Science.gov

Sample records for 3d electron microscopy

  1. Atomic-Resolution 3D Electron Microscopy with Dynamic Diffraction

    SciTech Connect

    O'Keefe, Michael A.; Downing, Kenneth H.; Wenk, Hans-Rudolf; Meisheng, Hu

    2005-02-15

    Achievement of atomic-resolution electron-beam tomography will allow determination of the three-dimensional structure of nanoparticles (and other suitable specimens) at atomic resolution. Three-dimensional reconstructions will yield ''section'' images that resolve atoms overlapped in normal electron microscope images (projections), resolving lighter atoms such as oxygen in the presence of heavier atoms, and atoms that lie on non-lattice sites such as those in non-periodic defect structures. Lower-resolution electron microscope tomography has been used to produce reconstructed 3D images of nanoparticles [1] but extension to atomic resolution is considered not to be straightforward. Accurate three-dimensional reconstruction from two-dimensional projections generally requires that intensity in the series of 2-D images be a monotonic function of the specimen structure (often specimen density, but in our case atomic potential). This condition is not satisfied in electron microscopy when specimens with strong periodicity are tilted close to zone-axis orientation and produce ''anomalous'' image contrast because of strong dynamic diffraction components. Atomic-resolution reconstructions from tilt series containing zone-axis images (with their contrast enhanced by strong dynamical scattering) can be distorted when the stronger zone-axis images overwhelm images obtained in other ''random'' orientations in which atoms do not line up in neat columns. The first demonstrations of 3-D reconstruction to atomic resolution used five zone-axis images from test specimens of staurolite consisting of a mix of light and heavy atoms [2,3]. Initial resolution was to the 1.6{angstrom} Scherzer limit of a JEOL-ARM1000. Later experiments used focal-series reconstruction from 5 to 10 images to produce staurolite images from the ARM1000 with resolution extended beyond the Scherzer limit to 1.38{angstrom} [4,5]. To obtain a representation of the three-dimensional structure, images were obtained

  2. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  3. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  4. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy

    PubMed Central

    Rennie, Monique Y.; Gahan, Curran G.; López, Claudia S.; Thornburg, Kent L.; Rugonyi, Sandra

    2015-01-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three dimensional (3D), high-resolution imaging. Focused ion beam-scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a focused ion beam, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy (TEM). Up to 1100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800–1500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall. PMID:24742339

  5. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. PMID:26855205

  6. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    PubMed Central

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  7. Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell

    PubMed Central

    Bohórquez, Diego; Haque, Fariha; Medicetty, Satish; Liddle, Rodger A.

    2015-01-01

    Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue. PMID:26273796

  8. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Villarrubia, J. S.; Tondare, V. N.; Vladár, A. E.

    2016-03-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples—mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  9. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    PubMed

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es. PMID:27108186

  10. Catching HIV ‘in the act’ with 3D electron microscopy

    PubMed Central

    Earl, Lesley A.; Lifson, Jeffrey D.; Subramaniam, Sriram

    2013-01-01

    The development of a safe, effective vaccine to prevent human immunodeficiency virus (HIV) infection is a key step for controlling the disease on a global scale. However, many aspects of HIV biology make vaccine design problematic, including the sequence diversity and structural variability of the surface envelope glycoproteins and the poor accessibility of neutralization-sensitive epitopes on the virus. In this review, we discuss recent progress in understanding HIV in a structural context using emerging tools in 3D electron microscopy, and outline how some of these advances could be important for a better understanding of mechanisms of viral entry and for vaccine design. PMID:23850373

  11. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  12. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  13. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  14. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy.

    PubMed

    Kizilyaprak, Caroline; Longo, Giovanni; Daraspe, Jean; Humbel, Bruno M

    2015-02-01

    In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples. PMID:25433274

  15. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy.

    PubMed

    Heymann, Jurgen A W; Shi, Dan; Kim, Sang; Bliss, Donald; Milne, Jacqueline L S; Subramaniam, Sriram

    2009-04-01

    Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and melanocytes at resolutions as high as approximately 6 and approximately 20 nm in the directions parallel and perpendicular, respectively, to the direction of ion-beam milling. The 3D images demonstrate the striking spatial relationships between specific organelles such as mitochondria and membranes of the endoplasmic reticulum, and the distribution of unique cellular components such as melanosomes. We also show that 10nm-sized gold particles and quantum dot particles with 7 nm-sized cores can be detected in single cross-sectional images. IA-SEM is thus a useful tool for imaging large mammalian cells in their entirety at resolutions in the nanometer range. PMID:19116171

  16. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  17. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  18. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development.

    PubMed

    Harris, Kristen M; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H; Lindsey, Laurence F; Baden, Alexander D; Vogelstein, Joshua T; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50-60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm(3)) surrounding a large dendritic spine, a cylinder (~43 μm(3)) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm(3)) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  19. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    -scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d

  20. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. PMID:25786567

  1. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  2. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    PubMed

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. PMID:26930005

  3. Ultra-high voltage electron microscopy of primitive algae illuminates 3D ultrastructures of the first photosynthetic eukaryote

    PubMed Central

    Takahashi, Toshiyuki; Nishida, Tomoki; Saito, Chieko; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2015-01-01

    A heterotrophic organism 1–2 billion years ago enslaved a cyanobacterium to become the first photosynthetic eukaryote, and has diverged globally. The primary phototrophs, glaucophytes, are thought to retain ancestral features of the first photosynthetic eukaryote, but examining the protoplast ultrastructure has previously been problematic in the coccoid glaucophyte Glaucocystis due to its thick cell wall. Here, we examined the three-dimensional (3D) ultrastructure in two divergent species of Glaucocystis using ultra-high voltage electron microscopy. Three-dimensional modelling of Glaucocystis cells using electron tomography clearly showed that numerous, leaflet-like flattened vesicles are distributed throughout the protoplast periphery just underneath a single-layered plasma membrane. This 3D feature is essentially identical to that of another glaucophyte genus Cyanophora, as well as the secondary phototrophs in Alveolata. Thus, the common ancestor of glaucophytes and/or the first photosynthetic eukaryote may have shown similar 3D structures. PMID:26439276

  4. Isolation, Electron Microscopy and 3D Reconstruction of Invertebrate Muscle Myofilaments

    PubMed Central

    Craig, Roger

    2011-01-01

    Understanding the molecular mechanism of muscle contraction and its regulation has been greatly influenced and aided by studies of myofilament structure in invertebrate muscles. Invertebrates are easily obtained and cover a broad spectrum of species and functional specializations. The thick (myosin-containing) filaments from some invertebrates are especially stable and simple in structure and thus much more amenable to structural analysis than those of vertebrates. Comparative studies of invertebrate filaments by electron microscopy and image processing have provided important generalizations of muscle molecular structure and function. This article reviews methods for preparing thick and thin filaments from invertebrate muscle, for imaging filaments by electron microscopy, and for determining their three dimensional structure by image processing. It also highlights some of the key insights into filament function that have come from these studies. PMID:22155190

  5. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB☆

    PubMed Central

    Lagerstedt, Ingvar; Moore, William J.; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R.; Kleywegt, Gerard J.

    2013-01-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed. PMID:24113529

  6. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB.

    PubMed

    Lagerstedt, Ingvar; Moore, William J; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R; Kleywegt, Gerard J

    2013-11-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed. PMID:24113529

  7. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGESBeta

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D.; Fraser, James S.

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  8. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy

    PubMed Central

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047

  9. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  10. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  11. A modular hierarchical approach to 3D electron microscopy image segmentation.

    PubMed

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-04-15

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  12. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2015-01-01

    As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications. PMID:26633469

  13. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  14. PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps

    PubMed Central

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-01-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  15. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  16. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements. PMID:22051087

  17. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    PubMed

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  18. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties. PMID:17481354

  19. Web-based volume slicer for 3D electron-microscopy data from EMDB

    PubMed Central

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J.; Patwardhan, Ardan

    2016-01-01

    We describe the functionality and design of the Volume slicer – a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  20. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy

    PubMed Central

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A.; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-01-01

    ABSTRACT The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types. PMID:26045447

  1. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  2. Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    PubMed Central

    Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare

    2012-01-01

    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024

  3. 3D microscopy - new powerful tools in geomaterials characterization

    NASA Astrophysics Data System (ADS)

    Mauko Pranjić, Alenka; Mladenovič, Ana; Turk, Janez; Šajna, Aljoša; Čretnik, Janko

    2016-04-01

    Microtomography (microCT) is becoming more and more widely recognized in geological sciences as a powerful tool for the spatial characterization of rock and other geological materials. Together with 3D image analysis and other complementary techniques, it has the characteristics of an innovative and non-destructive 3D microscopical technique. On the other hand its main disadvantages are low availability (only a few geological laboratories are equipped with high resolution tomographs), the relatively high prices of testing connected with the use of an xray source, technical limitations connected to the resolution and imaging of certain materials, as well as timeconsuming and complex 3D image analysis, necessary for quantification of 3D tomographic data sets. In this work three examples are presented of optimal 3D microscopy analysis of geomaterials in construction such as porosity characterization of impregnated sandstone, aerated concrete and marble prone to bowing. Studies include processes of microCT imaging, 3D data analysis and fitting of data with complementary analysis, such as confocal microscopy, mercury porosimetry, gas sorption, optical/fluorescent microscopy and scanning electron microscopy. Present work has been done in the frame of national research project 3D and 4D microscopy development of new powerful tools in geosciences (ARRS J1-7148) funded by Slovenian Research Agency.

  4. Visualising the 3D Structure of Fine-Grained Estuarine Sediments; Preliminary Interpretations of a Novel Dataset Obtained via Volume Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Spencer, Kate; Carr, Simon

    2014-05-01

    Accurate measurement of the physical characteristics of sediment are critical to determining sediment transport behaviour and the stability of settled deposits. The properties (e.g. particle size, density, and settling velocity) of coarse-grained sediments (> 63 μm φ) can be easily characterised, hence their behaviour is relatively simple to predict and model. However, due to their small size and tendency to interact with their surrounding medium, the characteristics of fine sediments (< 63 μm φ) and their behaviour during transportation, deposition and consolidation is poorly understood. Recent studies have used correlative microscopy, a multi-method technique combining scanning confocal laser microscopy (SCLM), conventional optical microscopy (COM), and transmission electron microscopy (TEM), to characterise fine sediments at both the gross (> 1 μm) and sub-micron scale (Droppo et al., 1996). Whilst this technique has proven insightful, the measurement of geometric properties (e.g. the shape of primary particles and their spatial arrangement) can only be achieved by three-dimensional (3D) analysis and the scale of observation for e.g. TEM does not overlap with those techniques used to characterise sediments at larger scales (100s to 1000s microns) (e.g. video analysis). Volume electron microscopy [or focused ion beam scanning electron microscopy (FIB-SEM)] provides 3D analysis at scales of 10s to 1000s microns and though widely used in cell biology, has not been used to observe sediment. FIB-SEM requires samples that are vacuum stable and a key challenge will be to capture fragile, hydrated sediment samples whilst preserving their structural integrity. The aims of this work are therefore: 1) to modify preparation techniques currently used in cell biology for the stabilization of sedimentary materials; 2) to acquire 3D datasets for both fragile suspended sediments (flocs) and consolidated bed sediments and 3) to interpret the 3D structure of these samples. In

  5. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction.

    PubMed

    Cabra, Vanessa; Samsó, Montserrat

    2015-01-01

    Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level. PMID:25651412

  6. Do's and Don'ts of Cryo-electron Microscopy: A Primer on Sample Preparation and High Quality Data Collection for Macromolecular 3D Reconstruction

    PubMed Central

    Cabra, Vanessa; Samsó, Montserrat

    2015-01-01

    Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level. PMID:25651412

  7. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  8. NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks.

    PubMed

    Jorstad, Anne; Nigro, Biagio; Cali, Corrado; Wawrzyniak, Marta; Fua, Pascal; Knott, Graham

    2015-01-01

    Serialelectron microscopy imaging is crucial for exploring the structure of cells and tissues. The development of block face scanning electron microscopy methods and their ability to capture large image stacks, some with near isotropic voxels, is proving particularly useful for the exploration of brain tissue. This has led to the creation of numerous algorithms and software for segmenting out different features from the image stacks. However, there are few tools available to view these results and make detailed morphometric analyses on all, or part, of these 3D models. We have addressed this issue by constructing a collection of software tools, called NeuroMorph, with which users can view the segmentation results, in conjunction with the original image stack, manipulate these objects in 3D, and make measurements of any region. This approach to collecting morphometric data provides a faster means of analysing the geometry of structures, such as dendritic spines and axonal boutons. This bridges the gap that currently exists between rapid reconstruction techniques, offered by computer vision research, and the need to collect measurements of shape and form from segmented structures that is currently done using manual segmentation methods. PMID:25240318

  9. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

    PubMed Central

    Jun, Sangmi; Zhao, Gongpu; Ning, Jiying; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2013-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state1. However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging2, due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-13-7, the resolution afforded by live-cell microscopy is limited (~ 200 nm). Our work was aimed at developing a correlation method that permits direct visualization of early events of HIV-1 infection by combining live-cell fluorescent light microscopy, cryo-fluorescent microscopy, and cryoET. In this manner, live-cell and cryo-fluorescent signals can be used to accurately guide the sampling in cryoET. Furthermore, structural information obtained from cryoET can be complemented with the dynamic functional data gained through live-cell imaging of fluorescent labeled target. In this video article, we provide detailed methods and protocols for structural investigation of HIV-1 and host-cell interactions using 3D correlative high-speed live-cell imaging and high-resolution cryoET structural analysis. HeLa cells infected with HIV-1 particles were characterized first by confocal live-cell microscopy, and the region containing the same viral particle was then analyzed by cryo-electron tomography for 3D structural details. The correlation between two sets of imaging data, optical imaging and electron imaging, was achieved using a home-built cryo-fluorescence light microscopy stage. The approach detailed here will be valuable, not only for study of virus-host cell interactions, but also for broader applications in cell biology, such as cell signaling, membrane receptor trafficking, and many other dynamic cellular processes. PMID:23852318

  10. The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal & Electron Microscopy Imaging

    PubMed Central

    O’Connell, Mary K; Murthy, Sushila; Phan, Samson; Xu, Chengpei; Buchanan, JoAnn; Spilker, Ryan; Dalman, Ronald L; Zarins, Christopher K; Denk, Winfried; Taylor, Charles A

    2009-01-01

    Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth Muscle Cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties. PMID:18248974

  11. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  12. A new type of 3-D peripheral ultrastructure in Glaucocystis (Glaucocystales, Glaucophyta) as revealed by ultra-high voltage electron microscopy.

    PubMed

    Takahashi, Toshiyuki; Nishida, Tomoki; Saito, Chieko; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-06-01

    The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three-dimensional (3-D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra-high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3-D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3-D ultrastructure resolved in "G. incrassata" SAG 229-2 cells by 3-D modeling based on UHVEM tomography using high-pressure freezing and freeze-substitution fixation. The plasma membrane and underlying flattened vesicles in "G. incrassata" SAG 229-2 exhibited grooves at intervals of 200-600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3-D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3-D ultrastructure of the protoplast periphery is discussed. PMID:27273537

  13. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  14. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  15. Resolution improvement by 3D particle averaging in localization microscopy

    PubMed Central

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P.J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-01-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on three-dimensional super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision. PMID:25866640

  16. 3D Cell Culture Imaging with Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  17. Single Cell Traction Microscopy within 3D Collagen Matrices

    NASA Astrophysics Data System (ADS)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  18. Holography, tomography and 3D microscopy as linear filtering operations

    NASA Astrophysics Data System (ADS)

    Coupland, J. M.; Lobera, J.

    2008-07-01

    In this paper, we characterize 3D optical imaging techniques as 3D linear shift-invariant filtering operations. From the Helmholtz equation that is the basis of scalar diffraction theory, we show that the scattered field, or indeed a holographic reconstruction of this field, can be considered to be the result of a linear filtering operation applied to a source distribution. We note that if the scattering is weak, the source distribution is independent of the scattered field and a holographic reconstruction (or in fact any far-field optical imaging system) behaves as a 3D linear shift-invariant filter applied to the refractive index contrast (which effectively defines the object). We go on to consider tomographic techniques that synthesize images from recordings of the scattered field using different illumination conditions. In our analysis, we compare the 3D response of monochromatic optical tomography with the 3D imagery offered by confocal microscopy and scanning white light interferometry (using quasi-monochromatic illumination) and explain the circumstances under which these approaches are equivalent. Finally, we consider the 3D response of polychromatic optical tomography and in particular the response of spectral optical coherence tomography and scanning white light interferometry.

  19. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  20. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. PMID:25453259

  1. Applied 3D printing for microscopy in health science research

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Zareinia, Kourosh; Stys, Peter

    2015-03-01

    The rapid prototyping capability offered by 3D printing is considered advantageous for commercial applications. However, the ability to quickly produce precision custom devices is highly beneficial in the research laboratory setting as well. Biological laboratories require the manipulation and analysis of delicate living samples, thus the ability to create custom holders, support equipment, and adapters allow the extension of existing laboratory machines. Applications include camera adapters and stage sample holders for microscopes, surgical guides for tissue preparation, and small precision tools customized to unique specifications. Where high precision is needed, especially the reproduction of fine features, a printer with a high resolution is needed. However, the introduction of cheaper, lower resolution commercial printers have been shown to be more than adequate for less demanding projects. For direct manipulation of delicate samples, biocompatible raw materials are often required, complicating the printing process. This paper will examine some examples of 3D-printed objects for laboratory use, and provide an overview of the requirements for 3D printing for this application. Materials, printing resolution, production, and ease of use will all be reviewed with an eye to producing better printers and techniques for laboratory applications. Specific case studies will highlight applications for 3D-printed devices in live animal imaging for both microscopy and Magnetic Resonance Imaging.

  2. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  3. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  4. 3-D Optical Interference Microscopy at the Lateral Resolution

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter; Niehues, Jan; Tereschenko, Stanislav

    2014-10-01

    For applications in micro- and nanotechnologies the lateral resolution of optical 3-D microscopes becomes an issue of increasing relevance. However, lateral resolution of 3-D microscopes is hard to define in a satisfying way. Therefore, we first study the measurement capabilities of a highly resolving white-light interference (WLI) microscope close to the limit of lateral resolution. Results of measurements and simulations demonstrate that better lateral resolution seems to be achievable based on the envelope evaluation of a WLI signal. Unfortunately, close to the lateral resolution limit errors in the measured amplitude of micro-structures appear. On the other hand, results of interferometric phase evaluation seem to be strongly low-pass filtered in this case. Furthermore, the instrument transfer characteristics and the lateral resolution capabilities of WLI instruments are also affected by polarization. TM polarized light is less sensitive to edge diffraction and thus systematic errors can be avoided. However, apart from ghost steps due to fringe order errors, the results of phase evaluation seem to be closer to the real surface topography if TE polarized light is used. The lateral resolution can be further improved by combining WLI and structured illumination microscopy. Since the measured height of rectangular profiles close to the lateral resolution limit is generally too small compared to the real height, we introduce a method based on phase evaluation which characterizes the heights of barely laterally resolved rectangular gratings correctly.

  5. Quantifying cellular interaction dynamics in 3-D fluorescence microscopy data

    PubMed Central

    Klauschen, Frederick; Ishii, Masaru; Qi, Hai; Bajénoff, Marc; Egen, Jackson G.; Germain, Ronald N.; Meier-Schellersheim, Martin

    2012-01-01

    The wealth of information available from advanced fluorescence imaging techniques used to analyze biological processes with high spatial and temporal resolution calls for high-throughput image analysis methods. Here, we describe a fully automated approach to analyzing cellular interaction behavior in 3-D fluorescence microscopy images. As example application we present the analysis of drug-induced and S1P1-knock-out-related changes in bone-osteoclast interactions. Moreover, we apply our approach to images showing the spatial association of dendritic cells with the fibroblastic reticular cell network within lymph nodes and to microscopy data about T-B lymphocyte synapse formation. Such analyses that yield important information about the molecular mechanisms determining cellular interaction behavior would be very difficult to perform with approaches that rely on manual/semi-automated analyses. This protocol integrates adaptive threshold segmentation, object detection, adaptive color channel merging and neighborhood analysis and permits rapid, standardized, quantitative analysis and comparison of the relevant features in large data sets. PMID:19696749

  6. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  7. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  8. Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus

    PubMed Central

    Tadrous, Paul Joseph

    2012-01-01

    Anatomy has advanced using 3-dimensional (3D) studies at macroscopic (e.g., dissection, injection moulding of vessels, radiology) and microscopic (e.g., serial section reconstruction with light and electron microscopy) levels. This paper presents the first results in human cells of a new method of subcellular 3D brightfield microscopy. Unlike traditional 3D deconvolution and confocal techniques, this method is suitable for general application to brightfield microscopy. Unlike brightfield serial sectioning it has subcellular resolution. Results are presented of the 3D structure of chromatin in the interphase nucleus of two human cell types, hepatocyte and plasma cell. I show how the freedom to examine these structures in 3D allows greater morphological discrimination between and within cell types and the 3D structural basis for the classical “clock-face” motif of the plasma cell nucleus is revealed. Potential for further applications discussed. PMID:22567315

  9. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall. PMID:27379646

  10. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  11. Four-dimensional electron microscopy.

    PubMed

    Zewail, Ahmed H

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy. PMID:20378810

  12. Four-Dimensional Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zewail, Ahmed H.

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  13. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  14. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  15. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  16. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  17. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging.

    PubMed

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-06-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  18. Four-dimensional ultrafast electron microscopy

    PubMed Central

    Lobastov, Vladimir A.; Srinivasan, Ramesh; Zewail, Ahmed H.

    2005-01-01

    Electron microscopy is arguably the most powerful tool for spatial imaging of structures. As such, 2D and 3D microscopies provide static structures with subnanometer and increasingly with ångstrom-scale spatial resolution. Here we report the development of 4D ultrafast electron microscopy, whose capability imparts another dimension to imaging in general and to dynamics in particular. We demonstrate its versatility by recording images and diffraction patterns of crystalline and amorphous materials and images of biological cells. The electron packets, which were generated with femtosecond laser pulses, have a de Broglie wavelength of 0.0335 Å at 120 keV and have as low as one electron per pulse. With such few particles, doses of few electrons per square ångstrom, and ultrafast temporal duration, the long sought after but hitherto unrealized quest for ultrafast electron microscopy has been realized. Ultrafast electron microscopy should have an impact on all areas of microscopy, including biological imaging. PMID:15883380

  19. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  20. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  1. Stability and electronic properties of 3D covalent organic frameworks.

    PubMed

    Lukose, Binit; Kuc, Agnieszka; Heine, Thomas

    2013-05-01

    Covalent organic frameworks (COFs) are a class of covalently linked crystalline nanoporous materials, versatile for nanoelectronic and storage applications. 3D COFs, in particular, have very large pores and low mass densities. Extensive theoretical studies of their energetic and mechanical stability, as well as their electronic properties, have been carried out for all known 3D COFs. COFs are energetically stable and their bulk modulus ranges from 3 to 20 GPa. Electronically, all COFs are semiconductors with band gaps corresponding to the HOMO-LUMO gaps of the building units. PMID:23212235

  2. 3D Observation of GEMS by Electron Tomography

    NASA Technical Reports Server (NTRS)

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  3. Correlated electron pseudopotentials for 3d-transition metals

    SciTech Connect

    Trail, J. R. Needs, R. J.

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  4. Correlated electron pseudopotentials for 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Trail, J. R.; Needs, R. J.

    2015-02-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  5. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    PubMed Central

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Background Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Materials and methods Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. Results MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. Conclusions This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment. PMID:22933973

  6. 2D and 3D X-Ray Structural Microscopy Using Submicron-Resolution Laue Microdiffraction

    SciTech Connect

    Budai, John D.; Yang, Wenge; Larson, Bennett C.; Tischler, Jonathan Z.; Liu, Wenjun; Ice, Gene E.

    2010-11-10

    We have developed a scanning, polychromatic x-ray microscopy technique with submicron spatial resolution at the Advanced Photon Source. In this technique, white undulator radiation is focused to submicron diameter using elliptical mirrors. Laue diffraction patterns scattered from the sample are collected with an area detector and then analyzed to obtain the local crystal structure, lattice orientation, and strain tensor. These new microdiffraction capabilities have enabled both 2D and 3D structural studies of materials on mesoscopic length-scales of tenths-to-hundreds of microns. For thin samples such as deposited films, 2D structural maps are obtained by step-scanning the area of interest. For example, 2D x-ray microscopy has been applied in studies of the epitaxial growth of oxide films. For bulk samples, a 3D differential-aperture x-ray microscopy technique has been developed that yields the full diffraction information from each submicron volume element. The capabilities of 3D x-ray microscopy are demonstrated here with measurements of grain orientations and grain boundary motion in polycrystalline aluminum during 3D thermal grain growth. X-ray microscopy provides the needed, direct link between the experimentally measured 3D microstructural evolution and the results of theory and modeling of materials processes on mesoscopic length scales.

  7. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  8. Dynamic Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  9. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Vandevender, Darl; Patel, Parit A

    2016-05-01

    Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241

  10. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery

    PubMed Central

    Mendez, Bernardino M.; Chiodo, Michael V.; Vandevender, Darl

    2016-01-01

    Summary: Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241

  11. 3D resolution enhancement of deep-tissue imaging based on virtual spatial overlap modulation microscopy.

    PubMed

    Su, I-Cheng; Hsu, Kuo-Jen; Shen, Po-Ting; Lin, Yen-Yin; Chu, Shi-Wei

    2016-07-25

    During the last decades, several resolution enhancement methods for optical microscopy beyond diffraction limit have been developed. Nevertheless, those hardware-based techniques typically require strong illumination, and fail to improve resolution in deep tissue. Here we develop a high-speed computational approach, three-dimensional virtual spatial overlap modulation microscopy (3D-vSPOM), which immediately solves the strong-illumination issue. By amplifying only the spatial frequency component corresponding to the un-scattered point-spread-function at focus, plus 3D nonlinear value selection, 3D-vSPOM shows significant resolution enhancement in deep tissue. Since no iteration is required, 3D-vSPOM is much faster than iterative deconvolution. Compared to non-iterative deconvolution, 3D-vSPOM does not need a priori information of point-spread-function at deep tissue, and provides much better resolution enhancement plus greatly improved noise-immune response. This method is ready to be amalgamated with two-photon microscopy or other laser scanning microscopy to enhance deep-tissue resolution. PMID:27464077

  12. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  13. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  14. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  15. Recent progress in printed 2/3D electronic devices

    NASA Astrophysics Data System (ADS)

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  16. Coherent Microscopy for 3-D Movement Monitoring and Super-Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Beiderman, Yevgeny; Amsel, Avigail; Tzadka, Yaniv; Fixler, Dror; Teicher, Mina; Micó, Vicente; Garcí, Javier; Javidi, Bahram; DaneshPanah, Mehdi; Moon, Inkyu; Zalevsky, Zeev

    In this chapter we present three types of microscopy-related configurations while the first one is used for 3-D movement monitoring of the inspected samples, the second one is used for super-resolved 3-D imaging, and the last one presents an overview digital holographic microscopy applications. The first configuration is based on temporal tracking of secondary reflected speckles when imaged by properly defocused optics. We validate the proposed scheme by using it to monitor 3-D spontaneous contraction of rat's cardiac muscle cells while allowing nanometric tracking accuracy without interferometric recording. The second configuration includes projection of temporally varying speckle patterns on top of the sample and by proper decoding exceeding the diffraction as well as the geometrical-related lateral resolution limitation. In the final part of the chapter, we overview applications of digital holographic microscopy (DHM) for real-time non-invasive 3-D sensing, tracking, and recognition of living microorganisms such as single- or multiple-cell organisms and bacteria.

