Discrete elements for 3D microfluidics
Bhargava, Krisna C.; Thompson, Bryant; Malmstadt, Noah
2014-01-01
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. PMID:25246553
3D Discrete Element Model with 1 Million Particles: an Example of Hydro-fracturing
NASA Astrophysics Data System (ADS)
Liu, C.; Pollard, D. D.
2013-12-01
The Discrete Element Method (DEM) permits large relative motion and breakage of elements, and does not require re-meshing, for example as would the Finite Element Method. DEM has a wide range of applications in the fields of solid-earth geophysics, geomechanics, mining engineering, and structural geology. However, due to the computational cost, particle numbers of discrete element models are generally less than a few tens of thousands, which limits the applications. A new 3D DEM system 'MatDEM' can complete dynamic simulations of one million particles. The conversion formulas between particle parameters and model mechanical properties were derived, and the conversion of energy in DEM can be simulated. In a recent paper (Liu et al., 2013, JGR), the analytical solutions of elastic properties and failure modes of a 2D close-packed discrete element model were proposed. Based on these theoretical results, it is easy to create materials using DEM, which have similar mechanical properties to rock. Given the mechanical properties and state of stress, geologists and engineers can investigate the characteristics of rock deformation and failure under different conditions. MatDEM provides an alternative way to study the micro-macro relationships of rock and soil, and the evolution of geologic structures. As an example, MatDEM was used to investigate the generation and development of fluid driven fractures around a micro pore. The simulation result of fractures of an anisotropic 3D model, which includes 1 million particles, is demonstrated. Via parallel computing technology, MatDEM may handle tens of millions of particles in near future. Left: Fluid pressure is applied in the pore to generate fractures. Right: Simulation results (black segments represent fractures).
Novel Discrete Element Method for 3D non-spherical granular particles.
NASA Astrophysics Data System (ADS)
Seelen, Luuk; Padding, Johan; Kuipers, Hans
2015-11-01
Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.
The ESyS_Particle: A New 3-D Discrete Element Model with Single Particle Rotation
NASA Astrophysics Data System (ADS)
Wang, Yucang; Mora, Peter
In this paper, the Discrete Element Model (DEM) is reviewed, and the ESyS_Particle, our new version of DEM, is introduced. We particularly highlight some of the major physical concerns about DEMs and major differences between our model and most current DEMs. In the new model, single particle rotation is introduced and represented by a unit quaternion. For each 3-D particle, six degrees of freedom are employed: three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. The relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely determined. This algorithm can give more accurate results because physical principles are obeyed. A theoretical analysis about how to choose the model parameters is presented. Several numerical tests have been carried out, the results indicate that most laboratory tests can be well reproduced using our model.
NASA Astrophysics Data System (ADS)
Korneev, V. G.
2012-09-01
BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.
NASA Astrophysics Data System (ADS)
Cil, Mehmet B.; Alshibli, Khalid A.
2015-02-01
The constitutive behavior and deformation characteristics of uncemented granular materials are to a large extent derived from the fabric or geometry of the particle structure and the interparticle friction resulting from normal forces acting on particles or groups of particles. Granular materials consist of discrete particles with a fabric (microstructure) that changes under loading. Synchrotron micro-computed tomography (SMT) has emerged as a powerful non-destructive 3D scanning technique to study geomaterials. In this paper, SMT was used to acquire in situ scans of the oedometry test of a column of three silica sand particles. The sand is known as ASTM 20-30 Ottawa sand, and has a grain size between US sieves #20 (0.841 mm) and #30 (0.595 mm). The characteristics and evolution of particle fracture in sand were examined using SMT images, and a 3D discrete element method (DEM) was used to model the fracture behavior of sand particles. It adopts the bonded particle model to generate a crushable agglomerate that consists of a large number of small spherical sub-particles. The agglomerate shape matches the 3D physical shape of the tested sand particles by mapping the particle morphology from the SMT images. The paper investigates and discusses the influence of agglomerate packing (i.e., the number and size distribution of spherical sub-particles that constitute the agglomerate) and agglomerate shape on the fracture behavior of crushable particles.
Vescovi, D.; Berzi, D.; Richard, P.
2014-05-15
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.
The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D
Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.
2011-01-01
Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Hua
2015-10-01
Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.
NASA Astrophysics Data System (ADS)
Lu, C.; Tang, C.; Hu, J.; Chan, Y.; Chi, C.
2011-12-01
The subtropical climate and annual average about four typhoons, combined with frequent earthquakes trigger the landslide hazards in mountainous area in Taiwan. The potential Lushan landslide area is located at a famous hotspring district of Nantou County in central Taiwan which slides frequently due to heavy rainfall during pouring rain or typhoon seasons. Lushan landslide demonstrates a typical deep-seated (up to 80 meters) creep deformation of a slate rock slope with high dip angles. Under the weathering effects, the slide surface is currently extending to the lower slope was formed by the coalescing of the joints on the upper eastern slope as well as the interface between the sandy slate and the slate on the upper western slope. In this study, we simulate the process of Lushan landslide by using PFC3D, which is conducted by adopting the 3D granular discrete element method. In this simulation, we assume the whole sliding block as an inhomogeneous layer of weaken slate. We extrapolate the slip plane depth according to the result of borehole, TDR and RIF profiles. The main landslide area is about 18 hectares and the volume is about 9 million cubic meters, which is filled with 30 thousand ball elements. The topography is represented by 25,620 wall elements based on the 5m digital elevation model. We set 9 monitoring balls on surface to monitor the velocity and run-out path. According to the field work, we defined the weak planes by the strike and dip of cleavage and joint. From our results, the run-out zone is about 40 hectares. The debris will cover whole Lushan hotspring district in 20 seconds and all rock mass will almost stop after 150 seconds. The predicted maximum velocity is about 40m/s. According to the velocity profile, we can see three and four times accelerations from monitored particles. The collision of particles during sliding and complex terrain explains the fluctuation of velocity profile with time. The numerical results of this study will provide
2014-01-01
Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092
NASA Astrophysics Data System (ADS)
Zang, Mengyan; Gao, Wei; Lei, Zhou
2011-11-01
A contact algorithm in the context of the combined discrete element (DE) and finite element (FE) method is proposed. The algorithm, which is based on the node-to-surface method used in finite element method, treats each spherical discrete element as a slave node and the surfaces of the finite element domain as the master surfaces. The contact force on the contact interface is processed by using a penalty function method. Afterward, a modification of the combined DE/FE method is proposed. Following that, the corresponding numerical code is implemented into the in-house developed code. To test the accuracy of the proposed algorithm, the impact between two identical bars and the vibration process of a laminated glass plate under impact of elastic sphere are simulated in elastic range. By comparing the results with the analytical solution and/or that calculated by using LS-DYNA, it is found that they agree with each other very well. The accuracy of the algorithm proposed in this paper is proved.
Boyce, Christopher M; Holland, Daniel J; Scott, Stuart A; Dennis, John S
2013-12-18
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537
2013-01-01
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
3D unstructured mesh discontinuous finite element hydro
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
1995-07-01
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.
2015-04-01
Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change
3-D Finite Element Heat Transfer
Energy Science and Technology Software Center (ESTSC)
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Discrete beam combiners: 3D photonics for future interferometers
NASA Astrophysics Data System (ADS)
Minardi, S.; Saviauk, A.; Dreisow, F.; Nolte, S.; Pertsch, T.
2014-04-01
We present the results of an experimental research aiming at investigating the potential of three-dimensional (3D) photonics for astronomical interferometry. We found that a simple two dimensional array of evanescently coupled waveguides (the so called Discrete Beam Combiner - DBC) can be used to retrieve the mutual coherence properties of light collected by three telescopes with a precision comparable to state-of-the-art interferometric beam combiners. On the basis of these results, we envisage the future use of DBCs in optical/IR interferometry, with particular attention to large arrays of telescopes.
3D imaging of nanomaterials by discrete tomography.
Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G
2009-05-01
The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively. PMID:19269094
Discrete Method of Images for 3D Radio Propagation Modeling
NASA Astrophysics Data System (ADS)
Novak, Roman
2016-09-01
Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.
Derivation of new 3D discrete ordinate equations
Ahrens, C. D.
2012-07-01
The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)
3D imaging of semiconductor components by discrete laminography
Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.
2014-06-19
X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.
3D imaging of semiconductor components by discrete laminography
NASA Astrophysics Data System (ADS)
Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.
2014-06-01
X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.
Diffractive optical element for creating visual 3D images.
Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav
2016-05-01
A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530
Generic remeshing of 3D triangular meshes with metric-dependent discrete voronoi diagrams.
Valette, Sebastien; Chassery, Jean Marc; Prost, Rémy
2008-01-01
In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user defined vertex budget. Our approach can deal with a wide range of applications, from high quality mesh generation to shape approximation. By using appropriate metric constraints the method generates isotropic or anisotropic elements. Based on point-sampling, our algorithm combines the robustness and theoretical strength of Delaunay criteria with the efficiency of entirely discrete geometry processing . Besides the general described framework, we show experimental results using isotropic, quadric-enhanced isotropic and anisotropic metrics which prove the efficiency of our method on large meshes, for a low computational cost. PMID:18192716
Linking continuum mechanics and 3D discrete dislocation simulations
El-Azab, A. A.; Fivel, M.
1998-10-18
A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- indentation experiments, where the zone around the indenter-crystal contact undergoes significant permanent deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface displacement under the indenter. Other potential applications are mentioned in the text.
3-D Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver
NASA Astrophysics Data System (ADS)
Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre
2014-06-01
This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.
3D Finite Element Analysis of Particle-Reinforced Aluminum
NASA Technical Reports Server (NTRS)
Shen, H.; Lissenden, C. J.
2002-01-01
Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.
Beam and Truss Finite Element Verification for DYNA3D
Rathbun, H J
2007-07-16
The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.
Higher Order Lagrange Finite Elements In M3D
J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau
2004-12-17
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.
Advances in 3D electromagnetic finite element modeling
Nelson, E.M.
1997-08-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.
3D finite element simulations of high velocity projectile impact
NASA Astrophysics Data System (ADS)
Ožbolt, Joško; İrhan, Barış; Ruta, Daniela
2015-09-01
An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.
Application of edge-based finite elements and vector ABCs in 3D scattering
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1992-01-01
A finite element absorbing boundary condition (FE-ABC) solution of the scattering by arbitrary 3-D structures is considered. The computational domain is discretized using edge-based tetrahedral elements. In contrast to the node-based elements, edge elements can treat geometries with sharp edges, are divergence-less, and easily satisfy the field continuity condition across dielectric interfaces. They do, however, lead to a higher unknown count but this is balanced by the greater sparsity of the resulting finite element matrix. Thus, the computation time required to solve such a system iteratively with a given degree of accuracy is less than the traditional node-based approach. The purpose is to examine the derivation and performance of the ABC's when applied to 2-D and 3-D problems and to discuss the specifics of our FE-ABC implementation.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
3D Finite Element Trajectory Code with Adaptive Meshing
NASA Astrophysics Data System (ADS)
Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien
2004-11-01
Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.
Elemental concentration distribution in human fingernails - A 3D study
NASA Astrophysics Data System (ADS)
Pineda-Vargas, C. A.; Mars, J. A.; Gihwala, D.
2012-02-01
The verification of pathologies has normally been based on analysis of blood (serum and plasma), and physiological tissue. Recently, nails and in particular human fingernails have become an important medium for pathological studies, especially those of environmental origin. The analytical technique of PIXE has been used extensively in the analysis of industrial samples and human tissue specimens. The application of the analytical technique to nails has been mainly to bulk samples. In this study we use micro-PIXE and -RBS, as both complementary and supplementary, to determine the elemental concentration distribution of human fingernails of individuals. We report on the 3D quantitative elemental concentration distributions (QECDs) of various elements that include C, N and O as major elements (10-20%), P, S, Cl, K and Ca as minor elements (1-10%) and Fe, Mn, Zn, Ti, Na, Mg, Cu, Ni, Cr, Rb, Br, Sr and Se as trace elements (less than 1%). For PIXE and RBS the specimens were bombarded with a 3 MeV proton beam. To ascertain any correlations in the quantitative elemental concentration distributions, a linear traverse analysis was performed across the width of the nail. Elemental distribution correlations were also obtained.
Shell Element Verification & Regression Problems for DYNA3D
Zywicz, E
2008-02-01
A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
Finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.
1986-01-01
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-05-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
3D finite element model for treatment of cleft lip
NASA Astrophysics Data System (ADS)
Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong
2009-02-01
Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.
Geometrically-compatible 3-D Monte Carlo and discrete-ordinates methods
Morel, J.E.; Wareing, T.A.; McGhee, J.M.; Evans, T.M.
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was two-fold. The first purpose was to develop a deterministic discrete-ordinates neutral-particle transport scheme for unstructured tetrahedral spatial meshes, and implement it in a computer code. The second purpose was to modify the MCNP Monte Carlo radiation transport code to use adjoint solutions from the tetrahedral-mesh discrete-ordinates code to reduce the statistical variance of Monte Carlo solutions via a weight-window approach. The first task has resulted in a deterministic transport code that is much more efficient for modeling complex 3-D geometries than any previously existing deterministic code. The second task has resulted in a powerful new capability for dramatically reducing the cost of difficult 3-D Monte Carlo calculations.
Toward Verification of USM3D Extensions for Mixed Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.
2013-01-01
The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.
ATHENA 3D: A finite element code for ultrasonic wave propagation
NASA Astrophysics Data System (ADS)
Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.
2014-04-01
The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.
3D Chemical and Elemental Imaging by STXM Spectrotomography
Wang, J.; Karunakaran, C.; Lu, Y.; Hormes, J.; Hitchcock, A. P.; Prange, A.; Franz, B.; Harkness, T.; Obst, M.
2011-09-09
Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.
3-D Finite Element Analyses of the Egan Cavern Field
Klamerus, E.W.; Ehgartner, B.L.
1999-02-01
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2015-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.
Discrete elements method of neutral particle transport
Mathews, K.A.
1983-01-01
A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method.
An easy implementation of displacement calculations in 3D discrete dislocation dynamics codes
NASA Astrophysics Data System (ADS)
Fivel, Marc; Depres, Christophe
2014-10-01
Barnett's coordinate-free expression of the displacement field of a triangular loop in an isotropic media is revisited in a view to be implemented in 3D discrete dislocation dynamics codes. A general meshing procedure solving the problems of non-planar loops is presented. The method is user-friendly and can be used in numerical simulations since it gives the contribution of each dislocation segment to the global displacement field without defining the connectivity of closed loops. Easy to implement in parallel calculations, this method is successfully applied to large-scale simulations.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
3D finite element simulation of TIG weld pool
NASA Astrophysics Data System (ADS)
Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.
