For comprehensive and current results, perform a real-time search at Science.gov.

1

THERM3D -- A boundary element computer program for transient heat conduction problems

The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.

Ingber, M.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering

1994-02-01

2

The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as ? and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of ? led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated. PMID:23464209

Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D

2013-02-01

3

NASA Astrophysics Data System (ADS)

The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as ? and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of ? led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.

Gan, K. F.; Ahn, J.-W.; Park, J.-W.; Maingi, R.; McLean, A. G.; Gray, T. K.; Gong, X.; Zhang, X. D.

2013-02-01

4

Existence and uniqueness results for viscous, heat-conducting 3-D fluid with vacuum

We consider the 3-D full Navier-Stokes equations whose the viscosity coefficients and the thermal conductivity coefficient depend on the density and the temperature. We prove the local existence and uniqueness of the strong solution in a domain $\\Omega\\subset\\mathbb{R}^3$. The initial density may vanish in an open set and $\\Omega$ could be a bounded or unbounded domain. We also prove a blow-up criterion for the solution. Finally, we show the blow-up of the smooth solution to the compressible Navier-Stokes equations in $\\mathbb{R}^n$ ($n\\geq1$) when the initial density has compactly support and the initial total momentum is nonzero.

Ting Zhang; Daoyuan Fang

2007-02-07

5

NASA Astrophysics Data System (ADS)

Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2-D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. The degree of asymmetry (?DA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

Ahn, J.-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

2013-07-01

6

Conducting polymer 3D microelectrodes.

Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E

2010-01-01

7

The material used in this study was a carbon-carbon fiber composite manufactured from precursor yarn and petroleum based pitch through a process of repetitive densification of a woven preform. The resultant high temperature-high strength material exhibits relatively high thermal conductivity and is thus of interest to the fusion energy, plasma materials interactions (PMI) and plasma facing components (PFC) communities. Carbon-carbon fiber composite manufacture involves two distinct processes, preform weaving and component densification. In this study three samples were subjected to an additional heat treatment of 2550, 2750 or 3000{degree}C at Oak Ridge National Laboratory (ORNL) subsequent to their fourth graphitization at 2400{degree}C. It should be noted that no effort was made to optimize the composite for thermal conductivity, but rather only to provide a material with which to evaluate the effect of the final heat treatment temperature on the thermal conductivity. The fiber is the primary source of heat conduction in the composite. Consequently, increasing the fiber volume fraction, and/or the fiber thermal conductivity is expected to increase the composite thermal conductivity. 3 refs., 1 fig.

Dinwiddie, R.B.; Burchell, T.D. (Oak Ridge National Lab., TN (USA)); Baker, C.F. (Fiber Materials, Inc., Biddeford, ME (USA))

1991-01-01

8

1D-to-3D transition of photon heat conduction in polyethylene using molecular dynamics simulations

Experiments have demonstrated that the mechanical stretching of bulk polyethylene can increase its thermal conductivity by more than two orders of magnitude, from 0.35 W/mK to over 40W/mK, which is comparable to steel. ...

Henry, Asegun Sekou Famake

2009-01-01

9

The material used in this study was a carbon-carbon fiber composite manufactured from precursor yarn and petroleum based pitch through a process of repetitive densification of a woven preform. The resultant high temperature-high strength material exhibits relatively high thermal conductivity and is thus of interest to the fusion energy, plasma materials interactions (PMI) and plasma facing components (PFC) communities. Carbon-carbon

R. B. Dinwiddie; T. D. Burchell; C. F. Baker

1991-01-01

10

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000?K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

Yang, Lina; Yang, Nuo; Li, Baowen

2013-01-01

11

3D-Fractal Hilbert Antennas Made of Conducting Plates

A multiband and wideband 3D-ordinary and reversed fractal Hilbert antennas made of flat conducting plates are introduced. The proposed antennas have acceptable antenna gain. The finite element method (FEM) is used to obtain the radiation characteristics, return loss, input impedance, gain and radiation patterns. The obtained impedance bandwidths cover the required bandwidth of DCS (1710-1880 MHz), PSC (1850-1990 MHz), UMTS

Hassan Elkamchouchi; M. A. Nasr

2007-01-01

12

3D conductive nanocomposite scaffold for bone tissue engineering.

Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

2014-01-01

13

Heat conduction in conducting polyaniline nanofibers

NASA Astrophysics Data System (ADS)

Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

2013-09-01

14

NASA Technical Reports Server (NTRS)

Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

2003-01-01

15

Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

Barrash, Warren

16

Conduction heat transfer solutions

This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

VanSant, J.H.

1983-08-01

17

Heat Transfer Boundary Conditions in the RELAP5-3D Code

The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

2008-05-01

18

Conduction heat transfer solutions

NASA Astrophysics Data System (ADS)

A collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc., are presented. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions.

Vansant, J. H.

1980-03-01

19

Conduction heat transfer solutions

This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.

VanSant, J.H.

1980-03-01

20

Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

NASA Technical Reports Server (NTRS)

This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

Syed, S. A.; James, R. H.

1989-01-01

21

Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)

2013-11-28

22

3D heat and air transport model for predicting the thermal resistances of insulated wall assemblies

A wall energy rating (WER) system has been proposed to account for simultaneous thermal conduction and air leakage heat losses through a full-scale insulated wall system. Determining WER requires performing two standard tests on a full-scale wall specimen: a thermal resistance test and an air leakage test. A 3D model representation of the wall specimen is developed to combine the

Hamed H. Saber; Wahid Maref; Hakim Elmahdy; Michael C. Swinton; Rock Glazer

2012-01-01

23

3D heat and air transport model for predicting the thermal resistances of insulated wall assemblies

A wall energy rating (WER) system has been proposed to account for simultaneous thermal conduction and air leakage heat losses through a full-scale insulated wall system. Determining WER requires performing two standard tests on a full-scale wall specimen: a thermal resistance test and an air leakage test. A 3D model representation of the wall specimen is developed to combine the

Hamed H. Saber; Wahid Maref; Hakim Elmahdy; Michael C. Swinton; Rock Glazer

2011-01-01

24

NASA Astrophysics Data System (ADS)

A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

2014-10-01

25

Thermally induced apoptosis, necrosis, and heat shock protein expression in 3D culture.

This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes-a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a "beacon" red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1°C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37°C to 57°C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in experimental settings. PMID:24658653

Song, Alfred S; Najjar, Amer M; Diller, Kenneth R

2014-07-01

26

Effects of Heat Loss on the Performance of Micro-Scale 3-D Supersonic Nozzles

NASA Astrophysics Data System (ADS)

The performance optimization of supersonic micro-nozzles is a key element in the design of MEMS-based microthrusters for the next generation of miniaturized satellites ("nanosats"). Owing to the large surface area-to-volume ratio on the microscale and the high conductivity of typical substrate materials, heat transfer effects are expected to be significant. This has been corroborated by thermal measurements performed on microthruster prototypes at NASA/Goddard Space Flight Center. To detail the heat transfer and quantify its impact on thruster performance, 2-D and 3-D numerical simulations of the supersonic micro-nozzle flow with insulated and conductive wall boundaries are performed. Geometry and flow parameters are based on the NASA/Goddard H2O2 monopropellant prototype microthruster. Both steady-state and transient thruster operations are considered. The 3-D steady flow results indicate that heat losses approaching 20enthalpy are possible in comparison to an adiabatic wall assumption, resulting in a 10generation.

Kujawa, Jeffrey; Hitt, Darren

2003-11-01

27

3D Simulations of Farley-Buneman Turbulence Demonstrates Anomalous Electron Heating

NASA Astrophysics Data System (ADS)

Field aligned currents flow from the magnetosphere to the E-region ionosphere where they drive auroral electrojets. These currents often cause Farley-Buneman (FB) instabilities to develop and become turbulent. These irregularities substantially affect ionospheric conductivity, temperatures, and VHF and UHF radio wave propagation. Many of the observed characteristics of radar measurements of this region result from the nonlinear behavior of this unstable plasma. Supercomputers now allow Particle-In-Cell (PIC) codes, to run simulations with enormous meshes in either 2-D or 3-D. This talk will present recent 3-D PIC simulations showing anomalous electron heating due to FB turbulence, a phenomenon clearly observed by radars. The resulting temperatures can rise over an order of magnitude. These simulations also show the saturated amplitude of the waves; coupling between linearly growing modes and damped modes; the evolution of the system from shorter to longer wavelengths; and phase velocities close to the acoustic speed. These simulations reproduce many of the observational characteristics of type-1 radar echoes. As predicted by theory, the 3-D simulations show the development of modes with a small electric field component parallel to the geomagnetic field and this field causes the majority of the anomalous electron heating.

Oppenheim, Meers; Dimant, Yakov

2012-10-01

28

Variable conductance heat pipe technology

NASA Technical Reports Server (NTRS)

Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

1973-01-01

29

Recent Heat Transfer Improvements to the RELAP5-3D Code

The heat transfer section of the RELAP5-3D computer program has been recently improved. The improvements are as follows: (1) the general cladding rupture model was modified (more than one heat structure segment connected to the hydrodynamic volume and heat structure geometry’s internal gap pressure), (2) the cladding rupture model was modified for reflood, and (3) the heat transfer minor edits/plots were extended to include radiation/enclosure heat flux and generation (internal heat source).

Riemke, Richard A; Davis, Cliff B; Oh, Chang

2007-05-01

30

A simple, low-cost conductive composite material for 3D printing of electronic sensors.

3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

2012-01-01

31

Physical modeling of small shallow conductive 3-D targets with high-frequency electromagnetics

The goal of this study is to show that physical modeling can provide important support for three-dimensional (3D) interpretation of electromagnetic geophysical data for environmental problems. This is specially true when high-frequency electromagnetic methods are used, which are difficult to model with existing 3D forward modeling programs. Existing electromagnetic geophysical systems usually operate in the frequency range of a few hertz to several hundred hertz. For environmental problems, such as characterization of waste sites, systems with higher frequencies are desirable. This is because at lower frequencies, the depth of investigation is too deep for environmental characterizations. This leads to subsurface images, which don`t have enough resolution to map small shallow objects. Electromagnetic 3D modeling programs which solve the full wave equation are still not widely available, even though 3D modeling has improved remarkably during the last few years (Oristaglio and Spies, 1995). Since such a program was not available for this study, we used a specialized 3D program EM1DSH (Zhou, 1989). With this program, we can model layered-earth cases, taking dielectric effects into account over the whole frequency range of interest. Stewart et al. (1994) published ellipticity curves for similar system configurations and frequency ranges that indicate that dielectric effects can not be neglected for model calculations using frequencies above several 100 kHz. EM1DSH can also model thin conductive sheets in a two-layer earth but neglecting dielectric effects. Therefore we are only able to model and compare our field data with 3D forward modeling results for the lower frequencies. One way of bridging the gap between the interpretation needs and limitations of existing 3D forward modeling programs is to conduct physical modeling experiments. 6 refs., 2 figs.

Birken, R.A.; Poulton, M.; Sterngerg, B.K.

1996-09-01

32

The question of how to map the 3D indoor temperature by infrared thermography is solved by a hybrid method which is a combination of infrared thermography and the well known heat diffusion equation. The idea is to use infrared thermography to get the surface temperature of each frontier of the 3D domain of interest. A suitable procedure is devoted to

F. B. Djupkep Dizeu; X. Maldague; A. Bendada; E. Grinzato; P. Bison

2011-01-01

33

Coronal heating above active regions - 3D MHD model versus multi-spacecraft observations

NASA Astrophysics Data System (ADS)

The plasma heating mechanism in the Solar corona is a puzzle since decades. Today high-performance computing together with multi-spacecraft observations offer new insights. We conducted a high-resolution simulation of the corona above an active region and compare synthetic emission deduced from the model with co-temporal observations. Photospheric observations act as a boundary condition for our model that drives magnetic-field braiding by advection and generates a net upwards Poynting flux. In particular, we do not only get a sufficient energy input to the base of the corona, but we also reproduce the observed coronal loops: the 3D structure of the hot AR loops system in the model compares well to joint STEREO-A/-B and Hinode observations. The plasma flows along these loops are similar to observed Doppler maps. Draining and siphon flows along magnetic structures at different temperatures offer a new alternative explanation for the average Doppler red-shifts in the transition region and coronal blue-shifts. This match between model and observations indicates a realistic distribution of the coronal heating in time and space and shows that our 3D MHD model of the corona captures the relevant processes involved.

Bourdin, Philippe-A.; Bingert, Sven; Peter, Hardi

2014-05-01

34

Numerical computation of 3D heat transfer in complex parallel convective exchangers using convective heat exchangers that handles possibly complex input/output con- ditions as well as connection between pipes. It is based on a spectral method that allows to re-cast three-dimensional heat exchangers

Paris-Sud XI, UniversitÃ© de

35

Heat conduction in three dimensions

NASA Technical Reports Server (NTRS)

Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

Danza, T. M.; Fesler, L. W.; Mongan, R. D.

1980-01-01

36

Evaluation of the RETRAN-3D Wall Friction Models and Heat Transfer Coefficient Correlations

This paper presents an evaluation of many of the RETRAN-3D two-phase pressure drop and heat transfer models by comparing model prediction to a large body of experimental data.RETRAN-3D has been used to evaluate multiple two-phase pressure drop models utilizing an extensive experimental two-phase pressure drop database. The experimental pressure drop data cover both heated and adiabatic tests in upflow and horizontal configurations for a wide range of key parameters such as pressure, mass flux, quality, and pipe diameters. Two RETRAN-3D two-phase friction options and the Friedel two-phase friction model are tested and compared to the data. For the two-phase friction models compared herein, the modified Baroczy model available in RETRAN-3D is the best choice for all adiabatic and diabatic situations.The RETRAN-3D code has also been used to simulate a wide variety of heat transfer experiments. These heat transfer data cover single-phase and two-phase conditions over a large range of pressure, heat flux, and mass flux values. The performance of the RETRAN-3D default forced convection heat transfer coefficient correlations is evaluated. The Petukhov correlations provide comparable results for single-phase liquid, but the Dittus-Boelter model provides markedly better statistics for single-phase vapor. The RETRAN five-equation model that combines the Dittus-Boelter and Thom correlations provides the best overall subcooled and saturated boiling statistics and scatter chart behavior.

Peterson, Craig E.; Shatford, John G.; Harrison, James F.; Agee, Lance J

2003-04-15

37

Performance of a variable conductance heat pipe heat exchanger

The performance of an air to air heat exchanger in which heat is transferred to a finned evaporator and from a finned condenser via a heat pipe was evaluated. The variable conductance heat pipe is to the condenser fins a heat source and to the evaporator fins a heat sink. The principal advantage of the variable conductance heat pipe heat

P. D. Chancelor

1983-01-01

38

Rapid prototyping of electrically conductive components using 3D printing technology

A method of rapid prototyping of electrically conductive components is described. The method is based on 3D printing technology. The prototyped model is made of plaster-based powder bound layer-by-layer by an inkjet printing of a liquid binder. The resulting model is highly porous and can be impregnated by various liquids. In a standard prototyping process, the model is impregnated by

J. Czy?ewski; P. Burzy?ski; K. Gawe?; J. Meisner

2009-01-01

39

3D microstructures fabrication of paraffin or plastics with laser heating

This paper reports a novel fabrication technology for three dimensional (3D) microstructures of thermoplastic materials with laser heating. This technology employs the phenomenon that a thermoplastic material melted by laser heating grows into a convex shape with a high aspect ratio in a liquid. It does not require a mask or mold, therefore, the microstructure can be manufactured in a

N. Tsukada; T. Nakao; T. Higuchi

2005-01-01

40

Heat conduction of symmetric lattices.

Heat conduction of symmetric Frenkel-Kontorova (FK) lattices with a coupling displacement was investigated. Through simplifying the model, we derived analytical expression of thermal current of the system in the overdamped case. By means of numerical calculations, the results indicate that: (i) As the coupling displacement d equals to zero, temperature oscillations of the heat baths linked with the lattices can control magnitude and direction of the thermal current; (ii) Whether there is a temperature bias or not, the thermal current oscillates periodically with d, whose amplitudes become greater and greater; (iii) As d is not equal to zero, the thermal current monotonically both increases and decreases with temperature oscillation amplitude of the heat baths, dependent on values of d; (iv) The coupling displacement also induces nonmonotonic behaviors of the thermal current vs spring constant of the lattice and coupling strength of the lattices; (v) These dynamical behaviors come from interaction of the coupling displacement with periodic potential of the FK lattices. Our results have the implication that the coupling displacement plays a crucial role in the control of heat current. PMID:23848662

Nie, Linru; Yu, Lilong; Zheng, Zhigang; Shu, Changzheng

2013-06-01

41

A 3-D conductivity model of the Australian continent using observatory and magnetometer array data

NASA Astrophysics Data System (ADS)

An exploratory 3-D model of the electrical conductivity structure of the Australian continent is presented. The model is derived from the inversion of vertical magnetic-field transfer functions from the Australia-wide Array of Geomagnetic Stations. Crustal conductivity anomalies evident in the model are consistent with those previously mapped by independent magnetometer array studies and new electrical structures are suggested in the upper mantle. The model represents a seamless continent-scale basis for further models likely to be derived from subsequent studies. The model reveals three upper-mantle enhanced-conductivity anomalies beneath Archaean cratonic regions and two upper-mantle anomalies beneath Phanerozoic terranes in eastern Australia. Two of these anomalies have been investigated by recent magnetotelluric (MT) surveys, one in the Yilgarn Craton-Officer Basin-Musgrave Block the other in the Gawler Craton region, and are consistent with the MT results. Across much of central Australia enhanced conductivity at depths of 50-100 km is observed in the model. This region corresponds well with a recognized seismic velocity gradient at 75-100 km. Conductivity differences are also observed beneath Archaean cratons in Western Australia. The Pilbara Craton is represented as an enhanced conductivity anomaly at about 100 km, corresponding well with the lower-velocity anomaly evident in surface wave tomography models. The Yilgarn Craton is imaged as a low-conductivity body, with conductivity two orders of magnitude lower than the Pilbara Craton, continuing to greater depths.

Wang, Liejun; Hitchman, Adrian P.; Ogawa, Yasuo; Siripunvaraporn, Weerachai; Ichiki, Masahiro; Fuji-ta, Kiyoshi

2014-08-01

42

Cellular-structured graphene foam (GF)/epoxy composites are prepared based on a three-step fabrication process involving infiltration of epoxy into the porous GF. The three-dimensional (3D) GF is grown on a Ni foam template via chemical vapor deposition. The 3D interconnected graphene network serves as fast channels for charge carriers, giving rise to a remarkable electrical conductivity of the composite, 3 S/cm, with only 0.2 wt % GF. The corresponding flexural modulus and strength increase by 53 and 38%, respectively, whereas the glass transition temperature increases by a notable 31 °C, compared to the solid neat epoxy. The GF/epoxy composites with 0.1 wt % GF also deliver an excellent fracture toughness of 1.78 MPa·m(1/2), 34 and 70% enhancements against their "porous" epoxy and solid epoxy counterparts, respectively. These observations signify the unrivalled effectiveness of 3D GF relative to 1D carbon nanotubes or 2D functionalized graphene sheets as reinforcement for polymer composites without issues of nanofiller dispersion and functionalization prior to incorporation into the polymer. PMID:24848106

Jia, Jingjing; Sun, Xinying; Lin, Xiuyi; Shen, Xi; Mai, Yiu-Wing; Kim, Jang-Kyo

2014-06-24

43

HEAT CONDUCTION NETWORKS: DISPOSITION OF HEAT BATHS AND INVARIANT MEASURE

HEAT CONDUCTION NETWORKS: DISPOSITION OF HEAT BATHS AND INVARIANT MEASURE ALAIN CAMANES Abstract linking existence and uniqueness of the invariant measure to the disposition of the heat baths. We consider a model of heat conduction networks consisting of oscillators in contact with heat baths

Paris-Sud XI, UniversitÃ© de

44

MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 3D-SICF/SIC COMPOSITES

Our previously developed hierarchical two-layer (H2L) model was modified to describe the effective transverse thermal conductivity (Keff) of a three-dimensional (3D) SiC/SiC composite plate made with cross-layered and Z-stitched X:Y:Z uniaxial fiber tow sub-units. As before, the model describes Keff in terms of constituent, microstructural and architectural properties that include the expected effects of fiber-matrix interfacial conductance, of high fiber packing fractions within individual tow sub-units and of the non-uniform porosity contents, shapes and orientations within these sub-units. Model predictions were obtained for two versions of a 3D-Tyranno SA?/PyC/ICVI-SiC composite that had similar fiber/matrix pyrocarbon (PyC) interfaces, relatively high bulk densities (~2.88 g/cc), and an X:Y configuration with fiber content ratios 1:1. The only major difference between the two versions was their Z-stitch fiber content where the relative fiber ratios were 0.1 and 1.2 in the Z sub-units.

Youngblood, Gerald E.; Jones, Russell H.; Yamada, Reiji

2004-06-30

45

A new technique for 3D radiative heat transfer using the control volume finite element method

In the present study, a new numerical approach is developed for the treatment of radiative transfer in emitting, absorbing and scattering media. This approach is based on the utilisation of Control Volume Finite Element Method (CVFEM) which, to the knowledge of the authors, is applied for the resolution of 3D radiative heat transfer for the first time. The present code

H. GRISSA; F. ASKRI; M. BEN SALAH; S. BEN NASRALLAH

46

Microscale heat conduction in dielectric thin films

Starting from fundamental principles, it is shown that heat conduction by phonons can be analyzed in radiative transfer. A general theory of heat conduction is developed, showing that the Fourier law is a limiting case for steady-state macroscale heat transport. Two cases of heat transport across and along a thin film are considered. For the transient case, the theory shows

A. Majumdar

1993-01-01

47

Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on acouto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of any priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757

Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

2012-01-01

48

ÂPOSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH PARTIAL VERTICAL TURBULENCE MIXING HEAT DIFFUSION CHONGSHENG CAOGLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH PARTIAL VERTICAL TURBULENCE MIXING HEATÂposedness of the 3D NavierÂStokes equations are considered to be among the most challenging mathematical problems

49

An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating

a 3D geometric specification using print-and-fold processes. We have pre- viously demonstratedAn End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating Byoungkwon An, Robert J. Wood and Daniela Rus Abstract-- This paper presents an end-to-end approach for creating 3D

Wood, Robert

50

3D topographic correction of the BSR heat flow and detection of focused fluid flow

NASA Astrophysics Data System (ADS)

The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.

He, Tao; Li, Hong-Lin; Zou, Chang-Chun

2014-06-01

51

Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

NASA Astrophysics Data System (ADS)

Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common in industrial environments (borehole casing, pipes, railroad tracks). Present efforts are oriented toward calculating the EM responses of these objects via a First Born Approximation approach. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

2013-12-01

52

Variable boundary II heat conduction

NASA Technical Reports Server (NTRS)

Computer program for solving both transient and steady-state heat transfer problems is presented. Specific applications of computer program are described. Formulation for individual nodes of solid medium for heat balance is presented. Diffusion equation is solved for all nodes simultaneously at finite increments of time.

