors and the effects of α-1-antitrypsin mutations on this partitioning. Subsequently, we have developed a three-dimensional reaction-diffusion model to describe events occurring in the lung interstitium when serine proteinases diffuse from the neutrophil azurophil granule following degranulation and subsequently bind to either α-1-antitrypsin or α-2-macroglobulin. We found that the proteinases remained uninhibited on the order of 0.1 s after release and diffused on the order of 10 μm into the tissue before becoming sequestered. We have shown that proteinases sequestered to α-2-macroglobulin retain their proteolytic activity and that neutrophil elastase complexes with α-2-macroglobulin are able to degrade elastin. Although neutrophil elastase is implicated in the pathophysiology of emphysema, our results highlight a potentially important role for proteinase 3 because of its greater concentration in azurophil granules, its reduced association rate constant with all α-1-antitrypsin variants studied here, its greater diffusion distance, time spent uninhibited following degranulation, and its greater propensity to partition to α-2-macroglobulin where it retains proteolytic activity. PMID:25416382

  17. 12-o-Tetradecanoyl-phorbol-13-acetate-differentiated U937 cells express a macrophage-like profile of neutral proteinases. High levels of secreted collagenase and collagenase inhibitor accompany low levels of intracellular elastase and cathepsin G.

    PubMed

    Welgus, H G; Connolly, N L; Senior, R M

    1986-05-01

    Human monocytic tumor cells of the U937 cell line contain substantial quantities of two neutrophil neutral proteinases, elastase and cathepsin G, raising the question of whether their presence reflects an expression of transformation or whether normal monocytes undergo a developmental stage in which they produce certain neutrophil proteinases. To address this issue, we examined U937 cells for production of collagenase, since human alveolar macrophages release fibroblast-like collagenase, an enzyme that is distinct from neutrophil collagenase. Using an immunoassay that utilized antibody to skin fibroblast collagenase, we found that U937 cells secreted barely detectable quantities of enzyme, 10-12 ng/10(6) cells per 24 h, under basal conditions. Upon incubation with 10 nM 12-o-tetradecanoyl-phorbol-13-acetate (TPA), however, collagenase release increased 200-fold, comparable to the amount secreted by phorbol-stimulated human fibroblasts. Metabolic labeling and immunoprecipitation confirmed the enhanced synthesis of U937 cell collagenase upon TPA exposure. This enzyme activity further resembled fibroblast collagenase and differed from neutrophil collagenase by exhibiting preferential cleavage of monomeric type III collagen relative to type I. As previously observed with human alveolar macrophages, U937 cells also released a protein identical to the collagenase inhibitor produced by human skin fibroblasts, a molecule not associated with neutrophils. Release of this inhibitor increased 10-fold with TPA exposure. In contrast to collagenase and collagense inhibitor, TPA-treated U937 cells contained only 10-15% as much elastase and cathepsin G activities as control cells. Thus, TPA-induced differentiation modified the presence of these enzymes in the direction of their content in normal monocytes. Since the neutral proteinase profile of undifferentiated U937 cells resembles that of neutrophils and changes markedly after cellular differentiation to one that is

  18. Triacontanol negatively modulates the jasmonic acid-stimulated proteinase inhibitors in tomato (Lycopersicon esculentum).

    PubMed

    Ramanarayan, Krishnamurthy; Swamy, Gangadharamurthy Sivakumar

    2004-04-01

    Triacontanol (TRIA), a long chain aliphatic alcohol (C30H61OH) reverses the effect of jasmonic acid (JA) in inducing proteinase inhibitors (PIs) in tomato leaves. Porcine pancreas trypsin and Spodoptera litura gut proteinases were inhibited in the presence of leaf proteins treated with JA, and TRIA partially reverses this effect. Spodoptera litura larvae fed with tomato leaves treated with JA were reduced in body weight and TRIA is able to partially reverse this JA-induced effect. These results reflect the partial reversal effect of TRIA in down regulating the JA-induced production of proteinase inhibitors. PMID:15128037

  19. Ozone effects on inhibitors of human neutrophil proteinases

    SciTech Connect

    Smith, C.E.; Stack, M.S.; Johnson, D.A.

    1987-02-15

    The effects of ozone on human alpha 1-proteinase inhibitor (A-1-PI), alpha 1-antichymotrypsin (A-1-Achy), bronchial leukocyte proteinase inhibitor (BLPI), and Eglin C were studied using in vitro exposures in phosphate-buffered solutions. Following ozone exposure, inhibitory activities against human neutrophil elastase (HNE) and/or cathepsin G (Cat G) were measured. Exposure of A-1-PI to 50 mol O3/mol protein resulted in a complete loss of HNE inhibitory activity, whereas A-1-Achy lost only 50% of its Cat G inhibitory activity and remained half active even after exposure to 250 mol of O3. At 40 mol O3/mol protein, BLPI lost 79% of its activity against HNE and 87% of its Cat G inhibitory activity. Eglin C, a leech-derived inhibitor, lost 81% of its HNE inhibitory activity and 92% of its ability to inhibit Cat G when exposed to 40 mol O3/mol. Amino acid analyses of ozone-exposed inhibitors showed destruction of Trp, Met, Tyr, and His with as little as 10 mol O3/mol protein, and higher levels of O3 resulted in more extensive oxidation of susceptible residues. The variable ozone susceptibility of the different amino acid residues in the four proteins indicated that oxidation was a function of protein structure, as well as the inherent susceptibility of particular amino acids. Exposure of A-1-PI and BLPI in the presence of the antioxidants, Trolox C (water soluble vitamin E) and ascorbic acid (vitamin C), showed that antioxidant vitamins may protect proteins from oxidative inactivation by ozone. Methionine-specific modification of BLPI reduced its HNE and Cat G inhibitory activities. Two moles of N-chlorosuccinimide per mole of BLPI methionine caused an 80% reduction in activity against Cat G, but only a 40% reduction in HNE inhibitory activity.

  20. Altered Expression of Brain Proteinase-Activated Receptor-2, Trypsin-2 and Serpin Proteinase Inhibitors in Parkinson's Disease.

    PubMed

    Hurley, Michael J; Durrenberger, Pascal F; Gentleman, Steve M; Walls, Andrew F; Dexter, David T

    2015-09-01

    Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain. In normal aged brain, expression of PAR-2, trypsin-2, and serpin-A5 and serpin-A13 was found in neurons and microglia, and alterations in the amount of immunoreactivity for these proteins were found in some brain regions. Namely, there was a decrease in neurons positive for serpin-A5 in the dorsal motor nucleus, and serpin-A13 expression was reduced in the locus coeruleus and primary motor cortex, while expression of PAR2, trypsin-2 and both serpins was reduced in neurons within the substantia nigra. There was an increased number of microglia that expressed serpin-A5 in the dorsal motor nucleus of vagus and elevated numbers of microglia that expressed serpin-A13 in the substantia nigra of late Parkinson's disease cases. The number of microglia that expressed trypsin-2 increased in primary motor cortex of incidental Lewy body disease cases. Analysis of Parkinson's disease cases alone indicated that serpin-A5 and serpin-A13, and trypsin-2 expression in midbrain and cerebral cortex was different in cases with a high incidence of L-DOPA-induced dyskinesia and psychosis compared to those with low levels of these treatment-induced side effects. This study showed that there was altered expression in brain of PAR2 and some proteins that can control its function in Parkinson's disease. Given the role of PAR2 in

  1. Successive Use of Non-Host Plant Proteinase Inhibitors Required for Effective Inhibition of Helicoverpa armigera Gut Proteinases and Larval Growth1

    PubMed Central

    Harsulkar, Abhay M.; Giri, Ashok P.; Patankar, Aparna G.; Gupta, Vidya S.; Sainani, Mohini N.; Ranjekar, Prabhakar K.; Deshpande, Vasanti V.

    1999-01-01

    We report on the efficacy of proteinase inhibitors (PIs) from three host plants (chickpea [Cicer arietinum], pigeonpea [Cajanus cajan], and cotton [Gossypium arboreum]) and three non-host (groundnut [Arachis hypogea], winged bean [Psophocarpus tetragonolobus], and potato [Solanum tuberosum]) in retarding the growth of Helicoverpa armigera larvae, a devastating pest of important crop plants. Enzyme assays and electrophoretic analysis of interaction of H. armigera gut proteinases (HGPs) with PIs revealed that non-host PIs inhibited HGP activity efficiently whereas host PIs were ineffective. In the electrophoretic assay, trypsin inhibitor activity bands were detected in all of the host and non-host plants, but HGP inhibitor activity bands were present only in non-host plants (except cotton in the host plant group). H. armigera larvae reared on a diet containing non-host PIs showed growth retardation, a reduction in total and trypsin-like proteinase activity, and the production of inhibitor-insensitive proteinases. Electrophoretic analysis of PI-induced HGP showed differential regulation of proteinase isoforms. Interestingly, HGP activity induced in response to dietary potato PI-II was inhibited by winged bean PIs. The optimized combination of potato PI-II and winged bean PIs identified in the present study and their proposed successive use has potential in developing H. armigera-resistant transgenic plants. PMID:10517841

  2. Isolation of two plant proteinases in latex from Carica candamarcensis acting as mitogens for mammalian cells.

    PubMed

    Gomes, Marco Túlio R; Mello, Vanessa J; Rodrigues, Kelly C; Bemquerer, Marcelo P; Lopes, Miriam T P; Faça, Vitor M; Salas, Carlos E

    2005-03-01

    In a prior study we showed evidence that latex from Carica candamarcensis contains a protein fraction that stimulates mammalian cell proliferation. In this report we describe the isolation of two proteinases responsible for this effect. Both proteinases (P1, P2) display a relative mass of 23 kDa and following chromatographic purification stimulate proliferation of fibroblastic and epithelial cells. P2 added to L929 fibroblasts at 2.5 nM enhances proliferation by 60 %. We further demonstrate that its cellular effect is linked to an increase in activity of Erk2, a component of the MAP kinase pathway. To our knowledge, this is the first known plant proteinase to exert a proliferative effect in mammalian cells. This novel mitogenic property attributed to a purified cysteine proteinase may explain some of the therapeutic actions attributed to these enzymes. PMID:15770545

  3. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  4. Characterization of cathepsin B proteinase (AcCP-2) in eggs and larvae stages of hookworm Ancylostoma caninum.

    PubMed

    Yang, Yurong; Qin, Weiwen; Wei, Hua; Ying, Jianxi; Zhen, Jing

    2011-11-01

    Cathepsin B proteinase constitutes a large multigenes family in parasitic and non-parasitic nematodes. The localization of cathepsin B proteinases (AcCP-1 and AcCP-2) in adult worm of Ancylostoma caninum has been characterized (Harrop et al., 1995), but the localization and function in eggs and larval stages remained undiscovered. Here we described the expressing of cathepsin B proteinase (AcCP-2) in Escherichia coli, and immuno-localization of cathepsin B proteinase in eggs and larvae stages of A. caninum. A cDNA fragment encoding a cathepsin B proteinase (AcCP-2) was cloned from A. caninum and expressed in E. coli. Gelatin digestion showed that recombinant cathepsin B proteinase (AcCP-2) has protease activity. The protein level of cathepsin B proteinase in larval and adult worm was detected by western blot. The immuno-localization of cathepsin B proteinase in eggs and larval stages was characterized. The expression of cathepsin B proteinase was more abundant in eggs and larvae stages of A. caninum. It implied that cathepsin B proteinase might play roles in the early development of A. caninum. PMID:21925175

  5. Multiple cysteine proteinase forms during the life cycle of Dictyostelium discoideum revealed by electrophoretic analysis.

    PubMed Central

    North, M J; Scott, K I; Lockwood, B C

    1988-01-01

    Proteinases of the cellular slime mould Dictyostelium discoideum have been analysed using electrophoresis on polyacrylamide gels containing gelatin (gelatin/PAGE). Multiple proteinase forms were apparent in vegetative myxamoebae, but the presence of individual enzyme forms depended on the manner in which the cells were grown. Axenic cells had a characteristic A-pattern of proteinases consisting of six bands, the most active enzymes having apparent Mr values of 51,000 and 45,000 (these have been named ddCP51 and ddCP45, respectively). Some of the proteinases were also present in the medium, the major extracellular form was ddCP42, a 42,000-Mr enzyme. Cells grown in association with bacteria had a distinct B-pattern with three main enzymes that had apparent Mr values of 48,000, 43,000 and 38,000. All of the A- and B-pattern proteinases were most active at acid pH in the presence of dithiothreitol and were inhibited by various agents such as trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E64), leupeptin and chymostatin, which inactivate cysteine proteinases. One of the enzymes, ddCP30, was identified as cysteine proteinase B which had been purified and characterized previously [North, M.J. & Whyte, A. (1984) J. Gen. Microbiol. 130, 123-134]. During starvation of axenic cells in shaken suspensions some of the vegetative proteinases disappeared, ddCP42 was released from the cells and one new enzyme with an apparent Mr of 48,000 appeared. Addition of cyclic AMP had little effect on these changes. When the axenically grown myxamoebae underwent development on filters, similar changes in band pattern were observed and the aggregation stage was characterized by the presence of three cysteine proteinase bands (apparent Mr values of 48,000, 45,000 and 43,000). Proteinases, especially ddCP42, were released from the cells and could be collected from the buffer-saturated pads which supported the filters. The results demonstrate that cysteine proteinases are present

  6. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  7. Structural basis of cohesin cleavage by separase.

    PubMed

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-04-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290

  8. α-Cleavage of cellular prion protein

    PubMed Central

    Liang, Jingjing; Kong, Qingzhong

    2012-01-01

    The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer. PMID:23052041

  9. Gel Electrophoretic Profiles of Proteinases in Dark-Germinated Flax Seeds 1

    PubMed Central

    Jameel, Shahid; Reddy, V. Manoranjan; Rhodes, W. Gale; McFadden, Bruce A.

    1984-01-01

    The proteinases present in dark-germinated flax seeds (Linum usitatissimum) were studied as a function of germination at 25°C. A majority of activity was present in basic proteinases with an acidic pH optimum and a temperature optimum of 45°C in the digestion of hemoglobin. Electrophoresis in a sodium dodecyl sulfate-polyacrylamide mixture which had been polymerized with gelatin was used to separate proteins in extracts of seedlings. Subsequent activation of proteinases with Triton X-100 and resultant digestion of gelatin proved to be very reproducible and afforded detection and good quantification of various proteinase zones. An ethylenediaminetetraacetate-sensitive proteinase zone, P4 (about 60,000 daltons), appeared at day 3 after imbibition and attained maximum activity at day 4. This correlates with a rapid loss in vivo of the glyoxysomal enzyme, isocitrate lyase (EC 4.1.3.1). Ethylenediaminetetraacetate also slowed the loss of isocitrate lyase activity in extracts of 4-day seedlings in a dose-dependent manner. The addition of leupeptin, α-tolylsulfonyl fluoride, Pepstatin A, p-chloromercuribenzoate, or 1,10-phenanthroline prior to, during, or after exchange of Triton X-100 for sodium dodecyl sulfate had almost no inhibitory effect upon proteinases in 4-day seedlings. Images Fig. 2 Fig. 6 Fig. 7 PMID:16663914

  10. THE CRYSTALLIZATION AND SEROLOGICAL DIFFERENTIATION OF A STREPTOCOCCAL PROTEINASE AND ITS PRECURSOR

    PubMed Central

    Elliott, S. D.

    1950-01-01

    Grown in dialysate broth at a pH between 5.5 and 6.5, some strains of group A streptococci elaborate the precursor of a proteolytic enzyme. Within this range of hydrogen concentration the precursor is also produced when the streptococci are suspended in a peptone dialysate containing glucose and incubated at 37°C. The precursor does not appear to be produced at a neutral or alkaline reaction. Methods are described whereby the precursor and proteinase have been isolated in crystalline form. The precursor crystallizes from half-saturated ammonium sulfate at pH 8.0 and a temperature of 22°C. or higher; the proteinase crystallizes from 0.15 saturated ammonium sulfate at pH 8.0 but does so most readily at refrigerator temperature. The degree of purification achieved by these procedures is discussed. The activity of purified preparations of the precursor and of proteinase has been tested against α-benzoyl-l-arginineamide and, with this as a substrate, the conversion of precursor to proteinase by autocatalysis or by trypsin has been confirmed. Immunological experiments are described, the results of which provide evidence of the distinct antigenic specificity of the precursor and proteinase; the conversion of precursor to proteinase has been followed by means of serological tests. PMID:15436931

  11. Specific inhibition of mature fungal serine proteinases and metalloproteinases by their propeptides.

    PubMed Central

    Markaryan, A; Lee, J D; Sirakova, T D; Kolattukudy, P E

    1996-01-01

    The function of the long propeptides of fungal proteinases is not known. Aspergillus fumigatus produces a 33-kDa serine proteinase of the subtilisin family and a 42-kDa metalloproteinase of the thermolysin family. These extracellular enzymes are synthesized as preproenzymes containing large amino-terminal propeptides. Recombinant propeptides were produced in Escherichia coli as soluble fusion proteins with glutathione S-transferase or thioredoxin and purified by affinity chromatography. A. fumigatus serine proteinase propeptide competitively inhibited serine proteinase, with a Ki of 5.3 x 10(-6) M, whereas a homologous serine proteinase from A. flavus was less strongly inhibited and subtilisin was not inhibited. Binding of metalloproteinase propeptide from A. fumigatus to the mature metalloenzyme was demonstrated. This propeptide strongly inhibited its mature enzyme, with a Ki of 3 x 10(-9) M, whereas thermolysin and a metalloproteinase from A. flavus were not inhibited by this propeptide. Enzymatically inactive metalloproteinase propeptide complex could be completely activated by trypsin treatment. These results demonstrate that the propeptides of the fungal proteinases bind specifically and inhibit the respective mature enzymes, probably reflecting a biological role of keeping these extracellular enzymes inactive until secretion. PMID:8636020

  12. Characterization of a Cell Envelope-Associated Proteinase Activity from Streptococcus thermophilus H-Strains

    PubMed Central

    Shahbal, Samaha; Hemme, Denis; Renault, Pierre

    1993-01-01

    The production and biochemical properties of cell envelope-associated proteinases from two strains of Streptococcus thermophilus (strains CNRZ 385 and CNRZ 703) were compared. No significant difference in proteinase activity was found for strain CNRZ 385 when cells were grown in skim milk medium and M17 broth. Strain CNRZ 703 exhibited a threefold-higher proteinase activity when cells were grown in low-heat skim milk medium than when grown in M17 broth. Forty-one percent of the total activity of CNRZ 385 was localized on the cell wall. The optimum pH for enzymatic activity at 37°C was around 7.0. Serine proteinase inhibitors, such as phenylmethylsulfonyl fluoride and diisopropylfluorophosphate, inhibited the enzyme activity in both strains. The divalents cations Ca2+, Mg2+, and Mn2+ were activators, while Zn2+ and Cu2+ were inhibitors. β-Casein was hydrolyzed more rapidly than αs1-casein. The results of DNA hybridization and immunoblot studies suggested that the S. thermophilus cell wall proteinase and the lactococcal proteinase are not closely related. Images PMID:16348841

  13. A new strategy for selective protein cleavage

    SciTech Connect

    Hoyer, D.; Cho, Ho; Schultz, P.G. )

    1990-04-11

    The ability of proteolytic enzymes and chemical reagents to selectively cleave peptides and proteins at defined sequences has greatly facilitated studies of protein structure and function. Unfortunately, only a limited number of selective peptide cleavage agents exist, in contrast to the wide array of selective nucleases available for analyzing and manipulating nucleic acid structure. The development of strategies for generating site-specific peptidases of any defined sequence would greatly facilitate the mapping of protein structural domains, protein sequencing, the generation of semisynthetic proteins, and would likely lead to the development of new therapeutic agents. The authors report here a new approach to the generation of selective protein cleavage agents that is based on oxidative cleavage of the polypeptide backbone.

  14. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  15. Origin of brittle cleavage in iridium.

    PubMed

    Cawkwell, Marc J; Nguyen-Manh, Duc; Woodward, Christopher; Pettifor, David G; Vitek, Vaclav

    2005-08-12

    Iridium is unique among the face-centered cubic metals in that it undergoes brittle cleavage after a period of plastic deformation under tensile stress. Atomistic simulation using a quantum-mechanically derived bond-order potential shows that in iridium, two core structures for the screw dislocation are possible: a glissile planar core and a metastable nonplanar core. Transformation between the two core structures is athermal and leads to exceptionally high rates of cross slip during plastic deformation. Associated with this athermal cross slip is an exponential increase in the dislocation density and strong work hardening from which brittle cleavage is a natural consequence. PMID:16099981

  16. Cleavage of cytoplasm within the oligonucleate zoosporangia of allomyces macrogynus.

    PubMed

    Ji, Yunjeong; Song, Youngsun; Kim, Namhun; Youn, Hyunjoo; Kang, Minkook; Song, Yurim; Cho, Chungwon

    2014-01-01

    Allomyces macrogynus produces zoosporangia that discharge uninucleate zoospores after cleavage of multinucleate cytoplasm. Cleavage of cytoplasm within the oligonucleate zoosporangia of A. macrogynus was visualized by constructing three-dimensional models based on electron micrographs and confocal images. In oligonucleate zoosporangia, three adjacent nuclei can form three cleavage planes with a line of intersection of the planes. The position and boundary of the cleavage planes are thought to be determined by the relative positions of the nuclei. The establishment of three cleavage planes by cleavage membranes occurred sequentially, and the nuclear axis connecting the centers of two nuclei affected the development of cleavage membranes on each cleavage plane. In multinucleate zoosporangia, groups of three neighboring nuclei near the cell cortex may initiate the sequential establishment of cleavage planes and then may interact with the nuclei further from the cortex until the interactions of nuclei are propagated to the central region of the cytoplasm. PMID:24871589

  17. Resistance of horse alpha 1-proteinase inhibitor to perchloric acid denaturation and a simplified purification procedure resulting therefrom.

    PubMed

    Pellegrini, A; Hägeli, G; von Fellenberg, R

    1986-11-21

    Addition of perchloric acid (6.4% w/v final concentration) to horse alpha 1-proteinase inhibitor or to horse plasma neither precipitated nor inactivated alpha 1-proteinase inhibitor. None of the isoinhibitors of alpha 1-proteinase inhibitor was altered by dilute perchloric acid. This unexpected behavior led to a simplified procedure for the purification of horse alpha 1-proteinase inhibitor, consisting of removal of the bulk of plasma proteins, by perchloric acid precipitation and by gel filtration on Sephadex G-75 and G-200. The resulting preparations of alpha 1-proteinase inhibitor were immunogenically pure. The simplified purification procedure permitted the immunochemical comparison of the isoinhibitors of alpha 1-proteinase inhibitor, which proved to be immunologically identical. PMID:3022814

  18. Gamma irradiation or hydrocortisone treatment of rats increases the proteinase activity associated with histones of thymus nuclei

    SciTech Connect

    Kutsyi, M.P.; Gaziev, A.I.

    1994-11-01

    An increase in the activity of histone-associated rat thymus nucleus proteinases specific for histones H2A, H2B and H1 was shown after {gamma} irradiation or hydrocortisone treatment of animals. Histone H1-specific proteinase activity is dependent on DNA and increases in the presence of denatured DNA, whereas proteinases specific for core histones are inhibited in the presence of denatured DNA. The increase in the activity of histone-associated proteinases depends on the radiation dose and the time after irradiation or hydrocortisone injection. In the presence of dithiothreitol and sodium dodecyl sulfate, these proteinases dissociate from histones. It was found by gel electrophoresis that several proteinases of various molecular masses are closely associated with histones obtained from thymus nuclei of irradiated or hydrocortisone-treated rats. 43 refs., 7 figs.

  19. New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease.

    PubMed Central

    Tetley, T D

    1993-01-01

    The hypothesis, some 30 years ago, that NE was the sole proteolytic agent responsible for the development of emphysema seems naive in retrospect. The availability of technology to measure NE facilitated the early research into the relationship between NE and lung disease. Despite an abundance of information on the activity of NE in the lung, it will probably require prospective studies in man with specific NE inhibitors or control at the gene level to establish a causal relationship between NE and lung disease. Parallel research has resulted in the isolation and characterisation of NE inhibitors other than PI and, indeed, alternative proteolytic enzymes that might contribute to lung disease. It is perhaps impossible now to think that a single proteinase, however omnipotent it may be, causes lung diseases as diverse as emphysema and fibrosis. An important aspect that is emerging is the interrelationship between proteolytic enzymes produced by different, or sometimes the same, cells that could potentiate tissue proteolysis. The evidence suggests that there is likely to be coordinated action between neutrophils, macrophages, and possibly mesenchymal proteinases which can activate or inactivate each other. In addition, one class of proteinases often appears able to proteolytically inactivate inhibitors of the opposite class, which presumably could amplify proteolysis if it occurred in vivo. Although the work on this aspect of proteinase activity is in its infancy, one suspects that part of the normal regulation of proteinase activity might include compartmentalisation. For example, the neutrophil stores proteinases before appropriate release and can inactivate PI to enable proteolytic action pericellularly, whereas degradation of extracellular matrix by macrophages requires interaction between the cell and matrix which is facilitated by cell receptor bound uPA. Disintegration of these "compartments" due to oedema, proteolysis, or for mechanical reasons could, firstly

  20. Role of saliva proteinase 3 in dental caries

    PubMed Central

    Yang, Teng-Yu; Zhou, Wen-Jie; Du, Yue; Wu, Song-Tao; Yuan, Wen-Wen; Yu, Yu; Su, Lin; Luo, Yang; Zhang, Jie-Hua; Lu, Wan-Lu; Wang, Xiao-Qian; Chen, Jiao; Feng, Yun; Zhou, Xue-Dong; Zhang, Ping

    2015-01-01

    Salivary analysis can be used to assess the severity of caries. Of the known salivary proteins, a paucity of information exists concerning the role of proteinase 3 (PR3), a serine protease of the chymotrypsin family, in dental caries. Whole, unstimulated saliva was collected from children with varying degrees of active caries and tested using a Human Protease Array Kit and an enzyme-linked immunosorbent assay. A significantly decreased concentration of salivary PR3 was noted with increasing severity of dental caries (P<0.01); a positive correlation (r=0.87; P<0.01; Pearson's correlation analysis) was also observed between salivary pH and PR3 concentration. In an antibacterial test, a PR3 concentration of 250 ng·mL−1 or higher significantly inhibited Streptococcus mutans UA159 growth after 12 h of incubation (P<0.05). These studies indicate that PR3 is a salivary factor associated with the severity of dental caries, as suggested by the negative relationship between salivary PR3 concentration and the severity of caries as well as the susceptibility of S. mutans to PR3. PMID:26756046

  1. Potent and selective nonpeptidic inhibitors of procollagen C-proteinase.

    PubMed

    Fish, Paul V; Allan, Gillian A; Bailey, Simon; Blagg, Julian; Butt, Richard; Collis, Michael G; Greiling, Doris; James, Kim; Kendall, Jackie; McElroy, Andrew; McCleverty, Dawn; Reed, Charlotte; Webster, Robert; Whitlock, Gavin A

    2007-07-26

    6-Cyclohexyl-N-hydroxy-3-(1,2,4-oxadiazol-5-yl)hexanamides were previously disclosed as inhibitors of procollagen C-proteinase (PCP) culminating in the identification of amide 1. Our objective was to discover a second inhibitor that would have improved affinity for PCP and to optimize properties for transepidermal delivery (TED) to intact skin. Further investigation of this template identified a number of potent PCP inhibitors (IC50 values of 2-6 nM) with improved TED flux. Sulfonamide 56 had excellent PCP enzyme activity when measured with a peptide substrate (Ki 8.7 nM) or with the endogenous substrate procollagen (IC50 3.4 nM) and demonstrates excellent selectivity over MMPs involved in wound healing (>10 000-fold). In the fibroplasia model, 56 inhibited deposition of insoluble collagen by 76 +/- 2% at 10 microM and was very effective at penetrating human skin in vitro with a TED flux of 1.5 microg/cm2/h, which compares favorably with values for agents that are known to penetrate skin well in vivo. Based on this profile, 56 (UK-421,045) was selected as a candidate for further preclinical evaluation as a topically applied, dermal anti-scarring agent. PMID:17591762

  2. Isolation and characterization of a serine proteinase specific to human C3b from human erythrocyte membranes

    SciTech Connect

    Charriaut, C.; Krikorian, L.; Barel, M.; Frade, R.

    1986-03-05

    In a previous report, they have shown that human C3b bound through CR1 to human erythrocytes is cleaved by a membrane proteinase activity. Following the molecular analysis of this proteinase activity, they have purified it by a four step procedure: ammonium sulfate precipitation, biogel filtration, fluid phase electrophoresis and hydroxylapatite chromatography. The highly purified proteinase was labeled by /sup 125/I iodine or /sup 3/H-DFP and analyzed by gel electrophoresis: a single band membrane component was characterized by its apparent molecular weight of 57 K or 60 K, under non reducing or reducing conditions respectively and was called p 57. Its reactivity with /sup 3/H-DFP and the inhibition by PMSF of the proteinase activity indicate that p 57 is a serine proteinase. Moreover, it is sensitive to aprotinin and ..gamma..1-antitrypsin. This membrane proteinase presents a higher activity in the presence of detergent and cleaves both alpha and beta chains of human C3b. Polyclonal antibody prepared against this purified proteinase inhibits its activity. On the basis of its structure and its functions, i.e. molecular weight, antigenic properties, proteinase properties and proteinases inhibitors sensitivity, p57 is not related to CR1 or DAF, two others membrane components which react with human C3b and identified by others on human erythrocytes. These specific antibodies allow to analyze the presence of p57 on human cells.

  3. Reductive cleavage of the peptide bond

    NASA Technical Reports Server (NTRS)

    Holian, J.; Garrison, W. M.

    1973-01-01

    In many biological research efforts, long chain organic molecules are studied by breaking large molecules into smaller components. Cleavage technique of recent interest is the use of solvated electrons. These are formed when aqueous solutions are bombarded with gamma radiation. Solvated electron is very reactive and can reduce most any species present, even to form free radicals.

  4. Activation of α-secretase cleavage.

    PubMed

    Postina, Rolf

    2012-01-01

    Alpha-secretase-mediated cleavage of the amyloid precursor protein (APP) releases the neuroprotective APP fragment sαAPP and prevents amyloid β peptide (Aβ) generation. Moreover, α-secretase-like cleavage of the Aβ transporter 'receptor for advanced glycation end products' counteracts the import of blood Aβ into the brain. Assuming that Aβ is responsible for the development of Alzheimer's disease (AD), activation of α-secretase should be preventive. α-Secretase-mediated APP cleavage can be activated via several G protein-coupled receptors and receptor tyrosine kinases. Protein kinase C, mitogen-activated protein kinases, phosphatidylinositol 3-kinase, cAMP and calcium are activators of receptor-induced α-secretase cleavage. Selective targeting of receptor subtypes expressed in brain regions affected by AD appears reasonable. Therefore, the PACAP receptor PAC1 and possibly the serotonin 5-HT(6) receptor subtype are promising targets. Activation of APP α-secretase cleavage also occurs upon blockade of cholesterol synthesis by statins or zaragozic acid A. Under physiological statin concentrations, the brain cholesterol content is not influenced. Statins likely inhibit Aβ production in the blood by α-secretase activation which is possibly sufficient to inhibit AD development. A disintegrin and metalloproteinase 10 (ADAM10) acts as α-secretase on APP. By targeting the nuclear retinoic acid receptor β, the expression of ADAM10 and non-amyloidogenic APP processing can be enhanced. Excessive activation of ADAM10 should be avoided because ADAM10 and also ADAM17 are not APP-specific. Both ADAM proteins cleave various substrates, and therefore have been associated with tumorigenesis and tumor progression. PMID:21883223

  5. Purification and characterization of a digestive cysteine proteinase from the American lobster (Homarus americanus).

    PubMed

    Laycock, M V; Hirama, T; Hasnain, S; Watson, D; Storer, A C

    1989-10-15

    A new cysteine proteinase was isolated from the digestive juice of the American lobster (Homarus americanus). The enzyme was purified by a combination of affinity and ion-exchange chromatography and gel filtration. The cysteine proteinase accounted for 80% of the proteolytic activity in the lumen of the hepatopancreas. The most potent heavy-metal inhibitors were Hg, Cu, and Ag ions. Inhibition by organic proteinase inhibitors, including E-64 [L-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane] and activation of the enzyme by 2-mercaptoethanol and dithiothreitol are characteristic of cysteine proteinases. Several similarities to papain are noted and include the N-terminal sequence, of which 22 of the first 28 amino acids are identical. Some notable differences are the higher Mr of 28,000 compared with 23,350 for papain, and the low isoelectric point (pI 4.5) of the lobster enzyme. The effects of pH and temperature on catalytic activity of the lobster proteinase were studied with benzyloxycarbonylalanine p-nitrophenyl ester as the substrate. The kcat./Km value was effectively temperature-independent between 10 and 60 degrees C. The pH-activity profile for the lobster enzyme revealed four apparent protonation states, of which only two are active. PMID:2597115

  6. An alkaline serine-proteinase from a bacterium isolated from bat feces: purification and characterization.

    PubMed

    Tanskul, Somporn; Hiraga, Kazumi; Takada, Katsumi; Rungratchote, Suchart; Suntinanalert, Prasert; Oda, Kohei

    2009-11-01

    An alkaline serine-proteinase from Bacillus sp. PN51 isolated from bat feces collected in Phang Nga, Thailand, was purified and characterized. The molecular mass was estimated to be 35.0 kDa. The N-terminal 25 amino acid sequence was about 70% identical with that of Natrialba magadii halolysin-like extracellular serine protease. The enzyme showed the highest proteinase activity at 60 degrees C at pH 10.0. The activity was strongly inhibited by PMSF and chymostatin. The proteinase activity was not affected by the presence of 2% urea, 2% H(2)O(2), 12% SDS, 15% triton X-100, or 15% tween 80. The proteinase preferred Met, Leu, Phe, and Tyr residues at the P(1) position, in descending order. The k(cat), K(m) and k(cat)/K(m) values for Z-Val-Lys-Met-MCA were 16.8+/-0.14 min(-1), 5.1+/-0.28 microM, and 3.3+/-0.28 microM(-1) min(-1) respectively. This is the first report of an alkaline serine-proteinase with extremely high stability against detergents such as SDS. PMID:19897920

  7. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    PubMed Central

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-01-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  8. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi.

    PubMed

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-09-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  9. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530.

    PubMed Central

    Böckle, B; Galunsky, B; Müller, R

    1995-01-01

    A serine protease from the keratin-degrading Streptomyces pactum DSM 40530 was purified by casein agarose affinity chromatography. The enzyme had a molecular weight of 30,000 and an isoelectric point of 8.5. The proteinase was optimally active in the pH range from 7 to 10 and at temperatures from 40 to 75 degrees C. The enzyme was specific for arginine and lysine at the P1 site and for phenylalanine and arginine at the P1' site. It showed a high stereoselectivity and secondary specificity with different synthetic substrates. The keratinolytic activity of the purified proteinase was examined by incubation with the insoluble substrates keratin azure, feather meal, and native and autoclaved chicken feather downs. The S. pactum proteinase was significantly more active than the various commercially available proteinases. After incubation with the purified proteinase, a rapid disintegration of whole feathers was observed. But even after several days of incubation with repeated addition of enzymes, less than 10% of the native keratin substrate was solubilized. In the presence of dithiothreitol, degradation was more than 70%. PMID:7487006

  10. Proteinase-antiproteinase balance in tracheal aspirates from neonates.

    PubMed

    Sluis, K B; Darlow, B A; Vissers, M C; Winterbourn, C C

    1994-02-01

    We wanted to identify the inhibitors of neutrophil elastase, quantify their activities in the upper airways of neonates, and relate these to the presence of active elastase and the likelihood of elastolytic injury occurring due to inhibitory capacity being overwhelmed. Activities of neutrophil elastase and its inhibitors were measured in tracheal aspirates from 17 infants, 10 of whom subsequently developed bronchopulmonary dysplasia. All aspirates contained immunologically detectable alpha 1-proteinase inhibitor (alpha 1-PI), but their inhibitory capacity against neutrophil elastase ranged from being undetectable to being in excess of the amount of alpha 1-PI detected immunologically. When the alpha 1-PI was removed from each of the aspirates, using a specific antibody, from 0-50% of the original activity remained, indicating the presence of another elastase inhibitor. Its properties were consistent with it being the low molecular mass, secretory leucoproteinase inhibitor (SLPI), also known as bronchial antileucoproteinase. The alpha 1-PI was from 0-100% active. Most of the inactive inhibitor was shown by western blotting to be complexed with elastase, with a small amount of cleaved material. There was no evidence of major oxidative inactivation. Free elastase was detected in only three of the aspirates; these had little or no detectable elastase inhibitory capacity, and most of their alpha 1-PI was complexed. Elastase load, comprising the sum of free and complexed elastase, correlated closely with myeloperoxidase activity, a recognized marker of inflammatory activity. Active SLPI levels showed a positive correlation with gestational age (r = 0.66). We conclude that most neutrophil elastase in the upper airways of ventilated infants is complexed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7909297

  11. Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells

    SciTech Connect

    Kaellquist, Linda; Rosen, Hanna; Nordenfelt, Pontus; Calafat, Jero; Janssen, Hans; Persson, Ann-Maj; Hansson, Markus; Olsson, Inge

    2010-11-15

    Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 with clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'pro{sub C}'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.

  12. The anthelmintic efficacy of natural plant cysteine proteinases against Hymenolepis microstoma in vivo.

    PubMed

    Mansur, F; Luoga, W; Buttle, D J; Duce, I R; Lowe, A; Behnke, J M

    2015-09-01

    Little is known about the efficacy of cysteine proteinases (CP) as anthelmintics for cestode infections in vivo. Hymenolepis microstoma is a natural parasite of house mice, and provides a convenient model system for the assessment of novel drugs for anthelmintic activity against cestodes. The experiments described in this paper indicate that treatment of H. microstoma infections in mice with the supernatant of papaya latex (PLS), containing active cysteine proteinases, is only minimally efficacious. The statistically significant effects seen on worm burden and biomass showed little evidence of dose dependency, were temporary and the role of cysteine proteinases as the active principles in PLS was not confirmed by specific inhibition with E-64. Worm fecundity was not affected by treatment at the doses used. We conclude also that this in vivo host-parasite system is not sensitive enough to be used reliably for the detection of cestocidal activity of compounds being screened as potential, novel anthelmintics. PMID:25226116

  13. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases.