2012-07-01
The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
schemes. The results show that the tool is able to adequately replicate water depth and depth-averaged velocity of a dam-break wave, as well as velocity and displacement of floating cylindrical elements, thus validating its shock capturing capabilities and the coupling technique applied for this simple test case. Future development of the tool will incorporate a 2D hydrodynamic scheme and a 3D discrete element scheme in order to model the more complex processes associated with debris transport.
Discrete Element Modeling of Drop Tests
NASA Astrophysics Data System (ADS)
Wang, Yuannian; Tonon, Fulvio
2012-09-01
A discrete element code with impact model has been developed and calibrated to simulate the dynamic behavior of rock materials, with special regard to rock fragmentation upon impact during rock-fall analysis. The paper summarizes the discrete element code, the calibration algorithms developed to identify the model microparameters, and the impact model. Experimental work on drop tests is then used to validate the code on modeling impact fragmentation. It has been found that the developed discrete element code and impact model can reasonably simulate rock fragmentation in drop tests. The use of the discrete element code and impact model can provide good reference results in evaluating impact fragmentation in rock-fall analysis.
3D Spectral Element Method Simulations Of The Seismic Response of Caracas (Venezuela) Basin
NASA Astrophysics Data System (ADS)
Delavaud, E.; Vilotte, J.; Festa, G.; Cupillard, P.
2007-12-01
We present here 3D numerical simulations of the response of the Caracas (Venezuela) valley up to 5 Hz for different scenarios of plane wave excitation based on the regional seismicity. Attention is focused on the effects of the 3D basin geometry and of the adjacent regional topography. The simulations are performed using Spectral Element method (SEM) together with an unstructured hexahedral mesh discretization and perfectly matched layers (PML). These simulations show 3D amplification phenomena associated with complex wave reflexion, diffraction and focalisation patterns linked to the geometry of the basin. Time and frequency analysis reveal some interesting features both in terms of amplification and energy residence in the basin. The low frequency amplification pattern is mainly controlled by the early response of the basin to the incident plane wave while the high frequency amplification patterns result mainly from late arrivals where complex 3D wave diffraction phenomena are dominating and the memory of the initial excitation is lost. Interestingly enough, it is shown that H/V method correctly predict the low frequency amplification pattern when apply to the late part of the recorded seismograms. The complex high frequency amplification pattern is shown to be associated with surface wave generation at, and propagation from, sharp edges of the basin. Importance of 3D phenomena is assessed by comparison with simple 2D simulations. Significant differences in terms of time of residence, energy and amplification levels point out the interest of complete 3D modeling. In conclusions some of the limitations associated with the use of unstructured hexahedral meshes will be adressed. Despite the use of unstructured meshing tool, modeling the geometry of geological basins remain a complex and time consuming task. Possible extensions using more elaborate techniques like non conforming domain decomposition will be also discussed in conclusion.
Dynamics of free subduction from 3-D boundary element modeling
NASA Astrophysics Data System (ADS)
Li, Zhong-Hai; Ribe, Neil M.
2012-06-01
In order better to understand the physical mechanisms underlying free subduction, we perform three-dimensional boundary-element numerical simulations of a dense fluid sheet with thickness h and viscosity η2 sinking in an `ambient mantle' with viscosity η1. The mantle layer is bounded above by a traction-free surface, and is either (1) infinitely deep or (2) underlain by a rigid boundary at a finite depth H + d, similar to the typical geometry used in laboratory experiments. Instantaneous solutions in configuration (1) show that the sheet's dimensionless `stiffness' S determines whether the slab's sinking speed is controlled by the viscosity of the ambient mantle (S < 1) or the viscosity of the sheet itself (S > 10). Time-dependent solutions with tracers in configuration (2) demonstrate a partial return flow around the leading edge of a retreating slab and return flow around its sides. The extra `edge drag' exerted by the flow around the sides causes transverse deformation of the slab, and makes the sinking speed of a 3-D slab up to 40% less than that of a 2-D slab. A systematic investigation of the slab's interaction with the bottom boundary as a function of η2/η1 and H/h delineates a rich regime diagram of different subduction modes (trench retreating, slab folding, trench advancing) and reveals a new `advancing-folding' mode in which slab folding is preceded by advancing trench motion. The solutions demonstrate that mode selection is controlled by the dip of the leading edge of the slab at the time when it first encounters the bottom boundary.
A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements
Puso, M; Laursen, T; Solberg, J
2004-04-01
Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.
Calculation by the finite element method of 3-D turbulent flow in a centrifugal pump
NASA Astrophysics Data System (ADS)
Combes, J. F.
1992-02-01
In order to solve industrial flow problems in complex geometries, a finite element code, N3S, was developed. It allows the computation of a wide variety of 2-D or 3-D unsteady incompressible flows, by solving the Reynolds averaged Navier-Stokes equations together with a k-epsilon turbulence model. Some recent developments of this code concern turbomachinery flows, where one has to take into account periodic boundary conditions, as well as Coriolis and centrifugal forces. The numerical treatment is based on a fractional step method: at each time step, an advection step is solved successively by means of a characteristic method; a diffusion step for the scalar terms; and finally, a Generalized Stokes Problem by using a preconditioned Uzawa algorithm. The space discretization uses a standard Galerkin finite element method with a mixed formulation for the velocity and pressure. An application is presented of this code to the flow inside a centrifugal pump which was extensively tested on several air and water test rigs, and for which many quasi-3-D or Euler calculations were reported. The present N3S calculation is made on a finite element mesh comprising about 28000 tetrahedrons and 43000 nodes.
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration
NASA Astrophysics Data System (ADS)
Zhang, Y.; Key, K.; Ovall, J.; Holst, M.
2014-12-01
We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented
Animation Strategies for Smooth Transformations Between Discrete Lods of 3d Building Models
NASA Astrophysics Data System (ADS)
Kada, Martin; Wichmann, Andreas; Filippovska, Yevgeniya; Hermes, Tobias
2016-06-01
The cartographic 3D visualization of urban areas has experienced tremendous progress over the last years. An increasing number of applications operate interactively in real-time and thus require advanced techniques to improve the quality and time response of dynamic scenes. The main focus of this article concentrates on the discussion of strategies for smooth transformation between two discrete levels of detail (LOD) of 3D building models that are represented as restricted triangle meshes. Because the operation order determines the geometrical and topological properties of the transformation process as well as its visual perception by a human viewer, three different strategies are proposed and subsequently analyzed. The simplest one orders transformation operations by the length of the edges to be collapsed, while the other two strategies introduce a general transformation direction in the form of a moving plane. This plane either pushes the nodes that need to be removed, e.g. during the transformation of a detailed LOD model to a coarser one, towards the main building body, or triggers the edge collapse operations used as transformation paths for the cartographic generalization.
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Incorporating Discrete Irregular Fracture Zone Networks into 3D Paleohydrogeologic Simulations
NASA Astrophysics Data System (ADS)
Normani, S. D.
2015-12-01
Dual continuum computational models which include both porous media and discrete fracture zones are valuable tools in assessing groundwater migration and pathways in fractured rock systems. Fracture generation models can produce stochastic realizations of fracture networks which honor geological structures and fracture propagation behaviors. Surface lineament traces can be propagated to depth based on fracture zone statistics to produce representations of geological structures in rock. The generated discrete, complex and irregular fracture zone networks, represented as a triangulated mesh, are embedded using orthogonal quadrilateral elements within a three-dimensional hexahedral finite element mesh. A detailed coupled density-dependent paleohydrogeologic groundwater analysis of a hypothetical 104 km2 portion of the Canadian Shield has been conducted using the discrete-fracture dual continuum finite element model FRAC3DVS to investigate the characterization of large-scale fracture zone networks on groundwater and tracer movement during a 120,000 year paleoclimate cycle. Permeability reduction due to permafrost was also applied. Time series data for the depth of permafrost, along with ice thickness and lake depth, were provided by the University of Toronto (UofT) Glacial Systems Model. The crystalline rock between fracture zones was assigned properties characteristic of those reported for the Canadian Shield. Total dissolved solids concentrations of 300 g/L are encountered at depth. Surface water features and a Digital Elevation Model (DEM) were used in a GIS framework to define the watershed boundaries at surface water divides and to populate the finite element mesh. This work will illustrate the long-term evolution and stability of the geosphere and groundwater systems to external perturbations caused by glaciation through the use of performance measures such as Mean Life Expectancy and the migration of a unit tracer to depth over a paleoclimate cycle.
3D Multi-spectral Image-guided Near-infrared Spectroscopy using Boundary Element Method
Srinivasan, Subhadra; Pogue, Brian W.; Paulsen, Keith D.
2010-01-01
Image guided (IG) Near-Infrared spectroscopy (NIRS) has the ability to provide high-resolution metabolic and vascular characterization of tissue, with clinical applications in diagnosis of breast cancer. This method is specific to multimodality imaging where tissue boundaries obtained from alternate modalities such as MRI/CT, are used for NIRS recovery. IG-NIRS is severely limited in 3D by challenges such as volumetric meshing of arbitrary anatomical shapes and computational burden encountered by existing models which use finite element method (FEM). We present an efficient and feasible alternative to FEM using boundary element method (BEM). The main advantage is the use of surface discretization which is reliable and more easily generated than volume grids in 3D and enables automation for large number of clinical data-sets. The BEM has been implemented for the diffusion equation to model light propagation in tissue. Image reconstruction based on BEM has been tested in a multi-threading environment using four processors which provides 60% improvement in computational time compared to a single processor. Spectral priors have been implemented in this framework and applied to a three-region problem with mean error of 6% in recovery of NIRS parameters. PMID:21179380
Parallel 3D Finite Element Numerical Modelling of DC Electron Guns
Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC
2008-02-04
In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.
Discrete element modelling of bedload transport
NASA Astrophysics Data System (ADS)
Loyer, A.; Frey, P.
2011-12-01
Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth
Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila
Preeti, T.; Rulko, R.
2012-07-01
In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculations for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)
NASA Astrophysics Data System (ADS)
Hodgetts, David; Seers, Thomas
2015-04-01
Fault systems are important structural elements within many petroleum reservoirs, acting as potential conduits, baffles or barriers to hydrocarbon migration. Large, seismic-scale faults often serve as reservoir bounding seals, forming structural traps which have proved to be prolific plays in many petroleum provinces. Though inconspicuous within most seismic datasets, smaller subsidiary faults, commonly within the damage zones of parent structures, may also play an important role. These smaller faults typically form narrow, tabular low permeability zones which serve to compartmentalize the reservoir, negatively impacting upon hydrocarbon recovery. Though considerable improvements have been made in the visualization field to reservoir-scale fault systems with the advent of 3D seismic surveys, the occlusion of smaller scale faults in such datasets is a source of significant uncertainty during prospect evaluation. The limited capacity of conventional subsurface datasets to probe the spatial distribution of these smaller scale faults has given rise to a large number of outcrop based studies, allowing their intensity, connectivity and size distributions to be explored in detail. Whilst these studies have yielded an improved theoretical understanding of the style and distribution of sub-seismic scale faults, the ability to transform observations from outcrop to quantities that are relatable to reservoir volumes remains elusive. These issues arise from the fact that outcrops essentially offer a pseudo-3D window into the rock volume, making the extrapolation of surficial fault properties such as areal density (fracture length per unit area: P21), to equivalent volumetric measures (i.e. fracture area per unit volume: P32) applicable to fracture modelling extremely challenging. Here, we demonstrate an approach which harnesses advances in the extraction of 3D trace maps from surface reconstructions using calibrated image sequences, in combination with a novel semi
Vector algorithms for geometrically nonlinear 3D finite element analysis
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1989-01-01
Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.
Lagrange and average interpolation over 3D anisotropic elements
NASA Astrophysics Data System (ADS)
Acosta, Gabriel
2001-10-01
An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends "weakly" (improving the results given in Durán (Math. Comp. 68 (1999) 187-199) on the uniformity of the mesh in each direction. For tetrahedra, the constant also depends on the maximum angle of the element. On the other hand, merging several known results (Acosta and Durán, SIAM J. Numer. Anal. 37 (1999) 18-36; Durán, Math. Comp. 68 (1999) 187-199; Krízek, SIAM J. Numer. Anal. 29 (1992) 513-520; Al Shenk, Math. Comp. 63 (1994) 105-119), we prove optimal order error for the -Lagrange interpolation in W1,p, p>2, with a constant depending on p as well as the maximum angle of the element. Again, under the maximum angle condition, optimal order error estimates are obtained in the H1 norm for higher degree interpolations.
NASA Astrophysics Data System (ADS)
Li, Dian-Sen; Fang, Dai-Ning; Lu, Zi-Xing; Yang, Zhen-Yu; Jiang, Nan
2010-08-01
In the first part of the work, we have established a new parameterized three-dimensional (3D) finite element model (FEM) which precisely simulated the spatial configuration of the braiding yarns and considered the cross-section deformation as well as the surface contact relationship between the yarns. This paper presents a prediction of the effective elastic properties and the meso-scale mechanical response of 3D braided composites to verify the validation of the FEM. The effects of the braiding parameters on the mechanical properties are investigated in detail. By analyzing the deformation and stress nephogram of the model, a reasonable overall stress field is provided and the results well support the strength prediction. The results indicate it is convenient to predict all the elastic constants of 3D braided composites with different parameters simultaneously using the FEM. Moreover, the FEM can successfully predict the meso-scale mechanical response of 3D braided composites containing periodical structures.
Towards improved 3D cross-borehole electrical resistivity imaging of discrete fracture networks
NASA Astrophysics Data System (ADS)
Robinson, J.; Slater, L. D.; Johnson, T. J.; Ntarlagiannis, D.; Lacombe, P.; Johnson, C. D.; Tiedeman, C. R.; Goode, D.; Day-Lewis, F. D.; Shapiro, A. M.; Lane, J. W.
