Meyer-Hermann, Michael
2008-01-01
Mathematical methods in Biology are of increasing relevance for understanding the control and the dynamics of biological systems with medical relevance. In particular, agent-based methods turn more and more important because of fast increasing computational power which makes even large systems accessible. An overview of different mathematical methods used in Theoretical Biology is provided and a novel agent-based method for cell mechanics based on Delaunay-triangulations and Voronoi-tessellations is explained in more detail: The Delaunay-Object-Dynamics method. It is claimed that the model combines physically realistic cell mechanics with a reasonable computational load. The power of the approach is illustrated with two examples, avascular tumor growth and genesis of lymphoid tissue in a cell-flow equilibrium. PMID:18023735
Blocking Delaunay triangulations
Aichholzer, Oswin; Fabila-Monroy, Ruy; Hackl, Thomas; van Kreveld, Marc; Pilz, Alexander; Ramos, Pedro; Vogtenhuber, Birgit
2013-01-01
Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of B∪W there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) 3n/2 white points are always sufficient to block a set of n black points, (ii) if B is in convex position, 5n/4 white points are always sufficient to block it, and (iii) at least n−1 white points are always necessary to block a set of n black points. PMID:23483043
Blocking Delaunay triangulations.
Aichholzer, Oswin; Fabila-Monroy, Ruy; Hackl, Thomas; van Kreveld, Marc; Pilz, Alexander; Ramos, Pedro; Vogtenhuber, Birgit
2013-02-01
Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of [Formula: see text] there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) [Formula: see text] white points are always sufficient to block a set of n black points, (ii) if B is in convex position, [Formula: see text] white points are always sufficient to block it, and (iii) at least [Formula: see text] white points are always necessary to block a set of n black points. PMID:23483043
Extending particle tracking capability with Delaunay triangulation.
Chen, Kejia; Anthony, Stephen M; Granick, Steve
2014-04-29
Particle tracking, the analysis of individual moving elements in time series of microscopic images, enables burgeoning new applications, but there is need to better resolve conformation and dynamics. Here we describe the advantages of Delaunay triangulation to extend the capabilities of particle tracking in three areas: (1) discriminating irregularly shaped objects, which allows one to track items other than point features; (2) combining time and space to better connect missing frames in trajectories; and (3) identifying shape backbone. To demonstrate the method, specific examples are given, involving analyzing the time-dependent molecular conformations of actin filaments and λ-DNA. The main limitation of this method, shared by all other clustering techniques, is the difficulty to separate objects when they are very close. This can be mitigated by inspecting locally to remove edges that are longer than their neighbors and also edges that link two objects, using methods described here, so that the combination of Delaunay triangulation with edge removal can be robustly applied to processing large data sets. As common software packages, both commercial and open source, can construct Delaunay triangulation on command, the methods described in this paper are both computationally efficient and easy to implement. PMID:24734998
Strategies for nonobtuse boundary Delaunay triangulations
Murphy, M. |; Gable, C.W.
1998-12-31
Delaunay Triangulations with nonobtuse triangles at the boundaries satisfy a minimal requirement for Control Volume meshes. They motivate this quality requirement, discuss it in context with others that have been proposed, and give point placement strategies that generate the fewest or close to the fewest number of Steiner points needed to satisfy it for a particular problem instance. The advantage is that this strategy places a number of Steiner points proportional to the combinatorial size of the input rather than the local feature size, resulting in far fewer points in many cases.
Coping with degeneracies in Delaunay triangulation
Beichl, I.; Sullivan, F.
1995-12-31
Degeneracy is a serious issue in geometry. In their original form, many geometric algorithms simply assume that there is no degeneracy. As a result, when these methods are used on data that is degenerate or nearly degenerate, they either fail to complete or else give nonsensical results. We will describe a new method that removes only those 3-d degeneracies that cause ambiguity in determining Delaunay tetrahedra and only those 3-d degeneracies that cause ambiguity in determining Delaunay triangles. The mathematical justification is based on classical results of real analysis. The proof identifies degeneracies with the polynomial derived from the determinants that express geometrical primitives. Our result is a probabilistic statement about the real numbers; with probability one, degeneracies are removed in real arithmetic. In floating-point arithmetic, detection of degeneracies is based on relative error criteria that we describe here.
Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation
NASA Astrophysics Data System (ADS)
Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito
2014-02-01
A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.
Alpha shape and Delaunay triangulation in studies of protein-related interactions.
Zhou, Weiqiang; Yan, Hong
2014-01-01
In recent years, more 3D protein structures have become available, which has made the analysis of large molecular structures much easier. There is a strong demand for geometric models for the study of protein-related interactions. Alpha shape and Delaunay triangulation are powerful tools to represent protein structures and have advantages in characterizing the surface curvature and atom contacts. This review presents state-of-the-art applications of alpha shape and Delaunay triangulation in the studies on protein-DNA, protein-protein, protein-ligand interactions and protein structure analysis. PMID:23193202
A mesh generator for tetrahedral elements using Delaunay triangulation
Yuan, J.S.; Fitzsimons, C.J. )
1993-03-01
A tetrahedral mesh generator has been developed. The generator is based on the Delaunay triangulation which is implemented by employing the insertion polyhedron algorithm. In this paper some new methods to deal with the problems associated with the three-dimensional Delaunay triangulation and the insertion polyhedron algorithm are presented: degeneracy, the crossing situation, identification of the internal elements and internal point generation. The generator works both for convex and non-convex domains, including those with high aspect-ratio subdomains. Some examples are given in this paper to illustrate the capability of the generator.
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-01-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing “bad” triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
Numerical conformal mapping using cross-ratios and Delaunay triangulation
Driscoll, T.A.; Vavasis, S.A.
1998-11-01
The authors propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT (for cross-ratios of the Delaunay triangulation), based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. They believe that CRDT solves all difficulties with crowding and global convergence, although these facts depend on conjectures that they have so far not been able to prove. They demonstrate convergence with computational experiments. The Riemann mapping has applications in two-dimensional potential theory and mesh generation. They demonstrate CRDT on problems in long, thin regions in which no other known algorithm can perform comparably.
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation.
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-12-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
Adaptive mesh generation for viscous flows using Delaunay triangulation
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1988-01-01
A method for generating an unstructured triangular mesh in two dimensions, suitable for computing high Reynolds number flows over arbitrary configurations is presented. The method is based on a Delaunay triangulation, which is performed in a locally stretched space, in order to obtain very high aspect ratio triangles in the boundary layer and the wake regions. It is shown how the method can be coupled with an unstructured Navier-Stokes solver to produce a solution adaptive mesh generation procedure for viscous flows.
Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Blake, Kenneth R.; Spragle, Gregory S.
1993-01-01
Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.
Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios; Antón Castro, Francesc; Mioc, Darka
2016-06-01
An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detected are invariant to image rotations, translations, scaling and also to changes in illumination, brightness and 3-dimensional viewpoint. Afterwards, each feature of the reference image is matched with one in the sensed image if, and only if, the distance between them multiplied by a threshold is shorter than the distances between the point and all the other points in the sensed image. Then, the matched features are used to compute the parameters of the homography that transforms the coordinate system of the sensed image to the coordinate system of the reference image. The Delaunay triangulations of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches.
Computing 2D constrained delaunay triangulation using the GPU.
Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng
2013-05-01
We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges. PMID:23492377
Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.
Pennisi, Andrea; Bloisi, Domenico D; Nardi, Daniele; Giampetruzzi, Anna Rita; Mondino, Chiara; Facchiano, Antonio
2016-09-01
Developing automatic diagnostic tools for the early detection of skin cancer lesions in dermoscopic images can help to reduce melanoma-induced mortality. Image segmentation is a key step in the automated skin lesion diagnosis pipeline. In this paper, a fast and fully-automatic algorithm for skin lesion segmentation in dermoscopic images is presented. Delaunay Triangulation is used to extract a binary mask of the lesion region, without the need of any training stage. A quantitative experimental evaluation has been conducted on a publicly available database, by taking into account six well-known state-of-the-art segmentation methods for comparison. The results of the experimental analysis demonstrate that the proposed approach is highly accurate when dealing with benign lesions, while the segmentation accuracy significantly decreases when melanoma images are processed. This behavior led us to consider geometrical and color features extracted from the binary masks generated by our algorithm for classification, achieving promising results for melanoma detection. PMID:27215953
Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation.
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2013-01-01
A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method. PMID:23580890
A DELAUNAY TRIANGULATION APPROACH FOR SEGMENTING CLUMPS OF NUCLEI
Wen, Quan; Chang, Hang; Parvin, Bahram
2009-05-07
Cell-based fluorescence imaging assays have the potential to generate massive amount of data, which requires detailed quantitative analysis. Often, as a result of fixation, labeled nuclei overlap and create a clump of cells. However, it is important to quantify phenotypic read out on a cell-by-cell basis. In this paper, we propose a novel method for decomposing clumps of nuclei using high-level geometric constraints that are derived from low-level features of maximum curvature computed along the contour of each clump. Points of maximum curvature are used as vertices for Delaunay triangulation (DT), which provides a setof edge hypotheses for decomposing a clump of nuclei. Each hypothesis is subsequently tested against a constraint satisfaction network for a near optimum decomposition. The proposed method is compared with other traditional techniques such as the watershed method with/without markers. The experimental results show that our approach can overcome the deficiencies of the traditional methods and is very effective in separating severely touching nuclei.
Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation
NASA Technical Reports Server (NTRS)
Driscoll, Tobin A.; Vavasis, Stephen A.
1996-01-01
We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.
Muecke, E.P.; Saias, I.; Zhu, B.
1996-05-01
This paper studies the point location problem in Delaunay triangulations without preprocessing and additional storage. The proposed procedure finds the query point simply by walking through the triangulation, after selecting a good starting point by random sampling. The analysis generalizes and extends a recent result of d = 2 dimensions by proving this procedure to take expected time close to O(n{sup 1/(d+1)}) for point location in Delaunay triangulations of n random points in d = 3 dimensions. Empirical results in both two and three dimensions show that this procedure is efficient in practice.
Rebay, S. )
1993-05-01
This work is devoted to the description of an efficient unstructured mesh generation method entirely based on the Delaunay triangulation. The distinctive characteristic of the proposed method is that point positions and connections are computed simultaneously. This result is achieved by taking advantage of the sequential way in which the Bowyer-Watson algorithm computes the Delaunay triangulation. Two methods are proposed which have great geometrical flexibility, in that they allow us to treat domains of arbitrary shape and topology and to generate arbitrarily nonuniform meshes. The methods are computationally efficient and are applicable both in two and three dimensions. 11 refs., 20 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Chen, Jun; Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Tang, Yipeng
2010-01-01
An enhanced dynamic Delaunay Triangulation-based (DT) path planning approach is proposed for mobile robots to plan and navigate a path successfully in the context of the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The Autonomous Challenge course requires the application of vision techniques since it involves path-based navigation in the presence of a tightly clustered obstacle field. Course artifacts such as switchbacks, ramps, dashed lane lines, trap etc. are present which could turn the robot around or cause it to exit the lane. The main contribution of this work is a navigation scheme based on dynamic Delaunay Triangulation (DDT) that is heuristically enhanced on the basis of a sense of general lane direction. The latter is computed through a "GPS (Global Positioning System) tail" vector obtained from the immediate path history of the robot. Using processed data from a LADAR, camera, compass and GPS unit, a composite local map containing both obstacles and lane line segments is built up and Delaunay Triangulation is continuously run to plan a path. This path is heuristically corrected, when necessary, by taking into account the "GPS tail" . With the enhancement of the Delaunay Triangulation by using the "GPS tail", goal selection is successfully achieved in a majority of situations. The robot appears to follow a very stable path while navigating through switchbacks and dashed lane line situations. The proposed enhanced path planning and GPS tail technique has been successfully demonstrated in a Player/Stage simulation environment. In addition, tests on an actual course are very promising and reveal the potential for stable forward navigation.
Alán, Lukáš; Špaček, Tomáš; Ježek, Petr
2016-07-01
Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication. PMID:26846371
Selecting the aspect ratio of a scatter plot based on its delaunay triangulation.
Fink, Martin; Haunert, Jan-Henrik; Spoerhase, Joachim; Wolff, Alexander
2013-12-01
Scatter plots are diagrams that visualize two-dimensional data as sets of points in the plane. They allow users to detect correlations and clusters in the data. Whether or not a user can accomplish these tasks highly depends on the aspect ratio selected for the plot, i.e., the ratio between the horizontal and the vertical extent of the diagram. We argue that an aspect ratio is good if the Delaunay triangulation of the scatter plot at this aspect ratio has some nice geometric property, e.g., a large minimum angle or a small total edge length. More precisely, we consider the following optimization problem. Given a set Q of points in the plane, find a scale factor s such that scaling the x-coordinates of the points in Q by s and the y-coordinates by 1=s yields a point set P(s) that optimizes a property of the Delaunay triangulation of P(s), over all choices of s. We present an algorithm that solves this problem efficiently and demonstrate its usefulness on real-world instances. Moreover, we discuss an empirical test in which we asked 64 participants to choose the aspect ratios of 18 scatter plots. We tested six different quality measures that our algorithm can optimize. In conclusion, minimizing the total edge length and minimizing what we call the 'uncompactness' of the triangles of the Delaunay triangulation yielded the aspect ratios that were most similar to those chosen by the participants in the test. PMID:24051799
Saena, S.; Bhatt, P.C.P.; Prasad, V.C. )
1990-03-01
In this paper, a parallel algorithm for two- and three-dimensional Delaunay triangulation on an orthogonal tree network is described. The worst case time complexity of this algorithm is O(log {sup 2} N) in two dimensions and O(m {sup 1/2} log N) in three dimensions with N input points and m as the number of tetrahedra in tiangulation. The AT {sup 2} VLSI complexity on Thompson's logarithmic delay model is O(N {sup 2} log {sup 6} N) in two dimensions and O(m {sup 2} N log {sup 4} N) in three dimensions.
Percolation thresholds on two-dimensional Voronoi networks and Delaunay triangulations.
Becker, Adam M; Ziff, Robert M
2009-10-01
The site percolation threshold for the random Voronoi network is determined numerically, with the result pc=0.714 10+/-0.000,02 , using Monte Carlo simulation on periodic systems of up to 40,000 sites. The result is very close to the recent theoretical estimate pc approximately 0.7151 of Neher For the bond threshold on the Voronoi network, we find pc=0.666, 931+/-0.000,005 implying that, for its dual, the Delaunay triangulation pc=0.333 069+/-0.000 005 . These results rule out the conjecture by Hsu and Huang that the bond thresholds are 2/3 and 1/3, respectively, but support the conjecture of Wierman that, for fully triangulated lattices other than the regular triangular lattice, the bond threshold is less than 2 sin pi/18 approximately 0.3473 . PMID:19905267
DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions
NASA Astrophysics Data System (ADS)
Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun
2016-07-01
We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.
Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation ☆
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-01-01
A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method. PMID:23580890
Delaunay Triangulation as a New Coverage Measurement Method in Wireless Sensor Network
Chizari, Hassan; Hosseini, Majid; Poston, Timothy; Razak, Shukor Abd; Abdullah, Abdul Hanan
2011-01-01
Sensing and communication coverage are among the most important trade-offs in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage is vital in scheduling, target tracking and redeployment phases, as well as providing communication coverage. Some methods measure the coverage as a percentage value, but detailed information has been missing. Two scenarios with equal coverage percentage may not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage measurement method using Delaunay Triangulation (DT). This can provide the value for all coverage measurement tools. Moreover, it categorizes sensors as ‘fat’, ‘healthy’ or ‘thin’ to show the dense, optimal and scattered areas. It can also yield the largest empty area of sensors in the field. Simulation results show that the proposed DT method can achieve accurate coverage information, and provides many tools to compare QoC between different scenarios. PMID:22163792
Delaunay triangulation as a new coverage measurement method in wireless sensor network.
Chizari, Hassan; Hosseini, Majid; Poston, Timothy; Razak, Shukor Abd; Abdullah, Abdul Hanan
2011-01-01
Sensing and communication coverage are among the most important trade-offs in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage is vital in scheduling, target tracking and redeployment phases, as well as providing communication coverage. Some methods measure the coverage as a percentage value, but detailed information has been missing. Two scenarios with equal coverage percentage may not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage measurement method using Delaunay Triangulation (DT). This can provide the value for all coverage measurement tools. Moreover, it categorizes sensors as 'fat', 'healthy' or 'thin' to show the dense, optimal and scattered areas. It can also yield the largest empty area of sensors in the field. Simulation results show that the proposed DT method can achieve accurate coverage information, and provides many tools to compare QoC between different scenarios. PMID:22163792
A data-parallel algorithm for three-dimensional Delaunay triangulation and its implementation
Teng, Y.A.; Sullivan, F.; Beichl, I.; Puppo, E.
1993-12-31
In this paper, the authors present a parallel algorithm for constructing the Delaunay triangulation of a set of vertices in three-dimensional space. The algorithm achieves a high degree of parallelism by starting the construction from every vertex and expanding over all open faces thereafter. In the expansion of open faces, the search is made faster by using a bucketing technique. The algorithm is designed under a data-parallel paradigm. It uses segmented list structures and virtual processing for load-balancing. As a result, the algorithm achieves a fast running time and good scalability over a wide range of problem sizes and machine sizes. They also incorporate a topological check to eliminate inconsistencies due to degeneracies and numerical error. The algorithm is implemented on Connection Machines CM-2 and CM-5, and experimental results are presented.
NASA Astrophysics Data System (ADS)
Liu, Shuang; Hu, Xiangyun; Xi, Yufei; Liu, Tianyou
2015-03-01
The regular grid discretization is prevalent in the inverse modeling for gravity and magnetic data. However, this subdivision strategy performs lower precision to represent the rugged observation surface. To deal with this problem, we evaluate a non-structured discretization method in which the subsurface with rolling terrain is divided into numbers of Delaunay triangular cells and each mesh has the uniform physical property distributions. The gravity and magnetic anomalies of a complex-shaped anomalous body are represented as the summaries of the single anomaly produced by each triangle field source. When inverting for the potential field data, we specify a minimization objective function composed of data constraints and then use the preconditioned conjugate gradient algorithm to iteratively solve the matrix minimization equations, where the preconditioner is determined by the distances between triangular cells and surface observers. We test our method using synthetic data; all tests return favorable results. In the case studies involving the gravity and magnetic anomalies of the Mengku and Pobei deposits in Xinjiang, northwest China, the inferred magnetite orebodies and ultrabasic rocks distributions are verified by the additional drilling and geological information. The discretization of constrained Delaunay triangulation provides an useful approach of computing and inverting the potential field data on the situations of undulate topography and complicated objects.
Face transformation with harmonic models by the finite-volume method with delaunay triangulation.
Li, Zi-Cai; Chiang, John Y; Suen, Ching Y
2010-12-01
To carry out face transformation, this paper presents new numerical algorithms, which consist of two parts, namely, the harmonic models for changes of face characteristics and the splitting techniques for grayness transition. The main method in this paper is a combination of the finite-volume method (FVM) with Delaunay triangulation to solve the Laplace equations in the harmonic transformation of face images. The advantages of the FVM with Delaunay triangulation are given as follows: 1) easy to formulate the linear algebraic equations; 2) good in retaining the pertinent geometric and physical need; and 3) less central processing unit time needed. Numerical and graphical experiments have been conducted for the face transformation from a female (woman) to a male (man), and vice versa. The computed sequential errors are O(N⁻³/²), where N² is the division number of a pixel into subpixels. These computed errors coincide with the analysis on the splitting-shooting method (SSM) with piecewise constant interpolation in the previous paper of Li and Bai. In computation, the average absolute errors of restored pixel grayness can be smaller than 2 out of 256 grayness levels. The FVM is as simple as the finite-difference method (FDM) and as flexible as the finite-element method (FEM). Hence, the FVM is particularly useful when dealing with large face images with a huge number of pixels in shape distortion. The numerical transformation of face images in this paper can be used not only in pattern recognition but also in resampling, image morphing, and computer animation. PMID:20363682
NASA Astrophysics Data System (ADS)
Liu, Y.; Guo, Q.; Sun, Y.
2014-04-01
In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.
3D Laser Triangulation for Plant Phenotyping in Challenging Environments
Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto
2015-01-01
To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution. PMID:26066990
Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis
NASA Astrophysics Data System (ADS)
Mah, J.; Claire, S.; Steve, M.
2009-05-01
Laser imaging has recently been identified as a potential tool for rock mass characterization. This contribution focuses on the application of triangulation based, short-range laser imaging to determine fracture orientation and surface texture. This technology measures the distance to the target by triangulating the projected and reflected laser beams, and also records the reflection intensity. In this study, we acquired 3D laser images of rock faces using the Laser Camera System (LCS), a portable instrument developed by Neptec Design Group (Ottawa, Canada). The LCS uses an infrared laser beam and is immune to the lighting conditions. The maximum image resolution is 1024 x 1024 volumetric image elements. Depth resolution is 0.5 mm at 5 m. An above ground field trial was conducted at a blocky road cut with well defined joint sets (Kingston, Ontario). An underground field trial was conducted at the Inco 175 Ore body (Sudbury, Ontario) where images were acquired in the dark and the joint set features were more subtle. At each site, from a distance of 3 m away from the rock face, a grid of six images (approximately 1.6 m by 1.6 m) was acquired at maximum resolution with 20% overlap between adjacent images. This corresponds to a density of 40 image elements per square centimeter. Polyworks, a high density 3D visualization software tool, was used to align and merge the images into a single digital triangular mesh. The conventional method of determining fracture orientations is by manual measurement using a compass. In order to be accepted as a substitute for this method, the LCS should be capable of performing at least to the capabilities of manual measurements. To compare fracture orientation estimates derived from the 3D laser images to manual measurements, 160 inclinometer readings were taken at the above ground site. Three prominent joint sets (strike/dip: 236/09, 321/89, 325/01) were identified by plotting the joint poles on a stereonet. Underground, two main joint
NASA Astrophysics Data System (ADS)
Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong
2016-05-01
Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.
NASA Astrophysics Data System (ADS)
Wu, Huayi; Guan, Xuefeng; Gong, Jianya
2011-09-01
This paper presents a robust parallel Delaunay triangulation algorithm called ParaStream for processing billions of points from nonoverlapped block LiDAR files. The algorithm targets ubiquitous multicore architectures. ParaStream integrates streaming computation with a traditional divide-and-conquer scheme, in which additional erase steps are implemented to reduce the runtime memory footprint. Furthermore, a kd-tree-based dynamic schedule strategy is also proposed to distribute triangulation and merging work onto the processor cores for improved load balance. ParaStream exploits most of the computing power of multicore platforms through parallel computing, demonstrating qualities of high data throughput as well as a low memory footprint. Experiments on a 2-Way-Quad-Core Intel Xeon platform show that ParaStream can triangulate approximately one billion LiDAR points (16.4 GB) in about 16 min with only 600 MB physical memory. The total speedup (including I/O time) is about 6.62 with 8 concurrent threads.
Hex-dominant mesh generation using 3D constrained triangulation
OWEN,STEVEN J.
2000-05-30
A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.
Wan, Min; Lim, Calvin; Zhang, Junmei; Su, Yi; Yeo, Si Yong; Wang, Desheng; Tan, Ru San; Zhong, Liang
2013-01-01
This study proposes a novel method to reconstruct the left cardiac structure from contours. Given the contours representing left ventricle (LV), left atrium (LA), and aorta (AO), re-orientation, contour matching, extrapolation, and interpolation are performed sequentially. The processed data are then reconstructed via a variational method. The weighted minimal surface model is revised to handle the multi-phase cases, which happens at the LV-LA-AO junction. A Delaunay-based tetrahedral mesh is generated to discretize the domain while the max-flow/min-cut algorithm is utilized as the minimization tool. The reconstructed model including LV, LA, and AO structure is extracted from the mesh and post-processed further. Numerical examples show the robustness and effectiveness of the proposed method. PMID:24110352
Calibration Methods for a 3D Triangulation Based Camera
NASA Astrophysics Data System (ADS)
Schulz, Ulrike; Böhnke, Kay
A sensor in a camera takes a gray level image (1536 x 512 pixels), which is reflected by a reference body. The reference body is illuminated by a linear laser line. This gray level image can be used for a 3D calibration. The following paper describes how a calibration program calculates the calibration factors. The calibration factors serve to determine the size of an unknown reference body.
Häfner, M.; Liedlgruber, M.; Uhl, A.; Vécsei, A.; Wrba, F.
2012-01-01
In this work we propose a method to extract shape-based features from endoscopic images for an automated classification of colonic polyps. This method is based on the density of pits as used in the pit pattern classification scheme which is commonly used for the classification of colonic polyps. For the detection of pits we employ a noise-robust variant of the LBP operator. To be able to be robust against local texture variations we extend this operator by an adaptive thresholding. Based on the detected pit candidates we compute a Delaunay triangulation and use the edge lengths of the resulting triangles to construct histograms. These are then used in conjunction with the k-NN classifier to classify images. We show that, compared to a previously developed method, we are not only able to almost always get higher classification results in our application scenario, but that the proposed method is also able to significantly outperform the previously developed method in terms of the computational demand. PMID:22325257
Häfner, M; Liedlgruber, M; Uhl, A; Vécsei, A; Wrba, F
2012-09-01
In this work we propose a method to extract shape-based features from endoscopic images for an automated classification of colonic polyps. This method is based on the density of pits as used in the pit pattern classification scheme which is commonly used for the classification of colonic polyps. For the detection of pits we employ a noise-robust variant of the LBP operator. To be able to be robust against local texture variations we extend this operator by an adaptive thresholding. Based on the detected pit candidates we compute a Delaunay triangulation and use the edge lengths of the resulting triangles to construct histograms. These are then used in conjunction with the k-NN classifier to classify images. We show that, compared to a previously developed method, we are not only able to almost always get higher classification results in our application scenario, but that the proposed method is also able to significantly outperform the previously developed method in terms of the computational demand. PMID:22325257
High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation
Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn
2014-11-14
Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.
Performance Analysis of a Low-Cost Triangulation-Based 3d Camera: Microsoft Kinect System
NASA Astrophysics Data System (ADS)
. K. Chow, J. C.; Ang, K. D.; Lichti, D. D.; Teskey, W. F.
2012-07-01
Recent technological advancements have made active imaging sensors popular for 3D modelling and motion tracking. The 3D coordinates of signalised targets are traditionally estimated by matching conjugate points in overlapping images. Current 3D cameras can acquire point clouds at video frame rates from a single exposure station. In the area of 3D cameras, Microsoft and PrimeSense have collaborated and developed an active 3D camera based on the triangulation principle, known as the Kinect system. This off-the-shelf system costs less than 150 USD and has drawn a lot of attention from the robotics, computer vision, and photogrammetry disciplines. In this paper, the prospect of using the Kinect system for precise engineering applications was evaluated. The geometric quality of the Kinect system as a function of the scene (i.e. variation of depth, ambient light conditions, incidence angle, and object reflectivity) and the sensor (i.e. warm-up time and distance averaging) were analysed quantitatively. This system's potential in human body measurements was tested against a laser scanner and 3D range camera. A new calibration model for simultaneously determining the exterior orientation parameters, interior orientation parameters, boresight angles, leverarm, and object space features parameters was developed and the effectiveness of this calibration approach was explored.
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo.
Lin, Ching-Wei; Bachilo, Sergei M; Vu, Michael; Beckingham, Kathleen M; Bruce Weisman, R
2016-05-21
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions. PMID:27140495
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo
NASA Astrophysics Data System (ADS)
Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.
2016-05-01
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and
Improved EEG source localization employing 3D sensing by "Flying Triangulation"
NASA Astrophysics Data System (ADS)
Ettl, Svenja; Rampp, Stefan; Fouladi-Movahed, Sarah; Dalal, Sarang S.; Willomitzer, Florian; Arold, Oliver; Stefan, Hermann; Häusler, Gerd
2013-04-01
With electroencephalography (EEG), a person's brain activity can be monitored over time and sources of activity localized. With this information, brain regions showing pathological activity, such as epileptic spikes, can be delineated. In cases of severe drug-resistant epilepsy, surgical resection of these brain regions may be the only treatment option. This requires a precise localization of the responsible seizure generators. They can be reconstructed from EEG data when the electrode positions are known. The standard method employs a "digitization pen" and has severe drawbacks: It is time consuming, the result is user-dependent, and the patient has to hold still. We present a novel method which overcomes these drawbacks. It is based on the optical "Flying Triangulation" (FlyTri) sensor which allows a motion-robust acquisition of precise 3D data. To compare the two methods, the electrode positions were determined with each method for a real-sized head model with EEG electrodes and their deviation to the ground-truth data calculated. The standard deviation for the current method was 3.39 mm while it was 0.98 mm for the new method. The influence of these results on the final EEG source localization was investigated by simulating EEG data. The digitization pen result deviates substantially from the true source location and time series. In contrast, the FlyTri result agrees with the original information. Our findings suggest that FlyTri might become a valuable tool in the field of medical brain research, because of its improved precision and contactless handling. Future applications might include co-registration of multimodal information.