  17. 3D imaging of the cleared intact murine colon with light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Zufiria, B.; Bocancea, D. I.; Gómez-Gaviro, M. V.; Vaquero, J. J.; Desco, M.; Fresno, M.; Ripoll, J.; Arranz, A.

    2016-03-01

    We here show 3D light sheet microscopy images of fixed and cleared murine colon tissue in-toto, which offer relevant cellular information without the need for physically sectioning the tissue. We have applied the recently developed CUBIC protocol (Susaki et al. Cell 157:726, 2014) for colon tissues and have found that this clearing protocol enables imaging all the way to the central part of the lumen with cellular resolution, thus opening new ways for 3D imaging of colon samples.

  18. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  19. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    PubMed

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  20. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    NASA Astrophysics Data System (ADS)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-08-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  1. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    PubMed Central

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  2. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  3. Electron microscopy and forensic practice

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  4. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    PubMed Central

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  5. An open-source deconvolution software package for 3-D quantitative fluorescence microscopy imaging

    PubMed Central

    SUN, Y.; DAVIS, P.; KOSMACEK, E. A.; IANZINI, F.; MACKEY, M. A.

    2010-01-01

    Summary Deconvolution techniques have been widely used for restoring the 3-D quantitative information of an unknown specimen observed using a wide-field fluorescence microscope. Deconv, an open-source deconvolution software package, was developed for 3-D quantitative fluorescence microscopy imaging and was released under the GNU Public License. Deconv provides numerical routines for simulation of a 3-D point spread function and deconvolution routines implemented three constrained iterative deconvolution algorithms: one based on a Poisson noise model and two others based on a Gaussian noise model. These algorithms are presented and evaluated using synthetic images and experimentally obtained microscope images, and the use of the library is explained. Deconv allows users to assess the utility of these deconvolution algorithms and to determine which are suited for a particular imaging application. The design of Deconv makes it easy for deconvolution capabilities to be incorporated into existing imaging applications. PMID:19941558

  6. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    PubMed Central

    Khorshed, Reema A.; Hawkins, Edwin D.; Duarte, Delfim; Scott, Mark K.; Akinduro, Olufolake A.; Rashidi, Narges M.; Spitaler, Martin; Lo Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components. PMID:26120058

  7. Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2015-01-01

    This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization. PMID:25950821

  8. 3D single molecule tracking in thick cellular specimens using multifocal plane microscopy

    NASA Astrophysics Data System (ADS)

    Ram, Sripad; Ward, E. Sally; Ober, Raimund J.

    2011-03-01

    One of the major challenges in single molecule microscopy concerns 3D tracking of single molecules in cellular specimens. This has been a major impediment to study many fundamental cellular processes, such as protein transport across thick cellular specimens (e.g. a cell-monolayer). Here we show that multifocal plane microscopy (MUM), an imaging modality developed by our group, provides the much needed solution to this longstanding problem. While MUM was previously used for 3D single molecule tracking at shallow depths (~ 1 micron) in live-cells, the question arises if MUM can also live up to the significant challenge of tracking single molecules in thick samples. Here by substantially expanding the capabilities of MUM, we demonstrate 3D tracking of quantum-dot labeled molecules in a ~ 10 micron thick cell monolayer. In this way we have reconstructed the complete 3D intracellular trafficking itinerary of single molecules at high spatial and temporal precision in a thick cell-sample. Funding support: NIH and the National MS Society.

  9. Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy.

    PubMed

    Štěpka, Karel; Matula, Pavel; Matula, Petr; Wörz, Stefan; Rohr, Karl; Kozubek, Michal

    2015-08-01

    Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive. PMID:26033916

  10. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy.

    PubMed

    Mohapatra, Saswat; Nandi, Somen; Chowdhury, Rajdeep; Das, Gaurav; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-07-21

    A tumor-like multi-cellular spheroid (3D) differs from a 2D cell in a number of ways. This is demonstrated using time resolved confocal microscopy. Two different tumor spheroids - HeLa (cervical cancer) and A549 (lung cancer) - are studied using 3 different fluorescent dyes - C153 (non-covalent), CPM (covalent) and doxorubicin (non-covalent, anti-cancer drug). The pattern of localization of these three fluorescent probes in the 3D tumor cell exhibits significant differences from that in the conventional 2D cells. For both the cells (HeLa and A549), the total uptake of doxorubicin in the 3D cell is much lower than that in the 2D cell. The uptake of doxorubicin molecules in the A549 spheroid is significantly different compared to the HeLa spheroid. The local polarity (i.e. emission maxima) and solvation dynamics in the 3D tumor cell differ from those in 2D cells. The covalent probe CPM exhibits intermittent fluorescence oscillations in the 1-2 s time scale. This is attributed to redox processes. These results may provide new insights into 3D tumors. PMID:27336201

  11. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  12. Dislocation Density Tensor Characterization of Deformation Using 3D X-Ray Microscopy

    SciTech Connect

    Larson, Ben C; Tischler, Jonathan Zachary; El-Azab, Anter; Liu, Wenjun

    2008-01-01

    Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to make spatially resolved measurements of lattice curvature and elastic strain over two-dimensional slices in thin deformed Si plates. The techniques and capabilities associated with white-beam 3D X-ray microscopy are discussed, and both theoretical and experimental considerations associated with the measurement of Nye dislocation density tensors in deformed materials are presented. The ability to determine the local geometrically necessary dislocation (GND) density in the form of a dislocation density tensor, with micron spatial resolution over mesoscopic length scales, is demonstrated. Results are shown for the special case of an elastically bent (dislocation free) thin Si plate and for a similar thin Si plate that was bent plastically, above the brittle-to-ductile transition temperature, to introduce dislocations. Within the uncertainties of the measurements, the known result that GND density is zero for elastic bending is obtained, and well-defined GND distributions are observed in the plastically deformed Si plate. The direct and absolute connection between experimental measurements of GND density and multiscale modeling and computer simulations of deformation microstructures is discussed to highlight the importance of submicron-resolution 3D X-ray microscopy for mesoscale characterization of material defects and to achieve a fundamental understanding of deformation in ductile materials.

  13. Dislocation density tensor characterization of deformation using 3D x-ray microscopy.

    SciTech Connect

    Larson, B. C.; Tischler, J. Z.; El-Azab, A.; Liu, W.; ORNL; Florida State Univ.

    2008-04-01

    Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to make spatially resolved measurements of lattice curvature and elastic strain over two-dimensional slices in thin deformed Si plates. The techniques and capabilities associated with white-beam 3D X-ray microscopy are discussed, and both theoretical and experimental considerations associated with the measurement of Nye dislocation density tensors in deformed materials are presented. The ability to determine the local geometrically necessary dislocation (GND) density in the form of a dislocation density tensor, with micron spatial resolution over mesoscopic length scales, is demonstrated. Results are shown for the special case of an elastically bent (dislocation free) thin Si plate and for a similar thin Si plate that was bent plastically, above the brittle-to-ductile transition temperature, to introduce dislocations. Within the uncertainties of the measurements, the known result that GND density is zero for elastic bending is obtained, and well-defined GND distributions are observed in the plastically deformed Si plate. The direct and absolute connection between experimental measurements of GND density and multiscale modeling and computer simulations of deformation microstructures is discussed to highlight the importance of submicron-resolution 3D X-ray microscopy for mesoscale characterization of material defects and to achieve a fundamental understanding of deformation in ductile materials.

  14. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  15. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  16. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data.

    PubMed

    Besseling, T H; Hermes, M; Kuijk, A; de Nijs, B; Deng, T-S; Dijkstra, M; Imhof, A; van Blaaderen, A

    2015-05-20

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level. PMID:25922931

  17. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data

    NASA Astrophysics Data System (ADS)

    Besseling, T. H.; Hermes, M.; Kuijk, A.; de Nijs, B.; Deng, T.-S.; Dijkstra, M.; Imhof, A.; van Blaaderen, A.

    2015-05-01

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.

  18. A 3D Primary Vessel Reconstruction Framework with Serial Microscopy Images

    PubMed Central

    Liang, Yanhui; Wang, Fusheng; Treanor, Darren; Magee, Derek; Teodoro, George; Zhu, Yangyang; Kong, Jun

    2015-01-01

    Three dimensional microscopy images present significant potential to enhance biomedical studies. This paper presents an automated method for quantitative analysis of 3D primary vessel structures with histology whole slide images. With registered microscopy images of liver tissue, we identify primary vessels with an improved variational level set framework at each 2D slide. We propose a Vessel Directed Fitting Energy (VDFE) to provide prior information on vessel wall probability in an energy minimization paradigm. We find the optimal vessel cross-section associations along the image sequence with a two-stage procedure. Vessel mappings are first found between each pair of adjacent slides with a similarity function for four association cases. These bi-slide vessel components are further linked by Bayesian Maximum A Posteriori (MAP) estimation where the posterior probability is modeled as a Markov chain. The efficacy of the proposed method is demonstrated with 54 whole slide microscopy images of sequential sections from a human liver. PMID:26478919

  19. 3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Tserevelakis, George J.; Murić, Branka D.; Filippidis, George; Pantelić, Dejan V.

    2013-05-01

    In this work, nonlinear laser scanning microscopy was employed for the characterization and three-dimensional (3D) imaging of microlenses and microlens arrays. Third-harmonic generation and two-photon excitation fluorescence (TPEF) signals were recorded and the obtained data were further processed in order to generate 3D reconstructions of the examined samples. Femtosecond laser pulses (1028 nm) were utilized for excitation. Microlenses were manufactured on Tot'hema and eosin sensitized gelatin layers using a green (532 nm) continuous wave laser beam using the direct laser writing method. The profiles of the microlens surface were obtained from the radial cross-sections, using a triple-Gaussian fit. The analytical shapes of the profiles were also used for ray tracing. Furthermore, the volumes of the microlenses were determined with high precision. The TPEF signal arising from the volume of the material was recorded and the respective 3D spatial fluorescence distribution of the samples was mapped. Nonlinear microscopy modalities have been shown to be a powerful diagnostic tool for microlens characterization as they enable in-depth investigations of the structural properties of the samples, in a nondestructive manner.

  20. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

    PubMed Central

    Park, Ok Kyu; Kwak, Jina; Jung, Yoo Jung; Kim, Young Ho; Hong, Hyun-Seok; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2015-01-01

    Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity. PMID:26429501

  1. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Lu, Ju; Lichtman, Jeff; Adjeroh, Donald; Wong, Stephen T C

    2008-08-01

    The morphological properties of axons, such as their branching patterns and oriented structures, are of great interest for biologists in the study of the synaptic connectivity of neurons. In these studies, researchers use triple immunofluorescent confocal microscopy to record morphological changes of neuronal processes. Three-dimensional (3D) microscopy image analysis is then required to extract morphological features of the neuronal structures. In this article, we propose a highly automated 3D centerline extraction tool to assist in this task. For this project, the most difficult part is that some axons are overlapping such that the boundaries distinguishing them are barely visible. Our approach combines a 3D dynamic programming (DP) technique and marker-controlled watershed algorithm to solve this problem. The approach consists of tracking and updating along the navigation directions of multiple axons simultaneously. The experimental results show that the proposed method can rapidly and accurately extract multiple axon centerlines and can handle complicated axon structures such as cross-over sections and overlapping objects. PMID:18336075

  2. 3D positional tracking of ellipsoidal particles in a microtube flow using holographic microscopy

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeok Jun; Seo, Kyung Won; Lee, Sang Joon

    2014-11-01

    Understanding of micro-scale flow phenomena is getting large attention under advances in micro-scale measurement technologies. Especially, the dynamics of particles suspended in a fluid is essential in both scientific and industrial fields. Moreover, most particles handled in research and industrial fields have non-spherical shapes rather than a simple spherical shape. Under various flow conditions, these non-spherical particles exhibit unique dynamic behaviors. To analyze these dynamic behaviors in a fluid flow, 3D positional information of the particles should be measured accurately. In this study, digital holographic microscopy (DHM) is employed to measure the 3D positional information of non-spherical particles, which are fabricated by stretching spherical polystyrene particles. 3D motions of those particles are obtained by interpreting the holograms captured from particles. Ellipsoidal particles with known size and shape are observed to verify the performance of the DHM technique. In addition, 3D positions of particles in a microtube flow are traced. This DHM technique exhibits promising potential in the analysis of dynamic behaviors of non-spherical particles suspended in micro-scale fluid flows.

  3. Computational optical-sectioning microscopy for 3D quantization of cell motion: results and challenges

    NASA Astrophysics Data System (ADS)

    McNally, James G.

    1994-09-01

    How cells move and navigate within a 3D tissue mass is of central importance in such diverse problems as embryonic development, wound healing and metastasis. This locomotion can now be visualized and quantified by using computation optical-sectioning microscopy. In this approach, a series of 2D images at different depths in a specimen are stacked to construct a 3D image, and then with a knowledge of the microscope's point-spread function, the actual distribution of fluorescent intensity in the specimen is estimated via computation. When coupled with wide-field optics and a cooled CCD camera, this approach permits non-destructive 3D imaging of living specimens over long time periods. With these techniques, we have observed a complex diversity of motile behaviors in a model embryonic system, the cellular slime mold Dictyostelium. To understand the mechanisms which control these various behaviors, we are examining motion in various Dictyostelium mutants with known defects in proteins thought to be essential for signal reception, cell-cell adhesion or locomotion. This application of computational techniques to analyze 3D cell locomotion raises several technical challenges. Image restoration techniques must be fast enough to process numerous 1 Gbyte time-lapse data sets (16 Mbytes per 3D image X 60 time points). Because some cells are weakly labeled and background intensity is often high due to unincorporated dye, the SNR in some of these images is poor. Currently, the images are processed by a regularized linear least- squares restoration method, and occasionally by a maximum-likelihood method. Also required for these studies are accurate automated- tracking procedures to generate both 3D trajectories for individual cells and 3D flows for a group of cells. Tracking is currently done independently for each cell, using a cell's image as a template to search for a similar image at the next time point. Finally, sophisticated visualization techniques are needed to view the

  4. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  5. Monitoring of Apoptosis in 3D Cell Cultures by FRET and Light Sheet Fluorescence Microscopy

    PubMed Central

    Weber, Petra; Schickinger, Sarah; Wagner, Michael; Angres, Brigitte; Bruns, Thomas; Schneckenburger, Herbert

    2015-01-01

    Non-radiative cell membrane associated Förster Resonance Energy Transfer (FRET) from an enhanced cyan fluorescent protein (ECFP) to an enhanced yellow fluorescent protein (EYFP) is used for detection of apoptosis in 3-dimensional cell cultures. FRET is visualized in multi-cellular tumor spheroids by light sheet based fluorescence microscopy in combination with microspectral analysis and fluorescence lifetime imaging (FLIM). Upon application of staurosporine and to some extent after treatment with phorbol-12-myristate-13-acetate (PMA), a specific activator of protein kinase c, the caspase-3 sensitive peptide linker DEVD is cleaved. This results in a reduction of acceptor (EYFP) fluorescence as well as a prolongation of the fluorescence lifetime of the donor (ECFP). Fluorescence spectra and lifetimes may, therefore, be used for monitoring of apoptosis in a realistic 3-dimensional system, while light sheet based microscopy appears appropriate for 3D imaging at low light exposure. PMID:25761242

  6. Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.

    PubMed

    Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-02-28

    Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products. PMID:25550155

  7. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  8. A one-piece 3D printed flexure translation stage for open-source microscopy

    NASA Astrophysics Data System (ADS)

    Sharkey, James P.; Foo, Darryl C. W.; Kabla, Alexandre; Baumberg, Jeremy J.; Bowman, Richard W.

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

  9. A one-piece 3D printed flexure translation stage for open-source microscopy.

    PubMed

    Sharkey, James P; Foo, Darryl C W; Kabla, Alexandre; Baumberg, Jeremy J; Bowman, Richard W

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond. PMID:26931888

  10. Probing Local Mineralogy in 3D with Dual Energy X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Gelb, J.; Yun, S.; Doerr, D.; Hunter, L.; Johnson, B.; Merkle, A.; Fahey, K.

    2013-12-01

    In recent years, 3D imaging of rock microstructures has become routine practice for determining pore-scale properties in the geosciences. X-Ray imaging techniques, such as X-Ray Microscopy (XRM), have demonstrated several unique capabilities: namely, the ability to characterize the same sample across a range of length scales and REVs (from millimeters to nanometers), and to perform these characterizations on the same sample over a range of times/treatments (e.g., to observe fluid transporting through the pore networks in a flow cell). While the XRM technique is a popular choice for structural (i.e., pore) characterization, historically it has provided little mineralogical information. This means that resulting simulations are either based on pore structure alone, or rely on correlative chemical mapping techniques for compositionally-sensitive models. Recent advancements in XRM techniques are now enabling compositional sensitivity for a variety of geological sample types. By collecting high-resolution 3D tomography data sets at two different source settings (energies), results may be mixed together to enhance the appearance (contrast) of specific materials. This approach is proving beneficial, for example, to mining applications to locate and identify precious metals, as well as for oil & gas applications to map local hydrophobicity. Here, we will introduce the technique of dual energy X-Ray microscopy, showing how it extends the capabilities of traditional XRM techniques, affording the same high resolution structural information while adding 3D compositional data. Application examples will be shown to illustrate its effectiveness at both the single to sub-micron length scale for mining applications as well as at the 150 nm length scale for shale rock analysis.

  11. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features. PMID:26370826

  12. The use of Interferometric Microscopy to assess 3D modifications of deteriorated medieval glass.

    NASA Astrophysics Data System (ADS)

    Gentaz, L.; Lombardo, T.; Chabas, A.

    2012-04-01

    Due to low durability, Northern European medieval glass undergoes the action of the atmospheric environment leading in some cases to a state of dramatic deterioration. Modification features varies from a simple loss of transparency to a severe material loss. In order to understand the underlying mechanisms and preserve this heritage, fundamental research is necessary too. In this optic, field exposure of analogues and original stained glass was carried out to study the early stages of the glass weathering. Model glass and original stained glass (after removal of deterioration products) were exposed in real conditions in an urban site (Paris) for 48 months. A regular withdrawal of samples allowed a follow-up of short-term glass evolution. Morphological modifications of the exposed samples were investigated through conventional and non destructive microscopy, using respectively a Scanning Electron Microscope (SEM) and an Interferometric Microscope (IM). This latter allows a 3D quantification of the object with no sample preparation. For all glasses, both surface recession and build-up of deposit were observed as a consequence of a leaching process (interdiffusion of protons and glass cations). The build-up of a deposit comes from the reaction between the extracted glass cations and atmospheric gases. Instead, surface recession is due mainly to the formation of brittle layer of altered glass at the sub-surface, where a fracture network can appear, leading to the scaling of parts of this modified glass. Finally, dissolution of the glass takes place, inducing the formation of pits and craters. The arithmetic roughness (Ra) was used as an indicator of weathering increase, in order to evaluate the deterioration state. For instance, the Ra grew from few tens of nm for pristine glass to thousands of nm for scaled areas. This technique also allowed a precise quantification of dimensions (height, depth and width) of deposits and pits, and the estimation of their overall

  13. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.

    PubMed

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-04-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI's ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time that the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  14. Design and fabrication of a freeform prism array for 3D microscopy.

    PubMed

    Li, Lei; Yi, Allen Y

    2010-12-01

    Traditional microscopes have limitations in obtaining true 3D (three-dimensional) stereovision. Although some optical microscopes have been developed for 3D vision, many of them are complex, expensive, or limited to transparent samples. In this research, a freeform optical prism array was designed and fabricated to achieve 3D stereo imaging capability for microscope and machine vision applications. To form clear stereo images from multiple directions simultaneously, freeform optical surface design was applied to the prisms. In a ray tracing operation to determine the optical performance of the freeform prisms, Taylor series was used to calculate the surface shape. The virtual image spot diagrams were generated by using ray tracing methods for both the freeform prisms and the regular prisms. The results showed that all the light rays can be traced back to a single point for the freeform prism, and aberration was much smaller than that of the regular prism. The ray spots formed by the freeform prisms were adequate for image formation. Furthermore, the freeform prism array was fabricated by using a combined ultraprecision diamond turning and slow tool servo broaching process in a single, uninterrupted operation. The slow tool servo process ensured that the relative tolerance among prisms is guaranteed by the precision of the ultraprecision machine without the need for assembly. Finally 3D imaging tests were conducted to verify the freeform prism array's optical performance. The principle of the freeform prism array investigated in this research can be applied to microscopy, machine vision, robotic sensing, and many other areas. PMID:21119746

  15. Soil microstructure and electron microscopy

    NASA Technical Reports Server (NTRS)

    Smart, P.; Fryer, J. R.

    1988-01-01

    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  16. Methods For Electronic 3-D Moving Pictures Without Glasses

    NASA Astrophysics Data System (ADS)

    Collender, Robert B.

    1987-06-01

    This paper describes implementation approaches in image acquisition and playback for 3-D computer graphics, 3-D television and 3-D theatre movies without special glasses. Projection lamps, spatial light modulators, CRT's and dynamic scanning are all eliminated by the application of an active image array, all static components and a semi-specular screen. The resulting picture shows horizontal parallax with a wide horizontal view field (up to 360 de-grees) giving a holographic appearance in full color with smooth continuous viewing without speckle. Static component systems are compared with dynamic component systems using both linear and circular arrays. Implementation of computer graphic systems are shown that allow complex shaded color images to extend from the viewer's eyes to infinity. Large screen systems visible by hundreds of people are feasible by the use of low f-stops and high gain screens in projection. Screen geometries and special screen properties are shown. Viewing characteristics offer no restrictions in view-position over the entire view-field and have a "look-around" feature for all the categories of computer graphics, television and movies. Standard video cassettes and optical discs can also interface the system to generate a 3-D window viewable without glasses. A prognosis is given for technology application to 3-D pictures without glasses that replicate the daily viewing experience. Super-position of computer graphics on real-world pictures is shown feasible.

  17. Note: An improved 3D imaging system for electron-electron coincidence measurements

    SciTech Connect

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-15

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  18. Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy.

    PubMed

    Arnold, Jan; Mahamid, Julia; Lucic, Vladan; de Marco, Alex; Fernandez, Jose-Jesus; Laugks, Tim; Mayer, Tobias; Hyman, Anthony A; Baumeister, Wolfgang; Plitzko, Jürgen M

    2016-02-23

    The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy. PMID:26769364

  19. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  20. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  1. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography.

    PubMed

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup; Flo, Trude Helen; Halaas, Øyvind

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  2. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401

  3. Dynamic complex optical fields for optical manipulation, 3D microscopy, and photostimulation of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Stricker, Christian; Bekkers, John; Redman, Steve; Bachor, Hans

    2010-08-01

    We demonstrate a multi-functional system capable of multiple-site two-photon excitation of photo-sensitive compounds as well as transfer of optical mechanical properties on an array of mesoscopic particles. We use holographic projection of a single Ti:Sapphire laser operating in femtosecond pulse mode to show that the projected three-dimensional light patterns have sufficient spatiotemporal photon density for multi-site two-photon excitation of biological fluorescent markers and caged neurotransmitters. Using the same laser operating in continuous-wave mode, we can use the same light patterns for non-invasive transfer of both linear and orbital angular momentum on a variety of mesoscopic particles. The system also incorporates high-speed scanning using acousto-optic modulators to rapidly render 3D images of neuron samples via two-photon microscopy.

  4. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    NASA Astrophysics Data System (ADS)

    Zeng, P.; Inkson, B. J.; Rainforth, W. M.; Stewart, T.

    2008-08-01

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  5. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

    PubMed Central

    Torrano, Adriano A

    2014-01-01

    Summary Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division. PMID:25383274

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking.

    PubMed

    Dettmer, Simon L; Keyser, Ulrich F; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces. PMID:24593372

  7. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    NASA Astrophysics Data System (ADS)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  8. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  9. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  10. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Fiedler, Susanne; Schmid, Volker J; Schermelleh, Lothar; Cremer, Thomas; Cremer, Marion

    2012-05-01

    Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization. PMID:22508100

  11. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  12. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  13. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. PMID:27463670

  14. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  15. Ultrahigh Voltage Electron Microscopy Links Neuroanatomy and Neuroscience/Neuroendocrinology

    PubMed Central

    Sakamoto, Hirotaka; Kawata, Mitsuhiro

    2012-01-01

    The three-dimensional (3D) analysis of anatomical ultrastructures is extremely important in most fields of biological research. Although it is very difficult to perform 3D image analysis on exact serial sets of ultrathin sections, 3D reconstruction from serial ultrathin sections can generally be used to obtain 3D information. However, this technique can only be applied to small areas of a specimen because of technical and physical difficulties. We used ultrahigh voltage electron microscopy (UHVEM) to overcome these difficulties and to study the chemical neuroanatomy of 3D ultrastructures. This methodology, which links UHVEM and light microscopy, is a useful and powerful tool for studying molecular and/or chemical neuroanatomy at the ultrastructural level. PMID:22567316

  16. Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.

    PubMed

    Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D

    1999-06-15

    An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). PMID:10388621

  17. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  18. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  19. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  20. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy.

  1. Clean localization super-resolution microscopy for 3D biological imaging

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-01

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  2. Blind deconvolution of 3D fluorescence microscopy using depth-variant asymmetric PSF.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2016-06-01

    The 3D wide-field fluorescence microscopy suffers from depth-variant asymmetric blur. The depth-variance and axial asymmetry are due to refractive index mismatch between the immersion and the specimen layer. The radial asymmetry is due to lens imperfections and local refractive index inhomogeneities in the specimen. To obtain the PSF that has these characteristics, there were PSF premeasurement trials. However, they are useless since imaging conditions such as camera position and refractive index of the specimen are changed between the premeasurement and actual imaging. In this article, we focus on removing unknown depth-variant asymmetric blur in such an optical system under the assumption of refractive index homogeneities in the specimen. We propose finding few parameters in the mathematical PSF model from observed images in which the PSF model has a depth-variant asymmetric shape. After generating an initial PSF from the analysis of intensities in the observed image, the parameters are estimated based on a maximum likelihood estimator. Using the estimated PSF, we implement an accelerated GEM algorithm for image deconvolution. Deconvolution result shows the superiority of our algorithm in terms of accuracy, which quantitatively evaluated by FWHM, relative contrast, standard deviation values of intensity peaks and FWHM. Microsc. Res. Tech. 79:480-494, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062314

  3. In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy.

    PubMed

    Latour, Gaël; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2012-10-22

    We demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale. PMID:23187225

  4. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  5. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.