Gramer, J.; Oneill, R. F.

1972-01-01

53

In the present study a three-dimensional (3-D) transient inverse heat conduction problem is solved using the conjugate gradient method (CGM) and the general purpose commercial code CFX4.2-based inverse algorithm to estimate the unknown boundary heat flux in any 3-D irregular domain.The advantage of calling CFX4.2 as a subroutine in the present inverse calculation lies in that many difficult but practical

Cheng-Hung Huang; Shao-Pei Wang

1999-01-01

54

Research in 3D interconnection technology involves the functional modeling of complex biological processing structures with high-density 3D connections (such as the visual cortex). We propose a simple multi-chip stack structure, with through-chip connections and conducting polymer wires between layers. Self-assembled polymer wires based on polypyrrole have been produced by a directional electropolymerization process which permits the directional volume patterning of

C. Videlot; J. Ackermann; F. Fages; T. N. Nguyen; L. Wang; P. M. Sarro; D. Crawley; K. Nikolic; M. Forshaw

2004-01-01

55

3D volume MR temperature mapping for HIFU heating trajectory comparisons

NASA Astrophysics Data System (ADS)

Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

2012-10-01

56

Heat conduction fronts in planetary nebulae

NASA Technical Reports Server (NTRS)

We present arguments which suggest that many of the x-ray, some optical, and some UV observations of planetary nebulae, can be explained by the presence of heat conduction fronts. The heat flows from the hot bubble formed by the shocked fast wind to the cool shell and halo. Heat conduction fronts are likely to account for emission of x rays from plasma at lower temperature than the expected temperature of the hot bubble. In the presence of magnetic fields, only a small fraction of the fast wind luminosity emerges as radiation. Heat conduction fronts can naturally produce some unusual line flux ratios, which are observed in some planetary nebulae. Heat conduction fronts may heat the halo and cause some material at the inner surface of the shell to expand slower than the rest of the shell. In the presence of an asymmetrical magnetic field, this flow, the x-ray intensity, and the emission lines, may acquire asymmetrical structure as well.

Soker, Noam

1994-01-01

57

Role of 3d-dispersive Alfven waves in coronal heating

NASA Astrophysics Data System (ADS)

Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).

Sharma, R. P.; Yadav, N.; Pathak, N.

2014-05-01

58

Ballistic-Diffusive Heat-Conduction Equations

We present new heat-conduction equations, named ballistic-diffusive equations, which are derived from the Boltzmann equation. We show that the new equations are a better approximation than the Fourier law and the Cattaneo equation for heat conduction at the scales when the device characteristic length, such as film thickness, is comparable to the heat-carrier mean free path and\\/or the characteristic time,

Gang Chen; Gang

2001-01-01

59

ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10

We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

2006-06-26

60

A boundary element method with surface conductive absorbers for 3-D analysis of nanophotonics

Fast surface integral equation (SIE) solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices generate fields both in an interior channel and in the infinite exterior domain. However, ...

Zhang, Lei, Ph. D. Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science

2010-01-01

61

Relativistic Quantum Hall Conductivity for 3d and 2d Electron Plasma in AN External Magnetic Field

The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis

R. Gonzalez Felipe; A. Perez Martinez; H. Perez-Rojas

1990-01-01

62

Simulation of Power Delivery Networks with Joule Heating Effects for 3D Integration Jianyong Xie Joule heating and convection effects. The finite volume formulations of DC voltage drop equation temperature distribution with convection and Joule heating effects. The simulation results show that even

Swaminathan, Madhavan

63

3D finite element model of RF heating: novel nonablative cutaneous therapy

NASA Astrophysics Data System (ADS)

This study presents a finite element model of a non-ablative RF tissue heating system for dermatological applications. The Thermage ThermaCool TC System consists of a capacitively coupled treatment tip, handpiece, RF generator, and cryogen delivery system. Various electrode geometries were created to generate uniform thermal profiles at specific depths in the tissue. The optimal thermal treatment depth for a clinical indication is influenced by factors such as tissue thickness for a given anatomical location, the desired target for heating in that tissue, and anesthesia factors. Electrodes of ¼, 1, and 1½cm2 area were evaluated for depth of treatment. A 3D multi-physics finite element model was developed to simulate RF heating in tissue. The program coupled electrical and thermal models to predict the electric field produced and the consequent heating. The electrical portion of the model was verified using an electric field mapping system. The thermal section of the model was confirmed via thermocouple measurements for cooling and infrared imaging measurements for RF heating. The FEM model produced electrical and thermal predictions that were verified with experimental measurements. The finite element model shows significant potential as a predictive R&D tool to assist in RF electrode design and reduce product development time.

Pham, Linda; Pope, Karl A.

2003-06-01

64

A novel 3D networked graphene-ferromagnetic hybrid can be easily fabricated using one-step microwave irradiation. By incorporating this hybrid material into shape memory polymers, the synergistic effects of fast speed and the enhancement of thermal conductivity and mechanical stiffness can be achieved. This can be broadly applicable to designing magneto-responsive shape memory polymers for multifunction applications. PMID:24912455

Lee, Sang-Heon; Jung, Jung-Hwan; Oh, Il-Kwon

2014-10-15

65

Conducting a large 3D land survey in a densely populated area - an east Texas case history

This article outlines the problems resolved when Seiscom and Conoco set out to conduct a 3D seismic survey in East Texas. The focus of the report is on Seismic Group Recording telemetry whose characteristics were well-suited to this project and without which the survey could not have been completed in as efficient a time span as was the case.

Burt, B.; Denham, L.; Durrani, J.

1985-10-07

66

NASA Astrophysics Data System (ADS)

We propose and develop a variational formulation dedicated to the simulation of parallel convective heat exchangers that handles possibly complex input/output conditions as well as connection between pipes. It is based on a spectral method that allows to re-cast three-dimensional heat exchangers into a two-dimensional eigenvalue problem, named the generalized Graetz problem. Our formulation handles either convective, adiabatic, or prescribed temperature at the entrance or at the exit of the exchanger. This formulation is robust to mode truncation, offering a huge reduction in computational cost, and providing insights into the most contributing structure to exchanges and transfer. Several examples of heat exchangers are analyzed, their numerical convergence is tested and the numerical efficiency of the approach is illustrated in the case of Poiseuille flow in tubes.

Pierre, Charles; Bouyssier, Julien; de Gournay, Frédéric; Plouraboué, Franck

2014-07-01

67

Information filtering via biased heat conduction

NASA Astrophysics Data System (ADS)

The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

2011-09-01

68

Information filtering via biased heat conduction.

The process of heat conduction has recently found application in personalized recommendation [Zhou et al., Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering. PMID:22060533

Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

2011-09-01

69

Heat conduction controlled combustion for scramjet applications

NASA Technical Reports Server (NTRS)

The use of heat conduction flame generated in a premixed supersonic stream is discussed. It is shown that the flame is controlled initially by heat conduction and then by chemical reaction. Such a flame is shorter than the diffusion type of flame and therefore it requires a much shorter burner. The mixing is obtained by injecting the hydrogen in the inlet. Then the inlet can be cooled by film cooling.

Ferri, A.; Agnone, A. M.

1974-01-01

70

Cryogenic regenerator including sarancarbon heat conduction matrix

NASA Technical Reports Server (NTRS)

A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

1989-01-01

71

North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects

NASA Astrophysics Data System (ADS)

bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.

Li, Hong-lin; He, Tao; Spence, George D.

2014-01-01

72

3D multifields FEM computation of transverse flux induction heating for moving-strips

The numerical and experimental studies on induction heating of continuously moving strips in a transverse field are presented in this paper. The induced eddy current and its coupled thermal field in moving media is computed with FEM. The adopted mathematical model consists of a Fourier thermal conduction equation and a set of differential equations, which describes the steady-state eddy current

Z. Wang; W. Huang; W. Jia; Q. Zhao; Y. Wang; W. Yan; D. Schulze; G. Martin; U. Luedtke

1999-01-01

73

Local effects of longitudinal heat conduction in plate heat exchangers

In a plate heat exchanger, heat transfer from the hot to the cold fluid is a multi-dimensional conjugate problem, in which longitudinal heat conduction (LHC) along the dividing walls often plays some role and can not be neglected. Large-scale, or end-to-end, LHC is always detrimental to the exchanger’s effectiveness. On the contrary, if significant non-uniformities exist in the distribution of

Michele Ciofalo

2007-01-01

74

The effect of anisotropic heat transport on magnetic islands in 3-D configurations

NASA Astrophysics Data System (ADS)

An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlüter current effects. Implications for finite pressure-induced island healing are discussed.

Schlutt, M. G.; Hegna, C. C.

2012-08-01

75

Within the framework of the study of the aircraft structural material lightning, we present a work concerning the heating of metal sheets under the action of a moving electric arc. A 2D and 3D modeling of thermal phenomena occurring in the heated electrodes are used in order to study the influence of the arc root velocity and of the power

Ph. Testé; T. Leblanc; F. Uhlig; J.-P. Chabrerie

2000-01-01

76

in arbitrary 3D inhomogeneous anisotropic media can be expressed as -=Ã? sE 0Âµi sH , (1) sss JEH +=Ã? ' , (2) and 0=Â· sH . (3) In these equations i+=' is a complex conductivity tensor, is an Ohmic conductivityFinite-difference modeling of borehole induction data in the presence of 3D electrical conductivity

Torres-VerdÃn, Carlos

77

Compact pulsed laser having improved heat conductance

NASA Technical Reports Server (NTRS)

A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

Yang, L. C. (inventor)

1977-01-01

78

Measurement of heat conduction through stacked screens

NASA Technical Reports Server (NTRS)

This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

1998-01-01

79

NASA Astrophysics Data System (ADS)

This paper presents a numerical simulation of the developing flow and heat transfer of a viscoelastic fluid in a rectangular duct. In fully developed flow of a viscoelastic fluid in a non-circular duct, secondary flows normal to the flow direction are expected to enhance the rate of heat and mass transfer. On the other hand, properties such as viscosity, thermal conductivity, specific heat and relaxation time of the fluid are a function of temperature. Therefore, we developed a numerical model which solves the flow and energy equation simultaneously in three dimensional form. We included several equations of state to model the temperature dependency of the fluid parameters. The current paper is one of the first studies which present a 3D numerical simulation for developing viscoelastic duct flow that takes the dependency of flow parameters to the temperature into account. The rheological constitutive equation of the fluid is a common form of the Phan-Thien Tanner (PTT) model, which embodies both influences of elasticity and shear thinning in viscosity. The governing equations are discretized using the FTCS finite difference method on a staggered mesh. The marker-and-cell method is also employed to allocate the parameters on the staggered mesh, and static pressure is calculated using the artificial compressibility approach during the numerical simulation. In addition to report the results of flow and heat transfer in the developing region, the effect of some dimensionless parameters on the flow and heat transfer has also been investigated. The results are in a good agreement with the results reported by others in this field.

Jalali, A.; Hulsen, M. A.; Norouzi, M.; Kayhani, M. H.

2013-05-01

80

NASA Astrophysics Data System (ADS)

A method for steam turbines 3D geometry optical control for effective heat power equipment quality improvement is proposed. It is shown that technical characteristics of the developed optical phase triangulation method for precision contactless geometry diagnostics of steam turbines meet modern requirements to 3D geometry measuring instruments and are perspective for further development. It is shown that used phase step method provides measurement error less than 0.024% of measurement range.

Dvoynishnikov, Sergey

2014-08-01

81

NASA Astrophysics Data System (ADS)

The lack of a detectable heat flow anomaly along the San Andreas Fault (SAF) constitutes one important piece of evidence used to argue that the fault supports low shear stresses (<20 MPa averaged over the upper 10 km). However, key uncertainties in existing heat flow data, such as the effects of heat advection by topographically-driven groundwater flow, topographic refraction (terrain effects), subsurface heterogeneity (refraction caused by variable thermal conductivity), and uncertainty in thermal conductivity limit the utility of such analyses. Previous studies using heat flow data to investigate the strength of the SAF have taken into account effects of topographically-driven groundwater flow along a transect NW of the SAFOD site and included limited two-dimensional heat flow terrain effects, but remain inconclusive for interpreting possible frictional heating along the SAF near Parkfield, CA due to significant scatter remaining in the data and uncertainty in the extent of three-dimensional terrain effects. Here, we re-evaluate the effects of topographically-driven groundwater flow at Parkfield using full 3-D corrections to the heat flow data and including additional transects. In this study, we apply three-dimensional terrain corrections to temperature data for 22 boreholes near the SAFOD site. The corrected thermal gradients and available thermal conductivity data allow us to determine heat flow values free of terrain effects. The difference in heat flow for each borehole between published 2-D corrected values and the values corrected for 3-D terrain effects range from 0.2 to 21.0 mW/m2, 6.9% on average. The standard deviation of the heat flow data is reduced by 25.8% by including the 3-D correction. Error bars based on the standard deviation of the thermal conductivity measurements for each borehole range from +/-3.2 to +/-25.7 mW/m2 (10.3% on average for all data and 6.8% for high-quality data alone). We use the finite-element modeling code, SUTRA, to simulate steady-state coupled heat and groundwater flow within three cross-sections perpendicular to the fault. We consider a suite of hydrologic (groundwater flow) conditions to evaluate effects of topographically-driven groundwater flow and compute simulated heat flow values for both strong and weak fault frictional heat sources. Simulated heat flow values are corrected for all terrain effects using a two-dimensional Birch method correction, and then compared with the 3-D corrected heat flow data to evaluate plausible hydrologic and fault strength scenarios. For high-permeability scenarios, we predict a large variability in heat flow, as well as a systematic decrease in heat flow with elevation. These patterns are not present in the data, allowing us to estimate an upper limit on advection caused by groundwater flow. In general, models that incorporate a weak fault fit the data better than those with a strong fault. Uncertainty from poorly constrained (undersampled) thermal conductivity in some boreholes, and scatter caused by subsurface thermal refraction due to heterogeneous thermal conductivity structure still remain, but a pronounced near fault heat flow anomaly as predicted for a strong fault is not evident.

Fulton, P. M.; Saffer, D. M.; Bekins, B. A.; Harris, R. N.

2003-12-01

82

Heat Conductivity of Polyatomic and Polar Gases

The formal kinetic theory of Wang Chang and Uhlenbeck and of Taxman has been used to derive explicit expressions for the heat conductivity of polyatomic and polar gases. By systematic inclusion of terms involving inelastic collisions the usual modified Eucken expression is derived as a first approximation, and as a second approximation an expression involving the relaxation times for various

E. A. Mason; L. Monchick

1962-01-01

83

Large variable conductance heat pipe. Transverse header

NASA Technical Reports Server (NTRS)

The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

Edelstein, F.

1975-01-01

84

Effects of anisotropic heat conduction on solidification

NASA Technical Reports Server (NTRS)

Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

Weaver, J. A.; Viskanta, R.

1989-01-01

85

The optical conductivity of quasicrystals: evidence of a Weyl semimetal with 3D Dirac spectrum

NASA Astrophysics Data System (ADS)

The optical conductivity of quasicrystals is characterized by an absence of the Drude peak and a conductivity that rises linearly over a wide range of frequencies. The absence of the Drude peak has been attributed to a pseudogap at the Fermi surface but a detailed explanation of the linear behavior has not been found. This unusual behavior is seen in all icosahedral quasicrystal families and their periodic approximants. A simple model that assumes that the entire Fermi surface is gapped, with the exception at a finite set of Dirac points, fits the data. There is no evidence of a semiconducting gap in any of the materials suggesting that the massless Dirac spectrum is protected by topology leading to a Weyl semimetal. The model gives rise to a linear conductivity with only one parameter, the Fermi velocity. In accord with this picture decagonal quasicrystals should have a frequency independent conductivity, without a Drude peak. This is in accord with the experimental data as well.

Timusk, Thomas; Carbotte, Jules; Homes, Christopher; Basov, Dimitri; Sharapov, Sergei

2013-03-01

86

Diffusion corrections to the conductivity of a disordered 3D electron gas

The zero-temperature conductivity sigma of a disordered three-dimensional metal is elaborated by means of a diffusion model discussed recently by Kaveh and Mott (1981) in the context of logarithmic corrections to sigma for two-dimensional systems. It is argued that the contribution from diffusion is of importance when analysing the conductivity as a function of electron density. The resulting expression for

K. F. Berggren

1982-01-01

87

Shape factors in conductive heat transfer

: q e -k(~)ZT hT q = Heat flow, Btu/Hr k = Thexmal conductivity, -Btu Jk ~ Lrea, ZtB I ~ length of. heat flow path& Jt 6 T = Temperatux e di f f er ence, dp. R Resistance, (op Zt)pt. ln othex simple cases, such as the cylinder and, the sphex'e.... It has 'been shown bg Andrews 1 and Jacob d that. q = -k (S. Z. ) ~ T Where S. Z. = Shape abactor ~ ! - ~d dk dx (1S) Hence; S. P. ]~i (lSa) Sic. lariy the flow of d. irect current in an electrical circuit may be represented as: (S. X. ) h e S...

Faulkner, Richard Campbell

2012-06-07

88

NASA Technical Reports Server (NTRS)

Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

Aguirre-Ramirez, G.; Oden, J. T.

1969-01-01

89

NASA Astrophysics Data System (ADS)

Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity ( EC) across the site. The relation between measured apparent electrical conductivity ( ECa) and hydraulic conductivity ( K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of - 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln( EC)-ln( K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.

Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W., Jr.

2011-04-01

90

Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

2011-01-01

91

A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

Rubinacci, Guglielmo [Ass. EURATOM/ENEA/CREATE, DIEL, Universita degli Studi di Napoli, Federico II (Italy); Ventre, Salvatore [Ass. EURATOM/ENEA/CREATE, DAEIMI, Universita degli Studi di Cassino, Via Di Biasio 43, 03043 Cassino (Italy); Villone, Fabio [Ass. EURATOM/ENEA/CREATE, DAEIMI, Universita degli Studi di Cassino, Via Di Biasio 43, 03043 Cassino (Italy)], E-mail: villone@unicas.it; Liu, Yueqiang [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

2009-03-20

92

Parallelized solvers for heat conduction formulations

NASA Technical Reports Server (NTRS)

Based on multilevel partitioning, this paper develops a structural parallelizable solution methodology that enables a significant reduction in computational effort and memory requirements for very large scale linear and nonlinear steady and transient thermal (heat conduction) models. Due to the generality of the formulation of the scheme, both finite element and finite difference simulations can be treated. Diverse model topologies can thus be handled, including both simply and multiply connected (branched/perforated) geometries. To verify the methodology, analytical and numerical benchmark trends are verified in both sequential and parallel computer environments.

Padovan, Joe; Kwang, Abel

1991-01-01

93

Use of 2D and 3D Resistivity Methods to Monitor Dilution of a Conductive Plume in Fractured Basalt

NASA Astrophysics Data System (ADS)

2D cross-borehole and 3D surface electrical resistance tomography (ERT) methods have been shown to be useful in delineating conductive plume migration in porous media. However, their application in fractured basalt, and to monitoring in situ dilution of conductive plumes has been largely uninvestigated. The objective of this study was to monitor the dilution of a conductive plume by more resistive water to delineate the spatial distribution of resistivity changes over time. Eight wells were drilled for the hydrogeophysical experiments. A KCl solution was injected into the partially saturated, fractured basalt via a centrally located injection well for 76 days prior to this dilution experiment. Tap water was then injected into the injection well for 34 days. ERT was used to monitor the dilution and displacement of the KCl plume during tap water injection, and during a subsequent 62-day monitoring period. Data were collected between the wells and at land surface. The ERT data collected during the investigation show the spatial distribution of resistivity changes caused by the influx of diluting water. 3D images of surface ERT results delineate broad areas of increased resistivity due to dilution/displacement of the KCl plume. Cross-borehole ERT data delineate specific locations of water influx. Injection-well resistivities delineate specific locations where tap water seeped from the injection well via preferential flow paths determined by time-dependent resistivity increases at different elevations. Monitoring- well resistivities delineate specific fracture locations and clustered areas of resistivity changes due to the dilution and displacement of the KCl solution. The experimental results presented herein illustrate the application of combined ERT methods to delineate spatially distributed dilution in fractured rock.

Nimmer, R. E.; Osiensky, J. L.; Binley, A. M.; Sprenke, K. F.; Williams, B. C.

2006-12-01

94

NASA Astrophysics Data System (ADS)

Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.

Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.

2013-01-01

95

Information filtering via weighted heat conduction algorithm

NASA Astrophysics Data System (ADS)

In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.

Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng

2011-06-01

96

The advent of 3D stacked ICs with accumulating heat fluxes stresses thermal reliability and is responsible for temperature driven performance deterioration of the electronic systems Hot spots with power densities typically rising up to 250 W\\/cm2 are not acceptable, with the result of limited performance improvement in next generation high-performance microprocessor stacks. Unfortunately traditional back-side cooling only scales with the

Arvind Sridhar; Alessandro Vincenzi; Martino Ruggiero; Thomas Brunschwiler; David Atienza

2010-01-01

97

The effects of groundwater direction on performance of geothermal heat pump systems were analyzed using a 3-D finite difference method with rectangular meshes. Each borehole was approximated by a square column with the actual circular borehole section circumscribing the approximated square section. The fluid temperatures inside each borehole were calculated by discretizing borehole vertically into different segments. Simulations made on

C K Lee; H N Lam

2007-01-01

98

Nonintegrability and the Fourier heat conduction law

NASA Astrophysics Data System (ADS)

We study in momentum-conserving systems, how nonintegrable dynamics may affect thermal transport properties. As illustrating examples, two one-dimensional (1D) diatomic chains, representing 1D fluids and lattices, respectively, are numerically investigated. In both models, the two species of atoms are assigned two different masses and are arranged alternatively. The systems are nonintegrable unless the mass ratio is one. We find that when the mass ratio is slightly different from one, the heat conductivity may keep significantly unchanged over a certain range of the system size and as the mass ratio tends to one, this range may expand rapidly. These results establish a new connection between the macroscopic thermal transport properties and the underlying dynamics.

Chen, Shunda; Wang, Jiao; Casati, Giulio; Benenti, Giuliano

2014-09-01

99

National Technical Information Service (NTIS)

The analytic solutions of the one-dimensional Fourier conductive heat flux law and corresponding transient heat transfer equation have been used to calculate temperature, conductive heat flux, and their trajectories due to radiant heating of opaque materi...