    PubMed

    Sui, Xuewu; Golczak, Marcin; Zhang, Jianye; Kleinberg, Katie A; von Lintig, Johannes; Palczewski, Krzysztof; Kiser, Philip D

    2015-12-18

    Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs. PMID:26499794

  14. Intracellular RNA cleavage by the hairpin ribozyme.

    PubMed Central

    Seyhan, A A; Amaral, J; Burke, J M

    1998-01-01

    Studies involving ribozyme-directed inactivation of targeted RNA molecules have met with mixed success, making clear the importance of methods to measure and optimize ribozyme activity within cells. The interpretation of biochemical assays for determining ribozyme activity in the cellular environment have been complicated by recent results indicating that hammerhead and hairpin ribozymes can cleave RNA following cellular lysis. Here, we report the results of experiments in which the catalytic activity of hairpin ribozymes is monitored following expression in mammalian cells, and in which post-lysis cleavage is rigorously excluded through a series of biochemical and genetic controls. Following transient transfection, self-processing transcripts containing active and inactive hairpin ribozymes together with cleavable and non-cleavable substrates were generated within the cytoplasm of mouse OST7-1 cells using T7 RNA polymerase. Unprocessed RNA and products ofintracellular cleavage were detected and analyzed using a primer-extension assay. Ribozyme-containing transcripts accumulated to a level of 4 x 10(4) copies per cell, and self-processing proceeded to an extent of >75% within cells. Cellular RNA processing was blocked by mutations within the ribozyme (G8A, G21U) or substrate (DeltaA-1) that, in vitro , eliminate cleavage without affecting substrate binding. In addition to self-processing activity, trans -cleavage reactions were supported by the ribozyme-containing product of the self-processing reaction, and by the ribozyme linked to the non-cleavable substrate analog. Ribozyme activity was present in extracts of cells expressing constructs with active ribozyme domains. These results provide direct biochemical evidence for the catalytic activity of the hairpin ribozyme in a cellular environment, and indicate that self-processing ribozyme transcripts may be well suited for cellular RNA-inactivation experiments. PMID:9671810

  15. Nonspecific cleavage of proteins using graphene oxide.

    PubMed

    Lee, Heeyoung; Tran, Minh-Hai; Jeong, Hae Kyung; Han, Jinwoo; Jang, Sei-Heon; Lee, ChangWoo

    2014-04-15

    In this article, we report the intrinsic catalytic activity of graphene oxide (GO) for the nonspecific cleavage of proteins. We used bovine serum albumin (BSA) and a recombinant esterase (rEstKp) from the cold-adapted bacterium Pseudomonas mandelii as test proteins. Cleavage of BSA and rEstKp was nonspecific regarding amino acid sequence, but it exhibited dependence on temperature, time, and the amount of GO. However, cleavage of the proteins did not result in complete hydrolysis into their constituent amino acids. GO also invoked hydrolysis of p-nitrophenyl esters at moderate temperatures lower than those required for peptide hydrolysis regardless of chain length of the fatty acyl esters. Based on the results, the functional groups of GO, including alcohols, phenols, and carboxylates, can be considered as crucial roles in the GO-mediated hydrolysis of peptides and esters via general acid-base catalysis. Our findings provide novel insights into the role of GO as a carbocatalyst with nonspecific endopeptidase activity in biochemical reactions. PMID:24508487

  16. Digestive proteinase activity of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae).

    PubMed

    Naveh, V Hosseini; Bandani, A R; Azmayeshfard, P; Hosseinkhani, S

    2005-01-01

    The khapra beetle, Trogoderma granarium, is one of the most important stored product pests worldwide. A study of digestive proteinases in T. granarium was performed to identify potential targets for proteinaceous biopesticides, such as proteinase inhibitors. The pH of guts was determined by addition of pH indicator solutions to broken open gut regions. The last instar larvae were dissected in cold distilled water and the whole guts were cleaned from adhering unwanted tissues. The pooled gut homogenates were centrifuged and the supernatants were used in the subsequent enzyme assay. Total proteinases activity of the gut homogenates was determined using the protein substrate azocasein. Optimal azocasein hydrolysis by luminal proteinases of the larvae of T. granarium was highly alkaline in pH 10-10.5, although the pH of luminal contents was slightly acidic (pH 6.5). The extract showed the highest activity at 55 degrees C (pH 6.5), 45 degrees C (pH 8) and 30 degrees C (pH 10). The proteolytic activity was strongly inhibited in the presence of phenylmethylsulphonyl fluoride (82.33+/-4.37% inhibition). This inhibition was decreased with increasing of the pH of assay incubating medium. N-p-tosyl-L-lysine chloromethyl ketone (51.6+/-3.3% inhibition) and N-tosyl-L-phenylalanine chloromethyl ketone (27.23+/-4.37 % inhibition) showed inhibitory effect on proteolysis. Addition of thiol activators dithiothreitol and L-cysteine had not enhanced azocaseinolytic activity. The data suggest that protein digestion in the larvae of T. granarium is primarily dependent on serine proteinases; trypsin- and chymotrypsin-like proteinases. PMID:16628932

  17. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  18. [Proteolytic enzymes from Streptomyces fradiae: a metalloendopeptidase, subtilisin-like, and trypsin-like proteinases].

    PubMed

    Bormatova, M E; Ivanova, N M; Iusupova, M P; Voiushina, T L; Surova, I A; Chestukhina, G G; Stepanov, V M

    1996-02-01

    Three proteolytic enzymes-the metalloproteinase, SFMP, and two serine proteinases, SFSP and SFTP-have been isolated and purified from the culture fluid of Streptomyces fradiae using chromatography on bacitracin-silochrome, bacitracin-Sepharose, DEAE-cellulose and fractionation by ammonium sulfate. Study of physico-chemical and functional properties of the enzymes and structural analysis revealed that SFMP is a cysteine-containing metalloendopeptidase with M(r) of 36 kDa, has a peak activity for synthetic substrates at pH 7.0-7.5 and at 60-65 degrees C and is stable at pH 7.0-9.0. The serine proteinase SFSP is related to subtilisin-like enzymes, has a M(r) of 29 kDa and a pH optimum at 7.5-8.5 at temperature up to 50 degrees C. The proteinase is stable at pH 4.0-9.0 and retains 30% of its activity at 70 degrees C. The other serine proteinase, SFTP, has a M(r) of 26 kDa and is related to trypsin-like enzymes. Its activity for synthetic substrates of trypsin is maximal at pH 6.8-8.8 at 50 degrees C. The enzyme is stable at pH 4.5-8.5 and at temperature below 50 degrees C. It has been shown that Streptomyces fradiae, like Streptomyces griseus and other Streptomycetes, possesses an ability to secrete serine proteinases (SFSP and SFTP) related to two evolutionally distinct families of serine proteinases, i.e., subtilisin and chymotrypsin families. SFMP and SFSP have been isolated and characterized for the first time. PMID:8717499

  19. Understanding and targeting a novel plant viral proteinase/substrate interaction. Final report, July 1, 1989--June 30, 1995

    SciTech Connect

    Dougherty, W.

    1995-10-01

    The past 3 years of funding have focused our efforts on trying to understand the molecular basis of a unique substrate interaction displayed by a viral proteinase. We have made good progress and during this funding period we have made four contributions to the scientific literature and have developed the application of the proteinase in the expression and purification of recombinant fusion proteins. A comprehensive review of virus-encoded proteinases, written during the funding period, emphazing the tremendous similarity of viral proteinases with their cellular counterparts and at the same time detail the unique characteristics which permit them to function in a cellular environment. The focus of the research effort was the tobacco etch virus (TEV) 27kDa NIa proteinase.

  20. Purification and Characterization of an Endophytic Fungal Proteinase That Is Abundantly Expressed in the Infected Host Grass.

    PubMed Central

    Lindstrom, J. T.; Belanger, F. C.

    1994-01-01

    A novel Acremonium typhinum proteinase that is expressed during endophytic infection of the grass Poa ampla Merr. was purified from endophyte-infected leaf sheath tissue. It is a thiol-containing serine alkaline endoproteinase with bound carbohydrate. In the infected host tissue, this proteinase is an abundant protein localized within fungal membrane vesicles and in the plant and/or fungal cell walls. This proteinase was not expressed constitutively during fungus culture. Rather, its expression appeared to be induced by nutrient depletion. Expression of an antigenically similar proteinase was detected in five other endophyte-infected Poa species. The regulated expression of the proteinase in culture and its abundance in infected plant tissue suggest that its expression may be involved in the symbiotic interaction of the plant and the fungus. PMID:12232300

  1. Effects of E-64, a cysteine proteinase inhibitor, on cowpea weevil growth, development, and fecundity

    SciTech Connect

    Murdock, L.L.; Shade, R.E.; Pomeroy, M.A.

    1988-06-01

    E-64, a specific inhibitor of cysteine proteinases, was incorporated into artificial seeds at low levels (0.01-0.25% by weight). It prolonged developmental time and increased mortality of the larval cowpea weevil, Callosobruchus maculatus (F.), in direct proportion to its concentration in the artificial seeds. The fecundity of females emerging from the artificial seeds was significantly decreased by E-64 concentrations of 0.06% and higher. These observations are compatible with the hypothesis that the midgut cysteine proteinase in C. maculatus is essential for normal growth and development.

  2. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes.

    PubMed

    von Pawel-Rammingen, Ulrich; Björck, Lars

    2003-02-01

    The Gram-positive bacterium Streptococcus pyogenes is a major human pathogen causing substantial morbidity and mortality in society. S. pyogenes has evolved numerous molecular mechanisms to avoid the various actions of the human immune system and has established means to modulate both adaptive and innate immune responses. S. pyogenes produces and secretes proteolytic enzymes, which have an important impact on the ability of the bacteria to survive in the human host. Prominent among these are two immunoglobulin-degrading enzymes: the newly discovered streptococcal cysteine proteinase, IdeS, and the classical cysteine proteinase of S. pyogenes, SpeB. PMID:12615219

  3. Unusual chromatographic behaviour and one-step purification of a novel membrane proteinase from Bacillus cereus.

    PubMed

    Fricke, B; Buchmann, T; Friebe, S

    1995-11-01

    Cell envelopes of Bacillus cereus contain a casein-cleaving membrane proteinase (CCMP) and an insulin-cleaving membrane proteinase (ICMP), which differ in their substrate and inhibitor specificity from all Bacillus proteinases described previously. They remained localized in the cytoplasmic membrane after treatment with lysozyme and mutanolysin and they are strongly attached to the membrane compared with other known membrane proteinases. Only high a concentration of the Zwitterionic detergent sulfobetain SB-12 enabled an effective solubilization of both membrane proteinases. The usual conventional purification methods, such as chromatofocusing, ion-exchange chromatography and hydrophobic interaction chromatography in the presence of detergent concentrations beyond their critical micelle concentration, could not be applied to the purification, because the solubilized membrane proteinases bound strongly and irreversibly to the chromatographic matrix. In the search for other purification methods, we used a tentacle ion-exchanger (EMD trimethylaminoethyl-Fractogel) to reduce the hydrophobic interactions between the proteinases and the matrix. All contaminating proteins could be removed by a first gradient of sodium chloride without elution of CCMP; a second gradient with isopropanol and a decreasing salt concentration resulted in an efficiently purified CCMP. The ICMP was irreversibly denaturated. Purified CCMP is a member of the metalloproteinase family with a pH optimum in the neutral range and a temperature optimum of 40 degrees C, whose properties differ from the serine-type membrane proteinase of Bacillus subtilis described by Shimizu et al. [Agric. Biol. Chem., 47 (1983) 1775]. It consists of two subunits in sodiumdodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions (Mr 53,000 and 65,000); however, the molecular mass of the purified enzyme could not be determined by size exclusion or SDS-PAGE, because the purified enzyme

  4. Proteinase, phospholipase, hyaluronidase and chondroitin-sulphatase production by Malassezia pachydermatis.

    PubMed

    Coutinho, S D; Paula, C R

    2000-02-01

    The production of four functional enzyme categories was investigated in 30 strains of Malassezia pachydermatis isolated from dogs with otitis or dermatitis. The most appropriate reading intervals for these assays were determined with the aid of statistical comparisons. All strains produced proteinase and chondroitin-sulphatase; hyaluronidase and phospholipase were produced by all skin isolates (15/15) and 14 out of 15 ear canal isolates. Strains from ear canals did not differ significantly as a group from skin strains in quantitative production of any of the four enzymes; production of proteinase and chondroitin-sulphatase in particular was markedly uniform. PMID:10746230

  5. The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences.

    PubMed

    Donnelly, M L; Hughes, L E; Luke, G; Mendoza, H; ten Dam, E; Gani, D; Ryan, M D

    2001-05-01

    The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins 'cleaving' at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) -- forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (approximately 90%) were in the form of the 'cleavage' products GUS and [GFP2A]. Alternative models have been proposed to account for the 'cleavage' activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring '2A-like' sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that 'cleavage' occurred in constructs in which all the candidate nucleophilic residues were substituted -- with the exception of aspartate-12. This residue is not, however, conserved amongst all functional '2A-like' sequences. '2A-like' sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial alpha-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial alpha-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the PICORNAVIRIDAE: Taken together, these data provide additional evidence that neither FMDV 2A nor '2A-like' sequences are autoproteolytic elements. PMID:11297677

  6. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  7. Corticosteroid-binding globulin cleavage is paradoxically reduced in alpha-1 antitrypsin deficiency: Implications for cortisol homeostasis.

    PubMed

    Nenke, Marni A; Holmes, Mark; Rankin, Wayne; Lewis, John G; Torpy, David J

    2016-01-15

    High-affinity corticosteroid-binding globulin (haCBG) is cleaved by neutrophil elastase (NE) resulting in permanent transition to the low cortisol-binding affinity form (laCBG), thereby increasing cortisol availability at inflammatory sites. Alpha-1 antitrypsin (AAT) is the major inhibitor of NE. AAT deficiency (AATD) predisposes patients to early-onset emphysema due to increased proteolytic destruction from the inherent proteinase-antiproteinase imbalance. We hypothesized that AATD may result in increased CBG cleavage in vivo. We collected demographic data and blood samples from 10 patients with AATD and 28 healthy controls measuring total CBG and haCBG levels by parallel in-house ELISAs, as well as AAT, total and free cortisol levels. haCBG was higher (median [range]); 329 [210-551] vs. 250 [175-365] nmol/L; P<0.005, and laCBG lower; 174 [68-229] vs. 220 [119-348] nmol/L; P=0.016 in the AATD group, compared with controls. The ratio of haCBG:total CBG was also higher in AATD; 72 [53-83] vs. 54 [41-72] %; P=0.0001). There was a negative correlation between haCBG:total CBG and AAT levels (P<0.05, R=-0.64). Paradoxically, proteolytic cleavage of CBG was reduced in AATD, despite the recognized increase in NE activity. This implies that NE activity is not the mechanism for systemic CBG cleavage in basal, low inflammatory conditions. Relatively low levels of laCBG may have implications for cortisol action in AATD. PMID:26522656

  8. High-molecular-mass multicatalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR.

    PubMed Central

    Benoist, P; Müller, A; Diem, H G; Schwencke, J

    1992-01-01

    A major-high-molecular mass proteinase and seven latent minor proteinases were found in cell extracts and in concentrates of culture medium from Frankia sp. strain BR after nondenaturing electrophoresis in mixed gelatin-polyacrylamide gels. All of these complexes showed multicatalytic properties. Their molecular masses and their sedimentation coefficients varied from 1,300 kDa (28S) to 270 kDa (12S). The electroeluted 1,300-kDa proteinase complex dissociated into 11 low-molecular-mass proteinases (40 to 19 kDa) after sodium dodecyl sulfate activation at 30 degrees C and electrophoresis under denaturing conditions. All of these electroeluted proteinases hydrolyzed N-carbobenzoxy-Pro-Ala-Gly-Pro-4-methoxy-beta- naphthylamide, D-Val-Leu-Arg-4-methoxy-beta-naphthylamide, and Boc-Val-Pro-Arg-4-methyl-7-coumarylamide, whereas Suc-Leu-Leu-Val-Tyr-4-methyl-7-coumarylamide was cleaved only by the six lower-molecular-mass proteinases (27.5 to 19 kDa). Examination by electron microscopy of uranyl acetate-stained, electroeluted 1,300- and 650-kDa intracellular and extracellular proteinase complexes showed ring-shaped and cylindrical particles (10 to 11 nm in diameter, 15 to 16 nm long) similar to those of eukaryotic prosomes and proteasomes. Polyclonal antibodies raised against rat skeletal muscle proteasomes cross-reacted with all of the high-molecular-mass proteinase complexes and, after denaturation of the electroeluted 1,300-kDa band, with polypeptides of 35 to 38, 65, and 90 kDa. Electrophoresis of the activated cell extracts under denaturing conditions revealed 11 to 17 gelatinases from 40 to 19 kDa, including the 11 proteinases of the 1,300-kDa proteinase complex. The inhibition pattern of these proteinases is complex. Thiol-reactive compounds and 1-10-phenanthroline strongly inhibited all of the proteinases, but inhibitors against serine-type proteinases were also effective for most of them. Images PMID:1537794

  9. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  10. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features.

    PubMed

    ten Have, Arjen; Dekkers, Ester; Kay, John; Phylip, Lowri H; van Kan, Jan A L

    2004-07-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medium. A proportion of the enzyme activity remained in the extracellular glucan sheath. AP was also the only type of proteinase activity in fluid obtained from B. cinerea-infected tissue of apple, pepper, tomato and zucchini. Five B. cinerea genes encoding an AP were cloned and denoted Bcap1-5. Features of the encoded proteins are discussed. BcAP1, especially, has novel characteristics. A phylogenetic analysis was performed comprising sequences originating from different kingdoms. BcAP1 and BcAP5 did not cluster in a bootstrap-supported clade. BcAP2 clusters with vacuolar APs. BcAP3 and BcAP4 cluster with secreted APs in a clade that also contains glycosylphosphatidylinositol-anchored proteinases from Saccharomyces cerevisiae and Candida albicans. All five Bcap genes are expressed in liquid cultures. Transcript levels of Bcap1, Bcap2, Bcap3 and Bcap4 are subject to glucose and peptone repression. Transcripts from all five Bcap genes were detected in infected plant tissue, indicating that at least part of the AP activity in planta originates from the pathogen. PMID:15256589

  11. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.

    PubMed

    Chojnacka, Magdalena; Szewińska, Joanna; Mielecki, Marcin; Nykiel, Małgorzata; Imai, Ryozo; Bielawski, Wiesław; Orzechowski, Sławomir

    2015-02-01

    Water-deficit is accompanied by an increase in proteolysis. Phytocystatins are plant inhibitors of cysteine proteinases that belong to the papain and legumain family. A cDNA encoding the protein inhibitor TrcC-8 was identified in the vegetative organs of triticale. In response to water-deficit, increases in the mRNA levels of TrcC-8 were observed in leaf and root tissues. Immunoblot analysis indicated that accumulation of the TrcC-8 protein occurred after 72h of water-deficit in the seedlings. Using recombinant protein, inhibitory activity of TrcC-8 against cysteine proteases from triticale and wheat tissues was analyzed. Under water-deficit conditions, there are increases in cysteine proteinase activities in both plant tissues. The cysteine proteinase activities were inhibited by addition of the recombinant TrcC-8 protein. These results suggest a potential role for the triticale phytocystatin in modulating cysteine proteinase activities during water-deficit conditions. PMID:25462979

  12. Insect resistance to sugar beet pests mediated by a Beta vulgaris proteinase inhibitor transgene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We transformed sugar beet (Beta vulgaris) hairy roots and Nicotiana benthamiana plants with a Beta vulgaris root gene (BvSTI) that codes for a serine proteinase inhibitor. BvSTI is a root gene cloned from the F1016 breeding line that has moderate levels of resistance to the sugar beet root maggot ...

  13. Proteinase K and the structure of PrPse: the good, the bad, and the ugly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunod...

  14. LEKTI domain 15 is a functional Kazal-type proteinase inhibitor.

    PubMed

    Vitzithum, Klaus; Lauber, Thomas; Kreutzmann, Peter; Schulz, Axel; Sommerhoff, Christian P; Rösch, Paul; Marx, Ute C

    2008-01-01

    The multidomain proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor) consists of 15 potential serine proteinase inhibitory domains. In various diseases such as the severe skin disorder Netherton syndrome as well as atopy, defects in the gene encoding LEKTI have been identified that generate premature termination codons of translation, suggesting a specific role of the COOH-terminal part of LEKTI in healthy individuals. We overexpressed and purified a sequence comprising the 15th domain of LEKTI for further characterisation. Here, we present a high yield expression system for recombinant production and efficient purification of LEKTI domain 15 as a highly soluble protein with a uniform disulfide pattern that is identical to that of other known Kazal-type inhibitors. Also, the expected P1P1' site was confirmed. LEKTI domain 15 is a well-structured protein as verified by circular dichroism (CD) spectroscopy and a tight-binding and stable inhibitor of the serine proteinase trypsin. These findings confirm the designation of domain 15 as a proteinase inhibitor of the Kazal family. PMID:17936012

  15. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis.

    PubMed

    Csoma, C; Polgár, L

    1984-09-15

    To degrade storage proteins germinating seeds synthesize proteinases de novo that can be inhibited by thiol-blocking reagents [Baumgartner & Chrispeels (1977) Eur. J. Biochem. 77, 223-233]. We have elaborated a procedure for isolation of such a proteinase from the cotyledons of Phaseolus vulgaris. The purification procedure involved fractionation of the cotyledon homogenate with acetone and with (NH4)2SO4 and successive chromatographies on DEAE-cellulose, activated thiol-Sepharose Sepharose and Sephacryl S-200. The purified enzyme has an Mr of 23,400, proved to be highly specific for the asparagine side chain and blocking of its thiol group resulted in loss of the catalytic activity. The chemical properties of the thiol group of the bean enzyme were investigated by acylation with t-butyloxycarbonyl-L-asparagine p-nitro-phenyl ester and by alkylations with iodoacetamide and iodoacetate. Deviations from normal pH-rate profile were observed, which indicated that the thiol group is not a simple functional group, but constitutes a part of an interactive system at the active site. The pKa value for acylation and the magnitude of the rate constant for alkylation with iodoacetate revealed that the bean proteinase possesses some properties not shared by papain and the other cysteine proteinases studied to date. PMID:6385962

  16. Nitric oxide inhibits cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi.

    PubMed

    Venturini, G; Salvati, L; Muolo, M; Colasanti, M; Gradoni, L; Ascenzi, P

    2000-04-13

    Nitric oxide (NO) is a pluripotent regulatory molecule showing, among others, an antiparasitic activity. Moreover, NO inhibits cysteine proteinase action by nitrosylating the Cys catalytic residue. In the present study, the inhibitory effect of the substrate N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methyl coumarin) and of NO on the catalytic activity of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi (the hemoflagellate protozoan parasite which causes the American trypanosomiasis), is reported. In particular, NO-donors S-nitroso-glutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), 3-morpholinosydnonimine (SIN-1), S-nitroso-acetyl-penicillamine (SNAP), and sodium nitroprusside (SNP) dose-dependently inhibited cruzipain, this effect being likely attributable to the S-nitrosylation of the Cys25 catalytic residue. These results were analyzed in parallel with those concerning the inhibitory effect of the substrate and of NO on the catalytic activity of falcipain, the cruzipain-homologous cysteine proteinase from Plasmodium falciparum. The modulation of the cruzipain and falcipain activity by NO may be relevant in developing new strategies against T. cruzi and P. falciparum in human host. As a whole, the NO-mediated S-nitrosylation of pathogenic viral, bacterial, fungal, and parasitic cysteine proteinases may represent a general mechanism of antimicrobial and antiparasitic host defences. PMID:10753643

  17. OZONE EFFECTS ON ALPHA-1-PROTEINASE INHIBITOR IN VIVO: BLOOD PLASMA INHIBITORY ACTIVITY IS UNCHANGED

    EPA Science Inventory

    The possible oxidative inactivation of human blood plasma alpha-1-proteinase inhibitor (PI) by inhaled ozone was assessed. Eleven male volunteers (non-smokers) were exposed to 0.5 ppm ozone for four hours on two consecutive days and ten control subjects were exposed to air under ...

  18. MYOCARDIAL NECROSIS PRODUCED IN ANIMALS BY MEANS OF CRYSTALLINE STREPTOCOCCAL PROTEINASE

    PubMed Central

    Kellner, Aaron; Robertson, Theodore

    1954-01-01

    Focal myocardial necrosis that was often extensive was found in a high percentage of rabbits, guinea pigs, and mice given a single intravenous injection of crystalline streptococcal proteinase. The findings are discussed in relation to their possible implications for the pathogenesis of the cardiac lesions of rheumatic fever. PMID:13163324

  19. Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062.

    PubMed

    Hebert, E M; Raya, R R; De Giori, G S

    2000-12-01

    The nutritional requirements of Lactobacillus helveticus CRL 1062 were determined with a simplified chemically defined medium (SCDM) and compared with those of L. helveticus CRL 974 (ATCC 15009). Both strains were found to be prototrophic for alanine, glycine, asparagine, glutamine, and cysteine. In addition, CRL 1062 also showed prototrophy for lysine and serine. The microorganisms also required riboflavin, calcium pantothenate, pyridoxal, nicotinic acid, and uracil for growth in liquid SCDM. The growth rate and the synthesis of their cell membrane-bound serine proteinases, but not of their intracellular leucyl-aminopeptidases, were influenced by the peptide content of the medium. The highest proteinase levels were found during cell growth in basal SCDM, while the synthesis of this enzyme was inhibited in SCDM supplemented with Casitone, Casamino Acids, or beta-casein. Low-molecular-mass peptides (<3,000 Da), extracted from Casitone, and the dipeptide leucylproline (final concentration, 5 mM) play important roles in the medium-dependent regulation of proteinase activity. The addition of the dipeptide leucylproline (5 mM) to SCDM reduced proteinase activity by 25%. PMID:11097908

  20. Serine proteinase of Renibacterium salmoninarum digests a major autologous extracellular and cell-surface protein.

    PubMed

    Rockey, D D; Turaga, P S; Wiens, G D; Cook, B A; Kaattari, S L

    1991-10-01

    Renibacterium salmoninarum is a pathogen of salmonid fish that produces large amounts of extracellular protein (ECP) during growth. A proteolytic activity present in ECP at elevated temperatures digested the majority of the proteins in ECP. This digestion was also associated with the loss of ECP immunosuppressive function. In vitro activity of the proteinase in ECP was temperature dependent: it was not detected in an 18-h digest at 4 and 17 degrees C but became readily apparent at 37 degrees C. Proteinase activity was detected at bacterial physiological temperatures (17 degrees C) in reactions incubated for several days. Under these conditions, digestion of partially purified p57, a major constituent of ECP and a major cell-surface protein, yielded a spectrum of breakdown products similar in molecular weight and antigenicity to those in ECP. This pattern of digestion suggests that most of the immunologically related constituents of ECP are p57 and its breakdown products. The proteolytic activity was sensitive to phenylmethylsulfonyl fluoride, methanol, and ethanol and to 10-min incubation at temperatures above 65 degrees C. Electrophoretic analysis of the proteinase on polyacrylamide gels containing proteinase substrates indicated the native form to be 100 kDa or greater. The enzyme was active against selected unrelated substrates only when coincubated with a denaturant (0.1% lauryl sulfate) and (or) a reducing agent (20 mM dithiothreitol). PMID:1777853

  1. Isolation and characterization of a proteinase K sensitive PrPSc fraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that a sizeable fraction of PrPSc present in prion-infected tissues is,contrary to previous conceptions, sensitive to digestion by proteinase K (PK). This finding has important implications in the context of diagnosis of prion disease, as PK has been extensively used in att...

  2. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors.

    PubMed

    Turk, B; Turk, V; Turk, D

    1997-01-01

    Cysteine proteinases are widely distributed among living organisms. According to the most recent classifications (Rawlings and Barrett, 1993, 1994), they can be subdivided on the basis of sequence homology into 14 or even 20 different families, the most important being the papain and the calpain families. The papain-like cysteine proteinases are the most abundant among the cysteine proteinases. The family consists of papain and related plant proteinases such as chymopapain, caricain, bromelain, actinidin, ficin, and aleurain, and the lysosomal cathepsins B, H, L, S, C and K. Most of these enzymes are relatively small proteins with Mr values in the range 20000-35000 (reviewed in Brocklehurst et al., 1987; Polgar, 1989; Rawlings and Barrett, 1994; Berti and Storer, 1995), with the exception of cathepsin C, which is an oligomeric enzyme with Mr approximately 200000 (Metrione et al., 1970; Dolenc et al., 1995). A number of cysteine proteinases are located within lysosomes. Four of them, cathepsins B, C, H and L, are ubiquitous in lysosomes of animals, whereas cathepsin S has a more restricted localisation (Barrett and Kirschke, 1981; Kirschke and Wiederanders, 1994). The enzymes, except cathepsin C, are endopeptidases (reviewed in Kirschke et al., 1995), although cathepsin B was found also to be a dipeptidyl carboxypeptidase (Aronson and Barrett, 1978) and cathepsin H also an aminopeptidase (Koga et al., 1992). Cathepsin C is a dipeptidyl aminopeptidase, but at higher pH it exhibits also dipeptidyl transferase activity (reviewed in Kirschke et al., 1995). Among the lysosomal cysteine proteinases, cathepsin L was found to be the most active in degradation of protein substrates, such as collagen, elastin and azocasein (Barrett and Kirschke, 1981; Maciewicz et al., 1987; Mason et al., 1989), arid cathepsin B the most abundant (Kirschke and Barrett, 1981). All the enzymes are optimally active at slightly acidic pH, although their pH optima for degradation of synthetic

  3. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i.

    PubMed

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A

    2012-10-01

    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition. PMID:23950094

  4. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin. PMID:27108177

  5. Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers.

    PubMed Central

    Koehler, S M; Ho, T H

    1990-01-01

    Barley aleurone layers synthesize and secrete several proteases in response to gibberellic acid (GA3). Two major cysteine proteinases designated EP-A (37,000 M(r)) and EP-B (30,000 M(r)) have been described [Koehler and Ho (1988). Plant Physiol. 87, 95-103]. We now report the cDNA cloning of EP-B and describe the post-translational processing and hormonal regulation of both cysteine proteinases. Three cDNAs for cysteine proteinases were cloned from GA3-induced barley aleurone layers. Genomic DNA gel blot analysis indicated that these are members of a small gene family with no more than four to five different genes. The proteins encoded by two of these clones, pHVEP1 and 4, are 98% similar to each other and are isozymes of EP-B. The proteins contain large preprosequences followed by the amino acid sequence described as the mature N terminus of purified EP-B, and are antigenic to EP-B antiserum. The results of pulse-chase experiments indicated that the post-translational processing of large prosequences proceeds in a multistep fashion to produce the mature enzymes. Processing intermediates for EP-B are observed both in the aleurone layers and surrounding incubation medium, but only mature EP-A is secreted. The regulation of synthesis of EP-A, EP-B, and other aleurone cysteine proteinases was compared at the protein and mRNA levels. We conclude that barley aleurone cysteine proteinases are differentially regulated with respect to their temporal and hormonally induced expression. PMID:2152126

  6. Biocompatible nanoparticles sensing the matrix metallo-proteinase 2 for the on-demand release of anticancer drugs in 3D tumor spheroids.

    PubMed

    Cantisani, Marco; Guarnieri, Daniela; Biondi, Marco; Belli, Valentina; Profeta, Martina; Raiola, Luca; Netti, Paolo A

    2015-11-01

    The balance between dose-dependent tolerability, effectiveness and toxicity of systemically administered antitumor drugs is extremely delicate. This issue highlights the striking need for targeted release of chemotherapeutic drugs within tumors. In this work, a smart strategy of drug targeting to tumors relying upon biodegradable/biocompatible nanoparticles releasing cytotoxic drugs after sensing physiological variations intrinsic to the very nature of tumor tissues is exploited. Here, the well-known over-expression of matrix metallo-proteinase 2 (MMP2) enzyme in tumors has been chosen as a trigger for the release of a cytotoxic drug. Nanoparticles made up of a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA)--block--polyethylene glycol (PEG) copolymer (namely PELGA), blended with a tumor-activated prodrug (TAP) composed of a MMP2-sensitive peptide bound to doxorubicin (Dox) and to PLGA chain have been produced. The obtained devices are able to release Dox specifically upon MMP2 cleavage of the TAP. More interestingly, they can sense the differences in the expression levels of endogenous MMP2 protein, thus modulating drug penetration within a three-dimensional (3D) tumor spheroid matrix, accordingly. Therefore, the proposed nanoparticles hold promise as a useful tool for in vivo investigations aimed at an improved therapeutic efficacy of the conjugated drug payload. PMID:26340360

  7. Metal ion cooperativity in ribozyme cleavage of RNA

    PubMed Central

    Brännvall, Mathias; Kirsebom, Leif A.

    2001-01-01

    Combinations of chemical and genetic approaches were used to study the function of divalent metal ions in cleavage of RNA by the ribozyme RNase P RNA. We show that different divalent metal ions have differential effects on cleavage site recognition and rescue of cleavage activity by mixing divalent metal ions that do not promote cleavage by themselves. We conclude that efficient and correct cleavage is the result of cooperativity between divalent metal ions bound at different sites in the RNase P RNA-substrate complex. Complementation of a mutant RNase P RNA phenotype as a result of divalent metal ion replacement is demonstrated also. This finding together with other data indicate that one of the metal ions involved in this cooperativity is positioned near the cleavage site. The possibility that the Mg2+/Ca2+ ratio might regulate the activity of biocatalysts that depend on RNA for activity is discussed. PMID:11606743

  8. ARTEMIS nuclease facilitates apoptotic chromatin cleavage.

    PubMed

    Britton, Sébastien; Frit, Philippe; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2009-10-15

    One hallmark of apoptosis is DNA degradation that first appears as high molecular weight fragments followed by extensive internucleosomal fragmentation. During apoptosis, the DNA-dependent protein kinase (DNA-PK) is activated. DNA-PK is involved in the repair of DNA double-strand breaks (DSB) and its catalytic subunit is associated with the nuclease ARTEMIS. Here, we report that, on initiation of apoptosis in human cells by agents causing DNA DSB or by staurosporine or other agents, ARTEMIS binds to apoptotic chromatin together with DNA-PK and other DSB repair proteins. ARTEMIS recruitment to chromatin showed a time and dose dependency. It required DNA-PK protein kinase activity and was blocked by antagonizing the onset of apoptosis with a pan-caspase inhibitor or on overexpression of the antiapoptotic BCL2 protein. In the absence of ARTEMIS, no defect in caspase-3, poly(ADP-ribose) polymerase-1, and XRCC4 cleavage or in H2AX phosphorylation was observed and DNA-PK catalytic subunit was still phosphorylated on S2056 in response to staurosporine. However, DNA fragmentation including high molecular weight fragmentation was delayed in ARTEMIS-deficient cells compared with cells expressing ARTEMIS. In addition, ARTEMIS enhanced the kinetics of MLL gene cleavage at a breakage cluster breakpoint that is frequently translocated in acute or therapy-related leukemias. These results show a facilitating role for ARTEMIS at least in early, site-specific chromosome breakage during apoptosis. PMID:19808974

  9. The hammerhead cleavage reaction in monovalent cations.

    PubMed Central

    Curtis, E A; Bartel, D P

    2001-01-01

    Recently, Murray et al. (Chem Biol, 1998, 5:587-595) found that the hammerhead ribozyme does not require divalent metal ions for activity if incubated in high (> or =1 M) concentrations of monovalent ions. We further characterized the hammerhead cleavage reaction in the absence of divalent metal. The hammerhead is active in a wide range of monovalent ions, and the rate enhancement in 4 M Li+ is only 20-fold less than that in 10 mM Mg2+. Among the Group I monovalent metals, rate correlates in a log-linear manner with ionic radius. The pH dependence of the reaction is similar in 10 mM Mg2+, 4 M Li+, and 4 M Na+. The exchange-inert metal complex Co(NH3)3+ also supports substantial hammerhead activity. These results suggest that a metal ion does not act as a base in the reaction, and that the effects of different metal ions on hammerhead cleavage rates primarily reflect structural contributions to catalysis. PMID:11345433

  10. Induction of a heparin-stimulated serine proteinase in sex accessory gland tumors of the Lobund-Wistar rat.

    PubMed

    Wilson, Michael J; Lind, Jeremy; Sinha, Akhouri A

    2015-08-01

    Induction of new proteinase activities that may process growth factors, modify cell surface receptors, cleave extracellular matrix proteins, etc. is considered fundamental in carcinogenesis. The purpose of this study was to characterize a novel proteinase activity induced in sex accessory gland cancers (about 70% in seminal vesicles) of adult male Lobund-Wistar rats by a single injection of N-nitroso-N-methylurea (NMU; 25mg/kg) followed by implanted testosterone propionate (45mg in silastic tubing every 2months) treatment for 10-14months. A 28kDa proteinase activity was detected in tumor extracts using SDS-gelatin gel zymography with incubations done without CaCl2. Its activity was stimulated 15 fold by heparin (optimal activity 1.5-3.0μg/lane) added to the tissue extract-SDS sample buffer prior to electrophoresis. No 28kDa heparin-stimulated proteinase (H-SP) was found in the dorsal, lateral and anterior (coagulating gland) prostate lobes or seminal vesicles of untreated adult rats, but there was a 26-30kDa Ca(2+)-independent proteinase activity in the ventral prostate that showed limited heparin stimulation. The 28kDa H-SP was completely inhibited by 1.0mM 4-(2-aminoethyl)benzenesulfonylfluoride (AESBF) indicating that it was a serine-type proteinase. Other types of proteinase inhibitors were without effect, including serine proteinase inhibitors benzamidine, tranexamic acid and ε-aminocaproic acid. Proteinase activities of about 28kDa were found with casein, fibrinogen or carboxymethylated transferrin as substrate, however, these activities were not stimulated by heparin. Similar levels of activities of the 28kDa H-SP were found in primary tumors and their metastases, but little/no activity was detected in serum, even from rats with large tumor volume and metastases. These data demonstrate overexpression of a heparin-stimulated 28kDa serine proteinase in the primary tumors of sex accessory gland cancers and their metastases. This proteinase either does not

  11. Mapping Homing Endonuclease Cleavage Sites Using In Vitro Generated Protein

    PubMed Central

    Belfort, Marlene

    2015-01-01

    Mapping the precise position of endonucleolytic cleavage sites is a fundamental experimental technique used to describe the function of a homing endonuclease. However, these proteins are often recalcitrant to cloning and over-expression in biological systems because of toxicity induced by spurious DNA cleavage events. In this chapter we outline the steps to successfully express a homing endonuclease in vitro and use this product in nucleotide-resolution cleavage assays. PMID:24510259

  12. Proteolytic cleavage in the S1-S2 linker of the Kv1.5 channel does not affect channel function.

    PubMed

    Hogan-Cann, Andrew; Li, Wentao; Guo, Jun; Yang, Tonghua; Zhang, Shetuan

    2016-06-01

    Kv1.5 channels mediate the ultra-rapidly activating delayed rectifier potassium current (IKur), which is important for atrial repolarization. It has been shown that cell-surface Kv1.5 channels are sensitive to cleavage by the extracellular serine protease, proteinase K (PK). Here, we investigated the effects of extracellular proteolytic digestion on the function of Kv1.5 channels stably expressed in HEK 293 cells. Our data demonstrate that PK treatment cleaved mature membrane-bound (75kDa) Kv1.5 channels at a single locus in the S1-S2 linker, producing 42-kDa N-terminal fragments and 33-kDa C-terminal fragments. Interestingly, such PK treatment did not affect the Kv1.5 current (IKv1.5) recorded using the whole-cell patch clamp technique. Analysis of cell-surface proteins isolated using biotinylation indicated that the PK-generated N- and C-terminal fragments were both present in the plasma membrane. Co-immunoprecipitation (co-IP) experiments indicated that the N- and C-terminal fragments are no longer associated after cleavage. Furthermore, following PK digestion, the N- and C-fragments degraded at different rates. PK is frequently used as a tool to analyze cell-surface localization of membrane proteins, and cleavage of cell-surface channels has been shown to abolish channel function (e.g. hERG). Our data, for the first time, demonstrate that cleavage of cell-surface channels assessed by Western blot analysis does not necessarily correlate with an elimination of the channel activities. PMID:26874203

  13. Statistical and constraint factors in cleavage initiation

    SciTech Connect

    Odette, G.R.; Edsinger, K.V.; Lucas, G.E.