    PubMed

    Rolland, Jannick P; Canavesi, Cristina; Tankam, Patrice; Cogliati, Andrea; Lanis, Mara; Santhanam, Anand P

    2016-01-01

    Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 μm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented. PMID:27046601

  6. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions. PMID:26567131

  7. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  8. The 3d International Workshop on Computational Electronics

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen M.

    1994-09-01

    The Third International Workshop on Computational Electronics (IWCE) was held at the Benson Hotel in downtown Portland, Oregon, on May 18, 19, and 20, 1994. The workshop was devoted to a broad range of topics in computational electronics related to the simulation of electronic transport in semiconductors and semiconductor devices, particularly those which use large computational resources. The workshop was supported by the National Science Foundation (NSF), the Office of Naval Research and the Army Research Office, as well as local support from the Oregon Joint Graduate Schools of Engineering and the Oregon Center for Advanced Technology Education. There were over 100 participants in the Portland workshop, of which more than one quarter represented research groups outside of the United States from Austria, Canada, France, Germany, Italy, Japan, Switzerland, and the United Kingdom. There were a total 81 papers presented at the workshop, 9 invited talks, 26 oral presentations and 46 poster presentations. The emphasis of the contributions reflected the interdisciplinary nature of computational electronics with researchers from the Chemistry, Computer Science, Mathematics, Engineering, and Physics communities participating in the workshop.

  9. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy

    PubMed Central

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-01-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens. PMID:25185543

  10. Dynamics of electronically inelastic collisions from 3D Doppler measurements

    SciTech Connect

    Suits, A.G.; de Pujo, P.; Sublemontier, O.; Visticot, J.; Berlande, J.; Cuvellier, J.; Gustavsson, T.; Mestdagh, J.; Meynadier, P. ); Lee, Y.T. )

    1991-11-25

    Flux-velocity contour maps were obtained for the inelastic collision process Ba({sup 1}{ital P}{sub 1})+O{sub 2}N{sub 2}{r arrow}Ba({sup 3}{ital P}{sub 2})+O{sub 2}N{sub 2} from Doppler scans of scattered Ba({sup 3}{ital P}{sub 2}) taken over a range of probe laser directions in a crossed-beam experiment. Collision with O{sub 2} resulted in sharply forward scattered Ba({sup 3}{ital P}{sub 2}), with efficient conversion of inital electronic energy into O{sub 2} internal energy and little momentum transfer. Collision with N{sub 2} was dominated by wide-angle scattering with most of the available electronic energy appearing in product translation. The results suggest the importance of large-impact-parameter collisions and a near-resonant energy transfer in the case of O{sub 2}, while for N{sub 2} close collisions dominate despite the presence of an analogous near-resonant channel. The results represent the first direct experimental demonstration of a near-resonant quenching process.

  11. 3D imaging of sea quarks and gluons at an electron-ion collider

    SciTech Connect

    Vadim Guzey

    2011-11-01

    We outline key objectives and capabilities of an Electron-Ion Collider (EIC) — a high-energy and high-luminosity electron-proton/nucleus collider with polarized electron and proton beams. One of goals of a future EIC is to map the 3D (in configuration and momentum spaces) structure of sea quarks and gluons in the nucleon and nuclei. We briefly present and discuss key observables and measurements pertaining to the program of 3D imaging at an EIC.

  12. Tracking 3D Picometer-Scale Motions of Single Nanoparticles with High-Energy Electron Probes

    PubMed Central

    Ogawa, Naoki; Hoshisashi, Kentaro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Matsushita, Yufuku; Hirohata, Yasuhisa; Suzuki, Seiichi; Ishikawa, Akira; Sasaki, Yuji C.

    2013-01-01

    We observed the high-speed anisotropic motion of an individual gold nanoparticle in 3D at the picometer scale using a high-energy electron probe. Diffracted electron tracking (DET) using the electron back-scattered diffraction (EBSD) patterns of labeled nanoparticles under wet-SEM allowed us to super-accurately measure the time-resolved 3D motion of individual nanoparticles in aqueous conditions. The highly precise DET data corresponded to the 3D anisotropic log-normal Gaussian distributions over time at the millisecond scale. PMID:23868465

  13. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. PMID:26402320

  14. Multimodal interferometric microscopy for label-free 3D imaging of live cells in flow (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shaked, Natan Tzvi

    2016-03-01

    I present multimodal wide-field interferometric microscopy platform for label-free 3-D imaging of live cells during fast flow. Using holographic optical tweezers, multiple cells can be optically trapped and rapidity rotated on all axes, while acquired using an external off-axis wide-field interferometric module developed in our lab. The interferometric projections are rapidly processed into the 3-D refractive-index profile of the cells using a tomographic phase microscopy algorithms that take into consideration optical diffraction effects. The algorithms for the 3-D refractive-index reconstruction, and for calculating various morphological parameters that should serve for online sorting of cells, are efficiently implemented in a nearly real-time manner. The potential of this new high-throughput imaging technique is for label-free image analysis and sorting of cells during flow, to substitute current cell sorting devices, which are based on external labeling that eventually damages the cell sample.

  15. Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array

    PubMed Central

    Song, Liang; Maslov, Konstantin; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.

    2009-01-01

    We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional (B-scan) imaging at 50 Hz with realtime beamforming and 3D imaging consisting of 166 B-scan frames at 1 Hz with post-beamforming. To our knowledge, this speed is currently the fastest in photoacoustic imaging. A custom-designed light delivery system is integrated with a 30-MHz ultrasound linear array to realize dark-field reflection-mode imaging. Linear mechanical scanning of the array produces 3D images. The system has axial, lateral, and elevational resolutions of 25, 70, and 200 μm, respectively, and can image 3 mm deep in scattering biological tissues. Volumetric images of subcutaneous vasculature in rats are demonstrated in vivo. Fast 3D photoacoustic microscopy is anticipated to facilitate applications of photoacoustic imaging in biomedical studies that involve dynamics and clinical procedures that demand immediate diagnosis. PMID:19021408

  16. Infrared differential interference contrast microscopy for overlay metrology on 3D-interconnect bonded wafers

    NASA Astrophysics Data System (ADS)

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-04-01

    Overlay metrology for stacked layers will be playing a key role in bringing 3D IC devices into manufacturing. However, such bonded wafer pairs present a metrology challenge for optical microscopy tools by the opaque nature of silicon. Using infrared microscopy, silicon wafers become transparent to the near-infrared (NIR) wavelengths of the electromagnetic spectrum, enabling metrology at the interface of bonded wafer pairs. Wafers can be bonded face to face (F2F) or face to back (F2B) which the stacking direction is dictated by how the stacks are carried in the process and functionality required. For example, Memory stacks tend to use F2B stacking enables a better managed design. Current commercial tools use single image technique for F2F bonding overlay measurement because depth of focus is sufficient to include both surfaces; and use multiple image techniques for F2B overlay measurement application for the depth of focus is no longer sufficient to include both stacked wafer surfaces. There is a need to specify the Z coordinate or stacking wafer number through the silicon when visiting measurement wafer sites. Two shown images are of the same (X, Y) but separate Z location acquired at focus position of each wafer surface containing overlay marks. Usually the top surface image is bright and clear; however, the bottom surface image is somewhat darker and noisier as an adhesive layer is used in between to bond the silicon wafers. Thus the top and bottom surface images are further processed to achieve similar brightness and noise level before merged for overlay measurement. This paper presents a special overlay measurement technique, using the infrared differential interference contrast (DIC) microscopy technique to measure the F2B wafer bonding overlay by a single shot image. A pair of thinned wafers at 50 and 150 μm thickness is bonded on top of a carrier wafer to evaluate the bonding overlay. It works on the principle of interferometry to gain information about the

  17. Immunogold Labeling for Scanning Electron Microscopy.

    PubMed

    Goldberg, Martin W; Fišerová, Jindřiška

    2016-01-01

    Scanning electron microscopes are useful biological tools that can be used to image the surface of whole organisms, tissues, cells, cellular components, and macromolecules. Processes and structures that exist at surfaces can be imaged in pseudo, or real 3D at magnifications ranging from about 10× to 1,000,000×. Therefore a whole multicellular organism, such as a fly, or a single protein embedded in one of its cell membranes can be visualized. In order to identify that protein at high resolution, or to see and quantify its distribution at lower magnifications, samples can be labeled with antibodies. Any surface that can be exposed can potentially be studied in this way. Presented here is a generic method for immunogold labeling for scanning electron microscopy, using two examples of specimens: isolated nuclear envelopes and the cytoskeleton of mammalian culture cells. Various parameters for sample preparation, fixation, immunogold labeling, drying, metal coating, and imaging are discussed so that the best immunogold scanning electron microscopy results can be obtained from different types of specimens. PMID:27515090

  18. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  19. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  20. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  1. Contiguous 3 d and 4 f Magnetism: Strongly Correlated 3 d Electrons in YbFe2Al10

    NASA Astrophysics Data System (ADS)

    Khuntia, P.; Peratheepan, P.; Strydom, A. M.; Utsumi, Y.; Ko, K.-T.; Tsuei, K.-D.; Tjeng, L. H.; Steglich, F.; Baenitz, M.

    2014-11-01

    We present magnetization, specific heat, and Al 27 NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln (T0/T ) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of correlated electrons. From our hard-x-ray photoemission spectroscopy study, the Yb valence at 50 K is evaluated to be 2.38. The system displays valence fluctuating behavior in the low to intermediate temperature range, whereas above 400 K, Yb3 + carries a full and stable moment, and Fe carries a moment of about 3.1 μB. The enhanced value of the Sommerfeld-Wilson ratio and the dynamic scaling of the spin-lattice relaxation rate divided by T [(1 /T1T ) 27 ] with static susceptibility suggests admixed ferromagnetic correlations. (1 /T1T ) 27 simultaneously tracks the valence fluctuations from the 4 f Yb ions in the high temperature range and field dependent antiferromagnetic correlations among partially Kondo screened Fe 3 d moments at low temperature; the latter evolve out of an Yb 4 f admixed conduction band.

  2. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  3. Electron collisions with Fe-peak elements: Forbidden transitions between the low lying valence states 3d{sup 6}, 3d{sup 5}4s, and 3d{sup 5}4p of Fe III

    SciTech Connect

    McLaughlin, B.M. . E-mail: b.mclaughlin@qub.ac.uk; Scott, M.P.; Sunderland, A.G.; Noble, C.J.; Burke, V.M.; Ramsbottom, C.A.; Reid, R.H.G.; Hibbert, A.; Bell, K.L.; Burke, P.G.

    2007-01-15

    Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (T {sub e} in degrees Kelvin) in the range 2 x 10{sup 3} to 1 x 10{sup 6}. Forbidden transitions results are given between the 3d{sup 6}, 3d{sup 5}4s, and the 3d{sup 5}4p manifolds applicable to the modeling of laboratory and astrophysical plasmas.

  4. Electron microscopy of pharmaceutical systems.

    PubMed

    Klang, Victoria; Valenta, Claudia; Matsko, Nadejda B

    2013-01-01

    During the last decades, the focus of research in pharmaceutical technology has steadily shifted towards the development and optimisation of nano-scale drug delivery systems. As a result, electron microscopic methods are increasingly employed for the characterisation of pharmaceutical systems such as nanoparticles and microparticles, nanoemulsions, microemulsions, solid lipid nanoparticles, different types of vesicles, nanofibres and many more. Knowledge of the basic properties of these systems is essential for an adequate microscopic analysis. Classical transmission and scanning electron microscopic techniques frequently have to be adapted for an accurate analysis of formulation morphology, especially in case of hydrated colloidal systems. Specific techniques such as environmental scanning microscopy or cryo preparation are required for their investigation. Analytical electron microscopic techniques such as electron energy-loss spectroscopy or energy-dispersive X-ray spectroscopy are additional assets to determine the elemental composition of the systems, but are not yet standard tools in pharmaceutical research. This review provides an overview of pharmaceutical systems of interest in current research and strategies for their successful electron microscopic analysis. Advantages and limitations of the different methodological approaches are discussed and recent findings of interest are presented. PMID:22921788

  5. Liquid Cell Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-01

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  6. Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-27

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM. PMID:27215823

  7. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  8. Effect of 3d doping on the electronic structure of BaFe2As2.

    PubMed

    McLeod, J A; Buling, A; Green, R J; Boyko, T D; Skorikov, N A; Kurmaev, E Z; Neumann, M; Finkelstein, L D; Ni, N; Thaler, A; Bud'ko, S L; Canfield, P C; Moewes, A

    2012-05-30

    The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu. PMID:22534111

  9. Effect of 3d doping on the electronic structure of BaFe2As2

    SciTech Connect

    McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

    2012-04-25

    The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

  10. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy

    PubMed Central

    Nakamura, Yuko; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Okuyama, Shuhei; Choyke, Peter L.; Yamauchi, Toyohiko; Kobayashi, Hisataka

    2016-01-01

    Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT. PMID:27446702

  11. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm.

    PubMed

    Molaei, Mehdi; Sheng, Jian

    2014-12-29

    Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  12. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Rioux, David; Meunier, Michel

    2015-05-01

    We present a new hyperspectral reflected light microscopy system with a scanned broadband supercontinuum light source. This wide-field and low phototoxic hyperspectral imaging system has been successful for performing spectral three-dimensional (3D) localization and spectroscopic identification of CD44-targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic-based imaging, disease detection and treatment in complex biological environment. The presented system can be used for real-time 3D NP tracking as spectral sensors, thus providing new avenues in the spatio-temporal characterization and detection of bioanalytes. 3D image of the distribution of functionalized AuNPs attached to CD44-expressing MDA-MB-231 human cancer cells. PMID:24961507

  13. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  14. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging

    PubMed Central

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second. PMID:25404337

  15. Full 3D morphology of diatoms flowing in a microfluidic channel by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Savoia, Roberto; Memmolo, Pasquale; Merola, Francesco; Miccio, Lisa; D'Ippolito, Giuliana; Fontana, Angelo; Ferraro, Pietro

    2015-07-01

    In this paper, we present a new approach for three-dimensional reconstruction and biovolume estimation of some species of diatoms. An optofluidic platform, composed by an optical tweezer and holographic modulus, is employed to retrieve several holograms at different angular positions, which are processed by the shape from silhouette algorithm to estimate the 3D shape of the cells.

  16. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.

    PubMed

    Charwat, Verena; Schütze, Karin; Holnthoner, Wolfgang; Lavrentieva, Antonina; Gangnus, Rainer; Hofbauer, Pablo; Hoffmann, Claudia; Angres, Brigitte; Kasper, Cornelia

    2015-07-10

    Today highly complex 3D cell culture formats that closely mimic the in vivo situation are increasingly available. Despite their wide use, the development of analytical methods and tools that can work within the depth of 3D-tissue constructs lags behind. In order to get the most information from a 3D cell sample, adequate and reliable assays are required. However, the majority of tools and methods used today have been originally designed for 2D cell cultures and translation to a 3D environment is in general not trivial. Ideally, an analytical method should be non-invasive and allow for repeated observation of living cells in order to detect dynamic changes in individual cells within the 3D cell culture. Although well-established laser confocal microscopy can be used for these purposes, this technique has serious limitations including penetration depth and availability. Focusing on two relevant analytical methods for live-cell monitoring, we discuss the current challenges of analyzing living 3D samples: microscopy, which is the most widely used technology to observe and examine cell cultures, has been successfully adapted for 3D samples by recording of so-called "z-stacks". However the required equipment is generally very expensive and therefore access is often limited. Consequently alternative and less advanced approaches are often applied that cannot capture the full structural complexity of a 3D sample. Similarly, image analysis tools for quantification of microscopic images range from highly specialized and costly to simplified and inexpensive. Depending on the actual sample composition and scientific question the best approach needs to be assessed individually. Another more recently introduced technology for non-invasive cell analysis is Raman micro-spectroscopy. It enables label-free identification of cellular metabolic changes with high sensitivity and has already been successful applied to 2D and 3D cell cultures. However, its future significance for cell

  17. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  18. Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography

    PubMed Central

    2012-01-01

    The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics. PMID:23249477

  19. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy

    PubMed Central

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A.; Bunday, Benjamin; Vartanian, Victor

    2016-01-01

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  20. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy.

    PubMed

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A; Bunday, Benjamin; Vartanian, Victor

    2016-07-25

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  1. Decay pathways after Xe 3d inner shell ionization using a multi-electron coincidence technique

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Hikosaka, Y.; Shigemasa, E.; Lablanquie, P.; Penent, F.; Soejima, K.; Nakano, M.; Kouchi, N.; Ito, K.

    2011-04-01

    Cascade Auger electron emission following Xe 3d photoionization has been investigated using a multi-electron coincidence technique, which utilizes an electron spectrometer of magnetic bottle type. It has been found that the Xe2+ states of the 4p-14d-1 configuration, formed by the Auger decay of the Xe+ 3d3/2, 5/2-1 states, dominantly turn into triply charged states of the 4d-25p-1/4d-25s-1 configurations. The Xe2+ 4s-14d-1 states, formed by the 3d Auger decay, yield the 4p-14d-15p-1 states as well as the 4d-3 states. From the coincidence spectrum among three Auger electrons, it is suggested that the Xe2+ 4p-14d-1 states give rise to the following cascade processes: 4p-14d-1 → 4d-25p-1 → 4d-15p-3.

  2. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  3. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  4. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  5. Simple 3D images from fossil and recent micromaterial using light microscopy.

    PubMed

    Haug, J T; Haug, C; Maas, A; Fayers, S R; Trewin, N H; Waloszek, D

    2009-01-01

    Abstract We present a technique for extracting 3D information from small-scale fossil and Recent material and give a summary of other contemporary techniques for 3D methods of investigation. The only hardware needed for the here-presented technique is a microscope that can perform dark field and/or differential interference contrast with a mounted digital camera and a computer. Serial images are taken while the focus is successively shifted from the uppermost end of the specimen to the lowermost end, resulting in about 200 photographs. The data are then processed almost completely automatically by successive use of three freely available programs. Firstly, the stack of images is aligned by the use of CombineZM, which is used to produce a combined image with a high depth of field. Secondly, the aligned images are cropped and sharp edges extracted with the aid of ImageJ. Thirdly, although ImageJ is also capable of producing 3D representations, we preferred to process the image stack further using osirix as it has the facility to export various formats. One of the interesting export formats is a virtual Quicktime movie file (QTVR), which can be used for documentation, and stereo images can also be produced from this Quicktime VR. This method is easy to apply and can be used for documenting specimens in 3D (at least some aspects) without having to prepare them. Therefore, it is particularly useful as a safe method for documenting limited material, before using methods that may destroy the specimen of interest, or to investigate type material that cannot be treated with any preparatory technique. As light microscopes are available in most labs and free computer programs are easily accessible, this method can be readily applied. PMID:19196416

  6. 3D single-molecule tracking using one- and two-photon excitation microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cong; Perillo, Evan P.; Zhuang, Quincy; Huynh, Khang T.; Dunn, Andrew K.; Yeh, Hsin-Chih

    2014-03-01

    Three dimensional single-molecule tracking (3D-SMT) has revolutionized the way we study fundamental cellular processes. By analyzing the spatial trajectories of individual molecules (e.g. a receptor or a signaling molecule) in 3D space, one can discern the internalization or transport dynamics of these molecules, study the heterogeneity of subcellular structures, and elucidate the complex spatiotemporal regulation mechanisms. Sub-diffraction localization precision, sub-millisecond temporal resolution and tens-of-seconds observation period are the benchmarks of current 3D-SMT techniques. We have recently built two molecular tracking systems in our labs. The first system is a previously reported confocal tracking system, which we denote as the 1P-1E-4D (one-photon excitation, one excitation beam, and four fiber-coupled detectors) system. The second system is a whole new design that is based on two-photon excitation, which we denote as the 2P-4E-1D (two-photon excitation, four excitation beams, and only one detector) system. Here we compare these two systems based on Monte Carlo simulation of tracking a diffusing fluorescent molecule. Through our simulation, we have characterized the limitation of individual systems and optimized the system parameters such as magnification, z-plane separation, and feedback gains.

  7. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core–shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  8. High-purity 3D nano-objects grown by focused-electron-beam induced deposition.

    PubMed

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices. PMID:27454835

  9. Quantification of fluorescent spots in time series of 3D confocal microscopy images of endoplasmic reticulum exit sites based on the HMAX transform

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Verissimo, Fatima; Wörz, Stefan; Eils, Roland; Pepperkok, Rainer; Rohr, Karl

    2010-03-01

    We present an approach for the quantification of fluorescent spots in time series of 3-D confocal microscopy images of endoplasmic reticulum exit sites of dividing cells. Fluorescent spots are detected based on extracted image regions of highest response using the HMAX transform and prior convolution of the 3-D images with a Gaussian kernel. The sensitivity of the involved parameters was studied and a quantitative evaluation using both 3-D synthetic and 3-D real data was performed. The approach was successfully applied to more than one thousand 3-D confocal microscopy images.

  10. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy

    PubMed Central

    Park, HyunJoo; Hong, Sung-Hee; Kim, Kyoohyun; Cho, Shin-Hyeong; Lee, Won-Ja; Kim, Youngchan; Lee, Sang-Eun; Park, YongKeun

    2015-01-01

    Babesia microti causes “emergency” human babesiosis. However, little is known about the alterations in B. microti invaded red blood cells (Bm-RBCs) at the individual cell level. Through quantitative phase imaging techniques based on laser interferometry, we present the simultaneous measurements of structural, chemical, and mechanical modifications in individual mouse Bm-RBCs. 3-D refractive index maps of individual RBCs and in situ parasite vacuoles are imaged, from which total contents and concentration of dry mass are also precisely quantified. In addition, we examine the dynamic membrane fluctuation of Bm-RBCs, which provide information on cell membrane deformability. PMID:26039793

  11. 3D laser scanning microscopy of hypervelocity impact features in metal and aerogel targets

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.; Postberg, F.; Price, M. C.; Trieloff, M.; Li, Y. W.; Srama, R.

    2012-09-01

    We present the results of a study into the mapping of hypervelocity impact features using a Keyence VK-X200 3D laser scanning microscope. The impact features observed are impact craters in a variety of different metal targets (Al, Au and Cu) and impact tracks in aerogel targets, similar to those used in the Stardust mission. Differences in crater morphology between different target materials and impact velocities, as well as differences in track depth and diameter in aerogel, for particles of known constant dimensions, are discussed.

  12. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    SciTech Connect

    Classen, I. G. J. Bogomolov, A. V.; Domier, C. W.; Luhmann, N. C.; Suttrop, W.; Boom, J. E.; Tobias, B. J.; Donné, A. J. H.

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  13. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade.

    PubMed

    Classen, I G J; Domier, C W; Luhmann, N C; Bogomolov, A V; Suttrop, W; Boom, J E; Tobias, B J; Donné, A J H

    2014-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments. PMID:25430246

  14. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    PubMed Central

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2016-01-01

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. PMID:26182412

  15. Deconvolution approach for 3D scanning microscopy with helical phase engineering.

    PubMed

    Roider, Clemens; Heintzmann, Rainer; Piestun, Rafael; Jesacher, Alexander

    2016-07-11

    RESCH (refocusing after scanning using helical phase engineering) microscopy is a scanning technique using engineered point spread functions which provides volumetric information. We present a strategy for processing the collected raw data with a multi-view maximum likelihood deconvolution algorithm, which inherently comprises the resolution gain of pixel-reassignment microscopy. The method, which we term MD-RESCH (for multi-view deconvolved RESCH), achieves in our current implementation a 20% resolution advantage along all three axes compared to RESCH and confocal microscopy. Along the axial direction, the resolution is comparable to that of image scanning microscopy. However, because the method inherently reconstructs a volume from a single 2D scan, a significantly higher optical sectioning becomes directly visible to the user, which would otherwise require collecting multiple 2D scans taken at a series of axial positions. Further, we introduce the use of a single-helical detection PSF to obtain an increased post-acquisition refocusing range. We present data from numerical simulations as well as experiments to confirm the validity of our approach. PMID:27410820

  16. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  17. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  18. Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-10-01

    Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality. PMID:26316044

  19. Porosity and permeability determination of organic-rich Posidonia shales based on 3-D analyses by FIB-SEM microscopy

    NASA Astrophysics Data System (ADS)

    Grathoff, Georg H.; Peltz, Markus; Enzmann, Frieder; Kaufhold, Stephan

    2016-07-01

    The goal of this study is to better understand the porosity and permeability in shales to improve modelling fluid and gas flow related to shale diagenesis. Two samples (WIC and HAD) were investigated, both mid-Jurassic organic-rich Posidonia shales from Hils area, central Germany of different maturity (WIC R0 0.53 % and HAD R0 1.45 %). The method for image collection was focused ion beam (FIB) microscopy coupled with scanning electron microscopy (SEM). For image and data analysis Avizo and GeoDict was used. Porosity was calculated from segmented 3-D FIB based images and permeability was simulated by a Navier Stokes-Brinkman solver in the segmented images. Results show that the quantity and distribution of pore clusters and pores (≥ 40 nm) are similar. The largest pores are located within carbonates and clay minerals, whereas the smallest pores are within the matured organic matter. Orientation of the pores calculated as pore paths showed minor directional differences between the samples. Both samples have no continuous connectivity of pore clusters along the axes in the x, y, and z direction on the scale of 10 to 20 of micrometer, but do show connectivity on the micrometer scale. The volume of organic matter in the studied volume is representative of the total organic carbon (TOC) in the samples. Organic matter does show axis connectivity in the x, y, and z directions. With increasing maturity the porosity in organic matter increases from close to 0 to more than 5 %. These pores are small and in the large organic particles have little connection to the mineral matrix. Continuous pore size distributions are compared with mercury intrusion porosimetry (MIP) data. Differences between both methods are caused by resolution limits of the FIB-SEM and by the development of small pores during the maturation of the organic matter. Calculations show no permeability when only considering visible pores due to the lack of axis connectivity. Adding the organic matter with a

  20. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  1. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy.

    PubMed

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-05-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  2. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  3. The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.

    PubMed

    Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai

    2016-04-28

    DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices. PMID:27004750

  4. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  5. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  6. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts. PMID:25703291

  7. PLS photoemission electron microscopy beamline

    NASA Astrophysics Data System (ADS)

    Kang, Tai-Hee; Kim, Ki-jeong; Hwang, C. C.; Rah, S.; Park, C. Y.; Kim, Bongsoo

    2001-07-01

    The performance of a recently commissioned beamline at the Pohang Light Source (PLS) is described. The beamline, which is located at 4B1 at PLS, is a Varied Line Spacing (VLS) Plane Grating Monochromator (PGM) beamline. VLS PGM has become very popular because of the simple scanning mechanism and the fixed exit slit. The beamline which takes 3 mrad horizontal beam fan from bending magnet, covers the energy range 200-1000 eV for Photoemission Electron Microscopy (PEEM), X-ray Photoelectron Spectroscopy (XPS) and Magnetic Circular Dichroism (MCD) experiments. Simplicity of the optics and high flux with medium resolution were the design goals for these applications. The beamline consists of a horizontal focusing mirror, a vertical focusing mirror, VLS plane grating and exit slit. The source of PLS could be used as a virtual entrance slit because of its small size and stability. The flux and the resolution of the beamline at the experimental station have been measured using an ion chamber and a calibrated photodiode. Test images of PEEM from a standard sample were taken to illustrate the further performance of the beamline and PEEM station.