A. Cohen

2011-01-01

100

Are the Hot Coronae of Galaxies Heat Conductive

The effects of heat conductivity in the dynamics of hot X-ray coronae of galaxies are investigated by numerical integration of gas dynamics equations. Coronae are supposed to be confined by massive dark halos and\\/or hot intergalactic medium. The results are: (1) Coronae with zero heat conductivity can exist many Gyrs quasistationary. (2) Heat conductive coronae bound by dark halos rapidly

V. G. Berman; A. A. Suchkov

1986-01-01

101

Constructing a model of 3D radiogenic heat production in Ireland

NASA Astrophysics Data System (ADS)

Heat production values in the crust and mantle rock inform heat flow density data to provide crucial information about the structure of the Earth's lithosphere. In addition, accurate models of horizontal and vertical distribution of heat production can help to define geothermal exploration targets. Low-enthalpy district scale space heating and Enhanced Geothermal Systems (EGS) using hot, dry rock may provide sustainable energy resources in regions currently perceived as having low geothermal energy potential. Ireland is located within stable lithosphere, unaffected by recent tectonism and volcanism, and has an estimated heat flow range below the measured global continental average. Nevertheless, borehole data indicate that heat production is variable across the island, with anomalously high rates observed, for example, in Cavan, Meath and Antrim. Data coverage is, however, poor. Radioactive isotopic decay generates heat in rock. By using established heat production constants and known concentrations of unstable isotopes of uranium, thorium and potassium, along with rock density values, a heat production rate in ?W m -3 is obtained. With the objective of compiling the first comprehensive database of information about the Irish lithosphere, in three dimensions, the authors present here initial results obtained from published and unpublished whole-rock major and trace element analyses. The presence of systematic trends correlating heat production to properties such as age and lithology are also investigated. Offering insight into the vertical component of heat production distribution, Irish xenoliths emplaced in Lower Carboniferous volcanics are regarded as a reliable proxy for the present-day lower crust. Their geochemical composition gives heat production values that are higher than expected for the depths indicated by their thermobarometric data, suggesting that heat production rates do not simply reduce with depth.

Willmot Noller, N. M.; Daly, J. S.

2012-04-01

102

The conceptual and practical gains achieved by expanding a 2-D finite element model [Castro and Goblet, 2003] to a true 3-D one through an application in the Carrizo aquifer and surrounding formations in southwestern Texas are investigated through a series of groundwater flow and 4He transport simulations. Such a 3-D model represents 4 formations, covers a surface area of ˜7000

M. C. Castro; D. Patriarche; P. Goblet

2004-01-01

103

NASA Astrophysics Data System (ADS)

This study assesses surface urban heat island (SUHI) effects during heat waves in subtropical areas. Two cities in northern Taiwan, Taipei metropolis and its adjacent medium-sized city, Yilan, were selected for this empirical study. Daytime and night time surface temperature and SUHI intensity of both cities in five heat wave cases were obtained from MODIS Land-Surface Temperature (LST) and compared. In order to assess SUHI in finer spatial scale, an innovated three-dimensional Urbanization Index (3DUI) with a 5-m spatial resolution was developed to quantify urbanization from a 3-D perspective using Digital Terrain Models (DTMs). The correlation between 3DUI and surface temperatures were also assessed. The results obtained showed that the highest SUHI intensity in daytime was 10.2 °C in Taipei and 7.5 °C in Yilan. The SUHI intensity was also higher than that in non-heat-wave days (about 5 °C) in Taipei. The difference in SUHI intensity of both cities could be as small as only 1.0 °C, suggesting that SUHI intensity was enhanced in both large and medium-sized cities during heat waves. Moreover, the surface temperatures of rural areas in Taipei and Yilan were elevated in the intense heat wave cases, suggesting that the SUHI may reach a plateau when the heat waves get stronger and last longer. In addition, the correlation coefficient between 3DUI and surface temperature was greater than 0.6. The innovative 3DUI can be employed to assess the spatial variation of temperatures and SUHI intensity in much finer spatial resolutions than measurements obtained from remote sensing and weather stations. In summary, the empirical results demonstrated intensified SUHI in large and medium-sized cities in subtropical areas during heat waves which could result in heat stress risks of residents. The innovative 3DUI can be employed to identify vulnerable areas in fine spatial resolutions for formulation of heat wave adaptation strategies.

Wu, Chih-Da; Lung, Shih-Chun Candice; Jan, Jihn-Fa

2013-07-01

104

While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

2008-09-11

105

Hierarchical Bayesian Models for Inverse Problems in Heat Conduction

Hierarchical Bayesian Models for Inverse Problems in Heat Conduction Jingbo Wang and Nicholas. Â§ Corresponding author: Nicholas Zabaras (zabaras@cornell.edu) #12;Bayesian model for inverse heat conduction 2 1 research. Very recently, a sequence of methods have been proposed to solve stochastic inverse heat transfer

Zabaras, Nicholas J.

106

Experimental evidence of hyperbolic heat conduction in processed meat

The objective of this paper is to present experimental evidence of the wave nature of heat propagation in processed meat and to demonstrate that the hyperbolic heat conduction model is an accurate representation, on a macroscopic level, of the heat conduction process in such biological material. The value of the characteristic thermal time of a specific material, processed bologna meat,

K. Mitra; S. Kumar; A. Vedavarz; M. K. Moallemi

1995-01-01

107

Heat Conduction in Graphene Flakes of Arbitrary Geometry

It was reported that the values of the room temperature thermal conductivity of graphene exceed those of carbon nanotubes [1-2]. The measurements of the thermal conductivity of graphene utilized a technique where the excitation laser initiated a heat wave. The data extraction procedure assumed plane heat waves. Realistic graphene flakes have variations in their width, and the heat wave front

Samia Subrina; Dmitri Kotchetkov; Alexander Balandin

2009-01-01

108

A quasi-3D analysis of the thermal performance of a flat heat pipe G. Carbajal a,*, C.B. Sobhan b

A quasi-3D analysis of the thermal performance of a flat heat pipe G. Carbajal a,*, C.B. Sobhan b form 29 January 2007 Available online 8 May 2007 Abstract The thermal performance of a flat heat pipe. The transient temperature distribution on a solid aluminum plate was compared with the flat heat pipe results

Wadley, Haydn

109

Methodology for comparison of inverse heat conduction methods

The inverse heat conduction problem involves the calculation of the surface heat flux from transient measured temperatures inside solids. The deviation of the estimated heat flux from the true heat flux due to stabilization procedures is called the deterministic bias. This paper defines two test problems that show the tradeoff between deterministic bias and sensitivity to measurement errors of inverse

M. Raynaud; J. V. Beck

1988-01-01

110

THYC, a 3D thermal-hydraulic code for steam generators, heat-exchangers and condensers

Electricite de France has developed, since 1986, a thermal hydraulic code, named THYC, designed to study three-dimensional single and two-phase flows in components involving rod or tube bundles: pressurized water reactor cores, steam generators, condensers, heat exchangers. The THYC model, based upon a porous media approach, is obtained by space-time averaging of the instantaneous equations (mass, momentum and energy) of each fluid phase over control volumes including fluid and solids. The THYC-EXCHANGERS release solves three to five conservation equations of the fluid outside the tubes, plus the energy equation of the fluid inside the tubes. That makes the code able to model all types of heat exchangers, from single phase heat exchangers, to components involving boiling or condensation. First of all, the paper will describe the physical model and the numerical method used in THYC-EXCHANGERS. Secondly, calculation results will be compared with measurements obtained on a single-phase heat exchanger mock-up, on the CLOTAIRE steam generator mock-up and on an industrial condenser.

David, F. [Electricite de France, Chatou (France). Research and Development Div.

1996-08-01

111

Steady state Joule heating with temperature dependent conductivities

A general solution is given to the nonlinear steady state heat conduction equation for the case in which a metal is heated\\u000a by electrical conduction currents. The solution is valid for any temperature variation in the thermal and electrical conductivities\\u000a and is illustrated by application to a typical Joule heating situation in one dimension. Comparison of the case of temperature

John H. Young

1986-01-01

112

3-D simulation of macroscopic erosion of CFC under ITER off-normal heat loads

Carbon fiber composites, CFC, newly developed for the divertor armor of the future tokamak ITER, have a rather complex structure of fiber framework and carbon matrix, allowing CFC to match the thermal conductivity requirements for the tokamak stationary regimes. But for the ITER off-normal events, their behavior is still not investigated in detail. Recent experiments on electron beam facilities simulating

S. Pestchanyi; H. Wuerz

2003-01-01

113

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01

114

Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

Wang, G. L.; Chew, W. C.; Cui, T. J.; Aydiner, A. A.; Wright, D. L.; Smith, D. V.

2004-01-01

115

Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity

NASA Technical Reports Server (NTRS)

Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal conductivity capability at the local level is incorporated into the efficient reformulation. Analytical solutions to validate both the user-friendly and efficient reformulations am also developed. Volume discretization sensitivity and validation studies, as well as a practical application of the developed efficient reformulation are subsequently carried out. The presented results illustrate the accuracy and implementability of both the user-friendly formulation and the efficient reformulation of HOTFGM.

Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

2002-01-01

116

Phonon heat conduction in a semiconductor nanowire and Alexander Balandin

have been fabricated by regular electron beam lithography and wet etching.9 To date, there have beenPhonon heat conduction in a semiconductor nanowire Jie Zoua) and Alexander Balandin Department October 2000; accepted for publication 4 December 2000 A model for phonon heat conduction

117

NASA Astrophysics Data System (ADS)

Shergottites are crystalline igneous rocks that record conditions of strong shock >22-55 GPa manifest as mechanical deformation of minerals, complete or partial transformation of plagioclase to maskelynite or vesiculated glass, and local mineral-scale melting (veins and pockets). This study is motivated by two observations: (1) recent experimental data and physical models provide different estimates for shock melt cooling times, and (2) a growing group of shergottites shocked to >45 GPa exhibit recrystallization textures that suggest post-shock cooling was relatively slow. To address these issues the system was modeled within a 3-dimensional mesh using the Heat program developed by K. Wohletz, which allows design and computation of the transient thermal regimes in and around a magmatic intrusion (in this case, a shock melt). The results constrain the heating profiles developed within the meteoroid by considering the post-shock temperature of the bulk rock, the size and distribution of melts, and cooling of the meteoroid in space. We consider the well-documented shock veins and pockets in shergottites Los Angeles, Dar al Gani 476 and Sayh al Uhaymir 150. Three types of model were run: (1) cooling of a homogeneous melt-free meteoroid in space. (2) Single melt pocket models. (3) Multiple melt pocket models. The first model was used to test the effects of conductive heat loss to space, by cooling a homogeneous 50 cm diameter meteoroid heated to 500 oC. For shock melt-bearing models a 10 x 10 cm block of the meteorite was examined. To avoid edge effects, the pockets were placed in the middle of the block. The single melt models examine the effect of melt size on cooling rate, calculated for thicknesses of 1, 0.5, 0.2 and 0.1 cm, and also the effect of temperature gradient between the host rock. Cooling times have been calculated for a melt (2000 oC) in a rock heated to 100, 500, 600 and 1000 oC. Cooling rates are controlled by the size of the largest pocket; the rates increase as the square of the pocket length. When pockets are close together there are interferences such that the local temperature gradient decreases, increasing the cooling time. For example, a single 4 mm x 2 mm pocket cools to the solidus in 7.8 seconds, whereas the same pocket, when adjacent to an additional temperature excursion, takes about 10% longer to cool. These cooling results are between the high values from Beck et al. (2007; ~7 x 106 oC/s) and the longer rates estimated by our earlier dynamic cooling experiments (~0.3 oC/s). For the latter, faster cooling rates are attributed to the nature of the starting material. Synthetic glasses were fused twice at superliquidus temperatures (1700 oC); the use of such homogeneous starting material extends cooling times because of the necessity of developing nuclei in the melt. Following this line of reasoning, we predict that experiments including nuclei in the starting material should require less undercooling for crystallization and develop the same textures at faster cooling rates.

Walton, E.; Shaw, C.

2009-12-01

118

Heat conduction through the Trombe wall

This paper aims to add to the theoretical understanding of Trombe walls, and to consider the most appropriate calculation methods for simulation purposes. Various control strategies can be used to improve the wall performance, but only movable insulation outside the wall produces any substantial improvement. In this case, total heat flow over a periodic cycle increases with thermal capacity to

C. Carter

1980-01-01

119

SPATIAL STATISTICS MODELS FOR STOCHASTIC INVERSE PROBLEMS IN HEAT CONDUCTION

A Bayesian statistical inference approach is presented herein for the solution of stochastic inverse problems in heat conduction. Spatial statistics models, in particular Markov random elds (MRF), are used to model the prior distributions of unknown thermal quantities (boundary heat ux or heat source). The posterior distribution of the unknown is derived from Bayes' formula and explored using Markov chain

J. Wang; N. Zabaras

2004-01-01

120

Hierarchical Bayesian models for inverse problems in heat conduction

Stochastic inverse problems in heat conduction with consideration of uncertainties in the measured temperature data, temperature sensor locations and thermophysical properties are addressed using a Bayesian statistical inference method. Both parameter estimation and thermal history reconstruction problems, including boundary heat flux and heat source reconstruction, are studied. Probabilistic specification of the unknown variables is deduced from temperature measurements. Hierarchical Bayesian

Jingbo Wang; Nicholas Zabaras

2005-01-01

121

Heat conduction errors and time lag in cryogenic thermometer installations

NASA Technical Reports Server (NTRS)

Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.

Warshawsky, I.

1973-01-01

122

Comparison of some inverse heat conduction methods using experimental data

This paper compares several methods of finding the surface heat flux using transient temperature measurements inside a heat-conducting body. Experimental data is used with a known heat flux history. The methods include function specification with several future approximations, Tikhonov regularization, iterative regularization and specified functions over large time regions with Green's functions. The first three methods are used with the

A. Haji-Sheikh

1996-01-01

123

Manufacture of high heat conductivity resistant clay bricks containing perlite

Different methods have been investigated for achieving heat insulation in the buildings. Manufacturing of high heat conductivity resistant construction materials is an important part of these research efforts. Perlite is an extremely useful material for heat insulation and 70% of the world reserves are located in Turkey. Nearly 65% of the perlite produced today is consumed by the construction industry.

?lker Bekir Topçu; Burak I??kda?

2007-01-01

124

Ultrasound transducer self heating: development of 3-D finite-element models

NASA Astrophysics Data System (ADS)

The surface temperature of diagnostic ultrasound transducers remains an important limitation to their safe use. 3-dimensional finite-element thermal models have been created to predict surface temperature rise for selected transducers operating in air. The models have been created using the ANSYS finite-element package and are based upon parameters made available by manufacturers. The models allow the prediction of the changing surface temperature with time over the front face of the transducers. These predictions have been compared with experimental profiles obtained using infra-red thermography or a miniature thermocouple. The creation of a valid finite-element thermal model requires structural detail and corresponding material properties, which have been obtained with a high level of confidence. Values for the overall power dissipation in the model, its distribution, and the heat loss from the surface are also required and are subject to greater uncertainty. An estimate of the power delivered to the transducer has been obtained from the measured total acoustic power output into water combined with an estimate of the transducer?s efficiency. By adjusting model estimates good agreement has been obtained between the predicted temporal variations of surface temperature and those observed.

Saunders, O.; Clift, S.; Duck, F.

2004-01-01

125

LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

NASA Astrophysics Data System (ADS)

Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

Fujita, E.

2013-12-01

126

An inverse heat conduction method for simultaneously estimating spatially varying thermal conductivity and heat capacity per unit volume under the conditions of a flash method type of experiment is developed. The unknown thermal properties are assumed to vary only in the space dimension normal to the slab sample and are modeled with piecewise linear representations. Lacking in the literature are

G. P. Flach; M. N. Özi?ik

1989-01-01

127

Heat conduction through the Trombe wall

NASA Astrophysics Data System (ADS)

This paper aims to add to the theoretical understanding of Trombe walls, and to consider the most appropriate calculation methods for simulation purposes. Various control strategies can be used to improve the wall performance, but only movable insulation outside the wall produces any substantial improvement. In this case, total heat flow over a periodic cycle increases with thermal capacity to an easily calculable upper limit which can be approached quite closely with practically realizable walls. An exact solution for a two-state Trombe wall is compared with approximate solutions obtained using finite difference methods and the author's modal expansion method. The Crank-Nicholson method has oscillatory errors in some problems, but adequate overall accuracy can be obtained using time steps up to four hours. The modal expansion method is generally very accurate and efficient.

Carter, C.

1980-07-01

128

Enhanced anisotropic heat conduction in multi-walled carbon nanotubes

NASA Astrophysics Data System (ADS)

Anisotropy of heat conduction in multi-walled carbon nanotubes (MWNTs) is investigated by measuring heat flows in a pristine MWNT and in a MWNT with defects. The in- and out-of-shell thermal conductivities of each MWNT graphite shell are determined, and differences of more than four orders of magnitude are obtained because of the inter-shell gaps. This enhanced anisotropy reduces the conductance by 74% compared with that of the pristine MWNT because of the presence of outer shell defects, which comprise only 2.8% volume ratio. Furthermore, the anisotropy-assisted length dependence of thermal conductivity is demonstrated, even though there is no ballistic phonon transport.

Hayashi, Hiroyuki; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji

2013-01-01

129

The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)

Kipp, K.L.

1987-01-01

130

Heat Conduction in Homogeneous and Heterogeneous Billiard Systems

NASA Astrophysics Data System (ADS)

We investigate the heat conduction in a modified Lorentz gas with freely rotating disks periodically placed along one-dimensional channel. The heat conductivity is dependent on the moment of inertia ? of the disks, with a power-law decay when ? > 1. By plotting the Poincaré surface of the section, we observe a contraction of phase space over the range of ? > 1, which is sensitive to the initial condition. We find that the power-law decay of the heat conductivity is relevant to the mixing phase space. As a possible application, we model the heterostructure by connecting the segments of different ?, and predict the analytical results of the temperature profiles and the heat conductivity, which are in good agreement with the numerical ones.

Mao, Jun-Wen; Li, You-Quan; Deng, Ling-Yun

131

The influence of heat conduction on acoustic streaming

Summary The influence of heat conduction on acoustic streaming is considered including the effect of variable tube wall temperature. The calculations are carried out in the limiting case when the boundary layer is thin compared to the tube radius.

Nikolaus Rott

1974-01-01

132

Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath

may lead to non-physical results. In contrast, Langevin heat bath is recommended because it canMolecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath Jie CHEN1, 2010) We investigate systematically the impacts of heat bath used in molecular dynamics simulations

Li, Baowen

133

Ballistic heat conduction and mass disorder in one dimension

NASA Astrophysics Data System (ADS)

It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (?) scales asymptotically as \\lim_{L\\rightarrow\\infty}\\kappa\\propto L^{0.5} where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (\\kappa\\propto L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function ? i.e. ?(?, L) = exp[?L/?(?)], where ? is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

Ong, Zhun-Yong; Zhang, Gang

2014-08-01

134

Ballistic heat conduction and mass disorder in one dimension.

It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (?) scales asymptotically as lim(L--> ?) ? ? L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (? ? L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function ? i.e. ?(?, L) = exp[-L/?(?)], where ? is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction. PMID:25077430

Ong, Zhun-Yong; Zhang, Gang

2014-08-20

135

Radiative heat conduction and the magnetorotational instability

NASA Astrophysics Data System (ADS)

A photon or a neutrino gas, semicontained by a non-diffusive particle species through scattering, comprises a rather peculiar magnetohydrodynamic fluid where the magnetic field is truly frozen only to the comoving volume associated with the mass density. Although radiative diffusion precludes a formal adiabatic treatment of compressive perturbations, we cast the energy equation in quasi-adiabatic form by assuming a negligible rate of energy exchange among species on the time-scale of the perturbation. This leads to a simplified dispersion relation for toroidal, non-axisymmetric magnetorotational modes when the accretion disc has comparable stress contributions from diffusive and non-diffusive components. The properties of the modes of fastest growth are shown to depend strongly on the compressibility of the mode, with a reduction in growth rate consistent with the results of Blaes & Socrates for axisymmetric modes. A clumpy disc structure is anticipated on the basis of the polarization properties of the fastest-growing modes. This analysis is accurate in the near-hole region of locally cooled, hyper-accreting flows if the electron gas becomes moderately degenerate such that non-conductive, thermalizing processes with associated electron-positron release (i.e. neutrino annihilation and neutrino absorption on to nuclei) are effectively blocked by high occupation of the Fermi levels.

Araya-Góchez, Rafael A.; Vishniac, Ethan T.

2004-12-01

136

Thermal conductivity and specific heat of sorghum grain

diffusivity was able to calculate the value of specific heat for wheat, Table II (1). The apparatus which he used was the same as that described for thermal conductivity. The most useful reference was by Disney, who determined the specific heat of wheat... done with the same modified Bunsen ice calorimeter and method as described for Disney. None of these investigators made any determination of the specific heat of sorghum grain, and therefore the literature reviewed was only useful to indicate a...

Miller, Clinton Frank

2012-06-07

137

Unsteady droplet combustion with droplet heating. II. Conduction limit

The spherically-symmetric, thin-flame combustion of a pure component droplet is analyzed by assuming quasi-steady gas-phase processes and conduction being the only heat transfer mechanism within the droplet. Exact numerical, and an approximate analytical, solutions are presented. Results show that droplet heating is the dominant heat utilization mode for the initial 10 to 20 percent of the droplet lifetime, during which

C. K. Law; W. A. Sirignono

1977-01-01

138

Use of Spreadsheets in Solving Heat Conduction Problems in Fins

NSDL National Science Digital Library

Excel is an effective and inexpensive tool available on all computers equipped with Microsoft Office. This software has the necessary functions for solving a large class of engineering problems, including those related to heat transfer. This paper provides several examples to demonstrate the application of Excel in solving problems involving one-dimensional heat conduction in various fin configurations. It provides formulas for the temperature distribution and heat transfer for several different fin profiles.

Karimi, Amir

2011-04-04

139

Transient conduction and radiation heat transfer in porous thermal insulations

This paper analyzes transient radiation and conduction heat transfer through planar porous materials. The transient response considered is caused by a sudden increase of heat generation at the hot boundary. The objective was to establish the effect of radiation on the temperature rise of the hot wall. The problem investigated is relevant to the use of transient methods for measuring

T. W. Tong; D. L. McElroy; D. W. Yarbrough

1984-01-01

140

Transient Conduction and Radiation Heat Transfer in Porous Thermal Insulations

This paper analyzes transient radiation and conduction heat transfer through planar porous materials. The transient response considered is caused by a sudden increase of heat generation at the hot boundary. The objective was to establish the effect of radiation on the temperature rise of the hot wall. The problem investigated is relevant to the use of transient methods for measuring

T. W. Tong; D. L. McElroy; D. W. Yarbrough

1985-01-01

141

SPATIAL STATISTICS MODELS FOR STOCHASTIC INVERSE PROBLEMS IN HEAT CONDUCTION

A Bayesian statistical inference approach is presented herein for the solution of stochastic inverse problemsSPATIAL STATISTICS MODELS FOR STOCHASTIC INVERSE PROBLEMS IN HEAT CONDUCTION J. Wang and N. Zabaras (MRF), is presented in this study for the solution of stochastic inverse problems in heat conduc- tion

Zabaras, Nicholas J.