2012-12-01
There is a need to better characterize discrete fractures in contaminated bedrock aquifers to determine the migration of injected remediation amendments away from boreholes. A synthetic cross-borehole electrical resistivity study was conducted assuming a discrete fracture model of an existing contaminated site with known fracture locations. Four boreholes and two discrete fracture zones, assumed to be the dominant electrical and hydraulically conductive pathways, were explicitly modeled within an unstructured tetrahedral finite-element mesh. To simulate field conditions, 5% random Gaussian noise was added to all synthetic datasets. We first evaluated different regularization constraints starting with an uninformed smoothness-constrained inversion, to which a priori information was incrementally added. We found major improvements when (1) smoothness regularization constraints were relaxed (or disconnected) along boreholes and fractures, (2) a homogeneous conductivity was assumed along boreholes, and (3) borehole conductivity constraints, which could be determined from a fluid specific-conductance log, were applied. We also evaluated the effect of including borehole packers on the fracture-zone model recovery. We found the estimated fracture-zone conductivities with the inclusion of packers were comparable to similar trials excluding the use of packers regardless of electrical potential changes. The misplacement of fracture regularization disconnects easily can be misinterpreted as actual fracture locations. Conductivities within misplaced disconnects were near the starting model value and removing smoothing between boreholes and assumed fracture locations helped in identifying incorrectly located fracture regularization disconnects. Model sensitivity structure improved when regularization disconnects were (1) applied along the boreholes and fracture zones, and (2) fracture-zone regularization disconnects were placed where actual fractures existed. A field study
NASA Astrophysics Data System (ADS)
Meheust, Y.; De Dreuzy, J.; Pichot, G.
2011-12-01
Flow channeling and permeability scaling in fractured media have been classically addressed either at the fracture- or at the network- scales. In the latter case they are linked to the topological structure of the network, while at the fracture scale they are controlled by the variability of the local aperture distribution inside individual fractures. In this study we analyze these two combined effects, investigating how flow localization below the scale of individual fractures influences that at the network scale and the resulting medium permeability. This is done by use of a new highly-resolved 3D discrete fracture network model (DFN). The local apertures of individual fractures are distributed according to a truncated Gaussian law, and exhibit self-affine spatial correlations that are bounded by an upper cutoff scale Lc; Lc and the fracture closure, defined as the ratio of the aperture fluctuations at scale Lc to the mean aperture, are considered homogeneous over the DFN. The network topology is controlled by a homogeneous scalar fracture density and a power law fracture length distribution. We have varied these features to investigate a large variety of DFN topologies, from sparse networks with varying degrees of fracture interconnections, flow bottlenecks and dead-ends (Fig. 1a), to dense well-connected networks (Fig. 1b). We have also investigated a large range of fracture closures, performing extensive simulations of about 105 different DFN realizations. At the fracture scale, accounting for local aperture fluctuations leads to a monotical deviation (which can exceed 50%) of the equivalent fracture transmissivity from the parallel plate behavior. At the network scale we observe a complex interaction between flow channeling within fracture planes and flow localization in the network. This interaction is controlled by the location of fracture interactions with respect to that of low local transmissivity zones (particularly the closed zones), in the fracture
Courau, T.; Moustafa, S.; Plagne, L.; Poncot, A.
2013-07-01
As part of its activity, EDF R and D is developing a new nuclear core simulation code named COCAGNE. This code relies on DIABOLO, a Simplified PN (SPN) method to compute the neutron flux inside the core for eigenvalue calculations. In order to assess the accuracy of SPN calculations, we have developed DOMINO, a new 3D Cartesian SN solver. The parallel implementation of DOMINO is very efficient and allows to complete an eigenvalue calculation involving around 300 x 10{sup 9} degrees of freedom within a few hours on a single shared-memory supercomputing node. This computation corresponds to a 26-group S{sub 8} 3D PWR core model used to assess the SPN accuracy. At the pin level, the maximal error for the SP{sub 5} DIABOLO fission production rate is lower than 0.2% compared to the S{sub 8} DOMINO reference for this 3D PWR core model. (authors)
NASA Astrophysics Data System (ADS)
Mulder, W. A.; Zhebel, E.; Minisini, S.
2014-02-01
We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into six tetrahedra with periodic boundary conditions and its distortions. The Courant-Friedrichs-Lewy stability limit contains an element diameter for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first-degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that the mass-lumped continuous and the discontinuous Galerkin finite elements of degree 2 have comparable stability conditions, whereas the mass-lumped elements of degree one and three allow for larger time steps.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Straayer, J. W.
1975-01-01
The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.
A 3D, finite element model for baroclinic circulation on the Vancouver Island continental shelf
Walters, R.A.; Foreman, M.G.G.
1992-01-01
This paper describes the development and application of a 3-dimensional model of the barotropic and baroclinic circulation on the continental shelf west of Vancouver Island, Canada. A previous study with a 2D barotropic model and field data revealed that several tidal constituents have a significant baroclinic component (the K1 in particular). Thus we embarked on another study with a 3D model to study the baroclinic effects on the residual and several selected tidal constituents. The 3D model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for density so that density gradient forcing is included in the momentum equations. However, the study presented here describes diagnostic calculations for the baroclinic residual circulation only. The model is sufficiently efficient that it encourages sensitivity testing with a large number of model runs. In this sense, the model is akin to an extension of analytical solutions to the domain of irregular geometry and bottom topography where this parameter space can be explored in some detail. In particular, the consequences of the sigma coordinate system used by the model are explored. Test cases using an idealized representation of the continental shelf, shelf break and shelf slope, lead to an estimation of the velocity errors caused by interpolation errors inherent in the sigma coordinate system. On the basis of these estimates, the computational grid used in the 2D model is found to have inadequate resolution. Thus a new grid is generated with increased
Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method
NASA Astrophysics Data System (ADS)
Grayver, Alexander V.; Bürg, Markus
2014-07-01
We present a robust and scalable solver for time-harmonic Maxwell's equations for problems with large conductivity contrasts, wide range of frequencies, stretched grids and locally refined meshes. The solver is part of the fully distributed adaptive 3-D electromagnetic modelling scheme which employs the finite element method and unstructured non-conforming hexahedral meshes for spatial discretization using the open-source software deal.II. We use the complex-valued electric field formulation and split it into two real-valued equations for which we utilize an optimal block-diagonal pre-conditioner. Application of this pre-conditioner requires the solution of two smaller real-valued symmetric problems. We solve them by using either a direct solver or the conjugate gradient method pre-conditioned with the recently introduced auxiliary space technique. The auxiliary space pre-conditioner reformulates the original problem in form of several simpler ones, which are then solved using highly efficient algebraic multigrid methods. In this paper, we consider the magnetotelluric case and verify our numerical scheme by using COMMEMI 3-D models. Afterwards, we run a series of numerical experiments and demonstrate that the solver converges in a small number of iterations for a wide frequency range and variable problem sizes. The number of iterations is independent of the problem size, but exhibits a mild dependency on frequency. To test the stability of the method on locally refined meshes, we have implemented a residual-based a posteriori error estimator and compared it with uniform mesh refinement for problems up to 200 million unknowns. We test the scalability of the most time consuming parts of our code and show that they fulfill the strong scaling assumption as long as each MPI process possesses enough degrees of freedom to alleviate communication overburden. Finally, we refer back to a direct solver-based pre-conditioner and analyse its complexity in time. The results show
A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.
1980-01-01
The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.
McLaughlin, B.M. . E-mail: b.mclaughlin@qub.ac.uk; Scott, M.P.; Sunderland, A.G.; Noble, C.J.; Burke, V.M.; Ramsbottom, C.A.; Reid, R.H.G.; Hibbert, A.; Bell, K.L.; Burke, P.G.
2007-01-15
Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (T {sub e} in degrees Kelvin) in the range 2 x 10{sup 3} to 1 x 10{sup 6}. Forbidden transitions results are given between the 3d{sup 6}, 3d{sup 5}4s, and the 3d{sup 5}4p manifolds applicable to the modeling of laboratory and astrophysical plasmas.
Hallquist, J.O.
1981-01-01
A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.
BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0
NASA Technical Reports Server (NTRS)
1991-01-01
The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.
An augmented Lagrangian finite element formulation for 3D contact of biphasic tissues.
Guo, Hongqiang; Spilker, Robert L
2014-01-01
Biphasic contact analysis is essential to obtain a complete understanding of soft tissue biomechanics, and the importance of physiological structure on the joint biomechanics has long been recognised; however, up to date, there are no successful developments of biphasic finite element contact analysis for three-dimensional (3D) geometries of physiological joints. The aim of this study was to develop a finite element formulation for biphasic contact of 3D physiological joints. The augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The biphasic contact method was implemented in the commercial software COMSOL Multiphysics 4.2(®) (COMSOL, Inc., Burlington, MA). The accuracy of the implementation was verified using 3D biphasic contact problems, including indentation with a flat-ended indenter and contact of glenohumeral cartilage layers. The ability of the method to model multibody biphasic contact of physiological joints was proved by a 3D knee model. The 3D biphasic finite element contact method developed in this study can be used to study the biphasic behaviours of the physiological joints. PMID:23181617
NASA Astrophysics Data System (ADS)
Moortgat, J.; Firoozabadi, A.
2013-12-01
Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.
Discrete element modeling of subglacial sediment deformation
NASA Astrophysics Data System (ADS)
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.; Tulaczyk, Slawek; Larsen, Nicolaj K.; Tylmann, Karol
2013-12-01
The Discrete Element Method (DEM) is used in this study to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. Complementary to analog experiments, the numerical approach allows a detailed analysis of the material dynamics and the shear zone development during progressive shear strain. The geometry of the heterogeneous stress network is visible in the form of force-carrying grain bridges and adjacent, volumetrically dominant, inactive zones. We demonstrate how the shear zone thickness and dilation depend on the level of normal (overburden) stress, and we show how high normal stress can mobilize material to great depths. The particle rotational axes tend to align with progressive shear strain, with rotations both along and reverse to the shear direction. The results from successive laboratory ring-shear experiments on simple granular materials are compared to results from similar numerical experiments. The simulated DEM material and all tested laboratory materials deform by an elastoplastic rheology under the applied effective normal stress. These results demonstrate that the DEM is a viable alternative to continuum models for small-scale analysis of sediment deformation. It can be used to simulate the macromechanical behavior of simple granular sediments, and it provides an opportunity to study how microstructures in subglacial sediments are formed during progressive shear strain.
Discrete Element Modeling for Mobility and Excavation
NASA Astrophysics Data System (ADS)
Knuth, M. A.; Hopkins, M. A.
2011-12-01
The planning and completion of mobility and excavation efforts on the moon requires a thorough understanding of the planetary regolith. In this work, a discrete element method (DEM) model is created to replicate those activities in the laboratory and for planning mission activities in the future. The crux of this work is developing a particle bed that best replicates the regolith tool/wheel interaction seen in the laboratory. To do this, a DEM geotechnical triaxial strength cell was created allowing for comparison of laboratory JSC-1a triaxial tests to DEM simulated soils. This model relies on a triangular lattice membrane covered triaxial cell for determining the macroscopic properties of the modeled granular material as well as a fast and efficient contact detection algorithm for a variety of grain shapes. Multiple grain shapes with increasing complexity (ellipsoid, poly-ellipsoid and polyhedra) have been developed and tested. This comparison gives us a basis to begin scaling DEM grain size and shape to practical values for mobility and excavation modeling. Next steps include development of a DEM scoop for percussive excavation testing as well as continued analysis of rover wheel interactions using a wide assortment of grain shape and size distributions.
Charged-particle Gun Design with 3D Finite-element Methods
NASA Astrophysics Data System (ADS)
Humphries, Stanley
2002-04-01
The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.
Generation of Random Particle Packings for Discrete Element Models
NASA Astrophysics Data System (ADS)
Abe, S.; Weatherley, D.; Ayton, T.
2012-04-01
An important step in the setup process of Discrete Element Model (DEM) simulations is the generation of a suitable particle packing. There are quite a number of properties such a granular material specimen should ideally have, such as high coordination number, isotropy, the ability to fill arbitrary bounding volumes and the absence of locked-in stresses. An algorithm which is able to produce specimens fulfilling these requirements is the insertion based sphere packing algorithm originally proposed by Place and Mora, 2001 [2] and extended in this work. The algorithm works in two stages. First a number of "seed" spheres are inserted into the bounding volume. In the second stage the gaps between the "seed" spheres are filled by inserting new spheres in a way so they have D+1 (i.e. 3 in 2D, 4 in 3D) touching contacts with either other spheres or the boundaries of the enclosing volume. Here we present an implementation of the algorithm and a systematic statistical analysis of the generated sphere packings. The analysis of the particle radius distribution shows that they follow a power-law with an exponent ≈ D (i.e. ≈3 for a 3D packing and ≈2 for 2D). Although the algorithm intrinsically guarantees coordination numbers of at least 4 in 3D and 3 in 2D, the coordination numbers realized in the generated packings can be significantly higher, reaching beyond 50 if the range of particle radii is sufficiently large. Even for relatively small ranges of particle sizes (e.g. Rmin = 0.5Rmax) the maximum coordination number may exceed 10. The degree of isotropy of the generated sphere packing is also analysed in both 2D and 3D, by measuring the distribution of orientations of vectors joining the centres of adjacent particles. If the range of particle sizes is small, the packing algorithm yields moderate anisotropy approaching that expected for a face-centred cubic packing of equal-sized particles. However, once Rmin < 0.3Rmax a very high degree of isotropy is demonstrated in
Numerical solution of 3-D magnetotelluric using vector finite element method
NASA Astrophysics Data System (ADS)
Prihantoro, Rudy; Sutarno, Doddy; Nurhasan
2015-09-01
Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.
Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).
Energy Science and Technology Software Center (ESTSC)
1992-03-24
HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.