    1997-12-31

    The size dependence of effective cleavage initiation toughness K{sub e}(T) (defined by the load-displacement conditions at initiation) of steels are mediated by both statistical and constraint factors. Statistical effects are controlled by the total high stress volume even under plane strain, small scale yielding, e.g., K{sub Ic} {proportional_to} 1/B{sup {minus}1/4}. Constraint loss and reductions in the stress fields occurs for shallow cracks, large scale yielding and deviations from plane strain. The interplay between these factors is examined by analyzing the observed K{sub e}(T) behavior for specimens with different W, B and a/W using FEM simulations of the crack tip fields and confocal microscopy, fracture reconstruction and SEM characterization of the sequence-of-fracture-events. Observed versus actual sequences and complications such as crack tip strain, the transition to ductile tearing and ultimate loss of specimen capacity are discussed.

  14. Identification of stable plant cystatin/nematode proteinase complexes using mildly denaturing gelatin/polyacrylamide gel electrophoresis.

    PubMed

    Michaud, D; Cantin, L; Bonadé-Bottino, M; Jouanin, L; Vrain, T C

    1996-08-01

    The biochemical interactions between two cystatins from rice seeds, oryzacystatin I (OCI) and oryzacystatin II (OCII), and the cysteine proteinases from three plant parasitic nematodes, Meloidogyne hapla, M. incognita and M. javanica, were assessed using standard protease assays and mildly denaturing gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE). Activity detected in extracts of preparasitic second-stage larvae (J2) from M. hapla was optimal at pH 5.5 and was inhibited in vitro by the cysteine proteinase inhibitors trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane, hen egg cystatin, OCI, and OCII. As demonstrated by class-specific activity staining, all the activity measured between pH 3.5 and pH 7.5 was accounted for by a major proteinase form, Mhp1, and two minor forms, Mhp2 and Mhp3. Mhps were also detected in extracts and excretions of parasitic J2 and adult females, indicating their continuous expression throughout development of M. hapla, and their possible involvement in the extracellular degradation of proteins. Interestingly, the two plant cysteine proteinase inhibitors OCI and OCII showed different degrees of affinity for the major proteinase form, Mhp1. Both inhibitors almost completely inactivated this proteinase in native conditions but, unlike OCII, OCI conserved a high affinity for Mhp1 during mildly denaturing gelatin/PAGE, showing the differential stabilities of the OCI/Mhp1 and OCII/Mhp1 complexes. In contrast to Mhp1, the major cysteine proteinases detected in the two closely related species M. incognita and M. javanica were strongly inhibited by OCII, while the inhibition of OCI was partly prevented during electrophoresis. This species-related efficiency of plant cystatins against nematode cysteine proteinases could have practical implications when planning their use to control nematodes of the genus Meloidogyne. PMID:8874065

  15. Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag, a traditional Mongolian fermented mare's milk.

    PubMed

    Miyamoto, Mari; Ueno, Hiroshi M; Watanabe, Masayuki; Tatsuma, Yumi; Seto, Yasuyuki; Miyamoto, Taku; Nakajima, Hadjime

    2015-03-16

    Airag is a traditional fermented milk of Mongolia that is usually made from raw mare's milk. Lactobacillus helveticus is one of the lactic acid bacteria most frequently isolated from airag. In this study, we investigated the genetic and physiological characteristics of L. helveticus strains isolated from airag and clarified their significance in airag by comparing them with strains from different sources. Six strains of L. helveticus were isolated from five home-made airag samples collected from different regions of Mongolia. The optimal temperature for acidification in skim milk was 30 to 35°C for all the Mongolian strains, which is lower than those for the reference strains (JCM 1554 and JCM 1120(T)) isolated from European cheeses. All of the strains had a prtH1-like gene encoding a variant type of cell envelope proteinase (CEP). The CEP amino acid sequence in Snow Brand Typeculture (SBT) 11087 isolated from airag shared 71% identity with PrtH of L. helveticus CNRZ32 (AAD50643.1) but 98% identity with PrtH of Lactobacillus kefiranofaciens ZW3 (AEG40278.1) isolated from a traditional fermented milk in Tibet. The proteolytic activities of the CEP from SBT11087 on artificial substrate (N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) and pure casein were measured using an intact-cell degradation assay. The activity of the CEP from SBT11087 was observed to be weak and exhibited a lower optimal temperature (40°C) than those from the reference strains (45-50°C). The specificity of the SBT11087 CEP for αS1-casein was typical of the CEPs previously reported in L. helveticus, as determined through the degradation profiles obtained through gel electrophoresis and mass spectrometry analyses. In contrast, the degradation profile of β-casein revealed that the CEP of SBT11087 primarily hydrolyzes its C-terminal domain and hydrolyzed nine of the 16 cleavage sites shared among the CEPs of other L. helveticus strains. Thus, the CEP of SBT11087 is distinct from those from

  16. Si(111) cleavage and the (2 x 1) reconstruction process

    NASA Technical Reports Server (NTRS)

    Pearson, E. M.; Halicioglu, T.; Tiller, W. A.

    1987-01-01

    Using a computer simulation technique with a semiempirical potential, a Si crystal was cleaved along the (111) plane. The pi-bonded chain structural features of the Si(111) cleavage surface are observed and found to be a consequence of the dynamics of this cleavage process and seem not to be influenced by the final energetics.

  17. Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis.

    PubMed

    Michaud, D; Cantin, L; Raworth, D A; Vrain, T C

    1996-01-01

    A method for assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis (gelatin-PAGE) is described. As suggested by the use of well-known cystatins (human stefins A and B, and oryzacystatins I and II) and the plant cysteine proteinase papain, the ability of cystatin/cysteine proteinase complexes to remain stable during electrophoresis is associated with the degree of affinity between the enzyme and the inhibitor (and inversely associated with the Ki values), at least with the disulfide bond-lacking cystatins. Complexes with Ki values > or = 10(-8) M (weak interactions) are partly or completely dissociated under the conditions used, while those with lower Ki values (strong interactions) remain stable. As shown by the differential effects of two plant cystatins, oryzacystatins I and II, against a cysteine proteinase present in crude (complex) extracts from a plant pest -- the two-spotted spider mite (Tetranychus urticae Koch), the gelatin-PAGE procedure is suitable for studying the ability of cystatins to form highly stable complexes with cysteine proteinases, without the need for prior purification steps. Considering the well-recognized potential of proteinase inhibitors for pest and pathogen control, this analytical approach will be useful for rapidly assessing the respective potential of various cystatins for protection of plants, animals, and humans. PMID:8907521

  18. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors.

    PubMed

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali

    2014-01-01

    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties. PMID:24338707

  19. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage.

    PubMed

    Shi, Nian-Qiu; Gao, Wei; Xiang, Bai; Qi, Xian-Rong

    2012-01-01

    The use of activable cell-penetrating peptides (ACPPs) as molecular imaging probes is a promising new approach for the visualization of enzymes. The cell-penetrating function of a polycationic cell-penetrating peptide (CPP) is efficiently blocked by intramolecular electrostatic interactions with a polyanionic peptide. Proteolysis of a proteinase-sensitive substrate present between the CPP and polyanionic peptide affords dissociation of both domains and enables the activated CPP to enter cells. This ACPP strategy could also be used to modify antitumor agents for tumor-targeting therapy. Here, we aimed to develop a conjugate of ACPP with antitumor drug doxorubicin (DOX) sensitive to matrix metalloproteinase-2 and -9 (MMP-2/9) for tumor-targeting therapy purposes. The ACPP-DOX conjugate was successfully synthesized. Enzymatic cleavage of ACPP-DOX conjugate by matrix metalloproteinase (MMP)-2/9 indicated that the activation of ACPP-DOX occurred in an enzyme concentration-dependent manner. Flow cytometry and laser confocal microscope studies revealed that the cellular uptake of ACPP-DOX was enhanced after enzymatic-triggered activation and was higher in HT-1080 cells (overexpressed MMPs) than in MCF-7 cells (under-expressed MMPs). The antiproliferative assay showed that ACPP had little toxicity and that ACPP-DOX effectively inhibited HT-1080 cell proliferation. These experiments revealed that the ACPP-DOX conjugate could be triggered by MMP-2/9, which enabled the activated CPP-DOX to enter cells. ACPP-DOX conjugate may be a potential prodrug delivery system used to carry antitumor drugs for MMP-related tumor therapy. PMID:22619516

  20. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    PubMed

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  1. Secretory leukoprotease inhibitor: partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation.

    PubMed Central

    Bingle, L.; Tetley, T. D.

    1996-01-01

    Secretory leukoprotease inhibitor (SLPI) is a low molecular weight serine proteinase inhibitor, notably of neutrophil elastase (NE), which is synthesised and secreted by the pulmonary epithelium. SLPI plays an important role in limiting NE-induced pulmonary inflammation and, significantly, it also possesses anti-HIV activity. SLPI is a significant component of the anti-NE shield in the lung which has different reactivity from, and is therefore complementary to, the anti-NE action of alpha 1-proteinase inhibitor (alpha 1-PI). Inhaled recombinant SLPI (rSLPI) could prove beneficial in partnership with alpha 1-PI in the treatment of a number of inflammatory lung disorders including emphysema, chronic bronchitis, cystic fibrosis, and adult respiratory distress syndrome. PMID:8994529

  2. Purification and Characterization of a Keratinolytic Serine Proteinase from Streptomyces albidoflavus

    PubMed Central

    Bressollier, Philippe; Letourneau, François; Urdaci, Maria; Verneuil, Bernard

    1999-01-01

    Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70°C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K. PMID:10347045

  3. Competitive inhibition of nitric oxide synthase by p-aminobenzamidine, a serine proteinase inhibitor.

    PubMed

    Venturini, G; Menegatti, E; Ascenzi, P

    1997-03-01

    p-Aminobenzamidine competitively inhibits bovine trypsin, human and bovine thrombin, and human plasmin, all of which act on substrates containing preferentially the L-arginyl side chain at their P1 position. Considering the structural and functional similarity between p-aminobenzamidine and the L-arginyl side chain in trypsin-like serine proteinases, we investigated the interaction of p-aminobenzamidine with mouse brain nitric oxide synthase (NOS), which uses L-arginine as the substrate for generating NO and L-citrulline. p-Aminobenzamidine is a competitive NOS inhibitor (Ki = 1.2 x 10(-4) M, at pH 7.5 and 37.0 degrees C), but not an NO precursor. Therefore, p-aminobenzamidine affects the NO production and the trypsin-like serine proteinase action. PMID:9125158

  4. Enhanced response of a proteinase K-based conductometric biosensor using nanoparticles.

    PubMed

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Hamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-01-01

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained. PMID:25057139

  5. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    PubMed Central

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Abdelhamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-01-01

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 μs. These results are greater than that found without any nanoparticles (maximum response of 10 μs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained. PMID:25057139

  6. Modified TB rapid test by proteinase K for rapid diagnosis of pleural tuberculosis.

    PubMed

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Fateh, Abolfazl; Yari, Fatemeh; Bahrmand, Ahmadreza

    2016-03-01

    The diagnosis of pleural tuberculosis continues to be a challenge due to the low sensitivity of traditional diagnostic methods. Better and more rapid tests are needed for diagnosis of pleural TB. In this study, pleural fluids were tested with rapid test to determine Mycobacterium tuberculosis (MTB antigen). Affinity chromatography was used to purify specific polyclonal antibodies against MTB antigen. Pleural samples after decontamination were treated with proteinase K. Rapid test for pleural fluids was prepared by specific antibody. Rapid test was performed on 85 pleural fluid patients. The patients had a mean age of 46.55 ± 15.96 years and 38 were men. The performance of rapid test, using proteinase K, was found to be the most impressive: sensitivity 93%, specificity 94%, PPV 90%, and NPV 96% compared with adenosine deaminase test (ADA), PCR, smear, and culture. The present study did demonstrate that modified TB rapid test can substantially improve the diagnosis of extrapulmonary TB. PMID:26693840

  7. Isolation of Proteinase K-Sensitive Prions Using Pronase E and Phosphotungstic Acid

    PubMed Central

    D'Castro, Laura; Wenborn, Adam; Gros, Nathalie; Joiner, Susan; Cronier, Sabrina; Collinge, John; Wadsworth, Jonathan D. F.

    2010-01-01

    Disease-related prion protein, PrPSc, is classically distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrPSc using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrPC, while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrPC. PMID:21187933

  8. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology.

    PubMed

    Bekhouche, Mourad; Colige, Alain

    2015-01-01

    Collagen fibers are the main components of most of the extracellular matrices where they provide a structural support to cells, tissues and organs. Fibril-forming procollagens are synthetized as individual chains that associate to form homo- or hetero-trimers. They are characterized by the presence of a central triple helical domain flanked by amino and carboxy propeptides. Although there are some exceptions, these two propeptides have to be proteolytically removed to allow the almost spontaneous assembly of the trimers into collagen fibrils and fibers. While the carboxy-propeptide is mainly cleaved by proteinases from the tolloid family, the amino-propeptide is usually processed by procollagen N-proteinases: ADAMTS2, 3 and 14. This review summarizes the current knowledge concerning this subfamily of ADAMTS enzymes and discusses their potential involvement in physiopathological processes that are not directly linked to fibrillar procollagen processing. PMID:25863161

  9. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung

    SciTech Connect

    Pickrell, J.A.; Gregory, R.E.; Cole, D.J.; Hahn, F.F.; Henderson, R.F.

    1987-04-01

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a /sup 14/C-globin substrate. The 48-hr exposures to O/sub 3/ at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O/sub 3/ resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O/sub 3/, which correlated with inflammatory cells noted histologically. At 1.5 ppm O/sub 3/, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O/sub 3/ exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema.

  10. Digestion of human immunoglobulin G by the major cysteine proteinase (cruzipain) from Trypanosoma cruzi.

    PubMed

    Bontempi, E; Cazzulo, J J

    1990-08-01

    The major cysteine proteinase (cruzipain) from Trypanosoma cruzi was able to digest human IgG, as shown by polyacrylamide gel electrophoresis in the presence of SDS, and by gel filtration on a Superose 12 column, in a FPLC system. The Fab fragment of IgG was only slightly degraded, but Fc was extensively hydrolyzed to small peptides. The results suggest that cruzipain might be involved in the defense mechanisms of the parasite against the immune response of the host. PMID:2227369

  11. SARS CoV Main Proteinase: The Monomer-Dimer Equilibrium Dissociation Constant

    SciTech Connect

    Graziano,V.; McGrath, W.; Yang, L.; Mangel, W.

    2006-01-01

    The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, K{sub D}, have varied more than 650000-fold, from <1 nM to more than 200 {mu}M. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimer equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded K{sub D} values of 5.8 {+-} 0.8 {mu}M (obtained from the entire scattering curve), 6.5 {+-} 2.2 {mu}M (obtained from the radii of gyration), and 6.8 {+-} 1.5 {mu}M (obtained from the forward scattering). The K{sub D} from chemical cross-linking was 12.7 {+-} 1.1 {mu}M, and from enzyme kinetics, it was 5.2 {+-} 0.4 {mu}M. While each of these three techniques can present different, potential limitations, they all yielded similar K{sub D} values.

  12. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung.

    PubMed

    Pickrell, J A; Gregory, R E; Cole, D J; Hahn, F F; Henderson, R F

    1987-04-01

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a 14C-globin substrate. The 48-hr exposures to O3 at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O3 resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O3, which correlated with inflammatory cells noted histologically. At 1.5 ppm O3, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O3 exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema. PMID:3549351

  13. Synthesis and proteinase inhibitory properties of diphenyl phosphonate analogues of aspartic and glutamic acids.

    PubMed

    Hamilton, R; Walker, B; Walker, B J

    1998-07-01

    The synthesis of diphenyl phosphonate analogues of aspartic and glutamic acid, and their inhibitory activity against S. aureus V8 protease and granzyme B, is described. The study has revealed difficulties with protecting group compatibility in the synthesis of these analogues. Two analogues, Acetyl. AspP (OPh)2 and Acetyl.GluP (OPh)2 were found to function as irreversible inactivators of V8 proteinase, yet exhibit no activity against granzyme B. PMID:9873408

  14. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets

    PubMed Central

    Cass, Ashley A.; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-01-01

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. PMID:26975654

  15. In vitro anthelmintic effects of cysteine proteinases from plants against intestinal helminths of rodents.

    PubMed

    Stepek, Gillian; Lowe, Ann E; Buttle, David J; Duce, Ian R; Behnke, Jerzy M

    2007-12-01

    Infections with gastrointestinal (GI) nematodes are amongst the most prevalent worldwide, especially in tropical climates. Control of these infections is primarily through treatment with anthelmintic drugs, but the rapid development of resistance to all the currently available classes of anthelmintic means that alternative treatments are urgently required. Cysteine proteinases from plants such as papaya, pineapple and fig are known to be substantially effective against three rodent GI nematodes, Heligmosomoides polygyrus, Trichuris muris and Protospirura muricola, both in vitro and in vivo. Here, based on in vitro motility assays and scanning electron microscopy, we extend these earlier reports, demonstrating the potency of this anthelmintic effect of plant cysteine proteinases against two GI helminths from different taxonomic groups - the canine hookworm, Ancylostoma ceylanicum, and the rodent cestode, Rodentolepis microstoma. In the case of hookworms, a mechanism of action targeting the surface layers of the cuticle indistinguishable from that reported earlier appears to be involved, and in the case of cestodes, the surface of the tegumental layers was also the principal location of damage. Hence, plant cysteine proteinases have a broad spectrum of activity against intestinal helminths (both nematodes and cestodes), a quality that reinforces their suitability for development as a much-needed novel treatment against GI helminths of humans and livestock. PMID:18005461

  16. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    PubMed

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research. PMID:23619703

  17. Activation of intracellular serine proteinase in Bacillus subtilis cells during sporulation.

    PubMed Central

    Burnett, T J; Shankweiler, G W; Hageman, J H

    1986-01-01

    Cells of Bacillus subtilis 168 (trpC2) growing and sporulating in a single chemically defined medium carried out intracellular protein degradation and increased their levels of intracellular serine protease-1 in a manner very similar to what had previously been reported for cells sporulating in nutrient broth. The results were interpreted to mean that these processes are intrinsic to sporulation rather than medium dependent. To determine the cause of these increases in specific activity of proteinases, we purified the protease, prepared rabbit immunoglobulins directed against it, and monitored changes in protease antigen levels by performing rocket immunoelectrophoresis. In cells sporulating in nutrient broth, the protease antigen levels increased about 7-fold, whereas the specific activity increased about 150-fold, for an activation of about 20-fold. In cells sporulating in the single chemically defined sporulation medium, the protease antigen increased about 10-fold, whereas the specific activity increased at least 400-fold, for an activation of about 40-fold. These results were interpreted to mean that a posttranslational event activated the protease in vivo; a previously described endogenous proteinase inhibitor was confirmed to be present in the strain used. Chloramphenicol added to the cultures inhibited both the increases in antigen levels and in the specific activity of the proteinase. PMID:3079745

  18. Phage display selection of P1 mutants of BPTI directed against five different serine proteinases.

    PubMed

    Kiczak, L; Koscielska, K; Otlewski, J; Czerwinski, M; Dadlez, M

    1999-01-01

    The P1 position of protein inhibitors and oligopeptide substrates determines, to a large extent, association energy with many serine proteinases. To test the agreement of phage display selection with the existing thermodynamic data, a small library of all 20 P1 mutants of basic pancreatic trypsin inhibitor (BPTI) was created, fused to protein III, and displayed on the surface of M13 phage. The wild type of displayed inhibitor monovalently and strongly inhibited trypsin with an association constant of Ka = 3 x 10(11) M(-1). The library was applied to select BPTI variants active against five serine proteinases of different specificity (bovine trypsin and chymotrypsin, human leukocyte and porcine pancreatic elastases, human azurocidin). The results of enrichment with four proteinases agreed well with the available thermodynamic data. In the case of azurocidin, the phage display selection allowed determination of the P1 specificity of this protein with the following frequencies for selected P1 variants: 43% Lys, 36% Leu, 7% Met, 7% Thr, 7% Gln. PMID:10064144

  19. Growth of an extracellular proteinase-deficient strain of Pseudomonas fluorescens on milk and milk proteins.

    PubMed

    Torrie, J P; Cholette, H; Froehlich, D A; McKellar, R C

    1983-08-01

    An extracellular proteinase-and lipase-deficient mutant of a psychrotroph, Pseudomonas fluorescens strain 32A, has been isolated and the absence of the proteinase enzyme confirmed by growth on differential media, enzyme assay and polyacrylamide gel electrophoresis. Competition between the parent and the mutant was observed when equal numbers of the 2 strains were inoculated together into raw skim-milk at 6 degrees C. Bitterness was detected at 6 degrees C in pasteurized skim-milk inoculated with the parent cells concurrent with the detection of proteolytic activity. In the case of the mutant, slight bitterness which did not increase with increasing cell numbers was detected in the absence of proteolysis. Mutant cells failed to grow on Na caseinate as the sole source of carbon. It was concluded that the extracellular proteinase, while not essential for growth in milk, does provide a selective advantage to the producer organism. This enzyme is, however, essential for growth on milk proteins and contributes to the development of bitterness in pasteurized milk. PMID:6413562

  20. Classification of microbial α-amylases for food manufacturing using proteinase digestion

    PubMed Central

    Akiyama, Takumi; Yamazaki, Takeshi; Tada, Atsuko; Ito, Yusai; Otsuki, Noriko; Akiyama, Hiroshi

    2014-01-01

    Enzymes produced by microorganisms and plants are used as food additives to aid the processing of foods. Identification of the origin of these enzyme products is important for their proper use. Proteinase digestion of α-amylase products, followed by high performance liquid chromatography (HPLC) analysis, was applied to α-amylase from the mold Aspergillus species, the bacteria Bacillus species, and the actinomycetes Saccharomonospora species. Eighteen commercial products of α-amylase were digested with trypsin and endoproteinase Lys-C and HPLC analyzed. For some proteinase/sample combinations, the area of the intact α-amylase peak decreased and new peaks were detected after digestion. The presence and retention times of the novel peaks were used to group the products. The results from this method, called the proteinase digestion–HPLC method, allowed the classification of the α-amylase products into 10 groups, whereas the results from sodium dodecyl sulfate polyacrylamide gel electrophoresis allowed their classification into seven groups. PMID:25473515

  1. The anthelmintic efficacy of natural plant cysteine proteinases against the rat tapeworm Hymenolepis diminuta in vivo.

    PubMed

    Mansur, F; Luoga, W; Buttle, D J; Duce, I R; Lowe, A; Behnke, J M

    2016-05-01

    Hymenolepis diminuta is a natural parasite of the common brown rat Rattus norvegicus, and provides a convenient model system for the assessment of the anthelmintic activity of novel drugs against cestodes. The experiments described in this paper indicate that treatment of rats infected with H. diminuta with a supernatant extract of papaya latex, containing a mixture of four cysteine proteinases, was moderately efficacious, resulting in a significant, but relatively small, reduction in worm burden and biomass. However, faecal egg output was not affected by treatment. In our experiments these effects were only partially dose-dependent, although specific inhibition by E-64 confirmed the role of cysteine proteinases as the active principles in papaya latex affecting worm growth but not statistically reducing worm burden. Data collected for a further 7 days after treatment indicated that the effects of papaya latex supernatant on worm loss and on worm growth were not enhanced. Our findings provide a starting point for further refinement in formulation and delivery, or assessment of alternative natural plant-derived cysteine proteinases in efforts to develop these naturally occurring enzymes into broad-spectrum anthelmintics, with efficacy against cestodes as well as nematodes. PMID:25761568

  2. Protein Degradation, Meiosis and Sporulation in Proteinase-Deficient Mutants of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Zubenko, George S.; Jones, Elizabeth W.

    1981-01-01

    During the process of sporulation, a/α diploids degrade about 50% of their vegetative proteins. This degradation is not sporulation specific, for asporogenous diploids of a/a mating type degrade their vegetative proteins in a fashion similar to that of their a/α counterparts. Diploids lacking carboxypeptidase Y activity, prc1/prc1, show about 80% of wild-type levels of protein degradation, but are unimpaired in the production of normal asci. Diploids lacking proteinase B activity, prb1/prb1, show about 50% of wild-type levels of protein degradation. The effect on degradation of the proteinase B deficiency is epistatic to the degradation deficit attributable to the carboxypeptidase Y deficiency. The prb1 homozygotes undergo meiosis and produce spores, but the asci and, possibly, the spores are abnormal. Diploids homozygous for the pleiotropic pep4–3 mutation show only 30% of the wild-type levels of degradation when exposed to a sporulation regimen, and do not undergo meiosis or sporulation. Neither proteinase B nor carboxypeptidase Y is necessary for germination of spores.——Approximately half of the colonies arising from a/a or α/α diploids exposed to the sporulation regiment that express an initially heterozygous drug-resistance marker (can1) appear to arise from mating-type switches followed by meiosis and sporulation. PMID:7021321

  3. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins.

    PubMed

    Berge, A; Björck, L

    1995-04-28

    Streptococcus pyogenes are important pathogenic bacteria which produce an extracellular cysteine proteinase contributing to their virulence and pathogenicity. S. pyogenes also express surface molecules, M proteins, that are major virulence determinants due to their antiphagocytic property. In the present work live S. pyogenes bacteria of the M1 serotype were incubated with purified cysteine proteinase. Several peptides were solubilized, and analysis of their protein-binding properties and amino acid sequences revealed two internal fibrinogen-binding fragments of M1 protein (17 and 21 kDa, respectively), and a 36-kDa IgG-binding NH2-terminal fragment of protein H, an IgGFc-binding surface molecule. M protein also plays a role in streptococcal adherence, and removal of this and other surface proteins could promote bacterial dissemination, whereas the generation of soluble complexes between immunoglobulins and immunoglobulin-binding streptococcal surface proteins could be an etiological factor in the development of glomerulonephritis and rheumatic fever. Thus, in these serious complications to S. pyogenes infections immune complexes are found in affected organs. The cysteine proteinase also solubilized a 116-kDa internal fragment of C5a peptidase, another streptococcal surface protein. Activation of the complement system generates C5a, a peptide stimulating leukocyte chemotaxis. C5a-mediated granulocyte migration was blocked by the 116-kDa fragment. This mechanism, by which phagocytes could be prevented from reaching the site of infection, may also contribute to the pathogenicity and virulence of S. pyogenes. PMID:7730368

  4. Snake venoms. The amino acid sequences of two proteinase inhibitor homologues from Dendroaspis angusticeps venom.

    PubMed

    Joubert, F J; Taljaard, N

    1980-05-01

    Toxins C13S1C3 and C13S2C3 from D. angusticeps venom were purified by gel filtration and ion exchange chromatography. Whereas C13S1C3 contains 57 amino acids, C13S2C3 contains 59 but each include six half-cystine residues. The complete primary structure of the low toxicity proteins have been elucidated. The sequences and the invariant residues of toxins C13S1C3 and C13S2C3 from D. angusticeps venom resemble, respectively, those of the proteinase inhibitor homologues K and I from D. polylepis polylepis venom and they are also homologous to the active proteinase inhibitors from various sources. In C13S1C3 and K the active site lysyl residue of active bovine pancreatic proteinase inhibitor is conserved but the site residue alanine, is replaced by lysine. In C13S2C3 and I the active site residue is replaced by tyrosine. PMID:7429422

  5. [Characteristics of proteinase digestive function in invertebrates--inhabitants of cold seas].

    PubMed

    Mukhin, V A; Smirnova, E B; Novikov, V Iu

    2007-01-01

    Digestive proteinases of various taxa of invertebrates of the Northern seas have been studied: crustaceans Paralithodes camtchaticus, Pandalus borealis; molluscs Chlamys islandicus, Buccinum undatum, Serripes groenlandicus, and echinoderms Strongylocentrotus droebachiensis, Cucumaria frondosa, Asterias rubens, and Grossaster papposus. The presence of two proteolytic activity peaks in the acid (pH 2.5-3.5) and low alkaline zones (pH 7.5-8.5) and a similar proteinase spectrum have been revealed in digestive organs of the studied animals. The proteolytic activity in digestive organs of the Barents Sea invertebrates exceeds significantly that of terrestrial homoiothermal animals, which seems to be an extensive compensation for poor differentiation of the digestive system and for low substrate specificity of the enzymes as well as for cold conditions of the habitat. The principal qualitative difference between vertebrates and invertebrates consists in that the latter have no pepsin activity, but do have the cathepsin activity that is absent in vertebrate digestive organs. Contribution to the acid proteolysis is made by lysosomal cathepsins, rather than by pepsins. Activity in the alkaline and neutral pH zones is provided by serine proteinases. In digestive cavities of invertebrates, hydrolysis of proteins and mechanical processing of food occur only in the low alkaline zone, whereas acid proteolysis has intracellular lysosomal localization. PMID:18038635

  6. Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases

    PubMed Central

    Horwitz, Marshall S.; Jenne, Dieter E.; Gauthier, Francis

    2010-01-01

    Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies. PMID:21079042

  7. Structure of equine infectious anemia virus proteinase complexed with an inhibitor.

    PubMed Central

    Gustchina, A.; Kervinen, J.; Powell, D. J.; Zdanov, A.; Kay, J.; Wlodawer, A.

    1996-01-01

    Equine infectious anemia virus (EIAV), the causative agent of infectious anemia in horses, is a member of the lentiviral family. The virus-encoded proteinase (PR) processes viral polyproteins into functional molecules during replication and it also cleaves viral nucleocapsid protein during infection. The X-ray structure of a complex of the 154G mutant of EIAV PR with the inhibitor HBY-793 was solved at 1.8 A resolution and refined to a crystallographic R-factor of 0.136. The molecule is a dimer in which the monomers are related by a crystallographic twofold axis. Although both the enzyme and the inhibitor are symmetric, the interactions between the central part of the inhibitor and the active site aspartates are asymmetric, and the inhibitor and the two flaps are partially disordered. The overall fold of EIAV PR is very similar to that of other retroviral proteinases. However, a novel feature of the EIAV PR structure is the appearance of the second alpha-helix in the monomer in a position predicted by the structural template for the family of aspartic proteinases. The parts of the EIAV PR with the highest resemblance to human immunodeficiency virus type 1 PR include the substrate-binding sites; thus, the differences in the specificity of both enzymes have to be explained by enzyme-ligand interactions at the periphery of the active site as well. PMID:8844837

  8. Use of Cleavage as an Aid in the Optical Determination of Minerals.

    ERIC Educational Resources Information Center

    Ehlers, Ernest G.

    1980-01-01

    Described is the use of cleavage as an aid to microscopic determination of unknown minerals by immersion methods. Cleavages are examined in relation to fragment shapes, types of extinction, and cleavage-optical relationships. (Author/DS)

  9. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  10. Cleavage fracture properties of high strength steel weldments

    SciTech Connect

    Hughes, R.K.; Ritter, J.C.

    1996-12-31

    The qualification of consumables and welding of steels in critical naval applications, including submarine construction, is dependent upon the achievement of high levels of toughness at low temperature. The principal technique employed is the Charpy impact test at temperatures down to {minus}115 C ({minus}175 F). In the investigation described here, low temperature toughness properties were investigated by breaking notched specimens in slow four point bending and measuring the critical tensile stress for cleavage initiation. Multi-pass Flux Cored Arc (FCA) welds joining 690 MPa (100 ksi) yield strength, quenched and tempered steel were tested to identify cleavage fracture micromechanisms and to investigate the role of microstructural features in the cleavage fracture process. Cleavage fracture stress values in the range 2,018 to 2,381 MPa were recorded in weld metal when testing at sub-zero temperatures. Detailed examination of fracture surfaces by scanning electron microscope (SEM) revealed that weld metal inclusions play a critical role in acting as cleavage initiation sites. Changing welding position from downhand to vertical-up resulted in a small number of widely spaced inclusions approaching or exceeding 10 {micro}m in diameter but these were not observed to act as cleavage initiation sites. The cleavage fracture resistance of multi-pass Manual Metal Arc (MMA) welds which are currently under investigation is compared with FCA weldments.

  11. Bundled slaty cleavage in laminated argillite, north-central minnesota

    USGS Publications Warehouse

    Southwick, D.L.

    1987-01-01

    Exceptional bundled slaty cleavage (defined herein) has been found in drill cores of laminated, folded, weakly metamorphosed argillite at several localities in the early Proterozoic Animikie basin of north-central Minnesota. The cleavage domains are more closely spaced within the cleavage bundles than outside them, the mean tectosilicate grain size of siltstone layers, measured normal to cleavage, is less in the cleavage bundles than outside them, and the cleavage bundles are enriched in opaque phases and phyllosilicates relative to extra-bundle segments. These facts suggest that pressure solution was a major factor in bundle development. If it is assumed that opaque phases have been conserved during pressure solution, the modal differences in composition between intra-bundle and extra-bundle segments of beds provide a means for estimating bulk material shortening normal to cleavage. Argillite samples from the central part of the Animikie basin have been shortened a minimum of about 22%, as estimated by this method. These estimates are similar to the shortening values derived from other strain markers in other rock types interbedded with the argillite, and are also consistent with the regional pattern of deformation. ?? 1987.

  12. Quantification of DNA cleavage specificity in Hi-C experiments

    PubMed Central

    Meluzzi, Dario; Arya, Gaurav

    2016-01-01

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. PMID:26264668

  13. Measurement of the cleavage energy of graphite

    PubMed Central

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J.; Zheng, Quanshui

    2015-01-01

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m−2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m−2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches. PMID:26314373

  14. Endonucleolytic RNA cleavage by a eukaryotic exosome.

    PubMed

    Lebreton, Alice; Tomecki, Rafal; Dziembowski, Andrzej; Séraphin, Bertrand

    2008-12-18

    The exosome is a major eukaryotic nuclease located in both the nucleus and the cytoplasm that contributes to the processing, quality control and/or turnover of a large number of cellular RNAs. This large macromolecular assembly has been described as a 3'-->5' exonuclease and shown to contain a nine-subunit ring structure evolutionarily related to archaeal exosome-like complexes and bacterial polynucleotide phosphorylases. Recent results have shown that, unlike its prokaryotic counterparts, the yeast and human ring structures are catalytically inactive. In contrast, the exonucleolytic activity of the yeast exosome core was shown to be mediated by the RNB domain of the eukaryote-specific Dis3 subunit. Here we show, using in vitro assays, that yeast Dis3 has an additional endoribonuclease activity mediated by the PIN domain located at the amino terminus of this multidomain protein. Simultaneous inactivation of the endonucleolytic and exonucleolytic activities of the exosome core generates a synthetic growth phenotype in vivo, supporting a physiological function for the PIN domain. This activity is responsible for the cleavage of some natural exosome substrates, independently of exonucleolytic degradation. In contrast with current models, our results show that eukaryotic exosome cores have both endonucleolytic and exonucleolytic activities, mediated by two distinct domains of the Dis3 subunit. The mode of action of eukaryotic exosome cores in RNA processing and degradation should be reconsidered, taking into account the cooperation between its multiple ribonucleolytic activities. PMID:19060886

  15. A cleavage toughness master curve model

    NASA Astrophysics Data System (ADS)

    Odette, G. R.; He, M. Y.

    2000-12-01

    Development of fusion power will require a fracture toughness database, derived largely from small specimen tests, closely integrated with methods to assess first wall and blanket structural integrities. A master curve-shift (MC-ΔT) method has been proposed as an engineering expedient to treat the effects of structural geometry, irradiation, loading rates and safety margins. However, a number of issues related to the MC-ΔT method remain to be resolved, including the universality of MC shapes. A new micromechanical model of fracture toughness in the cleavage transition regime is proposed that combines analytical representations of finite element analysis simulations of crack-tip stress fields with a local critical stress-critical stressed area (σ∗-A∗) fracture criterion. This model, has been successful in predicting geometry effects, as well as high loading rate and irradiation hardening-induced Charpy shifts. By incorporating a modest temperature dependence in σ∗(T), an inconsistency between model predictions and an observed universal-type MC shape is resolved.

  16. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation

    PubMed Central

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-01-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. PMID:25495009

  17. [On the Features of Embryonic Cleavage in Diverse Fish Species].

    PubMed

    Desnitskiy, A G

    2015-01-01

    Literature on the earliest steps of fish embryogenesis (including a number of "non-model" species) has been considered. The main attention has been paid to the loss of cleavage division synchrony and the first latitudinal cleavage furrow. In teleostean embryos, the features of their meroblastic cleavage are not rigidly associated with egg size. The midblastula transition (in a form clearly enough) occurs in some chondrostean and teleostean fishes, but it has not been detected in the representatives of sarcopterygian and chondrichthyan fishes. PMID:26859966

  18. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  19. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    PubMed

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone. PMID:23859879

  20. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  1. Detection of nucleic acids by multiple sequential invasive cleavages 02

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  2. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  3. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    SciTech Connect

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  4. Mechanism of action of cysteine proteinases: oxyanion binding site is not essential in the hydrolysis of specific substrates.