  8. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  9. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy.

    PubMed

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-10-30

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). PMID:26436905

  10. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition.

    PubMed

    Fowlkes, Jason D; Winkler, Robert; Lewis, Brett B; Stanford, Michael G; Plank, Harald; Rack, Philip D

    2016-06-28

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. In part, this is due to the dynamic interplay between electron-solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties. A hybrid Monte Carlo-continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. Using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors. PMID:27284689

  11. A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics

    NASA Astrophysics Data System (ADS)

    Gowthaman, Swaminathan; Chidambaram, Gowri Shankar; Rao, Dilli Babu Govardhana; Subramya, Hemakumar Vyudhayagiri; Chandrasekhar, Udhayagiri

    2016-06-01

    Embedding of energy harvesting systems into wearable health and environment monitoring systems, like integration of smart piezoelectric fibers into soldier fabric structures opens up avenues in generating electricity from natural mechanical movements for self-powering of wearable electronics. Emergence of multitudinous of materials and manufacturing technologies has enabled realization of various energy harvesting systems from mechanical movements. The materials and manufacturing related to 3D printing of energy harvesting fabrics are reviewed in this paper. State-of-the-art energy harvesting sources are briefly described following which an in-depth analysis on the materials and 3D printing techniques for energy harvesting fabrics are presented. While tremendous motivation and opportunity exists for wider-scale adoption of 3D printing for this niche area, the success depends on efficient design of three critical factors namely materials, process and structure. The present review discusses on the complex issues of materials selection, modelling and processing of 3D printed fabrics. The paper culminates by presenting a discussion on how future advancements in 3D printing technology might be useful for development of wearable electronics.

  12. A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy

    PubMed Central

    Weiße, Sebastian; Heddergott, Niko; Heydt, Matthias; Pflästerer, Daniel; Maier, Timo; Haraszti, Tamás; Grunze, Michael; Engstler, Markus; Rosenhahn, Axel

    2012-01-01

    We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming. PMID:22629379

  13. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    NASA Astrophysics Data System (ADS)

    Casal, A.; Cerrato, R.; Mateo, M. P.; Nicolas, G.

    2016-06-01

    A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  14. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field. PMID:25640426

  15. Image reconstruction for 3D light microscopy with a regularized linear method incorporating a smoothness prior

    NASA Astrophysics Data System (ADS)

    Preza, Chrysanthe; Miller, Michael I.; Conchello, Jose-Angel

    1993-07-01

    We have shown that the linear least-squares (LLS) estimate of the intensities of a 3-D object obtained from a set of optical sections is unstable due to the inversion of small and zero-valued eigenvalues of the point-spread function (PSF) operator. The LLS solution was regularized by constraining it to lie in a subspace spanned by the eigenvectors corresponding to a selected number of the largest eigenvalues. In this paper we extend the regularized LLS solution to a maximum a posteriori (MAP) solution induced by a prior formed from a 'Good's like' smoothness penalty. This approach also yields a regularized linear estimator which reduces noise as well as edge artifacts in the reconstruction. The advantage of the linear MAP (LMAP) estimate over the current regularized LLS (RLLS) is its ability to regularize the inverse problem by smoothly penalizing components in the image associated with small eigenvalues. Computer simulations were performed using a theoretical PSF and a simple phantom to compare the two regularization techniques. It is shown that the reconstructions using the smoothness prior, give superior variance and bias results compared to the RLLS reconstructions. Encouraging reconstructions obtained with the LMAP method from real microscopical images of a 10 micrometers fluorescent bead, and a four-cell Volvox embryo are shown.

  16. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    NASA Astrophysics Data System (ADS)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  17. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    PubMed

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934

  18. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    PubMed

    Hong, Jeongmin; Stefanescu, Eugenia; Liang, Ping; Joshi, Nikhil; Xue, Song; Litvinov, Dmitri; Khizroev, Sakhrat

    2012-01-01

    This letter describes the use of vertically aligned carbon nanotubes (CNT)-based arrays with estimated 2-nm thick cobalt (Co) nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS). PMID:22808192

  19. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    PubMed

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines. PMID:19725070

  20. Resonant structure of the 3d electron`s angular distribution in a free Mn{sup +}Ion

    SciTech Connect

    Amusia, M.Y.; Dolmatov, V.K.

    1995-08-01

    The 3d-electron angular anisotropy parameter of the free Mn{sup +} ion is calculated using the {open_quotes}spin-polarized{close_quotes} random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p {yields} 3d discrete excitation. The effect of the 3p {yields} 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published.

  1. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  2. Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation.

    PubMed

    Hay, R F; Gibson, G M; Lee, M P; Padgett, M J; Phillips, D B

    2014-07-28

    High-speed video stereo-microscopy relies on illumination from two distinct angles to create two views of a sample from different directions. The 3D trajectory of a microscopic object can then be reconstructed using parallax to combine 2D measurements of its position in each image. In this work, we evaluate the accuracy of 3D particle tracking using this technique, by extending the number of views from two to four directions. This allows us to record two independent sets of measurements of the 3D coordinates of tracked objects, and comparison of these enables measurement and minimisation of the tracking error in all dimensions. We demonstrate the method by tracking the motion of an optically trapped microsphere of 5 μm in diameter, and find an accuracy of 2-5 nm laterally, and 5-10 nm axially, representing a relative error of less than 2.5% of its range of motion in each dimension. PMID:25089484

  3. Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing

    2013-12-01

    Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.

  4. Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues

    PubMed Central

    Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing

    2013-01-01

    Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach. PMID:24309385

  5. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGESBeta

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; Stanford, Michael G.; Plank, Harald; Rack, Philip D.

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  6. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  7. Application of the split-gradient method to 3D image deconvolution in fluorescence microscopy.

    PubMed

    Vicidomini, G; Boccacci, P; Diaspro, A; Bertero, M

    2009-04-01

    The methods of image deconvolution are important for improving the quality of the detected images in the different modalities of fluorescence microscopy such as wide-field, confocal, two-photon excitation and 4Pi. Because deconvolution is an ill-posed problem, it is, in general, reformulated in a statistical framework such as maximum likelihood or Bayes and reduced to the minimization of a suitable functional, more precisely, to a constrained minimization, because non-negativity of the solution is an important requirement. Next, iterative methods are designed for approximating such a solution. In this paper, we consider the Bayesian approach based on the assumption that the noise is dominated by photon counting, so the likelihood is of the Poisson-type, and that the prior is edge-preserving, as derived from a simple Markov random field model. By considering the negative logarithm of the a posteriori probability distribution, the computation of the maximum a posteriori (MAP) estimate is reduced to the constrained minimization of a functional that is the sum of the Csiszár I-divergence and a regularization term. For the solution of this problem, we propose an iterative algorithm derived from a general approach known as split-gradient method (SGM) and based on a suitable decomposition of the gradient of the functional into a negative and positive part. The result is a simple modification of the standard Richardson-Lucy algorithm, very easily implementable and assuring automatically the non-negativity of the iterates. Next, we apply this method to the particular case of confocal microscopy for investigating the effect of several edge-preserving priors proposed in the literature using both synthetic and real confocal images. The quality of the restoration is estimated both by computation of the Kullback-Leibler divergence of the restored image from the detected one and by visual inspection. It is observed that the noise artefacts are considerably reduced and desired

  8. 3-D Raman Imagery and Atomic Force Microscopy of Ancient Microscopic Fossils

    NASA Astrophysics Data System (ADS)

    Schopf, J.

    2003-12-01

    Investigations of the Precambrian (~540- to ~3,500-Ma-old) fossil record depend critically on identification of authentic microbial fossils. Combined with standard paleontologic studies (e.g., of paleoecologic setting, population structure, cellular morphology, preservational variants), two techniques recently introduced to such studies -- Raman imagery and atomic force microscopy -- can help meet this need. Laser-Raman imagery is a non-intrusive, non-destructive technique that can be used to demonstrate a micron-scale one-to-one correlation between optically discernable morphology and the organic (kerogenous) composition of individual microbial fossils(1,2), a prime indicator of biogencity. Such analyses can be used to characterize the molecular-structural makeup of organic-walled microscopic fossils both in acid-resistant residues and in petrographic thin sections, and whether the fossils analyzed are exposed at the upper surface of, or are embedded within (to depths >65 microns), the section studied. By providing means to map chemically, in three dimensions, whole fossils or parts of such fossils(3), Raman imagery can also show the presence of cell lumina, interior cellular cavities, another prime indicator of biogenicity. Atomic force microscopy (AFM) has been used to visualize the nanometer-scale structure of the kerogenous components of single Precambrian microscopic fossils(4). Capable of analyzing minute fragments of ancient organic matter exposed at the upper surface of thin sections (or of kerogen particles deposited on flat surfaces), such analyses hold promise not only for discriminating between biotic and abiotic micro-objects but for elucidation of the domain size -- and, thus, the degree of graphitization -- of the graphene subunits of the carbonaceous matter analyzed. These techniques -- both new to paleobiology -- can provide useful insight into the biogenicity and geochemical maturity of ancient organic matter. References: (1) Kudryavtsev, A.B. et

  9. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  10. 3D Image Processing of Two-Photon Microscopy Images Depicting Nanoprobes in Skin

    NASA Astrophysics Data System (ADS)

    Bongo, Andrew E.

    Choosing a deconvolution algorithm can be beneficial when imaging nanoprobes in skin by means of two-photon microscopy. By design, deconvolution algorithms can increase the signal to noise ratio of the raw images and thus make it easier to identify discrete, subresolution nanoprobes from blurry two-photon image data. This poses the favorable benefit of knowing more precise locations of nanoprobes inside skin. This thesis demonstrates how the Expectation-Maximization deconvolution algorithm (EM algorithm) can be applied to three-dimensional, two-photon images depicting quantum dot nanoprobes inside human skin. This was accomplished in part by devising a way to deliver nanoprobes inside skin by means of low frequency ultrasound. Many nanoprobes become sparsely scattered inside skin when using this nanoprobe delivery methodology. The scattered nanoprobes resulting from the nanoprobe delivery pose a unique benefit in acquiring an experimental point spread function of the imaging system. This in turn gives an accurate representation of the point spread function that can be used as an input to the EM algorithm. The methodology of utilizing the EM algorithm in this manner is presented.

  11. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  12. Analytical transmission electron microscopy in materials science

    SciTech Connect

    Fraser, H.L.

    1980-01-01

    Microcharacterization of materials on a scale of less than 10 nm has been afforded by recent advances in analytical transmission electron microscopy. The factors limiting accurate analysis at the limit of spatial resolution for the case of a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy are examined in this paper.

  13. Investigation of Charge Gain in Diamond Electron Beam Amplifiers Via 3D Simulations

    SciTech Connect

    Busby,R.; Rao,T.; D.A. Dimitrov, J.R. Cary, I. Ben-Zvi, X. Chang, J. Keister, E. Muller, J. Smedley, Q. Wu

    2009-05-04

    A promising new concept of a diamond amplified photocathode for generation of high-current, high-brightness, and low thermal emittance electron beams was recently proposed and is currently under active development. To better understand the different effects involved in the generation ofelectron beams from diamond, we have been developing models (within the VORPAL computational framework) to simulate secondary electron generation and charge transport. The currently implemented models include inelastic scattering of electrons and holes for generation of electron-hole pairs, elastic, phonon, and charge impurity scattering. We will present results from 3D VORPAL simulations with these capabilities on charge gain as a function of primary electron energy and applied electric field. Moreover, we consider effects of electron and hole cloud expansion (initiated by primary electrons) and separation in a surface domain of diamond.

  14. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography

    PubMed Central

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-01-01

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions. PMID:25940394

  15. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  16. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGESBeta

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  17. Fast electron microscopy via compressive sensing

    SciTech Connect

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  18. The future of electron microscopy

    SciTech Connect

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifies to the importance of modern microscopy.

  19. The future of electron microscopy

    DOE PAGESBeta

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less

  20. SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus

    SciTech Connect

    Rasmussen, K; Corbett, M; Pelletier, C; Huang, Z; Feng, Y; Jung, J

    2015-06-15

    Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes were analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.

  1. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    SciTech Connect

    Khoromskij, B.N. Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-09-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h{sup 3}) convergence in the grid-size h=O(n{sup -1}). Moreover, this requires O(3rn+r{sup 3}) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH{sub 4} molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10{sup -6} hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  2. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  3. Correlative super-resolution fluorescence and metal replica transmission electron microscopy

    PubMed Central

    Sochacki, Kem A.; Shtengel, Gleb; van Engelenburg, Schuyler B.; Hess, Harald F.; Taraska, Justin W.

    2014-01-01

    Super-resolution localization microscopy is combined with a complementary imaging technique, transmission electron microscopy of metal replicas, to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. Robust correlation on the scale of 20 nm is validated by imaging endogenous clathrin (with 2D and 3D PALM/TEM) and the method is further used to find the previously unknown 3D position of epsin on clathrin coated structures. PMID:24464288

  4. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy.

    PubMed

    Ponomaryov, Semyon S; Yukhymchuk, Volodymyr O; Lytvyn, Peter M; Valakh, Mykhailo Ya

    2016-12-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%. PMID:26909783

  5. Low-temperature post-deposition annealing investigation for 3D charge trap flash memory by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Huo, Zongliang; Jin, Lei; Han, Yulong; Li, Xinkai; Ye, Tianchun; Liu, Ming

    2015-01-01

    The influence of post-deposition annealing (PDA) temperature condition on charge distribution behavior of HfO2 thin films was systematically investigated by various-temperature Kelvin probe force microscopy technology. Contact potential difference profiles demonstrated that charge storage capability shrinks with decreasing annealing temperature from 1,000 to 500 °C and lower. Compared to 1,000 °C PDA, it was found that 500 °C PDA causes deeper effective trap energy level, suppresses lateral charge spreading, and improves the retention characteristics. It is concluded that low-temperature PDA can be adopted in 3D HfO2-based charge trap flash memory to improve the thermal treatment compatibility of the bottom peripheral logic and upper memory arrays.

  6. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  7. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGESBeta

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-05-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  8. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    PubMed

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  9. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya

    2016-02-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

  10. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    SciTech Connect

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  11. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy.

    PubMed

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  12. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    PubMed Central

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  13. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars.

    PubMed

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-01-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632

  14. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars

    PubMed Central

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-01-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632

  15. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-06-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.

  16. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  17. Inner-shell excitations of krypton 3d investigated by electron impact with high resolution

    SciTech Connect

    Yuan Zhensheng; Zhu Linfan; Liu Xiaojing; Li Wenbin; Cheng Huadong; Sun Jianmin; Xu Kezun

    2005-06-15

    The inner-shell excitation spectra of krypton 3d electrons were measured at scattering angles of 0 deg. and 4 deg. by a fast-electron energy-loss spectrometer at an incident energy of 2.5 keV with an energy resolution better than 80 meV. Some interesting optically forbidden transitions were observed and the natural widths of the optically allowed and optically forbidden transitions were analyzed. It shows that the natural widths for the resonances having the same core hole are nearly equal, no matter whether they are optically allowed, optically forbidden, or different members of a Rydberg series.

  18. Synthesizing a 3D auditory scene for use in an electronic travel aid for the blind

    NASA Astrophysics Data System (ADS)

    Bujacz, Michał; Strumiłło, Paweł

    2008-01-01

    A system for auditory presentation of 3D scenes to the blind is presented, with the focus of the paper on the synthesis of sound codes suitable to carry important scene information. First, a short review of existing electronic travel aids for the blind (ETAs) is provided. Second, the project of the wearable ETA device, currently under development at the Technical University of Lodz, is outlined, along with the system modules: 3D scene reconstruction, object (obstacle) selection, synthesis of the sound code and the application of head related transfer functions (HRTFs) for generating spatialized sound. The importance of psychoacoustics, especially Bregman's theory of sound streams, is analyzed and proposed methods of sound code synthesis are presented, along with the software used for their verification.

  19. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  20. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

    PubMed Central

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885

  1. Tunable interplay between 3d and 4f electrons in Co-doped iron pnictides

    NASA Astrophysics Data System (ADS)

    Shang, T.; Yang, L.; Chen, Y.; Cornell, N.; Ronning, F.; Zhang, J. L.; Jiao, L.; Chen, Y. H.; Chen, J.; Howard, A.; Dai, J.; Thompson, J. D.; Zakhidov, A.; Salamon, M. B.; Yuan, H. Q.

    2013-02-01

    We study the interplay of 3d and 4f electrons in the iron pnictides CeFe1-xCoxAsO and GdFe1-yCoyAsO, which correspond to two very different cases of 4f-magnetic moment. Both CeFeAsO and GdFeAsO undergo a spin-density-wave (SDW) transition associated with Fe 3d electrons at high temperatures, which is rapidly suppressed by Fe/Co substitution. Superconductivity appears in a narrow doping range: 0.05electrons form an antiferromagnetic (AFM) order at low temperatures over the entire doping range and Co 3d electrons are ferromagnetically ordered on the Co-rich side; the Curie temperature reaches TCCo≈ 75 K at x=1 and y=1. In the Ce compounds, the Néel temperature TNCe increases upon suppressing the SDW transition of Fe and then remains nearly unchanged with further increasing Co concentration up to x≃0.8 (TNCe≈ 4 K). Furthermore, evidence of Co-induced polarization on Ce moments is observed on the Co-rich side. In the Gd compounds, the two magnetic species of Gd and Co are coupled antiferromagnetically to give rise to ferrimagnetic behavior in the magnetic susceptibility on the Co-rich side. For 0.7≤y<1.0, the system undergoes a possible magnetic reorientation below the Néel temperature of Gd (TNGd). Our results suggest that the effects of both electron hybridizations and magnetic exchange coupling between the 3d-4f electrons give rise to a rich phase diagram in the rare-earth iron pnictides.

  2. Advanced electron microscopy characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna Raj

    synthesis and growth mechanism of highly monodispersed Cu-Pt nanoclusters. The advance electron microscopy of microanalysis allowed us to study the distribution of Cu and Pt with atomistic resolution. The microanalysis revealed that Pt is embedded randomly in the Cu lattice. A novel grand canonical - Langevin dynamics simulation showed the formation of alloy structures in good agreement with the experimental evidence. Finally, we demonstrated the synthesis of AgPd-Pt trimetallic nanoparticles with two different morphologies: multiply twinned core-shell, and hollow particles. We also investigated the growth mechanism of the nanoparticles using grand canonical-Monte Carlo simulations. We found that the Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process and presenting very good agreement between the simulated structures and those observed experimentally. Similarly, we also investigated AuCu/Pt core-shell trimetallic nanoparticles, presenting new way to control the nanoparticles morphologies due to the presence of third metal (Pt). Where, we observed the Pt layers are overgrowth on the as prepared AuCu core by Frank-van der Merwe (FM) and Stranski-Krastanov (SK) growth modes. In addition, these nanostructure presents high index facet surfaces with {211} and (321} families, that are highly open structure surfaces and interesting for the catalytic applications. The results of these studies will be useful for the future applications and the design of advanced functional nanomaterials.

  3. Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements

    NASA Astrophysics Data System (ADS)

    Alizadeh, Mohamad Mahdi; Schuh, Harald; Schmidt, Michael

    2015-06-01

    For space geodetic techniques, operating in microwave band, ionosphere is a dispersive medium; thus, signals traveling through this medium are in the first approximation, affected proportional to the inverse of the square of their frequencies. This effect allows gaining information about the parameters of the ionosphere in terms of total electron content (TEC) or the electron density (Ne). Making use of this phenomenon, space geodetic techniques have turned into a capable tool for studying the ionosphere in the last decades. Up to now, two-dimensional (2-D) models of Vertical TEC (VTEC) have been widely developed and used by different communities; however, due to the fact that these models provide information about the integral of the whole electron content along the vertical or slant raypath, these maps are not useful when information about the ionosphere at different altitude is required. This paper presents a recent study which aims at developing a global 3-D model of the electron density, using measurements from Global Navigation Satellite Systems and by applying the ray tracing technique to the upper atmosphere. The developed modeling approach represents the horizontal variations of the electron density, with two sets of spherical harmonic expansions of degree and order 15. The height dependency of the electron density is represented by a multilayered Chapman profile function for the bottomside and topside ionosphere, and an appropriate model for the plasmasphere. In addition to the geodetic applications of the developed models, within this study, the 3-D models of electron density can include geophysical parameters like maximum electron density and its corresponding height. High-resolution modeling of these parameters allows an improved geophysical interpretation, which is essential in all studies of the upper atmosphere, space weather, and for the solar-terrestrial environment.

  4. Enhancing 3-D cell structures in confocal and STED microscopy: a joint model for interpolation, deblurring and anisotropic smoothing

    NASA Astrophysics Data System (ADS)

    Persch, Nico; Elhayek, Ahmed; Welk, Martin; Bruhn, Andrés; Grewenig, Sven; Böse, Katharina; Kraegeloh, Annette; Weickert, Joachim

    2013-12-01

    This paper proposes an advanced image enhancement method that is specifically tailored towards 3-D confocal and STED microscopy imagery. Our approach unifies image denoising, deblurring and interpolation in one joint method to handle the typical weaknesses of these advanced microscopy techniques: out-of-focus blur, Poisson noise and low axial resolution. In detail, we propose the combination of (i) Richardson-Lucy deconvolution, (ii) image restoration and (iii) anisotropic inpainting in one single scheme. To this end, we develop a novel PDE-based model that realizes these three ideas. First we consider a basic variational image restoration functional that is turned into a joint interpolation scheme by extending the regularization domain. Next, we integrate the variational representation of Richardson-Lucy deconvolution into our model, and illustrate its relation to Poisson distributed noise. In the following step, we supplement the components of our model with sub-quadratic penalization strategies that increase the robustness of the overall method. Finally, we consider the associated minimality conditions, where we exchange the occurring scalar-valued diffusivity function by a so-called diffusion tensor. This leads to an anisotropic regularization that is aligned with structures in the evolving image. As a further contribution of this paper, we propose a more efficient and faster semi-implicit iteration scheme that also increases the stability. Our experiments on real data sets demonstrate that this joint model achieves a superior reconstruction quality of the recorded cell.

  5. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability.

    PubMed

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-16

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa(-1)) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. PMID:27250529

  6. Photoemission electron microscopy of graphene

    NASA Astrophysics Data System (ADS)

    Saliba, Sebastian; Wardini, Jenna; Fitzgerald, J. P. S.; Word, Robert C.; Kevek, Josh; Minot, Ethan; Koenenkamp, Rolf

    2012-10-01

    A study of chemical vapor deposited graphene on copper foil is conducted using an aberration-corrected photoemission electron microscope (PEEM). We demonstrate the efficacy such a PEEM has in identifying multi-layer graphene, defects and cracking. A model is developed to describe the observed reduction in photoemission rate where electrons originate from the copper foil and scatter through the graphene. A survey of several multi-layer feature line profiles demonstrates the reduced photoemission rate as the number of graphene layers increases. A mean-free-path length of l=3.8±0.8 nm is inferred assuming the layer spacing in graphene is δz=0.35 nm. The PEEM's high spatial resolution and surface sensitivity combined with no electron beam damage are promising for characterizing biosensors and other nanoscale graphene devices.

  7. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  8. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    SciTech Connect

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-04-02

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

  9. 3D Distribution of the Coronal Electron Density and its Evolution with Solar Cycle

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Reginald, Nelson Leslie; Davila, Joseph M.; St. Cyr, Orville Chris

    2016-05-01

    The variability of the solar white-light corona and its connection to the solar activity has been studied for more than a half century. It is widely accepted that the temporal variation of the total radiance of the K-corona follows the solar cycle pattern (e.g., correlated with sunspot number). However, the origin of this variation and its relationships with regard to coronal mass ejections and the solar wind are yet to be clearly understood. We know that the COR1-A and –B instruments onboard the STEREO spacecraft have continued to perform high-cadence (5 min) polarized brightness measurements from two different vantage points over a long period of time that encompasses the solar minimum of Solar Cycle 23 to the solar maximum of Solar Cycle 24. This extended period of polarized brightness measurements can now be used to reconstruct 3D electron density distributions of the corona between the heliocentric heights of 1.5-4.0 solar radii. In this study we have constructed the 3D coronal density models for 100 Carrington rotations (CRs) from 2007 to 2014 using the spherically symmetric inversion (SSI) method. The validity of these 3D density models is verified by comparing with similar 3D density models created by other means such as tomography, MHD modeling, and 2D density distributions inverted from the polarized brightness images from LASCO/C2 instrument onboard the SOHO spacecraft. When examining the causes for the temporal variation of the global electron content we find that its increase from the solar minimum to maximum depends on changes to both the total area and mean density of coronal streamers. We also find that the global and hemispheric electron contents show quasi-periodic variations with a period of 8-9 CRs during the ascending and maximum phases of Solar Cycle 24 through wavelet analysis. In addition, we also explore any obvious relationships between temporal variation of the global electron content with the photospheric magnetic flux, total mass of

  10. Resolution measures in molecular electron microscopy

    PubMed Central

    Penczek, Pawel A.

    2011-01-01

    Resolution measures in molecular electron microscopy provide means to evaluate quality of macromolecular structures computed from sets of their two-dimensional line projections. When the amount of detail in the computed density map is low there are no external standards by which the resolution of the result can be judged. Instead, resolution measures in molecular electron microscopy evaluate consistency of the results in reciprocal space and present it as a one-dimensional function of the modulus of spatial frequency. Here we provide description of standard resolution measures commonly used in electron microscopy. We point out that the organizing principle is the relationship between these measures and the Spectral Signal-to-Noise Ratio of the computed density map. Within this framework it becomes straightforward to describe the connection between the outcome of resolution evaluations and the quality of electron microscopy maps, in particular, the optimum filtration, in the Wiener sense, of the computed map. We also provide a discussion of practical difficulties of evaluation of resolution in electron microscopy, particularly in terms of its sensitivity to data processing operations used during structure determination process in single particle analysis and in electron tomography. PMID:20888958

  11. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  12. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  13. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The

  14. Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens

    PubMed Central

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729

  15. Electron Microscopy Characterization of Hybrid Metallic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke; Akase, Zentaro

    In order to understand the excellent properties of nanoscale hybridized materials, it is very important to investigate the microstructures and interfaces of these materials at the nanometer scale. In this chapter, we present the basic principles of transmission electron microscopy and its applications to these materials. In addition to high-resolution transmission electron microscopy (HREM) and high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), analytical electron microscopy, including energy dispersive X-ray spectroscopy (EDS) and electron energyloss spectroscopy (EELS) as well as elemental mapping methods using these spectroscopy techniques will be presented. Also, the electron holographic technique for characterization of magnetic fields of nanohybridized materials will be explained. In addition to electron microscopic observation techniques, recently developed specimen preparation techniques, which are indispensable for obtaining homogeneous and thin films of nanohybridized materials, will be presented. In particular, a focused ion beam (FIB) method will be emphasized. The nanohybridized materials discussed in this chapter include carbon-based core-shell structure, nanocrystalline soft magnetic materials, nanocomposite magnets, and high-T c superconducting oxides. Application data will be provided in order to explain the usefulness of these analytical techniques for characterization of nanohybridized materials.