3D parallel computations of turbofan noise propagation using a spectral element method
NASA Astrophysics Data System (ADS)
Taghaddosi, Farzad
2006-12-01
A three-dimensional code has been developed for the simulation of tone noise generated by turbofan engine inlets using computational aeroacoustics. The governing equations are the linearized Euler equations, which are further simplified to a set of equations in terms of acoustic potential, using the irrotational flow assumption, and subsequently solved in the frequency domain. Due to the special nature of acoustic wave propagation, the spatial discretization is performed using a spectral element method, where a tensor product of the nth-degree polynomials based on Chebyshev orthogonal functions is used to approximate variations within hexahedral elements. Non-reflecting boundary conditions are imposed at the far-field using a damping layer concept. This is done by augmenting the continuity equation with an additional term without modifying the governing equations as in PML methods. Solution of the linear system of equations for the acoustic problem is based on the Schur complement method, which is a nonoverlapping domain decomposition technique. The Schur matrix is first solved using a matrix-free iterative method, whose convergence is accelerated with a novel local preconditioner. The solution in the entire domain is then obtained by finding solutions in smaller subdomains. The 3D code also contains a mean flow solver based on the full potential equation in order to take into account the effects of flow variations around the nacelle on the scattering of the radiated sound field. All aspects of numerical simulations, including building and assembling the coefficient matrices, implementation of the Schur complement method, and solution of the system of equations for both the acoustic and mean flow problems are performed on multiprocessors in parallel using the resources of the CLUMEQ Supercomputer Center. A large number of test cases are presented, ranging in size from 100 000-2 000 000 unknowns for which, depending on the size of the problem, between 8-48 CPU's are
3D finite element analysis of porous Ti-based alloy prostheses.
Mircheski, Ile; Gradišar, Marko
2016-11-01
In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price. PMID:27015664
Finite Element Analysis of Thermo-Mechanical Properties of 3D Braided Composites
NASA Astrophysics Data System (ADS)
Jiang, Li-li; Xu, Guo-dong; Cheng, Su; Lu, Xia-mei; Zeng, Tao
2014-04-01
This paper presents a modified finite element model (FEM) to investigate the thermo-mechanical properties of three-dimensional (3D) braided composite. The effective coefficients of thermal expansion (CTE) and the meso-scale mechanical response of 3D braided composites are predicted. The effects of the braiding angle and fiber volume fraction on the effective CTE are evaluated. The results are compared to the experimental data available in the literature to demonstrate the accuracy and reliability of the present method. The tensile stress distributions of the representative volume element (RVE) are also outlined. It is found that the stress of the braiding yarn has a significant increase with temperature rise; on the other hand, the temperature change has an insignificant effect on the stress of the matrix. In addition, a rapid decrease in the tensile strength of 3D braided composites is observed with the increase in temperature. It is revealed that the thermal conditions have a significant effect on the strength of 3D braided composites. The present method provides an effective tool to predict the stresses of 3D braided composites under thermo-mechanical loading.
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1993-01-01
A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
A finite element analysis of a 3D auxetic textile structure for composite reinforcement
NASA Astrophysics Data System (ADS)
Ge, Zhaoyang; Hu, Hong; Liu, Yanping
2013-08-01
This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.
Discrete Element Modeling of Triboelectrically Charged Particles
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.
2008-01-01
Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and
Discrete element modelling of subglacial sediment deformation
NASA Astrophysics Data System (ADS)
Christensen, A. D.; Egholm, D. L.; Piotrowski, J. A.; Tulaczyk, S.
2012-04-01
Soft, deformable sediments are often present under glaciers. Subglacial sediments deform under the differential load of the ice, and this causes the overlying glacier to accelerate its motion. Understanding the rheology of subglacial sediment is therefore important for models of glacial dynamics. Previous studies of the mechanical behaviour of subglacial sediments have primarily relied on analytical considerations and laboratory shearing experiments. As a novel approach, the Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed that is exposed to stress conditions comparable to subglacial environments. The numerical approach allows close monitoring of the mechanical and rheological behaviour under a range of conditions. Of special interest is bed shear strength, strain distribution and -localization, mode of deformation, and role of effective normal pressure during shearing. As a calibration benchmark, results from laboratory ring-shear experiments on granular material are compared to similar numerical experiments. The continuously recorded stress dynamics in the laboratory shear experiments are compared to DEM experiments, and the micro-mechanical parameters in the contact model of the DEM code are calibrated to match the macroscopic Mohr-Coulomb failure criteria parameters, constrained from successive laboratory shear tests under a range of normal pressures. The data-parallel nature of the basic DEM formulation makes the problem ideal for utilizing the high arithmetic potential of modern general-purpose GPUs. Using the Nvidia Cuda C toolkit, the algorithm is formulated for spherical particles in three dimensions with a soft-body contact model. Scene rendering is performed using a custom Cuda ray-tracing algorithm. Efforts on optimization of the particle algorithm are discussed, and future plans of expansion are presented.
3D modeling of high-Tc superconductors by finite element software
NASA Astrophysics Data System (ADS)
Zhang, Min; Coombs, T. A.
2012-01-01
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-Tc superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.
Application of 3D X-ray CT data sets to finite element analysis
Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.
1995-08-31
Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.
Element-specific X-ray phase tomography of 3D structures at the nanoscale.
Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Holler, Mirko; Huthwelker, Thomas; Menzel, Andreas; Vartiainen, Ismo; Müller, Elisabeth; Kirk, Eugenie; Gliga, Sebastian; Raabe, Jörg; Heyderman, Laura J
2015-03-20
Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard x-ray phase imaging and resonant elastic scattering to achieve ab initio element-specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are able to locate and quantify the Co layer in our sample to a 3D spatial resolution of 25 nm. With a quantitative determination of the electron density we can determine that the Co layer is oxidized, which is confirmed with microfluorescence experiments. PMID:25839287
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-07-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-05-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
Donner, René; Menze, Bjoern H; Bischof, Horst; Langs, Georg
2013-12-01
The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates' weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. PMID:23664450
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
Discrete Element Modeling of Complex Granular Flows
NASA Astrophysics Data System (ADS)
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
Discrete element modelling of bed load transport
NASA Astrophysics Data System (ADS)
Maurin, Raphael; Chareyre, Bruno; Chauchat, Julien; Frey, Philippe
2013-04-01
Discrete element method (DEM) is a numerical method to simulate an assembly of particles, which has been widely used in mechanics (soil, rock) and granular physics. DEM consists in considering undeformable particles and modelling the intergranular interactions with simple laws (e.g. linear elastic and Coulomb friction law). The expression of the equation of motion on each particle considering the nearest neighbor interactions allows then to solve the dynamical behavior of the system explicitely. Since its introduction more than thirty years ago, this type of model has proven its ability to well describe the behavior of granular media in several different situations, from quasi-static system to flow of granular media. Bedload transport in streams is characterized by particle transport restricted to the interface between fluid flow and immerged granular media, where particles are rolling, sliding or in saltation over the bed. This situation corresponds to the larger particles transported on the bed in stream channels and has a great influence on geomorphology. Physical mechanisms and processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known. This is partly due to the small attention given to the role of granular interactions. Starting from these considerations, we used DEM to reproduce experiments carried out with spherical glass beads in an experimental steep and narrow flume. This was done in order to focus on granular interactions and to have access to parameters not available in the experiment. DEM open-source code Yade was coupled with a simplified fluid model, taking into account the different hydrodynamical interactions (buoyancy, drag, lift...) experienced by the particles. Numerical results obtained from the simulation are compared with an experimental data set established previously at the laboratory. It consists in monodisperse and bidisperse mixtures of coarse spherical glass beads entrained by a shallow
Discrete element modeling of subglacial sediment deformation
NASA Astrophysics Data System (ADS)
Damsgaard, A.; Egholm, D. L.; Piotrowski, J. A.; Tulaczyk, S. M.; Larsen, N. K.
2013-12-01
The Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. In the DEM, the material is simulated on a grain-by-grain basis, and defining the micromechanical properties of the inter-particle contacts parameterizes the model. For validating the numerical approach, the macromechanical behavior of the numerical material is compared to the results from successive laboratory ring-shear experiments. Overall, there is a good agreement between the geotechnical behavior of the real granular materials and the numerical results. The materials deform by an elasto-plastic rheology under the applied effective normal stress and horizontal shearing. The peak and ultimate shear strengths depend linearly on the magnitude of the normal stress by the Mohr-Coulomb constitutive relationship. The numerical approach allows for a detailed analysis of the material dynamics and shear zone development during progressive shear strain. We demonstrate how the shear zone thickness and dilation increase with the magnitude of the normal stress. The stresses are distributed heterogeneously through the granular material along stress-carrying force chains. Between the force chains are the volumetrically dominant inactive zones. Overall, the force chain orientation is parallel to the maximum compressive stress. The data-parallel nature of the basic DEM formulation makes the problem ideal for utilizing the high arithmetic potential of modern general-purpose GPUs. Using the Nvidia CUDA C toolkit, the algorithm is formulated for spherical particles in three dimensions with a linear-elastic soft-body contact model. We have coupled the DEM model to a model for porewater flow, and we present early results of particle-porewater interactions. The two-way mechanical coupling is used to investigate pore-pressure feedbacks, which may be very important for the dynamics of soft
Discrete elements method of neutral particle transport. Doctoral thesis
Mathews, K.A.
1983-10-01
A new 'discrete elements' (LN) transport method is derived and compared to the discrete ordinates SN method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, LN is more consistently convergent toward a Monte Carlo benchmark solution than SN, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the LN method. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The zeroth and first angular moments of the directional flux, over each element, are estimated by numerical quadrature and yield a flux-weighted average streaming direction for the element. (Data for this estimation are fluxes in fixed directions calculated as in SN.)
NASA Astrophysics Data System (ADS)
Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan; Majer, Johannes
2016-07-01
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 1017 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
NASA Astrophysics Data System (ADS)
Chung, Jin-Hwan; Min, Bong-Ki; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub
2014-11-01
Nano flower of a new discrete Pb (II) coordination compound, [Pb(pcih)2] (1), (pcih = 2-pyridinecarbaldehyde isonicotinoylhy-drazonate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), FT-IR spectroscopy and elemental analyses. Structural determination of compound 1 reveals the Pb (II) ion is six coordinated, bonded to four nitrogen and two oxygen atoms from two “pcih” ligands. Through strong π-π interactions, the overall structure of 1 is 1D supramolecular chain and with other directional intermolecular interactions, it is further extended into a three dimensional (3D) supramolecular structure. Density functional theory calculations (B3LYP functional) have been performed on complex 1 to provide a qualitative theoretical interpretation of their structural parameters, charge distributions and IR spectra. PbO nanoparticles are obtained by thermolysis of 1 at 180 °C with oleic acid as a surfactant.
The 3D folding of metazoan genomes correlates with the association of similar repetitive elements
Cournac, Axel; Koszul, Romain; Mozziconacci, Julien
2016-01-01
The potential roles of the numerous repetitive elements found in the genomes of multi-cellular organisms remain speculative. Several studies have suggested a role in stabilizing specific 3D genomic contacts. To test this hypothesis, we exploited inter-chromosomal contacts frequencies obtained from Hi-C experiments and show that the folding of the human, mouse and Drosophila genomes is associated with a significant co-localization of several specific repetitive elements, notably many elements of the SINE family. These repeats tend to be the oldest ones and are enriched in transcription factor binding sites. We propose that the co-localization of these repetitive elements may explain the global conservation of genome folding observed between homologous regions of the human and mouse genome. Taken together, these results support a contribution of specific repetitive elements in maintaining and/or reshaping genome architecture over evolutionary times. PMID:26609133
Melting points and chemical bonding properties of 3d transition metal elements
NASA Astrophysics Data System (ADS)
Takahara, Wataru
2014-08-01
The melting points of 3d transition metal elements show an unusual local minimal peak at manganese across Period 4 in the periodic table. The chemical bonding properties of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel and copper are investigated by the DV-Xα cluster method. The melting points are found to correlate with the bond overlap populations. The chemical bonding nature therefore appears to be the primary factor governing the melting points.
Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics
NASA Technical Reports Server (NTRS)
Kayrak, C.; Ozsoy, T.
1985-01-01
An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.
Cleary, Paul W; Prakash, Mahesh
2004-09-15
Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed. PMID:15306427
Setting up virgin stress conditions in discrete element models
Rojek, J.; Karlis, G.F.; Malinowski, L.J.; Beer, G.
2013-01-01
In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain. PMID:27087731
Wheat mill stream properties for discrete element method modeling
Technology Transfer Automated Retrieval System (TEKTRAN)
A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...
Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake
NASA Astrophysics Data System (ADS)
Qu, W.; Cheng, H.; Shi, Y.
2015-12-01
The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1988-01-01
This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.
Finite volume and finite element methods applied to 3D laminar and turbulent channel flows
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2014-12-10
The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.
OPTIMIZATION OF 3-D IMAGE-GUIDED NEAR INFRARED SPECTROSCOPY USING BOUNDARY ELEMENT METHOD
Srinivasan, Subhadra; Carpenter, Colin; Pogue, Brian W.; Paulsen, Keith D.
2010-01-01
Multimodality imaging systems combining optical techniques with MRI/CT provide high-resolution functional characterization of tissue by imaging molecular and vascular biomarkers. To optimize these hybrid systems for clinical use, faster and automatable algorithms are required for 3-D imaging. Towards this end, a boundary element model was used to incorporate tissue boundaries from MRI/CT into image formation process. This method uses surface rendering to describe light propagation in 3-D using diffusion equation. Parallel computing provided speedup of up to 54% in time of computation. Simulations showed that location of NIRS probe was crucial for quantitatively accurate estimation of tumor response. A change of up to 61% was seen between cycles 1 and 3 in monitoring tissue response to neoadjuvant chemotherapy. PMID:20523751
Spectral Element Modeling of 3D Site Effects in the Alpine Valley of Grenoble, France.
NASA Astrophysics Data System (ADS)
Chaljub, E.; Cornou, C.; Gueguen, P.; Causse, M.; Komatitsch, D.
2004-12-01
Sitting on top of a 3D Y-shaped basin filled mostly with late quaternary deposits, the city of Grenoble (French Alps) is subject to strong amplification of seismic motion (see the SISMOVALP web site). In order to assess the magnitude and 3D complexity of these site effects, we propose a spectral element modeling approach previously applied to the prediction of strong ground motion in the Los Angeles sedimentary basin (Komatitstch et al., 2004). The spectral element method naturally accounts for depth variations of the free surface and of internal interfaces, such as the contact between the sediments and the bedrock. It is also well suited to model the propagation of surface waves generated at the basin edges. The 3D spectral element mesh honors the stiff surface topography of the mountains surrounding the city, as well as the bedrock depth obtained from extensive gravimetric measurements. In the basin, we use a generic 1D velocity model derived from geophysical measurements performed in a deep borehole that reached the substratum at 550 m depth in 1999. Results and comparison to data are shown in the time and frequency domain for small-size (Mw=2.5 and Mw=3.5) local events recorded in the past years. Then, a Mw=5.5 strike-slip event is simulated on the eastern border of the basin along the Belledonne fault, and the results are compared to those obtained by the method of Empirical Green Functions. References: http://www-lgit.obs.ujf-grenoble.fr/sismovalp/ Simulations of ground motion in the Los Angeles basin based upon the spectral- element method, Dimitri Komatitsch, Qinya Liu, Jeroen Tromp, Peter Süss, Christiane Stidham and John H. Shaw, Bulletin of the Seismological Society of America, vol. 94, p 187-206 (2004).