NASA Astrophysics Data System (ADS)
Willomitzer, Florian; Ettl, Svenja; Arold, Oliver; Häusler, Gerd
2013-05-01
The three-dimensional shape acquisition of objects has become more and more important in the last years. Up to now, there are several well-established methods which already yield impressive results. However, even under quite common conditions like object movement or a complex shaping, most methods become unsatisfying. Thus, the 3D shape acquisition is still a difficult and non-trivial task. We present our measurement principle "Flying Triangulation" which enables a motion-robust 3D acquisition of complex-shaped object surfaces by a freely movable handheld sensor. Since "Flying Triangulation" is scalable, a whole sensor-zoo for different object sizes is presented. Concluding, an overview of current and future fields of investigation is given.
NASA Astrophysics Data System (ADS)
Vauhkonen, J.
2015-03-01
Reconstruction of three-dimensional (3D) forest canopy is described and quantified using airborne laser scanning (ALS) data with densities of 0.6-0.8 points m-2 and field measurements aggregated at resolutions of 400-900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty) space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i) to optimize the degree of filtration with respect to the field measurements, and (ii) to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2) with the stem volume considered, both alone (R2=0.65) and together with other predictors (R2=0.78). When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.
NASA Astrophysics Data System (ADS)
Tajbakhsh, Touraj
2010-02-01
A basic concern of computer graphic is the modeling and realistic representation of three-dimensional objects. In this paper we present our reconstruction framework which determines a polygonal surface from a set of dense points such those typically obtained from laser scanners. We deploy the concept of adaptive blobs to achieve a first volumetric representation of the object. In the next step we estimate a coarse surface using the marching cubes method. We propose to deploy a depth-first search segmentation algorithm traversing a graph representation of the obtained polygonal mesh in order to identify all connected components. A so called supervised triangulation maps the coarse surfaces onto the dense point cloud. We optimize the mesh topology using edge exchange operations. For photo-realistic visualization of objects we finally synthesize optimal low-loss textures from available scene captures of different projections. We evaluate our framework on artificial data as well as real sensed data.
Ma, Yingliang; Saetzler, Kurt
2008-01-01
In this paper we describe a novel 3D subdivision strategy to extract the surface of binary image data. This iterative approach generates a series of surface meshes that capture different levels of detail of the underlying structure. At the highest level of detail, the resulting surface mesh generated by our approach uses only about 10% of the triangles in comparison to the marching cube algorithm (MC) even in settings were almost no image noise is present. Our approach also eliminates the so-called "staircase effect" which voxel based algorithms like the MC are likely to show, particularly if non-uniformly sampled images are processed. Finally, we show how the presented algorithm can be parallelized by subdividing 3D image space into rectilinear blocks of subimages. As the algorithm scales very well with an increasing number of processors in a multi-threaded setting, this approach is suited to process large image data sets of several gigabytes. Although the presented work is still computationally more expensive than simple voxel-based algorithms, it produces fewer surface triangles while capturing the same level of detail, is more robust towards image noise and eliminates the above-mentioned "staircase" effect in anisotropic settings. These properties make it particularly useful for biomedical applications, where these conditions are often encountered. PMID:17993710
Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge
2011-01-01
This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy. PMID:22346569
Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge
2011-01-01
This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly “coupled” as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a “zero” or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy. PMID:22346569
Wen, Z; Li, M; Li, Y; Guo, Y; Wang, K
2007-02-01
As an important transmembrane protein family in eukaryon, G-protein coupled receptors (GPCRs) play a significant role in cellular signal transduction and are important targets for drug design. However, it is very difficult to resolve their tertiary structure by X-ray crystallography. In this study, we have developed a Delaunay model, which constructs a series of simplexes with latent variables to classify the families of GPCRs and projects unknown sequences to principle component space (PC-space) to predict their topology. Computational results show that, for the classification of GPCRs, the method achieves the accuracy of 91.0 and 87.6% for Class A, more than 80% for the other three classes in differentiating GPCRs from non-GPCRs and 70% for discriminating between four major classes of GPCR, respectively. When recognizing the structure of GPCRs, all the N-terminals of sequences can be determined correctly. The maximum accuracy of predicting transmembrane segments is achieved in the 7th transmembrane segment of Rhodopsin, which is 99.4%, and the average error is 2.1 amino acids, which is the lowest in all of the segments prediction. This method could provide structural information of a novel GPCR as a tool for experiments and other algorithms of structure prediction of GPCRs. Academic users should send their request for the MATLAB program for classifying GPCRs and predicting the topology of them at liml@scu.edu.cn . PMID:16729188
Triangular framework mesh generation of 3D geological structure
NASA Astrophysics Data System (ADS)
Meng, Xianhai; Zhou, Kun; Li, Jigang; Yang, Qin
2013-03-01
The dynamic simulation of oil migration and accumulation is an important issue on the research of petroleum exploration, and it is a numerical simulation process with special requirement on the framework mesh of 3D geological models, which means that the mesh should have same geometry and topology relation near the intersected part of geological surfaces. In this paper, basing on the conforming Delaunay triangulation algorithm to construct mesh of individual geological stratum or fault, a novel link-Delaunay-triangulation method is presented to achieve the geometric and topological consistency in the intersected line between two surfaces, also with the analysis of termination of our algorithm. Finally, some examples of the geological framework mesh are provided and the experimental result proved that the algorithm's effectiveness in engineering practice.
Influence of different terrain-triangulations on a block-based landslide-model
NASA Astrophysics Data System (ADS)
Elsen, Katharina; Tinti, Stefano; Zaniboni, Filippo
2015-04-01
Influence of different surface-triangulations on a block-based landslide-model The present work is investigating the influence of different surface-triangulation approaches on the block-based landslide-model developed by Tinti and Bertolucci (2000). For planar (2D) surfaces as well as for objects in the 3D-space well-known algorithms like the Delaunay-triangulation are available (ensuring also special characteristics of the triangulation). This is however not that easy in the 2.5D-case -- needed for example in terrain-triangulations -- where a surface is specified by points z=f(x,y). Different methods with (partly) very different results like the 2D-Delaunay triangulations (using an orthogonal projection of all points on the (x,y)-plane, implemented e.g. in CGAL), three dimensional topographic terrain representation in an integrated TIN/TEN model (Friso Penninga, 2004) or triangulations based on contour lines. Another possibility is to create a regular planar grid (which has the advantage of being stored and accessed in a very simple and fast way) and projecting the points orthogonally on the reconstructed surface. The surface then is represented by those new points. This last method is currently used in our model and shall be compared now to other possible triangulations. Simulations are run for simple surfaces (e.g. given by a paraboloid) as well as on more realistic, complex surfaces and evaluated with respect to the arrival times, final velocities and final positions of the sliding mass.
Area and volume coherence for efficient visualization of 3D scalar functions
Max, N. California Univ., Davis, CA ); Hanrahan, P. ); Crawfis, R. )
1990-01-01
We present an algorithm for compositing a combination of density clouds and contour surfaces used to represent a scalar function on a 3-D volume. The volume is divided into convex polyhedra, at whose vertices the function is known, and the polyhedra are sorted in depth before compositing. For data given at scattered 3-D points, we show that this sorting can be done in O(n) time if we chose the tetrahedra in the Delaunay triangulation as the polyhedra. The integrals for cloud opacity and visible cloud intensity along a ray through a convex polyhedron are computed analytically, and this computation is coherent across the polyhedron's area. 33 refs.
Mesh generation from 3D multi-material images.
Boltcheva, Dobrina; Yvinec, Mariette; Boissonnat, Jean-Daniel
2009-01-01
The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations. PMID:20426123
Some properties of n-dimensional triangulations
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1985-01-01
A number of mathematical results relevant to the problem of constructing a triangulation, i.e., a simplicial tessellation, of the convex hull of an arbitrary finite set of points in n-space are described. The principal results achieved are: (1) a set of n+2 points in n-space may be triangulated in at most 2 different ways; (2) the sphere test defined in this report selects a preferred one of these two triangulations; (3) a set of parameters is defined that permits the characterization and enumeration of all sets of n+2 points in n-space that are significantly different from the point of view of their possible triangulation; (4) the local sphere test induces a global sphere test property for a triangulation; and (5) a triangulation satisfying the global sphere property is dual to the n-dimensional Dirichlet tesselation, i.e., it is a Delaunay triangulation.
3D reconstruction of tomographic images applied to largely spaced slices.
Traina, A J; Prado, A H; Bueno, J M
1997-12-01
This paper presents a full reconstruction process of magnetic resonance images. The first step is to bring the acquired data from the frequency domain, using a Fast Fourier Transform algorithm. A Tomographic Image Interpolation is then used to transform a sequence of tomographic slices in an isotropic volume data set, a process also called 3D Reconstruction. This work describes an automatic method whose interpolation stage is based on a previous matching stage using Delaunay Triangulation. The reconstruction approach uses an extrapolation procedure that permits appropriate treatment of the boundaries of the object under analysis. PMID:9555624
CAD Tools for Creating Space-filing 3D Escher Tiles
Howison, Mark; Sequin, Carlo H.
2009-04-10
We discuss the design and implementation of CAD tools for creating decorative solids that tile 3-space in a regular, isohedral manner. Starting with the simplest case of extruded 2D tilings, we describe geometric algorithms used for maintaining boundary representations of 3D tiles, including a Java implementation of an interactive constrained Delaunay triangulation library and a mesh-cutting algorithm used in layering extruded tiles to create more intricate designs. Finally, we demonstrate a CAD tool for creating 3D tilings that are derived from cubic lattices. The design process for these 3D tiles is more constrained, and hence more difficult, than in the 2D case, and it raises additional user interface issues.
The sinogram polygonizer for reconstructing 3D shapes.
Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa
2013-11-01
This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:24029910
The Sinogram Polygonizer for Reconstructing 3D Shapes.
Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa
2013-05-24
This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:23712999
Triangulation of cubic panorama for view synthesis.
Zhang, Chunxiao; Zhao, Yan; Wu, Falin
2011-08-01
An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs. PMID:21833101
Li, Fan; Chenoune, Yasmina; Ouenniche, Meriem; Blanc, Raphaël; Petit, Eric
2014-01-01
Diagnosis and computer-guided therapy of cerebral Arterio-Venous Malformations (AVM) require an accurate understanding of the cerebral vascular network both from structural and biomechanical point of view. We propose to obtain such information by analyzing three Dimensional Rotational Angiography (3DRA) images. In this paper, we describe a two-step process allowing 1) the 3D automatic segmentation of cerebral vessels from 3DRA images using a region-growing based algorithm and 2) the reconstruction of the segmented vessels using the 3D constrained Delaunay Triangulation method. The proposed algorithm was successfully applied to reconstruct cerebral blood vessels from ten datasets of 3DRA images. This software allows the neuroradiologist to separately analyze cerebral vessels for pre-operative interventions planning and therapeutic decision making. PMID:25571245
3D shape analysis for early diagnosis of malignant lung nodules.
El-Baz, Ayman; Nitzken, Matthew; Elnakib, Ahmed; Khalifa, Fahmi; Gimel'farb, Georgy; Falk, Robert; El-Ghar, Mohamed Abou
2011-01-01
An alternative method of diagnosing malignant lung nodules by their shape, rather than conventional growth rate, is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis that represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called Spherical Harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by a new prior visual appearance model; (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface; and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification into malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in a classification accuracy of 93.6%, showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer. PMID:22003697
3D shape analysis for early diagnosis of malignant lung nodules.
El-Bazl, Ayman; Nitzken, Matthew; Khalifa, Fahmi; Elnakib, Ahmed; Gimel'farb, Georgy; Falk, Robert; El-Ghar, Mohammed Abo
2011-01-01
An alternative method for diagnosing malignant lung nodules by their shape rather than conventional growth rate is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis, which represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called spherical harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by two probabilistic visual appearance models (the learned prior and the estimated current appearance one); (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface, and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification to distinguish malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in the 93.6% correct classification (for the 95% confidence interval), showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer. PMID:21761703
Lunar Ephemeris: Delaunay's Theory Revisited.
Deprit, A; Henrard, J; Rom, A
1970-06-26
Delaunay's reduced Hamiltonian of the main problem in lunar theory is checked against a new analytical theory based on Lie transforms. It is found to be correct up to order 9 with the exception of one error in addition at order 7. PMID:17759336
Melting of Temperature-Sensitive 3D Colloidal Crystals
NASA Astrophysics Data System (ADS)
Alsayed, Ahmed; Han, Yilong; Yodh, Arjun
2006-03-01
We employ thermally responsive monodisperse microgel colloidal spheres to study the melting mechanisms of colloidal crystals [1]. The particle diameter decreases with increasing temperature and leads to volume fraction changes that drive phase-transitions. We will describe observations of a variety of phenomena. Premelting, the localized loss of crystalline order near defects (e.g. grain boundaries) at volume fractions above the bulk melting transition, is directly observed by video microscopy, and is characterized by monitoring the first peak position of the particle pair correlation function. We find the position of the first peak shifts toward smaller particle separations at the onset of premelting. After Delaunay triangulation, mean square rotational and translational fluctuations of bonds were measured close to and away from defects. The behavior of all such quantities exhibits increased disorder near the defects. By locally heating the material within a crystal domain, we also studied the superheating and melting of a perfect 3D crystal. Finally, the introduction of weak attractions between spheres reveals free-floating 3D crystal `blobs' which can be made to melt and recrystallize by tuning the temperature. [1] A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, Science 309, 1207 (2005). This work was supported by grants from NSF (DMR-0505048 and MRSEC DMR05-20020) and NASA (NAG8-2172).
NASA Astrophysics Data System (ADS)
Mustapha, Hussein; Rouxel-Labbé, Mael; Abbas, Hicham
2013-10-01
Fractured reservoirs and aquifers are complex domains where discrete fractures are internal constraining boundaries. The Delaunay triangulation of a fractured medium generally does not conform to the fracture boundaries and recovering the fracture elements may violate the Delaunay empty-circle (2D) criterion, which may lead to a low-quality triangulation. This paper presents a new approach based on the combined Gabriel and Delaunay methods. A modified Gabriel condition of edge-empty-circle is introduced. In a first stage, the fracture edges violating the modified Gabriel criterion are released and then followed by a Delaunay triangulation with the rest of the fracture constraints. The released fracture edges are approximated by the edges of the Delaunay triangles in a postprocessing stage. The final representation of the fractures might be slightly different, but a very accurate solution is always maintained. The method has the capability to generate fine grids and to offer an accurate and good-quality grid. Numerical examples are presented to assess the efficiency of the proposed method.
Planimetric Martian triangulations
Arthur, D.W.G.; McMacken, D.K.
1977-01-01
Narrow-angle photographs, which have severe drawbacks for stereophotogrammetry, have advantages for simple plane triangulations. Rectified narrow-angle pictures corrected for map projection effects can be combined in the map plane in relatively accurate planimetric triangulations. Provided the strict precepts of least squares are not followed, these triangulations can incorporate considerable overdetermination without increase in the labor of solving the equations. These plane triangulations have been used successfully in the cartography of Mars and are illustrated here by a triangulation of the environs of the prime Martian landing site.