  16. Electron Microscopy of the Cell

    PubMed Central

    Leeson, T. S.

    1965-01-01

    The use of the electron microscope has added much to our knowledge of the cell. The fine structure of the component parts of the nucleus and the cytoplasm is described, and their functions are indicated. The nature and structural modifications of the plasma membrane are illustrated with particular reference to function. To illustrate the interrelationships of the nucleus and cytoplasm, the theory of protein secretion is discussed, the secretion of a particular protein or polypeptide being determined by a particular nucleotide sequence in the desoxyribonucleic acid of a chromosome, that is, by a gene. This information is transferred from nucleus to cytoplasm. It is in the cytoplasm that the majority of the work is performed while the nucleus directs the work of the cell. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:5829410

  17. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  18. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  19. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    PubMed Central

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  20. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage.

    PubMed

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  1. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  2. A computational 3D model for reconstruction of neural stem cells in bright-field time-lapse microscopy

    NASA Astrophysics Data System (ADS)

    Degerman, J.; Winterfors, E.; Faijerson, J.; Gustavsson, T.

    2007-02-01

    This paper describes a computational model for image formation of in-vitro adult hippocampal progenitor (AHP) cells, in bright-field time-lapse microscopy. Although this microscopymodality barely generates sufficient contrast for imaging translucent cells, we show that by using a stack of defocused image slices it is possible to extract position and shape of spherically shaped specimens, such as the AHP cells. This inverse problem was solved by modeling the physical objects and image formation system, and using an iterative nonlinear optimization algorithm to minimize the difference between the reconstructed and measured image stack. By assuming that the position and shape of the cells do not change significantly between two time instances, we can optimize these parameters using the previous time instance in a Bayesian estimation approach. The 3D reconstruction algorithm settings, such as focal sampling distance, and PSF, were calibrated using latex spheres of known size and refractive index. By using the residual between reconstructed and measured image intensities, we computed a peak signal-to-noise ratio (PSNR) to 28 dB for the sphere stack. A biological specimen analysis was done using an AHP cell, where reconstruction PSNR was 28 dB as well. The cell was immuno-histochemically stained and scanned in a confocal microscope, in order to compare our cell model to a ground truth. After convergence the modelled cell volume had an error of less than one percent.

  3. Design and production of 3D printed bolus for electron radiation therapy.

    PubMed

    Su, Shiqin; Moran, Kathryn; Robar, James L

    2014-01-01

    This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) dose distributions using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity, and homogeneity within the planning target volume (PTV). The algorithm takes advantage of a commercial electron Monte Carlo dose calculation and uses the calculated result as input. Distances along ray lines from the distal side of 90% isodose line to distal surface of the PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using the coefficient of equivalent thickness method. Several regional modulation operators are applied to improve the dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms, and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity are improved compared to that with uniform bolus. For geometric phantoms with air or bone inhomogeneities, the dose homogeneity is markedly improved. The actual printed boluses conform well to the surface of complex anthropomorphic phantoms. The correspondence of the dose distribution between the calculated synthetic bolus and the actual manufactured bolus is shown. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low-cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of the prescription isodose surface and in sparing immediately adjacent normal

  4. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    PubMed

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  5. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges

    PubMed Central

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-01-01

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  6. Predicting the Electronic Properties of 3D, Million-atom Semiconductor nanostructure Architectures

    SciTech Connect

    Jack Dongarra; Stanimire Tomov

    2012-03-15

    This final report describes the work done by Jack Dongarra (University Distinguished Professor) and Stanimire Tomov (Research Scientist) related to the DOE project entitled Predicting the Electronic Properties of 3D, Million-Atom Semiconductor Nanostructure Architectures. In this project we addressed the mathematical methodology required to calculate the electronic and transport properties of large nanostructures with comparable accuracy and reliability to that of current ab initio methods. This capability is critical for further developing the field, yet it is missing in all the existing computational methods. Additionally, quantitative comparisons with experiments are often needed for a qualitative understanding of the physics, and for guiding the design of new nanostructures. We focused on the mathematical challenges of the project, in particular on solvers and preconditioners for large scale eigenvalue problems that occur in the computation of electronic states of large nanosystems. Usually, the states of interest lie in the interior of the spectrum and their computation poses great difficulties for existing algorithms. The electronic properties of a semiconductor nanostructure architecture can be predicted/determined by computing its band structure. Of particular importance are the 'band edge states' (electronic states near the energy gap) which can be computed from a properly defined interior eigenvalue problem. Our primary mathematics and computational challenge here has been to develop an efficient solution methodology for finding these interior states for very large systems. Our work has produced excellent results in terms of developing both new and extending current state-of-the-art techniques.

  7. Optical microscopy versus scanning electron microscopy in urolithiasis.

    PubMed

    Marickar, Y M Fazil; Lekshmi, P R; Varma, Luxmi; Koshy, Peter

    2009-10-01

    Stone analysis is incompletely done in many clinical centers. Identification of the stone component is essential for deciding future prophylaxis. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM) still remains a distant dream for routine hospital work. It is in this context that optical microscopy is suggested as an alternate procedure. The objective of this article was to assess the utility of an optical microscope which gives magnification of up to 40x and gives clear picture of the surface of the stones. In order to authenticate the morphological analysis of urinary stones, SEM and elemental distribution analysis were performed. A total of 250 urinary stones of different compositions were collected from stone clinic, photographed, observed under an optical microscope, and optical photographs were taken at different angles. Twenty-five representative samples among these were gold sputtered to make them conductive and were fed into the SEM machine. Photographs of the samples were taken at different angles at magnifications up to 4,000. Elemental distribution analysis (EDAX) was done to confirm the composition. The observations of the two studies were compared. The different appearances of the stones under optical illuminated microscopy were mostly standardized appearances, namely bosselations of pure whewellite, spiculations of weddellite, bright yellow colored appearance of uric acid, and dirty white amorphous appearance of phosphates. SEM and EDAX gave clearer pictures and gave added confirmation of the stone composition. From the references thus obtained, it was possible to confirm the composition by studying the optical microscopic pictures. Higher magnification capacity of the SEM and the EDAX patterns are useful to give reference support for performing optical microscopy work. After standardization, routine analysis can be performed with optical microscopy. The advantage of the optical microscope is that, it

  8. Active Pixel Sensors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Denes, P.; Bussat, J.-M.; Lee, Z.; Radmillovic, V.

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  9. CMOS array of photodiodes with electronic processing for 3D optical reconstruction

    NASA Astrophysics Data System (ADS)

    Hornero, Gemma; Montane, Enric; Chapinal, Genis; Moreno, Mauricio; Herms, Atila

    2001-04-01

    It is well known that laser time-of-flight (TOF) and optical triangulation are the most useful optical techniques for distance measurements. The first one is more suitable for large distances, since for short range of distances high modulation frequencies of laser diodes (©200-500MHz) are needed. For these ranges, optical triangulation is simpler, as it is only necessary to read the projection of the laser point over a linear optical sensor without any laser modulation. Laser triangulation is based on the rotation of the object. This motion shifts the projected point over the linear sensor, resulting on 3D information, by means of the whole readout of the linear sensor in each angle position. On the other hand, a hybrid method of triangulation and TOF can be implemented. In this case, a synchronized scanning of a laser beam over the object results in different arrival times of light to each pixel. The 3D information is carried by these delays. Only a single readout of the linear sensor is needed. In this work we present the design of two different linear arrays of photodiodes in CMOS technology, the first one based on the Optical triangulation measurement and the second one based in this hybrid method (TFO). In contrast to PSD (Position Sensitive Device) and CCDs, CMOS technology can include, on the same chip, photodiodes, control and processing electronics, that in the other cases should be implemented with external microcontrollers.

  10. A novel bottom-up copper filling of blind silicon vias in 3D electronic packaging

    NASA Astrophysics Data System (ADS)

    Du, Li; Shi, Tielin; Su, Lei; Xue, Dongmin; Liao, Guanglan

    2015-04-01

    Through silicon via is a promising technology that has benefits of high density, excellent performance and heterogeneous integration for 3D stacked devices, where blind silicon via plating in via first and via middle approaches is widely used. However, using conventional damascene copper plating technology to achieve high quality copper filling of blind vias is very difficult. In this paper, we demonstrate a novel approach for realizing bottom-up copper filling of blind silicon vias. Electroplating of the blind vias is carried out by using a titanium barrier layer, instead of the traditional copper seed layer, as the conductive medium. A vacuum process is introduced to push photoresist completely into the blind vias. By controlling the exposure and development processes, the photoresist at the top and middle of the vias is removed while that at the bottom it is retained for protecting the seed layer. After etching the exposed seed layer, we obtain a unique metal layer structure in which the copper seed layer is reserved at the via bottom, facilitating spontaneous bottom-up plating. Using this approach, we realize high quality copper filling of blind silicon vias of 30 µm in diameter and 120 µm in depth, which will be of noteworthy benefit in 3D electronic packaging.

  11. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  12. [Pili annulati. A scanning electron microscopy study].

    PubMed

    Lalević-Vasić, B; Polić, D

    1988-01-01

    A case of ringed hair studied by light and electron microscopy is reported. The patient, a 20-year old girl, had been presenting with the hair abnormality since birth. At naked eye examination the hairs were dry, 6 to 7 cm long, and they showed dull and shining areas giving the scalp hair a scintillating appearance (fig. 1). Several samples of hair were taken and examined by light microscopy under white and polarized light. Hair shafts and cryo-fractured surfaces were examined by scanning electron microscopy. RESULTS. 1. Light microscopy. Lesions were found in every hair examined. There were abnormal, opaque and fusiform areas alternating with normal areas all along the hair shaft (fig. 2). The abnormal areas resulted from intracortical air-filled cavities. Fractures similar to those of trichorrhexis nodosa were found in the opaque areas of the distal parts of the hairs. 2. Scanning electron microscopy. A. Hair shaft surface. The abnormal areas showed a longitudinal, "curtain-like" folding of the cuticular cells which had punctiform depressions on their surface and worn free edges (fig. 4, 5, 6); trichorrhexis-type fractures were seen in the distal parts of the hair shafts (fig. 7, 8). Normal areas regularly presented with longitudinal, superficial, short and non-systematized depressions (fig. 9); the cuticular cells were worn, and there were places where the denuded cortex showed dissociated cortical fibres (fig. 10).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3415147

  13. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  14. FERM3D: A finite element R-matrix electron molecule scattering code

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano

    2007-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an

  15. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  16. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  17. Wet electron microscopy with quantum dots.

    PubMed

    Timp, Winston; Watson, Nicki; Sabban, Alon; Zik, Ory; Matsudaira, Paul

    2006-09-01

    Wet electron microscopy (EM) is a new imaging method with the potential to allow higher spatial resolution of samples. In contrast to most EM methods, it requires little time to perform and does not require complicated equipment or difficult steps. We used this method on a common murine macrophage cell line, IC-21, in combination with various stains and preparations, to collect high resolution images of the actin cytoskeleton. Most importantly, we demonstrated the use of quantum dots in conjunction with this technique to perform light/electron correlation microscopy. We found that wet EM is a useful tool that fits into a niche between the simplicity of light microscopy and the high spatial resolution of EM. PMID:16989089

  18. The rapidly changing face of electron microscopy

    NASA Astrophysics Data System (ADS)

    Thomas, John Meurig; Leary, Rowan K.; Eggeman, Alexander S.; Midgley, Paul A.

    2015-07-01

    This short but wide-ranging review is intended to convey to chemical physicists and others engaged in the interfaces between solid-state chemistry and solid-state physics the growing power and extensive applicability of multiple facets of the technique of electron microscopy.

  19. Real time reconstruction of 3-D electron density distribution over Europe with TaD profiler

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Marinov, Pencho; Belehaki, Anna

    2015-04-01

    TaD (TSM-assisted Digisonde) profiler, developed on the base of Topside Sounder Model (TSM), provides vertical electron density profile (EDP) from the bottom of ionosphere up to the GNSS orbit heights over Digisonde sounding stations. TaD EDP uses the bottomside profile provided by Digisonde software and extends it above the F layer peak by representing O+ distribution by α-Chapman formula and H+ distribution by a single exponent. The profile above F layer peak takes the topside scale height HT and transition height hT from TSM and plasmasphere scale height Hp defined as a function of HT. All these profile parameters are adjusted to the current conditions by comparing the profile integral with measured GNSS TEC. The latter is taken from GNSS TEC maps produced by Royal Observatory of Belgium in the area (35˚, 60˚)N and (-15˚, 25˚)E. Maps of foF2 and hmF2 are produced in the same area on the base of DIAS (European Digital Upper Atmosphere Server) network of Digisonde stations and TaD profiles are calculated at all grid nodes (1˚x1˚) on latitude and longitude. Electron density at any point of the 3-D space is then obtained by simple interpolation between nodes. Possible use of reconstruction technique to GNSS applications is demonstrated by calculating the distribution of electron density along various ray paths of GNSS signals.

  20. Photon-induced near field electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae; Zewail, Ahmed H.

    2013-09-01

    Ultrafast electron microscopy in the space and time domains utilizes a pulsed electron probe to directly map structural dynamics of nanomaterials initiated by an optical pump pulse, in imaging, di raction, spectroscopy, and their combinations. It has demonstrated its capability in the studies of phase transitions, mechanical vibrations, and chemical reactions. Moreover, electrons can directly interact with photons via the near eld component of light scattering by nanostructures, and either gain or lose light quanta discretely in energy. By energetically selecting those electrons that exchanged photon energies, we can map this photon-electron interaction, and the technique is termed photon-induced near eld electron microscopy (PINEM). Here, we give an account of the theoretical understanding of PINEM. Experimentally, nanostructures such as a sphere, cylinder, strip, and triangle have been investigated. Theoretically, time-dependent Schrodinger and Dirac equations for an electron under light are directly solved to obtain analytical solutions. The interaction probability is expressed by the mechanical work done by an optical wave on a traveling electron, which can be evaluated analytically by the near eld components of the Rayleigh scattering for small spheres and thin cylinders, and numerically by the discrete dipole approximation for other geometries. Application in visualization of plasmon elds is discussed.

  1. Electron Microscopy: an Analytical Tool for Solid State Physicists

    NASA Astrophysics Data System (ADS)

    van Tendeloo, Gustaaf

    2013-03-01

    For too long the electron microscope has been considered as ``a big magnifying glass.'' Modern electron microscopy however has evolved into an analytical technique, able to provide quantitative data on structure, composition, chemical bonding and magnetic properties. Using lens corrected instruments it is now possible to determine atom shifts at interfaces with a precision of a few picometer; chemical diffusion at these interfaces can be imaged down to atomic scale. The chemical nature of the surface atoms can be visualized and even the bonding state of the elements (e.g. Mn2+ versus Mn3+) can be detected on an atomic scale. Electron microscopy is by principle a projection technique, but the final dream is to obtain atomic info of materials in three dimensions. We will show that this is no longer a dream, but that it is possible using advanced microscopy. We will show evidence of determining the valence change Ce4+ versus Ce3+ at the surface of a CeO2 nanocrystal; the atomic shifts at the interface between LaAlO3 and SrTiO3 and the 3D relaxation of a Au nanocrystal.

  2. Distributed microscopy: toward a 3D computer-graphic-based multiuser microscopic manipulation, imaging, and measurement system

    NASA Astrophysics Data System (ADS)

    Sulzmann, Armin; Carlier, Jerome; Jacot, Jacques

    1996-10-01

    The aim of this project is to telecontrol the movements in 3D-space of a microscope in order to manipulate and measure microsystems or micro parts aided by multi-user virtual reality (VR) environments. Presently microsystems are gaining in interest. Microsystems are small, independent modules, incorporating various functions, such as electronic, micro mechanical, data processing, optical, chemical, medical and biological functions. Though improving the manufacturing technologies, the measurement of the small structures to insure the quality of the process is a key information for the development. So far to measure the micro structures strong microscopes are needed. The use of highly magnifying computerized microscopes is expensive. To insure high quality measurements and distribute the acquired information to multi-user our proposed system is divided into three parts: the virtual reality microscopic environment (VRME)-based user-interface on a SGI workstation to prepare the manipulations and measurements. Secondly the computerized light microscope with the vision system inspecting the scene and getting the images of the specimen. Newly developed vision algorithms are used to analyze micro structures in the scene corresponding to the known a priori model. This vision is extracting position and shape of the objects and then transmitted as feedback to the user of the VRME-system to update his virtual environment. The internet demon is the third part of the system and distributes the information about the position of the micro structures, their shape and the images to the connected users who themselves may interact with the microscope (turn and displace the specimen on the back of a moving platform, or adding their structures to the scene and compare). The key idea behind our project VRME is to use the intuitiveness and the 3D visualization of VR environments coupled with a vision system to perform measurements of micro structures at a high accuracy. The direct

  3. Towards 3D charge localization by a method derived from atomic force microscopy: the electrostatic force distance curve

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.

    2014-11-01

    Charges injection and accumulation in the dielectric remains a critical issue, mainly because these phenomena are involved in a great number of failure mechanisms in cables or electronic components. Achieving a better understanding of the mechanisms leading to charge injection, transport and trapping under electrical stress and of the relevant interface phenomena is a high priority. The classical methods used for space charge density profile measurements have a limited spatial resolution, which prevents them being used for investigating thin dielectric layers or interface processes. Thus, techniques derived from atomic force microscopy (AFM) have been investigated more and more for this kind of application, but so far they have been limited by their lack of in-depth sensitivity. In this paper a new method for space charge probing is described, the electrostatic force distance curve (EFDC), which is based on electrostatic force measurements using AFM. A comparison with the results obtained using kelvin force microscopy (KFM) allowed us to highlight the fact that EFDC is sensitive to charges localized in the third-dimension.

  4. Chemistry of coal from electron microscopy measurements

    SciTech Connect

    Wert, C.A.; Hsieh, K.C.; Fraser, H.

    1986-04-01

    Well established techniques of analytical electron microscopy have applications to the chemistry of coal. The techniques use one or another of several interactions which occur when electrons are incident on a specimen. Two such interactions are discussed in this paper: 1: X-ray emission spectroscopy and 2: Electron energy loss spectroscopy. Both methods are used in the study of metallic and ceramic systems. The principles of the technique are illustrated by applications to metallic and ceramic systems; initial applications to coal are then described.

  5. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  6. Magnetism and superconductivity at LAO/STO-interfaces: the role of Ti 3d interface electrons

    NASA Astrophysics Data System (ADS)

    Pavlenko, Natalia; Kopp, Thilo; Tsymbal, E. Y.; Sawatzky, G. A.; Mannhart, Jochen

    2012-02-01

    Ferromagnetism and superconductivity are in most cases adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3 [1]. We analyze the ferromagnetic state within density functional theory and provide evidence that it is also generated by Ti 3d interface electrons, as is the two-dimensional electron liquid at the interface which gives rise to superconductivity [2]. We demonstrate that oxygen vacancies in the TiO2 interface layer enhance the tendency for ferromagnetism considerably. This allows for the notion that areas with increased density of oxygen vacancies produce ferromagnetic puddles and account for the previous observation of a superparamagnetic behavior in the superconducting state [3].[4pt] [1] Lu Li, C.Richter, J.Mannhart, and R.C.Ashoori, Nature Physics 7, 762 (2011).[0pt] [2] N. Reyren et al., Science 317, 1196 (2007).[0pt] [3] N.Pavlenko, T.Kopp, E.Y.Tsymbal, G.A.Sawatzky, and J.Mannhart, cond-mat/arXiv:1105.1163 (2011)

  7. Correcting for 3D distortion when using backscattered electron detectors in a scanning electron microscope.

    PubMed

    Proctor, Jacob M

    2009-01-01

    A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two-dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore-space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59-64, 2009. (c) 2009 Wiley Periodicals, Inc. PMID:19204999

  8. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  9. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    SciTech Connect

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M; Fisher, T

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  10. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy

    PubMed Central

    Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.

    2015-01-01

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  11. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy.

    PubMed

    Tyson, Adam L; Hilton, Stephen T; Andreae, Laura C

    2015-10-30

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  12. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. PMID:25475529

  13. Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography.

    PubMed

    Schnauber, Peter; Schmidt, Ronny; Kaganskiy, Arsenty; Heuser, Tobias; Gschrey, Manuel; Rodt, Sven; Reitzenstein, Stephan

    2016-05-13

    We report on a 3D electron beam lithography (EBL) technique using polymethyl methacrylate (PMMA) in the negative-tone regime as a resist. First, we briefly demonstrate 3D EBL at room temperature. Then we concentrate on cryogenic temperatures where PMMA exhibits a low contrast, which allows for straightforward patterning of 3D nano- and microstructures. However, conventional EBL patterning at cryogenic temperatures is found to cause severe damage to the microstructures. Through an extensive study of lithography parameters, exposure techniques, and processing steps we deduce a hypothesis for the cryogenic PMMA's structural evolution under electron beam irradiation that explains the damage. In accordance with this hypothesis, a two step lithography technique involving a wide-area pre-exposure dose slightly smaller than the onset dose is applied. It enables us to demonstrate a >95% process yield for the low-temperature fabrication of 3D microstructures. PMID:27023850

  14. Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography

    NASA Astrophysics Data System (ADS)

    Schnauber, Peter; Schmidt, Ronny; Kaganskiy, Arsenty; Heuser, Tobias; Gschrey, Manuel; Rodt, Sven; Reitzenstein, Stephan

    2016-05-01

    We report on a 3D electron beam lithography (EBL) technique using polymethyl methacrylate (PMMA) in the negative-tone regime as a resist. First, we briefly demonstrate 3D EBL at room temperature. Then we concentrate on cryogenic temperatures where PMMA exhibits a low contrast, which allows for straightforward patterning of 3D nano- and microstructures. However, conventional EBL patterning at cryogenic temperatures is found to cause severe damage to the microstructures. Through an extensive study of lithography parameters, exposure techniques, and processing steps we deduce a hypothesis for the cryogenic PMMA’s structural evolution under electron beam irradiation that explains the damage. In accordance with this hypothesis, a two step lithography technique involving a wide-area pre-exposure dose slightly smaller than the onset dose is applied. It enables us to demonstrate a >95% process yield for the low-temperature fabrication of 3D microstructures.

  15. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes

    PubMed Central

    Grassucci, Robert A; Taylor, Derek; Frank, Joachim

    2009-01-01

    This protocol details the steps used for visualizing the frozen-hydrated grids as prepared following the accompanying protocol entitled ‘Preparation of macromolecular complexes for visualization using cryo-electron microscopy.’ This protocol describes how to transfer the grid to the microscope using a standard cryo-transfer holder or, alternatively, using a cryo-cartridge loading system, and how to collect low-dose data using an FEI Tecnai transmission electron microscope. This protocol also summarizes and compares the various options that are available in data collection for three-dimensional (3D) single-particle reconstruction. These options include microscope settings, choice of detectors and data collection strategies both in situations where a 3D reference is available and in the absence of such a reference (random-conical and common lines). PMID:18274535

  16. Frontiers of in situ electron microscopy

    DOE PAGESBeta

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  17. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  18. Scanning electron microscopy of superficial white onychomycosis.

    PubMed

    Almeida, Hiram Larangeira de; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques E; Castro, Luis Antonio Suita de

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  19. Electronic and spectroscopic properties of early 3d metal atoms on a graphite surface

    NASA Astrophysics Data System (ADS)

    Rakotomahevitra, A.; Garreau, G.; Demangeat, C.; Parlebas, J. C.

    1995-07-01

    High-sensitivity magneto-optic Kerr effect experiments failed to detect manifestations of magnetism in epitaxial films of V on Ag(100) substrates. More recently V 3s XPS of freshly evaporated V clusters on graphite exhibited the appearance of a satellite structure which has then been interpreted by the effect of surface magnetic moments on V. It is the absence of unambiguous results on the electronic properties of early 3d supported metals that prompts us to examine the problem. Our purpose is twofold. In a first part, after a total energy calculation within a tight-binding method which yields the equilibrium position of a given adatom, we use the Hartree-Fock approximation to find out a possible magnetic solution of V (or Cr) upon graphite for a reasonable value of the exchange integral Jdd. In a second part the informations given by the density of states of the graphite surface as well as the additional states of the adsorbed atom are taken into account through a generalised impurity Anderson Hamiltonian which incorporates the various Coulomb and exchange interactions necessary to analyse the 3s XPS results.

  20. Quantum Criticality of Topological Phase Transitions in 3D Interacting Electronic Systems

    NASA Astrophysics Data System (ADS)

    Moon, Eun Gook; Yang, Bohm-Jung; Isobe, Hiroki; Nagaosa, Naoto

    2014-03-01

    We investigate the quantum criticality of topological phase transitions in three dimensional (3D) interacting electronic systems lacking either the time-reversal symmetry or the inversion symmetry. The minimal model, Weyl fermions with anisotropic dispersion relation, is suggested as the quantum critical theory based on the zerochirality condition. The interplay between the fermions and the long range Coulomb interaction is investigated by the standard renormalization group (RG) approach. We find that the quantum fluctuations of the anisotropic Weyl fermions induce the anisotropic partial screening of the Coulomb interaction, which eventually makes the Coulomb interaction irrelevant. It is in sharp contrast to the quantum criticality of conventional semi-metallic phases such as graphene where physical quantities receive logarithmic corrections from the marginal Coulomb interaction. Thus, the critical point is described by the non-interacting fermion theory allowing the complete theoretical understanding of the problem. The renormalized Coulomb potential shows the anisotropic power law. Its physical consequence is further illustrated by the screening problem of a charged impurity due to anisotropic Weyl fermions.

  1. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  2. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  3. Measuring Lattice Strain in Three Dimensions through Electron Microscopy

    PubMed Central

    2015-01-01

    The three-dimensional (3D) atomic structure of nanomaterials, including strain, is crucial to understand their properties. Here, we investigate lattice strain in Au nanodecahedra using electron tomography. Although different electron tomography techniques enabled 3D characterizations of nanostructures at the atomic level, a reliable determination of lattice strain is not straightforward. We therefore propose a novel model-based approach from which atomic coordinates are measured. Our findings demonstrate the importance of investigating lattice strain in 3D. PMID:26340328

  4. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  5. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

    PubMed Central

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-01-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  6. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy.