Anomalous surface segregation behaviour of some 3d elements in ferromagnetic iron.
Gupta, Michèle; Gupta, Raju P
2013-10-16
The segregation of Cr in Fe is known to be anomalous since the barrier for surface segregation of Cr is not determined by the topmost surface layer, as one would expect, but rather by the subsurface layer where the energy of segregation is much larger and endothermic. This has been attributed to a complex interaction involving the antiferromagnetism of Cr and the ferromagnetism of Fe. We report in this paper the results of our ab initio electronic structure calculations on the segregation behaviour of all the 3d elements on the (1 0 0) surface of ferromagnetic iron in the hope of better understanding this phenomenon. We find a similar behaviour for the segregation of the next antiferromagnetic 3d element Mn in Fe, where the subsurface layer is also found to block the segregation of Mn to the surface. On the other hand, ferromagnetic Co exhibits a normal segregation behaviour. The elements Sc, Cu and Ni do not form solid solutions with ferromagnetic iron. The early elements Ti and V are non-magnetic in their metallic states, but are strongly polarized by Fe, and develop magnetic moments which are aligned antiferromagnetically to those of Fe atoms. While the subsurface layer blocks the segregation of Ti to the surface, no blocking behaviour is found for the segregation of V. The segregation behaviour of all these elements is strongly correlated with the displacement of the solute atoms on the surface of Fe. The elements showing anomalous segregation behaviour are all displaced upwards on the surface, while those showing normal segregation are pulled inwards. These results indicate that the antiferromagnetism of the segregating element plays the key role in the anomalous segregation behaviour in Fe. PMID:24047767
3D elemental sensitive imaging using transmission X-ray microscopy.
Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero
2012-09-01
Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401
An accurate quadrature technique for the contact boundary in 3D finite element computations
NASA Astrophysics Data System (ADS)
Duong, Thang X.; Sauer, Roger A.
2015-01-01
This paper presents a new numerical integration technique for 3D contact finite element implementations, focusing on a remedy for the inaccurate integration due to discontinuities at the boundary of contact surfaces. The method is based on the adaptive refinement of the integration domain along the boundary of the contact surface, and is accordingly denoted RBQ for refined boundary quadrature. It can be used for common element types of any order, e.g. Lagrange, NURBS, or T-Spline elements. In terms of both computational speed and accuracy, RBQ exhibits great advantages over a naive increase of the number of quadrature points. Also, the RBQ method is shown to remain accurate for large deformations. Furthermore, since the sharp boundary of the contact surface is determined, it can be used for various purposes like the accurate post-processing of the contact pressure. Several examples are presented to illustrate the new technique.
Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method
NASA Astrophysics Data System (ADS)
Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo
The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.
Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O
2000-03-24
This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.
Description of a parallel, 3D, finite element, hydrodynamics-diffusion code
Milovich, J L; Prasad, M K; Shestakov, A I
1999-04-11
We describe a parallel, 3D, unstructured grid finite element, hydrodynamic diffusion code for inertial confinement fusion (ICF) applications and the ancillary software used to run it. The code system is divided into two entities, a controller and a stand-alone physics code. The code system may reside on different computers; the controller on the user's workstation and the physics code on a supercomputer. The physics code is composed of separate hydrodynamic, equation-of-state, laser energy deposition, heat conduction, and radiation transport packages and is parallelized for distributed memory architectures. For parallelization, a SPMD model is adopted; the domain is decomposed into a disjoint collection of subdomains, one per processing element (PE). The PEs communicate using MPI. The code is used to simulate the hydrodynamic implosion of a spherical bubble.
Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.
Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang
2015-07-01
In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications. PMID:26101898
3D Functional Elements Deep Inside Silicon with Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Tokel, Onur; Turnali, Ahmet; Ergecen, Emre; Pavlov, Ihor; Ilday, Fatih Omer
Functional optical and electrical elements fabricated on silicon (Si) constitute fundamental building blocks of electronics and Si-photonics. However, since the highly successful established lithography are geared towards surface processing, elements embedded inside Si simply do not exist. Here, we present a novel direct-laser writing method for positioning buried functional elements inside Si wafers. This new phenomenon is distinct from previous work, in that the surface of Si is not modified. By exploiting nonlinear interactions of a focused laser, permanent refractive index changes are induced inside Si. The imprinted index contrast is then used to demonstrate a plethora of functional elements and capabilities embedded inside Si. In particular, we demonstrate the first functional optical element inside Si, the first information-storage capability inside Si, creation of high-resolution subsurface holograms, buried multilevel structures, and complex 3D architectures in Si, none of which is currently possible with other methods. This new approach complements available techniques by taking advantage of the real estate under Si, and therefore can pave the way for creating entirely new multilevel devices through electronic-photonic integration.
Bailey, T S; Adams, M L; Yang, B; Zika, M R
2005-07-15
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Modeling rammed earth wall using discrete element method
NASA Astrophysics Data System (ADS)
Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.
2016-03-01
Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.
Extended volume and surface scatterometer for optical characterization of 3D-printed elements
NASA Astrophysics Data System (ADS)
Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius
2015-09-01
The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
NASA Astrophysics Data System (ADS)
Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang
2016-07-01
The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.
The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D
NASA Technical Reports Server (NTRS)
Canuto, Claudio; Tabacco, Anita; Urban, Karsten
1998-01-01
The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1987-01-01
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.
El-Anwar, Mohamed; Ghali, Rami; Aboelnagga, Mona
2016-01-01
AIM: This study aimed to estimate the stress patterns induced by the masticatory loads on a removable prosthesis supported and retained by bar splinted implants placed in the reconstructed mandible with two different clip materials and without clip, in the fibula-jaw bone and prosthesis using finite element analysis. METHODS: Two 3D finite element models were constructed, that models components were modeled on commercial CAD/CAM software then assembled into finite element package. Vertical loads were applied simulating the masticatory forces unilaterally in the resected site and bilaterally in the central fossa of the lower first molar as 100N (tension and compression). Analysis was based on the assumption full osseointegration between different types of bones, and between implants and fibula while fixing the top surface of the TMJ in place. RESULTS: The metallic bar connecting the three implants is insensitive to the clips material. Its supporting implants showed typical behavior with maximum stress values at the neck region. Fibula and jaw bone showed stresses within physiologic, while clips material effect seems to be very small due to its relatively small size. CONCLUSION: Switching loading force direction from tensile to compression did-not change the stresses and deformations distribution, but reversed their sign from positive to negative. PMID:27275353
A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.
2016-08-01
A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.
Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry
Zhu Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges
2010-01-15
Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O/C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O/C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O/C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6-2.7 times larger with glucose. The melting point also increased by 5 deg. C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions.
Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry
Zhu, Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges
2010-01-01
Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O∕C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O∕C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O∕C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6–2.7 times larger with glucose. The melting point also increased by 5 °C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions. PMID:20175480
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.
1995-01-01
Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.
XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays
NASA Astrophysics Data System (ADS)
Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry
2015-12-01
The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.
Finite element methods of analysis for 3D inviscid compressible flows
NASA Technical Reports Server (NTRS)
Peraire, Jaime
1990-01-01
The applicants have developed a finite element based approach for the solution of three-dimensional compressible flows. The procedure enables flow solutions to be obtained on tetrahedral discretizations of computational domains of complex form. A further development was the incorporation of a solution adaptive mesh strategy in which the adaptivity is achieved by complete remeshing of the solution domain. During the previous year, the applicants were working with the Advanced Aerodynamics Concepts Branch at NASA Ames Research Center with an implementation of the basic meshing and solution procedure. The objective of the work to be performed over this twelve month period was the transfer of the adaptive mesh technology and also the undertaking of basic research into alternative flow algorithms for the Euler equations on unstructured meshes.
DelGrande, J. Mark; Mathews, Kirk A.
2001-09-15
Conventional discrete ordinates transport calculations often produce negative fluxes due to unphysical negative scattering cross sections and/or as artifacts of spatial differencing schemes such as diamond difference. Inherently nonnegative spatial methods, such as the nonlinear, exponential characteristic spatial quadrature, eliminate negative fluxes while providing excellent accuracy, presuming the group-to-group, ordinate-to-ordinate cross sections are all nonnegative. A hybrid approach is introduced in which the flow from spatial cell to spatial cell uses discrete ordinates spatial quadratures, while anisotropic scattering of flux from one energy-angle bin (energy group and discrete element of solid angle) to another such bin is modeled using a Monte Carlo simulation to evaluate the bin-to-bin cross sections. The directional elements tile the sphere of directions; the ordinates for the spatial quadrature are at the centroids of the elements. The method is developed and contrasted with previous schemes for positive cross sections. An algorithm for evaluating the Monte Carlo (MC)-discrete elements (MC-DE) cross sections is described, and some test cases are presented. Transport calculations using MC-DE cross sections are compared with calculations using conventional cross sections and with MCNP calculations. In this testing, the new method is about as accurate as the conventional approach, and often is more accurate. The exponential characteristic spatial quadrature, using the MC-DE cross sections, is shown to provide useful results where linear characteristic and spherical harmonics provide negative scalar fluxes in every cell in a region.
NASA Astrophysics Data System (ADS)
Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain
2016-04-01
We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.
NASA Astrophysics Data System (ADS)
Bradley, A. M.
2013-12-01
My poster will describe dc3dm, a free open source software (FOSS) package that efficiently forms and applies the linear operator relating slip and traction components on a nonuniformly discretized rectangular planar fault in a homogeneous elastic (HE) half space. This linear operator implements what is called the displacement discontinuity method (DDM). The key properties of dc3dm are: 1. The mesh can be nonuniform. 2. Work and memory scale roughly linearly in the number of elements (rather than quadratically). 3. The order of accuracy of my method on a nonuniform mesh is the same as that of the standard method on a uniform mesh. Property 2 is achieved using my FOSS package hmmvp [AGU 2012]. A nonuniform mesh (property 1) is natural for some problems. For example, in a rate-state friction simulation, nucleation length, and so required element size, scales reciprocally with effective normal stress. Property 3 assures that if a nonuniform mesh is more efficient than a uniform mesh (in the sense of accuracy per element) at one level of mesh refinement, it will remain so at all further mesh refinements. I use the routine DC3D of Y. Okada, which calculates the stress tensor at a receiver resulting from a rectangular uniform dislocation source in an HE half space. On a uniform mesh, straightforward application of this Green's function (GF) yields a DDM I refer to as DDMu. On a nonuniform mesh, this same procedure leads to artifacts that degrade the order of accuracy of the DDM. I have developed a method I call IGA that implements the DDM using this GF for a nonuniformly discretized mesh having certain properties. Importantly, IGA's order of accuracy on a nonuniform mesh is the same as DDMu's on a uniform one. Boundary conditions can be periodic in the surface-parallel direction (in both directions if the GF is for a whole space), velocity on any side, and free surface. The mesh must have the following main property: each uniquely sized element must tile each element
Kolotilina, L.; Nikishin, A.; Yeremin, A.
1994-12-31
The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.
A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele
Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.
2015-01-01
We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664
3D simulation of seismic wave propagation around a tunnel using the spectral element method
NASA Astrophysics Data System (ADS)
Lambrecht, L.; Friederich, W.
2010-05-01
We model seismic wave propagation in the environment of a tunnel for later application to reconnaissance. Elastic wave propagation can be simulated by different numerical techniques such as finite differences and pseudospectral methods. Their disadvantage is the lack of accuracy on free surfaces, numerical dispersion and inflexibility of the mesh. Here we use the software package SPECFEM3D_SESAME in an svn development version, which is based on the spectral element method (SEM) and can handle complex mesh geometries. A weak form of the elastic wave equation leads to a linear system of equations with a diagonal mass matrix, where the free surface boundary of the tunnel can be treated under realistic conditions and can be effectively implemented in parallel. We have designed a 3D external mesh including a tunnel and realistic features such as layers and holes to simulate elastic wave propagation in the zone around the tunnel. The source is acting at the tunnel surface so that we excite Rayleigh waves which propagate to the front face of the tunnel. A conversion takes place and a high amplitude S-wave is radiated in the direction of the tunnel axis. Reflections from perturbations in front of the tunnel can be measured by receivers implemented on the tunnel face. For a shallow tunnel the land surface has high influence on the wave propagation. By implementing additional receivers at this surface we intent to improve the prediction. It shows that the SEM is very capable to handle the complex geometry of the model and especially incorporates the free surfaces of the model.
Development of a 3D finite element model of lens microcirculation
2012-01-01
Background It has been proposed that in the absence of a blood supply, the ocular lens operates an internal microcirculation system. This system delivers nutrients, removes waste products and maintains ionic homeostasis in the lens. The microcirculation is generated by spatial differences in membrane transport properties; and previously has been modelled by an equivalent electrical circuit and solved analytically. While effective, this approach did not fully account for all the anatomical and functional complexities of the lens. To encapsulate these complexities we have created a 3D finite element computer model of the lens. Methods Initially, we created an anatomically-correct representative mesh of the lens. We then implemented the Stokes and advective Nernst-Plank equations, in order to model the water and ion fluxes respectively. Next we complemented the model with experimentally-measured surface ionic concentrations as boundary conditions and solved it. Results Our model calculated the standing ionic concentrations and electrical potential gradients in the lens. Furthermore, it generated vector maps of intra- and extracellular space ion and water fluxes that are proposed to circulate throughout the lens. These fields have only been measured on the surface of the lens and our calculations are the first 3D representation of their direction and magnitude in the lens. Conclusion Values for steady state standing fields for concentration and electrical potential plus ionic and fluid fluxes calculated by our model exhibited broad agreement with observed experimental values. Our model of lens function represents a platform to integrate new experimental data as they emerge and assist us to understand how the integrated structure and function of the lens contributes to the maintenance of its transparency. PMID:22992294
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
FERM3D: A finite element R-matrix electron molecule scattering code
NASA Astrophysics Data System (ADS)
Tonzani, Stefano
2007-01-01
FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an
NASA Astrophysics Data System (ADS)
Usui, Yoshiya
2015-08-01
A 3-D magnetotelluric (MT) inversion code using unstructured tetrahedral elements has been developed in order to correct the topographic effect by directly incorporating it into computational grids. The electromagnetic field and response functions get distorted at the observation sites of MT surveys because of the undulating surface topography, and without correcting this distortion, the subsurface structure can be misinterpreted. Of the two methods proposed to correct the topographic effect, the method incorporating topography explicitly in the inversion is applicable to a wider range of surveys. For forward problems, it has been shown that the finite element method using unstructured tetrahedral elements is useful for the incorporation of topography. Therefore, this paper shows the applicability of unstructured tetrahedral elements in MT inversion using the newly developed code. The inversion code is capable of using the impedance tensor, the vertical magnetic transfer function (VMTF), and the phase tensor as observational data, and it estimates the subsurface resistivity values and the distortion tensor of each observation site. The forward part of the code was verified using two test models, one incorporating topographic effect and one without, and the verifications showed that the results were almost the same as those of previous works. The developed inversion code was then applied to synthetic data from a MT survey, and was verified as being able to recover the resistivity structure as well as other inversion codes. Finally, to confirm its applicability to the data affected by topography, inversion was performed using the synthetic data of the model that included two overlapping mountains. In each of the cases using the impedance tensor, the VMTF and the phase tensor, by including the topography in the mesh, the subsurface resistivity was determined more proficiently than in the case using the flat-surface mesh. Although the locations of the anomalies were
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system
NASA Astrophysics Data System (ADS)
France, L.; Ouillon, N.; Chazot, G.; Kornprobst, J.; Boivin, P.