    PubMed

    Asbóth, B; Stokum, E; Khan, I U; Polgár, L

    1985-01-29

    To study the possible stabilization of the oxyanion of the tetrahedral intermediate formed in the course of the catalyses by cysteine proteinases, papain, chymopapain, papaya peptidase A, and ficin, we synthesized N-(benzyloxycarbonyl)phenylalanylthioglycine O-ethyl ester and compared its hydrolysis with that of the corresponding oxygen ester, a highly specific substrate of the above enzymes. It was found that the substitution of sulfur for the carbonyl oxygen hardly affected the second-order rate constant of acylation and diminished catalytic activity by about 1 order of magnitude in deacylation. These results contrast with those obtained with serine proteinases [Asbóth, B., & Polgár, L. (1983) Biochemistry 22, 117-122], where the hydrolysis of thiono esters could not be detected. From the results the following conclusions can be drawn. Stabilization of the tetrahedral intermediate at an oxyanion binding site is not essential with cysteine proteinases. Therefore, and because of the lack of general base catalysis, cysteine proteinases have a less constrained transition-state structure than serine proteinases. PMID:3888259

  5. Pathobiochemical significance of granulocyte elastase complexed with proteinase inhibitors: effect on glycosaminoglycan metabolism in cultured synovial cells.

    PubMed

    Kleesiek, K; van de Leur, E; Reinards, R; Greiling, H

    1987-03-01

    Interactions between elastase inhibitor complexes and synovial cells are of special interest, since, in chronic joint diseases, granulocytes release large amounts of elastase into the synovial fluid and connective tissue, where the proteinase is bound to alpha 1-proteinase inhibitor and alpha 2-macroglobulin. To study the effect of elastase-alpha 2-macroglobulin and elastase-alpha 1-proteinase inhibitor complexes on the glycosaminoglycan metabolism of cultured synovial cells, we determined the distribution of [3H]glucosamine-labelled hyaluronate, which represents the main synthesized glycosaminoglycan, and of 35SO4(2-)-labelled chondroitin sulphate into the intracellular, pericellular and extracellular compartments of the cell culture. Exposure of the synovial cells to elastase-alpha 2-macroglobulin complexes leads to an enhanced synthesis and secretion of hyaluronate, and chondroitin sulphate, and also induces a rise of the fibronectin concentration in the medium. Analogous but less pronounced effects are observed in the presence of elastase-alpha 1-proteinase inhibitor complexes. Native uncomplexed elastase, however, causes no significant changes in hyaluronate metabolism. An increase of prostaglandin E2 in the culture medium during incubation with elastase inhibitor complexes occurs in parallel to the stimulatory effect on glycosaminoglycan metabolism. Our results demonstrate that elastase, whose enzymic activity is inactivated by the formation of complexes with alpha 1-proteinase inhibitor or alpha 2-macroglobulin, nevertheless acts as an inflammatory mediator, which in vitro induces metabolic changes closely resembling the in vivo findings in inflammatory joint diseases. PMID:2439645

  6. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  7. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  8. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    SciTech Connect

    Steinberger, Jutta; Rancan, Chiara; Skern, Tim

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.

  9. Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae).

    PubMed

    Fabrick, J; Behnke, C; Czapla, T; Bala, K; Rao, A G; Kramer, K J; Reeck, G R

    2002-04-01

    The major proteinase activity in extracts of larval midguts from the southern corn rootworm (SCR), Diabrotica undecimpunctata howardi, was identified as a cysteine proteinase that prefers substrates containing an arginine residue in the P1 position. Gelatin-zymogram analysis of the midgut proteinases indicated that the artificial diet-fed SCR, corn root-fed SCR, and root-fed western corn rootworms (Diabrotica virgifera virgifera) possess a single major proteinase with an apparent molecular mass of 25kDa and several minor proteinases. Similar proteinase activity pH profiles were exhibited by root-fed and diet-fed rootworms with the optimal activity being slightly acidic. Rootworm larvae reared on corn roots exhibited significantly less caseinolytic activity than those reared on the artificial diet. Midgut proteolytic activity from SCR was most sensitive to inhibition by inhibitors of cysteine proteinases. Furthermore, rootworm proteinase activity was particularly sensitive to inhibition by a commercial protein preparation from potato tubers (PIN-II). One of the proteins, potato cysteine proteinase inhibitor-10', PCPI-10', obtained from PIN-II by ion-exchange chromatography, was the major source of inhibitory activity against rootworm proteinase activity. PCPI-10' and E-64 were of comparable potency as inhibitors of southern corn rootworm proteinase activity (IC(50) =31 and 35nM, respectively) and substantially more effective than chicken egg white cystatin (IC(50) =121nM). Incorporation of PCPI-10' into the diet of SCR larvae in feeding trials resulted in a significant increase in mortality and growth inhibition. We suggest that expression of inhibitors such as PCPI-10' by transgenic corn plants in the field is a potentially attractive method of host plant resistance to these Diabrotica species. PMID:11886775

  10. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  11. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome

    PubMed Central

    Mercer, Tim R.; Dinger, Marcel E.; Bracken, Cameron P.; Kolle, Gabriel; Szubert, Jan M.; Korbie, Darren J.; Askarian-Amiri, Marjan E.; Gardiner, Brooke B.; Goodall, Gregory J.; Grimmond, Sean M.; Mattick, John S.

    2010-01-01

    The complexity of the eukaryotic transcriptome is generated by the interplay of transcription initiation, termination, alternative splicing, and other forms of post-transcriptional modification. It was recently shown that RNA transcripts may also undergo cleavage and secondary 5′ capping. Here, we show that post-transcriptional cleavage of RNA contributes to the diversification of the transcriptome by generating a range of small RNAs and long coding and noncoding RNAs. Using genome-wide histone modification and RNA polymerase II occupancy data, we confirm that the vast majority of intraexonic CAGE tags are derived from post-transcriptional processing. By comparing exonic CAGE tags to tissue-matched PARE data, we show that the cleavage and subsequent secondary capping is regulated in a developmental-stage- and tissue-specific manner. Furthermore, we find evidence of prevalent RNA cleavage in numerous transcriptomic data sets, including SAGE, cDNA, small RNA libraries, and deep-sequenced size-fractionated pools of RNA. These cleavage products include mRNA variants that retain the potential to be translated into shortened functional protein isoforms. We conclude that post-transcriptional RNA cleavage is a key mechanism that expands the functional repertoire and scope for regulatory control of the eukaryotic transcriptome. PMID:21045082

  12. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  13. Protective role of purified cysteine proteinases against Fasciola gigantica infection in experimental animals.

    PubMed

    El-Ahwany, Eman; Rabia, Ibrahim; Nagy, Faten; Zoheiry, Mona; Diab, Tarek; Zada, Suher

    2012-03-01

    Fascioliasis is one of the public health problems in the world. Cysteine proteinases (CP) released by Fasciola gigantica play a key role in parasite feeding, migration through host tissues, and in immune evasion. There has been some evidence from several parasite systems that proteinases might have potential as protective antigens against parasitic infections. Cysteine proteinases were purified and tested in vaccine trials of sheep infected with the liver fluke. Multiple doses (2 mg of CP in Freund's adjuvant followed by 3 booster doses 1 mg each at 4 week intervals) were injected intramuscularly into sheep 1 week prior to infect orally with 300 F. gigantica metacercariae. All the sheep were humanely slaughtered 12 weeks after the first immunization. Changes in the worm burden, ova count, and humoral and cellular responses were evaluated. Significant reduction was observed in the worm burden (56.9%), bile egg count (70.7%), and fecel egg count (75.2%). Immunization with CP was also found to be associated with increases of total IgG, IgG(1), and IgG(2) (P<0.05). Data showed that the serum cytokine levels of pro-inflammatory cytokines, IL-12, IFN-γ, and TNF-α, revealed significant decreases (P<0.05). However, the anti-inflammatory cytokine levels, IL-10, TGF-β, and IL-6, showed significant increases (P<0.05). In conclusion, it has been found that CP released by F. gigantica are highly important candidates for a vaccine antigen because of their role in the fluke biology and host-parasite relationships. PMID:22451733

  14. Influence of immunoprotection on genetic variability of cysteine proteinases from Haemonchus contortus adult worms.

    PubMed

    Martín, S; Molina, J M; Hernández, Y I; Ferrer, O; Muñoz, Ma C; López, A; Ortega, L; Ruiz, A

    2015-11-01

    The limitations associated with the use of anthelmintic drugs in the control of gastrotintestinal nematodosis, such as the emergence of anthelmintic resistance, have stimulated the study of the immunological control of many parasites. In the case of Haemonchus contortus, several vaccination trials using native and recombinant antigens have been conducted. A group of antigens with demonstrated immunoprotective value are cathepsin B - like proteolytic enzymes of the cysteine proteinase type. These enzymes, which have been observed in both excretory-secretory products and somatic extracts of H. contortus, may vary among different geographic isolates and on strains isolated from different hosts, or even from the same host, as has been demonstrated in some comparative studies of genetic variability. In the present study, we evaluated the genetic variability of the worms that fully developed their endogenous cycle in immunised sheep and goat in order to identify the alleles of most immunoprotective value. To address these objectives, groups of sheep and goats were immunised with PBS soluble fractions enriched for cysteine proteinases from adult worms of H. contortus from either a strain of H. contortus isolated from goats of Gran Canaria Island (SP) or a strain isolated from sheep of North America (NA). The results confirmed the immunoprophylactic value of this type of enzyme against haemonchosis in both sheep and goats in association with increased levels of specific IgG. The genetic analysis demonstrated that the immunisation had a genetic selection on proteinase-encoding genes. In all the immunised animals, allelic frequencies were statistically different from those observed in non-immunised control animals in the four analysed genes. The reduction in the allelic frequencies suggests that parasites expressing these proteases are selectively targeted by the vaccine, and hence they should be considered in any subunit vaccine approach to control haemonchosis in small

  15. Exposure to tobacco-derived materials induces overproduction of secreted proteinases in mast cells

    SciTech Connect

    Small-Howard, Andrea; Turner, Helen . E-mail: hturner@queens.org

    2005-04-15

    Mast cells reside at interfaces with the environment, including the mucosa of the respiratory and gastrointestinal tracts. This localization exposes mast cells to inhaled, or ingested, environmental challenges. In the airways of smokers, resident immune cells will be in contact with the condensed components of cigarette smoke. Mast cells are of particular interest due to their ability to promote airway remodeling and mucus hypersecretion. Clinical data show increased levels of mast cell-secreted tryptase and increased numbers of degranulated mast cells in the lavage and bronchial tissue of smokers. Since mast cell-secreted proteinases (MCPTs), including tryptases, contribute to pathological airway remodeling, we investigated the relationship between mast cell proteinases and smoke exposure. We exposed a mast cell line to cigarette smoke condensate (CSC). We show that CSC exposure increases MCPT levels in mast cells using an assay for tryptase-type MCPT activity. We hypothesized that this increase in MCPT activity reflects a CSC-induced increase in the cytosolic pool of proteinase molecules, via stimulation of MCPT transcription. Transcript array data suggested that mRNA changes in response to CSC were limited in number and peaked after 3 h of CSC exposure. However, we noted marked transcriptional regulation of several MCPT genes. CSC-induced changes in the mRNA levels for MCPTs were confirmed using quantitative RT-PCR. Taken together, our data suggest that chronic exposure to cigarette smoke up-regulates MCPT levels in mast cells at both the protein and the mRNA level. We suggest that the pathological airway remodeling that has been described in clinical studies of smoke inhalation may be attributable to MCPT overproduction in vivo.

  16. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    SciTech Connect

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  17. Biochemical features, molecular biology and clinical relevance of the human 15-domain serine proteinase inhibitor LEKTI.

    PubMed

    Walden, Michael; Kreutzmann, Peter; Drögemüller, Katrin; John, Harald; Forssmann, Wolf-Georg; Hans-Jürgen, Mägert

    2002-01-01

    Based on the isolation of a 55 amino acid peptide from human hemofiltrate, we cloned the cDNA for a novel human 15-domain serine proteinase inhibitor termed LEKTI. A trypsin-inhibiting activity was demonstrated for three different domains. High levels of expression of the corresponding gene were detected in oral mucosa, followed by the tonsils, parathyroid glands, thymus, and trachea. Hovnanian and coworkers recently found that certain mutations within the LEKTI gene are linked to the severe congenital disease Netherton syndrome and atopic manifestations (including asthma). Thus, a future therapeutic use of LEKTI is conceivable. PMID:12437098

  18. Effect of nonsteroidal antiinflammatory drugs on the neutrophil promoted inactivation of alpha-1-proteinase inhibitor.

    PubMed

    Dallegri, F; Ottonello, L; Dapino, P; Sacchetti, C

    1992-03-01

    We investigated the effect of some nonsteroidal antiinflammatory drugs (aspirin, naproxen and nimesulide) on the ability of neutrophils to oxidatively inactivate the alpha-1-proteinase inhibitor (A1PI). Nimesulide prevented the inactivation of A1PI by effectively scavenging the hypochlorous acid released by neutrophils. Aspirin and naproxen were completely ineffective. We suggest that the antiinflammatory effect of nimesulide may be due at least in part to the rescue of A1PI from neutrophil oxidative attack. The rescue of A1PI may in fact alter the elastase-A1PI balance in favor of the inhibitor, with resulting tissue protection. PMID:1578457

  19. Synthetic analogues of chymostatin. Inhibition of chymotrypsin and Streptomyces griseus proteinase A.

    PubMed Central

    Tomkinson, N P; Galpin, I J; Beynon, R J

    1992-01-01

    A series of analogues of chymostatin, including Z-Arg-Leu-Phe-aldehyde (Z-Arg-Leu-Phe-H), have been synthesized. Analysis of the inhibitory potential of these analogues permits identification of residues and interactions that are important for inhibitory activity. Moreover, the structure-function relationship for Z-Arg-Leu-Phe-H and chymostatin inhibition of chymotrypsin and Streptomyces griseus proteinase A (SGPA) was probed further with the aid of molecular mechanics. This analysis identified interactions that provide an explanation for the enhanced activity of the natural product, chymostatin, over the synthetic analogues in the inhibition of chymotrypsin but not SGPA. PMID:1530579

  20. Purification and characterization of a collagenolytic serine proteinase from the skeletal muscle of red sea bream (Pagrus major).

    PubMed

    Wu, Guo-Ping; Chen, Su-Hua; Liu, Guang-Ming; Yoshida, Asami; Zhang, Ling-Jing; Su, Wen-Jin; Cao, Min-Jie

    2010-03-01

    A collagenolytic serine proteinase (CSP) was purified from red sea bream (Pagrus major) skeletal muscle to homogeneity by ammonium sulfate fractionation and chromatographies including DEAE-Sephacel, Phenyl Sepharose and Hydroxyapatite. The molecular mass of CSP was approximately 85 kDa as estimated by SDS-PAGE and gel filtration. Optimum temperature and pH of CSP were 40 degrees C and 8.0, respectively. CSP was specifically inhibited by serine proteinase inhibitors, while inhibitors to other type proteinases did not show much inhibitory effects. The K(m) and k(cat) values of CSP for Boc-Leu-Lys-Arg-MCA were 3.58 microM and 0.13 s(-1) at 37 degrees C, respectively. Furthermore, CSP hydrolyzed gelatin and native type I collagen effectively though its degradation on myosin heavy chain (MHC) was not significant, suggesting its involvement in the texture tenderization of fish muscle during the post-mortem stage. PMID:19945542

  1. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    PubMed

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%. PMID:19574654

  2. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. Proactive action to examine trypsin gene profiles and proteinase inhibitors for interaction with Bt toxin is necessary ...

  3. Potential Use of Proteinase Inhibitors, Avidin, and Other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After being ingested by target insects, the insecticidal proteins from Bacillus thuringiensis (Bt) need to go through a proteolytic process by insect midgut proteinases to become activated. At the same time, Bt can be hydrolyzed and degraded by midgut proteinases to become non-toxic to target insect...

  4. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification.

    PubMed Central

    Verchot, J; Carrington, J C

    1995-01-01

    The tobacco etch potyvirus (TEV) polyprotein is proteolytically processed by three viral proteinases (NIa, HC-Pro, and P1). While the NIa and HC-Pro proteinases each provide multiple functions essential for viral infectivity, the role of the P1 proteinase beyond its autoproteolytic activity is understood poorly. To determine if P1 is necessary for genome amplification and/or virus movement from cell to cell, a mutant lacking the entire P1 coding region (delta P1 mutant) was produced with a modified TEV strain (TEV-GUS) expressing beta-glucuronidase (GUS) as a reporter, and its replication and movement phenotypes were assayed in tobacco protoplasts and plants. The delta P1 mutant accumulated in protoplasts to approximately 2 to 3% the level of parental TEV-GUS, indicating that the P1 protein may contribute to but is not strictly required for viral RNA amplification. The delta P1 mutant was capable of cell-to-cell and systemic (leaf-to-leaf) movement in plants but at reduced rates compared with parental virus. This is in contrast to the S256A mutant, which encodes a processing-defective P1 proteinase and which was nonviable in plants. Both delta P1 and S256A mutants were complemented by P1 proteinase expressed in a transgenic host. In transgenic protoplasts, genome amplification of the delta P1 mutant relative to parental virus was stimulated five- to sixfold. In transgenic plants, the level of accumulation of the delta P1 mutant was stimulated, although the rate of cell-to-cell movement was the same as in nontransgenic plants. Also, the S256A mutant was capable of replication and systemic infection in P1-expressing transgenic plants. These data suggest that, in addition to providing essential processing activity, the P1 proteinase functions in trans to stimulate genome amplification. PMID:7745715

  5. Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Bur, Daniel; Harrison, Rebecca J; Berry, Colin; Kay, John

    2007-03-01

    The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained. PMID:17145748

  6. The proteolytic system of Lactobacillus sanfrancisco CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase.

    PubMed Central

    Gobbetti, M; Smacchi, E; Corsetti, A

    1996-01-01

    A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively. PMID:8795211

  7. High-level expression of Proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains.

    PubMed

    Yang, Hu; Zhai, Chao; Yu, Xianhong; Li, Zhezhe; Tang, Wei; Liu, Yunyun; Ma, Xiaojian; Zhong, Xing; Li, Guolong; Wu, Di; Ma, Lixin

    2016-06-01

    Proteinase K is widely used in scientific research and industries. This report was aimed to achieve high-level expression of proteinase K using Pichia pastoris GS115 as the host strain. The coding sequence of a variant of proteinase K that has higher activity than the wild type protein was chosen and optimized based on the codon usage preference of P. pastoris. The novel open reading frame was synthesized and a series of multi-copy expression vectors were constructed based on the pHBM905BDM plasmid, allowing for the tandem integration of multiple copies of the target gene into the genome of P. pastoris with a single recombination. These strains were used to study the correlation between the gene copy number and the expression level of proteinase K. The results of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the host genome stably. Meanwhile, the results of qPCR and enzyme activity assays indicated that the mRNA and protein expression levels of the target gene increased as the gene copy number increased. Moreover, the effect of gene dosage on the expression level of the recombinant protein was more obvious using high-density fermentation. The maximum expression level and enzyme activity of proteinase K, which were obtained from the recombinant yeast strain bearing 5 copies of the target gene after an 84-h induction, were approximately 8.069 mg/mL and 108,295 U/mL, respectively. The recombinant proteinase was purified and characterized. The optimum pH and temperature for the activity of this protease were approximately pH 11 and 55 °C, respectively. PMID:26892536

  8. Mechanisms for ribotoxin-induced ribosomal RNA cleavage.

    PubMed

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  9. Mechanisms for Ribotoxin-induced Ribosomal RNA Cleavage

    PubMed Central

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-01-01

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10 ng/ml) and ribosome-inactivating protein ricin (≥300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspase 8, 9 and 3 concurrently with apoptosis further suggested rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors cathepsin L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  10. [Features of clinical course and proteinase inhibitor balance in tears in eye burns of different localization (an experimental study)].

    PubMed

    Chesnokova, N B; Malarpv, P V; Beznos, O V

    2001-01-01

    Chemical burns of the eye of different location (cornea, corneal fragment with adjacent conjunctiva, and limbus) were studied in experiments. Clinical picture and changes in the lacrimal proteinase inhibitor balance were analyzed. Burn disease is less severe and the number of complications is less if a fragment of the cornea with adjacent conjunctiva and a fragment of the limbus are injured than in case of a corneal burn of the same depth and area. Burn of the total limbus area is a severe injury involving essential shifts in the proteinase inhibitor balance, leading to deep organic changes in the cornea and inner structures of the eye, eventuating in its subatrophy. PMID:11510165

  11. Anti-epidermal-cell-surface pemphigus antibody detaches viable epidermal cells from culture plates by activation of proteinase.

    PubMed Central

    Farb, R M; Dykes, R; Lazarus, G S

    1978-01-01

    Immunoglobulin from pemphigus patients binds to the surface of mouse epidermal cells in culture. Cells incubated with the pemphigus antibody are easily detached from culture plates whereas cells incubated with serum from normal patients remain on the plate. Pemphigus antibody-mediated cell detachment is blocked by the addition of the proteinase inhibitors soybean trypsin inhibitor and alpha2-macroglobulin to the culture media. Detachable cells are viable, and activation of the complement cascade is not necessary for cell detachment. The anti-cell-surface antibody of pemphigus appears to disrupt adhesion between viable epidermal cells by activation of proteinase. Images PMID:272663

  12. Pripper: prediction of caspase cleavage sites from whole proteomes

    PubMed Central

    2010-01-01

    Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis) and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s) and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for reading an arbitrary number

  13. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils.

    PubMed

    Sallenave, J M; Si Tahar, M; Cox, G; Chignard, M; Gauldie, J

    1997-06-01

    Secretory leukocyte proteinase inhibitor (SLPI) is the main neutrophil elastase (HLE) inhibitor found in the upper airways during pulmonary inflammation. It has been shown to be synthesized and secreted in vitro by epithelial cells and has been localized in tracheal glands and bronchiolar epithelial cells by immunocytochemistry. In this study, using immunodetection and immunopurification techniques with specific anti-SLPI immunoglobulin G (IgG), we show that SLPI is present as a native 14-kDa molecule in neutrophil cytosol. In addition, we demonstrate that SLPI is the major inhibitor of HLE present in neutrophil cytosol because pre-incubation with specific anti-SLPI IgG was able to inhibit completely the anti-HLE activity of the cytosol. SLPI can be secreted (probably in an inactive form) by neutrophils and its secretion is enhanced when the cells are stimulated with phorbol myristate acetate (PMA). Elafin, an elastase-specific inhibitor, is also present in minute amounts in neutrophil cytosol and its secretion can be up-regulated. The presence of SLPI in the cytosol of neutrophils may serve as a protective screen against proteinases spilling from azurophilic granules. An alternative or supplementary role may be the maintenance of a differentiated phenotype. PMID:9201260

  14. Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome.

    PubMed

    Sallenave, J M; Donnelly, S C; Grant, I S; Robertson, C; Gauldie, J; Haslett, C

    1999-05-01

    Inappropriate release of proteases from inflammatory and stromal cells can lead to destruction of the lung parenchyma. Antiproteinases such as alpha-1-proteinase inhibitor (alpha1-Pi), secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (elafin) control excess production of human neutrophil elastase. In the present study, the concentrations of alpha1-Pi, SLPI and elafin found in bronchoalveolar lavage (BAL) fluid from control subjects, patients at risk of developing acute respiratory distress syndrome (ARDS) and patients with established ARDS were determined. Levels of all three inhibitors were raised in patients compared with normal subjects. SLPI was increased in the group of patients who were at risk of ARDS and went on to develop the condition, compared with the "at-risk" group who did not progress to ARDS (p=0.0083). Alpha1-Pi and elafin levels were similar in these two populations. In patients with established ARDS, both alpha1-Pi and SLPI levels were significantly increased, compared to patients at risk of ARDS who did (p=0.0089) or did not (p=0.0003) progress to ARDS. The finding of increased antiproteinases shortly before the development of acute respiratory distress syndrome provide further evidence for enhanced inflammation prior to clinical disease. PMID:10414400

  15. [Purification and properties of serine proteinases from European catfish Silurus glanis L. pancreas].

    PubMed

    Ulitina, N N; Khabliuk, V V; Proskuriakov, M T

    2005-01-01

    Three trypsin isoforms (designated as T1, T2, and T3), three chymotrypsin isoforms (Kh1, Kh2, and Kh3), and two elastase isoforms (E1 and E2) were isolated from the pancreas of European catfish Silurus glanis L. by salting out with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion exchange chromatography on DEAE cellulose. Isoelectric points of the enzymes, determined by isoelectric focusing, amounted to 4.42 for T1, 5.64 for T2, 6.90 for T3, 4.93 for Khl, 5.23 for Kh2, 6.18 for Kh3, 6.17 for E1, and 8.48 for E2. Molecular weights of proteinases within each group were close and amounted to 30100 Da for trypsins, 39800 Da for chymotrypsins, and 24000 Da for elastases. The enzymes isolated displayed maximal activities at alkaline pH values. Inhibitor analysis demonstrated that all the proteinases isolated from European catfish pancreas belonged to the serine type. PMID:15859457

  16. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance.

    PubMed

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-07-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  17. [Conformational stability of serine proteinase inhibitor from the sea anemone Heteractis crispa].

    PubMed

    Vakorina, T I; Gladkikh, I N; Monastyrnaia, M M; Kozlovskaia, E P

    2011-01-01

    The influence of different environmental values of the pH and temperature on the spatial organization of serine proteinase inhibitor from the sea anemone Heteractis crispa (=Radianthus macrodactylus) on the level of tertiary and secondary structure was studied by CD spectroscopy. The molecule InhVJ was shown to possess a high conformational thermo- and pH-stability. We determined the point of conformational thermotransition of polypeptide (70 degrees C) after which the molecule gets denaturational stable state with conservation of 80% proteinase inhibitory activity. The significant partial reversible changes of molecule spatial organization were established to occur at the level of tertiary structure in the process of acid-base titration in the range of pH 11.0-13.0. This can be explained by of ionization of tyrosine residues. The molecule InhVJ is conformationally stable at the low pH values (2.0). The quenching of tyrosine residues by acrylamide showed that two of these residues are accessible to the quencher in full, while the third part is available. PMID:21899045

  18. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production.

    PubMed

    Negri, Melyssa; Silva, Sónia; Capoci, Isis Regina Grenier; Azeredo, Joana; Henriques, Mariana

    2016-04-01

    According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24-120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation. PMID:26572148

  19. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K.

    PubMed

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein. PMID:26907253

  20. Kinetic constants for the hydrolysis of aggrecan by the papaya proteinases and their relevance for chemonucleolysis.

    PubMed

    Dekeyser, P M; Buttle, D J; Devreese, B; Van Beeumen, J; Demeester, J; Lauwers, A

    1995-07-10

    The four known proteinases from papaya latex, namely papain (EC 3.4.22.2), chymopapain (EC 3.4.22.6), caricain (EC 3.4.22.30), and glycyl endopeptidase (EC 3.4.22.25), were purified to homogeneity and fully characterized by single radial immunodiffusion and active-site titration. A modified HPLC gel permeation assay was used to determine the kinetic constants for aggrecan hydrolysis by the papaya proteinases. The disappearance of intact aggrecan monomer was first-order, indicating that for the four enzymes studied the Km was much larger than 0.5 microM and that kcat/Km = 1.2 +/- 0.1 x 10(6) M-1 s-1 for chymopapain, 1.20 +/- 0.08 x 10(6) M-1 s-1 for caricain, 0.90 +/- 0.02 x 10(6) M-1 s-1 for papain, and 0.120 +/- 0.005 x 10(6) M-1 s-1 for glycyl endopeptidase. Chymodiactin, the chymopapain preparation used for chemonucleolysis, consists of a mixture of chymopapain (70%), caricain (20%), and glycyl endopeptidase (4%). The rate constant for the aggrecan hydrolysis by such a mixture was not significantly different from the rate constant for pure chymopapain. As a result of these observations, we predict that pure chymopapain could replace partially purified chymopapain preparations for chemonucleolysis. PMID:7625846

  1. Proteinases, their receptors and inflammatory signalling: the Oxford South Parks Road connection*

    PubMed Central

    Hollenberg, M D

    2015-01-01

    In keeping with the aim of the Paton Memorial Lecture to ‘facilitate the historical study of pharmacology’, this overview, which is my distinct honour to write, represents a ‘Janus-like’ personal perspective looking both backwards and forwards at the birth and growth of ‘receptor molecular pharmacology’ with special relevance to inflammatory diseases. The overview begins in the Oxford Department of Pharmacology in the mid-1960s and then goes on to provide a current perspective of signalling by proteinases. Looking backwards, the synopsis describes the fruitful Oxford Pharmacology Department infrastructure that Bill Paton generated in keeping with the blueprint begun by his predecessor, J H Burn. Looking forwards, the overview illustrates the legacy of that environment in generating some of the first receptor ligand-binding data and providing the inspiration and vision for those like me who were training in the department at the same time. With apologies, I mention only in passing a number of individuals who benefitted from the ‘South Parks Road connection’ using myself as one of the ‘outcome study’ examples. It is also by looking forward that I can meet the complementary aim of summarizing the lecture presented at a ‘BPS 2014 Focused Meeting on Cell Signalling’ to provide an overview of the role of proteinases and their signalling mechanisms in the setting of inflammation. PMID:25521749

  2. Structure of the SARS coronavirus main proteinase as an active C{sub 2} crystallographic dimer

    SciTech Connect

    Xu, Ting; Ooi, Amy; Lee, Hooi Chen; Wilmouth, Rupert; Liu, Ding Xiang; Lescar, Julien

    2005-11-01

    An orthorhombic crystal form of the SARS CoV main proteinase diffracting to a resolution of 1.9 Å is reported. The conformation of residues in the catalytic site indicates an active enzyme. The 34 kDa main proteinase (M{sup pro}) from the severe acute respiratory syndrome coronavirus (SARS-CoV) plays an important role in the virus life cycle through the specific processing of viral polyproteins. As such, SARS-CoV M{sup pro} is a key target for the identification of specific inhibitors directed against the SARS virus. With a view to facilitating the development of such compounds, crystals were obtained of the enzyme at pH 6.5 in the orthorhombic space group P2{sub 1}2{sub 1}2 that diffract to a resolution of 1.9 Å. These crystals contain one monomer per asymmetric unit and the biologically active dimer is generated via the crystallographic twofold axis. The conformation of the catalytic site indicates that the enzyme is active in the crystalline form and thus suitable for structure-based inhibition studies.

  3. Purification and Developmental Analysis of an Extracellular Proteinase from Young Leaves of Soybean.

    PubMed Central

    Huangpu, J.; Graham, J. S.

    1995-01-01

    A proteinase present in intercellular wash fluids from leaves of Glycine max has been purified 600-fold to electrophoretic homogeneity. The native protein is monomeric with a molecular mass of 60 kD, as estimated by denaturing gel electrophoresis, and has an isoelectric point of 7.7. The enzyme has a pH optimum of 9.5 when assayed with Azocoll as a substrate. The proteolytic activity is inhibited by p-chloromercuribenzoic acid and mercuric chloride and requires the presence of reducing agents. The enzyme activity is refractory to other classical sulfhydryl proteinases. The soybean leaf endoproteinase is present within the extracellular space of young leaves, and a portion is bound to the cell wall. Western blot analysis and activity measurements show that the enzyme is present only during the first 15 d postemergence of the leaf and is therefore under strict developmental control. We suggest that the enzyme may play a critical role in the extracellular milieu during rapid cell growth and leaf expansion. PMID:12228520

  4. Isolation and preliminary characterization of the cysteine-proteinases from the latex of Carica candamarcensis Hook.

    PubMed

    Walreavens, V; Jaziri, M; van Beeumen, J; Schnek, A G; Kleinschmidt, T; Looze, Y

    1993-07-01

    The cysteine-proteinase chymopapain from Carica papaya L. is used for chemonucleolysis of damaged human intervertebral spinal discs. The purification of this enzyme is difficult. To overcome these problems, we were looking for a substitute among the cysteine-proteinases of Carica candamarcensis Hook. The latex from unripe fruits was collected in an aqueous solution of methylethanethiolsulfonate to prevent proteolytic activities. The soluble fraction of the lypophilized product provided four enzymatically active peaks (CC-I-CC-IV) during chromatography on CM-Sephadex C-50 in sodium acetate buffer, pH5.0. They could be further purified by rechromatography under similar conditions. The isolated enzymes have been characterized by PAGE, analysis of the Fourier transform infrared spectra, preliminary studies of their specificities as well as a comparison of the N-terminal amino-acid sequences up to position 43. CC-III proved to be glycosylated. CC-I and CC-III from Carica candamarcensis Hook are suggested to correspond to papain and chymopapain from Carica papaya L., respectively. PMID:8216902

  5. Uniquely Regulated Proteinase Inhibitor I Gene in a Wild Tomato Species 1

    PubMed Central

    Wingate, Vincent P. M.; Ryan, Clarence A.

    1991-01-01

    A uniquely regulated proteinase inhibitor I gene was isolated from the wild tomato species Lycopersicon peruvianum (L.) Mill. (LA 107) and characterized. The inhibitor gene is wound-inducible in leaves and is expressed in unripe fruit during development. The gene (λ clone 1) is present on a 15.5 kilobase pair Sal 1-SalI genomic DNA fragment. Southern blot analysis of L. peruvianum genomic DNA shows only one strongly hybridizing DNA fragment to probes derived from λ clone 1. S1 nuclease protection experiments and Northern analyses confirm that this gene is both wound-inducible in leaves and developmentally regulated in young unripe fruit. These observations are supported by comparisons of the 5′-flanking DNA sequences of the L. peruvianum inhibitor I gene with known elicitor responsive cis-acting sequences. The transcriptional regulation of the λ clone 1 inhibitor I gene in leaves of wounded plants and in developing unripe fruit indicates that the gene contains unique complex regulating elements. These elements respond to both environmental and developmental tissue-specific signals that can regulate proteinase inhibitor synthesis to protect the tissues of this wild species of tomato against predators and pathogens. ImagesFigure 4Figure 5Figure 6 PMID:16668426

  6. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    PubMed Central

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein. PMID:26907253

  7. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G.

    PubMed

    von Pawel-Rammingen, Ulrich; Johansson, Björn P; Björck, Lars

    2002-04-01

    Recent work from several laboratories has demonstrated that proteolytic mechanisms significantly contribute to the molecular interplay between Streptococcus pyogenes, an important human pathogen, and its host. Here we describe the identification, purification and characterization of a novel extracellular cysteine proteinase produced by S.pyogenes. This enzyme, designated IdeS for Immunoglobulin G-degrading enzyme of S.pyogenes, is distinct from the well-characterized streptococcal cysteine proteinase, SpeB, and cleaves human IgG in the hinge region with a high degree of specificity. Thus, other human proteins, including immunoglobulins M, A, D and E, are not degraded by IdeS. The enzyme efficiently cleaves IgG antibodies bound to streptococcal surface structures, thereby inhibiting the killing of S.pyogenes by phagocytic cells. This and additional observations on the distribution and expression of the ideS gene indicate that IdeS represents a novel and significant bacterial virulence determinant, and a potential therapeutic target. PMID:11927545

  8. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G

    PubMed Central

    von Pawel-Rammingen, Ulrich; Johansson, Björn P.; Björck, Lars

    2002-01-01

    Recent work from several laboratories has demonstrated that proteolytic mechanisms significantly contribute to the molecular interplay between Streptococcus pyogenes, an important human pathogen, and its host. Here we describe the identification, purification and characterization of a novel extracellular cysteine proteinase produced by S.pyogenes. This enzyme, designated IdeS for Immunoglobulin G-degrading enzyme of S.pyogenes, is distinct from the well-characterized streptococcal cysteine proteinase, SpeB, and cleaves human IgG in the hinge region with a high degree of specificity. Thus, other human proteins, including immunoglobulins M, A, D and E, are not degraded by IdeS. The enzyme efficiently cleaves IgG antibodies bound to streptococcal surface structures, thereby inhibiting the killing of S.pyogenes by phagocytic cells. This and additional observations on the distribution and expression of the ideS gene indicate that IdeS represents a novel and significant bacterial virulence determinant, and a potential therapeutic target. PMID:11927545

  9. Age-dependent changes in extracellular proteins, aminopeptidase and proteinase activities in Frankia isolate BR.

    PubMed

    Müller, A; Benoist, P; Diem, H G; Schwencke, J

    1991-12-01

    To investigate protein secretion by the nitrogen-fixing actinomycete Frankia isolate BR, we designed a rapid DEAE adsorption, salt elution and Biogel P6DG desalination method to concentrate protein from the growth medium. Secreted proteins reached a maximum concentration (5.6 gm l-1) in the medium at growth arrest. Analysis by SDS-PAGE detected up to 63 extracellular polypeptides when Frankia cells were grown under stirred conditions in BAP medium supplemented with phosphatidylcholine and MES buffer and 65 proteins in stirred BAP media alone. The pattern of extracellular polypeptides changed during growth. Several extracellular proteolytic activities were detected and compared with intracellular ones. The substrate specificity of the extracellular and intracellular aminopeptidase activities were the same. Also, the electrophoretic migration patterns of secreted and intracellular aminopeptidases could not be distinguished. Secretion of the proline-specific aminopeptidase FAP proteinase (PF) were secreted: 10 had the same electrophoretic mobility as their intracellular counterparts after SDS-gelatine-PAGE while five (PF - 39.5, PF - 38.5, PF - 36.5, PF - 25.5 and PF - 20.5 kDa) had a different electrophoretic mobility and, therefore, appeared to be exclusively extracellular. At least seven extracellular proteinases appeared to increase coordinately in activity shortly before growth arrest. PMID:15101385

  10. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii.