New approach to protein fold recognition based on Delaunay tessellation of protein structure
Zheng, W.; Cho, S.J.; Vaisman, I.I.; Tropsha, A.
1996-12-31
We propose new algorithms for sequence-structure compatibility (fold recognition) searches in multidimensional sequence-structure space. Individual amino acid residues in protein structures are represented by their C{sup {alpha}} atoms; thus each protein is described as a collection of points in three-dimensional space. Delaunay tessellation of a protein generates an aggregate of space-filling, irregular tetrahedra, or Delaunay simplices. Statistical analysis of quadruplet residue compositions of all Delaunay simplices in a representative dataset of protein structures leads to a novel four body contact residue potential expressed as log likelihood factor q. The q factors are calculated for native 20 letter amino acid alphabet and several reduced alphabets. Two sequence structure compatibility functions are computed as (i) the sum of q factors for all Delaunay simplices in a given protein, or (ii) 3D-1D Delaunay tessellation profiles where the individual residue profile value is calculated as the sum of q factors for all simplices that share this vertex residue. Both threading functions have been implemented in structure-recognizes-sequence and sequence-recognizes-structure protocols for protein fold recognition. We find that both profile and total score based threading functions can distinguish both the native fold from incorrect folds for a sequence, and the native sequence from non-native sequences for a fold. 25 refs., 4 figs., 1 tab.
A 3D visualization and guidance system for handheld optical imaging devices
NASA Astrophysics Data System (ADS)
Azar, Fred S.; de Roquemaurel, Benoit; Cerussi, Albert; Hajjioui, Nassim; Li, Ang; Tromberg, Bruce J.; Sauer, Frank
2007-03-01
We have developed a novel 3D visualization and guidance system for handheld optical imaging devices. In this paper, the system is applied to measurements of breast/cancerous tissue optical properties using a handheld diffuse optical spectroscopy (DOS) instrument. The combined guidance system/DOS instrument becomes particularly useful for monitoring neoadjuvant chemotherapy in breast cancer patients and for longitudinal studies where measurement reproducibility is critical. The system uses relatively inexpensive hardware components and comprises a 6 degrees-of-freedom (DOF) magnetic tracking device including a DC field generator, three sensors, and a PCI card running on a PC workstation. A custom-built virtual environment combined with a well-defined workflow provide the means for image-guided measurements, improved longitudinal studies of breast optical properties, 3D reconstruction of optical properties within the anatomical map, and serial data registration. The DOS instrument characterizes tissue function such as water, lipid and total hemoglobin concentration. The patient lies on her back at a 45-degrees angle. Each spectral measurement requires consistent contact with the skin, and lasts about 5-10 seconds. Therefore a limited number of positions may be studied. In a reference measurement session, the physician acquires surface points on the breast. A Delaunay-based triangulation algorithm is used to build the virtual breast surface from the acquired points. 3D locations of all DOS measurements are recorded. All subsequently acquired surfaces are automatically registered to the reference surface, thus allowing measurement reproducibility through image guidance using the reference measurements.
An Image-Based Technique for 3d Building Reconstruction Using Multi-View Uav Images
NASA Astrophysics Data System (ADS)
Alidoost, F.; Arefi, H.
2015-12-01
Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs) images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.
Octree-Based SIMD Strategy for Icp Registration and Alignment of 3d Point Clouds
NASA Astrophysics Data System (ADS)
Eggert, D.; Dalyot, S.
2012-07-01
Matching and fusion of 3D point clouds, such as close range laser scans, is important for creating an integrated 3D model data infrastructure. The Iterative Closest Point algorithm for alignment of point clouds is one of the most commonly used algorithms for matching of rigid bodies. Evidently, scans are acquired from different positions and might present different data characterization and accuracies, forcing complex data-handling issues. The growing demand for near real-time applications also introduces new computational requirements and constraints into such processes. This research proposes a methodology to solving the computational and processing complexities in the ICP algorithm by introducing specific performance enhancements to enable more efficient analysis and processing. An Octree data structure together with the caching of localized Delaunay triangulation-based surface meshes is implemented to increase computation efficiency and handling of data. Parallelization of the ICP process is carried out by using the Single Instruction, Multiple Data processing scheme - based on the Divide and Conquer multi-branched paradigm - enabling multiple processing elements to be performed on the same operation on multiple data independently and simultaneously. When compared to the traditional non-parallel list processing the Octree-based SIMD strategy showed a sharp increase in computation performance and efficiency, together with a reliable and accurate alignment of large 3D point clouds, contributing to a qualitative and efficient application.
Surface Coverage in Wireless Sensor Networks Based on Delaunay Tetrahedralization
NASA Astrophysics Data System (ADS)
Ribeiro, M. G.; Neves, L. A.; Pinto, A. R.; Nascimento, M. Z.; Zafalon, G. F. D.; Valêncio, C.
2015-01-01
In this work is presented a new method for sensor deployment on 3D surfaces. The method was structured on different steps. The first one aimed discretizes the relief of interest with Delaunay algorithm. The tetrahedra and relative values (spatial coordinates of each vertex and faces) were input to construction of 3D Voronoi diagram. Each circumcenter was calculated as a candidate position for a sensor node: the corresponding circular coverage area was calculated based on a radius r. The r value can be adjusted to simulate different kinds of sensors. The Dijkstra algorithm and a selection method were applied to eliminate candidate positions with overlapped coverage areas or beyond of surface of interest. Performance evaluations measures were defined using coverage area and communication as criteria. The results were relevant, once the mean coverage rate achieved on three different surfaces were among 91% and 100%.
Lindstrom, P
2009-12-23
We describe a simple and efficient algorithm for two-view triangulation of 3D points from approximate 2D matches based on minimizing the L2 reprojection error. Our iterative algorithm improves on the one by Kanatani et al. by ensuring that in each iteration the epipolar constraint is satisfied. In the case where the two cameras are pointed in the same direction, the method provably converges to an optimal solution in exactly two iterations. For more general camera poses, two iterations are sufficient to achieve convergence to machine precision, which we exploit to devise a fast, non-iterative method. The resulting algorithm amounts to little more than solving a quadratic equation, and involves a fixed, small number of simple matrixvector operations and no conditional branches. We demonstrate that the method computes solutions that agree to very high precision with those of Hartley and Sturm's original polynomial method, though achieves higher numerical stability and 1-4 orders of magnitude greater speed.
Fast triangulated vortex methods for the 2D Eulen equations
NASA Astrophysics Data System (ADS)
Russo, Giovanni; Strain, John A.
1994-04-01
Vortex methods for inviscid incompressible two-dimensional fluid flow are usually based on blob approximations. This paper presents a vortex method in which the vorticity is approximated by a piecewise polynomial interpolant on a Delaunay triangulation of the vortices. An efficient reconstruction of the Delaunay triangulation at each step makes the method accurate for long times. The vertices of the triangulation move with the fluid velocity, which is reconstructed from the vorticity via a simplified fast multipole method for the Biot-Savart law with a continuous source distribution. The initial distribution of vortices is constructed from the initial vorticity field by an adaptive approximation method which produces good accuracy even for discontinuous initial data. Numerical results show that the method is highly accurate over long time intervals. Experiments with single and multiple circular and elliptical rotating patches of both piecewise constant and smooth vorticity indicate that the method produces much smaller errors than blob methods with the same number of degrees of freedom, at little additional cost. Generalizations to domains with boundaries, viscous flow, and three space dimensions are discussed.
Fast triangulated vortex methods for the 2D Euler equations
Russo, G. ); Strain, J.A. )
1994-04-01
Vortex methods for inviscid incompressible two-dimensional fluid flow are usually based on blob approximations. This paper presents a vortex method in which the vorticity is approximated by a piecewise polynomial interpolant on a Delaunay triangulation of the vortices. An efficient reconstruction of the Delaunay triangulation at each step makes the method accurate for long times. The vertices of the triangulation move with the fluid velocity, which is reconstructed from the vorticity via a simplified fast multipole method for the Biot-Savart law with a continuous source distribution. The initial distribution of vortices is constructed from the initial vorticity field by an adaptive approximation method which produces good accuracy even for discontinuous initial data. Numerical results show that the method is highly accurate over long time intervals. Experiments with single and multiple circular and elliptical rotating patches of both piecewise constant and smooth vorticity indicate that the method produces much smaller errors than blob methods with the same number of degrees of freedom, at little additional cost. Generalizations to domains with boundaries, viscous flow, and three space dimensions are discussed. 52 refs., 28 figs., 2 tabs.
An Automatic 3d Reconstruction Method Based on Multi-View Stereo Vision for the Mogao Grottoes
NASA Astrophysics Data System (ADS)
Xiong, J.; Zhong, S.; Zheng, L.
2015-05-01
This paper presents an automatic three-dimensional reconstruction method based on multi-view stereo vision for the Mogao Grottoes. 3D digitization technique has been used in cultural heritage conservation and replication over the past decade, especially the methods based on binocular stereo vision. However, mismatched points are inevitable in traditional binocular stereo matching due to repeatable or similar features of binocular images. In order to reduce the probability of mismatching greatly and improve the measure precision, a portable four-camera photographic measurement system is used for 3D modelling of a scene. Four cameras of the measurement system form six binocular systems with baselines of different lengths to add extra matching constraints and offer multiple measurements. Matching error based on epipolar constraint is introduced to remove the mismatched points. Finally, an accurate point cloud can be generated by multi-images matching and sub-pixel interpolation. Delaunay triangulation and texture mapping are performed to obtain the 3D model of a scene. The method has been tested on 3D reconstruction several scenes of the Mogao Grottoes and good results verify the effectiveness of the method.
Phase Transitions in Delaunay Potts Models
NASA Astrophysics Data System (ADS)
Adams, Stefan; Eyers, Michael
2016-01-01
We establish phase transitions for certain classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in Bertin et al. (J Stat Phys 114(1-2):79-100, 2004) for the Delaunay graph and in Georgii and Häggström (Commun Math Phys 181:507-528, 1996) for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies (Dereudre et al. in Probab Theory Relat Fields 153:643-670, 2012) of Gibbs measures for geometry-dependent interactions.
ERIC Educational Resources Information Center
Denzin, Norman K.
2012-01-01
The author's thesis is simple and direct. Those in the mixed methods qualitative inquiry community need a new story line, one that does not confuse pragmatism for triangulation, and triangulation for mixed methods research (MMR). A different third way is required, one that inspires generative politics and dialogic democracy and helps shape…
Incremental triangulation by way of edge swapping and local optimization
NASA Technical Reports Server (NTRS)
Wiltberger, N. Lyn
1994-01-01
This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve
3D motion tracking of the heart using Harmonic Phase (HARP) isosurfaces
NASA Astrophysics Data System (ADS)
Soliman, Abraam S.; Osman, Nael F.
2010-03-01
Tags are non-invasive features induced in the heart muscle that enable the tracking of heart motion. Each tag line, in fact, corresponds to a 3D tag surface that deforms with the heart muscle during the cardiac cycle. Tracking of tag surfaces deformation is useful for the analysis of left ventricular motion. Cardiac material markers (Kerwin et al, MIA, 1997) can be obtained from the intersections of orthogonal surfaces which can be reconstructed from short- and long-axis tagged images. The proposed method uses Harmonic Phase (HARP) method for tracking tag lines corresponding to a specific harmonic phase value and then the reconstruction of grid tag surfaces is achieved by a Delaunay triangulation-based interpolation for sparse tag points. Having three different tag orientations from short- and long-axis images, the proposed method showed the deformation of 3D tag surfaces during the cardiac cycle. Previous work on tag surface reconstruction was restricted for the "dark" tag lines; however, the use of HARP as proposed enables the reconstruction of isosurfaces based on their harmonic phase values. The use of HARP, also, provides a fast and accurate way for tag lines identification and tracking, and hence, generating the surfaces.
Automatic system for 3D reconstruction of the chick eye based on digital photographs.
Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L
2012-01-01
The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA. PMID:21181572
NASA Astrophysics Data System (ADS)
Zheleznyakova, A. L.
2015-05-01
A new computational approach for automated triangulation of Computer-Aided Design (CAD) surface models, applicable to various CFD (Computational Fluid Dynamics) problems of practical interest is proposed. The complex shaped product configurations are represented by a set of Non-Uniform Rational B-Splines (NURBS) surface patches. The suggested technique is based on the molecular dynamics method. The main idea of the approach is that the mesh nodes are considered as similarly charged interacting particles which move within the region to be meshed under the influence of internal (such as particle-particle interaction forces) and external forces as well as optional additional forces. Moreover, the particles experience a medium resistance due to which the system comes to equilibrium within a relatively short period of time. The proposed 3D surface mesh generation algorithm uses a parametric NURBS representation as initial definition of the domain boundary. This method first distributes the interacting nodes into optimal locations in the parametric domain of the NURBS surface patch using molecular dynamics simulation. Then, the well-shaped triangles can be created after connecting the nodes by Delaunay triangulation. Finally, the mapping from parametric space to 3D physical space is performed. Since the presented interactive algorithm allows to control the distance between a pair of nodes depending on the curvature of the NURBS surface, the method generates high quality triangular mesh. The algorithm enables to produce uniform mesh, as well as anisotropic adaptive mesh with refinement in the large gradient regions. The mesh generation approach has the abilities to preserve the representation accuracy of the input geometry model, create a close relationship between geometry modeling and grid generation process, be automated to a large degree. Some examples are considered in order to illustrate the method's ability to generate a surface mesh for a complicated CAD model.
Triangulation of NURBS Surfaces
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1994-01-01
A technique is presented for triangulation of NURBS surfaces. This technique is built upon an advancing front technique combined with grid point projection. This combined approach has been successfully implemented for structured and unstructured grids.
Unaldi, Numan; Temel, Samil; Asari, Vijayan K
2012-01-01
One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains. PMID:22666078
Unaldi, Numan; Temel, Samil; Asari, Vijayan K.
2012-01-01
One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains. PMID:22666078
NASA Astrophysics Data System (ADS)
Schneeberger, Raphael; de la Varga, Miguel; Florian Wellmann, J.; Kober, Florian; Berger, Alfons; Herwegh, Marco
2016-04-01
Fluid circulation in crystalline rocks is of key importance when exploring crystalline basement in light of, for example, deep-seated geothermal energy projects or selection of sites for nuclear waste repositories. Due to their enhanced permeability, fluid circulation within crystalline bedrock is mainly controlled by fault zones, which may originate from ductile mylonites but show a strong brittle overprint. In order to better constrain 3D flow paths, a well-founded knowledge on the 3D nature of the fault zone pattern is indispensable. We attempt to constrain the geometry of a complex 3D fault zone pattern in a case study of the Grimsel Test Site (GTS, central Switzerland). The constraints are based on mapping of both the surface as well as the GTS underground tunnel system, offering a unique opportunity to test the 3D model and associated uncertainties. We investigate the effect of increasing geoinformation on the quality and accuracy of the 3D model by using: (i) remote sensing surface data only, (ii) field surface mapping in combination with (i), and (iii) underground data combined with (i) and (ii). This approach allows for defining different steps in 3D geological modelling of a specific area, including a measure of the remaining uncertainty after each step. We obtain a best-estimate model by fitting results between surface and underground data by using a combination of field data and orientation obtained by Delaunay triangulation. We incorporate novel approaches to uncertainty analysis of fault orientations and investigate different fault planes showing the possible variation range of the structures investigated.