142

Efficient sequential solution of the nonlinear inverse heat conduction problem

A solution to the nonlinear inverse heat conduction problem is offered which employs a sequential procedure for the calculation of surface heat fluxes and temperatures from measured interior temperatures in opaque solids having temperature-variable thermal properties. The nonlinear problem is linearized, and through the elimination of iteration, computation time can be reduced by a factor of 3 or 4. The

J. V. Beck; B. Litkouhi; C. R. Saint Clair Jr.

1982-01-01

143

Heat conduction in relativistic systems: alternatives and perspectives

The non-equilibrium thermodynamics of relativistic systems have a rich phenomenology. The simplest phenomenon in the class of dissipative processes is that of heat. This letter presents a brief summary of the efforts made to tackle the problem of relativistic heat conduction. In particular, we focus on the multi-fluid approach to relativistic dissipation.

C. S. Lopez-Monsalvo

2010-11-30

144

An Experiment in Heat Conduction Using Hollow Cylinders

ERIC Educational Resources Information Center

An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

2011-01-01

145

Axial conduction in a thick-wall matrix heat exchanger

Solutions are developed for temperature distributions and ineffectiveness for a high Ntu matrix heat exchanger having simultaneous axial conduction in the single phase (matrix\\/fluid) flow channels and separating wall. A scale analysis of the governing equations shows a large disparity in length scales for the conduction and convection effects, thus indicating a singular perturbation problem. Solutions for both balanced and

G. F. Jones

1995-01-01

146

Fourier analysis of conductive heat transfer for glazed roofing materials

NASA Astrophysics Data System (ADS)

For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

2014-07-01

147

Effective heat conduction in a configuration with nonoverlapped magnetic islands

The effective radial heat conduction {kappa}{sub eff} in a plasma configuration with nonoverlapped magnetic island chains is assessed by applying an ''optimal path'' method. This approach implies that heat is transported predominantly along paths rendering the minimum temperature variation and is related to the principle of minimum entropy production. Paths combined of up to three radial sections and two segments aligned along magnetic field lines are considered. It is demonstrated that the enhancement of {kappa}{sub eff} over the level of perpendicular heat conduction {kappa}{sub perpendicular} arising due to flows along magnetic field lines is controlled only by the Chirikov parameter and by the value 4b{sub r}{sup 2}{kappa}{sub parallel}/{kappa}{sub perpendicular}, where b{sub r} is the relative amplitude of the radial field resonant harmonic and {kappa}{sub parallel} is the parallel heat conduction.

Gupta, A.; Tokar, M. Z. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ, Trilateral Euregio Cluster, Juelich (Germany)

2008-03-15

148

NASA Astrophysics Data System (ADS)

SummaryThe deltaic aquifer system of the Valcartier sector in Quebec, Canada, is part of a quaternary valley fill contaminated by dissolved trichloroethene (TCE). The objective of our study is to define the aquifer system heterogeneity that should influence TCE transport. Heterogeneity is defined by the distribution of both hydrofacies and hydraulic conductivity ( K). Hydrofacies are defined as lithologic facies with distinctive hydraulic conductivity ranges. Our approach was developed to take advantage of the abundant stratigraphic and lithologic data provided by borehole logs (7000 m logged from 430 locations). Four site-specific deltaic hydrofacies were defined on the basis of lithologic descriptions, supported by data from grain size analyses, slug tests and cone penetration tests. Each hydrofacies includes a group of geologic facies found in borehole log descriptors to which an initial mean horizontal conductivity KH is associated based on slug tests. Borehole logs were converted to hydrofacies proportions over 5-m intervals to provide 1350 data points. The spatial distribution of hydrofacies was interpolated by three successive interconnected 3D kriging steps using the new technique of "imbricated kriging". Global dual kriging is directly carried out on the 3D grid of a numerical model. Finally, the proportions of hydrofacies were used to estimate horizontal ( KH) and vertical ( KV) hydraulic conductivity fields using generalized means for layered media. Final KH values assigned to the hydrofacies are calibrated by comparison with 2D trends in KH shown by slug tests. This approach also provides an estimated vertical KV field with a spatially varying proportion to KH, rather than a fixed anisotropy ratio. Imbricated kriging does not preserve the statistical variability of fine scale hydrofacies distribution representative of geological variability. However, the approach provides KH and KV estimates over a 3D numerical grid that are coherent with hydrofacies distribution, which in this case control KH and KV.

Ouellon, Thomas; Lefebvre, René; Marcotte, Denis; Boutin, Alexandre; Blais, Véronique; Parent, Michel

2008-03-01

149

The Tonga-Vanuatu Subduction Complex -- a Self-Optimized 3D Slab-Slab-Mantle Heat Pump

NASA Astrophysics Data System (ADS)

Recently published geophysical and geochemical data and increasingly actualistic free subduction models prompted a fresh look at 2 classics hinting, in combination, that a coupled 3D slab-slab-upper mantle interaction (Scholz and Campos, 1995; full citations at URL below) might power the prodigious surface heat dissipation (Lagabrielle et al., 1997) characterizing one of Earth's most remarkable tectonomagmatic systems, the Tonga-Vanuatu Subduction Complex (TVSC). The 3D TVSC includes (1) the kinematically, magmatically, and bathymetrically distinct North Tonga (NT, 14-26° S) and South Vanuatu (SV, 16-23° S) trenches and slabs, (2) the shared NT-SV backarc, and (3) entrained mobile upper mantle (MUM). That Earth's greatest convergence, rollback, and spreading rates; most disseminated spreading (the North Fiji Basin (NFB) ridge swarm); and greatest concentration of aggregate active ridge length coincide in a 1,500 km TVSC can't be accidental. To the north and south, the respective active NT and SV trenches swing abruptly 90° counterclockwise into continuity with the Vitiaz and Hunter fossil trenches, both active in the Late Miocene but now sinistral strike-slip loci standing over long exposed PA and AU slab edges. These 2 active-fossil trench pairs bracket a hot, shallow and geophysically and geochemically exceptional TVSC interior consisting of 2 rapidly spreading backarcs set back-to-back in free sublithospheric communication: The Lau-Havre NT backarc on the east and the ridge-infested SV backarc (NFB) on the west. The NFB and adjacent North Fiji Plateau make up the unplatelike New Hebrides-Fiji Orogen (Bird, 2003). As in the western Aleutians, the NT-Vitiaz and SV-Hunter subduction-to-strike-slip transitions (SSSTs) stand above toroidal fluxes of hot, dry PA and AU MUM driven along-trench and around the free NT and SV slab edges from subslab to supraslab regions by dynamic pressure gradients powered by slab free-fall and induced viscous couplings. These edge flows must converge and mix beneath the shared TVSC backarc, which must then shed a huge advected subslab heat load by maximizing ridge length in the area available. Found at both SSSTs are adakites indicative of a TVSC source laced with slab-edge melt and boninites consistent with flux- melting of hot, dry subslab MUM on entry to the supraslab wedge. Isotopics reveal widespread source mixing of Pacific and Indian MOR end-members. Diverging NT and VS trenches rotate clockwise at extremely high rates about pinning points at and Euler poles near trench-floater intercepts: Louisville Ridge on PA, and West Torres Plateau-D'Entrecasteaux Ridge on AU. In this configuration, the spinning, free-falling NT and SV slabs form a highly coupled self-organized gravity-powered pump pulling hot subslab MUM beneath the TVSC with enough left-over head to power severe transition zone buckling of an 80+ Ma NT (PA) slab also actively extending toward its free edge. Several nonlinear couplings (e.g., temperature-dependent viscosity and slab damage at tightening upper hinges) feedback positively to pump efficiency. The TVSC is but one possible slab-mantle pump partaking of the strong self-optimizing tendency characteristic of all natural flow systems (e.g., Bejan and Lorente, 2006). Slab-mantle pump natural history is now under investigation, as such pumps may have allowed a shrinking post-Pangean Pacific with an unrelenting sublithospheric room problem to relieve itself of excess MUM by making efficient use of available circum-Pacific slab curtain porosity -- a commodity that may have been in very short supply through most of the Cretaceous.

McCreary, J. A.

2008-12-01

150

The paper presents a proposition of a DC electromagnetic pump of conduction type for molten salts and describes the process of finite element analysis of its multiphysics model. The subject of molten salts pumping has a technical interest due to the current studies and attempts from the energy industry. Thanks to their good thermal characteristics, molten salts are envisaged in

Cristian Roman; Virgiliu Fireteanu

2011-01-01

151

Heat Transfer Analysis for a Concentric Tube Heat Exchanger Including the Wall Axial Conduction

The effect of wall axial conduction on the heat transfer in a concentric tube heat exchanger is examined for the inner flow laminar flow regime. The procedure used for the current analysis combines the analytical solution for the inner fluid with a numerical approximation for the wall conduction and has the capability of handling the temperature variation for the outer

Mehmet Emin Arici

2010-01-01

152

In this paper we derive a generalized fundamental solution for the BEM solution of problems of steady state heat conduction with arbitrarily spatially varying thermal conductivity. This is accomplished with the aid of a singular nonsymmetric generalized forcing function, D, with special sampling properties. Generalized fundamental solutions, E, are derived as locally radially symmetric responses to this nonsymmetric singular forcing

Alain J. Kassab; Eduardo Divo

1996-01-01

153

Implicit continuum mechanics approach to heat conduction in granular materials

In this paper, we derive a properly frame-invariant implicit constitutive relationship for the heat flux vector for a granular medium (or a density-gradient-type fluid). The heat flux vector is commonly modeled by Fourier’s law of heat conduction, and for complex materials such as nonlinear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematic parameters such as temperature, shear rate, porosity, concentration, etc. In this paper, we extend the approach of Massoudi [Massoudi, M. Math. Methods Appl. Sci. 2006, 29, 1585; Massoudi, M. Math. Methods Appl. Sci. 2006, 29, 1599], who provided explicit constitutive relations for the heat flux vector for flowing granular materials; in order to do so, we use the implicit scheme suggested by Fox [Fox, N. Int. J. Eng. Sci. 1969, 7, 437], who obtained implicit relations in thermoelasticity.

Massoudi, M.; Mehrabadi, M.

2010-01-01

154

Variable Conductance Heat Pipe Performance after Extended Periods of Freezing

NASA Astrophysics Data System (ADS)

Radiators operating in lunar or Martian environments must be designed to reject the maximum heat load at the maximum sink temperature, while maintaining acceptable temperatures at lower powers or sink temperatures. Variable Conductance Heat Pipe (VCHP) radiators can passively adjust to these changing conditions. Due to the presence of non-condensable gas (NCG) within each VCHP, the active condensing section adjusts with changes in either thermal load or sink temperature. In a Constant Conductance Heat Pipe (CCHP) without NCG, it is possible for all of the water to freeze in the condenser, by either sublimation or vaporization. With a dry evaporator, startup is difficult or impossible. Several previous studies have shown that adding NCG suppresses evaporator dryout when the condenser is frozen. These tests have been for relatively short durations, with relatively short condensers. This paper describes freeze/thaw experiments involving a VCHP with similar dimensions to the current reactor and cavity cooling radiator heat pipe designs.

Ellis, Michael C.; Anderson, William G.

2009-03-01

155

Heat capacity, magnetic susceptibility, EPR, and dc conductivity of some conducting polymers

NASA Astrophysics Data System (ADS)

Polyaniline doped with polystyrene-sulfonic-acid (PAN-PSSA), such that y =[sulfonate]/[aniline] = 1, exhibits a dc conductivity of 0.1 S/cm. On increasing the dopant concentration to y = 6, the conductivity drops by four orders of magnitude. Poly(3,4-ethylenedioxythiophene) doped with polystyrene-sulfonic-acid (PEDOT-PSSA) also exhibits a similar behavior on doping. The results of a study involving heat capacity, magnetic susceptibility, EPR, and dc conducting measurements will be reported.

Kahol, Pawan; Ho, James; Deterich, Stefania; Chen, Y. Y.; Wang, C. R.; Neeleshwar, S.; Tsai, C. B.; Wessling, B.

2004-03-01

156

Effect of crosslink formation on heat conduction in amorphous polymers

NASA Astrophysics Data System (ADS)

We performed molecular dynamics (MD) simulations on amorphous polyethylene (PE) and polystyrene (PS) in order to elucidate the effect of crosslinks between polymer chains on heat conduction. In each polymer system, thermal conductivities were measured for a range of crosslink concentration by using nonequilibrium MD techniques. PE comprised of 50 carbon atom long chains exhibited slightly higher conductivity than that of 250 carbon atom long chains at the standard state. In both cases for PE, crosslinking significantly increased conductivity and the increase was more or less proportional to the crosslink density. On the other hand, in the PS case, although the thermal conductivity increased with the crosslinking, the magnitude of change in thermal conductivity was relatively small. We attribute this difference to highly heterogeneous PS based network including phenyl side groups. In order to elucidate the mechanism for the increase of thermal conductivity with the crosslink concentration, we decomposed energy transfer into modes associated with various bonded and non-bonded interactions.

Kikugawa, Gota; Desai, Tapan G.; Keblinski, Pawel; Ohara, Taku

2013-07-01

157

Heat conduction induced by non-Gaussian athermal fluctuations.

We study the properties of heat conduction induced by non-Gaussian noises from athermal environments. We find that new terms should be added to the conventional Fourier law and the fluctuation theorem for the heat current, where its average and fluctuation are determined not only by the noise intensities but also by the non-Gaussian nature of the noises. Our results explicitly show the absence of the zeroth law of thermodynamics in athermal systems. PMID:23767504

Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

2013-05-01

158

Mechanical control of heat conductivity in molecular chains.

We discuss a possibility to control heat conductivity in molecular chains by means of external mechanical loads. To illustrate such possibilities we consider first well-studied one-dimensional chain with degenerate double-well potential of the nearest-neighbor interaction. We consider varying lengths of the chain with fixed number of particles. Number of possible energetically degenerate ground states strongly depends on the overall length of the chain, or, in other terms, on average length of the link between neighboring particles. These degenerate states correspond to mechanical equilibria; therefore, one can say that formation of such structures mimics a process of plastic deformation. We demonstrate that such modification of the chain length can lead to quite profound (almost fivefold) reduction of the heat conduction coefficient. Even more profound effect is revealed for a model with a single-well nonconvex potential. It is demonstrated that in a certain range of constant external forcing, this model becomes effectively double-well and has a multitude of possible states of equilibrium for fixed value of the external load. Due to this degeneracy, the heat-conduction coefficient can be reduced by two orders of magnitude. We suggest a mechanical model of a chain with periodic double-well potential, which allows control of the heat transport. The models considered may be useful for description of heat transfer in biological macromolecules and for control of the heat transport in microsystems. The possibility of the heat transport control in more realistic three-dimensional systems is illustrated by simulation of a three-dimensional model of polymer ?-helix. In this model, the mechanical stretching also brings about the structural inhomogeneity and, in turn, to essential reduction of the heat conductivity. PMID:24580199

Savin, A V; Gendelman, O V

2014-01-01

159

Heat conduction in one-dimensional aperiodic quantum Ising chains.

The heat conductivity of nonperiodic quantum Ising chains whose ends are connected with heat baths at different temperatures are studied numerically by solving the Lindblad master equation. The chains are subjected to a uniform transverse field h, while the exchange coupling J{m} between the nearest-neighbor spins takes the two values J{A} and J{B} arranged in Fibonacci, generalized Fibonacci, Thue-Morse, and period-doubling sequences. We calculate the energy-density profile and energy current of the resulting nonequilibrium steady states to study the heat-conducting behavior of finite but large systems. Although these nonperiodic quantum Ising chains are integrable, it is clearly found that energy gradients exist in all chains and the energy currents appear to scale as the system size ~N{?}. By increasing the ratio of couplings, the exponent ? can be modulated from ? > -1 to ? < -1 corresponding to the nontrivial transition from the abnormal heat transport to the heat insulator. The influences of the temperature gradient and the magnetic field to heat conduction have also been discussed. PMID:21517475

Li, Wenjuan; Tong, Peiqing

2011-03-01

160

Transient conduction and radiation heat transfer in porous thermal insulations

NASA Astrophysics Data System (ADS)

This paper analyzes transient radiation and conduction heat transfer through planar porous materials. The transient response considered is caused by a sudden increase of heat generation at the hot boundary. The objective was to establish the effect of radiation on the temperature rise of the hot wall. The problem investigated is relevant to the use of transient methods for measuring the thermal conductivity of porous insulations. It was found that, in cases such as when the porous material is a light-weight fiberglass insulation, neglecting radiation would result in serious errors in predicting the hot wall temperature rise.

Tong, T. W.; McElroy, D. L.; Yarbrough, D. W.

1984-12-01

161

A Mechanical Model for Fourier's Law of Heat Conduction

NASA Astrophysics Data System (ADS)

Nonequilibrium statistical mechanics close to equilibrium is a physically satisfactory theory centered on the linear response formula of Green-Kubo. This formula results from a formal first order perturbation calculation without rigorous justification. A rigorous derivation of Fourier's law for heat conduction from the laws of mechanics remains thus a major unsolved problem. In this note we present a deterministic mechanical model of a heat-conducting chain with nontrivial interactions, where kinetic energy fluctuations at the nodes of the chain are removed. In this model the derivation of Fourier's law can proceed rigorously.

Ruelle, David

2012-05-01

162

Neutrino Heat Conduction and Inhomogeneities in the Early Universe

NASA Technical Reports Server (NTRS)

Constraints on parameters of inhomogeneous nucteosynthesis, namely, the overdensity and size of baryon lumps, are found by calculatig the blackbody neutrino heat conduction into the lumps, which tends to inflate them away. The scale size for efficient heat conduction is determined by the mean free path lambda of the neutrino, and so we compute lambda in our case of a high-temperature plasma with low chemical potential, and find a general result that many-body effects are unimportant, simplifying the calculation. We find that in the region of interest for nucleosynthesis, neutrino inflation is important for overdensities greater than 10(exp 4).

Heckler, A.; Hogan, C. J.

1993-01-01

163

Application of genetic algorithms in nonlinear heat conduction problems.

Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517

Kadri, Muhammad Bilal; Khan, Waqar A

2014-01-01

164

Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath

We investigate systematically the impacts of heat bath used in molecular dynamics simulations on heat conduction in nanostructures exemplified by silicon nanowires (SiNWs) and silicon\\/germanium nano junction. It is found that multiple layers of Nosé-Hoover heat bath are required to reduce the temperature jump at the boundary, while only a single layer of Langevin heat bath is sufficient to generate

Jie Chen; Gang Zhang; Baowen Li

2010-01-01

165

A heat conduction study at non-continuum scales

NASA Astrophysics Data System (ADS)

An extensive and detailed description of heat conduction at the micro- and nano-scale is presented. During the last two decades this phenomenon has become very attractive to study because of the shrinking in size of thermoelectric technologies and electronic devices. These newer technologies are at the micro- and nano-scale. Due to the small size, a power dissipation problem has presented itself in these applications. The proper thermal performance is related with the performance of the technology. Because of these facts a description of the thermal transport in different materials at these scales is required. This problem is important because understanding the energy transport will allow engineers to design faster electronic devices and more efficient thermoelectric applications. For macro-scale it is known that diffusive behavior is presented in heat conduction; here models that show different behavior than diffusive such as wave-like are presented. One extra tool to understand heat conduction is to calculate the thermal conductivity. Equilibrium molecular dynamics combined with the Green-Kubo formula can be used to calculate the thermal conductivity of materials such as germanium and carbon. The foundation of this calculation is extracting the heat current from the results, and implementing it into the Green-Kubo formula. This work considers all formulations from the literature that calculate the heat current for the Tersoff potential, the interatomic potential most applicable to semiconductor materials. The formulations for the heat current are described, and results for germanium and carbon are presented. The formulations are compared with respect to how well they capture the physics of the Tersoff potential and how well the calculated value of the thermal conductivity reflects the experimentally-measured value. The second part of this work deals with heat transport in low dimensions at the nano-scale. The energy transport in a two dimensional graphene sheet is studied and compared to that in a one dimensional chain. The equations of motion for each individual atom of the sheet are solved numerically to generate the distribution of kinetic energy in the structure. The distribution of kinetic energy in the sheet shows two different characteristics of the transport. The components of frequency of the kinetic energy in the graphene structure are identified. The components allow the identification under which potential more low frequency carriers are expected. The presence of chaos in the graphene sheet using the anharmonic potential is identified. Finally, conclusions and recommendations for the study of heat conduction at the nano-scale are presented.

Guajardo Cuellar, Alejandro

166

High Conductance Loop Heat Pipes for Space Application

NASA Astrophysics Data System (ADS)

Three high conductance Loop Heat Pipes (LHPs) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) were designed, fabricated and thermal vacuum tested. One LHP with ammonia working fluid was designed for heat removal from a cryocooler cold head. Two ethane LHPs were designed to reject heat from the aft and fore optics to space. Thermal performance tests were performed in a vacuum chamber with attached masses simulating actual components. Thermal tests were also conducted on the bench and in an environmental chamber. The following features of the GIFTS LHPs were observed: (a) reliable startup and steady state operation with conductance as high as 83W/°C at various temperatures; (b) precision temperature control using compensation chamber heater during thermal cycling. Heat input power and condenser temperatures were varied periodically, while evaporator was maintained at a constant temperature. Temperature of the evaporator heat input surface fluctuated only by a fraction of a degree; (c) in addition there was no thermal performance degradation after 16 month of storage. The LHPs are installed on the instrument and waiting for a launch platform.

Semenov, Sergey Y.; Cho, Wei-Lin; Jensen, Scott M.

2006-01-01

167

A Numerical Procedure for Shock Problem Using Artificial Heat Conduction

A method for automatically taking into account the shock discontinuities in the flow problems whenever and wherever they occur was given by Von Neumann and Richtmyer by introducing an artificial viscosity term in the momentum and energy equations. In this paper, an alternative mechanism of artificial heat conduction is proposed. This alters only the energy equation and satisfies all conditions,

Purushottam Lal Sachdev; Phoolan Prasad

1966-01-01

168

Genetic Algorithm in Solution of Inverse Heat Conduction Problems

This report demonstrates the use of a genetic algorithm search in the solution of an inverse problem. The genetic algorithm is used to solve the one-dimensional inverse heat conduction problem using numerical data generated by solution of the corresponding direct problem. Both “pure” and noisy data are considered. If used with regularization, the method is shown to yield reasonable results

Miroslav Raudenský; Keith A. Woodbury; J. Kral; T. Brezina

1995-01-01

169

Equivalent inclusion method for steady state heat conduction in composites

The equivalent inclusion method is proposed to solve the steady state heat conduction problems in composites. This method is analogous to Eshelby's equivalent inclusion method in elasticity. Thus, the solution procedure by this method is very simple, involving only algebraic operations. The equivalent inclusion method developed here is also applicable to the case of high concentrations of ellipsoidal inhomogeneities. As

H Hiroshi; M. Taya

1986-01-01

170

Element-by-element factorization algorithms for heat conduction

NASA Technical Reports Server (NTRS)

Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems.

Hughes, T. J. R.; Winget, J. M.; Park, K. C.

1983-01-01

171

Regularized numerical solution of nonlinear inverse heat-conduction problem

The construction of an algorithm for a numerical solution of the nonlinear inverse problem is discussed for the case of a generalized one-dimensional heat-conduction equation in a region with moving boundaries. The algorithm is regularized in the Tikhonov manner.