    PubMed

    Pszenny, V; Angel, S O; Duschak, V G; Paulino, M; Ledesma, B; Yabo, M I; Guarnera, E; Ruiz, A M; Bontempi, E J

    2000-04-15

    A cDNA clone from a Toxoplasma gondii tachyzoite cDNA library encoding a serine proteinase inhibitor (serpin) was isolated. The 1376 bp cDNA sequence encodes a 294 amino acid protein with a putative signal peptide of 23 amino acids resulting in a mature protein with a predicted mass of 30,190 Da and a pI of 4.86. This protein has internal sequence similarity of residues 30-66, 114-150, 181-217 and 247-283 indicating a four-domain structure. The four domains exhibit high identity to serine proteinase inhibitors belonging to the non-classical Kazal-type family. The gene is single copy in the tachyzoite haploid genome of RH strain and was amplified by polymerase chain reaction (PCR). Several introns were identified. The sequence encoding the mature protein was amplified by PCR, cloned into the pQE30 vector and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was used in immunoblot assay and two bands of 38 and 42 kDa were detected in a whole parasite homogenate. The recombinant protein showed trypsin-inhibitory activity, one of the two potential specificities. We discuss the possible roles that T. gondii serpin(s) may play in the survival of the tachyzoites in the host. PMID:10779600

  11. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    PubMed

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%. PMID:26304452

  12. A colorimetric-based amplification system for proteinases including MMP2 and ADAM8.

    PubMed

    Moss, Marcia L; Koller, Garrit; Bartsch, Jörg W; Rakow, Sinja; Schlomann, Uwe; Rasmussen, Fred H

    2015-09-01

    We have developed a new amplification system for proteinases that is sensitive, simple, and inexpensive to run, exemplified by a horseradish peroxidase (HRP)-conjugated, dual MMP2 (matrix metalloproteinase 2) and ADAM8 (a disintegrin and metalloproteinase 8) peptide substrate assay presented herein. The HRP-conjugated substrate is attached to beads through a 6× histidine tag and then incubated with the target enzyme, cleaving the HRP reporter. This product is subsequently removed from the unreacted bound portions of the substrate by magnetic deposition of the beads. The amount of product is then quantified using a standard HRP color development assay employing 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2). This HRP amplification system represents a new approach to proteinase assays and could be applied to other enzymes, such as lipases, esterases, and kinases, as long as the unreacted substrate can be physically separated from the product and catalysis by the enzyme to be quantified is not impaired dramatically by steric hindrance from the HRP entity. PMID:26026386

  13. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance

    PubMed Central

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-01-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  14. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-01

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+. PMID:1909564

  15. Cleavage of Signal Regulatory Protein α (SIRPα) Enhances Inflammatory Signaling.

    PubMed

    Londino, James D; Gulick, Dexter; Isenberg, Jeffrey S; Mallampalli, Rama K

    2015-12-25

    Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling. PMID:26534964

  16. Semen predictors of in vitro fertilization and embryo cleavage.

    PubMed

    Daya, S; Gunby, J; Kohut, J

    1989-11-01

    In vitro fertilization treatment for male infertility is not very successful because fertilization is known to be affected by semen quality. Information on fertilizing ability may provide prognostic information for couples contemplating such treatment. The purpose of this study was to identify semen variables that would predict fertilization and embryo cleavage. Sperm was prepared by the swim-up method before insemination of oocytes obtained by laparoscopy after ovulation induction. Routine semen analysis and the hypoosmotic swelling test for assessment of sperm membrane integrity were performed on aliquots of prepared sperm. Logistic regression and receiver-operator characteristic curve analyses were performed to determine the overall best-fitting model and discriminatory level of variables that would predict cleavage. The results indicate that after the swim-up procedure, at least 10 million sperm/ml, capable of undergoing swelling in hypoosmotic medium, are necessary to increase the likelihood of in vitro fertilization and cleavage. PMID:2589452

  17. Modification of the proteinase/anti-proteinase balance in the respiratory tract of Sprague-Dawley rats after single intratracheal instillation of benzo[A]pyrene-coated onto Fe(2)O(3) particles.

    PubMed

    Garçon, G; Campion, J; Hannothiaux, M H; Boutin, A C; Venembre, P; Balduyck, M; Haguenoer, J M; Shirali, P

    2000-01-01

    Available data suggest that repeated concurrent exposure to haematite (Fe(2)O(3)) and benzo[A]pyrene (B[A]P) results in a decreased latency and an increased incidence of lung tumours in rodents compared to exposure to B[A]P alone. Moreover, the reactive oxygen species (ROS) formed by the lung cells themselves and/or by activated inflammatory cells may possibly contribute to the development of pulmonary disorders such as cancer formation. In order to investigate the precise role of iron in the injury induced by B[A]P-coated onto Fe(2)O(3) particles, we tend to address the hypothesis that Fe(2)O(3) and B[A]P, alone or in association, can induce oxidative stress conditions (malondialdehyde) and/or inflammatory reactions (interleukin-6) and thereby disrupt the proteinase/anti-proteinase balance (cathepsins B and L, polynuclear neutrophil (PNN) elastase, alpha-1 proteinase inhibitor (alpha(1)PI) and its inhibitory capacity) in the rat respiratory tract. Thus, Fe(2)O(3) or B[A]P-coated onto Fe(2)O(3) particles produce oxidative stress conditions through not only iron-catalysed oxidative reactions but also inflammatory processes. However, B[A]P initiates only inflammatory responses. These pollutants generate increased levels of proteases and decrease the concentrations of free alpha(1)PI. There is also a clear relationship between the partial inactivation of alpha(1)PI and the occurrence of ROS after exposure to Fe(2)O(3), alone or as a carrier of B[A]P. Hence, the proteinase/anti-proteinase balance might be more disrupted by Fe(2)O(3) or B[A]P-coated onto Fe(2)O(3) particles than by B[A]P alone. These results suggest a mechanism that can explain why B[A]P-coated onto Fe(2)O(3) particles are more injurious than B[A]P alone. PMID:10942902

  18. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  19. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  20. Antisense Inhibition of Expression of Cysteine Proteinases Affects Entamoeba histolytica-Induced Formation of Liver Abscess in Hamsters

    PubMed Central

    Ankri, Serge; Stolarsky, Tamara; Bracha, Rivka; Padilla-Vaca, Felipe; Mirelman, David

    1999-01-01

    Trophozoites of virulent Entamoeba histolytica transfected with the antisense gene encoding cysteine proteinase 5 (CP5) have only 10% of the CP activity but retain their cytopathic activity on mammalian monolayers. In the present study we found that the transfected trophozoites with low levels of CP activity were incapable of inducing the formation of liver lesions in hamsters. PMID:9864246

  1. Inhibition of IgA1 proteinases from Neisseria gonorrhoeae and Hemophilus influenzae by peptide prolyl boronic acids.

    PubMed

    Bachovchin, W W; Plaut, A G; Flentke, G R; Lynch, M; Kettner, C A

    1990-03-01

    The alpha-aminoboronic acid analog of proline has been synthesized and incorporated into a number of peptides as the COOH-terminal residue. These peptide prolyl boronic acids are potent inhibitors of both the type 1 and type 2 IgA proteinases from Neisseria gonorrhoeae and Hemophilus influenzae, but not of the functionally similar IgA proteinase from Streptococcus sanguis. The best inhibitors synthesized thus far have Ki values in the nanomolar range (4.0 to 60 nM). These results indicate that the N. gonorrhoeae and the H. influenzae enzymes belong to the serine protease family of proteolytic enzymes while that from S. sanguis does not. As a group, the IgA proteinases have been noted for their remarkable specificity; thus, the peptide prolyl boronic acids reported here are the first small synthetic molecules to exhibit a relatively high affinity for the active site of an IgA proteinase and are therefore the first to yield some insight into the active site structure and specificity requirements of these enzymes. PMID:2105953

  2. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    PubMed

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

  3. Mapping of the Proteinase B Structural Gene PRB1, in SACCHAROMYCES CEREVISIAE and Identification of Nonsense Alleles within the Locus

    PubMed Central

    Zubenko, George S.; Mitchell, Aaron P.; Jones, Elizabeth W.

    1980-01-01

    We report the mapping of the structural gene for proteinase B, PRB1. It is located 1.1 cM proximal to CAN1 on the left arm of chromosome V of Saccharomyces cerevisiae. We have identified 34 amber and 12 ochre mutations among the 126 prb1 mutations in our collection. PMID:7009321

  4. MANGANESE UPREGULATES CELLULAR PRION PROTEINS AND INHIBITS THE RATE OF PROTEINASE-K DEPENDENT LIMITED PROTEOLYSIS IN NEURONAL CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The key event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent cations such as copper to th...

  5. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis.

    PubMed

    Mitsudo, Kenji; Jayakumar, Arumugam; Henderson, Ying; Frederick, Mitchell J; Kang, Ya'an; Wang, Mary; El-Naggar, Adel K; Clayman, Gary L

    2003-04-01

    The human LEKTI gene encodes a putative 15-domain serine proteinase inhibitor and has been linked to the inherited disorder known as Netherton syndrome. In this study, human recombinant LEKTI (rLEKTI) was purified using a baculovirus/insect cell expression system, and the inhibitory profile of the full-length rLEKTI protein was examined. Expression of LEKTI in Sf9 cells showed the presence of disulfide bonds, suggesting the maintenance of the tertiary protein structure. rLEKTI inhibited the serine proteinases plasmin, subtilisin A, cathepsin G, human neutrophil elastase, and trypsin, but not chymotrypsin. Moreover, rLEKTI did not inhibit the cysteine proteinase papain or cathepsin K, L, or S. Further, rLEKTI inhibitory activity was inactivated by treatment with 20 mM DTT, suggesting that disulfide bonds are important to LEKTI function. The inhibition of plasmin, subtilisin A, cathepsin G, elastase, and trypsin by rLEKTI occurred through a noncompetitive-type mechanism, with inhibitory constants (K(i)) of 27 +/- 5, 49 +/- 3, 67 +/- 6, 317 +/-36, and 849 +/- 55 nM, respectively. Thus, LEKTI is likely to be a major physiological inhibitor of multiple serine proteinases. PMID:12667078

  6. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase.

    PubMed

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P

    2005-05-01

    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors. PMID:15820500

  7. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K

    PubMed Central

    Ali Mohammed, Marwan Mansoor; Nerland, Audun H.; Al-Haroni, Mohammed; Bakken, Vidar

    2013-01-01

    Background Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM), often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I) and proteinase K. Methods F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA) was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions. PMID:23372876

  8. Opposite Effects on Spodoptera littoralis Larvae of High Expression Level of a Trypsin Proteinase Inhibitor in Transgenic Plants1

    PubMed Central

    De Leo, Francesca; Bonadé-Bottino, Michel A.; Ceci, Luigi R.; Gallerani, Raffaele; Jouanin, Lise

    1998-01-01

    This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI. PMID:9808744

  9. Quick and low cost immobilization of proteinases on polyesters: Comparison of lactobacilli cell-envelope proteinase and trypsin for protein degradation.

    PubMed

    Agyei, Dominic; Tambimuttu, Shaun; Kasargod, Bhuvana; Gao, Yuan; He, Lizhong

    2014-10-20

    Cell-envelope proteinases (CEPs) are a class of proteolytic enzymes produced by lactic acid bacteria and have several industrially relevant applications. However, soluble CEPs are economically unfavorable for such applications due to their poor stability and lack of reusability. In a quest to prepare stable biocatalysts with improved performance, CEP from Lactobacillus delbrueckii subsp. lactis 313 and trypsin (as a model enzyme) were immobilized onto nonwoven polyester fabrics in a three-step protocol including ethylenediamine activation and glutaraldehyde crosslinking. Immobilization gave protein loading yields of 21.9% (CEP) and 67.7% (trypsin) while residual activity yields were 85.6% (CEP) and 4.1% (trypsin). The activity of the immobilized enzymes was dependent on pH, but was retained at elevated temperatures (40-70 °C). An increase in Km values was observed for both enzymes after immobilization. After 70 days of storage, the immobilized CEP retained ca. 62% and 96% of initial activity when the samples were stored in a lyophilized form at -20 °C or in a buffer at 4 °C, respectively. Both immobilized CEP and trypsin were able to hydrolyze proteins such as casein, skimmed milk proteins and bovine serum albumin. This immobilization protocol can be used to prepare immobilized biocatalyst for various protein degradation processes. PMID:25128611

  10. Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.

    PubMed Central

    Sander, M; Hsieh, T S

    1985-01-01

    In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. Images PMID:2987816

  11. Abnormal Early Cleavage Events Predict Early Embryo Demise: Sperm Oxidative Stress and Early Abnormal Cleavage

    PubMed Central

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M.; Pera, Renee Reijo; Meyers, Stuart

    2014-01-01

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors. PMID:25307782

  12. The drug 5-aminosalicylic acid rescues alpha 1-proteinase inhibitor from the neutrophil oxidative inactivation. A possible contribution to its therapeutic action in ulcerative colitis.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Vitale, E; Dallegri, F

    1992-01-01

    The glycoprotein alpha 1-proteinase inhibitor is the specific inhibitor of neutrophil elastase, a major tissue-damaging protease. When incubated with activated neutrophils, alpha 1-proteinase inhibitor lost its pancreatic porcine elastase inhibitory capacity and became incapable of forming a sodium dodecyl sulphate-stable complex with pancreatic porcine elastase. Inhibitors and scavengers of neutrophil-derived reactive oxygen species outlined the crucial role of hypochlorous acid in the alpha 1-proteinase inhibitor inactivation. Moreover, the drug 5-aminosalicylic acid prevented the inactivation of alpha 1-proteinase inhibitor by neutrophils in a dose-dependent manner. Finally, when the capacity of 5-aminosalicylic acid to rescue alpha 1-proteinase inhibitor from the neutrophil-derived attack was plotted as a function of the 5-aminosalicylic acid ability to scavenge neutrophil-derived hypochlorous acid, a positive linear relationship was found. Thus, our results provide a direct evidence that 5-aminosalicylic acid is able to prevent the oxidative inactivation of alpha 1-proteinase inhibitor by neutrophils. Therefore, we suggest that the drug has the potential to limit the elastase-mediated damage of colonic connective tissue by creating a microenvironment of active alpha 1-proteinase inhibitor around the neutrophils. PMID:1521714

  13. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera).

    PubMed

    Koiwa, H; Shade, R E; Zhu-Salzman, K; D'Urzo, M P; Murdock, L L; Bressan, R A; Hasegawa, P M

    2000-04-01

    Feeding bioassay results established that the soybean cysteine proteinase inhibitor N (soyacystatin N, scN) substantially inhibits growth and development of western corn rootworm (WCR), by attenuating digestive proteolysis [Zhao, Y. et al. (1996) Plant Physiol. 111, 1299-1306]. Recombinant scN was more inhibitory than the potent and broad specificity cysteine proteinase inhibitor E-64. WCR digestive proteolytic activity was separated by mildly denaturing SDS-PAGE into two fractions and in-gel assays confirmed that the proteinase activities of each were largely scN-sensitive. Since binding affinity to the target proteinase [Koiwa, H. et al. (1998) Plant J. 14, 371-380] governs the effectiveness of scN as a proteinase inhibitor and an insecticide, five peptides (28-33 kDa) were isolated from WCR gut extracts by scN affinity chromatographic separation. Analysis of the N-terminal sequence of these peptides revealed similarity to a cathepsin L-like cysteine proteinase (DvCAL1, Diabrotica virgifera virgifera cathepsin L) encoded by a WCR cDNA. Our results indicate that cathepsin L orthologs are pivotal digestive proteinases of WCR larvae, and are targets of plant defensive cystatins (phytocystatins), like scN. PMID:10760514

  14. A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes.

    PubMed Central

    Lyon, W R; Gibson, C M; Caparon, M G

    1998-01-01

    The ability of numerous microorganisms to cause disease relies upon the highly regulated expression of secreted proteinases. In this study, mutagenesis with a novel derivative of Tn4001 was used to identify genes required for the expression of the secreted cysteine proteinase (SCP) of the pathogenic Gram-positive bacterium Streptococcus pyogenes. Designated as Rop loci (regulation of proteinase), ropB is a rgg-like transcriptional activator required for transcription of the gene which encodes the proteinase. In contrast, ropA contributes post-transcriptionally to the secretion and processing of SCP and encodes a homologue of Trigger Factor, a peptidyl-prolyl isomerase and putative chaparone which is highly conserved in most bacterial species, but of unknown function. Analysis of additional ropA mutants demonstrated that RopA acts both to assist in targeting SCP to the secretory pathway and to promote the ability of the proprotein to establish an active conformation upon secretion. This latter function was dependent upon the peptidyl-prolyl isomerase domain of RopA and mutants that lacked this domain exhibited a bipartite deficiency manifested as a kinetic defect in autologous processing of the proprotein to the mature proteinase, and as a catalytic defect in the mature proteinase. These results provide insight into the function of Trigger Factor, the regulation of proteinase activity and the mechanism of secretion in Gram-positive bacteria. PMID:9799235

  15. A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes.

    PubMed

    Lyon, W R; Gibson, C M; Caparon, M G

    1998-11-01

    The ability of numerous microorganisms to cause disease relies upon the highly regulated expression of secreted proteinases. In this study, mutagenesis with a novel derivative of Tn4001 was used to identify genes required for the expression of the secreted cysteine proteinase (SCP) of the pathogenic Gram-positive bacterium Streptococcus pyogenes. Designated as Rop loci (regulation of proteinase), ropB is a rgg-like transcriptional activator required for transcription of the gene which encodes the proteinase. In contrast, ropA contributes post-transcriptionally to the secretion and processing of SCP and encodes a homologue of Trigger Factor, a peptidyl-prolyl isomerase and putative chaparone which is highly conserved in most bacterial species, but of unknown function. Analysis of additional ropA mutants demonstrated that RopA acts both to assist in targeting SCP to the secretory pathway and to promote the ability of the proprotein to establish an active conformation upon secretion. This latter function was dependent upon the peptidyl-prolyl isomerase domain of RopA and mutants that lacked this domain exhibited a bipartite deficiency manifested as a kinetic defect in autologous processing of the proprotein to the mature proteinase, and as a catalytic defect in the mature proteinase. These results provide insight into the function of Trigger Factor, the regulation of proteinase activity and the mechanism of secretion in Gram-positive bacteria. PMID:9799235

  16. Evolution of development in the sea star genus Patiriella: clade-specific alterations in cleavage.

    PubMed

    Cerra, Anna; Byrne, Maria

    2004-01-01

    Examination of early development in five species of the Patiriella sea star species complex indicates that the ancestral-type radial holoblastic cleavage (Type I) is characteristic of P. regularis and P. exigua, whereas cleavage in species from the calcar clade followed multiple alternatives (Types II-IV) from holoblastic to meroblastic. Considering that invariant radial cleavage is thought to play a role in embryonic axis formation in echinoderms, we documented the details of blastomere formation in Patiriella sp. and followed development of the embryos. In Type II cleavage, the first and second cleavage planes appeared simultaneously at one pole of the embryo, dividing it directly into four equally sized blastomeres. In Type III cleavage, the first and second cleavage planes appeared simultaneously, followed promptly by the third cleavage plane, dividing the embryo directly into eight equally sized blastomeres. In Type IV cleavage, numerous furrows appeared simultaneously at one end of the embryo, dividing it into 32-40 equally sized blastomeres. Confocal sections revealed that embryos with cleavage Types II-IV were initially syncytial. The timing of karyokinesis in embryos with Types II and III cleavage was similar to that seen in clutch mates with Type I cleavage. Karyokinesis in embryos with Type IV cleavage, however, differed in timing compared with Type I clutch mates. Alteration in cleavage was not associated with polarized distribution of maternally provided nutrients. For each cleavage type, development was normal to the competent larval stage. Although variable blastomere configuration in the calcar clade may be linked to possession of a lecithotrophic development, other Patiriella species with this mode of development have typical cleavage. The presence of variable cleavage in all calcar clade species indicates that phylogenetic history has played a role in the distribution of this embryonic trait in Patiriella. The plasticity in early cleavage in these

  17. Surface Zn-proteinase as a molecule for defense of Leishmania mexicana amazonensis promastigotes against cytolysis inside macrophage phagolysosomes.

    PubMed Central

    Seay, M B; Heard, P L; Chaudhuri, G

    1996-01-01

    The role of the surface membrane Zn-proteinase in protecting the cellular integrity of the macrophage parasite Leishmania mexicana amazonensis from intraphagolysosomal cytolysis was studied. These cells lose their infectivity to host macrophages after prolonged cultivation in axenic growth medium. The virulent and attenuated variants of the parasite cells were cloned. Failure of these attenuated parasite cells to survive inside macrophage phagolysosomes is associated with 20- to 50-fold reduction in the expression of surface gp63 protein. In situ inhibition of gp63 proteinase activity inside Leishmania-infected macrophage phagolysosomes with targeted delivery of an inhibitor of gp63 proteinase activity, 1,10-phenanthroline, selectively eliminated intracellular Leishmania amastigotes, further suggesting the importance of this proteinase in phagolysosomal survival of the parasite. An upstream sequence (US) of the gp63 gene was cloned in front of the bacterial chloramphenicol acetyltransferase (CAT) gene in plasmid pCATbasic. Transfection of L. mexicana amazonensis cells with this recombinant plasmid showed that expression of the CAT gene from this US is 15- to 20-fold higher in virulent clones than in avirulent clones of the parasite. Band shift analysis with the cloned US also showed that binding of protein(s) was 15- to 20-fold higher in virulent cell extract than in avirulent cell extract. Coating of attenuated cells or liposomes with proteolytically active gp63 protects them from degradation inside macrophage phagolysosomes. These results suggest a novel mechanism of survival of this phagolysosomal parasite with the help of its surface Zn-proteinase. PMID:8945556

  18. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut

    PubMed Central

    Miller, Hugh R P; Pemberton, Alan D

    2002-01-01

    Serine proteinases with trypsin-like (tryptase) and chymotrypsin-like (chymase) properties are major constituents of mast cell granules. Several tetrameric tryptases with differing specificities have been characterized in humans, but only a single chymase. In other species there are larger families of chymases with distinct and narrow proteolytic specificities. Expression of chymases and tryptases varies between tissues. Human pulmonary and gastrointestinal mast cells express chymase at lower levels than tryptase, whereas rodent and ruminant gastrointestinal mast cells express uniquely mucosa-specific chymases. Local and systemic release of chymases and tryptases can be quantified by immunoassay, providing highly specific markers of mast cell activation. The expression and constitutive extracellular secretion of the mucosa-specific chymase, mouse mast cell proteinase-1 (mMCP-1), is regulated by transforming growth factor-β1 (TGF-β1) in vitro, but it is not clear how the differential expression of chymases and tryptases is regulated in other species. Few native inhibitors have been identified for tryptases but the tetramers dissociate into inactive subunits in the absence of heparin. Chymases are variably inhibited by plasma proteinase inhibitors and by secretory leucocyte protease inhibitor (SLPI) that is expressed in the airways. Tryptases and chymases promote vascular permeability via indirect and possibly direct mechanisms. They contribute to tissue remodelling through selective proteolysis of matrix proteins and through activation of proteinase-activated receptors and of matrix metalloproteinases. Chymase may modulate vascular tissues through its ability to process angiotensin-I to angiotensin-II. Mucosa-specific chymases promote epithelial permeability and are involved in the immune expulsion of intestinal nematodes. Importantly, granule proteinases released extracellularly contribute to the recruitment of inflammatory cells and may thus be involved in

  19. Purification and some physico-chemical and enzymic properties of a calcium ion-activated neutral proteinase from rabbit skeletal muscle

    PubMed Central

    Azanza, Jean-Louis; Raymond, Jacques; Robin, Jean-Michel; Cottin, Patrick; Ducastaing, André

    1979-01-01

    Ca2+-activated neutral proteinase was purified from rabbit skeletal muscle by a method involving DEAE-Sephacel chromatography, affinity chromatography on organomercurial–Sepharose and gel filtration on Sephacryl S-200 and Sephadex G-150. The SDS (sodium dodecyl sulphate)/polyacrylamide-gel-electrophoresis data show that the purified enzyme contains only one polypeptide chain of mol.wt. 73000. The purification procedure used allowed us to eliminate a contaminant containing two components of mol.wt. about 30000 each. Whole casein or α1-casein were hydrolysed with a maximum rate at 30°C, pH7.5, and with 5mm-CaCl2, but myofibrils were found to be a very susceptible substrate for this proteinase. This activity is associated with the destruction of the Z-discs, which is caused by the solubilization of the Z-line proteins. The activity of the proteinase in vitro is not limited to the removal of Z-line. SDS/polyacrylamide-gel electrophoresis on larger plates showed the ability of the proteinase to degrade myofibrils more extensively than previously supposed. This proteolysis resulted in the production of a 30000-dalton component as well as in various other higher- and lower-molecular-weight peptide fragments. Troponin T, troponin I, α-tropomyosin, some high-molecular-weight proteins (M protein, heavy chain of myosin) and three unidentified proteins are degraded. Thus the number of proteinase-sensitive regions in the myofibrils is greater than as previously reported by Dayton, Goll, Zeece, Robson & Reville [(1976) Biochemistry 15, 2150–2158]. The Ca2+-activated neutral proteinase is not a chymotrypsin- or trypsin-like enzyme, but it reacted with all the classic thiol-proteinase inhibitors for cathepsin B, papain, bromelain and ficin. Thus the proteinase was proved to have an essential thiol group. Antipain and leupeptin are also inhibitors of the Ca2+-activated neutral proteinase. ImagesFig. 1.Fig. 2.Fig. 3. PMID:534501

  20. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.

    PubMed Central

    Topham, C M; Salih, E; Frazao, C; Kowlessur, D; Overington, J P; Thomas, M; Brocklehurst, S M; Patel, M; Thomas, E W; Brocklehurst, K

    1991-01-01

    1. A model of the three-dimensional structure of papaya proteinase omega, the most basic cysteine proteinase component of the latex of papaya (Carica papaya), was built from its amino acid sequence and the two currently known high-resolution crystal structures of the homologous enzymes papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14). The method used a knowledge-based approach incorporated in the COMPOSER suite of programs and refinement by using the interactive graphics program FRODO on an Evans and Sutherland PS 390 and by energy minimization using the GROMOS program library. 2. Functional similarities and differences between the three cysteine proteinases revealed by analysis of pH-dependent kinetics of the acylation process of the catalytic act and of the reactions of the enzyme catalytic sites with substrate-derived 2-pyridyl disulphides as two-hydronic-state reactivity probes are reported and discussed in terms of the knowledge-based model. 3. To facilitate analysis of complex pH-dependent kinetic data, a multitasking application program (SKETCHER) for parameter estimation by interactive manipulation of calculated curves and a simple method of writing down pH-dependent kinetic equations for reactions involving any number of reactive hydronic states by using information matrices were developed. 4. Papaya proteinase omega differs from the other two enzymes in the ionization characteristics of the common (Cys)-SH/(His)-Im+H catalytic-site system and of the other acid/base groups that modulate thiol reactivity towards substrate-derived inhibitors and the acylation process of the catalytic act. The most marked difference in the Cys/His system is that the pKa for the loss of the ion-pair state to form -S-/-Im is 8.1-8.3 for papaya proteinase omega, whereas it is 9.5 for both actinidin and papain. Papaya proteinase omega is similar to actinidin in that it lacks the second catalytically influential group with pKa approx. 4 present in papain and possesses a

  1. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.

    PubMed

    Topham, C M; Salih, E; Frazao, C; Kowlessur, D; Overington, J P; Thomas, M; Brocklehurst, S M; Patel, M; Thomas, E W; Brocklehurst, K

    1991-11-15

    1. A model of the three-dimensional structure of papaya proteinase omega, the most basic cysteine proteinase component of the latex of papaya (Carica papaya), was built from its amino acid sequence and the two currently known high-resolution crystal structures of the homologous enzymes papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14). The method used a knowledge-based approach incorporated in the COMPOSER suite of programs and refinement by using the interactive graphics program FRODO on an Evans and Sutherland PS 390 and by energy minimization using the GROMOS program library. 2. Functional similarities and differences between the three cysteine proteinases revealed by analysis of pH-dependent kinetics of the acylation process of the catalytic act and of the reactions of the enzyme catalytic sites with substrate-derived 2-pyridyl disulphides as two-hydronic-state reactivity probes are reported and discussed in terms of the knowledge-based model. 3. To facilitate analysis of complex pH-dependent kinetic data, a multitasking application program (SKETCHER) for parameter estimation by interactive manipulation of calculated curves and a simple method of writing down pH-dependent kinetic equations for reactions involving any number of reactive hydronic states by using information matrices were developed. 4. Papaya proteinase omega differs from the other two enzymes in the ionization characteristics of the common (Cys)-SH/(His)-Im+H catalytic-site system and of the other acid/base groups that modulate thiol reactivity towards substrate-derived inhibitors and the acylation process of the catalytic act. The most marked difference in the Cys/His system is that the pKa for the loss of the ion-pair state to form -S-/-Im is 8.1-8.3 for papaya proteinase omega, whereas it is 9.5 for both actinidin and papain. Papaya proteinase omega is similar to actinidin in that it lacks the second catalytically influential group with pKa approx. 4 present in papain and possesses a

  2. The pattern of DNA cleavage intensity around indels.

    PubMed

    Chen, Wei; Zhang, Liqing

    2015-01-01

    Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensities in the 200 base pair regions surrounding these indels. Our results show that DNA cleavage intensities close to the start and end points of indels are significantly lower than other regions, for both small human germline and somatic indels and also for mouse small indels. Compared to small indels, the patterns of DNA cleavage intensity around large indels are more complex, and there are two low intensity regions near each end of the indels that are approximately 13 bp apart from each other. Detailed analyses of a subset of indels show that there is slight difference in cleavage intensity distribution between insertion indels and deletion indels that could be contributed by their respective enrichment of different repetitive elements. These results will provide new insight into indel generation mechanisms. PMID:25660536

  3. Perceiving Social Cleavages and Inequalities: The Case of Israeli Adolescents.

    ERIC Educational Resources Information Center

    Dar, Yechezkel; Erhard, Rachel; Resh, Nura

    1998-01-01

    An analysis of perceptions of social cleavage and inequality among approximately 9000 Israeli eighth and ninth graders showed students accurately comprehended a multifaceted society with major social divisions. A social map with inequality was revealed in which ethnicity played the least prominent role. Personal and social traits influenced…

  4. Site-selective chemical cleavage of peptide bonds.

    PubMed

    Elashal, Hader E; Raj, Monika

    2016-05-01

    Site-selective cleavage of extremely unreactive peptide bonds is a very important chemical modification that provides invaluable information regarding protein sequence, and it acts as a modulator of protein structure and function for therapeutic applications. For controlled and selective cleavage, a daunting task, chemical reagents must selectively recognize or bind to one or more amino acid residues in the peptide chain and selectively cleave a peptide bond. Building on this principle, we have developed an approach that utilizes a chemical reagent to selectively modify the serine residue in a peptide chain and leads to the cleavage of a peptide backbone at the N-terminus of the serine residue. After cleavage, modified residues can be converted back to the original fragments. This method exhibits broad substrate scope and selectively cleaves various bioactive peptides with post-translational modifications (e.g. N-acetylation and -methylation) and mutations (d- and β-amino acids), which are a known cause of age related diseases. PMID:27087443

  5. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  6. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1.

    PubMed

    Peixoto, Rui T; Kunz, Portia A; Kwon, Hyungbae; Mabb, Angela M; Sabatini, Bernardo L; Philpot, Benjamin D; Ehlers, Michael D

    2012-10-18

    Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+ /calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity. PMID:23083741

  7. Selective cleavage enhanced by acetylating the side chain of lysine.

    PubMed

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  8. Biospecific haemosorbents based on proteinase inhibitor. II. Efficiency of biospecific antiproteinase haemosorbent 'Ovosorb' in complex treatment of experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs.

    PubMed

    Platé, N A; Kirkovsky, V V; Antiperovich, O F; Nicolaichik, V V; Valueva, T A; Sinilo, S B; Moin, V M; Lobacheva, G A

    1994-03-01

    The biospecific antiproteinase haemosorbent (BAH) 'Ovosorb' containing, in the bulk of polyacryamide gel, the ovomucoid from whites of duck eggs, was used for a complex treatment of the experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs. The efficiency of BAH was manifested in the significant reduction of lethality of the experimental animals, a more rapid liquidation of proteinasaemia, normalization in plasma of alpha 1-proteinase inhibitor and protein metabolism. Thus, by eliminating proteinases from circulation, Ovosorb contributes to the cessation of imbalance in the proteinase-inhibitor system and is efficient in the therapy of pathological states related to this imbalance. PMID:8031989

  9. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor.

    PubMed

    Sallenave, J M; Ryle, A P

    1991-01-01

    Elastase-specific inhibitor (ESI) was purified from sputum of patients with chronic bronchitis and compared with mucus proteinase inhibitor (MPI, BrI) isolated, without the use of affinity chromatography on an enzyme, from non-purulent sputum of a patient with bronchial carcinoma. The N-terminal sequence of 27 residues of the latter was determined and showed serine as the only N-terminus. The partial N-terminal amino-acid sequence of ESI shows some homology with MPI, especially around the reactive site of MPI for human neutrophil elastase. This region could therefore be the reactive site of ESI. The thermodynamic and kinetic constants of the reactions of ESI with human neutrophil elastase and with porcine pancreatic elastase show that ESI is a fast-acting inhibitor. PMID:2039600

  10. The evolution of a genetic locus encoding small serine proteinase inhibitors ⋆

    PubMed Central

    Clauss, Adam; Lilja, Hans; Lundwall, Åke

    2007-01-01

    We previously identified a locus on human chromosome 20 that encompasses 14 genes of postulated WFDC-type proteinase inhibitors with a potential role in innate immunity. In an extended study, homologous loci are here described on mouse chromosome 2, rat chromosome 3, and dog chromosome 24. As in humans, the murine and canine loci are divided into two sub-loci separated by 0.2 Mb. The majority of genes are conserved in all species, but there are also species-specific gains and losses of genes, e.g., several duplications have yielded four SLPI genes in the rat and, most surprisingly, there is no murine elafin gene. Two human pseudogenes were identified due to the discovery of functional rodent genes. The conservation of different WFDC domains varies considerably, and it is hypothesized that this reflects a dual role of WFDC inhibitors in natural immunity, which is directed both against microbes and proinflammatory cells. PMID:15950183

  11. Alpha 1-proteinase inhibitor is more sensitive to inactivation by cigarette smoke than is leukocyte elastase

    SciTech Connect

    Janoff, A.; Dearing, R.

    1982-10-01

    Aqueous solutions of gas phase cigarette smoke were incubated with pure human leukocyte elastase or with crude human leukocyte granule extract, and the effects on enzyme activity were determined using a synthetic amide substrate. Simultaneously, the same smoke solutions were incubated with 10% human serum under identical conditions, and the effects on serum inhibition of purified or crude leukocyte elastase were similarly measured. In addition, aqueous solutions of unfractionated cigarette smoke were incubated with leukocyte elastase or serum, and the abilities of the smoke-treated enzyme to digest elastin and of the smoke-treated serum to inhibit elastin digestion were determined. Both experimental protocols showed that serum elastase-inhibiting capacity (primarily caused by alpha 1-proteinase inhibitor) is more susceptible to inactivation by aqueous solutions of cigarette smoke than is leukocyte elastase, suggesting that elastase inhibition (rather than elastase activity) may be predominantly suppressed by cigarette smoke inhalation in vivo.

  12. Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase.

    PubMed

    Di Pierro, Giovanna; O'Keeffe, Martina B; Poyarkov, Alexey; Lomolino, Giovanna; FitzGerald, Richard J

    2014-08-01

    A Ficus carica L. latex proteinase preparation was investigated for its ability to produce antioxidant hydrolysates/peptides from bovine casein (CN). The Oxygen Radical Absorbance Capacity (ORAC) values for NaCN and β-CN hydrolysates ranged from 0.06 to 0.18, and from 0.51 to 1.19μmol Trolox equivalents/mg freeze-dried sample, respectively. Gel permeation HPLC showed that the β-CN hydrolysate with a degree of hydrolysis of 21% had 65% of peptide material with a molecular mass <500Da. The RP-UPLC profiles also indicated that β-CN was substantially hydrolysed during the early stages of hydrolysis. Analysis of the 4h β-CN hydrolysate by LC-ESI-MS/MS allowed identification of 8 peptide sequences with potential antioxidant properties. PMID:24629973

  13. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    PubMed

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-01

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections. PMID:25881537

  14. Specificity of the collagenolytic serine proteinase from the pancreas of the catfish (Parasilurus asotus).

    PubMed

    Yoshinaka, R; Sato, M; Yamashita, M; Itoko, M; Ikeda, S

    1987-01-01

    The collagenolytic serine proteinase from the pancreas of the catfish (Parasilus asotus) had a pH optimum of 7.5 for native, reconstituted calf skin collagen fibrils. The enzyme was most stable at pH 6-9. The enzyme hydrolyzed heat-denatured collagen (gelatin), casein, hemoglobin and elastin in addition to native collagen but not virtually Tos-Arg-OEe, Bz-Tyr-OEe and Suc-(Ala)3-NA. The enzyme cleaved Leu-Gly (or Gln-Gly), Gly-Ile and Ile-Ala bonds on DNP-Pro-Leu-Gly-Ile-Ala-Gly-Arg-NH2 and DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg. PMID:3480788

  15. Trypsin-like proteinase and its endogenous inhibitor from Yersinia pseudotuberculosis. Biological activity.

    PubMed

    Burtseva, T I; Loenko, Y N

    1999-09-01

    A trypsin-like proteinase (YPTP) and its endogenous inhibitor (ITYP) were isolated from the culture filtrate of the pathogenic bacterium Yersinia pseudotuberculosis, and their biological activities were studied. YPTP was found to be highly toxic for random-bred white mice. Under in vitro conditions the proteolytic enzyme destroyed protective proteins of the immune system of the animals--IgG, IgA, and proteins of the complement system (CIq, C3, and C5)--and, consequently, was a pathogenetic factor in yersinioses. The inhibitor ITYP was shown to manifest antibacterial activity against virulent forms of Yersinia pseudotuberculosis, Escherichia coli, and Salmonella typhimurium. The ITYP preparation was harmless and nontoxic. PMID:10521713

  16. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity.

    PubMed

    Arroyo, Rossana; Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime

    2015-01-01

    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464

  17. Quantification of the degree of biotinylation of proteins using proteinase K digestion and competition ELISA.

    PubMed

    Rispens, Theo; Ooijevaar-de Heer, Pleuni

    2016-03-01

    Quantification of the degree of biotinylation of proteins is useful to achieve and maintain a high degree of consistency of reagents used in research and diagnostic setting. Unfortunately, existing protocols and commercial kits suffer from a number of shortcomings that limit their usefulness. Here, we describe a simple protocol that overcomes the limitations of current assays. A robust competition ELISA was developed that is easy to carry out, uses no specialized equipment other than a standard plate reader for absorbance measurements and only reagents that are commonly available. The protocol uses a proteinase K digestion step of a sample of biotinylated protein to eliminate multivalency issues and sterical hindrance from bulky proteins. Furthermore, the use of an anti-biotin antibody instead of streptavidin results in a convenient range of sensitivity, avoiding million-fold dilutions that may impair precision. The resulting assay typically consumes about 1 μg of biotinylated protein. PMID:26795634

  18. Bacterial proteinases as targets for the development of second-generation antibiotics.

    PubMed

    Travis, J; Potempa, J

    2000-03-01

    The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. In this review, we describe multiple, novel roles for bacterial proteinases during infection using, as a specific example, the enzymes from the organism Porphyromonas gingivalis, a periodontopathogen, which is known to be involved in the development and progression of periodontal disease. In this manner, we are able to justify the concept of developing synthetic inhibitors against members of this class of enzymes as potential second-generation antibiotics. Such compounds could not only prove valuable in retarding the growth and proliferation of bacterial pathogens but also lead to the use of this class of inhibitors against invasion by other infective organisms. PMID:10708847

  19. The anthelmintic efficacy of natural plant cysteine proteinases against the equine tapeworm, Anoplocephala perfoliata in vitro.