Algebraic Error Based Triangulation and Metric of Lines
Wu, Fuchao; Zhang, Ming; Wang, Guanghui; Hu, Zhanyi
2015-01-01
Line triangulation, a classical geometric problem in computer vision, is to determine the 3D coordinates of a line based on its 2D image projections from more than two views of cameras with known projection matrices. Compared to point features, line segments are more robust to matching errors, occlusions, and image uncertainties. In addition to line triangulation, a better metric is needed to evaluate 3D errors of line triangulation. In this paper, the line triangulation problem is investigated by using the Lagrange multipliers theory. The main contributions include: (i) Based on the Lagrange multipliers theory, a formula to compute the Plücker correction is provided, and from the formula, a new linear algorithm, LINa, is proposed for line triangulation; (ii) two optimal algorithms, OPTa-I and OPTa-II, are proposed by minimizing the algebraic error; and (iii) two metrics on 3D line space, the orthogonal metric and the quasi-Riemannian metric, are introduced for the evaluation of line triangulations. Extensive experiments on synthetic data and real images are carried out to validate and demonstrate the effectiveness of the proposed algorithms. PMID:26218615
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
NASA Astrophysics Data System (ADS)
Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.
2011-11-01
A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.
Three-dimensional ray tracing on Delaunay-based reconstructed surfaces.
Ortiz, Sergio; Siedlecki, Damian; Remon, Laura; Marcos, Susana
2009-07-10
A method of ray tracing for free-form optical surfaces has been developed. The ray tracing through such surfaces is based on Delaunay triangulation of the discrete data of the surface and is related to finite-element modeling. Some numerical examples of applications to analytical, noisy, and experimental free-form surfaces (in particular, a corneal topography map) are presented. Ray-tracing results (i.e., spot diagram root-mean-square error) with the new method are in agreement with those obtained using a modal fitting of the surface, for sampling densities higher than 40 x 40 elements. The method competes in flexibility, simplicity, and computing times with standard methods for surface fitting and ray tracing. PMID:19593339
NASA Technical Reports Server (NTRS)
Abercromby, Andrew F. J.; Thaxton, Sherry S.; Onady, Elizabeth A.; Rajulu, Sudhakar L.
2006-01-01
The Science Crew Operations and Utility Testbed (SCOUT) project is focused on the development of a rover vehicle that can be utilized by two crewmembers during extra vehicular activities (EVAs) on the moon and Mars. The current SCOUT vehicle can transport two suited astronauts riding in open cockpit seats. Among the aspects currently being developed is the cockpit design and layout. This process includes the identification of possible locations for a socket to which a crewmember could connect a portable life support system (PLSS) for recharging power, air, and cooling while seated in the vehicle. The spaces in which controls and connectors may be situated within the vehicle are constrained by the reach and vision capabilities of the suited crewmembers. Accordingly, quantification of the volumes within which suited crewmembers can both see and reach relative to the vehicle represents important information during the design process.
ConnectViz: Accelerated Approach for Brain Structural Connectivity Using Delaunay Triangulation.
Adeshina, A M; Hashim, R
2016-03-01
Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications. PMID:26260066
Multi-Sensor Triangulation of Multi-Source Spatial Data
NASA Technical Reports Server (NTRS)
Habib, Ayman; Kim, Chang-Jae; Bang, Ki-In
2007-01-01
The introduced methodologies are successful in: a) Ising LIDAR features for photogrammetric geo-refererncing; b) Delivering a geo-referenced imagery of the same quality as point-based geo-referencing procedures; c) Taking advantage of the synergistic characteristics of spatial data acquisition systems. The triangulation output can be used for the generation of 3-D perspective views.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Hua
2015-10-01
Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.
Rapid 360 degree imaging and stitching of 3D objects using multiple precision 3D cameras
NASA Astrophysics Data System (ADS)
Lu, Thomas; Yin, Stuart; Zhang, Jianzhong; Li, Jiangan; Wu, Frank
2008-02-01
In this paper, we present the system architecture of a 360 degree view 3D imaging system. The system consists of multiple 3D sensors synchronized to take 3D images around the object. Each 3D camera employs a single high-resolution digital camera and a color-coded light projector. The cameras are synchronized to rapidly capture the 3D and color information of a static object or a live person. The color encoded structure lighting ensures the precise reconstruction of the depth of the object. A 3D imaging system architecture is presented. The architecture employs the displacement of the camera and the projector to triangulate the depth information. The 3D camera system has achieved high depth resolution down to 0.1mm on a human head sized object and 360 degree imaging capability.
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. PMID:26917441
3D measurement using circular gratings
NASA Astrophysics Data System (ADS)
Harding, Kevin
2013-09-01
3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.
Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations
Ghadyani, Hamid; Sullivan, John; Wu, Ziji
2009-01-01
Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved. PMID:20305743
Entropy of unimodular lattice triangulations
NASA Astrophysics Data System (ADS)
Knauf, Johannes F.; Krüger, Benedikt; Mecke, Klaus
2015-02-01
Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where their entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achieve excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is C=2.196(3) consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.
Introduction to Causal Dynamical Triangulations
NASA Astrophysics Data System (ADS)
Görlich, Andrzej
The method of causal dynamical triangulations is a non-perturbative and background-independent approach to quantum theory of gravity. In this review we present recent results obtained within the four dimensional model of causal dynamical triangulations. We describe the phase structure of the model and demonstrate how a macroscopic four-dimensional de Sitter universe emerges dynamically from the full gravitational path integral. We show how to reconstruct the effective action describing scale factor fluctuations from Monte Carlo data.
[Research on the 3D fluorescence spectra differentiation of phytoplankton by coiflet2 wavelet].
Liu, Bao; Su, Rong-Guo; Song, Zhi-Jie; Zhang, Fang; Wang, Xiu-Lin
2010-05-01
In the present paper, the authors utilize the wavelet base function coiflet2 (coif2) to analyze the 3D fluorescence spectra of 37 phytoplankton species belonging to 30 genera of 7 divisions, and these phytoplankton species include common species frequently causing harmful algal blooms and most predominant algal species in the inshore area of China Sea. After the Rayleigh and Raman scattering peaks were removed by the Delaunay triangulation interpolation, the fluorescence spectra of those phytoplankton species were transformed with the coiflet2 wavelet, and the scale vectors and the wavelet vectors were candidate for the feature spectra. Based on the testing results by Bayesian analysis, the 3rd scale vectors were the best feature segments at the division level and picked out as the fluorescence division feature spectra of those phytoplankton species, and the group of the 3rd scale vectors, the 2nd and 3rd wavelet vectors were the best feature segments at the genus level and chosen as the fluorescent genus feature spectra of those phytoplankton species. The reference spectra of those phytoplankton species at the division level and that at the genus level were obtained from these feature spectra by cluster analysis, respectively. The reference spectra base for 37 phytoplankton species was composed of 107 reference spectra at the division level and 155 ones at the genus level. Based on this reference spectra base, a fluorometric discriminating method for phytoplankton populations was established by multiple linear regression resolved by the nonnegative least squares. For 1 776 samples of single phytoplankton species, a correct discriminating rate of 97.0% at genus level and 98.1% at division level can be obtained; The correct discriminating rates are more than 92.7% at the genus level and more than 94.8% at the division level for 384 mixed samples from two phytoplankton species. PMID:20672617
NASA Astrophysics Data System (ADS)
Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele
2013-04-01
Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results
Quasi-greedy triangulations approximating the minimum weight triangulation
Levcopoulos, C.; Krznaric, D.
1996-12-31
This paper settles the following two open problems: (1) What is the worst-case approximation ratio between the greedy and the minimum weight triangulation? (2) Is there a polynomial time algorithm that always pro- duces a triangulation whose length is within a constant factor from the minimum? The answer to the first question is that the known {Omega}({radical}n) lower bound is tight. The second question is answered in the affirmative by using a slight modification of an O(n log n) algorithm for the greedy triangulation. We also derive some other interesting results. For example, we show that a constant-factor approximation of the minimum weight convex partition can be obtained within the same time bounds.
Distributional properties of the three-dimensional Poisson Delaunay cell
Muche, L.
1996-07-01
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in {Re}{sup 3}. The considerations are based on a well-known formula given by Miles which describes the size and shape of the {open_quotes}typical{close_quotes} three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
Distributional properties of the three-dimensional Poisson Delaunay cell
NASA Astrophysics Data System (ADS)
Muche, Lutz
1996-07-01
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in ℝ3. The considerations are based on a well-known formula given by Miles which describes the size and shape of the "typical" three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
Metrological characterization of 3D imaging devices
NASA Astrophysics Data System (ADS)
Guidi, G.
2013-04-01
Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Surface Triangulation for CSG in Mercury
Engel, Daniel; O'Brien, Matthew J.
2015-08-26
Visualization routines for rendering complicated geometries are very useful for engineers and scientists who are trying to build 3D prototypes of their designs. A common way to rapidly add interesting features to a 3D model is through the use of a concept called Constructive Solid Geometry. CSG uses compositions of the boolean set operations to manipulate basic geometric primitives to form more complicated objects. The most common boolean operations employed are union, intersection, and subtraction. Most computer-aided design software packages contain some sort of ability visualize CSG. The typical workflow for the user is as follows: The user specifies the individual primitive components, the user arbitrarily combines each of these primitives with boolean operations, the software generates a CSG tree structure which normally stores these solids implicitly with their defining equation, the tree is traversed and a general algorithm is applied to render the appropriate geometry onto the screen. Algorithms for visualizing CSG have been extensively developed for over a decade. Points sampled from the implicit solids are typically used as input by variations of algorithms like marching cubes and point-cloud surface reconstruction. Here, we explain a surface triangulation method from the graphics community that is being used for surface visualization in the framework of a Monte-Carlo neutron transport code called Mercury.
Container integrity verification using laser triangulation
NASA Astrophysics Data System (ADS)
Busboom, Axel; Sequeira, Vítor
2007-04-01
We present a system for verifying the integrity of storage containers using a laser triangulation scanner, with applications in nuclear security. Any intrusion into the container shell and subsequent reconstruction of the surface inevitably leaves slight changes to the three-dimensional surface structure which the proposed system can detect. The setup consists of a laser line scanner, mounted on a rotation stage. We propose an auto-calibration procedure for this system which - from several scans of a planar calibration target acquired from different viewpoints - automatically determines the position and orientation of the rotation axis with respect to the scanner coordinate frame. We further present an algorithm for the automatic registration of two 3D scans of a cylindrical surface, not requiring any user interaction such as the identification of corresponding point pairs. We show that the algorithm accurately aligns two scans of the same object, acquired from different viewpoints. The accuracy of the overall system is dominated by the measurement uncertainty of the 3D scanner; residual errors resulting from the calibration and registration are subordinate. The system can reliably detect changes in the surface shape resulting from tampering.
An Effective 3D Ear Acquisition System
Liu, Yahui; Lu, Guangming; Zhang, David
2015-01-01
The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553
An Effective 3D Ear Acquisition System.
Liu, Yahui; Lu, Guangming; Zhang, David
2015-01-01
The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553
3D model reconstruction of underground goaf
NASA Astrophysics Data System (ADS)
Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan
2005-10-01
Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.
Golin, M.J.
1996-12-31
Let MWT(n) be the weight of a minimum-weight triangulation of n points chosen independently from the uniform distribution over [0, 1]{sup 2}. Previous work has shown that E(MWT(n)) = {Theta} ({radical}n). In this paper we develop techniques for proving that MWT(n)/{radical}n actually converges to a constant in both expectation and in probability. An immediate consequence is the development of an O(n{sup 2}) time algorithm that finds a triangulation whose competive ratio with the MWT is, in a probabilistic sense, exactly one. The techniques developed to prove the above results are quite general and can also prove the convergence of certain types of probabilistic recurrence equations and other Euclidean Functionals. This is illustrated by using them to prove the convergence of the weight of MWTs of random points in higher dimensions and a sketch of how to use them to prove the convergence of the degree probabilities for Delaunay triangulations in {Re}{sup 2}.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
Type III radio source located by Ulysses/Wind triangulation
NASA Astrophysics Data System (ADS)
Reiner, M. J.; Fainberg, J.; Kaiser, M. L.; Stone, R. G.
1998-02-01
Radio triangulation from the widely separated Ulysses and Wind spacecraft is used to reconstruct the trajectory of a type III radio burst in the 3D heliosphere. The derived radio trajectory follows a (Parker) spiral path corresponding to a solar wind speed of about 200 km/s and progresses to the south of the ecliptic plane. These remote radio observations also measure the interplanetary plasma density along the path of the radio source. The derived average density-distance scale is very similar to the previously derived RAE density scale, which was determined in a different way. The results of the radio triangulation, combined with a drift rate analysis, give an average electron exciter speed of about 0.3 c. The radio source size and the brightness temperature as viewed from Ulysses and Wind are determined and compared as a function of observing frequency.
On The intrinsic equation behind the Delaunay surfaces
Mladenov, Ivaielo M.; Hadzhilazova, Mariana Ts.; Djondjorov, Peter A.; Vassilev, Vassil M.
2008-11-18
By balancing the internal and external forces acting on axially symmetric membranes one arrives at a system of two equations describing the equilibrium states. This system allows at least two sets of analytical solutions. One of them presents the Euler's elasticas and the other one can be recognized as the class of Delaunay surfaces. The intrinsic equation describing the profile curves of the later is found and solved and this leads to new analytical formulas for these surfaces.
A boundary recovery algorithm for Delaunay tetrahedral meshing
Sharov, D.; Nakahashi, K.
1996-12-31
A method for automatic generation of unstructured grids comprised of tetrahedra is discussed. Delaunay approach for tetrahedral grid generation is used. Particular attention is given to the boundary constraining problem. A simple and robust algorithm for the boundary constraining by successive use of boundary edge swapping, tetrahedral edge swapping and direct subdivision of tetrahedra is used. Small modifications allow to apply the method for viscous grid generation as well. Grid examples demonstrate efficiency of the method.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Pattern based 3D image Steganography
NASA Astrophysics Data System (ADS)
Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.
2013-03-01
This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
Making the Case for Causal Dynamical Triangulations
NASA Astrophysics Data System (ADS)
Cooperman, Joshua H.