O. M. Alifanov; E. A. Artyukhin

1975-01-01

172

Group classification of heat conductivity equations with a nonlinear source

We suggest a systematic procedure for classifying partial differential equations (PDEs) invariant with respect to low-dimensional Lie algebras. This procedure is a proper synthesis of the infinitesimal Lie method, the technique of equivalence transformations and the theory of classification of abstract low-dimensional Lie algebras. As an application, we consider the problem of classifying heat conductivity equations in one variable with

R. Z. Zhdanov; V. I. Lahno

1999-01-01

173

Deterioration in Heat Transfer due to Axial Conduction of Heat in Open Cell Metal Foam

NASA Astrophysics Data System (ADS)

Cross-connection in the foam struts helps achieving augmentation in heat transfer. It is the same feature which adds the risk of promoting axial conduction. Fluid flow through a slice of open-cell foam, attached to a plate, has been considered for analysing the effect of axial conduction through the porous medium. A repetitive simple cubic structure model for the porous matrix has been assumed for simplicity. While, thermal gradient in the solid plate is always associated with axial flow of heat, existence of the same through the foam filaments becomes conditional. Axial heat flow through the foam-fibres has been found causing substantial deterioration in heat transfer.

Ghosh, Indranil

2010-05-01

174

Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

2012-09-17

175

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating can be used to melt metals and make alloys. Vacuum Induction melting on the melting process. The induction melting facility (Figure 1) was established in the Symmetry Lab (WL-207

Subramaniam, Anandh

176

Heat transfer in NMR of conductive samples with radiofrequency decoupling

NASA Astrophysics Data System (ADS)

Under conditions of thermal and fluid mechanical equilibrium, heat transfer in a vortex-free liquid in an NMR tube spinning at about 30 Hz is evidently dominated by conduction, to first approximation. In contrast, heat transfer between the spinning tube and its stationary surroundings occurs primarily by convection. When high-power rf decoupling is used, lossy samples such as solutions of electrolytes or molecules having large electric dipole moments may exhibit large increases in average temperature as well as substantial radial temperature gradients, because of inductive dielectric heating. Equations for conduction of heat through such samples were applied to the case where chemical shift depends linearly on temperature, and the resulting expressions for the lineshape were fitted to 31P spectra of arylphosphine derivatives which were obtained using 100-MHz proton noise decoupling. For samples with ionic conductivity equal to that of 0.05 M aqueous NaCl, radial temperature gradients of 2.1 and 0.3 K were observed in 12- and 5-mm glass tubes, respectively, at 9 W radiated rf power and a maximum sample temperature of 302 K, 11 K above the temperatureof the thermostatted gas stream entering the NMR probe. Twelve-millimeter coaxial-cylinder sample tubes and coaxial inserts machined from polycrystalline beryllium oxide have thermal conductivities 250 times that of glass tubes and equilibrate rapidly in the probe. Heating effects and radial temperature gradients in BeO tubes equipped with coaxial BeO inserts were too small to measure. However, calculations suggest that the values should be close to 0.03 K for 9 W decoupling and other conditions as used for the conductive samples in glass tubes without inserts.

McNair, Douglas S.

177

High temperature electrically conducting ceramic heating element and control system

NASA Technical Reports Server (NTRS)

Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

Halbach, C. R.; Page, R. J.

1975-01-01

178

Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

NASA Technical Reports Server (NTRS)

A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

1988-01-01

179

Correlations and scaling in one-dimensional heat conduction.

We examine numerically the full spatiotemporal correlation functions for all hydrodynamic quantities for the random collision model introduced recently. The autocorrelation function of the heat current, through the Kubo formula, gives a thermal conductivity exponent of 1/3 in agreement with the analytical prediction and previous numerical work. Remarkably, this result depends crucially on the choice of boundary conditions: for periodic boundary conditions (as opposed to open boundary conditions with heat baths) the exponent is approximately 1/2. All primitive hydrodynamic quantities scale with the dynamic critical exponent predicted analytically. PMID:14682932

Deutsch, J M; Narayan, Onuttom

2003-10-01

180

Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

ERIC Educational Resources Information Center

Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

Bacon, Michael E.; And Others

1995-01-01

181

We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter $m$, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP$(m)$ and the KMP, and a nonlinear heat equation for the GBEP($a$). We prove the hydrodynamic limit rigorously for the BEP$(m)$, and give a formal derivation for the GBEP($a$). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form $-\\log \\rho$; they involve dissipation or mobility terms of order $\\rho^2$ for the linear heat equation, and a nonlinear function of $\\rho$ for the nonlinear heat equation.

Mark A. Peletier; Frank Redig; Kiamars Vafayi

2014-03-19

182

NASA Astrophysics Data System (ADS)

We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form -log ?; they involve dissipation or mobility terms of order ?2 for the linear heat equation, and a nonlinear function of ? for the nonlinear heat equation.

Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars

2014-09-01

183

Dispersion of the conductance of quantum nanowires and Joule heating

NASA Astrophysics Data System (ADS)

The high-frequency ballistic conductance G(?) of a quantum wire connecting two classical reservoirs is discussed. It is supposed that the transverse size of the wire is on the order of the de Broglie wavelength of the conduction electrons. An expression for G(?) in a wide range of frequencies ? is given. The behavior of both active Re G(?) and reactive Im G(?) parts of the conductance is investigated. The frequency range is determined where the so-called kinetic inductance is dominant, i.e., Im G(?) is positive and larger than Re G(?). This range is defined by the condition that the time of flight of the conduction electrons along the wire length L exceeds the period of oscillation 2?/? of the electric potential. The Joule heat generation that accompanies the current flow through the quantum wire takes place in the reservoirs over a distance on the order of the mean free path of conduction electrons. The total rates of Joule heat generation are the same in both reservoirs.

Gurevich, V. L.

2013-01-01

184

An eigenvalue method for solving transient heat conduction problems

NASA Technical Reports Server (NTRS)

The eigenvalue method, which has been used by researchers in structure mechanics, is applied to problems in heat conduction. Its formulation is decribed in terms of an examination of transient heat conduction in a square slab. Taking advantage of the availability of the exact solution, we compare the accuracy and other numerical properties of the eigenvalue method with those of existing numerical schemes. The comparsion shows that, overall, the eigenvalue method appears to be fairly attractive. Furthermore, only a few dominant eigenvalues and their corresponding eigenvectors need to be computed and retained to yield reasonably high accuracy. Greater savings are attained in the computation time for a transient problem with long time duration and a large computational domain.

Shih, T. M.; Skladany, J. T.

1983-01-01

185

Non-steady state heat conduction in composite walls

The problem of heat conduction in one-dimensional piecewise homogeneous composite materials is examined by providing an explicit solution of the one-dimensional heat equation in each domain. The location of the interfaces is known, but neither temperature nor heat flux are prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. We indicate also how to extend the solution method to the setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on that of three finite-sized domains.

Bernard Deconinck; Beatrice Pelloni; Natalie Sheils

2014-02-12

186

Stochastic inverse heat conduction using a spectral approach

SUMMARY An adjoint based functional optimization technique in conjunction with the spectral stochastic nite element method is proposed for the solution of an inverse heat conduction problem in the presence of uncertainties in material data, process conditions and measurement noise. The ill-posed stochastic inverse problem is restated as a conditionally well-posed L2 optimization problem. The gradient of the objective function

Velamur Asokan Badri Narayanan; Nicholas Zabaras

2004-01-01

187

A general theory of heat conduction with finite wave speeds

The classical linear theory of heat conduction for homogeneous and isotropie media is based on the equation AO=b O0 where O=O(x, t) is the absolute temperature, 0=~T-, A is the Laplacian, and > 0 is a constant. This equation, which is parabolic, has a very unpleasant feature: a thermal disturbance at any point in the body is felt instantly at

Morton E. Gurtin; A. C. Pipkin

1968-01-01

188

Generalized thermoelastic diffusive waves in heat conducting materials

NASA Astrophysics Data System (ADS)

Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

Sharma, J. N.

2007-04-01

189

Fuzzy and interval finite element method for heat conduction problem

Traditional finite element method is a well-established method to solve various problems of science and engineering. Different authors have used various methods to solve governing differential equation of heat conduction problem. In this study, heat conduction in a circular rod has been considered which is made up of two different materials viz. aluminum and copper. In earlier studies parameters in the differential equation have been taken as fixed (crisp) numbers which actually may not. Those parameters are found in general by some measurements or experiments. So the material properties are actually uncertain and may be considered to vary in an interval or as fuzzy and in that case complex interval arithmetic or fuzzy arithmetic has to be considered in the analysis. As such the problem is discretized into finite number of elements which depend on interval/fuzzy parameters. Representation of interval/fuzzy numbers may give the clear picture of uncertainty. Hence interval/fuzzy arithmetic is applied in the finite element method to solve a steady state heat conduction problem. Application of fuzzy finite element method in the said problem gives fuzzy system of linear equations in general. Here new methods have also been proposed to handle such type of fuzzy system of linear equations. Corresponding results are computed and has been reported here.

Sarangam Majumdar; Sukanta Nayak; S. Chakraverty

2012-09-26

190

NASA Astrophysics Data System (ADS)

We have succeeded in constructing a 3D POM-MOF, {H[Ni(Hbpdc)(H2O)2]2[PW12O40]·8H2O}n (H2bpdc=2,2'-bipyridyl-3,3'-dicarboxylic acid), by the controllable self-assembly of H2bpdc, Keggin-anions and Ni2+ ions based on the electrostatic and coordination interactions. Interestingly, Hbpdc- as polydentate organic ligands and Keggin-anion as polydentate inorganic ligands are covalently linked transition-metal nickel at the same time. The title complex represents a new example of introducing the metal N-heterocyclic multi-carboxylic acid frameworks into POMs chemistry. Based on Keggin-anions being immobilized as part of the metal N-heterocyclic multi-carboxylic acid framework, the title complex realizes four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs. Its water adsorption isotherm at room temperature and pressure shows that the water content in it was 31 cm3 g-1 at the maximum allowable humidity, corresponding to 3.7 water molecules per unit formula. It exhibits good proton conductivities (10-4-10-3 S cm-1) at 100 °C in the relative humidity range 35-98%. The corresponding activation energy (Ea) of conductivity was estimated to be 1.01 eV.

Wei, Meilin; Wang, Xiaoxiang; Sun, Jingjing; Duan, Xianying

2013-06-01

191

NASA Technical Reports Server (NTRS)

The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

1989-01-01

192

NASA Technical Reports Server (NTRS)

We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

1994-01-01

193

NASA Astrophysics Data System (ADS)

A numerical analysis of an ammonothermal synthesis process for the bulk growth of nitride crystals was performed. The analysis includes the development of a thermal model for a lab-scale ammonothermal autoclave, which was validated by in situ temperature measurements and applied to tailor the temperature field inside the autoclave. Based on the results of the global thermal 2D simulations, a local 3D model was used to include convective phenomena in the analysis. Moreover, the influence of the baffle and different baffle shapes on the flow velocity was investigated. Fluctuations of the temperature as well as the flow velocities occur, indicating that 3D considerations are essential to accurately investigate the heat and mass transport in ammonothermal systems.

Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N. S. A.; Schlücker, E.; Frey, L.

2014-10-01

194

NASA Technical Reports Server (NTRS)

Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions: (1) closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity; (2) these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects). This problem constitutes a basic building block for further analyses.

Kachanov, Mark

1998-01-01

195

Suppressed 3D conductivity in Mn doped Cu0.5Tl0.5Ba2Ca2-yMnyCu3O10-? superconductors

NASA Astrophysics Data System (ADS)

We have synthesised Mn-doped Cu0.5Tl0.5Ba2(Ca2-yMny)Cu3O10-? superconducting samples and studied their Fluctuation Induced Conductivity (FIC) analysis. The Tc(R = 0) and magnitude of diamagnetism are suppressed with increased Mn-doping in the final compound. FIC analyses have shown a suppression of 3D Lawrence and Doniach (LD) regime and a significant enhancement of 2D LD regime of Mn-doping of y = 0.35. In the sample with Mn-doping of y = 0.5, the 3D LD regime vanishes altogether and only 2D LD regime is observed, showing the confinement of superconductivity in the two dimensional planes. The coherence length along the c-axis and the Fermi velocity of the carriers are suppressed with increased Mn doping. Using the Ginzburg-Landau (GL) number [NG] and GL equations, the thermodynamic critical magnetic field Bc(0), the lower critical field Bc1(0), the upper critical field Bc2(0), the critical current density Jc(0), and penetration depth ?p.d are determined. The values of critical fields Bc(0) and Bc1(0) increases, despite suppression in the Tc(R = 0) with increased Mn-doping. The values of Jc(0), the penetration depth ?p.d, and inter-layer coupling are suppressed with enhanced Mn-doping. These observations suggested that Mn ions act as sub-nano-scale pinning centers between the CuO2 planes and their presence at the Ca-sites promote the de-coupling of CuO2 planes.

Qurat-ul-Ain, Khan, Nawazish A.

2013-04-01

196

Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

NASA Technical Reports Server (NTRS)

In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

Tarau, Calin; Anderson, William G.; Walker, Kara

2009-01-01

197

Variable Conductance Heat Pipe Radiators for Lunar and Martian Environments

NASA Astrophysics Data System (ADS)

Long-term Lunar and Martian surface systems present challenges to thermal system design, including changes in thermal load, and large changes in the thermal environment between Lunar (or Martian) day and night. For example, the heat sink temperature at the Lunar equator can vary from 210 to 315 K. The radiator must be sized to reject the design power at the maximum temperature, but must also be able to accommodate both the changing heat sink temperature, as well as changes in power. Variable Conductance Heat Pipe (VCHP) radiators were examined for the main reactor of a fission surface power system, as well as the cavity cooling radiator. A VCHP radiator was designed for Lunar Equator that is capable of maintaining a 16 K temperature drop with a 4% addition to overall mass. Without the VCHP the radiator would experience a 43 K drop in temperature. This design is also capable of handling turndown on the power without an effect to the outlet temperature. At Shackleton Crater, the temperature drop for a conventional heat pipe radiator is small enough that a VCHP is not beneficial at constant power. However, a VCHP will allow turndown ratios of 5:1 or more. A conventional radiator can not be turned down more than 2:1, without valves to bypass part of the radiator. VCHPs are also easier to start than conventional radiators, since the gas-loading prevents sublimation from the evaporator when the condenser is frozen.

Anderson, William G.; Ellis, Michael C.; Walker, Kara L.

2009-03-01

198

Fabrication and test of a variable conductance heat pipe

NASA Technical Reports Server (NTRS)

A variable conductance heat pipe (VCHP) with feedback control was fabricated with a reservoir-condenser volume ratio of 10 and an axially grooved action section. Tests of the heat transport capability were greater than or equal to the analytical predictions for the no gas case. When gas was added, the pipe performance degraded by 18% at zero tilt as was expected. The placement of the reservoir heater and the test fixture cooling fins are believed to have caused a superheated vapor condition in the reservoir. Erroneously high reservoir temperature indications resulted from this condition. The observed temperature gradients in the reservoir lend support to this theory. The net result was higher than predicted reservoir temperatures. Also, significant increases in minimum heat load resulted for controller set point temperatures higher than 0 C. At 30 C, control within the tolerance band was maintained, but high reservoir heater power was required. Analyses showed that control is not possible for reasonably low reservoir heater power. This is supported by the observation of a significant reservoir heat leak through the condenser.

Lehtinen, A. M.

1978-01-01

199

Space-time nonlocal model for heat conduction

NASA Astrophysics Data System (ADS)

We consider a space-time nonlocal heat conduction model with balance laws in the form of integral equations (so-called strong nonlocality). The model identifies two internal parameters-the time ? and the space h scales of nonlocality. In going from the strong nonlocal model to its approximations of various accuracy in the form of partial differential equations, which correspond to weak nonlocality, we introduce two limiting relations between ? and h as ?,h-->0. In the diffusion limit, which preserves the thermal diffusivity a=h2/?=const as ?,h-->0, the strong nonlocal model gives a hierarchy of parabolic equations with an infinite speed of heat waves. In the wave limit, which preserves the ratio v=h/?=const as ?,h-->0, a hierarchy of hyperbolic equations has been obtained. The hyperbolic equations imply a finite speed of heat waves. These results suggest that for diffusion (low-k) and propagative (high-k) regimes distinct models are responsible for the space-time evolution of the temperature and heat flux. The connection with phonon hydrodynamic theory and applications to other problems are discussed.

Sobolev, S. L.

1994-10-01

200

Numerical Model for Conduction-Cooled Current Lead Heat Loads

Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

White, M.J.; Wang, X.L.; /Fermilab; Brueck, H.D.; /DESY

2011-06-10

201

TOPAZ. 2D Finite Element Heat Conduction Code

TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

1985-01-01

202

Pseudo-updated constrained solution algorithm for nonlinear heat conduction

NASA Technical Reports Server (NTRS)

This paper develops efficiency and stability improvements in the incremental successive substitution (ISS) procedure commonly used to generate the solution to nonlinear heat conduction problems. This is achieved by employing the pseudo-update scheme of Broyden, Fletcher, Goldfarb and Shanno in conjunction with the constrained version of the ISS. The resulting algorithm retains the formulational simplicity associated with ISS schemes while incorporating the enhanced convergence properties of slope driven procedures as well as the stability of constrained approaches. To illustrate the enhanced operating characteristics of the new scheme, the results of several benchmark comparisons are presented.

Tovichakchaikul, S.; Padovan, J.

1983-01-01

203

Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction

NASA Technical Reports Server (NTRS)

Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.

Padovan, Joseph; Krishna, Lala; Gute, Douglas

1997-01-01

204

NASA Technical Reports Server (NTRS)

A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

1974-01-01

205

Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

2013-01-01

206

Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

NASA Astrophysics Data System (ADS)

Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons.

Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

2013-04-01

207

NASA Astrophysics Data System (ADS)

Design and development of a high power ultra-wideband, 3 dB tandem hybrid coupler is presented and its application in ICRF heating of the tokamak is discussed. In order to achieve the desired frequency band of 38-112 MHz and 200 kW power handling capability, the 3 dB hybrid coupler is developed using two 3-element 8.34 ± 0.2 dB coupled lines sections in tandem. In multi-element coupled lines, junctions are employed for the joining of coupled elements that produce the undesirable reactance called junction discontinuity effect. The effect becomes prominent in the high power multi-element coupled lines for high frequency (HF) and very high frequency(VHF) applications because of larger structural dimensions. Junction discontinuity effect significantly deteriorates coupling and output performance from the theoretical predictions. For the analysis of junction discontinuity effect and its compensation, a theoretical approach has been developed and generalized for n-element coupled lines section. The theory has been applied in the development of the 3 dB hybrid coupler. The fabricated hybrid coupler has been experimentally characterized using vector network analyzer and obtained results are found in good agreement with developed theory.

Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.

2014-04-01

208

A Direct Method for Measuring Heat Conductivity in Intracluster Medium

The inverse Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, was examined by the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel'dovich effect (gradT SZE). The spectrum has an universal shape. The spectrum crosses over zero at 326GHz. The sign of the spectrum depends on the relative direction of the line-of-sight to the direction of the temperature gradient. This unique spectrum shape can be used to detect the gradT SZE signal by broad-band or multi-frequency observations of the SZE. The amplitude of the spectrum distortion does not depend on the electron density and is proportional to the heat conductivity. Therefore, the gradT SZE provides an unique opportunity to measure thermally nonequilibrium electron momentum distribution function when the ICM has a temperature gradient and the heat conductivity in the ICM. However, the expected amplitude of the signal is very small. The modifications to the thermal SZE spectrum due to variety of known effects, such as relativistic correction etc., can become problematic when using multi-frequency separation techniques to detect the gradT SZE signal.

Makoto Hattori; Nobuhiro Okabe

2005-02-09

209

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

NASA Technical Reports Server (NTRS)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G.

2009-01-01

210

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

NASA Astrophysics Data System (ADS)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140° C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G.

2009-03-01

211

Variable Conductance Heat Pipes for Radioisotope Stirling Systems

NASA Astrophysics Data System (ADS)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ?T of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ?T was roughly 70 °C, due to distillation of the NaK in the evaporator.

Anderson, William G.; Tarau, Calin

2008-01-01

212

The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat

Ramiro H. Bravo; Ching-Jen Chen

1992-01-01

213

Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

2013-01-01

214

Application of the boundary element method to transient heat conduction

NASA Technical Reports Server (NTRS)

An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.

Dargush, G. F.; Banerjee, P. K.

1991-01-01

215

Efficient linear and nonlinear heat conduction with a quadrilateral element

NASA Technical Reports Server (NTRS)

A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

Liu, W. K.; Belytschko, T.

1983-01-01

216

Efficient linear and nonlinear heat conduction with a quadrilateral element

NASA Technical Reports Server (NTRS)

A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

Liu, W. K.; Belytschko, T.

1984-01-01

217

A finite element method for non-Fourier heat conduction in strong thermal shock environments

Non-Fourier effect is important in heat conduction in strong thermal environments. Currently, generally-purposed commercial\\u000a finite element code for non-Fourier heat conduction is not available. In this paper, we develop a finite element code based\\u000a on a hyperbolic heat conduction equation, which includes the non-Fourier effect in heat conduction. The finite element space\\u000a discretization is used to obtain a system of

Bao-Lin Wang; Jie-Cai Han

2010-01-01

218

Fixed conductance heat pipe performance with a liquid slug

NASA Astrophysics Data System (ADS)

Fixed conductance heat pipes (FCHPs) filled with working fluid at low or moderate temperatures develop a volume of excess liquid when operated at high temperatures. The excess liquid forms as either a puddle or a slug at the coldest end of the condenser and creates a temperature differential between the evaporator and the condenser end cap. Simple algebraic expressions are presented for predicting the thermal performance of an FCHP operating with a liquid slug formed by the combined influence of liquid density temperature dependence and meniscus depression. Both differential and two-node models are developed to account for condensation modeled either as a constant flux process or based on an isothermal vapor with a constant internal film coefficient. Numerical examples are included to illustrate the behavior of two axially grooved pipes operating over a range of heat loads with both real and ideal fluids. Prediction of evaporator temperature and liquid slug length is observed to have a weak dependence on the choice of model and mode of condensation and a strong dependence on real fluid effects.

Bobco, R. P.; Drolen, B. L.

1990-06-01

219

Heat conduction in nanoscale materials: A statistical-mechanics derivation of the local heat flux

NASA Astrophysics Data System (ADS)

We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples.

Li, Xiantao

2014-09-01

220

Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons Junichiro Shiomi-3-5800-6983 Abstract Investigations of diffusive-ballistic heat conduction of finite-length single-walled carbon of the balance between ballistic and diffusive heat conduction. For both systems, the profile indicates

Maruyama, Shigeo

221

The Dance of Heating and Cooling in Galaxy Clusters: 3D Simulations of Self-Regulated AGN Outflows

It is now widely accepted that heating processes play a fundamental role in galaxy clusters, struggling in an intricate but fascinating `dance' with its antagonist, radiative cooling. Last generation observations, especially X-ray, are giving us tiny hints about the notes of this endless ballet. Cavities, shocks, turbulence and wide absorption-lines indicate the central active nucleus is injecting huge amount of energy in the intracluster medium. However, which is the real dominant engine of self-regulated heating? One of the model we propose are massive subrelativistic outflows, probably generated by a wind disc or just the result of the entrainment on kpc scale by the fast radio jet. Using a modified version of AMR code FLASH 3.2, we explored several feedback mechanisms which self-regulate the mechanical power. Two are the best schemes that answer our primary question, id est quenching cooling flow and at the same time preserving a cool core appearance for a long term evolution (7 Gyr): one more explosive (...