    PubMed

    Mansur, F; Luoga, W; Buttle, D J; Duce, I R; Lowe, A E; Behnke, J M

    2016-09-01

    Papaya latex has been demonstrated to be an efficacious anthelmintic against murine, porcine, ovine and canine nematode parasites, and even those infecting poultry, and it has some efficacy against rodent cestodes. The active ingredients of papaya latex are known to be cysteine proteinases (CPs). The experiments described in this paper indicate that CPs in papaya latex, and also those in pineapples, are highly efficacious against the equine cestode Anoplocephala perfoliata in vitro, by causing a significant reduction in motility leading to death of the worms. The susceptibility of A. perfoliata to damage by CPs was considerably greater than that of the rodent cestodes Hymenolepis diminuta and H. microstoma. Our results are the first to report anthelmintic efficacy of CPs against an economically important equine helminth. Moreover, they provide further evidence that the spectrum of activity of CPs is not restricted to nematodes and support the idea that these plant-derived enzymes can be developed into useful broad-spectrum anthelmintics. PMID:26343287

  20. Stimulation of proteinase and amidase activities in Porphyromonas (Bacteroides) gingivalis by amino acids and dipeptides.

    PubMed Central

    Chen, Z X; Potempa, J; Polanowski, A; Renvert, S; Wikström, M; Travis, J

    1991-01-01

    Proteolytic enzymes from the organism Porphyromonas gingivalis are believed to be involved in the development of periodontitis. Studies on both crude extracts and purified trypsinlike enzymes from this organism indicate that substantial stimulation of both amidase and proteinase activities can be obtained during incubation with glycine-containing compounds. We postulate that P. gingivalis may have developed this unusual property to take advantage of the glycine-rich environment which occurs during the periodontitis-associated degradation of gingival collagen. The finding of such a stimulation in crevicular fluids from discrete periodontal sites has been correlated with the presence of P. gingivalis and could be utilized for the early detection of infection by this organism during the onset of periodontitis. PMID:1855999

  1. Protein degradation in Euglena gracilis: Purification and characterization of the major proteinase

    SciTech Connect

    Yoo, Y.J.

    1988-01-01

    Protolysis in a crude extract of Euglena gracilis was characterized by autolysis and the hydrolysis of {sup 125}I-labeled bovine serum albumin ({sup 125}I-BSA). Both procedures showed similar properties: stimulation by dithiothreitol, inhibition by leupeptin, and the same pH optima. Hydrolysis of {sup 125}I-BSA increased with growth stage and with the depletion of nutrient in the medium. The major proteolytic enzyme was purified to near homogeneity from extracts of dark-grown, stationary-phase Euglena gracilis by acid treatment, and by chromatography on CM-cellulose, DEAE-cellulose, Sephadex G-75, and hydroxyapatite using {sup 125}I-BSA as substrate. The molecular weight of the proteinase was 30,000 when determined by gel filtration on Sephadex G-75 and 15,000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme therefore appears to be composed of two subunits.

  2. Role of calcium-dependent proteinase in molt-induced claw muscle atrophy

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1984-01-01

    The claw closer muscle of the Bermuda land crab Gecarcinus lateralis undergoes a sequential atrophy and restoration during each intermolt cycle. Muscle protein decreases 40% during proecdysis and is restored following ecdysis. Amino acid incorporation into protein of postecdysial muscle is five times greater than that in anecdysial muscle. Since the rates of protein synthesis in anecdysial and proecdysial muscle are the same it appears that proecdysial muscle atrophy is caused primarily by an increase in protein degradation. A calcium-dependent proteinase (CDP) active at neutral pH has been implicated in the nonlysosomal hydrolysis of myofibrillar proteins. We have examined the role of a CDP in atrophy of the claw closer muscle. The many similarities between crustacean and vertebrate CDPs have established this crustacean system as a simple and convenient model for the role of Ca/sup 2 +/-dependent proteolysis in myofibrillar protein turnover and its manifestation in the structure of the sarcomere. 16 references, 8 figures. (ACR)

  3. Chemical heterogeneity as a result of hydroxylamine cleavage of a fusion protein of human insulin-like growth factor I.

    PubMed Central

    Canova-Davis, E; Eng, M; Mukku, V; Reifsnyder, D H; Olson, C V; Ling, V T

    1992-01-01

    Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent. Images Fig. 2. PMID:1637301

  4. Interaction of the Human Adenovirus Proteinase with Its 11-Amino Acid Cofactor pVIc†

    PubMed Central

    Baniecki, Mary Lynn; McGrath, William J.; McWhirter, Sarah M.; Li, Caroline; Toledo, Diana L.; Pellicena, Patricia; Barnard, Dale L.; Thorn, Kurt S.; Mangel, Walter F.

    2010-01-01

    The interaction of the human adenovirus proteinase (AVP) and AVP–NA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 μM. The binding of AVP to 12-mer single-stranded DNA decreased the Kd for the binding of pVIc to AVP to 0.09 μM. The pVIc–AVP complex hydrolyzed the substrate with a Michaelis constant (Km) of 3.7 μM and a catalytic rate constant (kcat) of 1.1 s−1 In the presence of DNA, the Km increased less than 2-fold, and the kcat increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1′ and Phe11′, were the major determinants in the binding of pVIc to AVP, while Val2′ and Phe11′ were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection. PMID:11591154

  5. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4(+) lymphocyte proliferation.

    PubMed

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-08-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [(3) H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4(+) lymphocyte proliferation but did not affect the proliferation of CD8(+) cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  6. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4+ lymphocyte proliferation

    PubMed Central

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-01-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [3H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4+ lymphocyte proliferation but did not affect the proliferation of CD8+ cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  7. Characterization of HLA-DR-restricted T-cell epitopes derived from human proteinase 3.

    PubMed

    Piesche, Matthias; Hildebrandt, York; Chapuy, Björn; Wulf, Gerald G; Trümper, Lorenz; Schroers, Roland

    2009-07-23

    Human proteinase 3 (PRTN3) is a leukemia-associated antigen specifically recognized by CD8+ cytotoxic T-lymphocytes (CTL). PRTN3 also has been shown to elicit both antibody responses and T-cell proliferation in patients with Wegener's granulomatosis. In order to improve current vaccines that aim to stimulate CTL without inducing harmful autoimmune disease, it is necessary to study the role of PRTN3-specific CD4+ T-helper (TH) and CD4+ T-regulatory (Treg) cells. Since both TH and Treg cells recognize antigens in the context of HLA-class-II-molecules, identification of HLA-class-II-associated peptide-epitopes from self-antigens such as PRTN3 is required. Here, we analyzed T-cell responses against proteinase 3 using synthetic peptides predicted to serve as HLA-DR-restricted epitopes. We first screened a panel of ten epitope peptide candidates selected with the TEPITOPE program and found that nine out of ten peptides induced PRTN3 peptide-specific proliferation of T-cells with precursor frequencies of 0-1.1 x 10(-6). For one peptide-epitope, PRTN3(235), T-cell-clones were demonstrated to be capable of recognizing naturally processed protein antigen in a HLA-DR-restricted fashion. PRTN3(235)-specific T-cells could be stimulated from the blood of healthy individuals with multiple HLA-DR-genotypes. In summary, the identified PRTN3(235)-epitope can be used to study the role of CD4+ TH- and Treg-cells in immune responses against PRTN3 in leukemia patients and patients with Wegener's disease. PMID:19446593

  8. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.

    PubMed

    Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years. PMID:27194832

  9. Antifeedant effects of proteinase inhibitors on feeding behaviors of adult western corn rootworm (Diabrotica virgifera virgifera).

    PubMed

    Kim, Jae Hak; Mullin, Christopher A

    2003-04-01

    Low-molecular-weight peptidyl proteinase inhibitors (PIs) including leupeptin, calpain inhibitor I, and calpeptin were found to be potent antifeedants for adult western corn rootworm (WCR) against the phagostimulation of cucurbitacin B (Cuc B) or a corn pollen extract (CPE). Leupeptin was the strongest (ED50 = 0.36 and 0.55 nmol/disk for Cuc B and CPE, respectively) among PIs tested with an antifeedant potency much stronger than the steroid progesterone (ED50 = 2.29 and 5.05 nmol/disk for Cuc B and CPE, respectively), but slightly less than the reference alkaloid, strychnine (ED50 = 0.17 and 0.37 nmol/disk for Cuc B and CPE, respectively). All active PIs contain a di- or tripeptidyl aldehyde moiety, indicating that PIs exert their antifeedant effects by covalent interaction with putative sulfhydryl (SH) groups on taste receptors as do these PIs with cysteine proteinases. However, opposite inhibition potency against Cuc B versus CPE by two thiol-group reducing agents, DTT and L-cysteine, and the results with other cysteine-modifying reagents obscure the net functional role of SH groups at WCR taste chemoreceptors. Surprisingly, the model phagostimulant for diabroticites, Cuc B, was more easily counteracted by these feeding deterrents than the stimulants present in CPE. Three-dimensional structure-antifeedant relationships for the PIs suggest that a novel taste chemoreception mechanism exists for these peptidyl aldehydes or that they fit partially into a strychnine binding pocket on protein chemoreceptors. Favorable economic benefit may be achieved if PIs are discovered to be useful in adult WCR control, since both pre- and postingestive sites would be targeted. PMID:12775144

  10. Selective killing of B-cell hybridomas targeting proteinase 3, Wegener's autoantigen

    PubMed Central

    Reiners, Katrin S; Hansen, Hinrich P; Krüssmann, Anne; Schön, Gisela; Csernok, Elena; Gross, Wolfgang L; Engert, Andreas; von Strandmann, Elke Pogge

    2004-01-01

    Wegener's granulomatosis (WG) is a rare disease characterized by granulomatous lesions, small vessel vasculitis and the presence of anti-neutrophil cytoplasmic autoantibodies (C-ANCAs) in the sera of affected patients. Their main target antigen is proteinase 3 (PR3), a neutrophil and monocyte-derived neutral serine protease. Since the standard treatment of this severe autoimmune disease, with cyclophosphamide and corticosteroids, is associated with potential side-effects, the development of a more specific immunotherapeutic agent is warranted. The key role of ANCA in the pathogenesis of vasculitis and the effectiveness of anti-CD20 antibodies in patients with refractory WG points towards the importance of B cells in WG. We thus evaluated a new approach to selectively eliminate PR3-specific autoreactive B cells by targeting the B-cell receptor. For this purpose we used a bifunctional recombinant fusion protein consisting of the antigen PR3 and a toxin. The cytotoxic component of this novel fusion protein was the ribonuclease angiogenin, a human toxin with low immunogenicity. The toxin was stabilized by exchanging the catalytically relevant histidine in position 44 with glutamine to eliminate the autoproteolytic activity. PR3H44Q was fused either to the N terminus or to the C terminus of angiogenin. The recombinant proteins were expressed in 293T cells. Binding assays demonstrated the appropriate size and recognition by anti-PR3 antibodies. Using TUNEL technology, we demonstrated that these autoantigen toxins kill proteinase 3-specific B-cell hybridomas selectively by inducing apoptosis. The data indicate that autoantigen-toxins are promising tools in the treatment or co-treatment of autoimmune diseases in which the antigen is known. PMID:15147566

  11. Crack tip blunting and cleavage under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Rajan, V. P.; Curtin, W. A.

    2016-05-01

    In structural materials with both brittle and ductile phases, cracks often initiate within the brittle phase and propagate dynamically towards the ductile phase. The macroscale, quasistatic toughness of the material thus depends on the outcome of this microscale, dynamic process. Indeed, dynamics has been hypothesized to suppress dislocation emission, which may explain the occurrence of brittle transgranular fracture in mild steels at low temperatures (Lin et al., 1987). Here, crack tip blunting and cleavage under dynamic conditions are explored using continuum mechanics and molecular dynamics simulations. The focus is on two questions: (1) whether dynamics can affect the energy barriers for dislocation emission and cleavage, and (2) what happens in the dynamic "overloaded" situation, in which both processes are energetically possible. In either case, dynamics may shift the balance between brittle cleavage and ductile blunting, thereby affecting the intrinsic ductility of the material. To explore these effects in simulation, a novel interatomic potential is used for which the intrinsic ductility is tunable, and a novel simulation technique is employed, termed as a "dynamic cleavage test", in which cracks can be run dynamically at a prescribed energy release rate into a material. Both theory and simulation reveal, however, that the intrinsic ductility of a material is unaffected by dynamics. The energy barrier to dislocation emission appears to be identical in quasi-static and dynamic conditions, and, in the overloaded situation, ductile crack tip behavior ultimately prevails since a single emission event can blunt and arrest the crack, preventing further cleavage. Thus, dynamics cannot embrittle a ductile material, and the origin of brittle failure in certain alloys (e.g., mild steels) appears unrelated to dynamic effects at the crack tip.

  12. Cleavage of chromatin with methidiumpropyl-EDTA . iron(II).

    PubMed Central

    Cartwright, I L; Hertzberg, R P; Dervan, P B; Elgin, S C

    1983-01-01

    Methidiumpropyl-EDTA . iron(II) [MPE . Fe (II)] cleaves double-helical DNA with considerably lower sequence specificity than micrococcal nuclease. Moreover, digestions with MPE . Fe(II) can be performed in the presence of certain metal chelators, which will minimize the action of many endogenous nucleases. Because of these properties MPE . Fe(II) would appear to be a superior tool for probing chromatin structure. We have compared the patterns generated from the 1.688 g/cm3 complex satellite, 5S ribosomal RNA, and histone gene sequences of Drosophila melanogaster chromatin and protein-free DNA by MPE . Fe(II) and micrococcal nuclease cleavage. MPE . Fe(II) at low concentrations recognizes the nucleosome array, efficiently introducing a regular series of single-stranded (and some double-stranded) cleavages in chromatin DNA. Subsequent S1 nuclease digestion of the purified DNA produces a typical extended oligonucleosome pattern, with a repeating unit of ca. 190 base pairs. Under suitable conditions, relatively little other nicking is observed. Unlike micrococcal nuclease, which has a noticeable sequence preference in introducing cleavages, MPE . Fe(II) cleaves protein-free tandemly repetitive satellite and 5S DNA sequences in a near-random fashion. The spacing of cleavage sites in chromatin, however, bears a direct relationship to the length of the respective sequence repeats. In the case of the histone gene sequences a faint, but detectable, MPE . Fe(II) cleavage pattern is observed on DNA, in some regions similar to and in some regions different from the strong chromatin-specified pattern. The results indicate that MPE . Fe(II) will be very useful in the analysis of chromatin structure. Images PMID:6407008

  13. Novel Role for Proteinase-activated Receptor 2 (PAR2) in Membrane Trafficking of Proteinase-activated Receptor 4 (PAR4)*

    PubMed Central

    Cunningham, Margaret R.; McIntosh, Kathryn A.; Pediani, John D.; Robben, Joris; Cooke, Alexandra E.; Nilsson, Mary; Gould, Gwyn W.; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-01-01

    Proteinase-activated receptors 4 (PAR4) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR4 remain unknown. Here, we report novel features of the intracellular trafficking of PAR4 to the plasma membrane. PAR4 was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR4 protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R183AR → A183AA), mutation of which allowed efficient membrane delivery of PAR4. Interestingly, co-expression with PAR2 facilitated plasma membrane delivery of PAR4, an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR2 and PAR4. PAR2 also enhanced glycosylation of PAR4 and activation of PAR4 signaling. Our results identify a novel regulatory role for PAR2 in the anterograde traffic of PAR4. PAR2 was shown to both facilitate and abrogate protein interactions with PAR4, impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR4 in normal physiology and disease. PMID:22411985

  14. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).

    PubMed

    Cunningham, Margaret R; McIntosh, Kathryn A; Pediani, John D; Robben, Joris; Cooke, Alexandra E; Nilsson, Mary; Gould, Gwyn W; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-05-11

    Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease. PMID:22411985

  15. School Desegregation and Racial Cleavage, 1954-1970: A Review of the Literature

    ERIC Educational Resources Information Center

    Carithers, Martha W.

    1970-01-01

    Reviews the empirical studies dealing with school desegregation and racial cleavage which have appeared since the 1954 Supreme Court decision. Focuses on patterns and consequences of interracial association, and attitude change relevant to racial cleavage. (DM)

  16. Cleavage patterns and the topology of the metazoan tree of life

    PubMed Central

    Valentine, James W.

    1997-01-01

    Several major alliances of metazoan phyla have been identified by small subunit rRNA sequence comparisons. It is possible to arrange the phyla to produce a parsimonious distribution of cleavage types, requiring only one change from a radial ancestral condition to spiral cleavage and one other to “idiosyncratic” cleavage; this arrangement is consistent with most of the recent molecular phylogenies. The cleavage shifts are correlated with changes in many of the features that once were used to distinguish Protostomia and Deuterostomia. It is hypothesized that changes in cleavage direction are causally associated with changes in blastomere fates and thus that cleavage type correlates with such features as the identity of mesoderm founder cells, which in turn can constrain the mode of origination of the eucelom. Cleavage changes may also affect the timing of cell fate specification. In a tree that emphasizes cleavage parsimony, radial cleavage, regulative development, and enterocely are ancestral within the Bilateria, and spiral or idiosyncratic cleavages, mosaic development, and schizocely are associated with a change in cleavage direction. Deuterostomy is presumably ancestral and is correlated with radial cleavage for this reason, rather than mechanistically. PMID:9223303

  17. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia.

    PubMed

    Scheibenbogen, Carmen; Letsch, Anne; Thiel, Eckhard; Schmittel, Alexander; Mailaender, Volker; Baerwolf, Steffi; Nagorsen, Dirk; Keilholz, Ulrich

    2002-09-15

    Wilms tumor gene product WT1 and proteinase 3 are overexpressed antigens in acute myeloid leukemia (AML), against which cytotoxic T lymphocytes can be elicited in vitro and in murine models. We performed this study to investigate whether WT1- and proteinase 3-specific CD8 T cells spontaneously occur in AML patients. T cells recognizing HLA-A2.1-binding epitopes from WT1 or proteinase 3 could be detected ex vivo in 5 of 15 HLA-A2-positive AML patients by interferon-gamma (IFN-gamma) ELISPOT assay and flow cytometry for intracellular IFN-gamma and in 3 additional patients by flow cytometry only. T cells producing IFN-gamma in response to proteinase 3 were further characterized in one patient by 4-color flow cytometry, identifying them as CD3(+)CD8(+)CD45RA(+) CCR7(-) T cells, resembling cytotoxic effector T cells. In line with this phenotype, most of the WT1- and proteinase-reactive T cells were granzyme B(+). These results provide for the first time evidence for spontaneous T-cell reactivity against defined antigens in AML patients. These data therefore support the immunogenicity of WT1 and proteinase 3 in acute leukemia patients and the potential usefulness of these antigens for leukemia vaccines. PMID:12200377

  18. A STUDY OF THE INHIBITION OF STREPTOCOCCAL PROTEINASE BY SERA OF NORMAL AND IMMUNE ANIMALS AND OF PATIENTS INFECTED WITH GROUP A HEMOLYTIC STREPTOCOCCI

    PubMed Central

    Todd, Edgar W.

    1947-01-01

    Antiproteinase sera were prepared by immunizing horses with filtrates from a selected strain of group A streptococcus. This strain, which produced high titred proteinase but no erythrogenic toxin, was selected from forty-two strains of group A streptococci which produced varying amounts of proteinase. A few strains belonging to groups B, C, and G were also tested; they were all proteinase-negative. Methods are described for titrating streptococcal proteinase in crude culture filtrates and for measuring the antiproteinase activity of serum. The antiproteinase titres of sera from immunized horses ranged from 125 units to 1,000 units per cc. in contrast to the low titres of normal horse sera, only 5 per cent of which had titres as high as 10 to 30 units per cc. The available evidence suggests that the antiproteinase activity of immune sera is dependent on the action of specific antibody for streptococcal proteinase. Patients infected with group A streptococci do not develop high anti-proteinase titres. There appears to be no correlation between the occurrence of rheumatic fever and the antiproteinase titre of the patient's serum. PMID:19871638

  19. Drosha Regulates Gene Expression Independently of RNA Cleavage Function

    PubMed Central

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara; Plass, Mireya; Eyras, Eduardo; Cáceres, Javier F.; Proudfoot, Nicholas J.

    2013-01-01

    Summary Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression. PMID:24360955

  20. Material grain size and crack size influences on cleavage fracturing.

    PubMed

    Armstrong, Ronald W

    2015-03-28

    A review is given of the analogous dependence on reciprocal square root of grain size or crack size of fracture strength measurements reported for steel and other potentially brittle materials. The two dependencies have much in common. For onset of cleavage in steel, attention is focused on relationship of the essentially athermal fracture stress compared with a quite different viscoplastic yield stress behaviour. Both grain-size-dependent stresses are accounted for in terms of dislocation pile-up mechanics. Lowering of the cleavage stress occurs in steel because of carbide cracking. For crack size dependence, there is complication of localized crack tip plasticity in fracture mechanics measurements. Crack-size-dependent conventional and indentation fracture mechanics measurements are described also for results obtained on the diverse materials: polymethylmethacrylate, silicon crystals, alumina polycrystals and WC-Co (cermet) composites. PMID:25713456

  1. Sequence specificity of DNA cleavage by Micrococcus luteus. gamma. endonuclease

    SciTech Connect

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-04-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by ..gamma..-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus ..gamma.. endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to ..gamma.. radiation.

  2. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    PubMed

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research. PMID:26881764

  3. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts

    PubMed Central

    Connell, Marisa; Cabernard, Clemens; Ricketson, Derek; Doe, Chris Q.; Prehoda, Kenneth E.

    2011-01-01

    The cytokinetic cleavage furrow is typically positioned symmetrically relative to the cortical cell boundaries, but it can also be asymmetric. The mechanisms that control furrow site specification have been intensively studied, but how polar cortex movements influence ultimate furrow position remains poorly understood. We measured the position of the apical and the basal cortex in asymmetrically dividing Drosophila neuroblasts and observed preferential displacement of the apical cortex that becomes the larger daughter cell during anaphase, effectively shifting the cleavage furrow toward the smaller daughter cell. Asymmetric cortical extension is correlated with the presence of cortical myosin II, which is polarized in neuroblasts. Loss of myosin II asymmetry by perturbing heterotrimeric G-protein signaling results in symmetric extension and equal-sized daughter cells. We propose a model in which contraction-driven asymmetric polar extension of the neuroblast cortex during anaphase contributes to asymmetric furrow position and daughter cell size. PMID:21937716

  4. Nucleotide sequence and expression in Escherichia coli of cDNAs encoding papaya proteinase omega from Carica papaya.

    PubMed

    Revell, D F; Cummings, N J; Baker, K C; Collins, M E; Taylor, M A; Sumner, I G; Pickersgill, R W; Connerton, I F; Goodenough, P W

    1993-05-30

    We have cloned and sequenced two similar, but distinct, cDNAs from both fruit and leaf tissues of Carica papaya. The C-terminal portion of the predicted amino acid (aa) sequence of one of the clones has complete identity with the mature enzyme sequence of the cysteine proteinase papaya proteinase omega (Pp omega). The second clone contains ten individual bp changes compared with the first and encodes a protein with three single-aa substitutions, only one of which is located in the mature sequence, but most noticeably carries an additional 19-aa C-terminal extension. The clones encode pre-pro precursor isoforms of Pp omega. The former of these clones has been expressed in Escherichia coli using a T7 polymerase expression system to produce insoluble pro-enzyme which has been solubilized and refolded to yield auto-activable pro-Pp omega. PMID:7684720

  5. Purification, crystallization and preliminary X-ray analysis of CMS1MS2: a cysteine proteinase from Carica candamarcensis latex

    PubMed Central

    Gomes, Marco Túlio Ribeiro; Teixeira, Raphael Dias; Ribeiro, Henrique de Assis Lopes; Turchetti, Andréia Pereira; Junqueira, Caroline Furtado; Lopes, Míriam Tereza Paz; Salas, Carlos Edmundo; Nagem, Ronaldo Alves Pinto

    2008-01-01

    Cysteine proteinases from the latex of plants of the family Caricaceae are widely used industrially as well as in pharmaceutical preparations. In the present work, a 23 kDa cysteine proteinase from Carica candamarcensis latex (designated CMS1MS2) was purified for crystallization using three chromatography steps. The enzyme shows about fourfold higher activity than papain with BAPNA as substrate. Crystals suitable for X-ray diffraction experiments were obtained by the hanging-drop method in the presence of PEG and ammonium sulfate as precipitants. The crystals are monoclinic (space group P21), with unit-cell parameters a = 53.26, b = 75.71, c = 53.23 Å, β = 96.81°, and diffract X-rays to 1.8 Å resolution. PMID:18540057

  6. Inhibition of antigen- and lectin-induced proliferation of rat spleen cells by a Taenia taeniaeformis proteinase inhibitor.

    PubMed Central

    Leid, R W; Suquet, C M; Perryman, L E

    1984-01-01

    Rat splenic lymphocytes, cultured in vitro for 3 days in the presence of a larval cestode proteinase inhibitor, exhibited a marked suppression of proliferation when stimulated with Con A, PHA, PWM and ovalbumin. Reduced responsiveness was observed over a full range of concentrations of Con A (16-fold), PHA (50-fold), PWM (four-fold) and ovalbumin (16-fold). These results indicated that the inhibitory action could not be overcome by increasing the mitogen or antigen doses beyond optimal levels. This suppressive effect disappeared when the Taenia taeniaeformis proteinase inhibitor was added 20 h after the initiation of culture, suggesting that the inhibitor affects lymphocyte blastogenesis during the early stages of lymphocyte activation. PMID:6744668

  7. Mycothiol synthesis by an anomerization reaction through endocyclic cleavage

    PubMed Central

    2016-01-01

    Summary Mycothiol is found in Gram-positive bacteria, where it helps in maintaining a reducing intracellular environment and it plays an important role in protecting the cell from toxic chemicals. The inhibition of the mycothiol biosynthesis is considered as a treatment for tuberculosis. Mycothiol contains an α-aminoglycoside, which is difficult to prepare stereoselectively by a conventional glycosylation reaction. In this study, mycothiol was synthesized by an anomerization reaction from an easily prepared β-aminoglycoside through endocyclic cleavage. PMID:26977192

  8. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  9. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    USGS Publications Warehouse

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  10. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    SciTech Connect

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J{sub c}) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often < 1-2 mm) routinely precede termination of the J-{Delta}a curve by brittle fracture. Large-scale yielding, coupled with small amounts of ductile tearing, magnifies the impact of small variations in microscale material properties on the macroscopic fracture toughness which contributes to the large amount scatter observed in measured J{sub c}-values. Previous work by the authors described a micromechanics fracture model to correct measured J{sub c}-values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515).

  11. Small Molecule-Mediated Cleavage of RNA in Living Cells

    PubMed Central

    Guan, Lirui

    2013-01-01

    Antisense oligonucleotides and small interfering RNAs (siRNAs) control gene expression by triggering the degradation of a mRNA via recruitment of RNase H or the RNA-induced silencing complex (RISC), respectively.[1] These approaches are hampered, however, by the poor cellular permeability of oligonucleotides. A small molecule approach to cleave RNA targets could obviate uptake issues. Several compounds can induce RNA cleavage in vitro,[2] however, to the best of our knowledge no small molecules have been previously described to cleave RNA in living cells. Herein, we describe the development of a potentially general approach to design small molecules that specifically cleave an RNA in a living cell, affecting biological function. Specifically, a designed, modularly assembled small molecule that binds the RNA that causes myotonic dystrophy type 1 (DM1)[3] was appended with a moiety that generates hydroxyl radicals upon irradiation. Cleavage of the transcript improves DM1-associated defects in cell culture, and compounds are non-toxic at an efficacious dose as determined by a MTT viability assay. This approach may allow for the site-specific cleavage and inactivation of other cellular RNAs.[4] Compounds that bind to and cleave RNA have the potential to serve as chemical genetics probes of function or lead therapeutics with spatial and temporal control. PMID:23280953

  12. N-cadherin prodomain cleavage regulates synapse formation in vivo.

    PubMed

    Latefi, Nazlie S; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S

    2009-07-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it nonadhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  13. Regioselective Cleavage of Thioether Linkages in Microcystin Conjugates.

    PubMed

    Zemskov, Ivan; Kropp, Heike M; Wittmann, Valentin

    2016-07-25

    Microcystins are cyanobacterial toxins that can be found in fresh and coastal waters during algal blooms. Microcystin contamination of water can cause severe poisoning of animals and humans. Quantification of these toxins in biological samples is complicated because a major proportion of microcystins is covalently linked to proteins through thioether bonds formed through a Michael-type addition of cysteine residues of proteins to an N-methyldehydroalanine residue in the microcystins. We investigated chemical methods that can be used to cleave such thioether bonds by means of an elimination reaction that leaves the microcystin backbone intact for subsequent analysis. The known reagent O-mesitylenesulfonylhydroxylamine (MSH) led to regioselective thioether cleavage, but a large excess of reagent was needed, thus making purification challenging. An unexpected side reaction observed during the investigation of the base-induced elimination inspired us to develop a new thioether-cleavage methodology based on the addition of propargylamine as a nucleophile that can trap the elimination product. This methodology could be successfully applied to the quantitative cleavage of a microcystin-LF-glutathione conjugate. The alkyne moiety introduced by this procedure offers the possibility for further reactions with azides by using click chemistry, which might be useful for the derivatization or isolation of microcystins. PMID:27346324

  14. Mechanism of metabolic cleavage of a furan ring

    SciTech Connect

    Kobayashi, T.; Sugihara, J.; Harigaya, S.

    1987-11-01

    We studied the mechanism of metabolic cleavage of a furan ring, using a new hypolipidemic agent, ethyl 2-(4-chlorophenyl)-5-(2-furyl)oxazole-4-acetate (TA-1801), as a model compound. A TA-1801 analogue labeled with deuterium at the 5-position of its furan ring was administered orally to rats. The analysis of urinary metabolites by GC/MS revealed that the deuterium of the furan was retained in the ring-opened metabolite (M3). Metabolic cleavage of furan has been generally considered to proceed by hydroxylation of the 5-position followed by tautomerism and hydrolysis of the resulting 5-hydroxyfuran derivative. However, if the cleavage proceeded by this pathway, the deuterium of the 5-position would be eliminated during hydroxylation. Therefore, we propose that the ring was cleaved directly to form an unsaturated aldehyde, considering the mechanism of oxidation by cytochrome P-450. Although this intermediate was not detected in the biological specimens, a synthetic unsaturated aldehyde was transformed to the actual urinary metabolites M2 and M3 (major ring-opened metabolites) in the isolated rat liver.

  15. Highly conserved salt bridge stabilizes a proteinase K subfamily enzyme, Aqualysin I, from Thermus aquaticus YT-1

    PubMed Central

    2014-01-01

    The proteinase K subfamily enzymes, thermophilic Aqualysin I (AQN) from Thermus aquaticus YT-1 and psychrophilic serine protease (VPR) from Vibrio sp. PA-44, have six and seven salt bridges, respectively. To understand the possible significance of salt bridges in the thermal stability of AQN, we prepared mutant proteins in which amino acid residues participating in salt bridges common to proteinase K subfamily members and intrinsic to AQN were replaced to disrupt the bridges one at a time. Disruption of a salt bridge common to proteinase K subfamily enzymes in the D183N mutant resulted in a significant reduction in thermal stability, and a massive change in the content of the secondary structure was observed, even at 70°C, in the circular dichroism (CD) analysis. These results indicate that the common salt bridge Asp183-Arg12 is important in maintaining the conformation of proteinase K subfamily enzymes and suggest the importance of proximity between the regions around Asp183 and the N-terminal region around Arg12. Of the three mutants that lack an AQN intrinsic salt bridge, D212N was more prone to unfolding at 80°C than the wild-type enzyme. Similarly, D17N and E237Q were less thermostable than the wild-type enzyme, although this may be partially due to increased autolysis. The AQN intrinsic salt bridges appear to confer additional thermal stability to this enzyme. These findings will further our understanding of the factors involved in stabilizing protein structure. PMID:25136511

  16. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    PubMed Central

    Björklund, H V; Johansson, T R; Rinne, A

    1997-01-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  17. Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick

    PubMed Central

    Macedo-Ribeiro, Sandra; Almeida, Carla; Calisto, Bárbara M.; Friedrich, Thomas; Mentele, Reinhard; Stürzebecher, Jörg; Fuentes-Prior, Pablo; Pereira, Pedro José Barbosa

    2008-01-01

    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo. PMID:18286181

  18. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    PubMed

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein. PMID:17608726

  19. Increased expression of the secretory leukocyte proteinase inhibitor in Wegener's granulomatosis

    PubMed Central

    OHLSSON, S; FALK, R; YANG, J J; OHLSSON, K; SEGELMARK, M; WIESLANDER, J

    2003-01-01

    The secretory leucocyte proteinase inhibitor (SLPI) is a low molecular weight, tissue-specific inhibitor of proteases, such as elastase and cathepsin G. It is the major local protease inhibitor in the upper airways. Proteinase 3, the main autoantigen in Wegener's granulomatosis (WG), can degrade SLPI proteolytically. In addition, SLPI is sensitive to oxidative inactivation by myeloperoxidase-generated free oxygen radicals. SLPI also has an antimicrobial capacity that can be of interest, as infection is considered to play a role in the pathogenesis of WG. This study focuses on SLPI expression in patients suffering from WG, something that to our knowledge has not been explored hitherto. Serum samples and nasal biopsies were obtained from 12 Swedish WG patients, while buffy coats were obtained from 33 American WG patients. SLPI levels in serum were measured by means of ELISA and the protein was detected by means of immunohistochemistry in nasal biopsies. mRNA expression was studied by means of in situ hybridization on nasal biopsies and RT-PCR on leucocytes. IL-6 or ESR were measured as markers of inflammatory activity. Cystatin C or creatinine was measured as a marker of renal filtration. White blood cell counts were registered. In serum, we found close to normal SLPI levels, without any correlation to IL-6. Two patients had greatly elevated values, both of them suffering from severe renal engagement. Strong SLPI mRNA expression was found in nasal biopsies. RT-PCR on leucocyte mRNA showed normal or greatly elevated expression of SLPI mRNA, correlating with disease activity. Leukocyte SLPI expression seems to be up-regulated in active WG. Serum levels were measured in a small number of patients and were found to be close to normal. Lack of correlation to the acute phase response indicates a specific regulation. This might be linked to an altered protease/antiprotease balance. These findings could indicate that SLPI locally participates in the anti-inflammatory and

  20. Secreted Frizzled Related Protein 2 is a procollagen C proteinase enhancer with a role in myocardial infarction-associated fibrosis

    PubMed Central

    Kobayashi, Koichi; Luo, Min; Zhang, Yue; Wilkes, David C.; Ge, Gaoxiang; Grieskamp, Thomas; Yamada, Chikaomi; Liu, Ting-Chun; Huang, Guorui; Basson, Craig T.; Kispert, Andreas; Greenspan, Daniel S.; Sato, Thomas N.

    2009-01-01

    Secreted frizzled related proteins (sFRPs) have emerged as key regulators of a wide range of developmental and disease processes, with virtually all known functions of mammalian sFRPs attributed to their ability to antagonize Wnt signaling. Recently however, the Xenopus and zebrafish sFRP, Sizzled, was shown to function as an antagonist of Chordin processing by Tolloid-like metalloproteinases, leading to the proposal that sFRPs may function as evolutionarily-conserved antagonists of the chordinase activities of this class of proteinases. Herein, in contrast to this proposal, we show that the mammalian sFRP, sFRP2, does not affect Chordin processing, but instead can serve as a direct enhancer of the procollagen C-proteinase activity of Tolloid-like metalloproteinases. We further show that the level of fibrosis, in which procollagen processing by Tolloid-like proteinases plays a rate-limiting role, is markedly reduced in sFRP2-null mice subjected to myocardial infarction. Importantly, this reduced level of fibrosis is accompanied by significantly improved cardiac function. This study thus uncovers a novel function for sFRP2 and a potential therapeutic application for sFRP2 antagonism in controlling fibrosis in the infarcted heart. PMID:19079247

  1. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field

    PubMed Central

    Dunse, K. M.; Stevens, J. A.; Lay, F. T.; Gaspar, Y. M.; Heath, R. L.; Anderson, M. A.

    2010-01-01

    Potato type I and II serine protease inhibitors are produced by solanaceous plants as a defense mechanism against insects and microbes. Nicotiana alata proteinase inhibitor (NaPI) is a multidomain potato type II inhibitor (pin II) that is produced at high levels in the female reproductive tissues of the ornamental tobacco, Nicotiana alata. The individual inhibitory domains of NaPI target the major classes of digestive enzymes, trypsin and chymotrypsin, in the gut of lepidopteran larval pests. Although consumption of NaPI dramatically reduced the growth and development of a major insect pest, Helicoverpa punctigera, we discovered that surviving larvae had high levels of chymotrypsin activity resistant to inhibition by NaPI. We found a potato type I inhibitor, Solanum tuberosum potato type I inhibitor (StPin1A), was a strong inhibitor of the NaPI-resistant chymotrypsin activity. The combined inhibitory effect of NaPI and StPin1A on H. armigera larval growth in the laboratory was reflected in the increased yield of cotton bolls in field trials of transgenic plants expressing both inhibitors. Better crop protection thus is achieved using combinations of inhibitors in which one class of proteinase inhibitor is used to match the genetic capacity of an insect to adapt to a second class of proteinase inhibitor. PMID:20696895

  2. The death enzyme CP14 is a unique papain-like cysteine proteinase with a pronounced S2 subsite selectivity.

    PubMed

    Paireder, Melanie; Mehofer, Ulrich; Tholen, Stefan; Porodko, Andreas; Schähs, Philipp; Maresch, Daniel; Biniossek, Martin L; van der Hoorn, Renier A L; Lenarcic, Brigita; Novinec, Marko; Schilling, Oliver; Mach, Lukas

    2016-08-01

    The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development. PMID:27246477

  3. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Berry, Colin; Bur, Daniel; Kay, John

    2006-08-01

    In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur. PMID:16895485

  4. Purification and characterization of an intracellular heat-stable proteinase (pernilase) from the marine hyperthermophilic archaeon Aeropyrum pernix K1.

    PubMed

    Chavez Croocker, P; Sako, Y; Uchida, A

    1999-01-01

    A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5-10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90 degrees C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85min at 100 degrees C and 12 min at 110 degrees C. PMID:10086839

  5. Isolation and complete amino acid sequence of two fibrinolytic proteinases from the toxic Saturnid caterpillar Lonomia achelous.