2015-11-01
The aim of the causal dynamical triangulations approach is to define nonperturbatively a quantum theory of gravity as the continuum limit of a lattice-regularized model of dynamical geometry. My aim in this paper is to give a concise yet comprehensive, impartial yet personal presentation of the causal dynamical triangulations approach.
Mixed Methods, Triangulation, and Causal Explanation
ERIC Educational Resources Information Center
Howe, Kenneth R.
2012-01-01
This article distinguishes a disjunctive conception of mixed methods/triangulation, which brings different methods to bear on different questions, from a conjunctive conception, which brings different methods to bear on the same question. It then examines a more inclusive, holistic conception of mixed methods/triangulation that accommodates…
Crandall, K.R.
1987-08-01
TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.
Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation
NASA Astrophysics Data System (ADS)
Wang, Yibin; Qin, Ning; Zhao, Ning
2016-06-01
A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.
3D Mesh optimization methods for unstructured polyhedra: A progress report
Miller, D.S.; Burton, D.E.
1994-11-22
A mesh optimization scheme allows a Lagrangian code to run problems with extreme mesh distortion by reconfiguring node and zone connectivity as the problem evolves. We have developed some 3D mesh optimization operations and criteria for applying them. These are demonstrated in a 3D Free Lagrange code being developed at LLNL. In the simplest case of a mesh or mesh subregion composed purely of tetrahedra we can maintain a Delaunay tetrahedralization. For more interesting meshes, made up of general polyhedra, a suite of optimization operations and their respective application criteria have been developed.
4-D XRD for strain in many grains using triangulation
Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi
2006-12-31
Determination of the strains in a polycrystalline materialusing 4-D XRD reveals sub-grain and grain-to-grain behavior as a functionof stress. Here 4-D XRD involves an experimental procedure usingpolychromatic micro-beam X-radiation (micro-Laue) to characterizepolycrystalline materials in spatial location as well as with increasingstress. The in-situ tensile loading experiment measured strain in a modelaluminum-sapphire metal matrix composite using the Advanced Light Source,Beam-line 7.3.3. Micro-Laue resolves individual grains in thepolycrystalline matrix. Results obtained from a list of grains sorted bycrystallographic orientation depict the strain states within and amongindividual grains. Locating the grain positions in the planeperpendicular to the incident beam is trivial. However, determining theexact location of grains within a 3-D space is challenging. Determiningthe depth of the grains within the matrix (along the beam direction)involved a triangulation method tracing individual rays that producespots on the CCD back to the point of origin. Triangulation wasexperimentally implemented by simulating a 3-D detector capturingmultiple diffraction images while increasing the camera to sampledistance. Hence by observing the intersection of rays from multiple spotsbelonging to the corresponding grain, depth is calculated. Depthresolution is a function of the number of images collected, grain to beamsize ratio, and the pixel resolution of the CCD. The 4DXRD methodprovides grain morphologies, strain behavior of each grain, andinteractions of the matrix grains with each other and the centrallylocated single crystal fiber.
Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Sethian, James A.
2006-01-01
Borrowing from techniques developed for conservation law equations, we have developed both monotone and higher order accurate numerical schemes which discretize the Hamilton-Jacobi and level set equations on triangulated domains. The use of unstructured meshes containing triangles (2D) and tetrahedra (3D) easily accommodates mesh adaptation to resolve disparate level set feature scales with a minimal number of solution unknowns. The minisymposium talk will discuss these algorithmic developments and present sample calculations using our adaptive triangulation algorithm applied to various moving interface problems such as etching, deposition, and curvature flow.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Linear-size nonobtuse triangulation of polygons
Bern, M.; Mitchell, S.; Ruppert, J.
1994-05-01
We give an algorithm for triangulating n-vertex polygonal regions (with holes) so that no angle in the final triangulation measures more than {pi}/2. The number of triangles in the triangulation is only 0(n), improving a previous bound of 0(n{sup 2}), and the worst-case running time is 0(n log{sup 2} n). The basic technique used in the algorithm, recursive subdivision by disks, is new and may have wider application in mesh generation. We also report on an implementation of our algorithm.
Contact process on a Voronoi triangulation.
de Oliveira, Marcelo M; Alves, S G; Ferreira, S C; Dickman, Ronald
2008-09-01
We study the continuous absorbing-state phase transition in the contact process on the Voronoi-Delaunay lattice. The Voronoi construction is a natural way to introduce quenched coordination disorder in lattice models. We simulate the disordered system using the quasistationary simulation method and determine its critical exponents and moment ratios. Our results suggest that the critical behavior of the disordered system is unchanged with respect to that on a regular lattice, i.e., that of directed percolation. PMID:18851019
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2008-02-01
In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.
Uav Photogrammetry: Block Triangulation Comparisons
NASA Astrophysics Data System (ADS)
Gini, R.; Pagliari, D.; Passoni, D.; Pinto, L.; Sona, G.; Dosso, P.
2013-08-01
UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord"), useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey), allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes) were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma), Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points.
a Modified Method for Image Triangulation Using Inclined Angles
NASA Astrophysics Data System (ADS)
Alsadik, Bashar
2016-06-01
The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state - of -the -art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.
NASA Astrophysics Data System (ADS)
Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.
1998-09-01
Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
3D geometry applied to atmospheric layers
NASA Astrophysics Data System (ADS)
Nadjib Kouahla, Mohamed; Moreels, Guy; Faivre, Michael
Epipolar geometry is an efficient method for generating 3D representations of objects. Here we present an original application of this method to the case of atmospheric layers. Two synchronized simultaneous images of the same scene are taken in two sites at a distance D. The 36*36 fields of view are oriented face to face along the same line of sight, but in opposite directions. The elevation angle of the optical axis above the horizon is 17. The observed objects are airglow emissions or cirrus clouds or aircraft trails. In the case of clouds, the shape of the objects is diffuse. To obtain a superposition of the common observed zone, it is necessary to calculate a normalized cross-correlation coefficient (NCC) to identify pairs of matching points in both images. The perspective effect in the rectangular images is inverted to produce a satellite-type view of the atmospheric layer as could be seen from an overlying satellite. We developed a triangulation algorithm to retrieve the 3D surface of the observed layer. The stereoscopic method was used to retrieve the wavy structure of the OH emissive layer at the altitude of 87 km. The distance between the observing sites was 600 km. Results obtained in Peru from the sites of Cerro Cosmos and Cerro Verde will be presented. We are currently extending the stereoscopic procedure to the study of troposphere cirruses, of natural origin or induced by aircraft engines. In this case, the distance between observation sites is D 60 km.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Three-dimensional unstructured grid refinement and optimization using edge-swapping
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Barth, Timothy
1993-01-01
This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.
Triangulation-Based Camera Calibration For Machine Vision Systems
NASA Astrophysics Data System (ADS)
Bachnak, Rafic A.; Celenk, Mehmet
1990-04-01
This paper describes a camera calibration procedure for stereo-based machine vision systems. The method is based on geometric triangulation using only a single image of three distinctive points. Both the intrinsic and extrinsic parameters of the system are determined. The procedure is performed only once at the initial set-up using a simple camera model. The effective focal length is extended in such a way that a linear transformation exists between the camera image plane and the output digital image. Only three world points are needed to find the extended focal length and the transformation matrix elements that relates the camera position and orientation to a real world coordinate system. The parameters of the system are computed by solving a set of linear equations. Experimental results show that the method, when used in a stereo system developed in this research, produces reasonably accurate 3-D measurements.
A Software System for Filling Complex Holes in 3D Meshes by Flexible Interacting Particles
NASA Astrophysics Data System (ADS)
Yamazaki, Daisuke; Savchenko, Vladimir
3D meshes generated by acquisition devices such as laser range scanners often contain holes due to occlusion, etc. In practice, these holes are extremely geometrically and topologically complex. We propose a heuristic hole filling technique using particle systems to fill complex holes with arbitrary topology in 3D meshes. Our approach includes the following steps: hole identification, base surface creation, particle distribution, triangulation, and mesh refinement. We demonstrate the functionality of the proposed surface retouching system on synthetic and real data.
NASA Astrophysics Data System (ADS)
Gil, José J.; San José, Ignacio
2010-11-01
From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.
CMOS array of photodiodes with electronic processing for 3D optical reconstruction
NASA Astrophysics Data System (ADS)
Hornero, Gemma; Montane, Enric; Chapinal, Genis; Moreno, Mauricio; Herms, Atila
2001-04-01
It is well known that laser time-of-flight (TOF) and optical triangulation are the most useful optical techniques for distance measurements. The first one is more suitable for large distances, since for short range of distances high modulation frequencies of laser diodes (©200-500MHz) are needed. For these ranges, optical triangulation is simpler, as it is only necessary to read the projection of the laser point over a linear optical sensor without any laser modulation. Laser triangulation is based on the rotation of the object. This motion shifts the projected point over the linear sensor, resulting on 3D information, by means of the whole readout of the linear sensor in each angle position. On the other hand, a hybrid method of triangulation and TOF can be implemented. In this case, a synchronized scanning of a laser beam over the object results in different arrival times of light to each pixel. The 3D information is carried by these delays. Only a single readout of the linear sensor is needed. In this work we present the design of two different linear arrays of photodiodes in CMOS technology, the first one based on the Optical triangulation measurement and the second one based in this hybrid method (TFO). In contrast to PSD (Position Sensitive Device) and CCDs, CMOS technology can include, on the same chip, photodiodes, control and processing electronics, that in the other cases should be implemented with external microcontrollers.
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
Optical monitoring of scoliosis by 3D medical laser scanner
NASA Astrophysics Data System (ADS)
Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez
2014-03-01
Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.
NASA Astrophysics Data System (ADS)
Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore
2014-09-01
We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.
3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds
NASA Astrophysics Data System (ADS)
Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.
We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.
Spectral Properties of Unimodular Lattice Triangulations
NASA Astrophysics Data System (ADS)
Krüger, Benedikt; Schmidt, Ella M.; Mecke, Klaus
2016-05-01
Random unimodular lattice triangulations have been recently used as an embedded random graph model, which exhibit a crossover behavior between an ordered, large-world and a disordered, small-world behavior. Using the ergodic Pachner flips that transform such triangulations into another and an energy functional that corresponds to the degree distribution variance, Markov chain Monte Carlo simulations can be applied to study these graphs. Here, we consider the spectra of the adjacency and the Laplacian matrix as well as the algebraic connectivity and the spectral radius. Power law dependencies on the system size can clearly be identified and compared to analytical solutions for periodic ground states. For random triangulations we find a qualitative agreement of the spectral properties with well-known random graph models. In the microcanonical ensemble analytical approximations agree with numerical simulations. In the canonical ensemble a crossover behavior can be found for the algebraic connectivity and the spectral radius, thus combining large-world and small-world behavior in one model. The considered spectral properties can be applied to transport problems on triangulation graphs and the crossover behavior allows a tuning of important transport quantities.
Triangulation technique in optical fiber sensing
NASA Astrophysics Data System (ADS)
Brenci, Massimo; Mencaglia, Andrea A.; Mignani, Anna G.
1990-08-01
Optical triangulation is a very well-known classical technique which can be advantageously performed by optical fibers, taking profit from their geometrical versatility, intrinsic safety and good transmission properties. The exploitation of different optical architectures provides spatial information over single or multiple sensing zones, so that a wide class of intensity-modulated optical fiber sensors can be achieved.
NASA Astrophysics Data System (ADS)
Gangodagamage, C.; Rowland, J. C.; Skurikhin, A. N.; Wilson, C. J.; Brumby, S. P.; Painter, S. L.; Gable, C. W.; Bui, Q.; Short, L. S.; Liljedahl, A.; Hubbard, S. S.; Wainwright, H. M.; Dafflon, B.; Tweedie, C. E.; Kumar, J.; Wullschleger, S. D.
2013-12-01
In landscapes with ice-wedge polygons, fine-scale land surface characterization is critically important because the processes that govern the carbon cycle and hydrological dynamics are controlled by features on the order of a few to tens of meters. To characterize the fine-scale features in polygonal ground in Barrow, Alaska, we use high-resolution LiDAR-derived topographic data (such as elevation, slope, curvature, and a novel 'directed distance (DD)') to develop quantitative metrics that allow for the discretization and characterization of polygons (formed by seasonal freeze and thaw processes). First, we used high resolution (0.25 m) LiDAR to show that the high and low centered polygon features exhibit a unique signature in the Fourier power spectrum where the landscape signature on freeze and thaw process (~ 5 to 100 m) is super imposed on the coarse scale fluvial eroded landscape (rudimentary river network) signature. We next convolve LiDAR elevations with multiscale wavelets and objectively choose appropriate scales to map interconnected troughs of high- and low-centered polygons. For the ice wedges where LiDAR surface expressions (troughs) are not well developed, we used a Delaunay triangulation to connect the ice-wedge network and map the topologically connected polygons. This analysis allows us to explore the 3D morphometry of these high- and low-centered polygons and develop a supervised set of ensemble characteristic templates for each polygon type as a function of directed distance (DD). These templates are used to classify the ice-wedge polygon landscape into low-centered polygons with limited troughs, and high- and low-centered polygons with well-developed trough network. We further extend the characteristic templates to polygon ensemble slopes and curvatures as a function of DD and develop a classification scheme for microtopographic features including troughs, rims, elevated ridges, and centers for both high-centered and low-centered polygon
Triangulation using synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Wu, Sherman S. C.; Howington-Kraus, Annie E.
1991-01-01
For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.
Aerial multi-camera systems: Accuracy and block triangulation issues
NASA Astrophysics Data System (ADS)
Rupnik, Ewelina; Nex, Francesco; Toschi, Isabella; Remondino, Fabio
2015-03-01
Oblique photography has reached its maturity and has now been adopted for several applications. The number and variety of multi-camera oblique platforms available on the market is continuously growing. So far, few attempts have been made to study the influence of the additional cameras on the behaviour of the image block and comprehensive revisions to existing flight patterns are yet to be formulated. This paper looks into the precision and accuracy of 3D points triangulated from diverse multi-camera oblique platforms. Its coverage is divided into simulated and real case studies. Within the simulations, different imaging platform parameters and flight patterns are varied, reflecting both current market offerings and common flight practices. Attention is paid to the aspect of completeness in terms of dense matching algorithms and 3D city modelling - the most promising application of such systems. The experimental part demonstrates the behaviour of two oblique imaging platforms in real-world conditions. A number of Ground Control Point (GCP) configurations are adopted in order to point out the sensitivity of tested imaging networks and arising block deformations. To stress the contribution of slanted views, all scenarios are compared against a scenario in which exclusively nadir images are used for evaluation.