    PubMed

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-05-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  7. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    . [1] Ashour-Abdalla, Maha, et al. "Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events." Nature Physics 7.4 (2011): 360-365. [2] Markidis, Stefano, and Giovanni Lapenta. "Multi-scale simulations of plasma with iPIC3D." Mathematics and Computers in Simulation 80.7 (2010): 1509-1519. [3] Baumann, G., Troels Haugbølle, and Å. Nordlund. "Kinetic Modeling of Particle Acceleration in a Solar Null-point Reconnection Region." The Astrophysical Journal 771.2 (2013): 93. [4] Daldorff, L. K. S., et al. "Coupling the BATS-R-US global MHD code with the implicit particle-in-cell code iPIC3D." Bulletin of the American Physical Society 58 (2013).

  8. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Bosson, G.; Grignon, C.; Bouly, J. L.; Richer, J. P.; Guillaudin, O.; Mayet, F.; Billard, J.; Santos, D.

    2011-11-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This auto-triggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  9. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  10. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy.

    PubMed

    van den Bos, Karel H W; De Backer, Annick; Martinez, Gerardo T; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D; Van Aert, Sandra

    2016-06-17

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures. PMID:27367396

  11. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    van den Bos, Karel H. W.; De Backer, Annick; Martinez, Gerardo T.; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D.; Van Aert, Sandra

    2016-06-01

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

  12. Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2014-10-01

    0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.

  13. Electron Microscopy of Young Candida albicans Chlamydospores

    PubMed Central

    Miller, Sara E.; Spurlock, Ben O.; Michaels, G. E.

    1974-01-01

    One- to three-day-old cultures of Candida albicans bearing chlamydospores were grown and harvested by a special technique, free of agar, and prepared for ultramicrotomy and electron microscopy. These young chlamydospores exhibited a subcellular structure similar to that of the yeast phase, e.g., cytoplasmic membrane, ribosomes, and mitochondria. Other structural characteristics unique to chlamydospores were a very thick, layered cell wall, the outer layer of which was continuous with the outer layer of the suspensor cell wall and was covered by hair-like projections; membrane bound organelles; and large lipoid inclusions. Only young chlamydospores less than 3 to 4 days old exhibited these ultrastructural characteristics. Images PMID:4368664

  14. Electron microscopy methods for studying plasma membranes.

    PubMed

    Beckett, Alison J; Prior, Ian A

    2015-01-01

    Electron microscopy allows direct visualization of the underlying organization of cell surface components on a nano-scale. Immuno-gold labelling of isolated plasma membranes generates point patterns that enable mapping of protein and lipid distributions. 2D spatial statistics reveals the extent to which these distributions are clustered or dispersed and allows the extent of co-localization between different cell surface components to be precisely determined. This approach has been successfully applied to the study of signalling network organization and the consequences of physiological changes in modulating cell surface function. PMID:25331134

  15. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  16. Feature Adaptive Sampling for Scanning Electron Microscopy.

    PubMed

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  17. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  18. Feature Adaptive Sampling for Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-05-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning.

  19. Scanning electron microscopy studies of bacterial cultures

    NASA Astrophysics Data System (ADS)

    Swinger, Tracy; Blust, Brittni; Calabrese, Joseph; Tzolov, Marian

    2012-02-01

    Scanning electron microscopy is a powerful tool to study the morphology of bacteria. We have used conventional scanning electron microscope to follow the modification of the bacterial morphology over the course of the bacterial growth cycle. The bacteria were fixed in vapors of Glutaraldehyde and ruthenium oxide applied in sequence. A gold film of about 5 nm was deposited on top of the samples to avoid charging and to enhance the contrast. We have selected two types of bacteria Alcaligenes faecalis and Kocuria rhizophila. Their development was carefully monitored and samples were taken for imaging in equal time intervals during their cultivation. These studies are supporting our efforts to develop an optical method for identification of the Gram-type of bacterial cultures.

  20. Electron Microscopy of Botrytis cinerea Conidia

    PubMed Central

    Buckley, Patricia M.; Sjaholm, Virginia E.; Sommer, N. F.

    1966-01-01

    Buckley, Patricia M. (University of California, Davis), Virginia E. Sjaholm, and N. F. Sommer. Electron microscopy of Botrytis cinerea conidia. J. Bacteriol. 91:2037–2044. 1966.—Sections of germinating and nongerminating Botrytis cinerea conidia were examined with an electron microscope. Uranyl acetate or lead citrate provided contrast between membranes and cytoplasm. Membrane-bounded, dense inclusions previously unreported in dormant spores were termed “storage bodies.” Whorled structures, spherules, granules, and membrane loops were seen within these inclusions. The various forms assumed by the enclosed materials closely resemble phospholipid inclusions described for other cells. It is suggested that the inclusions provide material for the assembly of membranous organelles during germination. Utilization of the stored material apparently results in extensive vacuolization in advanced germinants. Images PMID:5949251

  1. Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ayako; Shimojo, Masayuki; Mitsuishi, Kazutaka; Takeguchi, Masaki

    2009-10-01

    Although scanning confocal electron microscopy (SCEM) shows a promise for optical depth sectioning with high resolution, practical and theoretical problems have prevented its application to three-dimensional (3D) imaging. We employed a stage-scanning system in which only the specimen is moved three dimensionally under a fixed lens configuration, and an annular dark-field (ADF) aperture which blocks direct beams and selects only the scattered electrons. This ADF-SCEM improved depth resolution sufficiently to perform optical depth sectioning. Finally, we succeeded in demonstrating the 3D reconstruction of carbon nanocoils using ADF-SCEM.

  2. Electron microscopy of compound oxide laser materials

    NASA Astrophysics Data System (ADS)

    Eakins, Daniel E.; LeBret, Joel B.; Norton, M. G.; Bahr, David F.; Dumm, John Q.

    2003-06-01

    Oxide single crystals, such as yttrium aluminum garnet (YAG) and yttrium orthovanadate (YVO4), are important host crystals for solid-state laser applications. These crystals are often grown by the Czochralski process and are doped with neodymium during growth. The microstructure of the resultant crystal affects the overall laser performance and it is necessary to be able to characterize grown-in defects in the material. Scanning electron microscopy has been used to examine the fracture surfaces of YAG and has shown the presence of microscopic voids, which act as stress concentrators and in some cases appear to be the cause of fracture. Transmission electron microscopy (TEM) has been used to characterize various defects in both YAG and YVO4 crystals. The defects found depend on the growth conditions, specifically the Nd concentration in the crystal and the position within the boule. One of the most common defects identified in both materials were microscopic spherical particles. In YAG these particles appeared to be located primarily in the core regions and analysis of high resolution images indicate that they are due to regions that are both compositionally and orientationally different from the matrix phase. Direct observation of dislocations in YVO4 was made using TEM. In YAG only indirect evidence for dislocations could be found from the observation of river marks on fracture surfaces.

  3. Electron Microscopy of Chromatophores of Rhodopseudomonas spheroides

    PubMed Central

    Gibson, K. D.

    1965-01-01

    Gibson, K. D. (St. Mary's Hospital Medical School, London, England). Electron microscopy of Rhodopseudomonas spheroides. J. Bacteriol. 90:1059–1072. 1965.—Fixed and stained chromatophores and whole cells of anaerobically grown Rhodopseudomonas spheroides were examined in thin sections in the electron microscope. Both purified chromatophores and intracellular membrane-bound vesicles had exactly the same appearance, namely that of spheres or ellipsoids with a thin electron-dense shell surrounding an electron-lucent interior. The distribution of diameters in the two types of structure was also found to be the same, and was compatible with a normal distribution, with a mean of 570 A and a standard deviation 40 A. Negatively stained chromatophores appeared like discs or collapsed spheres. The presence of invaginations of the cytoplasmic membrane in this species was confirmed, and a new structure resembling a twin chromatophore was observed. The bearing of these results on theories of the origin of chromatophores is discussed, and it is concluded that they offer some support for each one of the three main theories about the origin of particulate organelles. Images PMID:5847796

  4. Extracellular vesicles of calcifying turkey leg tendon characterized by immunocytochemistry and high voltage electron microscopic tomography and 3-D graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; McKee, M. D.; Nanci, A.; Song, M. J.; Kiyonaga, S.; Arena, J.; McEwen, B.

    1992-01-01

    To gain insight into the structure and possible function of extracellular vesicles in certain calcifying vertebrate tissues, normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo, have been studied in two separate investigations, one concerning the electron microscopic immunolocalization of the 66 kDa phosphoprotein, osteopontin, and the other detailing the organization and distribution of mineral crystals associated with the vesicles as determined by high voltage microscopic tomography and 3-D graphic image reconstruction. Immunolabeling shows that osteopontin is related to extracellular vesicles of the tendon in the sense that its initial presence appears coincident with the development of mineral associated with the vesicle loci. By high voltage electron microscopy and 3-D imaging techniques, mineral crystals are found to consist of small irregularly shaped particles somewhat randomly oriented throughout individual vesicles sites. Their appearance is different from that found for the mineral observed within calcifying tendon collagen, and their 3-D disposition is not regularly ordered. Possible spatial and temporal relationships of vesicles, osteopontin, mineral, and collagen are being examined further by these approaches.

  5. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    NASA Astrophysics Data System (ADS)

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  6. Quantitative characterization of electron detectors for transmission electron microscopy

    PubMed Central

    Ruskin, Rachel S.; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-01-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope’s built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS F416 scintillator-based cameras. We compare the results from our new method with published curves. PMID:24189638

  7. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  8. A method for 3D electron density imaging using single scattered x-rays with application to mammographic screening

    NASA Astrophysics Data System (ADS)

    Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard

    2008-10-01

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal, heterogeneous tissue. In this work, we examine the potential of single scattered photon electron density imaging in a mammographic environment. Simulating a low-energy (<20 keV) scanning pencil beam, we have developed an algorithm capable of producing 3D electron density images from a single projection. We have tested the algorithm by imaging parts of a simulated mammographic accreditation phantom containing lesions of various sizes. The results indicate that the group of imaged lesions differ significantly from background breast tissue (p < 0.005), confirming that electron density imaging may be a useful diagnostic test for the presence of breast cancer.

  9. High voltage electron microscopy of lunar samples

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Lunar pyroxenes from Apollo 11, 12, 14, and 15 were investigated. The iron-rich and magnesium-rich pyroxene specimens were crushed to a grain size of ca. 50 microns and studied by a combination of X-ray and electron diffraction, electron microscopy, 57 Fe Mossbauer spectroscopy and X-ray crystallography techniques. Highly ordered, uniform electron-dense bands, corresponding to exsolution lamellae, with average widths of ca. 230A to 1000A dependent on the source specimen were observed. These were?qr separated by wider, less-dense interband spacings with average widths of ca. 330A to 3100A. In heating experiments, splitting of the dense bands into finer structures, leading finally to obliteration of the exsolution lamellae was recorded. The extensive exsolution is evidence for significantly slower cooling rates, or possibly annealing, at temperatures in the subsolidus range, adding evidence that annealing of rock from the surface of the moon took place at ca. 600 C. Correlation of the band structure with magnetic ordering at low temperatures and iron clustering within the bands was studied.

  10. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  11. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD. PMID:10810982

  12. Scanning electron microscopy of tinea nigra*

    PubMed Central

    Guarenti, Isabelle Maffei; de Almeida, Hiram Larangeira; Leitão, Aline Hatzenberger; Rocha, Nara Moreira; Silva, Ricardo Marques e

    2014-01-01

    Tinea nigra is a rare superficial mycosis caused by Hortaea werneckii. This infection presents as asymptomatic brown to black maculae mostly in palmo-plantar regions. We performed scanning electron microscopy of a superficial shaving of a tinea nigra lesion. The examination of the outer surface of the sample showed the epidermis with corneocytes and hyphae and elimination of fungal filaments. The inner surface of the sample showed important aggregation of hyphae among keratinocytes, which formed small fungal colonies. The ultrastructural findings correlated with those of dermoscopic examination - the small fungal aggregations may be the dark spicules seen on dermoscopy - and also allowed to document the mode of dissemination of tinea nigra, showing how hyphae are eliminated on the surface of the lesion. PMID:24770516

  13. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  14. Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration.

    PubMed

    Wang, Hongbin; Miller, Paul C

    2014-02-01

    The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images. PMID:26270922

  15. Automated analysis of 3D morphology of human red blood cells via off-axis digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Moon, Inkyu

    2013-05-01

    In this paper we overview an automated method for the analysis of clinical parameters of human red blood cells (RBCs). The digital holograms of mature RBCs are recorded by CCD camera with off-axis interferometry setup and the quantitative phase images of RBCs are formed by a numerical reconstruction technique. For automated investigation of the 3D morphology and mean corpuscular hemoglobin of RBCs, the unnecessary background in the RBCs phase images are removed by marker-controlled watershed segmentation algorithm. Then, characteristic properties of each RBC such as projected cell surface, average phase, mean corpuscular hemoglobin (MCH) and (MCH) surface density is quantitatively measured. Finally, the equality of covariance matrixes and mean vectors of these features for different kinds of RBCs are experimentally analyzed using statistical test scheme. Results show that these characteristic parameters of RBCs can be used as feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content.

  16. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.; Feldman, Benjamin E.; Gyenis, András; Randeria, Mallika T.; Xiong, Jun; Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Liang, Tian; Zahid Hasan, M.; Ong, N. P.; Yazdani, A.

    2015-04-01

    High quality hexagon plate-like Na{sub 3}Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na{sub 3}Bi. In transport measurements on Na{sub 3}Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  17. Electron Microscopy Studies of Solid Surfaces and Interfaces.

    NASA Astrophysics Data System (ADS)

    Gajdardziska-Josifovska, Marija

    1991-02-01

    Electron microscopy techniques for study of surfaces and interfaces have been investigated and applied to (100) and (111) surfaces of MgO and to interfaces of Mo/Si multilayers and CoSi_2/Si epitaxial films. MgO surfaces subjected to different annealing and chemical treatments have been characterized by reflection electron microscopy imaging, reflection high-energy electron diffraction (RHEED), and reflection electron energy-loss spectroscopy (REELS). An oxygen rich (sqrt {3} times sqrt{3})R 30^circ reconstruction was found on the polar (111) surface upon annealing in oxygen at temperatures higher than 1500 ^circC. Transformation of the surface topography and segregation of calcium were observed on the cleaved (100) surface due to annealing. RHEED resonance conditions have been employed and studied with geometrical constructions, rocking curves and REELS. These conditions are associated with parabolas in the Kikuchi (K) patterns whose nature had been subject of much controversy. The parabolas have been explained as K lines of two-dimensional (2D) lattices in a general scheme which describes the K pattern geometry in terms of intersections of Brillouin zone boundaries with a sphere of reflections. Full treatment of the cases of 2D and 1D real lattices has revealed previously unknown boundaries in the form of parabolic surfaces (2D) and paraboloids of revolution (1D). These boundaries have been applied to lines which arise from electron channeling in 3D crystals and to RHEED parabolas from 2D surface reconstructions. Nanodiffraction, low angle dark-field imaging, electron holography, high spatial resolution EELS, and shadow imaging have been evaluated as means for measuring interface abruptness and change in mean-inner potential and compared to other microscopy techniques. Refraction effects at interfaces were observed as streaking of the nanodiffraction disks which was found to depend on the crystalline nature of the interface. For polycrystalline

  18. 3D-localization microscopy and tracking of FoF1-ATP synthases in living bacteria

    NASA Astrophysics Data System (ADS)

    Renz, Anja; Renz, Marc; Klütsch, Diana; Deckers-Hebestreit, Gabriele; Börsch, Michael

    2015-03-01

    FoF1-ATP synthases are membrane-embedded protein machines that catalyze the synthesis of adenosine triphosphate. Using photoactivation-based localization microscopy (PALM) in TIR-illumination as well as structured illumination microscopy (SIM), we explore the spatial distribution and track single FoF1-ATP synthases in living E. coli cells under physiological conditions at different temperatures. For quantitative diffusion analysis by mean-squared-displacement measurements, the limited size of the observation area in the membrane with its significant membrane curvature has to be considered. Therefore, we applied a 'sliding observation window' approach (M. Renz et al., Proc. SPIE 8225, 2012) and obtained the one-dimensional diffusion coefficient of FoF1-ATP synthase diffusing on the long axis in living E. coli cells.

  19. Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Tidu, Aurélien; Portier, François; Mosser, Gervaise; Schanne-Klein, Marie-Claire

    2016-07-11

    This work aims at characterizing the three-dimensional organization of liquid crystals composed of collagen, in order to determine the physico-chemical conditions leading to highly organized structures found in biological tissues such as cornea. To that end, we use second-harmonic generation (SHG) microscopy, since aligned collagen structures have been shown to exhibit intrinsic SHG signals. We combine polarization-resolved SHG experiments (P-SHG) with the theoretical derivation of the SHG signal of collagen molecules tilted with respect to the focal plane. Our P-SHG images exhibit striated patterns with variable contrast, as expected from our analytical and numerical calculations for plywood-like nematic structures similar to the ones found in the cornea. This study demonstrates the benefits of P-SHG microscopy for in situ characterization of highly organized biopolymers at micrometer scale, and the unique sensitivity of this nonlinear optical technique to the orientation of collagen molecules. PMID:27410876

  20. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.

    PubMed

    Martini, N; Bewersdorf, J; Hell, S W

    2002-05-01

    High-resolution light microscopy of glycerol-mounted biological specimens is performed almost exclusively with oil immersion lenses. The reason is that the index of refraction of the oil and the cover slip of approximately 1.51 is close to that of approximately 1.45 of the glycerol mountant, so that refractive index mismatch-induced spherical aberrations are tolerable to some extent. Here we report the application of novel cover glass-corrected glycerol immersion lenses of high numerical aperture (NA) and the avoidance of these aberrations. The new lenses feature a semi-aperture angle of 68.5 degrees, which is slightly larger than that of the diffraction-limited 1.4 NA oil immersion lenses. The glycerol lenses are corrected for a quartz cover glass of 220 microm thickness and for a 80% glycerol-water immersion solution. Featuring an aberration correction collar, the lens can adapt to glycerol concentrations ranging between 72% and 88%, to slight variations of the temperature, and to the cover glass thickness. As the refractive index mismatch-induced aberrations are particularly important to quantitative confocal fluorescence microscopy, we investigated the axial sectioning ability and the axial chromatic aberrations in such a microscope as well as the image brightness as a function of the penetration depth. Whereas there is a significant decrease in image brightness associated with oil immersion, this decrease is absent with the glycerol immersion system. In addition, we show directly the compression of the optic axis in the case of oil immersion and its absence in the glycerol system. The unique advantages of these new lenses in high-resolution microscopy with two coherently used opposing lenses, such as 4 Pi-microscopy, are discussed. PMID:12000554

  1. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  2. Image restoration in cryo-electron microscopy.

    PubMed

    Penczek, Pawel A

    2010-01-01

    Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy (EM), we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural EM, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or "sharpening") of the EM map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparative interpretation. Finally, we present a semiheuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957

  3. Automated 3D detection and classification of Giardia lamblia cysts using digital holographic microscopy with partially coherent source

    NASA Astrophysics Data System (ADS)

    El Mallahi, A.; Detavernier, A.; Yourassowsky, C.; Dubois, F.

    2012-06-01

    Over the past century, monitoring of Giardia lamblia became a matter of concern for all drinking water suppliers worldwide. Indeed, this parasitic flagellated protozoan is responsible for giardiasis, a widespread diarrhoeal disease (200 million symptomatic individuals) that can lead immunocompromised individuals to death. The major difficulty raised by Giardia lamblia's cyst, its vegetative transmission form, is its ability to survive for long periods in harsh environments, including the chlorine concentrations and treatment duration used traditionally in water disinfection. Currently, there is a need for a reliable, inexpensive, and easy-to-use sensor for the identification and quantification of cysts in the incoming water. For this purpose, we investigated the use of a digital holographic microscope working with partially coherent spatial illumination that reduces the coherent noise. Digital holography allows one to numerically investigate a volume by refocusing the different plane of depth of a hologram. In this paper, we perform an automated 3D analysis that computes the complex amplitude of each hologram, detects all the particles present in the whole volume given by one hologram and refocuses them if there are out of focus using a refocusing criterion based on the integrated complex amplitude modulus and we obtain the (x,y,z) coordinates of each particle. Then the segmentation of the particles is processed and a set of morphological and textures features characteristic to Giardia lamblia cysts is computed in order to classify each particles in the right classes.

  4. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy.

    PubMed

    Blehm, Benjamin H; Devine, Alexus; Staunton, Jack R; Tanner, Kandice

    2016-03-01

    Variation in matrix elasticity has been shown to determine cell fate in both differentiation and development of malignant phenotype. The tissue microenvironment provides complex biochemical and biophysical signals in part due to the architectural heterogeneities found in extracellular matrices (ECMs). Three dimensional cell cultures can partially mimic in vivo tissue architecture, but to truly understand the role of viscoelasticity on cell fate, we must first determine in vivo tissue mechanical properties to improve in vitro models. We employed Active Microrheology by Optical Trapping InVivo (AMOTIV), using in situ calibration to measure in vivo zebrafish tissue mechanics. Previously used trap calibration methods overestimate complex moduli by ∼ 2-20 fold compared to AMOTIV. Applying differential microscale stresses and strains showed that hyaluronic acid (HA) gels display semi-flexible polymer behavior, while laminin-rich ECM hydrogels display flexible polymer behavior. In contrast, zebrafish tissues displayed different moduli at different stresses, with higher power law exponents at lower stresses, indicating that living tissue has greater stress dependence than the 3D hydrogels examined. To our knowledge, this work is the first vertebrate tissue rheological characterization performed in vivo. Our fundamental observations are important for the development and refinement of in vitro platforms. PMID:26773661

  5. Moment coupling in the interaction of atoms and their ions with a 3d-electron shell

    SciTech Connect

    Kosarim, A. V.; Smirnov, B. M.; Capitelli, M.; Laricchiuta, A.

    2011-09-15

    The moment coupling of an interacting ion and an atom with a 3d-electron shell is analyzed for the ground state of identical atoms and ions where resonant charge exchange proceeds with transition of a 4s-electron. The interaction of the ion charge with the atom quadrupole moment is important for this system along with the exchange interactions and spin-orbit interactions inside an isolated atom and an ion. The quadrupole moment for 3d-atoms in the ground states is evaluated. The hierarchy of interactions in a molecular ion is analyzed depending on ion-atom distances and is compared with the standard Hund scheme. The resonant charge exchange proceeds effectively at separations corresponding to an intermediate case between cases 'a' and 'c' of the Hund coupling scheme.

  6. Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Fagot, Dominique; Olive, Christian; Michelet, Jean-François; Galey, Jean-Baptiste; Leroy, Frédéric; Beaurepaire, Emmanuel; Martin, Jean-Louis; Colonna, Anne; Schanne-Klein, Marie-Claire

    2010-09-01

    Dermal fibroblasts are responsible for the generation of mechanical forces within their surrounding extracellular matrix and can be potentially targeted by anti-aging ingredients. Investigation of the modulation of fibroblast contraction by these ingredients requires the implementation of three-dimensional in situ imaging methodologies. We use multiphoton microscopy to visualize unstained engineered dermal tissue by combining second-harmonic generation that reveals specifically fibrillar collagen and two-photon excited fluorescence from endogenous cellular chromophores. We study the fibroblast-induced reorganization of the collagen matrix and quantitatively evaluate the effect of Y-27632, a RhoA-kinase inhibitor, on dermal substitute contraction. We observe that collagen fibrils rearrange around fibroblasts with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA-kinase inhibitor. Moreover, we show that the inhibitory effects are reversible. Our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the extracellular matrix induced by fibroblast contraction or other processes.

  7. Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools.

    PubMed

    Ichikawa, Takehiko; Nakazato, Kenichi; Keller, Philipp J; Kajiura-Kobayashi, Hiroko; Stelzer, Ernst H K; Mochizuki, Atsushi; Nonaka, Shigenori

    2014-03-01

    This protocol describes how to observe gastrulation in living mouse embryos by using light-sheet microscopy and computational tools to analyze the resulting image data at the single-cell level. We describe a series of techniques needed to image the embryos under physiological conditions, including how to hold mouse embryos without agarose embedding, how to transfer embryos without air exposure and how to construct environmental chambers for live imaging by digital scanned light-sheet microscopy (DSLM). Computational tools include manual and semiautomatic tracking programs that are developed for analyzing the large 4D data sets acquired with this system. Note that this protocol does not include details of how to build the light-sheet microscope itself. Time-lapse imaging ends within 12 h, with subsequent tracking analysis requiring 3-6 d. Other than some mouse-handling skills, this protocol requires no advanced skills or knowledge. Light-sheet microscopes are becoming more widely available, and thus the techniques outlined in this paper should be helpful for investigating mouse embryogenesis. PMID:24525751

  8. Electron microscopy reveals unique microfossil preservation in 1 billion-year-old lakes

    NASA Astrophysics Data System (ADS)

    Saunders, M.; Kong, C.; Menon, S.; Wacey, D.

    2014-06-01

    Electron microscopy was applied to the study of 1 billion-year-old microfossils from northwest Scotland in order to investigate their 3D morphology and mode of fossilization. 3D-FIB-SEM revealed high quality preservation of organic cell walls with only minor amounts of post-mortem decomposition, followed by variable degrees of morphological alteration (folding and compression of cell walls) during sediment compaction. EFTEM mapping plus SAED revealed a diverse fossilizing mineral assemblage including K-rich clay, Fe-Mg-rich clay and calcium phosphate, with each mineral occupying specific microenvironments in proximity to carbonaceous microfossil cell walls.

  9. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  10. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    PubMed Central

    Yuana, Yuana; Koning, Roman I.; Kuil, Maxim E.; Rensen, Patrick C. N.; Koster, Abraham J.; Bertina, Rogier M; Osanto, Susanne

    2013-01-01

    Introduction Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Methods Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Conclusions Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV. PMID:24455109

  11. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  12. Investigation of radiation-induced transformations in thin NbN films by analytical electron microscopy

    NASA Astrophysics Data System (ADS)

    Prikhodko, К; Gurovich, B.; Dement'eva, M.; Kutuzov, L.; Komarov, D.

    2016-04-01

    This work demonstrates implementation of low energy electron energy loss technique (EELS) in scanning transmission electron microscopy (STEM) to investigate the changes of free electron density at room temperature in ultra-thin NbN films under composite ion beam irradiation up to the deses of ∼3 d.p.a. for nitrogen atoms. It was found the constant value of the free electron density ∼1.6 ·1029 m-3 in this dose range while the irradiated material was characterized by metal type of electrical conductivity.

  13. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography

    PubMed Central

    Hohmann-Marriott, Martin F.; Sousa, Alioscka A.; Azari, Afrouz A.; Glushakova, Svetlana; Zhang, Guofeng; Zimmerberg, Joshua; Leapman, Richard D.