2009-06-01
CMAS 3D, developed in MATLAB ®, is a program to support visualization of major element chemical data in three dimensions. Such projections are used to discuss correlations, metamorphic reactions and the chemical evolution of rocks, melts or minerals. It can also project data into 2D plots. The CMAS 3D interface makes it easy to use, and does not require any knowledge of Matlab ® programming. CMAS 3D uses data compiled in a Microsoft Excel™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching.
Finite element modeling of a 3D coupled foot-boot model.
Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei
2011-12-01
Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. PMID:21676642
A new 3D finite element model of the IEC 60318-1 artificial ear
NASA Astrophysics Data System (ADS)
Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; DeArcas, Guillermo; Recuero, Manuel
2008-08-01
The artificial ear specified in IEC 60318-1 is used for the measurement of headphones and has been designed to present an acoustic load equivalent to that of normal human ears. In this respect it is specified in terms of an acoustical impedance, and modelled by a lumped parameter approach. However, this has some inherent frequency limitations and becomes less valid as the acoustic wavelength approaches the characteristic dimensions within the device. In addition, when sound propagates through structures such as narrow tubes, annular slits or over sharp corners, noticeable thermal and viscous effects take place causing further departure from the lumped parameter model. A new numerical model has therefore been developed, which gives proper consideration to the aforementioned effects. Both kinds of losses can be simulated by means of the LMS Virtual Lab acoustic software which facilitates finite and boundary element modelling of the whole artificial ear. A full 3D model of the artificial ear has therefore been developed based on key dimensional data found in IEC 60318-1. The model has been used to calculate the acoustical impedance, and the results compared with the corresponding data determined from the lumped parameter model. The numerical simulation of the artificial ear has been shown to provide realistic results, and is a powerful tool for developing a detailed understanding of the device. It is also proving valuable in the revision of IEC 60318-1 that is currently in progress.
3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel
NASA Astrophysics Data System (ADS)
Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi
2015-09-01
Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.
The numerical integration and 3-D finite element formulation of a viscoelastic model of glass
Chambers, R.S.
1994-08-01
The use of glasses is widespread in making hermetic, insulating seals for many electronic components. Flat panel displays and fiber optic connectors are other products utilizing glass as a structural element. When glass is cooled from sealing temperatures, residual stresses are generated due to mismatches in thermal shrinkage created by the dissimilar material properties of the adjoining materials. Because glass is such a brittle material at room temperature, tensile residual stresses must be kept small to ensure durability and avoid cracking. Although production designs and the required manufacturing process development can be deduced empirically, this is an expensive and time consuming process that does not necessarily lead to an optimal design. Agile manufacturing demands that analyses be used to reduce development costs and schedules by providing insight and guiding the design process through the development cycle. To make these gains, however, viscoelastic models of glass must be available along with the right tool to use them. A viscoelastic model of glass can be used to simulate the stress and volume relaxation that occurs at elevated temperatures as the molecular structure of the glass seeks to equilibrate to the state of the supercooled liquid. The substance of the numerical treatment needed to support the implementation of the model in a 3-D finite element program is presented herein. An accurate second-order, central difference integrator is proposed for the constitutive equations, and numerical solutions are compared to those obtained with other integrators. Inherent convergence problems are reviewed and fixes are described. The resulting algorithms are generally applicable to the broad class of viscoelastic material models. First-order error estimates are used as a basis for developing a scheme for automatic time step controls, and several demonstration problems are presented to illustrate the performance of the methodology.
Identification of micro parameters for discrete element simulation of agglomerates
NASA Astrophysics Data System (ADS)
Palis, Stefan; Antonyuk, Sergiy; Dosta, Maksym; Heinrich, Stefan
2013-06-01
The mechanical behaviour of solid particles like agglomerates, granules or crystals strongly depends on their micro structure, e.g. structural defects and porosity. In order to model the mechanical behaviour of these inhomogeneous media the discrete element method has been proven to be an appropriate tool. The model parameters used are typically micro parameters like bond stiffness, particle-particle contact stiffness, strength of the bonds. Due to the lack of general methods for a direct micro parameter determination, normally laborious parameter adaptation has to be done in order to fit experiment and simulation. In this contribution a systematic and automatic way for parameter adaptation using real experiments is proposed. Due to the fact, that discrete element models are typically systems of differential equations of very high order, gradient based methods are not suitable. Hence, the focus will be on derivative free methods.
Bailey, Teresa S. Adams, Marvin L. Yang, Brian Zika, Michael R.
2008-04-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Validating 3D Seismic Velocity Models Using the Spectral Element Method
NASA Astrophysics Data System (ADS)
Maceira, M.; Rowe, C. A.; Allen, R. M.; Obrebski, M. J.
2010-12-01
As seismic instrumentation, data storage and dissemination and computational power improve, seismic velocity models attempt to resolve smaller structures and cover larger areas. However, it is unclear how accurate these velocity models are and, while the best models available are used for event determination, it is difficult to put uncertainties on seismic event parameters. Model validation is typically done using resolution tests that assume the imaging theory used is accurate and thus only considers the impact of the data coverage on resolution. We present the results of a more rigorous approach to model validation via full three-dimensional waveform propagation using Spectral Element Methods (SEM). This approach makes no assumptions about the theory used to generate the models but require substantial computational resources. We first validate 3D tomographic models for the Western USA generated using both ray-theoretical and finite-frequency methods. The Dynamic North America (DNA) Models of P- and S- velocity structure (DNA09-P and DNA09-S) use teleseismic body-wave traveltime residuals recorded at over 800 seismic stations provided by the Earthscope USArray and regional seismic networks. We performed systematic computations of synthetics for the dataset used to generate the DNA models. Direct comparison of these synthetic seismograms to the actual observations allows us to accurately assess and validate the models. Implementation of the method for a densely instrumented region such as that covered by the DNA model provides a useful testbed for the validation methods that we will subsequently apply to other, more challenging study areas.
The Evolution of Fracture Systems in Rocks with Veins: Insights from 3D Discrete Element Models
NASA Astrophysics Data System (ADS)
Virgo, S.; Urai, J. L.; Abe, S.
2014-12-01
Observations from natural vein systems suggest that preexisting veins can strongly influence orientation, continuity and connectivity of fractures in a rock even in cases where the orientation of the veins is incompatible with the orientation of the stress field. We present a numerical method to model cycles of fracturing and sealing in a rotating stress field to simulate such systems, for different strength ratios of host rock and vein. We study a layered model under vertical stress and uniaxial horizontal extension. This represents common conditions in sedimentary basins with layers of varying composition. The model with fractures that form during the first deformation phase is sealed and deformed again in a different direction to model the effect of a changing horizontal stress field. We find different types of fracture interaction with veins, depending on the strength contrast between veins and host rock and amount of rotation. The crack-seal and crack-jump mechanisms ensue naturally from the models as a result of the strength of the vein material relative to the host rock. Weak veins localize fracturing and reactivate, even in high misorientation to the extension direction. Connecting fractures between reactivated veins form at a higher angle to the veins than expected. In these systems, the connectivity of the fracture network is dramatically increased. Veins stronger than the host rock have less influence on the new fractures. Most fractures crosscut the veins by the step-over mechanism. Deflection occurs for favorable vein orientations but the deflection length is very short. The results are in good agreement with natural crack seal vein networks found in carbonate rocks of the Oman Mountains. We find that preexisting veins can change the fracture behavior of a rock in a way that new fractures do not necessarily align with the principle extension direction and form a highly connected network with reactivated veins that dramatically enhances lateral hydraulic conductivity of the rock. The results allow formulating constitutive rules for the fracture behavior of rocks with veins that can be used to make predictions on the orientation and connectivity of fracture networks on a reservoir scale to use in THMC models. Furthermore they have implications for paleostress analysis based on crack seal vein networks.
Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener
NASA Technical Reports Server (NTRS)
Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.
1992-01-01
This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.
Hong, X; Gao, H
2014-06-15
Purpose: The Linear Boltzmann Transport Equation (LBTE) solved through statistical Monte Carlo (MC) method provides the accurate dose calculation in radiotherapy. This work is to investigate the alternative way for accurately solving LBTE using deterministic numerical method due to its possible advantage in computational speed from MC. Methods: Instead of using traditional spherical harmonics to approximate angular scattering kernel, our deterministic numerical method directly computes angular scattering weights, based on a new angular discretization method that utilizes linear finite element method on the local triangulation of unit angular sphere. As a Result, our angular discretization method has the unique advantage in positivity, i.e., to maintain all scattering weights nonnegative all the time, which is physically correct. Moreover, our method is local in angular space, and therefore handles the anisotropic scattering well, such as the forward-peaking scattering. To be compatible with image-guided radiotherapy, the spatial variables are discretized on the structured grid with the standard diamond scheme. After discretization, the improved sourceiteration method is utilized for solving the linear system without saving the linear system to memory. The accuracy of our 3D solver is validated using analytic solutions and benchmarked with Geant4, a popular MC solver. Results: The differences between Geant4 solutions and our solutions were less than 1.5% for various testing cases that mimic the practical cases. More details are available in the supporting document. Conclusion: We have developed a 3D LBTE solver based on a new angular discretization method that guarantees the positivity of scattering weights for physical correctness, and it has been benchmarked with Geant4 for photon dose calculation.
A Discrete-Element Approach for Blood Cell Adhesion
NASA Astrophysics Data System (ADS)
Chesnutt, Jennifer; Marshall, Jeffrey
2006-11-01
An efficient computational model for simulation of the individual dynamics of adhering blood cells is discussed. Each cell is represented as a discrete particle so that the model can extend existing discrete-element approaches for dense particulate fluid flows to account for receptor-ligand binding of particles, elliptical particle shape, and deformation of the particles due to shear forces. Capabilities of the method in simulating large numbers of particles are illustrated through simulations of the formation of red blood cell rouleaux in shear flow. The effects of several factors, such as aspect ratio of the elliptical particle, shear rate, strength of the cell adhesion force, and hematocrit are investigated. Comparison of the discrete-element results with results of a level-set approach which computes the entire flow field about a small number of cells is used to develop an improved model of the effect of nearby red blood cells on the cell drag force expression. The method is also being applied to examine the influence of red blood cells on other components of the blood, such as platelet dispersion and activation in high shear regions.
Discrete Element Modeling of Landslides in Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Smart, K. J.; Hooper, D. M.; Sims, D. W.
2010-12-01
High-resolution MOC, THEMIS, HiRISE, and HRSC image data and geomorphologic characterization based on MOLA-derived topography are being used as input for discrete element modeling to simulate slope failure in Valles Marineris. Two landslides have been selected for detailed analysis. The first landslide, in Coprates Chasma, has a strongly arcuate and recessional 4-km-high main scarp, and a runout length of approximately 70 km to the opposing canyon wall. The landslide deposit or transported material has a hummocky topography. The second landslide, in Ganges Chasma, has a 3-4 km high main scarp, a complex rupture surface with a displaced block, and a runout length of approximately 25 km. The landslide deposit is characterized by longitudinal ridges and furrows. The main scarp and displaced material of a landslide provide insight into the mechanical nature of the surface and shallow subsurface of Mars. We use two-dimensional discrete element models oriented parallel with the slide direction to examine the effects of mechanical layering upon the morphology of slip surfaces, scarps, and transported deposits that form as a result of slope failure on Mars. The initial geometry of the models is designed to replicate the height and length of each study site and to capture the observed and interpreted mechanical stratigraphy. Discrete element particle diameters range from approximately 30-60 m; a compromise between model fidelity and computation time. Bond properties (i.e., bond stiffness and strength), which control the macroscale behavior, are adjusted between layers to produce variable mechanical stratigraphic configurations. Our models were conducted under Mars gravity (3.71 m/s2) using a pre-slide free surface that dips 60°. Model results show that an initial slip surface forms some distance from the lateral free surface and subsequently migrates away from the free surface in discrete increments producing a well-developed main scarp. The models also show rotated blocks
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.
NASA Astrophysics Data System (ADS)
Godoy, William F.; DesJardin, Paul E.
2010-05-01
The application of flux limiters to the discrete ordinates method (DOM), SN, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to "exact" solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.
NASA Astrophysics Data System (ADS)
Pennec, Fabienne; Alzina, Arnaud; Tessier-Doyen, Nicolas; Naitali, Benoit; Smith, David S.
2012-11-01
This work is about the calculation of thermal conductivity of insulating building materials made from plant particles. To determine the type of raw materials, the particle sizes or the volume fractions of plant and binder, a tool dedicated to calculate the thermal conductivity of heterogeneous materials has been developped, using the discrete element method to generate the volume element and the finite element method to calculate the homogenized properties. A 3D optical scanner has been used to capture plant particle shapes and convert them into a cluster of discret elements. These aggregates are initially randomly distributed but without any overlap, and then fall down in a container due to the gravity force and collide with neighbour particles according to a velocity Verlet algorithm. Once the RVE is built, the geometry is exported in the open-source Salome-Meca platform to be meshed. The calculation of the effective thermal conductivity of the heterogeneous volume is then performed using a homogenization technique, based on an energy method. To validate the numerical tool, thermal conductivity measurements have been performed on sunflower pith aggregates and on packed beds of the same particles. The experimental values have been compared satisfactorily with a batch of numerical simulations.