Gaspari, M; Brighenti, F; D'Ercole, A

2010-01-01

222

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01

223

Incompressible Perturbations in Uniformally Stratified Viscous Heat-Conducting Fluid

NASA Astrophysics Data System (ADS)

One-component model of dissipative medium with two-parametric equation of state allows us to formulate a simple model of a stratified viscous heat-conducting fluid. At local thermodynamic equilibrium description and the simplifying assumption of constancy of the kinetic coefficients the complete system of equations of a viscous fluid can be written in the form of the equations of conservation of mass, momentum balance, entropy balance and state equation. Consequence of the equation of state is a linear relationship between changes in density and changes in pressure and entropy. In the case of an incompressible fluid change in the density does not occur when the pressure changes. This corresponds to an infinite speed of sound. As a result, change in the density is proportional to the temperature change and thermal expansion coefficient. Accordingly, the velocity of fluid flow is not solenoidal. At the constant heat capacity the entropy balance equation reduces to the heat equation, which in turn takes the form of the evolution equation of the density. This equation completes the equation of conservation of mass and the equation of fluid motion. We assume that fluid flow occurs in the gravity field and is caused by small external forces, a small source of mass and small thermal source. Let the initial state of the fluid is rest with the vertical coordinate-dependent density distribution. For simplicity it is assumed also that the stratification is uniform, i.e. the buoyancy frequency is constant. Then the weak current caused by the sources will be described by the linearized equations with constant coefficients in Boussinesq approximation. In this approximation, square of buoyancy frequency, the density at a fixed level and the transport coefficients are the basic constant coefficients of the equations. Gravity selects the vertical direction, and therefore it is convenient to divide vector characteristics of the perturbation in the horizontal and vertical parts. In turn, the horizontal components of vectors is conveniently represented by pairs of scalar potentials using the Helmholtz decomposition. Taking into account these relations complete system of equations for small perturbations can be reduced to separate equations for the characteristics of the perturbations. As a result, small perturbations of density, pressure and vectors of velocity and vorticity can be expressed in the form of various derivatives of the five quasipotentials. Four of these quasipotentials obey the same equation of sixth order with the mass, force and heat sources, respectively, on the right side. The operator left-hand side of these equations reflects the behavior of internal waves, as well as viscous and thermal relaxation. In addition to the viscosity this operator includes the kinetic coefficient, which is directly proportional to the coefficient of thermal conductivity and is inversely proportional to the specific heat. In this case the vertical componen

Gorodtsov, V. A.

2012-04-01

224

NASA Astrophysics Data System (ADS)

The present work is to investigate the transient three-dimensional heated turbulent jet into crossflow in a thick-wall T-junction pipe using CFD package. Two cases with the jet-to-crossflow velocity ratio of 0.05 and 0.5 are computed, with a finite-volume method utilizing k-? turbulent model. Comparison of the steady-state computations with measured data shows good qualitative agreement. Transient process of injection is simulated to examine the thermal shock on the T-junction component. Temporal temperature of the component is acquired by thermal coupling with the fluid. Via analysis of the flow and thermal characteristics, factors causing the thermal shock are studied. Optimal flow rates are discussed to reduce the thermal shock.

Wu, Hailing; Chen, Tingkuan; Luo, Yushan; Wang, Haijun

2001-03-01

225

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant Hawkes; James E. O'Brien

2008-10-01

226

Introduction of a New Crossover Radius for Radial Heat Conduction, Part I: Cylindrical Systems

Use of the critical radius for radial heat conduction in thermal insu lation systems has been widely reported in the literature. When it is desirable to in crease heat dissipation, this critical radius can be used in a definitive manner to maxi mize the heat dissipation. However, if it is desirable to decrease heat gain or heat loss, the critical

M. R. Kulkarni

1998-01-01

227

Critical radius for radial heat conduction: a necessary criterion but not always sufficient

Use of the critical radius for radial heat conduction in thermal insulation systems has been widely reported in the literature. When it is desirable to increase heat dissipation in these systems, the critical radius can be used in a definitive manner to maximize the heat dissipation. However, if it is desirable to decrease heat gain or heat loss, the critical

M. R. Kulkarni

2004-01-01

228

Flow, heat conductivity, and gas diffusion in partly saturated microstructures

Summary: The calculation of effective materia l properties of porous media based on the underlying 3D geometry had been established over the last years. In this context, the prediction of the permeability based on the pore geometry only is a very common example. For many industrial applications such as dewate ring of paper, the porous media is partly saturated with

Volker Schulz; Dirk Kehrwald; Andreas Wiegmann; Konrad Steiner

229

Theory and design of variable conductance heat pipes: Steady state and transient performance

NASA Technical Reports Server (NTRS)

Heat pipe technology pertinent to the design and application of self-controlled, variable conductance heat pipes for spacecraft thermal control is discussed. Investigations were conducted to: (1) provide additional confidence in existing design tools, (2) to generate new design tools, and (3) to develop superior variable conductance heat pipe designs. A computer program for designing and predicting the performance of the heat pipe systems was developed.

Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

1972-01-01

230

Statistical analysis as approach to conductive heat transfer modelling

NASA Astrophysics Data System (ADS)

The main inspiration for article was the problem of high investment into installation of the building insulation. The question of its effectiveness and reliability also after the period of 10 or 15 years was the topic of the international research project carried out at the University of Prešov in Prešov and Vienna University of Technology entitled "Detection and Management of Risk Processes in Building Insulation" and numbered SRDA SK-AT-0008-10. To detect especially the moisture problem as risk process in the space between the wall and insulation led to construction new measuring equipment to test the moisture and temperature without the insulation destruction and this way to describe real situation in old buildings too. The further investigation allowed us to analyse the range of data in the amount of 1680 measurements and express conductive heat transfer using the methods of statistical analysis. Modelling comprises relationships of the environment properties inside the building, in the space between the wall and insulation and in ambient surrounding of the building. Radial distribution function also characterizes the connection of the temperature differences.

Antonyová, A.; Antony, P.

2013-04-01

231

NASA Astrophysics Data System (ADS)

Because the viscosity of ice is strongly temperature dependent, convection in the ice layers of icy moons and dwarf planets likely operates in the stagnant lid regime, in which a rigid lid forms at the top of the fluid and reduces the heat transfer. A detailed modeling of the thermal history and radial structure of icy moons and dwarf planets thus requires an accurate description of stagnant lid convection. We performed numerical experiments of stagnant lid convection in 3-D spherical geometries for various ice shell curvatures f (measured as the ratio between the inner and outer radii), effective Rayleigh number Ram, and viscosity contrast ??. From our results, we derived scaling laws for the average temperature of the well-mixed interior, ?m, and the heat flux transported through the shell. The nondimensional temperature difference across the bottom thermal boundary layer is well described by (1-?m)=1.23?/f1.5, where ? is a parameter that controls the magnitude of the viscosity contrast. The nondimensional heat flux at the bottom of the shell, Fbot, scales as Fbot=1.46Ram0.27?/1.21 f1.78. Our models also show that the development of the stagnant lid regime depends on f. For given values of Ram and ??, the stagnant lid is less developed as the shell's curvature increases (i.e., as f decreases), leading to improved heat transfer. Therefore, as the outer ice shells of icy moons and dwarf planets grow, the effects of a stagnant lid are less pronounced.

Yao, C.; Deschamps, F.; Lowman, J. P.; Sanchez-Valle, C.; Tackley, P. J.

2014-08-01

232

Diffusive-Ballistic Heat Conduction along a Single-Walled Carbon Nanotube Shigeo Maruyama

Diffusive-Ballistic Heat Conduction along a Single-Walled Carbon Nanotube Shigeo Maruyama *E-mail address: maruyama@photon.t.u-tokyo.ac.jp The diffusive-ballistic heat conduction of finite at room temperature. A gradual transition from nearly pure ballistic to diffusive-ballistic heat

Maruyama, Shigeo

233

HEAT CONDUCTION AND ENTROPY PRODUCTION IN ANHARMONIC CRYSTALS WITH SELF-CONSISTENT

baths with which they can exchange energy. To obtain a heat flow between external reservoirs not hold when the "noise" is turned off (the heat conductivity then becoming infinite), one expectsHEAT CONDUCTION AND ENTROPY PRODUCTION IN ANHARMONIC CRYSTALS WITH SELF-CONSISTENT STOCHASTIC

Paris-Sud XI, UniversitÃ© de

234

The primary objective of the work is to evaluate the performance of an air to air variable conductance heat pipe heat exchanger (VCHPHX). This type of heat exchanger is of particular interest to the commercial aircraft industry because of its unique control system. The results from this research will help to provide the engineer with experimental data necessary to design

Chancelor

1983-01-01

235

A flexible variable conductance heat pipe design for temperature control of spacecraft equipment

The paper describes a variable conductance heat pipe design with a flexible joint. The heat pipe is developed for temperature control of high power electronics using a deployable space radiator. The evaporator section of the heat pipe is attached to the baseplate of the electronics. The condenser section of the heat pipe and the reservoir of noncondensible gas are attached

Han Hwangbo; T. E. Joost

1988-01-01

236

Constructal-theory network of conducting paths for cooling a heat generating volume

This paper develops a solution to the fundamental problem of how to collect and ‘channel’ to one point the heat generated volumetrically in a low conductivity volume of given size. The amount of high conductivity material that is available for building channels (high conductivity paths) through the volume is fixed. The total heat generation rate is also fixed. The solution

Adrian Bejan

1997-01-01

237

Isotope Effects on Heat Conduction of Carbon Nanotubes Shigeo Maruyama, Yuki Taniguchi and Yasushi that the inclusion of only 1 % of 13 C natural isotope dramatically reduces the thermal conductivity of diamond. However, isotope effects on heat conduction of SWNTs have not been elucidated. We estimated isotope

Maruyama, Shigeo

238

Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach

The transient response of one-dimensional multilayered composite conducting slabs to sudden variations of the temperature of the surrounding fluid is analysed. The solution is obtained applying the method of separation of variables to the heat conduction partial differential equation. In separating the variables, the thermal diffusivity is retained on the side of the modified heat conduction equation where the time-dependent

F. de Monte

2000-01-01

239

In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

Chen, Lin; Li, Zhen; Guo, Zeng-Yuan [Department of Engineering Mechanics, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

2009-07-15

240

NASA Astrophysics Data System (ADS)

In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

2009-02-01

241

NASA Astrophysics Data System (ADS)

We present a C-language program, THERMIC, that solves the 2-dimensional (pseudo 3D for axi-symmetric cases) conductive and advective heat-transfer equation. THERMIC uses a finite-element method that takes into account realistic geometries, heterogeneous material properties and various boundary and initial conditions. As it also allows for latent heat (heat production due to crystallisation) and for thermal properties, such as thermal conductivity, to be dependent on temperature, it is particularly suited to heat transfer problems encountered in the Earth Sciences. We present sample applications from the various problems already treated by THERMIC (cooling of magma chambers and dykes, the study of a granitic magma ascent or of pore water flow in sedimentary basins). Successfully tested on SUN® and SGI® UNIX workstations and on Microsoft Windows 95®, 98® and NT® 4.0 system based PCs, the THERMIC package can be downloaded from the web (THERMIC home page: http://www.ipgp.jussieu.fr/UFP/thermic/html/Thermic_home.html) and contains source files, makefiles and environment files as well as executable files for both systems and an html directory with help and example files.

Bonneville, Alain; Capolsini, Patrick

1999-12-01

242

We present a new mathematical method for the analysis of heat capacity and thermal conductivity measurements by the heat pulse\\u000a technique for the case of samples of finite length with a one-dimensional heat flow. In these experiments a heat pulse is\\u000a produced by a heater, and the temperature is measured as a function of time at a different location on

M. Gershenson; S. Alterovitz

1975-01-01

243

Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger

NASA Astrophysics Data System (ADS)

When a compact microchannel heat exchanger is operated at cryogenic environments, it has potential problems of axial conduction and flow maldistribution. To analyze these detrimental effects, the heat exchanger model that includes both axial conduction and flow maldistribution effect is developed in consideration of the microchannel heat exchanger geometry. A dimensionless axial conduction parameter (?) is used to describe the axial conduction effect, and the coefficient of variation (CoV) is introduced to quantify the flow maldistribution condition. The effectiveness of heat exchanger is calculated according to the various values of the axial conduction parameter and the CoV. The analysis results show that the heat exchanger effectiveness is insensitive when ? is less than 0.005, and effectiveness is degraded with the large value of CoV. Three microchannel heat exchangers are fabricated with printed circuit heat exchanger (PCHE) technology for validation purpose of the heat exchanger model. The first heat exchanger is a conventional heat exchanger, the second heat exchanger has the modified cross section to eliminate axial conduction effect, and the third heat exchanger has the modified cross section and the cross link in parallel channel to mitigate flow maldistribution effect. These heat exchangers are tested in cryogenic single-phase, and two-phase environments. The third heat exchanger shows the ideal thermal characteristic, while the other two heat exchangers experience some performance degradation due to axial conduction or flow maldistribution. The impact of axial conduction and flow maldistribution effects are verified by the simulation results and compared with the experimental results.

Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

2014-03-01

244

Nonstationary heat conduction in a single-walled carbon nanotube was investigated by applying a local heat pulse with duration of subpicoseconds. The investigation was based on classical molecular dynamics simulations, where the heat pulse was generated as coherent fluctuations by connecting a thermostat to the local cell for a short duration. The heat conduction through the nanotube was observed in terms of spatiotemporal temperature profiles. Results of the simulations exhibit non-Fourier heat conduction where a distinct amount of heat is transported in a wavelike form. The geometry of carbon nanotubes allows us to observe such a phenomenon in the actual scale of the material. The resulting spatiotemporal profile was compared with the available macroscopic equations, the so-called non-Fourier heat conduction equations, in order to investigate the applicability of the phenomenological models to a quasi-one-dimensional system. The conventional hyperbolic diffusion equation fails to predict the heat conduction due to the lack of local diffusion. It is shown that this can be remedied by adopting a model with dual relaxation time. Further modal analyses using wavelet transformations reveal a significant contribution of the optical phonon modes to the observed wavelike heat conduction. The result suggests that, in carbon nanotubes with finite length where the long-wavelength acoustic phonons behave ballistically, even optical phonons can play a major role in the non-Fourier heat conduction.

Shiomi, Junichiro; Maruyama, Shigeo [Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2006-05-15

245

In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 ?m to 5 ?m and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature. PMID:23556837

Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

2013-03-01

246

In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 ?m to 5 ?m and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m?1 K?1 at room temperature. PMID:23556837

Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

2013-01-01

247

of the finite thermal conductivity kT of individual nanotubes on the conductivity k of the CNT materials. The physical origin of this effect is explained in a theoretical analysis of systems composed of straight.1063/1.4737903] Experimental measurements of thermal conductivity of individual CNTs, kT, reveal exceptionally high room

Zhigilei, Leonid V.

248

NASA Astrophysics Data System (ADS)

Subcooled flow boiling is generally characterized by high heat transfer capacity and low wall superheat, which is essential for cooling applications requiring high heat transfer rate, such as nuclear reactors and fossil boilers. In this study, subcooled flow boiling on copper and stainless steel heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. Flow boiling heat flux and heat transfer coefficient were experimentally measured on both surfaces under different conditions, such as pressure, flow rate and inlet subcooling. Significant boiling heat transfer coefficient differences were found between the copper and the stainless steel heating surfaces. To explain the different flow boiling behaviors on these two heating surfaces, nucleation site density and bubble dynamics were visually observed and measured at different experimental conditions utilizing a high-speed digital video camera. These two parameters are believed to be keys in determining flow boiling heat flux. Wall superheat, critical cavity size and wall heat flux were used to correlate with nucleation site density data. Among them, wall heat flux shows the best correlation for eliminating both pressure and surface property effects. The observed nucleation site distribution shows a random distribution. When compared to the spatial Poisson distribution, similarity between them was found, while the measured nucleation site distribution is more uniform. From experimental observations, for the two surface materials investigated, which have similar surface wettability but sharply different thermal properties, bubble dynamics displayed fairly similar behavior. The obtained experimental results indicate that thermal conductivity of heating surface material plays an important role in boiling heat transfer. This is due to thermal conductivity having a significant impact on the lateral heat conduction at the heating surface and consequently temperature uniformity of the heating surface. A model was then developed and solved numerically for heat conduction at the heating surface when bubbles are present. Several key parameters which impact lateral heat conduction and surface temperature profile were studied. These parameters include material thermal conductivity, bubble size, heating surface thickness, etc. Numerical results show that, temperature profile on the heating surface tends to be more uniform and have a lower average value on a heating surface with higher thermal conductivity, which agrees well with the experimental observation.

Zou, Ling

249

EFFECT OF A CENTERED CONDUCTING BODY ON NATURAL CONVECTION HEAT TRANSFER IN AN ENCLOSURE

The effect of a centered, square, heat-conducting body on natural convection in a vertical square enclosure was examined numerically. The analysis reveals that the fluid flow and heat transfer processes are governed by the Rayleigh and Prandtl numbers, the dimensionless body size, and the ratio of the thermal conductivity of the body to that of the fluid. For Pr =

John M. House; Christoph Beckermann; Theodore F. Smith

1990-01-01

250

Nonballistic heat conduction in an integrable random-exchange Ising chain studied with quantum numerically investigate the heat conduction in a random-exchange Ising spin chain by using the quantum master equation. The chain is subject to a uniform transverse field h, while the exchange couplings Qn between

Li, Baowen

251

Solving an inverse heat conduction problem using a non-integer identified model

An inverse heat conduction problem in a system is solved using a non-integer identified model as the direct model for the estimation procedure. This method is efficient when some governing parameters of the heat transfer equations, such as thermal conductivity or thermal resistance, are not known precisely. Reliability of the inversion depends on the precision of the identified model. From

J.-L. Battaglia; O. Cois; L. Puigsegur; A. Oustaloup

2001-01-01

252

Numerical Modeling of Combined Radiation and Conduction Heat Transfer in Mineral Wool Insulations

This article addresses numerical modeling of coupled heat conduction and radiation in mineral wools under steady-state condition for prediction of its effective thermal conductivity. The radiative heat transfer is modeled using the Monte Carlo Ray-Trace Method. The radiation model is based on a random distribution of fibers in the media. The radiation distribution factor is employed in order to compute

Sohrab Veiseh; Ali Hakkaki-Fard

2009-01-01

253

An AC conductance technique for measuring self-heating in SOI MOSFET's

In this paper, we present a new technique for isolating the electrical behavior of an SOI MOSFET's from the self-heating effect using an AC conductance method. This method reconstructs an I-V curve by integrating high frequency output conductance data. The heating effect is eliminated when the frequency is much higher than the inverse of the thermal time constant of the

Robert H. Tu; Clement Wann; Joseph C. King; Ping K. KO; Chenming Hu

1995-01-01

254

An Input Estimation Approach to On-Line Two-Dimensional Inverse Heat Conduction Problems

An on-line methodology to solve two-dimensional inverse heat conduction problems (IHCP) is presented. A new input estimation approach based on the Kalman filtering technique is developed to estimate the two separate unknown heat flux inputs on the two boundaries in real time. A recursive relation between the observed value of the residual sequence with unknown heat flux and the theoretical

Pan-Chio Tuan; Ching-China Ji; Li-Wei Fong; Wen-Tang Huang

1996-01-01

255

Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in

J. W. Valvano; J. R. Cochran; K. R. Diller

1985-01-01

256

Dissipative Particle Dynamics with Energy Conservation: Heat Conduction

We study by means of numerical simulations the model of dissipative particle dynamics with energy conservation for the simple case of thermal conduction. It is shown that the model displays correct equilibrium fluctuations and reproduces Fourier law. The connection between \\

Marisol Ripoll; Pep Español; Matthieu H. Ernst

1999-01-01

257

Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

NASA Technical Reports Server (NTRS)

In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.

Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.

2013-01-01

258

Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors

The thermal conductivity of polycrystalline semiconductors with type-I\\u000aclathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr\\u000aand\\/or Eu) exhibit lattice thermal conductivities typical of amorphous\\u000amaterials. Remarkably, this behavior occurs in spite of the well-defined\\u000acrystalline structure and relatively high electron mobility ($\\\\sim 100\\u000acm^2\\/Vs$). The dynamics of dopant ions and their interaction with the\\u000apolyhedral cages

J. L. Cohn; G. S. Nolas; V. Fessatidis; T. H. Metcalf; G. A. Slack

1999-01-01

259

NASA Astrophysics Data System (ADS)

The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

Pletinckx, D.

2011-09-01

260

Heat conduction in a symmetric body subjected to a current flow of symmetric input and output

Steady heat conduction in symmetrical electro-thermal problems is analyzed under the influence of a steady direct current passing through symmetrical regions of the boundary. In the present approach, solution is obtained by dividing the temperature field of the electro-thermal problem into two fields—one is related to the heat conduction problem without Joule heating and the other corresponds to a symmetric

M. Saka; Y. X. Sun; S. Reaz Ahmed

2009-01-01

261

Hyperbolic Heat Conduction in a Cracked Thermoelastic Half-Plane Bonded to a Coating

NASA Astrophysics Data System (ADS)

In this paper, the transient temperature field around a thermally insulated crack in a substrate bonded to a coating is obtained using the hyperbolic heat conduction model. Fourier and Laplace transforms are applied, and the thermal conduction problem is reduced to solving a singular integral equation. Numerical results show that the hyperbolic heat conduction parameters, the heat conductivity of the substrate and coating, and the geometric size of the composite have significant influence on the transient temperature field. In the case of very small time scales, the results predicted by the hyperbolic model are more conservative than that by the parabolic model.

Chen, Z. T.; Hu, K. Q.

2012-05-01

262

NASA Technical Reports Server (NTRS)

In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.

Brandon, S.; Derby, J. J.

1992-01-01

263

Heat conduction in cooling flows. [in clusters of galaxies

NASA Technical Reports Server (NTRS)

It has been suggested that electron conduction may significantly reduce the accretion rate (and star foramtion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an efficiency factor, mu, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one where mu is independent of position and time, and one where inflow stretches the field lines and changes mu. In both cases, there is only a narrow range of initial conditions for mu in which the cluster accretion rate is reduced while a significant temperature gradient occurs. In the first case, no steady solution exists in which both conditions are met. In the second case, steady state solutions occur in which both conditions are met, but only for a narrow range of initial values where mu = 0.001.

Bregman, Joel N.; David, L. P.