    2009-01-01

    Electron tomography provides three-dimensional structural information about supramolecular assemblies and organelles in a cellular context but image degradation, caused by scattering of transmitted electrons, limits applicability in specimens thicker than 300 nm. We show that scanning transmission electron tomography of 1000 nm thick samples using axial detection provides resolution comparable to conventional electron tomography. The method is demonstrated by reconstructing a human erythrocyte infected with the malaria parasite Plasmodium falciparum. PMID:19718033

  14. Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Jain, N.; Sharma, A.

    2013-12-01

    The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss

  15. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    PubMed Central

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  16. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice.

    PubMed

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  17. Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM

    NASA Astrophysics Data System (ADS)

    King, Sharon V.; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2014-03-01

    Wavefront coding techniques are currently used to engineer unique point spread functions (PSFs) that enhance existing microscope modalities or create new ones. Previous work in this field demonstrated that simulated intensity PSFs encoded with a generalized cubic phase mask (GCPM) are invariant to spherical aberration or misfocus; dependent on parameter selection. Additional work demonstrated that simulated PSFs encoded with a squared cubic phase mask (SQUBIC) produce a depth invariant focal spot for application in confocal scanning microscopy. Implementation of PSF engineering theory with a liquid crystal on silicon (LCoS) spatial light modulator (SLM) enables validation of WFC phase mask designs and parameters by manipulating optical wavefront properties with a programmable diffractive element. To validate and investigate parameters of the GCPM and SQUBIC WFC masks, we implemented PSF engineering in an upright microscope modified with a dual camera port and a LCoS SLM. We present measured WFC PSFs and compare them to simulated PSFs through analysis of their effect on the microscope imaging system properties. Experimentally acquired PSFs show the same intensity distribution as simulation for the GCPM phase mask, the SQUBIC-mask and the well-known and characterized cubic-phase mask (CPM), first applied to high NA microscopy by Arnison et al.10, for extending depth of field. These measurements provide experimental validation of new WFC masks and demonstrate the use of the LCoS SLM as a WFC design tool. Although efficiency improvements are needed, this application of LCoS technology renders the microscope capable of switching among multiple WFC modes.

  18. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  19. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data. PMID:24357389

  20. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  1. Electron microscopy of seed-storage globulins.

    PubMed

    Tulloch, P A; Blagrove, R J

    1985-09-01

    The quaternary structures of a range of seed globulins, including examples of both the so-called 7 S and 11 S types, have been examined by electron microscopy. The legume 7 S proteins, phaseolin (bean), beta-conglycinin (soybean), and vicilin (pea), appear as flat discs of diameter ca. 8.5 nm and thickness ca. 3.5 nm formed by association of three subunit domains. Phaseolin converts to an 18 S tetramer at acid pH, and images recorded under these conditions suggest that four of the 7 S protomer discs associate to form the faces of a regular tetrahedron. The classical 11 S seed globulins, cucurbitin (pumpkin) and legumin (pea), are approximately spherical molecules of diameter ca. 8.8 nm composed of six subunits. In contrast, the hexameric 10 S storage protein from lupin seed, conglutin gamma, appears toroidal in shape with outer diameter ca. 10.3 nm and thickness ca. 2.2 nm. These results indicate that constraints imposed on seed proteins by their role in sustaining the germinating plant may have allowed a variety of different globulin structures to accumulate in the protein-storage bodies of seeds. PMID:4037802

  2. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  3. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  4. Quantitative characterization of electron detectors for transmission electron microscopy.

    PubMed

    Ruskin, Rachel S; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-12-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope's built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS TemCam-F416 scintillator-based cameras. We compare the results from our new method with published curves. PMID:24189638

  5. A 3D cellular context for the macromolecular world

    PubMed Central

    Patwardhan, Ardan; Ashton, Alun; Brandt, Robert; Butcher, Sarah; Carzaniga, Raffaella; Chiu, Wah; Collinson, Lucy; Doux, Pascal; Duke, Elizabeth; Ellisman, Mark H; Franken, Erik; Grünewald, Kay; Heriche, Jean-Karim; Koster, Abraham; Kühlbrandt, Werner; Lagerstedt, Ingvar; Larabell, Carolyn; Lawson, Catherine L; Saibil, Helen R; Sanz-García, Eduardo; Subramaniam, Sriram; Verkade, Paul; Swedlow, Jason R; Kleywegt, Gerard J

    2015-01-01

    We report the outcomes of the discussion initiated at the workshop entitled A 3D Cellular Context for the Macromolecular World and propose how data from emerging three-dimensional (3D) cellular imaging techniques—such as electron tomography, 3D scanning electron microscopy and soft X-ray tomography—should be archived, curated, validated and disseminated, to enable their interpretation and reuse by the biomedical community. PMID:25289590

  6. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks.

    PubMed

    Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L

    2015-02-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. PMID:25515433

  7. Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy

    PubMed Central

    Eriksson, Mats E.; Terfelt, Fredrik

    2012-01-01

    The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome. PMID:22558180

  8. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  9. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks

    PubMed Central

    Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L.

    2016-01-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. PMID:25515433

  10. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  11. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  12. Observations of the 3-D distribution of interplanetary electrons and ions from solar wind plasma to low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Ashford, S.; Carlson, C.; Curtis, D.; Ergun, R.; Larson, D.; McFadden, J.; McCarthy, M.; Parks, G. K.

    1995-01-01

    The 3-D Plasma and Energetic Particle instrument on the GGS Wind spacecraft (launched November 1, 1994) is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. Three pairs of double-ended telescopes, each with two or three closely sandwiched passivated ion implanted silicon detectors measure electrons and ions from approximately 20 keV to greater than or equal to 300 keV. Four top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors, a large and a small geometric factor analyzer for electrons and a similar pair for ions, cover from approximately 3 eV to 30 keV. We present preliminary observations of the electron and ion distributions in the absence of obvious solar impulsive events and upstream particles. The quiet time electron energy spectrum shows a smooth approximately power law fall-off extending from the halo population at a few hundred eV to well above approximately 100 keV The quiet time ion energy spectrum also shows significant fluxes over this energy range. Detailed 3-D distributions and their temporal variations will be presented.

  13. Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask

    NASA Astrophysics Data System (ADS)

    Patwary, Nurmohammed; Doblas, Ana; King, Sharon V.; Preza, Chrysanthe

    2014-03-01

    Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA1. Different wavefront coding methods2,3 have been studied to find an optimal way of static wavefront correction to reduce depth-induced SA. Inspired by a recent design of a radially symmetric squared cubic (SQUBIC) phase mask that was tested for scanning confocal microscopy1 we have modified the pupil using the SQUBIC mask to engineer the point spread function (PSF) of a wide field fluorescence microscope. In this study, simulated images of a thick test object were generated using a wavefront encoded engineered PSF (WFEPSF) and were restored using space-invariant (SI) and depth-variant (DV) expectation maximization (EM) algorithms implemented in the COSMOS software4. Quantitative comparisons between restorations obtained with both the conventional and WFE PSFs are presented. Simulations show that, in the presence of SA, the use of the SIEM algorithm and a single SQUBIC encoded WFE-PSF can yield adequate image restoration. In addition, in the presence of a large amount of SA, it is possible to get adequate results using the DVEM with fewer DV-PSFs than would typically be required for processing images acquired with a clear circular aperture (CCA) PSF. This result implies that modification of a widefield system with the SQUBIC mask renders the system less sensitive to depth-induced SA and suitable for imaging samples at larger optical depths.

  14. Stabilizing 3D in vivo intravital microscopy images with an iteratively refined soft-tissue model for immunology experiments.

    PubMed

    Gómez-Conde, Iván; Caetano, Susana S; Tadokoro, Carlos E; Olivieri, David N

    2015-09-01

    We describe a set of new algorithms and a software tool, StabiTissue, for stabilizing in vivo intravital microscopy images that suffer from soft-tissue background movement. Because these images lack predetermined anchors and are dominated by noise, we use a pixel weighted image alignment together with a correction for nonlinear tissue deformations. We call this correction a poor man׳s diffeomorphic map since it ascertains the nonlinear regions of the image without resorting to a full integral equation method. To determine the quality of the image stabilization, we developed an ensemble sampling method that quantifies the coincidence between image pairs from randomly distributed image regions. We obtain global stabilization alignment through an iterative constrained simulated annealing optimization procedure. To show the accuracy of our algorithm with existing software, we measured the misalignment error rate in datasets taken from two different organs and compared the results to a similar and popular open-source solution. Present open-source stabilization software tools perform poorly because they do not treat the specific needs of the IV-2pM datasets with soft-tissue deformation, speckle noise, full 5D inter- and intra-stack motion error correction, and undefined anchors. In contrast, the results of our tests demonstrate that our method is more immune to noise and provides better performance for datasets' possessing nonlinear tissue deformations. As a practical application of our software, we show how our stabilization improves cell tracking, where the presence of background movement would degrade track information. We also provide a qualitative comparison of our software with other open-source libraries/applications. Our software is freely available at the open source repository http://sourceforge.net/projects/stabitissue/. PMID:26232672

  15. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  16. Dynamical electron compressibility in the 3D topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Inhofer, Andreas; Assaf, Badih; Wilmart, Quentin; Veyrat, Louis; Nowka, Christian; Dufouleur, Joseph; Giraud, Romain; Hampel, Silke; Buechner, Bernd; Fève, Gwendal; Berroir, Jean-Marc; Placais, Bernard

    Measurements of the quantum capacitance cq, related to the electron compressibility χ =cq /e2 is a sensitive tool to probe the density of states. In a topological insulator (TI) the situation is enriched by the coexistence and the interplay of topologically protected surface states and massive bulk carriers. We investigate top-gate metal-oxyde-TI capacitors using Bi2Se3 thin crystals at GHz frequencies. These measurements provide insight into the compressibillity of such a two electron-fluid system. Furthermore, the dynamical response yields information about electron scattering properties in TIs. More specifically, in our measurements we track simultaneously the conductivity σ and the compressibility as a function of a DC-gate voltage. Using the Einstein relation σ =cq D , we have access to the gate dependence of the electron diffusion constant D (Vg) , a signature of the peculiar scattering mechanisms in TIs.

  17. Correlative Light and Electron Microscopy of Nucleolar Transcription in Saccharomyces cerevisiae.

    PubMed

    Normand, Christophe; Berthaud, Maxime; Gadal, Olivier; Léger-Silvestre, Isabelle

    2016-01-01

    Nucleoli form around RNA polymerase I transcribed ribosomal RNA (rRNA) genes. The direct electron microscopy observation of rRNA genes after nucleolar chromatin spreading (Miller's spreads) constitutes to date the only system to quantitatively assess transcription at a single molecule level. However, the spreading procedure is likely generating artifact and despite being informative, these spread rRNA genes are far from their in vivo situation. The integration of the structural characterization of spread rRNA genes in the three-dimensional (3D) organization of the nucleolus would represent an important scientific achievement. Here, we describe a correlative light and electron microscopy (CLEM) protocol allowing detection of tagged-Pol I by fluorescent microscopy and high-resolution imaging of the nucleolar ultrastructural context. This protocol can be implemented in laboratories equipped with conventional fluorescence and electron microscopes and does not require sophisticated "pipeline" for imaging. PMID:27576708

  18. Imaging green fluorescent protein-labeled neurons using light and electron microscopy.

    PubMed

    Knott, Graham W

    2013-06-01

    The ability to observe axons and dendrites with transmission electron microscopy (EM) after they have been previously imaged live with laser-scanning microscopy is a useful technique to study their synaptic connectivity. This protocol provides a detailed method by which neurons that were imaged in a live brain or slice culture can be reimaged using EM. First, brain tissue expressing green fluorescent protein (GFP) is chemically fixed. Then, an immunocytochemistry process is used to render the fluorescent protein electron dense so that it can first be located using light microscopy and then serial thin-sectioned for EM so that the ultrastructure of specific parts of neurites can be analyzed in three dimensions. Patterns of blood vessels observed in the live brain are used to locate the previously imaged neurons. The method described here allows for a complete three-dimensional (3D) reconstruction to be made of the imaged structures from serial electron micrographs. PMID:23734023

  19. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  20. Effects of 3d and 4d transition metal substitutional impurities on the electronic properties of CrO2

    NASA Astrophysics Data System (ADS)

    Williams, M. E.; Sims, H.; Mazumdar, D.; Butler, W. H.

    2012-12-01

    We present first-principles-based density functional theory calculations of the electronic and magnetic structure of CrO2 with 3d and 4d substitutional impurities. We find that the half-metallicity of CrO2 remains intact for the ground state of all of the calculated substitutions. We also observe two periodic trends as a function of the number of valence electrons: if the substituted atom has six or fewer valence electrons, the number of down spin electrons associated with the impurity ion is zero, resulting in ferromagnetic alignment of the impurity magnetic moment with the magnetization of the CrO2 host. For substituent atoms with eight to ten valence electrons (with the exception of Ni), the number of down-spin electrons contributed by the impurity ion remains fixed at three as the number contributed to the majority increases from one to three resulting in antiferromagnetic alignment between impurity moment and host magnetization. In impurities with seven valence electrons, the zero down-spin and threse down-spin configurations are very close in energy. At 11 valence electrons, the energy is minimized when the substituent ion contributes five down-spin electrons. The moments on the 4d impurities, particularly Nb and Mo, tend to be delocalized compared with those of the 3ds.

  1. Electron flood gun damage effects in 3D secondary ion mass spectrometry imaging of organics.

    PubMed

    Havelund, Rasmus; Seah, Martin P; Shard, Alexander G; Gilmore, Ian S

    2014-09-01

    Electron flood guns used for charge compensation in secondary ion mass spectrometry (SIMS) cause chemical degradation. In this study, the effect of electron flood gun damage on argon cluster depth profiling is evaluated for poly(vinylcarbazole), 1,4-bis((1-naphthylphenyl)amino)biphenyl and Irganox 3114. Thin films of these three materials are irradiated with a range of doses from a focused beam of 20 eV electrons used for charge neutralization. SIMS chemical images of the irradiated surfaces show an ellipsoidal damaged area, approximately 3 mm in length, created by the electron beam. In depth profiles obtained with 5 keV Ar(2000)(+) sputtering from the vicinity of the damaged area, the characteristic ion signal intensity rises from a low level to a steady state. For the damaged thin films, the ion dose required to sputter through the thin film to the substrate is higher than for undamaged areas. It is shown that a damaged layer is formed and this has a sputtering yield that is reduced by up to an order of magnitude and that the thickness of the damaged layer, which increases with the electron dose, can be as much as 20 nm for Irganox 3114. The study emphasizes the importance of minimizing the neutralizing electron dose prior to the analysis. PMID:24912434

  2. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  3. Three dimensional reconstruction by electron microscopy in the life sciences: An introduction for cell and tissue biologists.

    PubMed

    Miranda, Kildare; Girard-Dias, Wendell; Attias, Marcia; de Souza, Wanderley; Ramos, Isabela

    2015-01-01

    Early applications of transmission electron microscopy (TEM) in the life sciences have contributed tremendously to our current understanding at the subcellular level. Initially limited to two-dimensional representations of three-dimensional (3D) objects, this approach has revolutionized the fields of cellular and structural biology-being instrumental for determining the fine morpho-functional characterization of most cellular structures. Electron microscopy has progressively evolved towards the development of tools that allow for the 3D characterization of different structures. This was done with the aid of a wide variety of techniques, which have become increasingly diverse and highly sophisticated. We start this review by examining the principles of 3D reconstruction of cells and tissues using classical approaches in TEM, and follow with a discussion of the modern approaches utilizing TEM as well as on new scanning electron microscopy-based techniques. 3D reconstruction techniques from serial sections and (cryo) electron-tomography are examined, and the recent applications of focused ion beam-scanning microscopes and serial-block-face techniques for the 3D reconstruction of large volumes are discussed. Alternative low-cost techniques and more accessible approaches using basic transmission or field emission scanning electron microscopes are also examined. PMID:25652003

  4. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    PubMed

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged. PMID:23026379

  5. Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons

    PubMed Central

    Maco, Bohumil; Holtmaat, Anthony; Cantoni, Marco; Kreshuk, Anna; Straehle, Christoph N.; Hamprecht, Fred A.; Knott, Graham W.

    2013-01-01

    Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis. PMID:23468982

  6. Ballistic-electron-emission Microscopy of Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. Douglas; Narayanamurti, Venkatesh

    1997-01-01

    Balistic-electron-emission microscopy has developed from its beginning as a probe of Schottky barriers into a powerful nanometer-scale method for characterizing semiconductor interfaces and hot-electron transport.

  7. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    Energy Science and Technology Software Center (ESTSC)

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random numbermore » and for measuring the time of simulation.« less

  8. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma. PMID:23285847

  9. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    SciTech Connect

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random number and for measuring the time of simulation.

  10. Study on the electronic structure and Fermi surface of 3d-transition-metal disilisides CoSi2

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    2012-09-01

    We have investigated the electronic structure, the momentum density distribution ρ( p), and the Fermi surface FS of single crystals of the Pyrite-type 3d-transition-metal disilisides CoSi2. The band structure calculations, the density of states DOS, and the FS, in vicinity of Fermi level, have been carried out using the full-potential linearized augmented plane wave FP-LAPW method within generalized gradient approximation GGA for exchange and correlation potential. The measurements have been performed via the 2D angular correlation of annihilation radiation ACAR experiments. ρ( p) has been reconstructed by using the Fourier transformation technique. The FS has been reconstructed within the first Brillion zone BZ through the Locks, Crisp, and West LCW folding procedures. The analysis confirmed that Si 3 sp states hybrid with both Co 3 d- t 2 g and Co 3 d- e g states around Γ and X points, respectively. The dimensions of the FS of CoSi2 have been compared to the present calculations as well as to the earlier results.

  11. 3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography

    PubMed Central

    Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun

    2012-01-01

    Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867

  12. An LS-MARS method for modeling regional 3D ionospheric electron density based on GPS data and IRI

    NASA Astrophysics Data System (ADS)

    Kao, Szu-Pyng; Chen, Yao-Chung; Ning, Fang-Shii; Tu, Yuh-Min

    2015-05-01

    The methods of developing an accurate and effective ionospheric electron density (IED) model have greatly interested ionosphere researchers. Numerous scholars have proposed many effective and reliable models and methods of global positioning system (GPS)-based computerized ionospheric tomography (CIT) in the past decades. This study introduced a new function-based CIT method, namely the LS-MARS (Least Squares method-Multivariate Adaptive Regression Splines), combining MARS with IEDs calculated by International Reference Ionosphere (IRI) to automatically choose the best representing basis functions for the three-dimensional (3D) electron density inside that modeling area. This selected basis functions was substituted into the observation equation of the GPS total electron content (TEC) to calculate the design matrix. Finally, the weighted damped least squares (WDLS) were adopted to reestimate the IED model coefficients. In contrast to common function-based CIT methods, the LS-MARS can be used to attain optimal 3D model automatically, flexibly, adaptively based on the IRI without a priori knowledge of the IED distribution mathematical function. The findings indicated that the LS-MARS model had a smaller recovery TEC error than did the MARS_IRI2012 model, and the VTEC calculated using the LS-MARS model was closer to the VTEC obtained from International GNSS Service (IGS) final IONEX files than was the VTEC calculated using the MARS_IRI2012 and IRI2012. Therefore, this method exhibits strong modeling effectiveness and reliability, and can be an efficient alternative method for estimating regional 3D IED models.

  13. Imaging Bioorthogonal Groups in Their Ultrastructural Context with Electron Microscopy.

    PubMed

    van Elsland, Daphne M; van Kasteren, Sander I

    2016-08-01

    Spitting image: Herein a recent paper on the imaging of bioorthogonal groups using three-dimensional electron microscopy is discussed. The work has demonstrated electron microscopy imaging as a technique suitable for gaining structural information on bioorthogonal groups in their cellular context. PMID:27346592

  14. The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy.

    PubMed

    Wanner, Gerhard; Schroeder-Reiter, Elizabeth; Ma, Wei; Houben, Andreas; Schubert, Veit

    2015-12-01

    The spatial distribution of the three centromere-associated proteins α-tubulin, CENH3, and phosphorylated histone H2A (at threonine 120, H2AThr120ph) was analysed by indirect immunodetection at monocentric cereal chromosomes and at the holocentric chromosomes of Luzula elegans by super-resolution light microscopy and scanning electron microscopy (SEM). Using structured illumination microscopy (SIM) as the super-resolution technique on squashed specimens and SEM on uncoated isolated specimens, the three-dimensional (3D) distribution of the proteins was visualized at the centromeres. Technical aspects of 3D SEM are explained in detail. We show that CENH3 forms curved "pads" mainly around the lateral centromeric region in the primary constriction of metacentric chromosomes. H2AThr120ph is present in both the primary constriction and in the pericentromere. α-tubulin-labeled microtubule bundles attach to CENH3-containing chromatin structures, either in single bundles with a V-shaped attachment to the centromere or in split bundles to bordering pericentromeric flanks. In holocentric L. elegans chromosomes, H2AThr120ph is located predominantly in the centromeric groove of each chromatid as proven by subsequent FIB/FESEM ablation and 3D reconstruction. α-tubulin localizes to the edges of the groove. In both holocentric and monocentric chromosomes, no additional intermediate structures between microtubules and the centromere were observed. We established models of the distribution of CENH3, H2AThr120ph and the attachment sites of microtubules for metacentric and holocentric plant chromosomes. PMID:26048589

  15. The 3D flow structures generated by a pair of cubic roughness elements in a turbulent channel flow resolved using holographic microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Katz, Joseph

    2015-11-01

    In studies of turbulent flows over rough walls, considerable efforts have been put on the overall effects of roughness parameters such as roughness height and spatial arrangement on the mean profiles and turbulence statistics. However there is very little experimental data on the generation, evolution, and interaction among roughness-initiated turbulent structures, which are essential for elucidating the near-wall turbulence production. As a first step, we approach this problem experimentally by applying digital holographic microscopy (DHM) to measure the flow and turbulence around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent channel flow (Reτ = 2000 - 5000). The ratio of half-channel height (h) to cube height (a) is 25, and the cubes are aligned in the spanwise direction, and separated by 1.5 a. DHM provides high-resolution three-dimensional (3D) three-component (3C) velocity distributions. The presentation discusses methods to improve the data accuracy, both during the hologram acquisition and particle tracking phases. First, we compare and mutually validate velocity fields obtained from a two-view DHM system. Subsequently, during data processing, the seven criteria used for particle tracking is validated and augmented by planar tracking of particle image projections. Sample results reveal instantaneous 3D velocity fields and vortical structures resolved in fine details of several wall units. Funded by NSF and ONR.

  16. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  17. EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy

    PubMed Central

    Barad, Benjamin A; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D; Fraser, James S

    2015-01-01

    Advances in high resolution electron cryomicroscopy (cryo-EM) have been accompanied by the development of validation metrics to independently assess map quality and model geometry. EMRinger assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM. PMID:26280328

  18. Electron scattering from large molecules: a 3d finite element R-matrix approach

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano; Greene, Chris H.

    2005-05-01

    To solve the Schr"odinger equation for scattering of a low energy electron from a molecule, we present a three-dimensional finite element R-matrix method [S. Tonzani and C. H. Greene, J. Chem. Phys. 122 01411, (2005)]. Using the static exchange and local density approximations, we can use directly the molecular potentials extracted from ab initio codes (GAUSSIAN 98 in the work described here). A local polarization potential based on density functional theory [F. A. Gianturco and A. Rodriguez-Ruiz, Phys. Rev. A 47, 1075 (1993)] approximately describes the long range attraction to the molecular target induced by the scattering electron without adjustable parameters. We have used this approach successfully in calculations of cross sections for small and medium sized molecules (like SF6, XeF6, C60 and Uracil). This method will be useful to treat the electron-induced dynamics of extended molecular systems, possibly of biological interest, where oth er more complex ab initio methods are difficult to apply.

  19. Transmission electron microscopy investigation of auto catalyst and cobalt germanide

    NASA Astrophysics Data System (ADS)

    Sun, Haiping

    The modern ceria-zirconia based catalysts are used in automobiles to reduce exhaust pollutants. Cobalt germanides have potential applications as electrical contacts in the future Ge-based semiconductor devices. In this thesis, transmission electron microscopy (TEM) techniques were used to study the atomic scale interactions between metallic nanostructures and crystalline substrates in the two material systems mentioned above. The model catalyst samples consisted of precious metal nano-particles (Pd, Rh) supported on the surface of (Ce,Zr)O2 thin films. The response of the microstructure of the metal-oxide interface to the reduction and oxidation treatments was investigated by cross-sectional high resolution TEM. Atomic detail of the metal-oxide interface was obtained. It was found that Pd and Rh showed different sintering and interaction behaviors on the oxide surface. The preferred orientation of Pd particles in this study was Pd(111)//CZO(111). Partial encapsulation of Pd particles by reduced (Ce,Zr)O 2 surface was observed and possible mechanisms of the encapsulation were discussed. The characteristics of the metal-oxide interaction depend on the properties of the oxide, as well as their relative orientation. The results provide experimental evidence for understanding the thermodynamics of the equilibrium morphology of a solid particle supported on a solid surface that is not considered as inert. The reaction of Co with Ge to form epitaxial Co5Ge7 was studied by in situ ultra-high vacuum (UHV) TEM using two methods. One was reactive deposition of Co on Ge, in which the Ge substrate was maintained at 350°C during deposition. The other method was solid state reaction, in which the deposition of Co on Ge was carried out at room temperature followed by annealing to higher temperatures. During reactive deposition, the deposited Co reacted with Ge to form nanosized 3D Co 5Ge7 islands. During solid state reaction, a continuous epitaxial Co5Ge7 film on the (001) Ge

  20. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells

    PubMed Central

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-01-01

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results. PMID:26066680

  1. Calorimetric approach for 3D dosimetry of high intensity therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Lamanna, E.; Fiorillo, A. S.; Vena, R.; Berdondini, A.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Bilokon, H.; Barca, G.; Castrovillari, F.; Siaka, Y. F. T.

    2009-12-01

    The technique of High Dose Rate Intra-Operative Radiation Therapy (HDR-IORT) consists in the delivery of irradiation immediately after the removal of a cancerous mass, where the same incision is used to focalize the radiation to the tumour bed. Given its particular characteristics, IORT requires dose measurements that are different from those requested in external radiotherapy treatments. The main reason lies in the fact that in this case a single high dose must be delivered to a target volume whose extension and depth will be determined directly during the operation. Because of this peculiar characteristics, until now there is not a dosimetric system able to detect the electron beam giving at once a realtime response and an extensive spatial measure of the absorbed dose. Within the framework of a research project of the INFN (Italian National Institute of Nuclear Physics), we proposed a new system to overcome the problems, Dosiort. The final set-up is a solid phantom having a density approximately 1 g/cm3 with sensitive layers of scintillating fibres at fixed positions in a calorimetric configuration for the containment of electrons of energy 4-12 MeV. The prototype will be able to define the physical and geometrical characteristics of the electron beam (energy, isotropy, homogeneity, etc) and to measure the parameters needed to select the energy, the intensity and the Monitor Units (MU) for the exposition: percentage Depth Dose; beam profiles; isodose curves; values of dose per MU. In this work we present the results obtained by using two orthogonal layers of the calorimetric phantom Dosiort, in particular we report the measurement of the dynamic range of the read-out system and the first qualitative study of the results which can be extracted from the measurements taken in a test beam.