    PubMed

    Amarant, T; Burkhart, W; LeVine, H; Arocha-Pinango, C L; Parikh, I

    1991-08-30

    The major toxic and fibrinolytic activity of the saliva and hemolymph of the larval form of Lonomia achelous was purified to homogeneity by a combination of metal chelate and affinity chromatography. Two apparent isozymes, Achelase I (213 amino acids, pIcalc = 10.55) and Achelase II (214 amino acids, pIcalc = 8.51), were sequenced by automated Edman degradation, and their C-termini confirmed by Fourier-transform mass spectrometry. The calculated molecular weights (22,473 and 22,727) correspond well to Mr estimates of 24,000 by SDS-PAGE. No carbohydrate was detected during sequencing. The enzymes degraded all three chains of fibrin, alpha greater than beta much greater than gamma, yielding a fragmentation pattern indistinguishable from that produced by trypsin. Chromogenic peptides S-2222 (Factor Xa and trypsin), S-2251 (plasmin), S-2302 (kallikrein) and S-2444 (urokinase) were substrates while S-2288 (broad range of serine proteinases including thrombin) was not hydrolyzed. Among a range of inhibitors Hg+2, aminophenylmercuriacetate, leupeptin, antipain and E-64 but not N-ethylmaleimide or iodoacetate abolished the activity of the purified isozymes against S-2444. Phenylmethylsulfonyl fluoride, soybean trypsin inhibitor and aprotinin were less effective. The presence of the classic catalytic triad (histidine-41, aspartate-86 and serine-189) suggests that Achelases I and II may be serine proteinases, but with a potentially free cysteine-185 which could react with thiol proteinase-directed reagents. PMID:1911844

  6. Role for a secreted cysteine proteinase in the establishment of host tissue tropism by group A streptococci.

    PubMed

    Svensson, M D; Scaramuzzino, D A; Sjöbring, U; Olsén, A; Frank, C; Bessen, D E

    2000-10-01

    Primary infection of the human host by group A streptococci (GAS) most often involves either the epidermis of the skin or the oropharyngeal mucosa. A humanized in vivo model for impetigo was used to investigate the basis for host tissue tropism among GAS. Disruption of the speB gene (encoding for a secreted cysteine proteinase) led to a loss of virulence for two impetigo-derived strains (M-types 33 and 53), as evidenced by a diminution in tissue damage and a lack of reproductive growth. The level of cysteine proteinase activity in overnight cultures was associated with the extent of gross pathological changes induced by strains displaying varied degrees of virulence in the impetigo model. Moreover, high levels of secreted cysteine proteinase activity correlated with a genetic marker for preferred tissue site of infection at the skin (emm pattern D). The addition of exogenous SpeB to a speB mutant (emm pattern D) or to an avirulent throat-like strain (emm pattern A) led to increased bacterial reproduction at the skin. The data provide both experimental and epidemiological evidence for a critical role of a secreted bacterial protease in promoting host tissue-specific infection. PMID:11069651

  7. Isolation and characterization of a cDNA encoding a mammalian cathepsin L-like cysteine proteinase from Acanthamoeba healyi.

    PubMed

    Hong, Yeon-Chul; Hwang, Mi-Yul; Yun, Ho-Cheol; Yu, Hak-Sun; Kong, Hyun-Hee; Yong, Tai-Soon; Chung, Dong-Il

    2002-03-01

    We have cloned a cDNA encoding a cysteine proteinase of the Acanthamoeba healyi OC-3A strain isolated from the brain of a granulomatous amoebic encephalitis patient. A DNA probe for an A. healyi cDNA library screening was amplified by PCR using degenerate oligonucleotide primers designed on the basis of conserved amino acids franking the active sites of cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteinases. Cysteine proteinase gene of A. healyi (AhCP1) was composed of 330 amino acids with signal sequence, a proposed pro-domain and a predicted active site made up of the catalytic residues. Cys25, His159, and Asn175. Deduced amino acid sequence analysis indicates that AhCP1 belong to ERFNIN subfamily of C1 peptidases. By Northern blot analysis, no direct correlation was observed between AhCP1 mRNA expression and virulence of Acanthamoeba, but the gene was expressed at higher level in amoebae isolated from soil than amoeba from clinical samples. These findings raise the possibility that Ahcp1 protein may play a role in protein metabolism and digestion of phagocytosed bacteria or host tissue debris rather than in invasion of amoebae into host tissue. PMID:11949209

  8. Molt cycle-associated changes in calcium-dependent proteinase activity that degrades actin and myosin in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1982-01-01

    The role of calcium-dependent proteinase (CDP) in the proecdysial atrophy of crustacean claw muscle has been investigated. During atrophy the molar ratio of actin to myosin heavy chain decreased 31%, confirming earlier ultrastructural observations that the ratio of thin:thick myofilaments declined from 9:1 to 6:1 (D.L. Mykles and D.M. Skinner, 1981, J. Ultrastruct. Res. 75, 314 to 325). The release of TCA-soluble material in muscle homogenates at neutral pH was stimulated by Ca/sup 2 +/ and completely inhibited by EGTA. The specific degradation of the major myofibrillar proteins (actin, myosin heavy and light chains, paramyosin, tropomyosin, troponin-T, and troponin-I) was demonstrated by SDS-polyacrylamide gel electrophoresis. Proteolytic activity was more than twofold greater in proecdysial muscle homogenates. Degradation of myofibrillar proteins was inhibited by EGTA, and the two inhibitors of crysteine proteinases, leupeptin, and antipain, but not pepstatin, an inhibitor of aspartic proteinases. Unlike CDPs from vertebrate muscle, the CDP(s) in crab claw muscle degrades actin and myosin in addition to other myofibrillar proteins.

  9. Single-Molecule Analysis of the Target Cleavage Reaction by the Drosophila RNAi Enzyme Complex.

    PubMed

    Yao, Chunyan; Sasaki, Hiroshi M; Ueda, Takuya; Tomari, Yukihide; Tadakuma, Hisashi

    2015-07-01

    Small interfering RNAs (siRNAs) direct cleavage of complementary target RNAs via an RNA-induced silencing complex (RISC) that contains Argonatute2 protein at its core. However, what happens after target cleavage remains unclear. Here we analyzed the cleavage reaction by Drosophila Argonaute2-RISC using single-molecule imaging and revealed a series of intermediate states in target recognition, cleavage, and product release. Our data suggest that, after cleavage, RISC generally releases the 5' cleavage fragment from the guide 3' supplementary region first and then the 3' fragment from the seed region, highlighting the reinforcement of the seed pairing in RISC. However, this order can be reversed by extreme stabilization of the 3' supplementary region or mismatches in the seed region. Therefore, the release order of the two cleavage fragments is influenced by the stability in each region, in contrast to the unidirectional base pairing propagation from the seed to the 3' supplementary region upon target recognition. PMID:26140368

  10. Nanolithography of Amyloid Precursor Protein Cleavage with β-Secretase by Atomic Force Microscopy.

    PubMed

    Han, Sung-Woong; Shin, Hoon-Kyu; Adachi, Taiji

    2016-03-01

    Cleavage of the amyloid precursor protein (APP) by secretases is critical in neural cell processes including the pathway for neural cell proliferation and that underlying the pathogenesis of Alzheimer's disease (AD). Understanding the mechanism of APP cleavage and development of a convenient tool for the accurate evaluation of APP cleavage intensity by secretases are very important in the development of new AD therapeutic targets. In this study, we developed a sophisticated technology to evaluate the APP cleavage mechanism at the nano-molecular level by atomic force microscopic (AFM) nanolithography. APP was modified on a glass substrate; nanolithography of APP cleavage by β-secretase-modified AFM probe scanning was achieved. APP cleavage was verified by the AFM imaging and the fluorescent immunostaining. The present method will be very useful in understanding the molecular level of the APP cleavage mechanism by β-secretase in vitro; this method will facilitate inhibitor screening for the therapeutic target of AD. PMID:27280252

  11. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP)

    PubMed Central

    Lessard, Christian B.; Cottrell, Barbara A.; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E.; Koo, Edward H.

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization. PMID:26678856

  12. Small molecule activators of pre-mRNA 3′ cleavage

    PubMed Central

    Ryan, Kevin; Khleborodova, Asya; Pan, Jingyi; Ryan, Xiaozhou P.

    2009-01-01

    3′ Cleavage and polyadenylation are obligatory steps in the biogenesis of most mammalian pre-mRNAs. In vitro reconstitution of the 3′ cleavage reaction from human cleavage factors requires high concentrations of creatine phosphate (CP), though how CP activates cleavage is not known. Previously, we proposed that CP might work by competitively inhibiting a cleavage-suppressing serine/threonine (S/T) phosphatase. Here we show that fluoride/EDTA, a general S/T phosphatase inhibitor, activates in vitro cleavage in place of CP. Subsequent testing of inhibitors specific for different S/T phosphatases showed that inhibitors of the PPM family of S/T phosphatases, which includes PP2C, but not the PPP family, which includes PP1, PP2A, and PP2B, activated 3′ cleavage in vitro. In particular, NCI 83633, an inhibitor of PP2C, activated extensive 3′ cleavage at a concentration 50-fold below that required by fluoride or CP. The testing of structural analogs led to the identification of a more potent compound that activated 3′ cleavage at 200 μM. While testing CP analogs to understand the origin of its cleavage activation effect, we found phosphocholine to be a more effective activator than CP. The minimal structural determinants of 3′ cleavage activation by phosphocholine were identified. Our results describe a much improved small molecule activator of in vitro pre-mRNA cleavage, identify the molecular determinants of cleavage activation by phosphoamines such as phosphocholine, and suggest that a PPM family phosphatase is involved in the negative regulation of mammalian pre-mRNA 3′ cleavage. PMID:19155323

  13. Deletion mapping of the potyviral helper component-proteinase reveals two regions involved in RNA binding.

    PubMed

    Urcuqui-Inchima, S; Maia, I G; Arruda, P; Haenni, A L; Bernardi, F

    2000-03-01

    The Potyvirus helper component-proteinase (HC-Pro) binds nonspecifically to single-stranded nucleic acids with a preference for RNA. To delineate the regions of the protein responsible for RNA binding, deletions were introduced into the full-length Potato potyvirus Y HC-Pro gene carried by an Escherichia coli expression vector. The corresponding proteins were expressed as fusions with the maltose-binding protein, purified, and assayed for their RNA-binding capacity. The results obtained by UV cross-linking and Northwestern blot assays demonstrated that the N- and C-terminal regions of HC-Pro are dispensable for RNA binding. They also revealed the presence of two independent RNA-binding domains (designated A and B) located in the central part of HC-Pro. Domain B appears to contain a ribonucleoprotein (RNP) motif typical of a large family of RNA-binding proteins involved in several cellular processes. The possibility that domain B consists of an RNP domain is discussed and suggests that HC-Pro could constitute the first example of a plant viral protein belonging to the RNP-containing family of proteins. PMID:10683332

  14. Inactivation of bronchial mucous proteinase inhibitor by cigarette smoke and phagocyte-derived oxidants

    SciTech Connect

    Carp, H.; Janoff, A.

    1980-08-01

    Freshly prepared aqueous solutions of cigarette smoke suppressed the elastase inhibitory capacity (EIC) of the acid-stable proteinase inhibitor present in bronchial mucus (BMPi) and human seminal plasma (HUSI-I). Thin-layer gel-immunofiltration analysis of mixtures of smoke-treated BMPi and human leukocyte elastase showed decreased elastase: BMPi complexes, increased uncomplexed BMPi and increased free elastase. Phenolic antioxidants prevented the suppression of the EIC of BMPi or HUSI-I by cigarette smoke. In addition, treatment of BMPi or HUSI-I with chemical oxidants caused a similar suppression of EIC. Furthermore, treatment of BMPi or HUSI-I with the phagocyte-derived oxidizing system, myeloperoxidase + H2O2 + Cl-, suppressed EIC. Finally, the functional activity of BMPi was significantly reduced in tracheal aspirates of human smokers compared to that of nonsmokers. These results support the hypothesis that local inactivation of BMPi in the conducting airways of the lung by inhaled cigarette smoke or by phagocyte-derived oxidants may play a role in the pathogenesis of obstructive lung disease in smokers.

  15. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes.

    PubMed

    Luoga, W; Mansur, F; Buttle, D J; Duce, I R; Garnett, M C; Lowe, A; Behnke, J M

    2015-03-01

    We examined the in vitro and in vivo efficacy of plant cysteine proteinases (CPs) derived from pineapple (Ananas comosus) and kiwi fruit (Actinidia deliciosa), and compared their efficacy as anthelmintics to the known effects of CPs from the latex of papaya (Carica papaya) against the rodent intestinal nematode, Heligmosomoides bakeri. Both fruit bromelain and stem bromelain had significant in vitro detrimental effects on H. bakeri but in comparison, actinidain from kiwi fruit had very little effect. However, in vivo trials indicated far less efficacy of stem bromelain and fruit bromelain than that expected from the in vitro experiments (24.5% and 22.4% reduction in worm burdens, respectively) against H. bakeri. Scanning electron microscopy revealed signs of cuticular damage on worms incubated in fruit bromelain, stem bromelain and actinidain, but this was far less extensive than on those incubated in papaya latex supernatant. We conclude that, on the basis of presently available data, CPs derived from pineapples and kiwi fruits are not suitable for development as novel anthelmintics for intestinal nematode infections. PMID:24176056

  16. Elastase-induced emphysema: retention of instilled proteinase in the rat

    SciTech Connect

    Sandhaus, R.A.; Janoff, A.

    1982-11-01

    Airway instillation of proteinases with the ability to degrade elastin has been used to produce disease in the rat analogous to human pulmonary emphysema. This study examined the retention, localization, and fate of endotracheally instilled elastase using /sup 125/I labeled enzyme and immunoperoxidase histochemistry. Porcine pancreatic elastase labeled with /sup 125/I was detected in rat lungs through 96 h after instillation; over half of the label was still present after 7 h. Similar results were obtained when elastase was reacted with a specific, catalytic site inactivator prior to instillation. Trypsin and denatured elastase, however, were cleared much more rapidly from the lung (less than half of the label present after 30 min). When lungs were homogenized after instillation of active elastase, the soluble fraction contained elastase bound to rat alpha1-antitrypsin. In addition, a small amount of label (less than 10%) appeared bound to insoluble components for extended periods of time. Using immunoperoxidase histochemistry, it was found that exogenous elastase was rapidly contained with pulmonary alveolar macrophages, as well as associated with alveolar septums and other parenchymal structures. Similar results were obtained with elastase from both porcine pancreas and human neutrophils. These results suggest that exogenous elastase in the rat, and perhaps endogenous elastolytic enzymes in humans, may have several fates in the lungs: complex formation with endogenous inhibitors, containment within the macrophage, and/or association with connective tissue targets.

  17. Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information.

    PubMed Central

    Klionsky, D J; Banta, L M; Emr, S D

    1988-01-01

    An inactive precursor form of proteinase A (PrA) transits through the early secretory pathway before final vacuolar delivery. We used gene fusions between the gene coding for PrA (PEP4) and the gene coding for the secretory enzyme invertase (SUC2) to identify vacuolar protein-sorting information in the PrA precursor. We found that the 76-amino-acid preprosegment of PrA contains at least two sorting signals: an amino-terminal signal peptide that is cleaved from the protein at the level of the endoplasmic reticulum followed by the prosegment which functions as a vacuolar protein-sorting signal. PrA-invertase hybrid proteins that carried this sequence information were accurately sorted to the yeast vacuole as determined by cell fractionation and immunolocalization studies. Hybrid proteins lacking all or a portion of the PrA prosegment were secreted from the cell. Our gene fusion data together with an analysis of the wild-type PrA protein indicated that N-linked carbohydrate modifications are not required for vacuolar sorting of this protein. Furthermore, results obtained with a set of deletion mutations constructed in the PrA prosegment indicated that this sequence also contributes to proper folding of this polypeptide into a stable transit-competent molecule. Images PMID:3290649

  18. An unequivocal example of cysteine proteinase activity affected by multiple electrostatic interactions.

    PubMed

    Taylor, M A; Baker, K C; Connerton, I F; Cummings, N J; Harris, G W; Henderson, I M; Jones, S T; Pickersgill, R W; Sumner, I G; Warwicker, J

    1994-10-01

    The role of electrostatic interactions between the ionizable Asp158 and the active site thiolate-imidazolium ion pair of some cysteine proteinases has been the subject of controversy for some time. This study reports the expression of wild type procaricain and Asp158Glu, Asp158Asn and Asp158Ala mutants from Escherichia coli. Purification of autocatalytically matured enzymes yielded sufficient fully active material for pH (kcat/Km) profiles to be obtained. Use of both uncharged and charged substrates allowed the effects of different reactive enzyme species to be separated from the complications of electrostatic effects between enzyme and substrate. At least three ionizations are detectable in the acid limb of wild type caricain and the Glu and Asn mutants. Only two pKa values, however, are detectable in the acid limb using the Ala mutant. Comparison of pH activity profiles shows that whilst an ionizable residue at position 158 is not essential for the formation of the thiolate-imidazolium ion pair, it does form a substantial part of the electrostatic field responsible for increased catalytic competence. Changing the position of this ionizable group in any way reduces activity. Complete removal of the charged group reduces catalytic competence even further. This work indicates that hydronations distant to the active site are contributing to the electrostatic effects leading to multiple active ionization states of the enzyme. PMID:7855143

  19. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    PubMed

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology. PMID:21418020

  20. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.

    PubMed

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-06-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  1. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils.

    PubMed

    Kuckleburg, Christopher J; Tilkens, Sarah B; Santoso, Sentot; Newman, Peter J

    2012-03-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population. PMID:22266279

  2. Enzymatic hydrolysis of starry triggerfish (Abalistes stellaris) muscle using liver proteinase from albacore tuna (Thunnus alalunga).

    PubMed

    Sripokar, P; Chaijan, M; Benjakul, S; Kishimura, H; Klomklao, S

    2016-02-01

    Proteinases from liver extract from albacore tuna (Thunnus alalunga) were used to produce protein hydrolysate from starry triggerfish (Abalistes stellaris) muscle. Hydrolysis conditions for preparing protein hydrolysate from starry triggerfish muscle were optimized. Enzyme level, reaction time and fish muscle/buffer ratio significantly affected the hydrolysis (p < 0.05). Optimum conditions for triggerfish muscle hydrolysis were 5.5 % liver extract, 40 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). The freeze-dried protein hydrolysate was characterized with respect to chemical composition, amino acid composition and color. The product contained 91.73 % protein, 2.04 % lipid and 6.48 % ash. The protein hydrolysate exhibited high amount of essential amino acids (45.62 %). It was light yellow in color (L (*) = 82.94, a (*) = 0.84, b (*) = 22.83). The results indicate that the extract from liver of albacore tuna could be used to produce fish protein hydrolysate and protein hydrolysate from starry triggerfish muscle may potentially serve as a good source of desirable peptide and amino acids. PMID:27162384

  3. Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate.

    PubMed

    Hutton, D A; Pearson, J P; Allen, A; Foster, S N

    1990-03-01

    1. Mucolytic (mucus solubilizing) activity in human faeces has been characterized with both purified human and pig colonic mucin and shown to be mediated by proteolysis. 2. Mucolytic activity was demonstrated by: (i) a drop in mucin viscosity; (ii) a substantial reduction in mucin size, from polymer to degraded subunit, as assessed by Sepharose CL-2B gel filtration; (iii) formation of new N-terminal peptides. 3. Mucolytic activity was also followed in faecal extracts by its proteolytic activity using standard succinyl albumin substrate. Proteolysis extended over the pH range 4.5-11.0. Proteolysis was inhibited at pH 7.5 by soybean trypsin inhibitor and phenylmethanesulphonyl fluoride, suggesting the presence of serine proteinases. 4. The polyacrylate carbomer (934P) inhibited both mucolysis of pig colonic mucin and proteolysis of succinyl albumin. 5. Interaction between the polyacrylate (carbomer 934P) and purified human and pig colonic mucin was demonstrated by a marked synergistic increase in solution viscosity (360% above control). 6. The results demonstrate the presence of a mucolytic activity in the human colonic lumen that has the potential to degrade the mucus barrier, and that polyacrylates inhibit this mucolysis and interact to strengthen the colonic mucus barrier. Polyacrylates may therefore have therapeutic potential in inflammatory bowel disease where luminal proteolytic activity can be raised. PMID:2156646

  4. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  5. Stable and Simple Immobilization of Proteinase K Inside Glass Tubes and Microfluidic Channels.

    PubMed

    Küchler, Andreas; Bleich, Julian N; Sebastian, Bernhard; Dittrich, Petra S; Walde, Peter

    2015-11-25

    Engyodontium album proteinase K (proK) is widely used for degrading proteinaceous impurities during the isolation of nucleic acids from biological samples, or in proteomics and prion research. Toward applications of proK in flow reactors, a simple method for the stable immobilization of proK inside glass micropipette tubes was developed. The immobilization of the enzyme was achieved by adsorption of a dendronized polymer-enzyme conjugate from aqueous solution. This conjugate was first synthesized from a polycationic dendronized polymer (denpol) and proK and consisted, on average, of 2000 denpol repeating units and 140 proK molecules, which were attached along the denpol chain via stable bis-aryl hydrazone bonds. Although the immobilization of proK inside the tube was based on nonspecific, noncovalent interactions only, the immobilized proK did not leak from the tube and remained active during prolonged storage at 4 °C and during continuous operation at 25 °C and pH = 7.0. The procedure developed was successfully applied for the immobilization of proK on a glass/PDMS (polydimethylsiloxane) microchip, which is a requirement for applications in the field of proK-based protein analysis with such type of microfluidic devices. PMID:26536248

  6. [Downregulation of proteinase activated receptor 4 inhibits migration of SW620 human colorectal cancer cells].

    PubMed

    Chen, Lihong; Li, Chunchun; Xie, Yuqiong; Ye, Jingjia; Cao, Jiang

    2016-05-01

    Objective To establish the human colorectal cancer cell model SW620/PAR4D with inducible suppression of proteinase activated receptor 4 (PAR4) expression, and investigate the role PAR4 plays in the proliferation and migration of cancer cells. Methods A human colorectal cancer cell line with tetracycline-inducible expression regulatory system, namely SW620/Tet-on, was established; inducible expression lentiviral vector with artificial microRNA targeting PAR4, pLVX-Tight-Puro-PAR4-miR, was constructed and transfected into SW620/Tet-on to make an inducible PAR4-suppressed cell model SW620/PAR4D. Western blotting was used to confirm the suppression of PAR4 expression after the doxycycline (DOX) treatment. CCK-8 assay was used to evaluate the impact of suppressed PAR4 expression on cell proliferation, and wound-healing assay was used to analyze the migration of the cells. Results The SW620/PAR4D cell model was established successfully. Suppression of PAR4 expression by DOX treatment had no significant impact on the growth/proliferation of SW620/PAR4D cells, but markedly inhibited the cell migration. Conclusion Suppression of PAR4 expression has no significant effect on the proliferation of SW620 cells, but can inhibit the migration of the cells. PMID:27126938

  7. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  8. Antibody to streptococcal cysteine proteinase as a seromarker of group A Streptococcal (Streptococcus pyogenes) infections.

    PubMed

    Batsford, Stephen; Brundiers, Mechtild; Schweier, Oliver; Horbach, Elmar; Mönting, Jürgen Schulte

    2002-01-01

    Serological tests are commonly employed to aid the diagnosis of Streptococcus pyogenes infections, particularly when non-suppurative sequelae are suspected. Conventional laboratory practice is to measure antibody levels to various combinations of the extracellular group A Streptococcus (GAS) antigens streptolysin O (SLO), DNase B, streptokinase and hyaluronidase. Antibody to the extracellular cysteine proteinase streptococcal pyrogenic exotoxin B (SPE B) and its precursor zymogen is also produced in response to GAS infections. An indirect hemagglutination test for antibody to zymogen/SPE B was established and evaluated in serum samples from 168 patients with proven (n = 27) or suspected GAS (n = 141) infections, which were also screened for antibodies using the 4 conventional tests. For comparison, sera from 56 patients infected with a variety of other pathogens, as well as sera from 16 patients infected with either S. agalactiae or S. pneumoniae and 34 sera from healthy subjects, were tested. Statistical analysis confirmed that antibody to zymogen/SPE B is a serological marker that can discriminate GAS infections. It can be ranked with the anti-SLO titer, currently the most widely used test, as a marker of an antecedent GAS infection. PMID:12160165

  9. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus)

    PubMed Central

    Parambeth, Joseph Cyrus; Suchodolski, Jan S.; Steiner, Jörg M.

    2015-01-01

    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (C. jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species. PMID:25745866

  10. Treponema denticola chymotrypsin-like proteinase (CTLP) integrates spirochaetes within oral microbial communities

    PubMed Central

    Cogoni, Valentina; Morgan-Smith, Alex; Fenno, J. Christopher; Dymock, David

    2012-01-01

    Treponema denticola is found ubiquitously in the human oral cavity and is mainly associated with bacterial communities implicated in the establishment and development of periodontal disease. The ability to become integrated within biofilm communities is crucial to the growth and survival of oral bacteria, and involves inter-bacterial coaggregation, metabolic cooperation, and synergy against host defences. In this article we show that the chymotrypsin-like proteinase (CTLP), found within a high-molecular-mass complex on the cell surface, mediates adherence of T. denticola to other potential periodontal pathogens, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia and Parvimonas micra. Proteolytic activity per se did not appear to be required for the interactions, and expression of the major outer-sheath protein (Msp) was not necessary, except for binding Parv. micra. Biofilms of densely packed cells and matrix, up to 40 µm in depth, were formed between T. denticola and P. gingivalis on salivary pellicle, with T. denticola cells enriched in the upper layers. Expression of CTLP, but not Msp, was critical for dual-species biofilm formation with P. gingivalis. T. denticola did not form dual-species biofilms with any of the other three periodontal bacterial species under various conditions. Synergy between T. denticola and P. gingivalis was also shown by increased inhibition of blood clotting, which was CTLP-dependent. The results demonstrate the critical role of CTLP in interactions of T. denticola with other oral micro-organisms, leading to synergy in microbial community development and host tissue pathogenesis. PMID:22313692

  11. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

    PubMed Central

    Kessenbrock, Kai; Fröhlich, Leopold; Sixt, Michael; Lämmermann, Tim; Pfister, Heiko; Bateman, Andrew; Belaaouaj, Azzaq; Ring, Johannes; Ollert, Markus; Fässler, Reinhard; Jenne, Dieter E.

    2008-01-01

    Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents. PMID:18568075

  12. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    PubMed

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis. PMID:25597948

  13. Diabetic state-induced activation of calcium-activated neutral proteinase in mouse skeletal muscle.

    PubMed

    Kobayashi, S; Fujihara, M; Hoshino, N; Kimura, I; Kimura, M

    1989-12-01

    The effect of a diabetic state in the diabetic KK-CAy mouse on calcium activated neutral proteinase (CANP) of hind-limb skeletal muscles was investigated. In the diabetic state, there was an increased sensitivity to activation of CANP by calcium (Ca). In addition, there was an enhancement of maximal activity of the enzyme. The effect was induced by secondary modification of the diabetic state, but not genetical factors. Several lines of evidence suggest that the CANP is responsible for 92 K dalton protein in diabetic skeletal muscles. Among the evidence are the following: a) The 92 K band in the diabetic muscles was lower than in the prediabetic mouse and restored by the addition of 2 mM EDTA and 2 mM EGTA. b) The band was reduced by increasing the Ca content and neutral pH in the non-diabetic normal muscles. c) E-64-C, a CANP inhibitor, restored the 92 K component reduced by the diabetic state. Since the band in denervated muscles was not changed by the Ca chelating agents, the reduction of the band in the diabetic muscles is related with musculotrophic factors, not diabetic neuropathy. These results suggest that diabetic amyotrophy may be regarded as a phenomenon linked to an increase in intracellular Ca ions and an increase in CANP activity. PMID:2561275

  14. INHALED ALPHA1-PROTEINASE INHIBITOR THERAPY IN PATIENTS WITH CYSTIC FIBROSIS

    PubMed Central

    Gaggar, Amit; Chen, Junliang; Chmiel, James F; Dorkin, Henry L; Flume, Patrick A; Griffin, Rhonda; Nichols, David; Donaldson, Scott H

    2016-01-01

    Background Inhaled alpha1-proteinase inhibitor (PI) is known to reduce neutrophil elastase burden in some patients with CF. This phase 2a study was designed to test inhaled Alpha-1 HC, a new aerosolized alpha1-PI formulation, in CF patients. Methods We performed a randomized, double-blind, placebo-controlled study and evaluated the safety of 100 or 200 mg of inhaled Alpha-1 HC once daily for 3 weeks in subjects with CF. Thirty adult subjects were randomized in a 2:1 ratio to receive Alpha-1 HC or placebo. Results Drug delivery was confirmed by a dose-dependent increase in the sputum alpha1-PI. Seven (20.0%) of the 35 adverse events in the 100-mg dose group, 3 (13.0%) of 23 in the 200-mg dose group, and 4 (14.3%) of 28 in the placebo group were drug-related in these subjects. One serious adverse event occurred in 1 subject within each group. Conclusions Alpha-1 HC inhalation was safe and well tolerated. PMID:26321218

  15. Structural and inhibitory properties of a plant proteinase inhibitor containing the RGD motif.

    PubMed

    Nakahata, Adriana M; Bueno, Norlene R; Rocha, Hugo A O; Franco, Célia R C; Chammas, Roger; Nakaie, Clovis R; Jasiulionis, Miriam G; Nader, Helena B; Santana, Lucimeire A; Sampaio, Misako U; Oliva, Maria Luiza V

    2006-12-15

    Purified from Bauhinia rufa seeds, BrTI is a Kunitz proteinase inhibitor that contains the RGD sequence. BrTI inhibits trypsin (K(iapp) 2.9 nM) and human plasma kallikrein (K(iapp) 14.0 nM) but not other related enzymes. The synthetic peptide YLEPVARGDGGLA-NH(2) (70 microM) inhibited the adhesion to fibronectin of B16F10 (high-metastatic B16 murine mouse melanoma cell line) and of Tm5 (murine melanoma cell lines derived from a non-tumorigenic lineage of pigmented murine melanocytes, melan-a). YLEPVARGEGGLA-NH(2) in which Asp(9) was changed into Glu does not affect the cell attachment. Moreover, this peptide was functional only when the sequence present in the native protein was preserved, since YLIPVARGDGGLA-NH(2) in which Glu(3) was changed into Ile does not interfere with B16F10 and was less effective on Tm5 cell line adhesion. Neither YLEPVARGDGGLA-NH(2), YLIPVARGDGGLA-NH(2) or YLEPVARGEGGLA-NH(2) inhibit the interaction of RAEC (endothelial cell line from rabbit aorta) with fibronectin. PMID:16846639

  16. Complete nucleotide sequence of the structural gene for alkaline proteinase from Pseudomonas aeruginosa IFO 3455.

    PubMed Central

    Okuda, K; Morihara, K; Atsumi, Y; Takeuchi, H; Kawamoto, S; Kawasaki, H; Suzuki, K; Fukushima, J

    1990-01-01

    The DNA-encoding alkaline proteinase (AP) of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, the gene-incorporated bacteria expressed high levels of both AP activity and AP antigens. The amino acid sequence deduced from the nucleotide sequence revealed that the mature AP consists of 467 amino acids with a relative molecular weight of 49,507. The amino acid composition predicted from the DNA sequence was similar to the chemically determined composition of purified AP reported previously. The amino acid sequence analysis revealed that both the N-terminal side sequence of the purified AP and several internal lysyl peptide fragments were identical to the deduced amino acid sequences. The percent homology of amino acid sequences between AP and Serratia protease was about 55%. The zinc ligands and an active site of the AP were predicted by comparing the structure of the enzyme with of Serratia protease, thermolysin, Bacillus subtilis neutral protease, and Pseudomonas elastase. PMID:2123832

  17. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    NASA Astrophysics Data System (ADS)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  18. Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases

    PubMed Central

    Lee, Hojoon X.; Ambrosio, Andrea L.; Reversade, Bruno; De Robertis, E.M.

    2008-01-01

    SUMMARY Here we report an unexpected role for the secreted Frizzled-related protein (sFRP) Sizzled/Ogon as an inhibitor of the extracellular proteolytic reaction that controls BMP signaling during Xenopus gastrulation. Microinjection experiments suggest that the Frizzled domain of Sizzled regulates the activity of Xolloid-related (Xlr), a metalloproteinase that degrades Chordin, through the following molecular pathway: Szl ┤ Xlr ┤ Chd ┤ BMP → P-Smad1 → Szl. In biochemical assays, the Xlr proteinase has similar affinities for its endogenous substrate Chordin and for its competitive inhibitor Sizzled, which is resistant to enzyme digestion. Extracellular levels of Sizzled and Chordin in the gastrula embryo and enzyme reaction constants were all in the 10−8 M range, consistent with a physiological role in the regulation of dorsal-ventral patterning. Sizzled is also a natural inhibitor of BMP1, a Tolloid metalloproteinase of medical interest. Furthermore, mouse sFRP2 inhibited Xlr, suggesting a wider role for this molecular mechanism. PMID:16413488

  19. Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response.

    PubMed

    Gabrielli, Elena; Pericolini, Eva; Luciano, Eugenio; Sabbatini, Samuele; Roselletti, Elena; Perito, Stefano; Kasper, Lydia; Hube, Bernhard; Vecchiarelli, Anna

    2015-05-01

    We recently demonstrated that the secreted aspartyl proteinases (Saps), Sap2 and Sap6, of Candida albicans have the potential to induce the canonical activation of the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 via caspase-1 activation. We also observed that the activation of caspase-1 is partially independent from the NLRP3 activation pathway. In this study, we examined whether Sap2 and Sap6 are also able to activate the noncanonical inflammasome pathway in murine macrophages. Our data show that both Sap2 and Sap6 can activate caspase-11 through type I interferon (IFN) production. Caspase-11 cooperates to activate caspase-1, with a subsequent increase of IL-1β secretion. Endocytosis and internalization of Saps are required for the induction of type I IFN production, which is essential for induction of noncanonical inflammasome activation. Our study indicates a sophisticated interplay between caspase-1 and caspase-11 that connects the canonical and noncanonical pathways of inflammasome activation in response to C. albicans Saps. PMID:25712931

  20. Induction of Caspase-11 by Aspartyl Proteinases of Candida albicans and Implication in Promoting Inflammatory Response

    PubMed Central

    Gabrielli, Elena; Pericolini, Eva; Luciano, Eugenio; Sabbatini, Samuele; Roselletti, Elena; Perito, Stefano; Kasper, Lydia; Hube, Bernhard

    2015-01-01

    We recently demonstrated that the secreted aspartyl proteinases (Saps), Sap2 and Sap6, of Candida albicans have the potential to induce the canonical activation of the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 via caspase-1 activation. We also observed that the activation of caspase-1 is partially independent from the NLRP3 activation pathway. In this study, we examined whether Sap2 and Sap6 are also able to activate the noncanonical inflammasome pathway in murine macrophages. Our data show that both Sap2 and Sap6 can activate caspase-11 through type I interferon (IFN) production. Caspase-11 cooperates to activate caspase-1, with a subsequent increase of IL-1β secretion. Endocytosis and internalization of Saps are required for the induction of type I IFN production, which is essential for induction of noncanonical inflammasome activation. Our study indicates a sophisticated interplay between caspase-1 and caspase-11 that connects the canonical and noncanonical pathways of inflammasome activation in response to C. albicans Saps. PMID:25712931

  1. Proteinases inhibit H(+)-ATPase and Na+/H+ exchange but not water transport in apical and endosomal membranes from rat proximal tubule.

    PubMed

    Sabolić, I; Shi, L B; Brown, D; Ausiello, D A; Verkman, A S

    1992-01-10

    A marked increase in water permeability can be induced in Xenopus oocytes by injection of mRNA from tissues that express water channels, suggesting that the water channel is a protein. In view of this and previous reports which showed that proteinases may interfere with mercurial inhibition of water transport in red blood cells (RBC), we examined the influence of trypsin, chymotrypsin, papain, pronase, subtilisin and thermolysin on water permeability as well as on ATPase activity, H(+)-pump, passive H+ conductance, and Na+/H+ exchange in apical brush-border vesicles (BBMV) and endosomal (EV) vesicles from rat renal cortex. H+ transport was measured by Acridine orange fluorescence quenching and water transport by stopped-flow light scattering. As measured by potential-driven H+ accumulation in BBMV and EV, proteinase treatment had little effect on vesicle integrity. In BBMV, ecto-ATPase activity was inhibited by 15-30%, Na+/H+ exchange by 20-55%, and H+ conductance was unchanged. Osmotic water permeability (Pf) was 570 microns/s and was inhibited 85-90% by 0.6 mM HgCl2; proteinase treatment did not affect Pf or the HgCl2 inhibition. In EV, NEM-sensitive H+ accumulation and ATPase activity were inhibited by greater than 95%. Pf (140 microns/s) and HgCl2 inhibition (75-85%) were not influenced by proteinase treatment. SDS-PAGE showed selective digestion of multiple polypeptides by proteinases. These results confirm the presence of water channels in BBMV and EV and demonstrate selective inhibition of ATPase function and Na+/H+ exchange by proteinase digestion. The lack of effect of proteinases on water transport by mercurials. We conclude that the water channel may be a small integral membrane protein which, unlike the H(+)-ATPase and Na+/H+ exchanger, has no functionally important membrane domains that are sensitive to proteolysis. PMID:1309658

  2. Validation of doubled haploid plants by enzymatic mismatch cleavage

    PubMed Central

    2013-01-01

    Background Doubled haploidy is a fundamental tool in plant breeding as it provides the fastest way to generate populations of meiotic recombinants in a genetically fixed state. A wide range of methods has been developed to produce doubled haploid (DH) plants and recent advances promise efficient DH production in otherwise recalcitrant species. Since the cellular origin of the plants produced is not always certain, rapid screening techniques are needed to validate that the produced individuals are indeed homozygous and genetically distinct from each other. Ideal methods are easily implemented across species and in crops where whole genome sequence and marker resources are limited. Results We have adapted enzymatic mismatch cleavage techniques commonly used for TILLING (Targeting Induced Local Lesions IN Genomes) for the evaluation of heterozygosity in parental, F1 and putative DH plants. We used barley as a model crop and tested 26 amplicons previously developed for TILLING. Experiments were performed using self-extracted single-strand-specific nuclease and standard native agarose gels. Eleven of the twenty-six tested primers allowed unambiguous assignment of heterozygosity in material from F1 crosses and loss of heterozygosity in the DH plants. Through parallel testing of previously developed Simple Sequence Repeat (SSR) markers, we show that 3/32 SSR markers were suitable for screening. This suggests that enzymatic mismatch cleavage approaches can be more efficient than SSR based screening, even in species with well-developed markers. Conclusions Enzymatic mismatch cleavage has been applied for mutation discovery in many plant species, including those with little or no available genomic DNA sequence information. Here, we show that the same methods provide an efficient system to screen for the production of DH material without the need of specialized equipment. This gene target based approach further allows discovery of novel nucleotide polymorphisms in candidate

  3. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  4. Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins.