1988-01-01

264

Guaranteed Verification of Finite Element Solutions of Heat Conduction

, and 4 respectively. . . . . . . . . . . . . . . . . . 67 4.2 Heat transition problem in one dimension. The effectivity indices ? based on the exact solution u? and ?Sp+k?h? = ESp+k?h? /||eh||C based on the finite element solution u?Sp+k?h? (k = 1... dimensional synthetic problem. The effectivity indices ? based on the exact solution u? and ?Sp+k?h? = ESp+k?h? /||eh||C based on the finite element solution u?Sp+k?h? (k = 1, 2, 3, and ?h? from the nest subdivision of the original mesh ?h) of elliptic...

Wang, Delin

2012-07-16

265

NASA Technical Reports Server (NTRS)

The phenomenon of hyperbolic heat conduction in contrast to the classical (parabolic) form of Fourier heat conduction involves thermal energy transport that propagates only at finite speeds, as opposed to an infinite speed of thermal energy transport. To accommodate the finite speed of thermal wave propagation, a more precise form of heat flux law is involved, thereby modifying the heat flux originally postulated in the classical theory of heat conduction. As a consequence, for hyperbolic heat conduction problems, the thermal energy propagates with very sharp discontinuities at the wave front. Accurate solutions are found for a class of one-dimensional hyperbolic heat conduction problems involving non-Fourier effects that can be used effectively for representative benchmark tests and for validating alternate schemes. Modeling/analysis formulations via specially tailored hybrid computations are provided for accurately modeling the sharp discontinuities of the propagating thermal wave front. Comparative numerical test models are presented for various hyperbolic heat conduction models involving non-Fourier effects to demonstrate the present formulations.

Tamma, Kumar K.; Railkar, Sudhir B.

1989-01-01

266

Effect of sand addition on the specific heat and thermal conductivity of cement

Sand addition was found to decrease the specific heat and increase the thermal conductivity of cement, in contrast to the opposite effects of silica fume addition. The thermal conductivity increase due to sand addition was much greater when silica fume was present. The thermal conductivity decrease due to silica fume addition was much smaller when sand was present.

Xu, Y.; Chung, D.D.L.

2000-01-01

267

Heat conductivity in the beta-FPU lattice. Solitons and breathers as energy carriers

This paper consists of two parts. The first part proposes a new methodological framework within which the heat conductivity in 1D lattices can be studied. The total process of heat conductivity is decomposed into two contributions where the first one is the equilibrium process at equal temperatures T of both lattice ends and the second -- non-equilibrium process with the temperature \\Delta T of one end and zero temperature of the other. The heat conductivity in the limit \\Delta T \\to 0 is reduced to the heat conductivity of harmonic lattice. A threshold temperature T_{thr} scales T_{thr}(N) \\sim N^{-3} with the lattice size N. Some unusual properties of heat conductivity can be exhibited on nanoscales at low temperatures. The thermodynamics of the \\beta-FPU lattice can be adequately approximated by the harmonic lattice. The second part testifies in the favor of the soliton and breather contribution to the heat conductivity in contrast to [N. Li, B. Li, S. Flach, PRL 105 (2010) 054102]. In the continuum limit the \\beta-FPU lattice is reduced to the modified Korteweg - de Vries equation with soliton and breather solutions. Numerical simulations demonstrate their high stability. New method for the visualization of moving solitons and breathers is suggested. An accurate expression for the dependence of the sound velocity on temperature is also obtained. Our results support the conjecture on the solitons and breathers contribution to the heat conductivity.

T. Yu. Astakhova; V. N. Likhachev; G. A. Vinogradov

2011-03-18

268

Phonon Transport in Graphene: Umklapp Quenching and Heat Conduction

NASA Astrophysics Data System (ADS)

Since its exfoliation, graphene attracted tremendous attention of the research community. Graphene, which consists of a single atomic plane of carbon atoms, revealed many unique properties including extremely high electron mobility. In this talk I will show that unusual properties of graphene are not limited to electrons alone. Phonons also behave differently in two-dimensional (2D) system such as graphene. We have recently discovered experimentally that thermal conductivity of suspended graphene layers is extremely high and exceeds that of diamond or graphite [2-3]. We explained our results theoretically by considering the Umklapp and edge scattering of phonons in graphene [3]. Unlike in bulk graphite, the phonon transport in graphene is pure 2D for all phonon energies. As a result, the thermal conductivity of graphene can become extremely high. The extraordinary high thermal conductivity of graphene can be used for thermal management of nanoscale electronic devices. This work was supported by SRC-DARPA Functional Engineered Nano Architectonics (FENA) center and Interconnect Focus Center (IFC). [1] A.A. Balandin, et al. Nano Letters, 8, 902 (2008); S. Ghosh, et al., Appl. Phys. Lett., 92, 151911 (2008). [2] D.L. Nika, et al., Phys. Rev. B, 79, 155413 (2009); D.L. Nika et al., Appl. Phys. Lett., 94, 203103 (2009)

Balandin, Alexander

2009-11-01

269

The fabrication of 3-dimensional (3D) tissue scaffolds is a competitive approach to engineered tissues. An ideal tissue scaffold must be highly porous, biocompatible, biodegradable, easily processed and cost-effective, and have adequate mechanical properties. A casting based process has been developed in this study to fabricate 3D alginate tissue scaffolds. The alginate\\/calcium gluconate hydrogel was quenched in a glass mold and

W. M. Parks; Y. B. Guo

2008-01-01

270

Tables for solution of the heat-conduction equation with a time-dependent heating rate

Tables are presented for the solution of the transient onedimensional heat flow in a solid body of constant material properties with the heating rate at one boundary dependent on time. These tables allow convenient and ...

Bergles A. E.

1962-01-01

271

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger ...

Hansen, B J; Klebaner, A; 10.1063/1.4706971

2012-01-01

272

, inconvenient, to study the Earth's response to transient signals, such as magnetic storms, by the frequency satellite time series to mid-mantle conductivity inhomogeneities. The interpretation of satellite magnetic recently been developed to compute a transient magnetic field induced in the Earth by an external magnetic

VelÃmsky, Jakub

273

NASA Astrophysics Data System (ADS)

Rayleigh–Bénard stability of a liquid metal layer of rectangular cross section is examined in the presence of a strong magnetic field that is aligned with the horizontal direction of the cross section. The latter is much longer than the vertical direction and the cross section assumes a large aspect ratio. The side walls are treated as highly conducting. Linear stability analysis is performed allowing for three-dimensional instabilities that develop along the longitudinal direction. The finite element methodology is employed for the discretization of the stability analysis formulation while accounting for the electrical conductivity of the cavity walls. The Arnoldi method provides the dominant eigenvalues and eigenvectors of the problem. In order to facilitate parallel implementation of the numerical solution at large Hartmann numbers, Ha, domain decomposition is employed along the horizontal direction of the cross section. As the Hartmann number increases a real eigenvalue emerges as the dominant unstable eigenmode, signifying the onset of thermal convection, whose major vorticity component in the core of the layer is aligned with the direction of the magnetic field. Its wavelength along the longitudinal direction of the layer is on the order of twice its height and increases as Ha increases. The critical Grashof was obtained for large Ha and it was seen to scale like Ha 2 signifying the balance between buoyancy and Lorentz forces. For well conducting side walls, the nature of the emerging flow pattern is determined by the combined conductivity of Hartmann walls and Hartmann layers, cH + Ha ?1. When poor conducting Hartmann walls are considered, cH ? 1, the critical eigensolution is characterized by well defined Hartmann and side layers. The side layers are characterized by fast fluid motion in the magnetic field direction as a result of the electromagnetic pumping in the vicinity of the Hartmann walls. Increasing the electrical conductivity of the Hartmann walls was seen to delay the onset of thermal convection, while retaining the above scaling at criticality. Furthermore, for both conducting and insulating Hartmann walls and the entire range of Ha numbers that was examined, there was no tendency for a well defined quasi two-dimensional structure to develop owing to the convective motion in the core. A connection is made between the above findings and previous experimental investigations indicating the onset of standing waves followed by travelling waves as Gr is further increased beyond its critical value.

Dimopoulos, Dimitrios; Pelekasis, Nikos A.

2014-10-01

274

NASA Astrophysics Data System (ADS)

The lithium-ion battery has emerged as a common power source for portable consumer electronics since its debut two decades ago. Due to the low atomic weight and high electrochemical activity of lithium chemistry, lithium-ion battery has a higher energy density as compared to other battery systems, such as Ni-Cd, Ni-MH, and lead-acid batteries. As a result, use of lithium-ion batteries enables the size of batteries to be effectively reduced without compromising capacity. More importantly, as battery size is reduced, it enhances the applications of portable electronics, increasing the convenience of use. The 3-D battery architecture described in the dissertation is believed to be a new paradigm for future batteries. The architecture features coupled 3-D electrodes to provide better charge/discharge kinetics and a higher charge capacity per footprint area. The overarching objective of this dissertation is to implement the 3-D architecture using the lithium-ion chemistry. The 3-D lithium-ion batteries are designed to provide high areal energy density without compromising power density. The dissertation is comprised of four interrelated sections. First, a simulation was conducted to identify key battery parameters and to define an ideal three-dimensional cell structure. The second part of the research involved identifying fabrication routes to build the 3-D electrode, which was the key design element in the 3-D paradigm. The third part of the dissertation was to correlate the electrode performance with its geometric features. In particular, the influence of aspect ratio was investigated. Lastly, an electrolyte/separator was designed and fabricated based on the existing 3-D electrode configuration. This enabled 3-D battery to be assembled.

Yeh, Yuting

275

NASA Astrophysics Data System (ADS)

A computer model (CONDUCT) has been developed that simulates corps and subordinate command, control, communications, and intelligence C3I functions with particular emphasis on the integration of the new generation of intelligence, surveillance, and target-acquisition systems within the developing 1982 and 1986 force structure. CONDUCT is an event-by-event simulation model written in GPSS-V (General Purpose Simulation System), representing the combat and combat support command/staff elements and communications nodes/nets for the operations and intelligence functions within a type corps. Maneuver and engineer units are represented to platoon level, artillery units to battery level, and target-acquisition and Combat Electronics Warfare Intelligence (CEWI) units to sensor team level. Major command posts and operations centers are subdivided into their primary functional areas. Also given are results from the initial 16 hr combat simulation.

Noon, T. V.; Marx, E.

1981-11-01

276

A Multiscale Model for Coupled Heat Conduction and Deformations of Viscoelastic Composites

formulation is implemented within the ABAQUS, general purpose displacement based FE software, allowing for analyzing coupled heat conduction and deformations of composite structures. Experimental data on the effective thermal properties and time dependent...

Khan, Kamran Ahmed

2012-07-16

277

Some Analogies from Classical Analysis in the Theory of Heat Conduction.

National Technical Information Service (NTIS)

The theory of heat conduction exhibits many analogies with the theory of functions of a complex variable (or alternatively with potential theory). The analogies are emphasized to illuminate the structure of the former theory and to indicate directions for...

D. V. Widder

1965-01-01

278

Molecular dynamics analysis of spectral characteristics of phonon heat conduction in silicon

Due to the technological significance of silicon, its heat conduction mechanisms have been studied extensively. However, there have been some lingering questions surrounding the phonon mean free path and importance of ...

Henry, Asegun Sekou Famake

2006-01-01

279

NASA Technical Reports Server (NTRS)

The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

Huerre, P.; Karamcheti, K.

1976-01-01

280

NASA Technical Reports Server (NTRS)

A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.

Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.

1984-01-01

281

The importance of electron heat conduction in the energy balance of the F-region

NASA Technical Reports Server (NTRS)

Taking into account heat conduction in the analysis of electron temperature data acquired by the AE-C satellite during the daytime at middle latitudes is shown to bring theoretical electron temperature profiles in good agreement with experimental ones. Middle latitude passes were chosen because in this region the horizontal electron temperature gradient is negligible and the height variation can be approximated by the satellite data. Inclusion of heat conduction is shown to have little effect on low-latitude data.

Hoegy, W. R.; Brace, L. H.

1978-01-01

282

Effect of heat treatment on the thermal conductivity of plasma-sprayed thermal barrier coatings

The effect of heat treatment on the thermal conductivity of plasma-sprayed Y2O3 stabilized ZrO2 (YSZ) and Al2O3 coatings was investigated. A heat treatment of 1300 °C in flowing argon for 50 h was found to significantly increase the\\u000a thermal conductivity of the coatings when compared to measurements in the assprayed condition. Transmission electron microscopy\\u000a (TEM) examination of the microstructures of

Rollie Dutton; Robert Wheeler; K. S. Ravichandran; K. An

2000-01-01

283

According to percolation theory the investigation of charge transport in disordered systems is equivalent to the study of the possibility of the passage of the carriers through a random network of impedances which interconnect the different lattice sites. When the site energies are not the same, the energy of a site affects the incoming as well as the outgoing impedances connected to the given site and this gives rise to correlations between neighboring impedances. This new condition characterizes the transport process and imposes the evaluation of the average number of sites accessible by a bond from a given site for all possible configurations of sites that satisfy the percolation condition. The generalized molecular crystal model, appropriate for the study of small-polaron hopping transport in disordered systems, and the Kubo formula permit the evaluation of these impedances. Taking correlations into account, theoretical percolation considerations applicable to one-dimensional and three-dimensional disordered systems, lead to analytical expressions for the temperature and electric field dependence of the DC conductivity at high (multi-phonon-assisted hopping) and low (few-phonon-assisted hopping) temperatures. The theoretical analysis reveals the effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity and permits the evaluation of the maximum hopping distance. Quantitative estimates of this effect are presented comparing the theoretical results, including correlations with those ignoring them, previously reported, applying them to recent experimental data for a wide temperature range and from low up to moderate electric fields. PMID:21403284

Dimakogianni, M; Triberis, G P

2010-09-01

284

Numerical approach based on the spectral collocation method has been utilized for analyzing heat convection and conduction\\u000a in eccentric annuli. An eccentric instead of concentric annular duct is sometimes used as a fluid-flow and heat-transfer device\\u000a especially in nuclear power plants. The hydrodynamically and thermally fully developed laminar flow with uniform heat flux\\u000a through the inner and outer walls has

Woo Gun Sim; Jong Min Kim

1996-01-01

285

Radial heat conduction in insulated pipes under external convection is usually dealt with great detail in several heat transfer publications. However, an analysis carried out through the graphical representation of the dimensionless characteristic parameters, will allow a better understanding of the phenomenon. Here the dependence of the convection coefficient on the external radius and external surface temperature, typical of forced

R. A. Figueiredo

2001-01-01

286

The theory and the equations governing the temperature distribution, resistance, and heat flow in a tungsten filament as affected by its leads are given for the low temperature range (<600°K), both for the general case and for several special cases. A low temperature vs. current scale for tungsten is calculated from these equations using measurements of heat conductivity given in

Irving Langmuir; John Bradshaw Taylor

1936-01-01

287

Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh, California 93106 Received 31 July 2000; published 27 December 2000 For measurements of turbulent heat or based on measurements or estimates for the empty cell. It is argued that the lateral thermal coupling

Fygenson, Deborah Kuchnir

288

Finite element formulation for two-dimensional inverse heat conduction analysis

This paper presents a finite element algorithm for two-dimensional nonlinear inverse heat conduction analysis. The proposed method is capable of handling both unknown surface heat flux and unknown surface temperature of solids using temperature histories measured at a few discrete points. The proposed algorithms were used in the study of the thermofracture behavior of leaking pipelines with experimental verifications.

T. R. Hsu; N. S. Sun; G. G. Chen; Z. L. Gong

1992-01-01

289

Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure

The physical meaning of the constant Ï in Cattaneo and Vernotte's equation for materials with a nonhomogeneous inner structure has been considered. An experimental determination of the constant Ï has been proposed and some values for selected products have been given. The range of differences in the description of heat transfer by parabolic and hyperbolic heat conduction equations has been

W. Kaminski

1990-01-01

290

An analysis is carried out to study the flow and heat transfer characteristics in an electrically conducting fluid near an isothermal sheet. The sheet is linearly stretched in the presence of a uniform free stream of constant velocity and temperature. The effects of free convection and internal heat generation or absorption are also considered. The resulting coupled nonlinear differential equations

K. Vajravelu; A. Hadjinicolaou

1997-01-01

291

NASA Astrophysics Data System (ADS)

In this paper, we undertake the thermodynamical analysis of the diffusive transport to wave propagation transition in heat conducting thin films. Several constitutive equations have been conceived to describe heat transport but most fail at the nanometric length scales, where size effects must be taken into account or at time scales in the order of magnitude of heat carriers relaxation time, as for example when a laser pulse is applied to the system. The analysis is based on Jeffrey's model since it allows a jointed description of Fourier and Cattaneo heat conduction mechanisms. Jeffrey's model is complemented with a size dependent heat conductivity derived from Boltzmann transport equation. We study the diffusive transport to wave propagation transition in terms of the group and phase velocity of propagating modes, the system's effective thermodynamic susceptibility, the statistical properties of heat flux fluctuations, and the entropy produced in a thin heat conducting film. Jeffrey's model predicts a kind of discontinuity in the entropy production for thickness film of the order of magnitude of heat carrier mean free path which is corroborated by simulations results from the literature.

Vázquez, F.; del Río, J. A.

2012-12-01

292

A new mathematical model for numerical simulation of two dimensional food freezing due to natural convection is presented. Fluid mechanics and heat transfer by natural convection between air and a solid food in a freezer are predicted along with the heat conduction inside a plate shaped food. The mathematical model used includes continuity, linear momentum and energy partial differential equations

Nelson O. Moraga; Hernán G. Barraza

2003-01-01

293

Problems in the mathematical modeling of heat-distribution processes on the basis of more general equations than parabolic equations are considered. We study the general structure of the relations between solutions of various approximations to the generalized heat-conductivity equations. We introduce a notion of singularly perturbed dissipative structures and analyze singularly, perturbed blow-up regimes.

Makarenko, A.S. [Kiev State Univ. (Russian Federation)

1994-06-01

294

Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem in a Heterogeneous in the homogenization of heat transfer in periodic porous media where the fluid part is made of long thin parallel. To obtain the homogenized problem we first use a formal two-scale asymptotic expansion method. The resulting

Paris-Sud XI, UniversitÃ© de

295

Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators

NASA Technical Reports Server (NTRS)

Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.

Baker, Karl W.; Lund, Kurt O.

1991-01-01

296

NASA Astrophysics Data System (ADS)

Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that which is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. Excess heat in mantle plumes could reflect either a) an enrichment of the heat producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay or b) advective or conductive heat transport across the core-mantle boundary. The advective transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g. increased 186Os and Fe concentrations. Geophysical and dynamic modelling indicate that at least Afar, Easter, Hawaii, Louisville and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 1.2 Mgs -1(Afar) to 6.5 Mgs -1 (Hawaii) providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat producing elements are the cause of excess heat we looked for correlations between fractionation corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th and U are positively correlated with each other (e.g. Hawaii, Iceland and Galapagos have significantly lower concentrations than e.g. Tristan da Cunha, the Canary Islands and the Azores). We also find no correlation between currently available Fe concentration data and buoyancy flux. The apparent lack of correlation suggests that excess heat may be a result of conductive heat contribution from the core. Additional precise 186Os and Fe data are needed to further assess these conclusions.

Rushmer, T.; Beier, C.; Turner, S.

2007-12-01

297

Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction

A latent heat storage system has been designed to take advantage of the off-peak electrical energy for space heating. Using an enthalpy formation and a fully implicit finite difference method, the thermal performance of such a storage system with and without fins has been analysed. For the one-dimensional simulation model, calculations have been made for the melt fraction and energy

M. Costa; D. Buddhi; A. Oliva

1998-01-01

298

Microwave absorption in powders of small conducting particles for heating applications.

In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth ? (specifically, by the condition a = 2.41?). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately ? ? 3??(0) ? 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples. PMID:23321957

Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

2013-02-28

299

NASA Astrophysics Data System (ADS)

The CQL3D Fokker-Planck code [1] which calculates the 3D (r, v, v//), time-dependent electron and ion distributions has been recently upgraded to include effects of non-up-down symmetry, and also to simulate simultaneous quasilinear diffusion of multiple ion species. We make applications to two types of previous modeling of the DIII-D experiment: (1) ECCD, now particularly as regards effects on up-down asymmetric equilibria; and (2) D/minority-H modeling of a canonical DIII-D fast wave shot. Code modification issues, and results for ECCD and the effects of minority-H on the higher harmonic ion absorption of the FW, are presented. [4pt] [1] R.W. Harvey and M. McCoy, The CQL3D Fokker Planck Code, Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992; also, http://www.compxco.com/cql3d.html.

Harvey, R. W.; Prater, R.; Jaeger, E. F.

2009-11-01

300

As one of the most attractive reactor types, The High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based...

Wu, Huali

2013-08-08

301

A three-dimensional selenium solar cell with the structure of Au/Se/porous TiO2/compact TiO2/fluorine-doped tin oxide-coated glass plates was fabricated by an electrochemical deposition method of selenium, which can work for the extremely thin light absorber and the hole-conducting layer. The effect of experimental conditions, such as HCl and H2SeO3 in an electrochemical solution and TiO2 particle size of porous layers, was optimized. This kind of solar cell did not use any buffer layer between an n-type electrode (porous TiO2) and a p-type absorber layer (selenium). The crystallinity of the selenium after annealing at 200°C for 3 min in the air was significantly improved. The cells with a selenium layer deposited at concentrations of HCl?=?11.5 mM and H2SeO3?=?20 mM showed the best performance, resulting in 1- to 2-nm thickness of the Se layer, short-circuit photocurrent density of 8.7 mA/cm2, open-circuit voltage of 0.65 V, fill factor of 0.53, and conversion efficiency of 3.0%. PMID:23286700

2013-01-01

302

Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current. PMID:23868142

Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

2013-11-13

303

Combined radiation and conduction heat transfer in high temperature fiber thermal insulation

Three different approaches for describing combined radiation and conduction heat transfer in fiber thermal insulation at high temperatures are analyzed and compared. The considered approaches include the radiation transfer equation or its approximations, approximation of radiation thermal conductivity and the radiation diffusion approximation for radiation transfer. The first causes difficulties due to the need for experimental measurement of optical properties,

Vadim A. Petrov

1997-01-01

304

Molecular Dynamics Simulations of Heat Conduction of Peapods Shigeo Maruyama, Yuki Taniguchi conductivity of Peapods was slightly higher than empty (10,10) tubes. [1]S. Maruyama and S.-H. Choi, Therm. Sci. Eng., 9-3, (2001), 17-24. [2]S. Maruyama, Physica B, (2002), in print. [3]S. Maruyama, Micro

Maruyama, Shigeo

305

ERIC Educational Resources Information Center

This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…

Chiou, Guo-Li; Anderson, O. Roger

2010-01-01

306

A generalized boundary integral equation (BIE) is formulated for heat conduction problems in anisotropic media with spatially varying thermal conductivities arising from material heterogeneity. The generalized integral equation is expressed in terms of contour integrals only. This is accomplished with the aid of a generalized fundamental solution E and with the definition of a singular nonsymmetric generalized forcing function, D.