  2. Nonlinear, nonlaminar - 3D computation of electron motion through the output cavity of a klystron.

    NASA Technical Reports Server (NTRS)

    Albers, L. U.; Kosmahl, H. G.

    1971-01-01

    The accurate computation is discussed of electron motion throughout the output cavity of a klystron amplifier. The assumptions are defined whereon the computation is based, and the equations of motion are reviewed, along with the space charge fields derived from a Green's function potential of a solid cylinder. The integration process is then examined with special attention to its most difficult and important aspect - namely, the accurate treatment of the dynamic effect of space charge forces on the motion of individual cell rings of equal volume and charge. The correct treatment is demonstrated upon four specific examples, and a few comments are given on the results obtained.-

  3. Micromachined VLSI 3D electronics. Final report for period September 1, 2000 - March 31, 2001

    SciTech Connect

    Beetz, C.P.; Steinbeck, J.; Hsueh, K.L.

    2001-03-31

    The phase I program investigated the construction of electronic interconnections through the thickness of a silicon wafer. The novel aspects of the technology are that the length-to-width ratio of the channels is as high as 100:1, so that the minimum amount of real estate is used for contact area. Constructing a large array of these through-wafer interconnections will enable two circuit die to be coupled on opposite sides of a silicon circuit board providing high speed connection between the two.

  4. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  5. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  6. The linearly scaling 3D fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  7. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  8. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    SciTech Connect

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  9. Silicon Nitride Windows for Electron Microscopy of Whole Cells

    PubMed Central

    Ring, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; de Jonge, N.

    2012-01-01

    Summary Silicon microchips with thin electron transparent silicon nitride windows provide a sample support that accommodates both light-, and electron microscopy of whole eukaryotic cells in vacuum or liquid, with minimum sample preparation steps. The windows are robust enough that cellular samples can be cultured directly onto them, with no addition of a supporting film, and no need to embed or section the sample, as is typically required in electron microscopy. By combining two microchips, a microfluidic chamber can be constructed for the imaging of samples in liquid in the electron microscope. We provide microchip design specifications, a fabrication outline, instructions on how to prepare them for biological samples, and examples of images obtained using different light-, and electron microscopy modalities. The use of these microchips is particularly advantageous for correlative light-, and electron microscopy. PMID:21770941

  10. Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model

    SciTech Connect

    Harvey, R. W.; Chan, V. S.; Chiu, S. C.; Evans, T. E.; Rosenbluth, M. N.; Whyte, D. G.

    2000-11-01

    Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect of small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses

  11. ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.

    PubMed

    Deng, Yuchen; Chen, Yu; Zhang, Yan; Wang, Shengliu; Zhang, Fa; Sun, Fei

    2016-07-01

    Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ. PMID:27079261

  12. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils.

    PubMed

    Ciesielski, Peter N; Matthews, James F; Tucker, Melvin P; Beckham, Gregg T; Crowley, Michael F; Himmel, Michael E; Donohoe, Bryon S

    2013-09-24

    Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils. PMID:23988022

  13. Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity

    SciTech Connect

    Aydin, C.; Kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D.; Gates, Bruce C.

    2013-05-10

    Size, shape, nuclearity: Aberration-corrected scanning transmission electron microscopy was used to determine the 3D structures of MgO-supported Os3, Os4, Os5, and Os10 clusters, which have structures nearly matching those of osmium carbonyl compounds with known crystal structures. The samples are among the best-defined supported catalysts.

  14. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function.

    PubMed

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  15. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function

    PubMed Central

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  16. Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy

    SciTech Connect

    Su, Shiqin; Moran, Kathryn; Robar, James L.

    2014-08-15

    This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.

  17. Nonlinear, nonlaminar-3D computation of electron motion through the output cavity of a klystron

    NASA Technical Reports Server (NTRS)

    Albers, L. U.; Kosmahl, H. G.

    1971-01-01

    The equations of motion used in the computation are discussed along with the space charge fields and the integration process. The following assumptions were used as a basis for the computation: (1) The beam is divided into N axisymmetric discs of equal charge and each disc into R rings of equal charge. (2) The velocity of each disc, its phase with respect to the gap voltage, and its radius at a specified position in the drift tunnel prior to the interaction gap is known from available large signal one dimensional programs. (3) The fringing rf fields are computed from exact analytical expressions derived from the wave equation assuming a known field shape between the tunnel tips at a radius a. (4) The beam is focused by an axisymmetric magnetic field. Both components of B, that is B sub z and B sub r, are taken into account. (5) Since this integration does not start at the cathode but rather further down the stream prior to entering the output cavity it is assumed that each electron moved along a laminar path from the cathode to the start of integration.

  18. Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations

    SciTech Connect

    Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

    2008-07-01

    We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

  19. Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs.

    PubMed

    Rusu, Mirabela; Starosolski, Zbigniew; Wahle, Manuel; Rigort, Alexander; Wriggers, Willy

    2012-05-01

    The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers. PMID:22433493

  20. Electronic properties of 3d transitional metal pnictides: A comparative study by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Hu, B. F.; Chen, R. Y.; Xu, G.; Zheng, P.; Luo, J. L.; Wang, N. L.

    2012-10-01

    Single-crystalline KFe2As2 and CaT2As2 (T=Fe, Co, Ni, and Cu) are synthesized and investigated by resistivity, susceptibility, and optical spectroscopy. It is found that CaCu2As2 exhibits a similar transition to the lattice abrupt collapse transitions discovered in CaFe2(As1-xPx)2 and Ca1-xRxFe2As2 (R = rare-earth element). The resistivity of KFe2As2 and CaT2As2 (T=Fe, Co, Ni, and Cu) approximately follows the similar T2 dependence at low temperature, but the magnetic behaviors vary with different samples. Optical measurement reveals that the optical response of CaCu2As2 is not sensitive to the transition at 50 K, with no indication of development of a new energy gap below the transition temperature. Using Drude-Lorentz model, we find that two Drude terms, a coherent one and an incoherent one, can fit the low-energy optical conductivity of KFe2As2 and CaT2As2 (T=Fe, Co, and Ni) very well. However, in CaCu2As2, which is a sp-band metal, the low-energy optical conductivity can be well described by a coherent Drude term. Lack of the incoherent Drude term in CaCu2As2 may be attributed to a weaker electronic correlation than in KFe2As2 and CaT2As2 (T=Fe, Co, and Ni). Spectral weight analysis of these samples indicates that the unconventional spectral weight transfer, which is related to Hund's coupling energy JH, is only observed in iron pnictides, supporting the viewpoint that JH may be a key clue in the search for the mechanism of magnetism and superconductivity in pnictides.

  1. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  2. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.

  3. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  4. Plasma Cleaning and Its Applications for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Isabell, Thomas C.; Fischione, Paul E.; O'Keefe, Catherine; Guruz, Murat U.; Dravid, Vinayak P.

    1999-03-01

    The effectiveness of applying a high-frequency, low-energy, reactive gas plasma for the removal of hydrocarbon contamination from specimens and components for electron microscopy has been investigated with a variety of analytical techniques. Transmission electron microscopy (TEM) analysis of specimens that have been plasma cleaned shows an elimination of the carbonaceous contamination from the specimen. With extended cleaning times the removal of existing carbon contamination debris due to previously conducted microanalysis is shown. Following plasma cleaning, specimens may be examined in the electron microscope for several hours without exhibiting evidence of recontamination. The effectiveness of plasma cleaning is not limited to applications for TEM specimens. Scanning electron microscopy (SEM) specimens that have been plasma cleaned likewise show an elimination of carbonaceous contamination. Furthermore, other electron microscopy parts and accessories, such as aperture strips, specimen clamping rings, and Wehnelts, among others, can benefit from plasma cleaning.

  5. Electron microscopy study of zeolite ZK-14; a synthetic chabazite

    NASA Astrophysics Data System (ADS)

    Cartlidge, S.; Wessicken, R.; Nissen, H.-U.

    1983-03-01

    The defect structure of zeolite (K+, TMA+) — ZK-14, a synthetic chabazite, has been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM together with TEM bright field (BF) and dark field (DF) micrographs indicate that the hexagonal, platelet ZK-14 crystals are built up of crystalline blocks joined by twinning along (00.1). High resolution transmission electron microscopy (HRTEM) reveals faulting of the ideal AABBCC single 6-ring stacking sequence of ZK-14. This is consistent with an observed line broadening in its X-ray powder diffraction profile. Channel apertures are imaged, even for thick specimens.

  6. Dual nature of 3 d electrons in YbT 2 Zn 20 (T = Co; Fe) evidenced by electron spin resonance

    DOE PAGESBeta

    Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; Sukhanov, A. A.; Jia, S.; Bud'ko, S. L.; Canfield, P. C.

    2015-03-18

    The electron spin resonance experiments were carried out in the single crystals YbFe2Zn20. The observed spin dynamics is compared with that in YbCo2Zn20 and Yb2Co12P7 as well as with the data of inelastic neutron scattering and electronic band structure calculations. Our results provide direct evidence that 3d electrons are itinerant in YbFe2Zn20 and localized in YbCo2Zn20. Possible connection between spin paramagnetism of dense heavy fermion systems, quantum criticality effects, and ESR spectra is discussed.

  7. Carbon Nanofibers Synthesized on Selective Substrates for Nonvolatile Memory and 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Khan, Abdur R.

    2011-01-01

    A plasma-enhanced chemical vapor deposition (PECVD) growth technique has been developed where the choice of starting substrate was found to influence the electrical characteristics of the resulting carbon nanofiber (CNF) tubes. It has been determined that, if the tubes are grown on refractory metallic nitride substrates, then the resulting tubes formed with dc PECVD are also electrically conducting. Individual CNFs were formed by first patterning Ni catalyst islands using ebeam evaporation and liftoff. The CNFs were then synthesized using dc PECVD with C2H2:NH3 = [1:4] at 5 Torr and 700 C, and approximately equal to 200-W plasma power. Tubes were grown directly on degenerately doped silicon <100> substrates with resistivity rho approximately equal to 1-5 meterohm-centimeter, as well as NbTiN. The approximately equal to 200-nanometer thick refractory NbTiN deposited using magnetron sputtering had rho approximately equal to 113 microohm-centimeter and was also chemically compatible with CNF synthesis. The sample was then mounted on a 45 beveled Al holder, and placed inside a SEM (scanning electron microscope). A nanomanipulator probe stage was placed inside the SEM equipped with an electrical feed-through, where tungsten probes were used to make two-terminal electrical measurements with an HP 4156C parameter analyzer. The positive terminal nanoprobe was mechanically manipulated to physically contact an individual CNF grown directly on NbTiN as shown by the SEM image in the inset of figure (a), while the negative terminal was grounded to the substrate. This revealed the tube was electrically conductive, although measureable currents could not be detected until approximately equal to 6 V, after which point current increased sharply until compliance (approximately equal to 50 nA) was reached at approximately equal to 9.5 V. A native oxide on the tungsten probe tips may contribute to a tunnel barrier, which could be the reason for the suppressed transport at low biases

  8. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.

    PubMed

    Carbone, Fabrizio; Kwon, Oh-Hoon; Zewail, Ahmed H

    2009-07-10

    Chemical bonding dynamics are fundamental to the understanding of properties and behavior of materials and molecules. Here, we demonstrate the potential of time-resolved, femtosecond electron energy loss spectroscopy (EELS) for mapping electronic structural changes in the course of nuclear motions. For graphite, it is found that changes of milli-electron volts in the energy range of up to 50 electron volts reveal the compression and expansion of layers on the subpicometer scale (for surface and bulk atoms). These nonequilibrium structural features are correlated with the direction of change from sp2 [two-dimensional (2D) graphene] to sp3 (3D-diamond) electronic hybridization, and the results are compared with theoretical charge-density calculations. The reported femtosecond time resolution of four-dimensional (4D) electron microscopy represents an advance of 10 orders of magnitude over that of conventional EELS methods. PMID:19589997

  9. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  10. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  11. Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM

    PubMed Central

    Song, Yujun; Nallathamby, Prakash D.; Huang, Tao; Elsayed-Ali, Hani E.; Xu, Xiao-Hong Nancy

    2009-01-01

    We have developed a new and effective methodology to correlate optical and AFM images of single Ag nanoparticles (NPs), allowing us to study 3D-morphological dependent localized surface plasmon resonance (LSPR) spectra of individual Ag NPs. We fabricated arrays of distinctive microwindows on glass coverslips using photo-lithography method, and created well-isolated individual Ag NPs with a wide variety of shapes and morphologies on the glass coverslips using a modified nanosphere lithography method (NSL). Using distinctive geometries of microwindows, we located individual Ag NPs of interest in their optical and AFM images, enabling us to correlate and characterize the LSPR spectra and 3D morphologies of the same single NPs using dark-field optical microscopy and spectroscopy (DFOMS) and AFM, respectively. We found that LSPR spectra of single Ag NPs, with nearly equal volume [(8.6 ± 0.4) × 103 nm3], cross-section [(2.2 ± 0.2) × 102 nm3], and height (39.6 ± 3.6 nm), highly depend on their shapes, showing the red shift of peak wavelength to 629 nm (quasi trapezoidal cylindrical NP) from that of 506 nm (quasi circular cylindrical NP). LSPR spectra of single Ag NPs simulated using discrete dipole approximation (DDA) agree well with those measured experimentally when their shapes and morphologies can be accuractely described in both methods, but differ when they are not. Furthermore, we found location-dependent LSPR spectra on and around a single NP, offering a unique opportunity to characterize multi-mode plasmonic NPs at nanometer resolution for better understanding their plasmonic optical properties and for rational design of single NP optics. PMID:20190865

  12. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  13. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy.

    PubMed

    Chou, Yi-Chia; Panciera, Federico; Reuter, Mark C; Stach, Eric A; Ross, Frances M

    2016-04-14

    We visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas. PMID:27041654

  14. [Electron microscopy study of artificial vitreous gel].

    PubMed

    Ehgartner, E M; Schmut, O; Hofmann, H

    1986-04-01

    Artificial gels prepared from Cu2+-ions and hyaluronic acid were studied in the electron microscope and compared with the native vitreous body. Additionally, the authors attempted to produce transparent gels from the native constituents of the vitreous body, namely collagen and hyaluronic acid. Mixing of solutions of these constituents formed no gels but white precipitates. The ultrastructure of these precipitates was also studied in the electron microscope. PMID:3723971

  15. Structural, electronic, and magnetic properties of 3D metal trioxide and tetraoxide superhalogen cluster-doped monolayer BN

    NASA Astrophysics Data System (ADS)

    Meng, Jingjing; Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2016-07-01

    The structural, electronic, and magnetic properties of monolayer BN doped with 3D metal trioxide and tetraoxide superhalogen clusters are investigated using first-principle calculations. TMO3(4)-doped monolayer BN exhibits a low negative formation energy, whereas TM atoms embedded in monolayer BN show a high positive formation energy. TMO3(4) clusters are embedded more easily in monolayer BN than TM atoms. Compared with TMO3-doped structures, TMO4-doped structures have a higher structural stability because of their higher binding energies. Given their low negative formation energies, TMO4-doped structures are more favored for specific applications than TMO3-doped structures and TM atom-doped structures. Large magnetic moments per supercell and significant ferromagnetic couplings between a TM atom and neighboring B and N atoms on the BN layer were observed in all TMO4-doped structures, except for TiO4-doped structures.

  16. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum’s magnetosome chains

    SciTech Connect

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M.; Westphal, Carsten

    2014-10-07

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  17. Large-scale automatic reconstruction of neuronal processes from electron microscopy images.

    PubMed

    Kaynig, Verena; Vazquez-Reina, Amelio; Knowles-Barley, Seymour; Roberts, Mike; Jones, Thouis R; Kasthuri, Narayanan; Miller, Eric; Lichtman, Jeff; Pfister, Hanspeter

    2015-05-01

    Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000 μm(3) volume of brain tissue over a cube of 30 μm in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles. PMID:25791436

  18. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. PMID:26206941

  19. Electronic Structure, Donor and Acceptor Transitions, and Magnetism of 3d Impurities in In2O3 and ZnO

    SciTech Connect

    Raebiger, H.; Lany, S,; Zunger, A.

    2009-01-01

    3d transition impurities in wide-gap oxides may function as donor/acceptor defects to modify carrier concentrations, and as magnetic elements to induce collective magnetism. Previous first-principles calculations have been crippled by the LDA error, where the occupation of the 3d-induced levels is incorrect due to spurious charge spilling into the misrepresented host conduction band, and have only considered magnetism and carrier doping separately. We employ a band-structure-corrected theory, and present simultaneously the chemical trends for electronic properties, carrier doping, and magnetism along the series of 3d{sup 1}-3d{sup 8} transition-metal impurities in the representative wide-gap oxide hosts In{sub 2}O{sub 3} and ZnO. We find that most 3d impurities in In{sub 2}O{sub 3} are amphoteric, whereas in ZnO, the early 3d's (Sc, Ti, and V) are shallow donors, and only the late 3d's (Co and Ni) have acceptor transitions. Long-range ferromagnetic interactions emerge due to partial filling of 3d resonances inside the conduction band and, in general, require electron doping from additional sources.

  20. Entanglement-assisted electron microscopy based on a flux qubit

    SciTech Connect

    Okamoto, Hiroshi; Nagatani, Yukinori

    2014-02-10

    A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

  1. Electron microscopy - A glimpse into the future.

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1972-01-01

    A forecast attempt is presented on future advances in electron microscopic studies of membrane systems. A review of recent advances and present trends is followed by a discussion of prerequisites to further progress. Special attention is given to research areas of particular promise.

  2. Quantitative Phase Retrieval in Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    McLeod, Robert Alexander

    Phase retrieval in the transmission electron microscope offers the unique potential to collect quantitative data regarding the electric and magnetic properties of materials at the nanoscale. Substantial progress in the field of quantitative phase imaging was made by improvements to the technique of off-axis electron holography. In this thesis, several breakthroughs have been achieved that improve the quantitative analysis of phase retrieval. An accurate means of measuring the electron wavefront coherence in two-dimensions was developed and pratical applications demonstrated. The detector modulation-transfer function (MTF) was assessed by slanted-edge, noise, and the novel holographic techniques. It was shown the traditional slanted-edge technique underestimates the MTF. In addition, progress was made in dark and gain reference normalization of images, and it was shown that incomplete read-out is a concern for slow-scan CCD detectors. Last, the phase error due to electron shot noise was reduced by the technique of summation of hologram series. The phase error, which limits the finest electric and magnetic phenomena which can be investigated, was reduced by over 900 % with no loss of spatial resolution. Quantitative agreement between the experimental root-mean-square phase error and the analytical prediction of phase error was achieved.

  3. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  4. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy.

    PubMed

    Hammers, Matthew D; Taormina, Michael J; Cerda, Matthew M; Montoya, Leticia A; Seidenkranz, Daniel T; Parthasarathy, Raghuveer; Pluth, Michael D

    2015-08-19

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  5. Electron Microscopy of Biological Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  6. Correlated light and electron microscopy: ultrastructure lights up!

    PubMed

    de Boer, Pascal; Hoogenboom, Jacob P; Giepmans, Ben N G

    2015-06-01

    Microscopy has gone hand in hand with the study of living systems since van Leeuwenhoek observed living microorganisms and cells in 1674 using his light microscope. A spectrum of dyes and probes now enable the localization of molecules of interest within living cells by fluorescence microscopy. With electron microscopy (EM), cellular ultrastructure has been revealed. Bridging these two modalities, correlated light microscopy and EM (CLEM) opens new avenues. Studies of protein dynamics with fluorescent proteins (FPs), which leave the investigator 'in the dark' concerning cellular context, can be followed by EM examination. Rare events can be preselected at the light microscopy level before EM analysis. Ongoing development-including of dedicated probes, integrated microscopes, large-scale and three-dimensional EM and super-resolution fluorescence microscopy-now paves the way for broad CLEM implementation in biology. PMID:26020503

  7. Transmission electron microscopy of mercury metal.

    PubMed

    Anjum, Dalaver H; Sougrat, Rachid

    2016-09-01

    Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. PMID:27018645

  8. Multimodal dyes: toward correlative two-photon and electron microscopy

    NASA Astrophysics Data System (ADS)

    Bolze, Frédéric; Ftouni, Hussein; Nicoud, Jean-François; Leoni, Piero; Schwab, Yannick; Rehspringer, Jean-Luc; Mafouana, Rodrigues R.

    2013-03-01

    Nowadays, many crucial biological questions involve the observation of biological samples at different scales. Thus, optical microscopy can be associated to magnetic nuclear imaging allowing access to data from the cellular to the organ level, or can be associated to electron microscopy to reach the sub cellular level. We will describe here the design, synthesis and characterization of new bimodal probes, which can be used as dye in two-photon excited microscopy (TPEM) and electron dense markers in scanning and transmission electron microscopy (EM). In a first part, we will describe new molecular dyes with small organic systems grafted on metal atoms (Pt, Au). Such systems show good twophoton induced fluorescence and two-photon images of HeLa cells will be presented. In a second part, we will present hybrid organic-inorganic fluorescent systems with diketopyrrolopyrole-based dye grafted on iron oxide-silica core shell nanoparticles by peptide bond. Such systems present high two-photon absorption cross sections and good fluorescence quantum yields. These nanoparticles are rapidly internalized in HeLa cells and high quality two-photon images were performed with low laser power. Then we will present our results on correlative light-electron microscopy were twophoton and electron microscopy (both scanning and transmission) images were obtained on the same biological sample.

  9. High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles.

    PubMed

    Hoenger, Andreas

    2014-03-01

    Cryo-electron microscopy techniques and computational 3-D reconstruction of macromolecular assemblies are tightly linked tools in modern structural biology. This symbiosis has produced vast amounts of detailed information on the structure and function of biological macromolecules. Typically, one of two fundamentally different strategies is used depending on the specimens and their environment. A: 3-D reconstruction based on repetitive and structurally identical unit cells that allow for averaging, and B: tomographic 3-D reconstructions where tilt-series between approximately ± 60 and ± 70° at small angular increments are collected from highly complex and flexible structures that are beyond averaging procedures, at least during the first round of 3-D reconstruction. Strategies of group A are averaging-based procedures and collect large number of 2-D projections at different angles that are computationally aligned, averaged together, and back-projected in 3-D space to reach a most complete 3-D dataset with high resolution, today often down to atomic detail. Evidently, success relies on structurally repetitive particles and an aligning procedure that unambiguously determines the angular relationship of all 2-D projections with respect to each other. The alignment procedure of small particles may rely on their packing into a regular array such as a 2-D crystal, an icosahedral (viral) particle, or a helical assembly. Critically important for cryo-methods, each particle will only be exposed once to the electron beam, making these procedures optimal for highest-resolution studies where beam-induced damage is a significant concern. In contrast, tomographic 3-D reconstruction procedures (group B) do not rely on averaging, but collect an entire dataset from the very same structure of interest. Data acquisition requires collecting a large series of tilted projections at angular increments of 1-2° or less and a tilt range of ± 60° or more. Accordingly, tomographic data

  10. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    NASA Astrophysics Data System (ADS)

    Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2007-06-01

    The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a 30fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×1018cm-3 to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  11. Three-Dimensional Microstructure of a Polymer-Dispersed Liquid Crystal Observed by Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Pierron, Jean; Tournier-Lasserve, Valérie; Sopena, Pierre; Boudet, Alain; Sixou, Pierre; Mitov, Michel

    1995-11-01

    A film consisting of an amorphous photo-crosslinkable polymer matrix and a dispersion of microinclusions of a cholesteric polymer was investigated by transmission electron microscopy (TEM). The polymerization procedure of the blend provides a composite with many small nodules of spherical or ellipsoidal shapes, with sizes between 0.4 and 6 μm. The cholesteric stratification is well evidenced in transmission electron microscopy by dark lines due to diffraction contrast. The 3D organization was reconstructed by the observation of successive ultramicrotomed sections. Six types of nodules were distinguished according to the number of defects (foci or disclination lines), among which only three had already been observed and theoretically calculated. The confined geometry inherent in the size of the nodules, close to the cholesteric pitch, is responsible of these unexpected structures. In these conditions, the surface forces are in tight competition with the cholesteric elastic forces.

  12. Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Bezi Javan, Masoud

    2016-03-01

    We theoretically studied the electronic and magnetic properties of the monolayer SiC sheet doped by 3d transition-metal (TM) atoms. The structural properties, induced strain, electronic and magnetic properties were studied for cases that a carbon or silicon of the SiC sheet replaced with TM atoms. We found that the mount of induced strain to the lattice structure of the SiC sheet with substituting TM atoms is different for Si (TMSi) and C (TMC) sites as the TMSi structures have lower value of the strain. Also the TM atoms can be substituted in the lattice of the SiC sheet with different binding energy values for TMSi and TMC structures as the TMSi structures have higher value of the binding energies. Dependent to the structural properties, the TM doped SiC sheets show magnetic or nonmagnetic properties. We found that some structures such as MnSi, CuSi and CoC configurations have significant total magnetic moment about 3 μB.

  13. First-principle study of the electronic structure and magnetism of lithium-adsorbed 3d transition-metal phthalocyanines

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, Y.; Zhang, Z.; Li, Y.; Zhou, T.; Ren, J.

    2016-02-01

    Based on density functional theory (DFT) calculations, the electronic structures and magnetic properties of 3d transition-metal phthalocyanine (TMPc, TM = Ti, V, Cr, Mn, Fe, Co, Ni and Cu), as well as Li-adsorbed phthalocyanines have been studied. The results show that the pristine TMPcs all have a good D4h symmetry. When there is one Li atom adsorbed on TMPcs directly over (LiTMPc-α) or slantly above (LiTMPc-β) the TM atoms, the geometries and electronic structures will be changed. For LiTMPc-α systems, the central TM atoms will deviate from the molecular plane and the molecules exhibit good C4v symmetry. LiTMPc-β systems are more stable than LiTMPc-α systems but it do not possess D4h and C4v symmetries. The total and local magnetic moments and the charge transfer are also presented. Finally, by using the orbit mixing and splitting theory under D4h and C4v symmetry, we get the ordering of the energy levels of the central TM atoms.

  14. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  15. Correlation Energy of 3D Spin-Polarized Electron Gas: A Single Interpolation Between High- and Low-Density Limits

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Perdew, John; Seidl, Michael

    2008-03-01

    We present an analytic model for the correlation energy per electron ec(rs,ζ) in the three-dimensional (3D) uniform electron gas, covering the full range 0<=rs<∞ and 0<=ζ<=1 of the density parameter rs and the relative spin polarization ζ. An interpolation is made between the exactly known high-density (rs->0) and low-density (rs->∞) limits, using a formula which (unlike previous ones) has the right analytic structures in both limits. We find that there is almost enough information available from these limits to determine the correlation energy over the full range. By minimal fitting to numerical