Practical Considerations For A Design Of A High Precision 3-D Laser Scanner System
NASA Astrophysics Data System (ADS)
Blais, Francois; Rioux, Marc; Beraldin, J.-Angelo
1988-11-01
The Laboratory for Intelligent Systems of the Division of Electrical Engineering of the National Research Council of Canada is intensively involved in the development of laser-based three-dimensional vision systems and their applications. Two basic systems have been invented. One, based on a double aperture mask in front of a CCD camera, has been developed for robotic applications and control. The other technique is based on an auto-synchronized scanning principle to provide accurate, fast, and reliable 3-D coordinates. Using the latter method, several prototypes have been developed for the acquisition of 3-D data of objects and for inspection. This paper will describe some practical considerations for the design and implementation of triangulation-based 3-D range sensors with emphasis on the latter triangulation technique. Some applications and results will be presented.
Efficient generation of discontinuity-preserving adaptive triangulations from range images.
Garcia, Miguel Angel; Sappa, Angel Domingo
2004-10-01
This paper presents an efficient technique for generating adaptive triangular meshes from range images. The algorithm consists of two stages. First, a user-defined number of points is adaptively sampled from the given range image. Those points are chosen by taking into account the surface shapes represented in the range image in such a way that points tend to group in areas of high curvature and to disperse in low-variation regions. This selection process is done through a noniterative, inherently parallel algorithm in order to gain efficiency. Once the image has been subsampled, the second stage applies a two and one half-dimensional Delaunay triangulation to obtain an initial triangular mesh. To favor the preservation of surface and orientation discontinuities (jump and crease edges) present in the original range image, the aforementioned triangular mesh is iteratively modified by applying an efficient edge flipping technique. Results with real range images show accurate triangular approximations of the given range images with low processing times. PMID:15503496
NASA Astrophysics Data System (ADS)
An, Xi-Zhong
2007-08-01
Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter, surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number, total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher, which is in good agreement with those in random loose packing.
A comprehensive study on GPS-assisted aerial triangulation
NASA Astrophysics Data System (ADS)
Ebadi, Hamid
Aerial Triangulation (AT) has been used for mapping purposes for a long time to provide 3D coordinates of object points on the ground. This technique uses series of overlapping photographs, and some control points, in order to establish the relationship between the image coordinate system and object coordinate system. In the process of bundle block adjustment, image coordinate observations and coordinates of the ground control points are simultaneously adjusted and the exterior orientation parameters, as well as the ground coordinates of all tie and pass points, are estimated. One of the biggest challenges in AT is to reduce the number of control points. One effective way is to directly measure the exterior orientation parameters of the camera at the time of exposure. Airborne kinematic GPS (Global Positioning System) provides a means of determining the position of the aerial camera at each instant of exposure. The combined GPS-photogrammetric block adjustment takes advantage of weighted GPS observations, which significantly reduces the number of ground control points needed in a conventional block adjustment. A comprehensive software package, GAP (General Adjustment Program), was developed in this research to effectively integrate and adjust GPS, geodetic, and photogrammetric observations. Optimization of the GPS-photogrammetric bundle block adjustments for both simulated large scale mapping and real medium scale mapping was carried out. Aspects of reliability, and precision, as well as practical considerations, for an airborne GPS-photogrammetry system were also investigated. GPS coordinates of the camera exposure stations do not permit recovery of the roll angle of the aircraft in a GPS single strip triangulation. Therefore, ground control points are still required in addition to the GPS coordinates of exposure stations to overcome this problem, and to eliminate singularity of the normal matrix in the least squares adjustment. A new technique for GPS single
Indoor 3D Route Modeling Based On Estate Spatial Data
NASA Astrophysics Data System (ADS)
Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.
2014-04-01
Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.
The force function of two rigid celestial bodies in Delaunay-Andoyer variables
NASA Astrophysics Data System (ADS)
Zlenko, A. A.
2016-01-01
Two new expansions of the force function of two rigid celestial bodies of finite size and arbitrary shape are obtained in Delaunay-Andoyer variables with any degree of accuracy, in the form of a partial sum of an eight dimensional Fourier series. These expansions of the force function contain products of expressions for the momenta and Stokes constants in terms of sines and cosines, whose arguments are linear combinations of the Delaunay and Andoyer angular variables. These representations of the force function are compact and convenient for applications in various problems in celestial mechanics and astrodynamics.
The Newtonian approximation in Causal Dynamical Triangulations
NASA Astrophysics Data System (ADS)
Getchell, Adam
2015-04-01
I review how to derive Newton's law of universal gravitation from the Weyl strut between two Chazy-Curzon particles. I also briefly review Causal Dynamical Triangulations (CDT), a method for evaluating the path integral from canonical quantum gravity using Regge calculus and restrictions of the class of simplicial manifolds evaluated to those with a defined time foliation, thus enforcing a causal structure. I then discuss how to apply this approach to Causal Dynamical Triangulations, in particular modifying the algorithm to keep two simplicial submanifolds with curvature (i.e. mass) a fixed distance from each other, modulo regularized deviations and across all time slices. I then discuss how to determine if CDT produces an equivalent Weyl strut, which can then be used to obtain the Newtonian limit. I wrap up with a brief discussion of computational methods and code development.
Roaming moduli space using dynamical triangulations
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Barkley, J.; Budd, T. G.
2012-05-01
In critical as well as in non-critical string theory the partition function reduces to an integral over moduli space after integration over matter fields. For non-critical string theory this moduli integrand is known for genus one surfaces. The formalism of dynamical triangulations provides us with a regularization of non-critical string theory. We show how to assign in a simple and geometrical way a moduli parameter to each triangulation. After integrating over possible matter fields we can thus construct the moduli integrand. We show numerically for c=0 and c=-2 non-critical strings that the moduli integrand converges to the known continuum expression when the number of triangles goes to infinity.
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Coefficient adaptive triangulation for strongly anisotropic problems
D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.
1996-01-01
Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.
Sprite initiation altitude measured by triangulation
NASA Astrophysics Data System (ADS)
Stenbaek-Nielsen, H. C.; Haaland, R.; McHarg, M. G.; Hensley, B. A.; Kanmae, T.
2010-03-01
High time resolution (10,000 frames per second) images of sprites combined with multistation concurrent video recordings have provided data for triangulation of the altitude of the initial sprite onset. The high-speed images were obtained from the Langmuir Laboratory, New Mexico, during summer campaigns in 2007 and 2008 with video observations from sites at Portales, New Mexico, and Las Vegas, New Mexico. Sprites start with one or more downward-propagating streamer heads. The triangulated onset altitudes of this initial downward streamer vary between 66 and 89 km. In some sprites the downward streamers are followed a little later by upward-propagating streamers. The upward streamers start from a lower altitude and existing luminous sprite structures and their triangulated altitudes vary from 64 to 78 km. The downward streamers create C sprite characteristics, while the upward streamers form the broad diffuse tops of carrot sprites. In the sprites analyzed the higher onset altitudes for the downward-propagating initial streamers were associated with C sprites and the lower with carrot sprites, but our larger data set indicates that this is not generally the case. It appears that the dominant sprite types vary from year to year, indicating that some longer-lasting environmental parameter, such as mesospheric conductivity and composition or thunderstorm cloud dynamics, may play an important role in determining the types of sprites observed.
Three-dimensional unstructured grid generation via incremental insertion and local optimization
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Wiltberger, N. Lyn; Gandhi, Amar S.
1992-01-01
Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details.
Generic remeshing of 3D triangular meshes with metric-dependent discrete voronoi diagrams.
Valette, Sebastien; Chassery, Jean Marc; Prost, Rémy
2008-01-01
In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user defined vertex budget. Our approach can deal with a wide range of applications, from high quality mesh generation to shape approximation. By using appropriate metric constraints the method generates isotropic or anisotropic elements. Based on point-sampling, our algorithm combines the robustness and theoretical strength of Delaunay criteria with the efficiency of entirely discrete geometry processing . Besides the general described framework, we show experimental results using isotropic, quadric-enhanced isotropic and anisotropic metrics which prove the efficiency of our method on large meshes, for a low computational cost. PMID:18192716
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
Energy Science and Technology Software Center (ESTSC)
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
[3-D ultrasound in gastroenterology].
Zoller, W G; Liess, H
1994-06-01
Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
None
2014-02-26
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435
Gatsonis, Nikolaos A. Spirkin, Anton
2009-06-01
The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Stanton, M M; Samitier, J; Sánchez, S
2015-08-01
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Arena3D: visualization of biological networks in 3D
Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard
2008-01-01
Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715
Novel 3D Compression Methods for Geometry, Connectivity and Texture
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
Robust 3D reconstruction system for human jaw modeling
NASA Astrophysics Data System (ADS)
Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.
1999-03-01
This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.
NASA Astrophysics Data System (ADS)
Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman
2013-11-01
The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.
Chilcoat, S.R. Hildebrand, S.T.
1995-12-31
Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
Finding a covering triangulation whose maximum angle is provably small
Mitchell, S.A.; Park, J.K.
1993-03-03
Given a planar straight-line graph, we find a covering triangulation whose maximum angle is as small as possible. A covering triangulation is a triangulation whose vertex set contains the input vertex set and whose edge set contains the input edge set. Such a triangulation differs from the usual Steiner triangulation in that we may not add a Steiner vertex on any input edge. Covering triangulations provide a convenient method for triangulating multiple regions sharing a common boundary, as each region can be triangulated independently. As it is possible that no finite covering triangulation is optimal in terms of its maximum angle, we propose an approximation algorithm. Our algorithm produces a covering triangulation whose maximum angle {gamma} is probably close to {gamma}{sub opt}, a lower bound on the maximum angle in any covering triangulation of the input graph. Note that we must have {gamma} {le} 3{gamma}{sub opt}, since we always have {gamma}{sub opt} {ge} {pi}/3 and no triangulation can contain an angle of size greater than {pi}. We prove something significantly stronger. We show that {pi} {minus} {gamma} {ge} ({pi} {minus} {gamma}{sub opt})/6, i.e., our {gamma} is not much closer to {pi} than is {gamma}{sub opt}. This result represents the first nontrivial bound on a covering triangulation`s maximum angle. We require a subroutine for the following problem: Given a polygon with holes, find a Steiner triangulation whose maximum angle is bounded away from {pi}. No angle larger than 8{pi}/9 is sufficient for the bound on {gamma} claimed above. The number of Steiner vertices added by our algorithm and its running time are highly dependent on the corresponding bounds for the subroutine. Given an n-vertex planar straight-line graph, we require O(n + S(n)) Steiner vertices and O(n log n + T(n)) time, where S(n) is the number of Steiner vertices added by the subroutine and T(n) is its running time for an O(n)-vertex polygon with holes.
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Remote 3D Medical Consultation
NASA Astrophysics Data System (ADS)
Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.
Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
3D reconstruction with two webcams and a laser line projector
NASA Astrophysics Data System (ADS)
Li, Dongdong; Hui, Bingwei; Qiu, Shaohua; Wen, Gongjian
2014-09-01
Three-dimensional (3D) reconstruction is one of the most attractive research topics in photogrammetry and computer vision. Nowadays 3D reconstruction with simple and consumable equipment plays an important role. In this paper, a 3D reconstruction desktop system is built based on binocular stereo vision using a laser scanner. The hardware requirements are a simple commercial hand-held laser line projector and two common webcams for image acquisition. Generally, 3D reconstruction based on passive triangulation methods requires point correspondences among various viewpoints. The development of matching algorithms remains a challenging task in computer vision. In our proposal, with the help of a laser line projector, stereo correspondences are established robustly from epipolar geometry and the laser shadow on the scanned object. To establish correspondences more conveniently, epipolar rectification is employed using Bouguet's method after stereo calibration with a printed chessboard. 3D coordinates of the observed points are worked out with rayray triangulation and reconstruction outliers are removed with the planarity constraint of the laser plane. Dense 3D point clouds are derived from multiple scans under different orientations. Each point cloud is derived by sweeping the laser plane across the object requiring 3D reconstruction. The Iterative Closest Point algorithm is employed to register the derived point clouds. Rigid body transformation between neighboring scans is obtained to get the complete 3D point cloud. Finally polygon meshes are reconstructed from the derived point cloud and color images are used in texture mapping to get a lifelike 3D model. Experiments show that our reconstruction method is simple and efficient.
Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert
2016-03-14
The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2003-05-12
This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.
Triangulation, Respondent Validation, and Democratic Participation in Mixed Methods Research
ERIC Educational Resources Information Center
Torrance, Harry
2012-01-01
Over the past 10 years or so the "Field" of "Mixed Methods Research" (MMR) has increasingly been exerting itself as something separate, novel, and significant, with some advocates claiming paradigmatic status. Triangulation is an important component of mixed methods designs. Triangulation has its origins in attempts to validate research findings…
3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds
NASA Astrophysics Data System (ADS)
Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent
2015-08-01
We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.
Computerized 3-D reconstruction of two "double teeth".
Lyroudia, K; Mikrogeorgis, G; Nikopoulos, N; Samakovitis, G; Molyvdas, I; Pitas, I
1997-10-01
"Double teeth" is a root malformation in the dentition and the purpose of this study was to reconstruct three-dimensionally the external and internal morphology of two "double teeth". The first set of "double teeth" was formed by the conjunction of a mandibular molar and a premolar, and the second by a conjunction of a maxillary molar and a supernumerary tooth. The process of 3-D reconstruction included serial cross-sectioning, photographs of the sections, digitization of the photographs, extraction of the boundaries of interest for each section, surface representation using triangulation and, finally, surface rendering using photorealistic effects. The resulting three-dimensional representations of the two teeth helped us visualize their external and internal anatomy. The results showed: a) in the first case, fusion of the radical and coronal dentin, as well as fusion of the pulp chambers; and b) in the second case, fusion only of the radical dentin and the pulp chambers. PMID:9550051
A method for building 3D models of barchan dunes
NASA Astrophysics Data System (ADS)
Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu
2016-01-01
The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.
An improved image matching algorithm based on SURF and Delaunay TIN
NASA Astrophysics Data System (ADS)
Cheng, Yuan-ming; Cheng, Peng-gen; Chen, Xiao-yong; Zheng, Shou-zhu
2015-12-01
Image matching is one of the key technologies in the image processing. In order to increase its efficiency and precision, a new method for image matching which based on the improved SURF and Delaunay-TIN is proposed in this paper. Based on the original SURF algorithm, three constraint conditions, color invariant model, Delaunay-TIN, triangle similarity function and photography invariant are added into the original SURF model. With the proposed algorithm, the image color information is effectively retained and the erroneous matching rate of features is largely reduced. The experimental results shows that this proposed method has the characteristics of higher matching speed, uniform distribution of feature points to be matched, and higher correct matching rate than the original algorithm does.
Voronoi-Delaunay analysis of voids in systems of nonspherical particles.