    PubMed

    Torruella, M; Gordon, K; Hohn, T

    1989-10-01

    Cauliflower mosaic virus (CaMV), a plant pararetrovirus, produces polyproteins from its adjacent genes for the coat protein (ORF IV) and for enzymatic functions (ORF V). The N-terminal domain of the latter gene includes a sequence showing homology to the active site of other retroviral and acid proteases. We have now shown that this domain does indeed produce a functional aspartic protease that can process both the polyproteins. Mutations in the putative active site abolished virus infectivity. In transient expression studies in protoplasts, the N-terminal domain of ORF V was able to free active CAT enzyme from a precursor containing an N-terminal fusion of a portion of ORF IV. The junction between the two domains of this artificial polyprotein comprised sequences from the ORF IV product that had previously been shown to include a proteolytic processing site. The protease mutants were not able to free active CAT enzyme from this precursor. Direct analysis of cleavage at the same site in the ORF IV product using proteins expressed in Escherichia coli revealed the expected products. In vitro translation of a synthetic transcript covering ORF V was used to study the autocatalytic cleavage of the ORF product. Pulse-chase experiments showed that the 80 kd initial translation product was processed to yield a N-terminal doublet of polypeptides of 22 and 20 kd apparent mol. wt, which cover the protease domain. The mutants in the active site were not processed. PMID:2684630

  5. Proteinase PrtP impairs lactococcin LcnB activity in Lactococcus lactis BGMN1-501: new insights into bacteriocin regulation

    PubMed Central

    Vukotic, Goran; Mirkovic, Nemanja; Jovcic, Branko; Miljkovic, Marija; Strahinic, Ivana; Fira, Djordje; Radulovic, Zorica; Kojic, Milan

    2015-01-01

    Proteinases and bacteriocins are of great importance to the dairy industry, but their interactions have not been studied so far. Lactococcus lactis subsp. lactis BGMN1-5 is a natural isolate from homemade semi-hard cheese which produces two bacteriocins (Lactococcin B and LsbB), as well as proteinase PrtP. A medium-dependent increase in the bacteriocin LcnB activity of L. lactis BGMN1-501, a derivate of L. lactis subsp. lactis BGMN1-5, was shown to be accompanied by a decrease in its promoter activity. A similar effect of media components on gene expression was reported for proteinase PrtP, whose gene is co-localized on the same plasmid as the lcnB gene. Thus, the PrtP-LcnB interplay was investigated. Single gene knockout mutants were constructed with disrupted prtP or lcnB genes. PrtP- mutants showed higher bacteriocin activity that had lost its growth medium dependence, which was in contrast to the original strain. When LcnB from this mutant was combined with proteinase from the LcnB- mutant in vitro, its activity was rendered to the original level, suggesting that proteinase reduces bacteriocin activity. We propose a new model of medium dependent expression of these genes with regard to the effects of their interaction in vivo. PMID:25713574

  6. Purification and characterization of a new serine proteinase from Bacillus subtilis with specificity for amino acids at P1 and P2 positions.

    PubMed

    Yamagata, A; Yoshida, N; Noda, K; Ito, A

    1995-12-01

    A proteinase was purified 230-fold to apparent homogeneity from culture filtrates of Bacillus subtilis by a series of column chromatographies on DE52, DEAE-Toyopearl, Cellulofine GC200M, and Mono-Q, using Boc-Ala-Ala-Pro-Ser-pNA as a substrate. The molecular weight of the proteinase was estimated to be 42,000 by SDS-PAGE in the presence of 2-mercaptoethanol. Studies on the substrate specificity with peptide p-nitroanilides and natural peptides revealed that this proteinase preferentially hydrolyzed the peptide bond on the carboxyl-terminal side of either serine or alanine residues at the P1 position and hydrophobic bulky amino acids at P2. It was most active at pH 9.5 for the hydrolysis of Boc-Ala-Ala-Pro-Ser-pNA. The enzyme was inactivated by diisopropyl fluorophosphate (DFP), but not by tosyl-L-phenylalanine chloromethylketone (TPCK) or by EDTA. Based on the reactivity toward substrates and inhibitors, this enzyme differs from elastase- or subtilisin-like proteinase, hence it is a new type of proteinase with specificity for amino acids at P1 and P2 positions. PMID:8519806

  7. The Fragment 1 Region of Prothrombin Facilitates the Favored Binding of Fragment 12 to Zymogen and Enforces Zymogen-like Character in the Proteinase.

    PubMed

    Bradford, Harlan N; Krishnaswamy, Sriram

    2016-05-20

    Thrombin is produced from the C-terminal half of prothrombin following its proteolytic activation. The N-terminal half, released as the propiece Fragment 12 (F12), is composed of an N-terminal γ-carboxyglutamate domain (Gla) followed by two kringles (K1 and K2). The propiece plays essential roles in regulating prothrombin activation and proteinase function. The latter results from the ability of F12 to reversibly bind to the (pro)catalytic domain through K2 with high affinity and highly favorable thermodynamic constants when it is a zymogen in comparison to proteinase. Such discrimination is lost for K2 binding after proteolytic removal of the N-terminal Gla-K1 region of F12. The Ca(2+)-stabilized structure of the Gla domain is not required for F12 to bind the zymogen form more favorably. Enhanced binding to zymogen versus proteinase correlates with the ability of the propiece to enforce zymogen-like character in the proteinase. This is evident in variants of meizothrombin, an intermediate of prothrombin activation that contains the propiece covalently attached. This phenomenon is also independent of the Gla domain. Thus, the presence of K1 in covalent linkage with K2 in the propiece governs the ability of K2 to bind the (pro)catalytic domain in favor of zymogen, thereby enforcing zymogen-like character in the proteinase. PMID:27013660

  8. Study of mechanism of cleavage fracture at low temperature

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wang, G. Z.

    1992-02-01

    In this investigation, a series of crack opening displacement (COD) tests were carried out at several low temperatures for C-Mn weld steel. Some of the specimens were loaded until fracture, and the mechanical properties and microscopic parameters on fracture surfaces were measured. Other specimens were unloaded before fracture at different applied loads. The distributions of the elongated cavities and the cleavage microcracks ahead of fatigue crack tips were observed in detail. Based on the experimental results, the combined criterion of a critical strain ɛ p ≥ ɛc) for initiating a crack nucleus, a critical stress triaxiality (σ m/σ ≥ tc) for preventing it from blunting, and a critical normal stress (σ yy/σf) for the cleavage extension was proposed again, and the critical values of ɛp and σm/-σ for the C-Mn weld steel were measured. The reason why the minimum COD value could not be zero is explained. The mechanism of generation of the lower limit COD value on the lower shelf of the toughness transition curve is proposed.

  9. Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage

    PubMed Central

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  10. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis

    PubMed Central

    Marcoux, Julien; Mangione, P Patrizia; Porcari, Riccardo; Degiacomi, Matteo T; Verona, Guglielmo; Taylor, Graham W; Giorgetti, Sofia; Raimondi, Sara; Sanglier-Cianférani, Sarah; Benesch, Justin LP; Cecconi, Ciro; Naqvi, Mohsin M; Gillmore, Julian D; Hawkins, Philip N; Stoppini, Monica; Robinson, Carol V; Pepys, Mark B; Bellotti, Vittorio

    2015-01-01

    The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. PMID:26286619

  11. An invasive cleavage assay for direct quantitation of specific RNAs.

    PubMed

    Eis, P S; Olson, M C; Takova, T; Curtis, M L; Olson, S M; Vener, T I; Ip, H S; Vedvik, K L; Bartholomay, C T; Allawi, H T; Ma, W P; Hall, J G; Morin, M D; Rushmore, T H; Lyamichev, V I; Kwiatkowski, R W

    2001-07-01

    RNA quantitation is becoming increasingly important in basic, pharmaceutical, and clinical research. For example, quantitation of viral RNAs can predict disease progression and therapeutic efficacy. Likewise, gene expression analysis of diseased versus normal, or untreated versus treated, tissue can identify relevant biological responses or assess the effects of pharmacological agents. As the focus of the Human Genome Project moves toward gene expression analysis, the field will require a flexible RNA analysis technology that can quantitatively monitor multiple forms of alternatively transcribed and/or processed RNAs (refs 3,4). We have applied the principles of invasive cleavage and engineered an improved 5'-nuclease to develop an isothermal, fluorescence resonance energy transfer (FRET)-based signal amplification method for detecting RNA in both total RNA and cell lysate samples. This detection format, termed the RNA invasive cleavage assay, obviates the need for target amplification or additional enzymatic signal enhancement. In this report, we describe the assay and present data demonstrating its capabilities for sensitive (<100 copies per reaction), specific (discrimination of 95% homologous sequences, 1 in > or =20,000), and quantitative (1.2-fold changes in RNA levels) detection of unamplified RNA in both single- and biplex-reaction formats. PMID:11433281

  12. Improving the prospects of cleavage-based nanopore sequencing engines

    NASA Astrophysics Data System (ADS)

    Brady, Kyle T.; Reiner, Joseph E.

    2015-08-01

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  13. Surface energy of zinc. [Effective cleavage surface energy

    SciTech Connect

    Bilello, J.C.; Dew-Hughes, D.; Pucino, A.T.

    1981-01-01

    The influence of temperature and associated dislocation microstructure on the energetics of basal plane cleavage in zinc crystals has been investigated using the method of Hull, Beardmore and Valentine (HBV). A marked temperature dependence was observed in the zinc surface energy, over the range 77 to 298/sup 0/K, contrary to previous expectations. Plastic relaxation was associated with crack initiation at 77/sup 0/K, but not propagation, while at room temperature a plastic zone of 1200-1500 ..mu..m in depth was produced by crack extension. The surface energy could be estimated, independent of the usual Griffith analysis, by measuring the energy dissipation in a fully relaxed deformed zone associated with an explosively formed precursor crack. This method yielded surface energies of 0.066 to 0.079 J-m/sup -2/ which was in good agreement with previous work. It is demonstrated that the cleavage surface energy of zinc is well below the thermodynamic surface energy and that this discrepancy is not related to plastic deformation. 7 figures, 1 table.

  14. Site Specific Cleavage Mediated by MMPs Regulates Function of Agrin

    PubMed Central

    McFarlane, Ainsley; Xie, Irene; Overall, Christopher M.; Stetefeld, Jörg

    2012-01-01

    Background Agrin is the key inducer of postsynaptic differentiations at the neuromuscular junction. The multidomain heparan sulfate proteoglycan is mediating via its N-terminal segment the interaction with laminin, whereas the C-terminal portion is responsible for Dystroglycan binding and clustering of the Acetylcholine receptor. Matrix metalloproteinases (MMP) are known to play essential roles in matrix remodeling, degradation and regulation of extracellular signaling networks. Principal Findings Site-specific processing of Agrin provides key insight into regulatory effects of Matrix metalloproteinases (MMPs). Here, we present a detailed study of agrin processing by different MMPs together with a molecular understanding of binding and cleavage at both terminal fragments. The data suggest for a regulatory effect of MMP cleavage at particularly important functional sites of agrin. Cleave of agrin abolishes the agrin-laminin complex formation and the Acetylcholine receptor clustering at the neuromuscular junction. Conclusion/Significance Agrin is a target of specific MMP processing resulting in agrin subfragments with different regulatory activities. MMP processing is a powerful tool to regulate extracellular signaling networks. PMID:22984437

  15. TURBOLYTIK: a peptide cleavage program for personal computers.

    PubMed

    Pillay, T S

    1988-01-01

    A microcomputer program that simulates the cleavage of polypeptides by various chemical and enzymic means is described. The program is written in Turbo Basic, a new dialect of Basic, and is compiled to run on personal computers using the MS-DOS operating system. The program generates all the possible cleavage fragments that can arise when a protein of known primary structure is cleaved at susceptible sites. The output also provides the estimation of the molecular weights, the charge per molecule at a given pH and a prediction of the isoelectric point. The program is designed to facilitate the easy selection of suitable proteolytic methods in protein chemistry, identification of peptides on a peptide map generated by conventional means or in mass spectra obtained from mass spectrometry. The program will find use in laboratories attempting to define posttranslational covalent modifications on protein molecules or exclude frame-shift errors in the deductions of primary structures from cDNA clones. PMID:3410575

  16. Two orthogonal cleavages separate subunit RNAs in mouse ribosome biogenesis

    PubMed Central

    Wang, Minshi; Anikin, Leonid; Pestov, Dimitri G.

    2014-01-01

    Ribosome biogenesis is a dynamic multistep process, many features of which are still incompletely documented. Here, we show that changes in this pathway can be captured and annotated by means of a graphic set of pre-rRNA ratios, a technique we call Ratio Analysis of Multiple Precursors (RAMP). We find that knocking down a ribosome synthesis factor produces a characteristic RAMP profile that exhibits consistency across a range of depletion levels. This facilitates the inference of affected steps and simplifies comparative analysis. We applied RAMP to examine how endonucleolytic cleavages of the mouse pre-rRNA transcript in the internal transcribed spacer 1 (ITS1) are affected by depletion of factors required for maturation of the small ribosomal subunit (Rcl1, Fcf1/Utp24, Utp23) and the large subunit (Pes1, Nog1). The data suggest that completion of early maturation in a subunit triggers its release from the common pre-rRNA transcript by stimulating cleavage at the proximal site in ITS1. We also find that splitting of pre-rRNA in the 3′ region of ITS1 is prevalent in adult mouse tissues and quiescent cells, as it is in human cells. We propose a model for subunit separation during mammalian ribosome synthesis and discuss its implications for understanding pre-rRNA processing pathways. PMID:25190460

  17. Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice

    PubMed Central

    Pericolini, Eva; Gabrielli, Elena; Amacker, Mario; Kasper, Lydia; Roselletti, Elena; Luciano, Eugenio; Sabbatini, Samuele; Kaeser, Matthias; Moser, Christian; Hube, Bernhard; Vecchiarelli, Anna

    2015-01-01

    ABSTRACT Vaginal inflammation (vaginitis) is the most common disease caused by the human-pathogenic fungus Candida albicans. Secretory aspartyl proteinases (Sap) are major virulence traits of C. albicans that have been suggested to play a role in vaginitis. To dissect the mechanisms by which Sap play this role, Sap2, a dominantly expressed member of the Sap family and a putative constituent of an anti-Candida vaccine, was used. Injection of full-length Sap2 into the mouse vagina caused local neutrophil influx and accumulation of the inflammasome-dependent interleukin-1β (IL-1β) but not of inflammasome-independent tumor necrosis factor alpha. Sap2 could be replaced by other Sap, while no inflammation was induced by the vaccine antigen, the N-terminal-truncated, enzymatically inactive tSap2. Anti-Sap2 antibodies, in particular Fab from a human combinatorial antibody library, inhibited or abolished the inflammatory response, provided the antibodies were able, like the Sap inhibitor Pepstatin A, to inhibit Sap enzyme activity. The same antibodies and Pepstatin A also inhibited neutrophil influx and cytokine production stimulated by C. albicans intravaginal injection, and a mutant strain lacking SAP1, SAP2, and SAP3 was unable to cause vaginal inflammation. Sap2 induced expression of activated caspase-1 in murine and human vaginal epithelial cells. Caspase-1 inhibition downregulated IL-1β and IL-18 production by vaginal epithelial cells, and blockade of the IL-1β receptor strongly reduced neutrophil influx. Overall, the data suggest that some Sap, particularly Sap2, are proinflammatory proteins in vivo and can mediate the inflammasome-dependent, acute inflammatory response of vaginal epithelial cells to C. albicans. These findings support the notion that vaccine-induced or passively administered anti-Sap antibodies could contribute to control vaginitis. PMID:26037125

  18. Conformational changes of ovine α-1-proteinase inhibitor: The influence of heparin binding

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek Kumar; Gowda, Lalitha R.

    2008-11-01

    α-1-Proteinase inhibitor (α-1-PI), the archetypal serpin causes rapid, irreversible stoichiometric inhibition of redundant circulating serine proteases and is associated with emphysema, inflammatory response and maintenance of protease-inhibitor equilibrium in vascular and peri-vascular spaces. A homogenous preparation of heparin octasaccharide binds to ovine and human α-1-PI and enhances their protease inhibitory activity phenomenally. Size-exclusion chromatography and dynamic light scattering experiments reveal that ovine α-1-PI undergoes a decrease in the Stokes' radius upon heparin binding. A strong binding; characterizes this α-1-PI-heparin interaction as revealed by the binding constant ( Kα) 1.98 ± 0.2 × 10 -6 M and 2.1 ± 0.2 × 10 -6 M determined by fluorescence spectroscopy and equilibrium dialysis, respectively. The stoichiometry of heparin binding to ovine α-1-PI was 1.1 ± 0.2:1. The Stern-Volmer constants ( Ksv) for heparin activated ovine and human α-1-PI were found to be 5.13 × 10 -6 M and 5.67 × 10 -6 M, respectively, significantly higher than the native inhibitors. FTIR and CD spectroscopy project the systematic structural reorientations that α-1-PI undergoes upon heparin binding characterized by a decrease in α-helical content and a concomitant increase in β-turn and random coil elements. It is likely that these conformational changes result in the movement of the α-1-PI reactive site loop into an extended structure that is better poised to combat the cognate protease and accelerate the inhibition.

  19. PRSS1 mutations and the proteinase/antiproteinase imbalance in the pathogenesis of pancreatic cancer.

    PubMed

    Yi, Qiang; Dong, Feng; Lin, Liqing; Liu, Qicai; Chen, Shu; Gao, Feng; He, Qingliang

    2016-05-01

    This study aimed to investigate the mutations in the serine protease 1 gene (PRSS1) and the imbalance between trypsin and α1-antitrypsin in patients with pancreatic cancer. Polymerase chain reaction (PCR) was performed to amplify the sequences of PRSS1 from 65 patients with pancreatic cancer and 260 healthy controls, direct sequencing was performed, and the clinical features were analyzed. In addition, enzyme-linked immunosorbent assay (ELISA) was employed to detect serum trypsin and α1-antitrypsin in pancreatic cancer patients and healthy controls in the same period. Mutations were found at the promoter and exon 3 of the PRSS1 in patients with pancreatic cancer. That is, five patients had c.410 C > T mutation causing p.Thr 137 Met, and three patients had c. -338 T > G mutation at the promoter of the PRSS1. In patients with PRSS1 mutations, serum trypsin was 34.5 ± 18.3 ng/mL, which was significantly higher than that in normal controls (10.65 ± 6.03 ng/mL) and other pancreatic cancer (28.61 ± 8.96 ng/mL). What is more, in pancreatic cancer patients, serum α1-antitrypsin was 1.69 ± 0.86 g/L, which was comparable to that in normal controls (1.55 ± 0.53 g/L), while the ratio of serum trypsin to α1-antitrypsin was 1.46-fold to normal controls. The results presented here have provided a greater insight into the PRSS1 mutations and proteinase-inhibitor interactions occurring in pancreatic cancer. PMID:26546433

  20. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

    PubMed Central

    Millet, Arnaud; Martin, Katherine R.; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A.; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-01-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  1. Evaluation of a combinatorial approach to prion inactivation using an oxidizing agent, SDS, and proteinase K

    PubMed Central

    2013-01-01

    Background Prions demonstrate an unusual resistance to methods effective at inactivating conventional microorganisms. This has resulted in a very tangible and difficult infection control challenge to the medical and veterinary communities, as well as animal agriculture and related industries. Currently accepted practices of harsh chemical treatments such as prolonged exposure to sodium hydroxide or sodium hypochlorite, or autoclaving are not suitable in many situations. Less caustic and more readily applicable treatments to contaminated environments are therefore desirable. We recently demonstrated that exposure of the RML scrapie agent to a commercial product containing sodium percarbonate (SPC-P) with or without sodium dodecyl sulfate (SDS) rendered PrPSc sensitive to proteinase K (PK), but did not eliminate infectivity. The current study was designed to evaluate the efficacy of a combinatorial approach to inactivating prions by exposing RML-positive brain homogenate to SPC-P and SDS followed by PK. Treated samples were evaluated for PrPSc-immunoreactivity by western blot, and residual infectivity by mouse bioassay. Results Treatment of infected brain homogenate with SPC-P and SDS followed by PK exposure resulted in a 4–5 log10 reduction in infectivity when bioassayed in tga20 mice. Conclusions This study demonstrates that exposure of the RML scrapie agent to SPC-P and SDS followed by PK markedly reduces, but does not eliminate infectivity. The results of this study encourage further investigation into whether consecutive or concomitant exposure to sodium percarbonate, SDS, and a protease may serve as a viable and non-caustic option for prion inactivation. PMID:23886483

  2. Differential expression of chemokines, chemokine receptors and proteinases by foreign body giant cells (FBGCs) and osteoclasts.

    PubMed

    Khan, Usman A; Hashimi, Saeed M; Khan, Shershah; Quan, Jingjing; Bakr, Mahmoud M; Forwood, Mark R; Morrison, Nigel M

    2014-07-01

    Osteoclasts and foreign body giant cells (FBGCs) are both derived from the fusion of macropahges. These cells are seen in close proximity during foreign body reactions, therefore it was assumed that they might interact with each other. The aim was to identify important genes that are expressed by osteoclasts and FBGCs which can be used to understand peri-implantitis and predict the relationship of these cells during foreign body reactions. Bone marrow macrophages (BMM) were treated with receptor activator of nuclear factor kappa B ligand (RANKL) to produce osteoclasts. Quantitative PCR (qPCR) was used to identify the genes that were expressed by osteoclasts and FBGCs compared to macrophage controls. TRAP staining was used to visualise the cells while gelatine zymography and western blots were used for protein expression. Tartrate-resistant acid phosphatase (TRAP), matrix metallo proteinase 9 (MMP9), nuclear factor of activated T cells 1 (NFATc1), cathepsin K (CTSK) and RANK were significantly lower in FBGCs compared to osteoclasts. Inflammation specific chemokines such as monocyte chemotactic protein (MCP1 also called CCL2), macrophage inflammatory protein 1 alpha (MIP1α), MIP1β and MIP1γ, and their receptors CCR1, CCR3 and CCR5, were highly expressed by FBGCs. FBGCs were negative for osteoclast specific markers (RANK, NFATc1, CTSK). FBGCs expressed chemokines such as CCL2, 3, 5 and 9 while osteoclasts expressed the receptors for these chemokines i.e. CCR1, 2 and 3. Our findings show that osteoclast specific genes are not expressed by FBGCs and that FBGCs interact with osteoclasts during foreign body reaction through chemokines. PMID:24500983

  3. A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14.

    PubMed

    Zhou, Junpei; Wu, Qian; Zhang, Rui; Mo, Minghe; Tang, Xianghua; Li, Junjun; Xu, Bo; Ding, Junmei; Lu, Qian; Huang, Zunxi

    2014-09-01

    A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52% amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55% of the maximum activity when assayed at 40-75 °C, 23% at 20 °C, 16% at 85 °C, and even 8% at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62% xylanase activity and stability at the concentration of 3-30% (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5-19.0, 15.3-19.0, 21.9-27.7, and 28.2-31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive. PMID:24728834

  4. Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential.

    PubMed

    Dantzger, Miriam; Vasconcelos, Ilka Maria; Scorsato, Valéria; Aparicio, Ricardo; Marangoni, Sergio; Macedo, Maria Lígia Rodrigues

    2015-10-01

    Herein described is the biochemical characterisation, including in vitro and in vivo assays, for a proteinase inhibitor purified from Clitoria fairchildiana seeds (CFPI). Purification was performed by hydrophobic interaction and gel filtration chromatography. Kinetic studies of the purified inhibitor showed a competitive-type inhibitory activity against bovine trypsin and chymotrypsin, with an inhibition stoichiometry of 1:1 for both enzymes. The inhibition constants against trypsin and chymotrypsin were 3.3 × 10(-10) and 1.5 × 10(-10)M, respectively, displaying a tight binding property. SDS-PAGE showed that CFPI has a single polypeptide chain with an apparent molecular mass of 15 kDa under non-reducing conditions. However, MALDI-TOF analysis demonstrated a molecular mass of 7.973 kDa, suggesting that CFPI is dimeric in solution. The N-terminal sequence of CFPI showed homology with members of the Bowman-Birk inhibitor family. CFPI remained stable to progressive heating for 30 min to each temperature range of 37 up to 100 °C and CD analysis exhibited no changes in spectra at 207 nm after heating at 90 °C and subsequent cooling. Moreover, CFPI was active over a wide pH range (2-10). In contrast, reduction with DTT resulted in a loss of inhibitory activity against trypsin and chymotrypsin. CFPI also exhibited significant inhibitory activity against larval midgut trypsin enzymes from Anagasta kuehniella (76%), Diatraea saccharalis (59%) and Heliothis virescens (49%). Its insecticidal properties were further analysed by bioassays and confirmed by negative impact on A. kuehniella development. PMID:26330217

  5. Caldolase, a chelator-insensitive extracellular serine proteinase from a Thermus spp.

    PubMed

    Saravani, G A; Cowan, D A; Daniel, R M; Morgan, H W

    1989-09-01

    An extracellular alkaline serine proteinase from Thermus strain ToK3 was isolated and purified to homogeneity by (NH4)2SO4 precipitation followed by ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex, affinity chromatography on N alpha-benzyloxycarbonyl-D-phenylalanyl-triethylenetetraminyl-Sepha rose 4B and gel-filtration chromatography on Sephadex G-75. The purified enzyme had a pI of 8.9 and an Mr determined by gel-permeation chromatography of 25,000. The specific activity was about 37,700 proteolytic units/mg with casein as substrate, and the pH optimum was 9.5. Proteolytic activity was inhibited by low concentrations of di-isopropyl phosphorofluoridate and phenylmethanesulphonyl fluoride, but was unaffected by EDTA, EGTA, o-phenanthroline, N-ethyl-5-phenylisoxazolium-3'-sulphonate, N alpha-p-tosyl-L-phenylalanylchloromethane, N alpha-p-tosyl-L-lysylchloromethane, trypsin inhibitors and pepstatin A. The enzyme contained approx. 10% carbohydrate and four disulphide bonds. No Ca2+, Zn2+ or free thiol groups were detected. It hydrolysed several native and dye-linked proteins and synthetic chromogenic peptides and esters. The enzyme was very thermostable (half-life values were 840 min at 80 degrees C, 45 min at 90 degrees C and 5 min at 100 degrees C). The enzyme was unstable at low ionic strength: after 60 min at 75 degrees C in 0.1 M-Tris/acetate buffer, pH 8, only 20% activity remained, compared with no loss in 0.1 M-Tris/acetate buffer, pH 8, containing 0.4 M-NaCl. PMID:2803259

  6. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers.

    PubMed

    Pringle, T D; Williams, S E; Lamb, B S; Johnson, D D; West, R L

    1997-11-01

    We used 69 steers of varying percentage Brahman (B) breeding (0% B, n = 11; 25% B, n = 13; 37% B, n = 10; 50% B, n = 12; 75% B, n = 12; 100% B, n = 11) to study the relationship between carcass traits, the calpain proteinase system, and aged meat tenderness in intermediate B crosses. Calpains and calpastatin activities were determined on fresh longissimus muscle samples using anion-exchange chromatography. The USDA yield and quality grade data (24 h) were collected for each carcass. Longissimus steaks were removed and aged for 5 or 14 d for determination of shear force and 5 d for sensory panel evaluation. Even though some yield grade factors were affected by the percentage of B breeding, USDA yield grades did not differ (P > .15) between breed types. Marbling score and USDA quality grade decreased linearly (P < .01) with increasing percentage of B breeding. Shear force after 5 and 14 d of aging was higher (P < .05) in the 100% B steers than in all other breed types, which were not significantly different. Sensory panel tenderness and connective tissue scores decreased linearly (P < .05) with increasing B breeding. A quadratic effect was also noted for tenderness and connective tissue scores; 37% B steers received the highest scores. A similar response was found in mu-calpain activities; the 37% B steers had the highest activities. Conversely, calpastatin activity increased linearly (P < .01) with increasing percentage B breeding. These data show strong linear relationships between calpastatin activity (positive), marbling score (negative), and percentage B breeding, suggesting a possible combined effect of these traits on aged tenderness of intermediate Brahman crosses. PMID:9374310

  7. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1.

    PubMed

    Citron, Bruce A; Ameenuddin, Syed; Uchida, K; Suo, William Z; SantaCruz, Karen; Festoff, Barry W

    2016-07-15

    Thrombin and membrane lipid peroxidation (MLP) have been implicated in various central nervous system (CNS) disorders from CNS trauma to stroke, Alzheimer's (AD) and Parkinson's (PD) diseases. Because thrombin also induces MLP in platelets and its involvement in neurodegenerative diseases we hypothesized that its deleterious effects might, in part, involve formation of MLP in neuronal cells. We previously showed that thrombin induced caspase-3 mediated apoptosis in motor neurons, via a proteinase-activated receptor (PAR1). We have now investigated thrombin's influence on the oxidative state of neurons leading to induction of MLP-protein adducts. Translational relevance of thrombin-induced MLP is supported by increased levels of 4-hydroxynonenal-protein adducts (HNEPA) in AD and PD brains. We now report for the first time that thrombin dose-dependently induces formation of HNEPA in NSC34 mouse motor neuron cells using anti-HNE and anti-acrolein monoclonal antibodies. The most prominent immunoreactive band, in SDS-PAGE, was at ∼54kDa. Membrane fractions displayed higher amounts of the protein-adduct than cytosolic fractions. Thrombin induced MLP was mediated, at least in part, through PAR1 since a PAR1 active peptide, PAR1AP, also elevated HNEPA levels. Of interest, glutamate and Fe2SO4 also increased the ∼54kDa HNEPA band in these cells but to a lesser extent. Taken together our results implicate the involvement of thrombin and MLP in neuronal cell loss observed in various CNS degenerative and traumatic pathologies. PMID:27138068

  8. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.

    PubMed

    Sheffield, William P; Bhakta, Varsha

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. PMID:26797521

  9. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis.

    PubMed

    Millet, Arnaud; Martin, Katherine R; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-11-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  10. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    PubMed

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants. PMID:24237606

  11. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors.

    PubMed Central

    Kashfi, K; Cook, G A

    1992-01-01

    Proteolysis of intact mitochondria by Nagarse (subtilisin BPN') and papain resulted in limited loss of activity of the outer-membrane carnitine palmitoyltransferase, but much greater loss of sensitivity to inhibition by malonyl-CoA. In contrast with a previous report [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382], we found that trypsin had no effect on malonyl-CoA sensitivity. Even when 80% of activity was destroyed by trypsin, there was no difference in the malonyl-CoA sensitivity of the enzyme remaining. Trypsin caused release of the intermembrane-space enzyme adenylate kinase, indicating loss of integrity of the mitochondrial outer membrane, whereas Nagarse and papain caused no release of that enzyme. Citrate synthase was not released by any of the three proteinases, indicating no damage to the mitochondrial inner membrane. When we examined the effects of proteolysis on the inhibition of carnitine palmitoyltransferase by a wide variety of inhibitors having different mechanisms of inhibition, we found differential proteolytic effects that were specific for those inhibitors (malonyl-CoA and hydroxyphenylglyoxylate) that have their inhibitory potencies diminished by changes in physiological state. Both of those inhibitors protected carnitine palmitoyltransferase from the effects of proteolysis, but did not inhibit the proteinases directly. Inhibition by two other inhibitors (DL-2-bromopalmitoyl-CoA and N-benzyladriamycin 14-valerate) was not altered by proteinase treatment, even when most of the enzyme activity had been destroyed. Inhibition by glyburide, which is minimally affected by physiological state, was affected only to a slight extent at the highest concentration of trypsin tested. Proteolysis by Nagarse appeared to produce loss of co-operativity in malonyl-CoA inhibition. The effects of proteolysis are discussed and compared with changes in Ki occurring with changing physiological states. PMID:1554374

  12. Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue.

    PubMed

    Creemers, L B; Jansen, I D; Docherty, A J; Reynolds, J J; Beertsen, W; Everts, V

    1998-04-01

    The degradation of soft connective tissue collagen is considered to depend on the activity of various proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases and cysteine proteinases. In the present study, we investigated the contribution of these enzymes to this process. Using a general inhibitor of MMPs (SC44463), collagen degradation was strongly inhibited, by about 40% after 24 h and up to 80% after 72 h of culturing. Blockage of cysteine proteinase activity (with leupeptin or E-64) reduced breakdown at these time intervals by 50% and 20%, respectively. Given the abundant presence of gelatinases--in particular gelatinase A (MMP-2)--in the tissue, the effect of an inhibitor selective for gelatinases (CT1166) was studied. Gelatinase inhibition resulted in a dose-dependent decrease of collagen breakdown up to 90% after 48 h. The ability of gelatinase A to degrade collagens was demonstrated by the induction of breakdown in devitalized explants by addition of activated gelatinase A, or by activation of endogenous enzyme with 4-aminophenylmercuric acetate. This latter effect was not found with plasmin, an activator of MMPs other than gelatinase A. Finally, the relevance of gelatinase A to the in vivo degradation of soft connective tissue collagen was implicated by the significant correlation found between its activity and the collagen turnover rates of four soft connective tissues (tooth pulp, periodontal ligament, molar gingiva and skin). We conclude that collagen degradation in soft connective tissue is mediated by MMPs and to a lesser extent by cysteine proteinases. Our data are the first to attach a key role to gelatinase A in this process. PMID:9628251

  13. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  14. Expression of serine proteinase P186 of Arthrobotrys oligospora and analysis of its nematode-degrading activity.

    PubMed

    Zhao, Hailong; Qiao, Jun; Meng, Qingling; Gong, Shasha; Chen, Cheng; Liu, Tianli; Tian, Lulu; Cai, Xuepeng; Luo, Jianxun; Chen, Chuangfu

    2015-12-01

    The nematode-trapping fungi possess a unique capability of predating and invading nematodes. As a representative nematode-trapping fungus, Arthrobotrys oligospora has been widely used to study the interactions between nematode-trapping fungi and their hosts. Serine proteinase is one of the important virulence factors during process of invasion of the nematode-trapping fungi into nematodes. In this study, using reverse transcription polymerase chain reaction, we amplified the gene sequence of serine proteinase 186 from A. oligospora, cloned it into pPIC9K vector and expressed it in the yeast Pichia pastoris. The expressed recombinant serine proteinase186 (reP186) was purified via Ni-affinity chromatography. The in vitro nematode-degrading activity of reP186 was analyzed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis revealed that reP186 with molecular weight of 33 kDa was successfully obtained. ReP186 was capable of degrading a series of protein substrates including casein, gelatin, bovine serum albumin, denatured collagen and nematode cortical layer. The reP186 exhibited the maximal activity at pH 8.0 and 55 °C and was highly sensitive to the inhibitor, phenylmethanesulfonylfluoride. Treatment of Caenorhabditis elegans and Haemonchus contortus with reP186 for 12, 24 and 36 h, respectively, resulted in 62, 88 and 100 % of killing rates for C. elegans, and 52, 65 and 84 % of killing rates for H. contortus, respectively, indicating a relatively strong nematode-degrading bioactivity of reP186. PMID:26419902

  15. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  16. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair.

    PubMed

    Georgy, S R; Pagel, C N; Ghasem-Zadeh, A; Zebaze, R M D; Pike, R N; Sims, N A; Mackie, E J

    2012-03-01

    Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2

  17. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. PMID:20069636

  18. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate.

    PubMed Central

    Botella, M A; Xu, Y; Prabha, T N; Zhao, Y; Narasimhan, M L; Wilson, K A; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-01-01

    Three cysteine proteinase inhibitor cDNA clones (pL1, pR1, and pN2) have been isolated from a soybean (Glycine max L. Merr.) embryo library. The proteins encoded by the clones are between 60 and 70% identical and contain the consensus QxVxG motif and W residue in the appropriate spatial context for interaction with the cysteine proteinase papain. L1, R1, and N2 mRNAs were differentially expressed in different organs of plants (juvenile and mature) and seedlings, although N2 mRNA was constitutive only in flowers. R1 and N2 transcripts were induced by wounding or methyl jasmonate (M-JA) treatment in local and systemic leaves coincident with increased papain inhibitory activity, indicating a role for R1 and N2 in plant defense. The L1 transcript was constitutively expressed in leaves and was induced slightly by M-JA treatment in roots. Unlike the chymotrypsin/trypsin proteinase inhibitor II gene (H. Peña-Cortés, J. Fisahn, L. Willmitzer [1995] Proc Natl Acad Sci USA 92: 4106-4113), expression of the soybean genes was only marginally induced by abscisic acid and only in certain tissues. Norbornadiene, a competitive inhibitor of ethylene binding, abolished the wounding or M-JA induction of R1 and N2 mRNAs but not the accumulation of the wound-inducible vspA transcript. Presumably, ethylene binding to its receptor is involved in the wound inducibility of R1 and N2 but not vspA mRNAs. Bacterial recombinant L1 and R1 proteins, expressed as glutathione S-transferase fusion proteins, exhibited substantial inhibitory activities against vicilin peptidohydrolase, the major thiol endopeptidase in mung bean seedlings. Recombinant R1 protein had much greater cysteine proteinase inhibitor activity than recombinant L1 protein, consistent with the wound inducibility of the R1 gene and its presumed role in plant defense. PMID:8938418

  19. Mass spectrometric and theoretical studies on dissociation of the Ssbnd S bond in the allicin: Homolytic cleavage vs heterolytic cleavage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    2012-08-01

    On the basis of the tandem mass spectrometry (ESI-MS/MS) technique and DFT calculations, an experimental and theoretical investigation has been conducted into the gas-phase dissociation of the S1sbnd S1' bond in the allicin as well as that of the Ssbnd C (S1sbnd C2, S1'sbnd C2') bond. Meanwhile, the influence of protonation, alkali metal ion and electron transfer on the dissociation of the S1sbnd S1' bond has been taken into account. ESI-MS/MS experiments and DFT calculations show that in the neutral allicin, [allicin + Li]+ and [allicin + Na]+, the S1sbnd S1' bond favors homolytic cleavage, while in the allicin radical cation and protonated allicin, the S1sbnd S1' bond prefers heterolytic cleavage. In addition, alkali metal ions can strengthen the S1sbnd S1' bond in the allicin, while protonation or the loss of an electron will weaken the S1sbnd S1' bond.

  20. RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1

    PubMed Central

    Siddiqui, Mohammad Adnan; Mukherjee, Sushovita; Manivannan, Praveen; Malathi, Krishnamurthy

    2015-01-01

    Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer. PMID:26263979