Discrete Element Method Simulation of Nonlinear Viscoelastic Stress Wave Problems
NASA Astrophysics Data System (ADS)
Tang, Zhiping; Horie, Y.; Wang, Wenqiang
2002-07-01
A DEM(Discrete Element Method) simulation of nonlinear viscoelastic stress wave problems is carried out. The interaction forces among elements are described using a model in which neighbor elements are linked by a nonlinear spring and a certain number of Maxwell components in parallel. By making use of exponential relaxation moduli, it is shown that numerical computation of the convolution integral does not require storing and repeatedly calculating strain history, so that the computational cost is dramatically reduced. To validate the viscoelastic DM2 code1, stress wave propagation in a Maxwell rod with one end subjected to a constant stress loading is simulated. Results excellently fit those from the characteristics calculation. The code is then used to investigate the problem of meso-scale damage in a plastic-bonded explosive under shock loading. Results not only show "compression damage", but also reveal a complex damage evolution. They demonstrate a unique capability of DEM in modeling heterogeneous materials.
Discrete Element Method Simulation of Nonlinear Viscoelastic Stress Wave Problems
NASA Astrophysics Data System (ADS)
Wang, Wenqiang; Tang, Zhiping; Horie, Y.
2002-07-01
A DEM(Discrete Element Method) simulation of nonlinear viscoelastic stress wave problems is carried out. The interaction forces among elements are described using a model in which neighbor elements are linked by a nonlinear spring and a certain number of Maxwell components in parallel. By making use of exponential relaxation moduli, it is shown that numerical computation of the convolution integral does not require storing and repeatedly calculating strain history, so that the computational cost is dramatically reduced. To validate the viscoelastic DM2 code[1], stress wave propagation in a Maxwell rod with one end subjected to a constant stress loading is simulated. Results excellently fit those from the characteristics calculation. The code is then used to investigate the problem of meso-scale damage in a plastic-bonded explosive under shock loading. Results not only show "compression damage", but also reveal a complex damage evolution. They demonstrate a unique capability of DEM in modeling heterogeneous materials.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2014-01-01
This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Multiple-contact discrete-element model for simulating dense granular media.
Brodu, Nicolas; Dijksman, Joshua A; Behringer, Robert P
2015-03-01
This article presents a new force model for performing quantitative simulations of dense granular materials. Interactions between multiple contacts (MC) on the same grain are explicitly taken into account. Our readily applicable MC-DEM method retains all the advantages of discrete-element method simulations and does not require the use of costly finite-element methods. The new model closely reproduces our recent experimental measurements, including contact force distributions in full 3D, at all compression levels of the packing up to the experimental maximum limit of 13%. Comparisons with classic simulations using the nondeformable spheres approach, as well as with alternative models for interactions between multiple contacts, are provided. The success of our model, compared to these alternatives, demonstrates that interactions between multiple contacts on each grain must be included for dense granular packings. PMID:25871097
Preece, D.S. Perkins, E.D.
1999-02-10
Techniques for modeling oil well sand production have been developed using the formulations for superquadric discrete elements and Darcy fluid flow. Discrete element models are generated using the new technique of particle cloning. Discrete element sources and sinks allow simulation of sand production from the initial state through the transition to an equilibrium state where particles are created and removed at the same rate.
NASA Astrophysics Data System (ADS)
Ronchin, Erika; Masterlark, Timothy; Molist, Joan Martí; Saunders, Steve; Tao, Wei
2013-03-01
Simulating the deformation of active volcanoes is challenging due to inherent mechanical complexities associated with heterogeneous distributions of rheologic properties and irregular geometries associated with the topography and bathymetry. From geologic and tomographic studies we know that geologic bodies naturally have complex 3D shapes. Finite element models (FEMs) are capable of simulating the pressurization of magma intrusions into mechanical domains with arbitrary geometric and geologic complexity. We construct FEMs comprising pressurization (due to magma intrusion) within an assemblage of 3D parts having common mechanical properties for Rabaul Caldera, Papua New Guinea. We use information of material properties distributed on discrete points mainly deduced from topography, geology, seismicity, and tomography of Rabaul Caldera to first create contours of each part and successively to generate each 3D part shape by lofting the volume through the contours. The implementation of Abaqus CAE with Python scripts allows for automated execution of hundreds of commands necessary for the construction of the parts having substantial geometric complexity. The lofted solids are then assembled to form the composite model of Rabaul Caldera, having a geometrically complex loading configuration and distribution of rheologic properties. Comparison between predicted and observed deformation led us to identify multiple deformation sources (0.74 MPa change in pressure in the magma chamber and 0.17 m slip along the ring fault) responsible for the displacements measured at Matupit Island between August 1992 and August 1993.
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.
1995-01-01
Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
A Review of Discrete Element Method Research on Particulate Systems
NASA Astrophysics Data System (ADS)
Mahmood, A. A.; Elektorowicz, M.
2016-07-01
This paper summarizes research done using the Discrete Element Method (DEM) and explores new trends in its use on Particulate systems. The rationale for using DEM versus the traditional continuum-based approach is explained first. Then, DEM application is explored in terms of geotechnical engineering and mining engineering materials, since particulate media are mostly associated with these two disciplines. It is concluded that no research to date had addressed the issue of using the DEM to model the strength and weathering characteristics of peaty soil-slag-Portland cement-fly ash combinations.
Bogdanovich, A.; Pastore, C.; Kumar, V.; German, M.
1994-12-31
The method of combining the use of ANSYS SOLID 46 finite element and the sub-element/deficient approximation function (SEDAF) analysis is developed and demonstrated on the benchmark problem of Pagano. The algorithm incorporates a primary displacement calculation using ANSYS and the successive stress calculation using 3-D SEDAF analysis. A special mathematical procedure aimed to convert the global displacement output of the commercial finite element code into the local displacement input of the SEDAF analysis is presented. The results show a considerably higher accuracy provided by this combination compared to the original ANSYS results when calculating both the in-plane and transverse stresses, especially for their values at the interfaces. After some generalization, the presented ANSYS/SEDAF algorithm seems to be promising for obtaining a sufficiently accurate 3-D stress distributions in any structural analysis problem allowing for the application of ANSYS code.
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.
1994-01-01
Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.
3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP.
Viana, R S; Agasthya, G A; Yoriyaz, H; Kapadia, A J
2013-09-01
This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work - (32)S, (12)C, (23)Na, (14)N, (31)P and (39)K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in (31)P, (39)K and (23)Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique. PMID:23920157
3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP
NASA Astrophysics Data System (ADS)
Viana, R. S.; Agasthya, G. A.; Yoriyaz, H.; Kapadia, A. J.
2013-09-01
This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work—32S, 12C, 23Na, 14N, 31P and 39K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in 31P, 39K and 23Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.
From discrete elements to continuum fields: Extension to bidisperse systems
NASA Astrophysics Data System (ADS)
Tunuguntla, Deepak R.; Thornton, Anthony R.; Weinhart, Thomas
2015-11-01
Micro-macro transition methods can be used to, both, calibrate and validate continuum models from discrete data obtained via experiments or simulations. These methods generate continuum fields such as density, momentum, stress, etc., from discrete data, i.e. positions, velocity, orientations and forces of individual elements. Performing this micro-macro transition step is especially challenging for non-uniform or dynamic situations. Here, we present a general method of performing this transition, but for simplicity we will restrict our attention to two-component scenarios. The mapping technique, presented here, is an extension to the micro-macro transition method, called coarse-graining, for unsteady two-component flows and can be easily extended to multi-component systems without any loss of generality. This novel method is advantageous; because, by construction the obtained macroscopic fields are consistent with the continuum equations of mass, momentum and energy balance. Additionally, boundary interaction forces can be taken into account in a self-consistent way and thus allow for the construction of continuous stress fields even within one element radius of the boundaries. Similarly, stress and drag forces can also be determined for individual constituents of a multi-component mixture, which is critical for several continuum applications, e.g. mixture theory-based segregation models. Moreover, the method does not require ensemble-averaging and thus can be efficiently exploited to investigate static, steady and time-dependent flows. The method presented in this paper is valid for any discrete data, e.g. particle simulations, molecular dynamics, experimental data, etc.; however, for the purpose of illustration we consider data generated from discrete particle simulations of bidisperse granular mixtures flowing over rough inclined channels. We show how to practically use our coarse-graining extension for both steady and unsteady flows using our open-source coarse
From discrete elements to continuum fields: Extension to bidisperse systems
NASA Astrophysics Data System (ADS)
Tunuguntla, Deepak R.; Thornton, Anthony R.; Weinhart, Thomas
2016-07-01
Micro-macro transition methods can be used to, both, calibrate and validate continuum models from discrete data obtained via experiments or simulations. These methods generate continuum fields such as density, momentum, stress, etc., from discrete data, i.e. positions, velocity, orientations and forces of individual elements. Performing this micro-macro transition step is especially challenging for non-uniform or dynamic situations. Here, we present a general method of performing this transition, but for simplicity we will restrict our attention to two-component scenarios. The mapping technique, presented here, is an extension to the micro-macro transition method, called coarse-graining, for unsteady two-component flows and can be easily extended to multi-component systems without any loss of generality. This novel method is advantageous; because, by construction the obtained macroscopic fields are consistent with the continuum equations of mass, momentum and energy balance. Additionally, boundary interaction forces can be taken into account in a self-consistent way and thus allow for the construction of continuous stress fields even within one element radius of the boundaries. Similarly, stress and drag forces can also be determined for individual constituents of a multi-component mixture, which is critical for several continuum applications, e.g. mixture theory-based segregation models. Moreover, the method does not require ensemble-averaging and thus can be efficiently exploited to investigate static, steady and time-dependent flows. The method presented in this paper is valid for any discrete data, e.g. particle simulations, molecular dynamics, experimental data, etc.; however, for the purpose of illustration we consider data generated from discrete particle simulations of bidisperse granular mixtures flowing over rough inclined channels. We show how to practically use our coarse-graining extension for both steady and unsteady flows using our open-source coarse
Distinct element method analyses of fuel spheres in the PBMR core using PFC{sup 3D}
Polson, Alexander G.
2004-07-01
The Pebble Bed Modular Reactor, or PBMR, is a High Temperature Gas Reactor that contains a large number of graphite fuel spheres that circulate in its core. The dynamics of these spheres, combined with thermal contraction and expansion, causes various loading cases on the reactor structures. A Distinct Element Method, or DEM, as implemented in the Particle Flow Code in 3D, or PFC{sup 3D}, is used at PBMR (Pty) Ltd to model the fuel sphere dynamics in the reactor core. This paper presents a few exploratory studies where PFC{sup 3D} was used to investigate the interaction between fuel spheres and structural components in the PBMR, as well as the packing efficiency of the spheres in the core. (author)
Discrete Element Method Simulations of Ice Floe Dynamics
NASA Astrophysics Data System (ADS)
Calantoni, J.; Bateman, S. P.; Shi, F.; Orzech, M.; Veeramony, J.
2014-12-01
Ice floes were modeled using LIGGGHTS, an open source discrete element method (DEM) software, where individual elements were bonded together to make floes. The bonds were allowed to break with a critical stress calibrated to existing laboratory measurements for the compressive, tensile, and flexural strength of ice floes. The DEM allows for heterogeneous shape and size distributions of the ice floes to evolve over time. We simulated the interaction between sea ice and ocean waves in the marginal ice zone using a coupled wave-ice system. The waves were modeled with NHWAVE, a non-hydrostatic wave model that predicts instantaneous surface elevation and the three-dimensional flow field. The ice floes and waves were coupled through buoyancy and drag forces. Preliminary comparisons with field and laboratory measurements for coupled simulations will be presented.
Waveform prediction with travel time model LLNL-G3D assessed by Spectral-Element simulation
NASA Astrophysics Data System (ADS)
Morency, C.; Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.
2013-12-01
Seismic monitoring requires accurate prediction of travel times, amplitudes, and whole waveforms. As a first step towards developing a model that is suited to seismic monitoring, LLNL developed the LLNL-G3D P-wave travel time model (Simmons et al., 2012, JGR) to improve seismic event location accuracy. LLNL-G3D fulfills the need to predict travel times from events occurring anywhere in the globe to stations ranging from local to teleseismic distances. Prediction over this distance range requires explicit inclusion of detailed 3-dimensional structure from Earths surface to the core. An open question is how well a model optimized to fit P-wave travel time data can predict waveforms? We begin to address this question by using the P-wave velocities in LLNL-G3D as a proxy for S-wave velocity and density, then performing waveform simulations via the SPECFEM3D_GLOBE spectral-element code. We assess the ability of LLNL-G3D to predict waveforms and draw comparisons to other 3D models available in SPECFEM3D_GLOBE package and widely used in the scientific community. Although we do not expect the P-wave model to perform as well as waveform based models, we view our effort as a first step towards accurate prediction of time times, amplitudes and full waveforms based on a single model. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Discrete-element modeling of particulate aerosol flows
NASA Astrophysics Data System (ADS)
Marshall, J. S.
2009-03-01
A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.
Discrete-element modeling of particulate aerosol flows
Marshall, J.S.
2009-03-20
A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.
NASA Astrophysics Data System (ADS)
Maerten, F.; Maerten, L.; Pollard, D. D.
2014-11-01
Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope
An implicit finite element method for discrete dynamic fracture
Jobie M. Gerken
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.
On a 3-D singularity element for computation of combined mode stress intensities
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-05-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-06-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
NASA Astrophysics Data System (ADS)
Makowski, Michal; Petelczyc, Krzysztof; Kolodziejczyk, Andrzej; Jaroszewicz, Zbigniew; Ducin, Izabela; Kakarenko, Karol; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jaroslaw; Sypek, Maciej; Wojnowski, Dariusz
2010-12-01
The experimental demonstration of a blind deconvolution method on an imaging system with a Light Sword optical element (LSOE) used instead of a lens. Try-and-error deconvolution of known Point Spread Functions (PSF) from an input image captured on a single CCD camera is done. By establishing the optimal PSF providing the optimal contrast of optotypes seen in a frame, one can know the defocus parameter and hence the object distance. Therefore with a single exposure on a standard CCD camera we gain information on the depth of a 3-D scene. Exemplary results for a simple scene containing three optotypes at three distances from the imaging element are presented.
Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.
Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J
2016-01-01
Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838
Predicting the behavior of microfluidic circuits made from discrete elements
Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-01-01
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059
Predicting the behavior of microfluidic circuits made from discrete elements
NASA Astrophysics Data System (ADS)
Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-10-01
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.
Predicting the behavior of microfluidic circuits made from discrete elements.
Bhargava, Krisna C; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-01-01
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059
Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling
NASA Technical Reports Server (NTRS)
2008-01-01
The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.
Adaptive model reduction for nonsmooth discrete element simulation
NASA Astrophysics Data System (ADS)
Servin, Martin; Wang, Da
2016-03-01
A method for adaptive model order reduction for nonsmooth discrete element simulation is developed and analysed in numerical experiments. Regions of the granular media that collectively move as rigid bodies are substituted with rigid bodies of the corresponding shape and mass distribution. The method also support particles merging with articulated multibody systems. A model approximation error is defined and used to derive conditions for when and where to apply reduction and refinement back into particles and smaller rigid bodies. Three methods for refinement are proposed and tested: prediction from contact events, trial solutions computed in the background and using split sensors. The computational performance can be increased by 5-50 times for model reduction level between 70-95 %.
NASA Astrophysics Data System (ADS)
Tong, Ping; Komatitsch, Dimitri; Tseng, Tai-Lin; Hung, Shu-Huei; Chen, Chin-Wu; Basini, Piero; Liu, Qinya
2014-10-01
We present a three-dimensional (3-D) hybrid method that interfaces the spectral-element method (SEM) with the frequency-wave number (FK) technique to model the propagation of teleseismic plane waves beneath seismic arrays. The accuracy of the resulting 3-D SEM-FK hybrid method is benchmarked against semianalytical FK solutions for 1-D models. The accuracy of 2.5-D modeling based on 2-D SEM-FK hybrid method is also investigated through comparisons to this 3-D hybrid method. Synthetic examples for structural models of the Alaska subduction zone and the central Tibet crust show that this method is capable of accurately capturing interactions between incident plane waves and local heterogeneities. This hybrid method presents an essential tool for the receiver function and scattering imaging community to verify and further improve their techniques. These numerical examples also show the promising future of the 3-D SEM-FK hybrid method in high-resolution regional seismic imaging based on waveform inversions of converted/scattered waves recorded by seismic array.
Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere
NASA Astrophysics Data System (ADS)
Yoshimura, Ryokei; Oshiman, Naoto
2002-02-01
We present a new simulator based on an edge-based finite element method (FEM) for computing the global-scale electromagnetic (EM) induction responses in a 3-D conducting sphere excited by an external source current for a variety of frequencies. The formulation is in terms of the magnetic vector potential. The edge-element approach assigns the degrees of freedom to the edges rather than to the nodes of the element. This edge-element strictly satisfies the discontinuity of the normal boundary conditions without considering the enforced normal boundary conditions that are usually practiced in a node-based FEM. To verify our simulation code, we compare our results with those of other solvers for two test computations, corresponding to azimuthally symmetric and asymmetric models. The results are in good agreement with one another.
NASA Astrophysics Data System (ADS)
Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.
2007-06-01
Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.
Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua
2016-01-01
Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469
NASA Technical Reports Server (NTRS)
Punch, E. F.; Atluri, S. N.
1984-01-01
Linear and quadratic Serendipity hybrid-stress elements are examined in respect of stability, coordinate invariance, and optimality. A formulation based upon symmetry group theory successfully addresses these issues in undistorted geometries and is fully detailed for plane elements. The resulting least-order stable invariant stress polynomials can be applied as astute approximations in distorted cases through a variety of tensor components and variational principles. A distortion sensitivity study for two- and three-dimensional elements provides favorable numerical comparisons with the assumed displacement method.
High sensitivity and high resolution element 3D analysis by a combined SIMS-SPM instrument.
Fleming, Yves; Wirtz, Tom
2015-01-01
Using the recently developed SIMS-SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285
NASA Astrophysics Data System (ADS)
Pereira, J. P.; Duarte, C. A.; Jiao, X.; Guoy, D.
2009-06-01
This paper presents a study of generalized enrichment functions for 3D curved crack fronts. Two coordinate systems used in the definition of singular curved crack front enrichment functions are analyzed. In the first one, a set of Cartesian coordinate systems defined along the crack front is used. In the second case, the geometry of the crack front is approximated by a set of curvilinear coordinate systems. A description of the computation of derivatives of enrichment functions and curvilinear base vectors is presented. The coordinate systems are automatically defined using geometrical information provided by an explicit representation of the crack surface. A detailed procedure to accurately evaluate the surface normal, conormal and tangent vectors along curvilinear crack fronts in explicit crack surface representations is also presented. An accurate and robust definition of orthonormal vectors along crack fronts is crucial for the proper definition of enrichment functions. Numerical experiments illustrate the accuracy and robustness of the proposed approaches.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
Confocal (micro)-XRF for 3D anlaysis of elements distribution in hot environmental particles
Bielewski, M; Eriksson, M; Himbert, J; Simon, R; Betti, M; Hamilton, T F
2007-11-27
Studies on the fate and transport of radioactive contaminates in the environment are often constrained by a lack of knowledge on the elemental distribution and general behavior of particulate bound radionuclides contained in hot particles. A number of hot particles were previously isolated from soil samples collected at former U.S. nuclear test sites in the Marshall Islands and characterized using non-destructive techniques [1]. The present investigation at HASYLAB is a part of larger research program at ITU regarding the characterization of environmental radioactive particles different locations and source-terms. Radioactive particles in the environment are formed under a number of different release scenarios and, as such, their physicochemical properties may provide a basis for identifying source-term specific contamination regimes. Consequently, studies on hot particles are not only important in terms of studying the elemental composition and geochemical behavior of hot particles but may also lead to advances in assessing the long-term impacts of radioactive contamination on the environment. Six particles isolated from soil samples collected at the Marshall Islands were studied. The element distribution in the particles was determined by confocal {micro}-XRF analysis using the ANKA FLUO beam line. The CRL (compound refractive lens) was used to focus the exciting beam and the polycapillary half lens to collimate the detector. The dimensions of confocal spot were measured by 'knife edge scanning' method with thin gold structure placed at Si wafer. The values of 3.1 x 1.4 x 18.4 {micro}m were achieved if defined as FWHMs of measured L?intensity profiles and when the19.1 keV exciting radiation was used. The collected XRF spectra were analyzed offline with AXIL [2] software to obtain net intensities of element characteristic lines.Further data processing and reconstruction of element distribution was done with the software 'R' [3] dedicated for statistical
3-d finite element model development for biomechanics: a software demonstration
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-06-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth. PMID:26213205
3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing
NASA Astrophysics Data System (ADS)
Malinauskas, M.; Žukauskas, A.; Purlys, V.; Gaidukevičiu¯tė, A.; Balevičius, Z.; Piskarskas, A.; Fotakis, C.; Pissadakis, S.; Gray, D.; Gadonas, R.; Vamvakaki, M.; Farsari, M.
2012-12-01
We present our investigations into the fabrication of three-dimensional microoptical elements by the direct femtosecond laser writing of a germanium-silicon photosensitive hybrid material. Germanium glass composites are very interesting for optical applications as they are photosensitive, and maintain high optical transparency in the visible and near-infrared bands of the spectrum. Here, we have used a germanium containing hybrid material to make nanophotonic structures and microoptical elements such as photonic crystal templates, prisms and spatial polarization plates, both on flat surfaces and fiber tips. Our results show that this germanium silicate composite is an excellent material for microoptics fabrication.
High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument
Wirtz, Tom
2015-01-01
Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285
Orthodontic intrusion of maxillary incisors: a 3D finite element method study
Saga, Armando Yukio; Maruo, Hiroshi; Argenta, Marco André; Maruo, Ivan Toshio; Tanaka, Orlando Motohiro
2016-01-01
Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1); bilaterally between the brackets of central and lateral incisors (LOAD 2); bilaterally distal to the brackets of lateral incisors (LOAD 3); bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4). Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution. PMID:27007765
Edge-based finite elements and vector ABCs applied to 3D scattering
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1992-01-01
An edge based finite element formulation with vector absorbing boundary conditions is presented for scattering by composite structures having boundaries satisfying impedance and/or transition conditions. Remarkably accurate results are obtained by placing the mesh a small fraction of a wavelength away from the scatterer.
Yeom, Han-Ju; Kim, Hee-Jae; Kim, Seong-Bok; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo; Park, Jae-Hyeung
2015-12-14
We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues. PMID:26698993
Flow transition with 2-D roughness elements in a 3-D channel
NASA Technical Reports Server (NTRS)
Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.
1993-01-01
We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.
The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis.
Yeoh, Catriona S M; Rossouw, David; Saghi, Zineb; Burdet, Pierre; Leary, Rowan K; Midgley, Paul A
2015-06-01
A simple model is proposed to account for the loss of collected X-ray signal by the shadowing of X-ray detectors in the scanning transmission electron microscope. The model is intended to aid the analysis of three-dimensional elemental data sets acquired using energy-dispersive X-ray tomography methods where shadow-free specimen holders are unsuitable or unavailable. The model also provides a useful measure of the detection system geometry. PMID:25790959
NASA Astrophysics Data System (ADS)
Galvez, P.; Ampuero, J.-P.; Dalguer, L. A.; Somala, S. N.; Nissen-Meyer, T.
2014-08-01
An important goal of computational seismology is to simulate dynamic earthquake rupture and strong ground motion in realistic models that include crustal heterogeneities and complex fault geometries. To accomplish this, we incorporate dynamic rupture modelling capabilities in a spectral element solver on unstructured meshes, the 3-D open source code SPECFEM3D, and employ state-of-the-art software for the generation of unstructured meshes of hexahedral elements. These tools provide high flexibility in representing fault systems with complex geometries, including faults with branches and non-planar faults. The domain size is extended with progressive mesh coarsening to maintain an accurate resolution of the static field. Our implementation of dynamic rupture does not affect the parallel scalability of the code. We verify our implementation by comparing our results to those of two finite element codes on benchmark problems including branched faults. Finally, we present a preliminary dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake including a non-planar plate interface with heterogeneous frictional properties and initial stresses. Our simulation reproduces qualitatively the depth-dependent frequency content of the source and the large slip close to the trench observed for this earthquake.
NASA Astrophysics Data System (ADS)
Molcard, A. J.; Pinardi, N.; Ansaloni, R.
A new numerical model, SEOM (Spectral Element Ocean Model, (Iskandarani et al, 1994)), has been implemented in the Mediterranean Sea. Spectral element methods combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The current version solves the shallow water equations with a fifth (or sixth) order accuracy spectral scheme and about 50.000 nodes. The domain decomposition philosophy makes it possible to exploit the power of parallel machines. The original MIMD master/slave version of SEOM, written in F90 and PVM, has been ported to the Cray T3D. When critical for performance, Cray specific high-performance one-sided communication routines (SHMEM) have been adopted to fully exploit the Cray T3D interprocessor network. Tests performed with highly unstructured and irregular grid, on up to 128 processors, show an almost linear scalability even with unoptimized domain decomposition techniques. Results from various case studies on the Mediterranean Sea are shown, involving realistic coastline geometry, and monthly mean 1000mb winds from the ECMWF's atmospheric model operational analysis from the period January 1987 to December 1994. The simulation results show that variability in the wind forcing considerably affect the circulation dynamics of the Mediterranean Sea.
A 3D finite element simulation model for TBM tunnelling in soft ground
NASA Astrophysics Data System (ADS)
Kasper, Thomas; Meschke, Günther
2004-12-01
A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright
Freels, James D; Jain, Prashant K
2011-01-01
A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.
The evolutional model of oblique-rifting basin : Insights from discrete element method
NASA Astrophysics Data System (ADS)
Cheng, I.-Wen; Yang, Kenn-Ming; Wu, Jong-Chang
2016-04-01
The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during the evolution of oblique-rifting basin. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, whichα are 45°, 60°, 75° and 90° respectively, to simulatebasin formation under oblique-rifting process. The study results of simulation models indicated that:1. the en echelon faults in the rifting basins are sub-orthogonal to the trend of major extensional stress; 2. the density of en echelon faults in rift basins decreasesgradually when α is close to 45°; 3. in these models, the α angles, which are 45°, 60°, 75° and 90°, correspond tothe angles of 0°, 15°-20°, 25°-30° and 50°-60° between the rift trend and en echelon faults trend. According tothe simulation results, the possible dircetions of major extensional stresses during the formation of oblique-rifting basin can be speculated.
A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen
2010-01-01
As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.
NASA Astrophysics Data System (ADS)
Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.
2016-02-01
This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.
NASA Astrophysics Data System (ADS)
Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.
2013-01-01
Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.
NASA Astrophysics Data System (ADS)
Laurent, Gautier; Caumon, Guillaume; Jessell, Mark
2015-01-01
Numerical models of geological structures are generally built with a geometrical approach, which lacks an explicit representation of the deformation history and may lead to incompatible structures. We advocate that the deformation history should be investigated and represented from the very first steps of the modelling process, provided that a series of rapid, interactive or automated, deformation tools are available for local editing, forward modelling and restoration. In this paper, we define the specifications of such tools and emphasise the need for rapidity and robustness. We briefly review the different applications of deformation tools in geomodelling and the existing deformation algorithms. We select a deformation algorithm based on rigid elements, first presented in the Computer Graphics community, which we refer to as Reed. It is able to rapidly deform any kind of geometrical object, including points, lines or volumes, with an approximated mechanical behaviour. The objects to be deformed are embedded in rigid cells whose displacement is optimised by minimising a global cost function with respect to displacement boundary conditions. This cost function measures the difference in displacement between neighbouring elements. The embedded objects are then deformed based on their original position with respect to the rigid elements. We present the basis of our implementation of this algorithm and highlight its ability to fulfil the specifications we defined. Its application to geomodelling specific problems is illustrated through the construction of a synthetic structural model of multiply deformed layers with a forward modelling approach. A special boundary condition adapted to restore large folds is also presented and applied to the large anticline of Han-sur-Lesse, Belgium, which demonstrates the ability of this method to efficiently perform a volumetric restoration without global projections.