Luchnikov, V A; Medvedev, N N; Oger, L; Troadec, J P
1999-06-01
The Voronoi network is known to be a useful tool for the structural description of voids in the packings of spheres produced by computer simulations. In this article we extend the Voronoi-Delaunay analysis to packings of nonspherical convex objects. Main properties of the Voronoi network, which are known for systems of spheres, are valid for systems of any convex objects. A general numerical algorithm for calculation of the Voronoi network in three dimensions is proposed. It is based on the calculation of the trajectory of the imaginary empty sphere of variable size, moving inside a system (the Delaunay empty sphere method). Analysis of voids is presented for an ensemble of random straight lines and for a molecular dynamics model of liquid crystal. The spatial distribution of voids and a simple percolation analysis are obtained. The distributions of the bottleneck radii and the radii of spheres inscribed in the voids are calculated. PMID:11969711
Delaunay variables approach to the elimination of the perigee in Artificial Satellite Theory
NASA Astrophysics Data System (ADS)
Lara, Martin; San-Juan, Juan F.; López-Ochoa, Luis M.
2014-09-01
Analytical integration in Artificial Satellite Theory may benefit from different canonical simplification techniques, like the elimination of the parallax, the relegation of the nodes, or the elimination of the perigee. These techniques were originally devised in polar-nodal variables, an approach that requires expressing the geopotential as a Pfaffian function in certain invariants of the Kepler problem. However, it has been recently shown that such sophisticated mathematics are not needed if implementing both the relegation of the nodes and the parallax elimination directly in Delaunay variables. Proceeding analogously, it is shown here how the elimination of the perigee can be carried out also in Delaunay variables. In this way the construction of the simplification algorithm becomes elementary, on one hand, and the computation of the transformation series is achieved with considerable savings, on the other, reducing the total number of terms of the elimination of the perigee to about one third of the number of terms required in the classical approach.
Finding a covering triangulation whose maximum angle is provably small
Mitchell, S.A.; Park, J.K.
1993-03-03
Given a planar straight-line graph, we find a covering triangulation whose maximum angle is as small as possible. A covering triangulation is a triangulation whose vertex set contains the input vertex set and whose edge set contains the input edge set. Such a triangulation differs from the usual Steiner triangulation in that we may not add a Steiner vertex on any input edge. Covering triangulations provide a convenient method for triangulating multiple regions sharing a common boundary, as each region can be triangulated independently. As it is possible that no finite covering triangulation is optimal in terms of its maximum angle, we propose an approximation algorithm. Our algorithm produces a covering triangulation whose maximum angle [gamma] is probably close to [gamma][sub opt], a lower bound on the maximum angle in any covering triangulation of the input graph. Note that we must have [gamma] [le] 3[gamma][sub opt], since we always have [gamma][sub opt] [ge] [pi]/3 and no triangulation can contain an angle of size greater than [pi]. We prove something significantly stronger. We show that [pi] [minus] [gamma] [ge] ([pi] [minus] [gamma][sub opt])/6, i.e., our [gamma] is not much closer to [pi] than is [gamma][sub opt]. This result represents the first nontrivial bound on a covering triangulation's maximum angle. We require a subroutine for the following problem: Given a polygon with holes, find a Steiner triangulation whose maximum angle is bounded away from [pi]. No angle larger than 8[pi]/9 is sufficient for the bound on [gamma] claimed above. The number of Steiner vertices added by our algorithm and its running time are highly dependent on the corresponding bounds for the subroutine. Given an n-vertex planar straight-line graph, we require O(n + S(n)) Steiner vertices and O(n log n + T(n)) time, where S(n) is the number of Steiner vertices added by the subroutine and T(n) is its running time for an O(n)-vertex polygon with holes.
Energy Science and Technology Software Center (ESTSC)
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
Incremental Multi-view 3D Reconstruction Starting from Two Images Taken by a Stereo Pair of Cameras
NASA Astrophysics Data System (ADS)
El hazzat, Soulaiman; Saaidi, Abderrahim; Karam, Antoine; Satori, Khalid
2015-03-01
In this paper, we present a new method for multi-view 3D reconstruction based on the use of a binocular stereo vision system constituted of two unattached cameras to initialize the reconstruction process. Afterwards , the second camera of stereo vision system (characterized by varying parameters) moves to capture more images at different times which are used to obtain an almost complete 3D reconstruction. The first two projection matrices are estimated by using a 3D pattern with known properties. After that, 3D scene points are recovered by triangulation of the matched interest points between these two images. The proposed approach is incremental. At each insertion of a new image, the camera projection matrix is estimated using the 3D information already calculated and new 3D points are recovered by triangulation from the result of the matching of interest points between the inserted image and the previous image. For the refinement of the new projection matrix and the new 3D points, a local bundle adjustment is performed. At first, all projection matrices are estimated, the matches between consecutive images are detected and Euclidean sparse 3D reconstruction is obtained. So, to increase the number of matches and have a more dense reconstruction, the Match propagation algorithm, more suitable for interesting movement of the camera, was applied on the pairs of consecutive images. The experimental results show the power and robustness of the proposed approach.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Assessment of Ulcer Wounds Size Using 3D Skin Surface Imaging
NASA Astrophysics Data System (ADS)
Hani, Ahmad Fadzil M.; Eltegani, Nejood M.; Hussein, Suraiya H.; Jamil, Adawiyah; Gill, Priya
In this work 3D surface scans of wounds are used to obtain several measurement including wound top area, true surface area (rue area), depth, and volume for the purpose of assessing the progress of ulcer wounds throughout treatment. KONICA MINOLTA 910 laser scanner is used to obtain the surface scans. The algorithm for estimating top area and true surface area from surface scan can reduce the inaccuracy that might result when using manual method. Two methods for solid construction and volume computation were considered; namely mid-point projection and convex hull approximation (Delaunay tetrahedralization). The performance of convex hull approximation method for volume estimation is improved by performing surface subdivision prior to the approximation. The performance of these algorithms on different patterns of simulated wound models is presented. Furthermore the algorithms are tested in two molded wounds printed using rapid prototyping (RP) technique.
DLP/DSP-based optical 3D sensors for the mass market in industrial metrology and life sciences
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2011-03-01
GFM has developed and constructed DLP-based optical 3D measuring devices based on structured light illumination. Over the years the devices have been used in industrial metrology and life sciences for different 3D measuring tasks. This lecture will discuss integration of DLP Pico technology and DSP technology from Texas Instruments for mass market optical 3D sensors. In comparison to existing mass market laser triangulation sensors, the new 3D sensors provide a full-field measurement of up to a million points in less than a second. The lecture will further discuss different fields of application and advantages of the new generation of 3D sensors for: OEM application in industrial measuring and inspection; 3D metrology in industry, life sciences and biometrics, and industrial image processing.
Optoplasmonics: hybridization in 3D
NASA Astrophysics Data System (ADS)
Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.
2013-12-01
Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.
3-D Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Astrophysics Data System (ADS)
Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan
1997-12-01
A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.
3D Printable Graphene Composite.
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
3D light scanning macrography.
Huber, D; Keller, M; Robert, D
2001-08-01
The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078
Belenkov, E. A. Ali-Pasha, V. A.
2011-01-15
The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.
NASA Astrophysics Data System (ADS)
Gansen, A.; El Hachemi, M.; Belouettar, S.; Hassan, O.; Morgan, K.
2015-12-01
In computational electromagnetics, the advantages of the standard Yee algorithm are its simplicity and its low computational costs. However, because of the accuracy losses resulting from the staircased representation of curved interfaces, it is normally not the method of choice for modelling electromagnetic interactions with objects of arbitrary shape. For these problems, an unstructured mesh finite volume time domain method is often employed, although the scheme does not satisfy the divergence free condition at the discrete level. In this paper, we generalize the standard Yee algorithm for use on unstructured meshes and solve the problem concerning the loss of accuracy linked to staircasing, while preserving the divergence free nature of the algorithm. The scheme is implemented on high quality primal Delaunay and dual Voronoi meshes. The performance of the approach was validated in previous work by simulating the scattering of electromagnetic waves by spherical 3D PEC objects in free space. In this paper we demonstrate the performance of this scheme for penetration problems in lossy dielectrics using a new averaging technique for Delaunay and Voronoi edges at the interface. A detailed explanation of the implementation of the method, and a demonstration of the quality of the results obtained for transmittance and scattering simulations by 3D objects of arbitrary shapes, are presented.
[Real time 3D echocardiography].
Bauer, F; Shiota, T; Thomas, J D
2001-07-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
GPU-Accelerated Denoising in 3D (GD3D)
Energy Science and Technology Software Center (ESTSC)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less
Influence of Gsd for 3d City Modeling and Visualization from Aerial Imagery
NASA Astrophysics Data System (ADS)
Alrajhi, Muhamad; Alam, Zafare; Afroz Khan, Mohammad; Alobeid, Abdalla
2016-06-01
Ministry of Municipal and Rural Affairs (MOMRA), aims to establish solid infrastructure required for 3D city modelling, for decision making to set a mark in urban development. MOMRA is responsible for the large scale mapping 1:1,000; 1:2,500; 1:10,000 and 1:20,000 scales for 10cm, 20cm and 40 GSD with Aerial Triangulation data. As 3D city models are increasingly used for the presentation exploration, and evaluation of urban and architectural designs. Visualization capabilities and animations support of upcoming 3D geo-information technologies empower architects, urban planners, and authorities to visualize and analyze urban and architectural designs in the context of the existing situation. To make use of this possibility, first of all 3D city model has to be created for which MOMRA uses the Aerial Triangulation data and aerial imagery. The main concise for 3D city modelling in the Kingdom of Saudi Arabia exists due to uneven surface and undulations. Thus real time 3D visualization and interactive exploration support planning processes by providing multiple stakeholders such as decision maker, architects, urban planners, authorities, citizens or investors with a three - dimensional model. Apart from advanced visualization, these 3D city models can be helpful for dealing with natural hazards and provide various possibilities to deal with exotic conditions by better and advanced viewing technological infrastructure. Riyadh on one side is 5700m above sea level and on the other hand Abha city is 2300m, this uneven terrain represents a drastic change of surface in the Kingdom, for which 3D city models provide valuable solutions with all possible opportunities. In this research paper: influence of different GSD (Ground Sample Distance) aerial imagery with Aerial Triangulation is used for 3D visualization in different region of the Kingdom, to check which scale is more sophisticated for obtaining better results and is cost manageable, with GSD (7.5cm, 10cm, 20cm and 40cm
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated
NASA Astrophysics Data System (ADS)
Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.
2016-09-01
The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.
Jafari, Rahim; Sadeghi, Mehdi; Mirzaie, Mehdi
2016-05-01
The approaches taken to represent and describe structural features of the macromolecules are of major importance when developing computational methods for studying and predicting their structures and interactions. This study attempts to explore the significance of Delaunay tessellation for the definition of atomic interactions by evaluating its impact on the performance of scoring protein-protein docking prediction. Two sets of knowledge-based scoring potentials are extracted from a training dataset of native protein-protein complexes. The potential of the first set is derived using atomic interactions extracted from Delaunay tessellated structures. The potential of the second set is calculated conventionally, that is, using atom pairs whose interactions were determined by their separation distances. The scoring potentials were tested against two different docking decoy sets and their performances were compared. The results show that, if properly optimized, the Delaunay-based scoring potentials can achieve higher success rate than the usual scoring potentials. These results and the results of a previous study on the use of Delaunay-based potentials in protein fold recognition, all point to the fact that Delaunay tessellation of protein structure can provide a more realistic definition of atomic interaction, and therefore, if appropriately utilized, may be able to improve the accuracy of pair potentials. PMID:27060891
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.
Cardinality bounds for triangulations with bounded minimum angle
Mitchell, S.A.
1994-05-01
We consider bounding the cardinality of an arbitrary triangulation with smallest angle {alpha}. We show that if the local feature size (i.e. distance between disjoint vertices or edges) of the triangulation is within a constant factor of the local feature size of the input, then N < O(1/{alpha})M, where N is the cardinality of the triangulation and M is the cardinality of any other triangulation with smallest angle at least {alpha}. Previous results had an O(1/{alpha}{sup 1/{alpha}}) dependence. Our O(1/{alpha}) dependence is tight for input with a large length to height ratio, in which triangles may be oriented along the long dimension.
Calibration of an intensity ratio system for 3D imaging
NASA Astrophysics Data System (ADS)
Tsui, H. T.; Tang, K. C.
1989-03-01
An intensity ratio method for 3D imaging is proposed with error analysis given for assessment and future improvements. The method is cheap and reasonably fast as it requires no mechanical scanning or laborious correspondence computation. One drawback of the intensity ratio methods which hamper their widespread use is the undesirable change of image intensity. This is usually caused by the difference in reflection from different parts of an object surface and the automatic iris or gain control of the camera. In our method, gray-level patterns used include an uniform pattern, a staircase pattern and a sawtooth pattern to make the system more robust against errors in intensity ratio. 3D information of the surface points of an object can be derived from the intensity ratios of the images by triangulation. A reference back plane is put behind the object to monitor the change in image intensity. Errors due to camera calibration, projector calibration, variations in intensity, imperfection of the slides etc. are analyzed. Early experiments of the system using a newvicon CCTV camera with back plane intensity correction gives a mean-square range error of about 0.5 percent. Extensive analysis of various errors is expected to yield methods for improving the accuracy.
Dual multispectral and 3D structured light laparoscope
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.
2015-03-01
Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.
Metrological analysis of the human foot: 3D multisensor exploration
NASA Astrophysics Data System (ADS)
Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.
2011-08-01
In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.
3D measurement of human face by stereophotogrammetry
NASA Astrophysics Data System (ADS)
Wagner, Holger; Wiegmann, Axel; Kowarschik, Richard; Zöllner, Friedrich
2006-01-01
The following article describes a stereophotogrammetry based technique for 3D measurement of human faces. The method was developed for function orientated diagnostics and therapy in dentistry to provide prognoses for jaw-growth or surgical procedures. The main aim of our activities was to realize both -- a rapid measurement and a dense point cloud. The setup consists of two digital cameras in a convergent arrangement and a digital projector. During the measurement a rapid sequence of about 20 statistical generated patterns were projected onto the face and synchronously captured by the two cameras. Therefore, every single pixel of the two cameras is encoded by a characteristically stack of intensity values. To find corresponding points into the image sequences a correlation technique is used. At least, the 3D reconstruction is done by triangulation. The advantages of the shown method are the possible short measurement time (< 1 second) and - in comparison to gray code and phase shift techniques - the low quality requirements of the projection unit. At present the reached accuracy is +/- 0.1mm (rms), which is sufficient for medical applications. But the demonstrated method is not restricted to evaluate the shape of human faces. Also technical objects could be measured.
On triangulations of the plane by pencils of conics. II
Lazareva, V B; Shelekhov, A M
2013-06-30
The present work continues our previous paper in which all possible triangulations of the plane using three pencils of circles were listed. In the present article we find all projectively distinct triangulations of the plane by pencils of conics that are obtained by projecting regular three-webs, cut out on a nondegenerate cubic surface by three pencils of planes, whose axes lie on this surface. Bibliography: 6 titles.
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
3D Printable Graphene Composite
NASA Astrophysics Data System (ADS)
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.