Eduardo Divo; Alain Kassab

1997-01-01

307

NASA Astrophysics Data System (ADS)

Shocks are often simulated using the classical molecular dynamics (MD) method in which the electrons are not included explicitly and the interatomic interaction is described by an effective potential. As a result, the fast electronic heat conduction in metals and the coupling between the lattice vibrations and the electronic degrees of freedom can not be represented. Under conditions of steep temperature gradients that can form near the shock front, however, the electronic heat conduction can play an important part in redistribution of the thermal energy in the shocked target. We present the first atomistic simulation of a shock propagation including the electronic heat conduction and electron-phonon coupling. The computational model is based on the two-temperature model (TTM) that describes the time evolution of the lattice and electron temperatures by two coupled non-linear differential equations. In the combined TTM-MD method, MD substitutes the TTM equation for the lattice temperature. Simulations are performed with both MD and TTM-MD models for an EAM Al target shocked at 300 kbar. The target includes a tilt grain boundary, which provides a region where shock heating is more pronounced and, therefore, the effect of the electronic heat conduction is expected to be more important. We find that the differences between the predictions of the MD and TTM-MD simulations are significantly smaller as compared to the hydrodynamics calculations performed at similar conditions with and without electronic heat conduction.

Ivanov, Dmitriy S.; Zhigilei, Leonid V.; Bringa, Eduardo M.; De Koning, Maurice; Remington, Bruce A.; Caturla, Maria Jose; Pollaine, Stephen M.

2004-07-01

308

Fourier Heat Conduction as a phenomenon described within the scope of the Second Law

The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically "reversible" which lead eventually to the Kelvin-Clausius development of the entropy function where the heat absorption is for the diathermal (isothermal) paths of the cycle only. It is deduced from traditional arguments that Fourier heat conduction involves mechanically "reversible" heat transfer with irreversible entropy increase. Here we model heat conduction as a thermodynamically reversible but mechanically irreversible process. The MD simulations conducted shows excellent agreement with the theory. Such views and results as these, if developed to a successful conclusion could imply that the Carnot cycle be viewed as describing a local process of energy-work conversion and that irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible, (ii) reversible, (iii) isot...

Jesudason, Christopher G

2014-01-01

309

Fourier Heat Conduction as a phenomenon described within the scope of the Second Law

The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically "reversible" which lead eventually to the Kelvin-Clausius development of the entropy function where the heat absorption is for the diathermal (isothermal) paths of the cycle only. It is deduced from traditional arguments that Fourier heat conduction involves mechanically "reversible" heat transfer with irreversible entropy increase. Here we model heat conduction as a thermodynamically reversible but mechanically irreversible process. The MD simulations conducted shows excellent agreement with the theory. Such views and results as these, if developed to a successful conclusion could imply that the Carnot cycle be viewed as describing a local process of energy-work conversion and that irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible, (ii) reversible, (iii) isothermal and (iv) adiabatic processes.

Christopher G. Jesudason

2014-07-29

310

Variable thermal properties and thermal relaxation time in hyperbolic heat conduction

NASA Technical Reports Server (NTRS)

Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.

Glass, David E.; Mcrae, D. Scott

1989-01-01

311

Heat conductivity of liquid ternary mixtures of various compositions at various pressures and temperatures was experimentally studied. Dependence of heat conductivities of ternary mixtures on concentration of components was established. An equation linking the heat conductivities of ternary mixtures through those of pure components and appropriate binary mixtures was proposed.

Naziev, D.Ya. [Azerbaidzhan State Oil Academy, Baku (Russian Federation)

1994-03-20

312

Analysis of a Bayonet-Type Counterflow Heat Exchanger with Axial Conduction and Radiative Heat Loss

A counterflow heat exchanger model, based on a bayonet-type configuration, has been developed for predicting the performance of small-scale thermal systems. The purpose of the model is to predict how well a counterflow heat exchanger works for isolating high temperatures for devices that might act as miniature combustors, fuel reformers, or micro-reactors. Three thermal loss mechanisms are considered: (1) flow

Richard B. Peterson; John A. Vanderhoff

2001-01-01

313

NASA Astrophysics Data System (ADS)

This study aims to investigate the role of aggregation of the hybrid nanocomposite particles on thermal conductivity and heat transfer of the phase change colloidal suspensions. It is observed that the incorporation of the hybrid nanocomposite particles substantially enhances thermal conductivity of such suspensions up to 42.4% and effectively reduces their freezing time by 19.5%. The predictions and the experimental results supports the fact that the aggregation of the hybrid nanocomposite particles largely involve in the eventual thermal conductivity enhancements and heat transfer of the phase change colloidal suspensions, with a sufficiently lesser effects realized from the nanoparticles Brownian motion.

Parameshwaran, R.; Kalaiselvam, S.

2013-11-01

314

On Energy and Entropy Influxes in the Green-Naghdi Type III Theory of Heat Conduction

The energy-influx/entropy-influx relation in the Green-Naghdi Type III theory of heat conduction is examined within a thermodynamical framework \\`a la Mueller-Liu, where that relation is not specified a priori irrespectively of the constitutive class under attention. It is shown that the classical assumption, i.e., that the entropy influx and the energy influx are proportional via the absolute temperature, holds true if heat conduction is, in a sense that is made precise, isotropic. In addition, it is proven that the standard assumption does not hold in case of transversely isotropic conduction.

Swantje Bargmann; Antonino Favata; Paolo Podio-Guidugli

2012-09-13

315

NSDL National Science Digital Library

This upbeat music video reviews 3D shapes including the sphere, cylinder, cube, and cone. As each 3D shape is presented, examples of things we see every day that have the same shape are also shown for reinforcement. (Length: 3:18)

Kindergarten, Harry

2011-06-17

316

NSDL National Science Digital Library

This Cyberchase iOS geometry app ($) enables students to use 2D nets to create 3D shapes. The app includes eight levels which increase in difficulty; increasing the complexity of the nets and combining different 3D shapes together.

Kids, Pbs

2014-01-21

317

ERIC Educational Resources Information Center

Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

Hastings, S. K.

2002-01-01

318

To be applied to practical clinical research problems, medical image computing software requires infrastructure including routines to read and write various file formats, manipulate 2D and 3D coordinate systems, and present a consistent user interface paradigm and visualization metaphor. At the same time, research software needs to be flexible to facilitate implementation of new ideas. 3D Slicer is a project

Stephen D. Pieper; Michael Halle; Ron Kikinis

2004-01-01

319

The effect of heat conduction on the interaction of disk and corona around black holes

Heat conduction plays an important role in the balance between heating and cooling in many astrophysical objects, e.g. cooling flows in clusters of galaxies. Here we investigate the effect of heat conduction on the interaction between a cool disk and a hot corona around black holes. Using the one-radial-zone approximation, we study the vertical structure of the disk corona and derive evaporation and coronal mass flow rates for various reduced thermal conductivities. We find lower evaporation rates and a shift in the evaporation maxima to smaller radii. This implies that the spectral state transition occurs at a lower mass flow rate and a disk truncation closer to the black hole. Reductions of thermal conductivity are thought to be magnetically caused and might vary from object to object by a different configuration of the magnetic fields.

E. Meyer-Hofmeister; F. Meyer

2005-12-21

320

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger should be sized on the high end of the required heat load.

Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

2011-06-10

321

The upper crustal-scale convection of fluids is one of the main factors distorting the conductive geothermal field. Geothermal anomalies caused by water circulation, as a rule, exceed the contributions from other factors (relief, sedimentation, structural and climatic effects). The measured temperature gradient has to be corrected before being used for calculation of the heat flow. In the present work, certain

Bertalan Bodri

1995-01-01

322

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12

323

NASA Technical Reports Server (NTRS)

A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

Chen, Ming-Ming; Faghri, Amir

1990-01-01

324

The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

NASA Technical Reports Server (NTRS)

In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

Bravo, Ramiro H.; Chen, Ching-Jen

1992-01-01

325

A direct solver( named projection-diffusion) of the 2D\\/3D unsteady Stokes problem is presented. The pressure operator on which it rests is very close to the Poisson operator, out no pressure boundary condition is needed to invert it. It is applied, with a Chebyshev collocation scheme, to compute the transition to unsteadiness of the natural-convection flow of air in a differentially

G. Labrosse; E. Tric; H. Khallouf; M. Betrouni

1997-01-01

326

NASA Astrophysics Data System (ADS)

A simple heat treatment was used to fabricate carbonaceous layer-coated electrodes: micro-ring electrodes and conductive stainless steel. Substrates of sharpened quartz capillaries or type-316 stainless steel plates were put in an alumina boat with powder of petroleum pitch A240F separately and heated at 1073-1273 K in a flow of nitrogen or argon. By this treatment, both of the substrates were coated with a uniform carbonaceous layer of several hundred nano-meters in thickness. The electric conductivity of the layer was improved by increases in temperature and period of the heating. The quartz glass-capillary covered with the conductive layer was modified to a needle-type microelectrode by coating with an insulating polymer and baring the tip. At least a dozen carbon micro-ring electrodes with an outer radius of about 1 ?m were successfully prepared by the simple heat treatment. On the other hand, the carbonaceous layer formed on type-316 stainless steel showed relatively poor conductivity due to the formation of oxides in the layer. However, the conductivity was improved by electroplating of nickel on the substrate before the heating. The carbonaceous layer-coated stainless steel showed good corrosion resistance in sulphuric acid.

Fushimi, K.; Ono, A.; Matsushita, K.; Kumagai, H.; Konno, H.

2011-07-01

327

3D SLAM for planetary worksite mapping

In this paper, we present a robust framework suitable for conducting three-dimensional Simultaneous Lo- calization and Mapping (3D SLAM) in a planetary worksite environment. By utilizing a laser rangefinder mounted on a rover platform, we have demonstrated an approach that is able to create globally consistent maps of natural, unstructured 3D terrain. The framework presented in this paper utilizes a

Chi Hay Tong; Timothy D. Barfoot; Erick Dupuis

2011-01-01

328

For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.

Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, J [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

2013-01-01

329

Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted.

Pilyugin, N.N.; Chernova, T.A.

1986-07-01

330

NASA Astrophysics Data System (ADS)

Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

Ren, Jie; Zhu, Jian-Xin

2013-06-01

331

NASA Technical Reports Server (NTRS)

This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

Tamma, Kumar K.; D'Costa, Joseph F.

1991-01-01

332

The effects of 50-hour heat treatments at 1000°C, 1200°C, and 1400°C on air plasma-sprayed coatings of 7 wt% Y2O3-ZrO2 (YSZ) have been investigated. Changes in the phase stability and microstructure were investigated using x-ray diffraction and transmission electron microscopy, respectively. Changes in the thermal conductivity of the coating that occurred during heat treatment were interpreted with respect to microstructural evolution.

R. W. Trice; Y. Jennifer Su; J. R. Mawdsley; K. T. Faber; A. R. De Arellano-López; Hsin Wang; W. D. Porter

2002-01-01

333

NSDL National Science Digital Library

Several major companies, including Google, are working on getting elaborate 3D maps online. This latest iteration of Google maps for Android-powered devices allows users to browse select cities in a 3D fashion. Utilizing aerial imagery, the buildings appear in a three-dimensional format, which can aid people navigating their way around an unfamiliar urban environment. Visitors can customize their own views with the "tilt" and "compass" mode features, which makes things a bit more fun.

2012-07-20

334

TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

Crandall, K.R.

1987-08-01

335

Numerical techniques used in thermal-hydraulic computer analysis codes must be fast to enable modeling of complex transients and accurate to provide a high degree of fidelity. In an attempt to satisfy these conflicting requirements, the best-estimate code TRAC-PF1 uses a semi-implicit technique to couple heat transfer between a flow field and a conduction slab. To test the accuracy of the current semi-implicit method used in TRAC-PF1, a series of simple tube experiments were modeled with TRAC-PF1 version 3.9B. To overcome identified problems, fully implicit techniques were developed and incorporated into TRAC-PF1. The new methods treat the heat transfer coefficient and wall temperature in the energy source term of both the convection and the conduction equation implicitly. One method uses a linear extrapolation and the other a nonlinear iterative technique. In general, both methods produced higher wall temperature and a lattice quench in better agreement with the experimental data. These methods also eliminated the double-valued results obtained for the other experiments. In general, these techniques have given more accurate results and saved computer time in the film boiling heat transfer regime.

Wang, L.C.; Baratta, A.J.; Mahaffy, J.H. (Pennsylvania State Univ. University Park (USA))

1990-01-01

336

NSDL National Science Digital Library

Three-dimensional (3-D) rendering and animation technology is not only used for entertainment, but also for research and educational purposes. The technology can be used for purposes of scientific simulation in fields such as physics, biology, or chemistry. For example, Stanford University's Folding@home project (1) uses 3-D simulations and distributed computing to study protein folding, misfolding, aggregation, and related diseases. Three-D simulations can also be used to observe phenomena that would normally be impossible to scrutinize in detail, as is demonstrated on this website on Nanorobotics (2). This next website describes work by the Robotics Research Group (3) in using 3-D simulations to enhance undergraduate and graduate engineering education. The EdCenter (4) makes available several compressed files of 3-D simulations that model earthquake data, Mars, a San Diego Fly Through, and more. On this website (5 ), Martin Baker provides "all you need to know about 3D theory" and this website (6) provides access to a free open-source software package which "makes it easy to build 3-D simulations of decentralized systems and artificial life." This last article from Cyberbotics, Ltd. (7) discusses how mobile robotics simulation programs can be used to design robots.

337

NASA Astrophysics Data System (ADS)

In semi-solid die-casting, a metallic billet is first heated in an induction furnace until it reaches a semi-solid state (partially liquid and partially solid). Then, it is injected into a die and kept there until it is solidified. Subsequently, the die opens, the part is ejected and the cycle starts again. The liquid-solid fraction and its spatial distribution within the billet at the end of the heating phase are of prime importance for the success of the process and the quality of the final product. These parameters are strongly correlated with temperature gradients within the billet and their evolution in time through the heating cycle. There is presently no inspection method that could reasonably be used to control the billet temperature in a production environment. In this work, we investigate the suitability of using infrared thermography to meet the heating requirements. With this technique, it is possible to non-intrusively monitor the temperature distribution on the entire surface of the billet and to obtain information on how thermal energy is dissipated. Moreover, with the combination of surface infrared measurements and inverse heat conduction formalism, it is also possible to recover some information about the temperature distribution inside the billet. Effects of some process operating conditions such as heating power magnitude, power input cycles, location of the billet inside the induction coil, and the coil overhang are considered and discussed.

Bendada, A.; Zheng, C. Q.; Nardini, N.

2004-04-01

338

Ultrafine particle emissions from desktop 3D printers

NASA Astrophysics Data System (ADS)

The development of low-cost desktop versions of three-dimensional (3D) printers has made these devices widely accessible for rapid prototyping and small-scale manufacturing in home and office settings. Many desktop 3D printers rely on heated thermoplastic extrusion and deposition, which is a process that has been shown to have significant aerosol emissions in industrial environments. However, we are not aware of any data on particle emissions from commercially available desktop 3D printers. Therefore, we report on measurements of size-resolved and total ultrafine particle (UFP) concentrations resulting from the operation of two types of commercially available desktop 3D printers inside a commercial office space. We also estimate size-resolved (11.5 nm-116 nm) and total UFP (<100 nm) emission rates and compare them to emission rates from other desktop devices and indoor activities known to emit fine and ultrafine particles. Estimates of emission rates of total UFPs were large, ranging from ˜2.0 × 1010 # min-1 for a 3D printer utilizing a polylactic acid (PLA) feedstock to ˜1.9 × 1011 # min-1 for the same type of 3D printer utilizing a higher temperature acrylonitrile butadiene styrene (ABS) thermoplastic feedstock. Because most of these devices are currently sold as standalone devices without any exhaust ventilation or filtration accessories, results herein suggest caution should be used when operating in inadequately ventilated or unfiltered indoor environments. Additionally, these results suggest that more controlled experiments should be conducted to more fundamentally evaluate particle emissions from a wider arrange of desktop 3D printers.

Stephens, Brent; Azimi, Parham; El Orch, Zeineb; Ramos, Tiffanie

2013-11-01

339

Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

NASA Technical Reports Server (NTRS)

Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.

Duba, AL

1987-01-01

340

Heat conductivity in small quantum systems: Kubo formula in Liouville space

We consider chains consisting of several identical subsystems weakly coupled by various types of next neighbor interactions. At both ends the chain is coupled to a respective heat bath with different temperature modeled by a Lindblad formalism. The temperature gradient introduced by this environment is then treated as an external perturbation. We propose a method to evaluate the heat current and the local temperature profile of the resulting stationary state as well as the heat conductivity in such systems. This method is similar to Kubo techniques used e.g. for electrical transport but extended here to the Liouville space.

Mathias Michel; Jochen Gemmer; Guenter Mahler

2005-03-22

341

NASA Technical Reports Server (NTRS)

Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

1976-01-01

342

Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

Waite, W. F.; Gilbert, L. Y.; Winters, W. J.; Mason, D. H.

2006-01-01

343

NSDL National Science Digital Library

The OSP 3D Eclipse Workspace contains the source code and examples for the Simple 3D and Java 3D implementations of OSP 3D API. The Simple 3D implementation uses only the standard Java distribution and will run on any Java-enabled computer. The Java 3D implementation improves the performance and the appearance of examples but the Java 3D library must be installed. Like the Simple 3D implementation, the Java 3D implementation uses GPU hardware acceleration to provide better intersection of surfaces and hidden-lines removal, as well as additional features such as textures and lighting. See Java 3D.

Jara, Carlos; Franciscouembre; Christian, Wolfgang

2011-04-05

344

3D Computer Vision and Video Computing 3D Vision3D Vision

1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing Â images to mages Computer

Zhu, Zhigang

345

3D Computer Vision and Video Computing 3D Vision3D Vision

3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing Â images to mages Computer

Zhu, Zhigang

346

Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings\\u000a (TBCs) under near-realistic temperature and thermal gradients that may be encountered in advanced engine systems. Thermal\\u000a conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures.\\u000a A significant thermal conductivity increase was observed during

Dongming Zhu; Robert A. Miller

2000-01-01

347

Preparation of flexible and heat-resisting conductive transparent film by the pyrosol process

A pyrosol process was successfully applied for the preparation of a flexible, conductive, and transparent inorganic film, a tin-doped indium oxide (ITO) film lined with a thin mica layer. This flexible heat-resistant ITO-mica film exhibited high conductivity and transparency, comparable to ITO deposited on glass substrate. The minimum radius of bending for the film, without any recognizable change in the

Hisanao Usami; Akihiko Nakasa; Mami Adachi; Eiji Suzuki; Hitoshi Fujimatsu; Tatsuya Ohashi; Shigeo Yamada; Kouhei Tsugita; Yoshio Taniguchi

2006-01-01

348

3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients

Computational fluid dynamics (CFD) simulations are reported for flow, diffusion, reaction and heat transfer in a 120? segment of an N=4 packed tube for the endothermic methane steam reforming reaction. The present work improves on previous approaches by explicit inclusion of intraparticle effects (conduction, species diffusion and reaction) coupled to realistic 3D external flow and temperature fields. It is shown

Anthony G. Dixon; M. Ertan Taskin; E. Hugh Stitt; Michiel Nijemeisland

2007-01-01

349

NASA Astrophysics Data System (ADS)

Due to fine grain-size and high Fe contents, radiative transfer in the outer layers of the Earth is low compared to heat transport via lattice vibrations. We constrain the latter from laser flash measurements of diverse minerals, basalts, rocks, glasses and melts. High porosity reduces thermal diffusivity (D) from that of the matrix, and also thermal conductivity (k = D X density X heat capacity). Melting significantly reduces D and k. Our method was benchmarked against NIST standards and shows that conventional measurements of minerals, which involve physical contact with thermocouples, contain substantial and opposing errors due to interface losses and spurious radiative transfer. Field determinations may be similarly affected. To independently ascertain heat flux we utilize the fact that heat emitted from the mantle is carried conductively across the oceanic lithosphere, except possibly where magma forms. The conductive gradient is obtained from a surface temperature of 298 K and basalt solidus (1300 K) at the base of plates that average 100 km thick. From our data on D, average lithosphere carries 57 mW/m2 by conduction, which equals the average flux measured from oceanic floor away from ridges. Near the ridges, plates are much thinner (~10 km) with a smaller temperature difference (600 K) and lower D (0.5 mm2/s) due to melting, providing a conductive flux at the ridges of 100 mW/m2, which is similar to field data. These results indicate global power is 30 TW. Latent heat released during crystallization MORBs of ca 1 TW is within uncertainty of any estimates. MORs are edge effects of weak mantle convection cells and correlated with stress fractures on the lithosphere arising from self-compression of a triaxial Earth. Copious upwelling of heat are not needed for magma production due to near solidus temperatures of the lowest lithosphere, and runaway melting promoted by low D of melts.

Hofmeister, A. M.; Whittington, A. G.; Galenas, M.; Branlund, J. M.; Criss, R. E.

2008-05-01

350

Female mosquitoes use odor and heat as cues to navigate to a suitable landing site on their blood host. The way these cues affect flight behavior and modulate anemotactic responses, however, is poorly understood. We studied in-flight behavioral responses of females of the nocturnal malaria mosquito Anopheles gambiae sensu stricto to human odor and heat. Flight-path characteristics in a wind tunnel (flow 20 cm/s) were quantified in three dimensions. With wind as the only stimulus (control), short and close to straight upwind flights were recorded. With heat alone, flights were similarly short and direct. The presence of human odor, in contrast, caused prolonged and highly convoluted flight patterns. The combination of odor+heat resulted in longer flights with more landings on the source than to either cue alone. Flight speed was greatest (mean groundspeed 27.2 cm/s) for odor+heat. Odor alone resulted in decreased flight speed when mosquitoes arrived within 30 cm of the source whereas mosquitoes exposed to odor+heat maintained a high flight speed while flying in the odor plume, until they arrived within 15 cm of the source. Human odor evoked an increase in crosswind flights with an additive effect of heat at close range (<15 cm) to the source. This was found for both horizontal and vertical flight components. However, mosquitoes nevertheless made upwind progress when flying in the odor+heat generated plume, suggesting that mosquitoes scan their environment intensively while they progress upwind towards their host. These observations may help to improve the efficacy of trapping systems for malaria mosquitoes by (1) optimizing the site of odor release relative to trap entry and (2) adding a heat source which enhances a landing response. PMID:23658792

Spitzen, Jeroen; Spoor, Cornelis W.; Grieco, Fabrizio; ter Braak, Cajo; Beeuwkes, Jacob; van Brugge, Sjaak P.; Kranenbarg, Sander; Noldus, Lucas P. J. J.; van Leeuwen, Johan L.; Takken, Willem

2013-01-01

351

Temperature Profiles in Hamiltonian Heat Conduction Jean-Pierre Eckmann1,2 and Lai-Sang Young3

says that heat flux is proportional to temperature gradient times heat conductivity. Ever since Fourier that by Fourier's law, the temperature profile is lin- ear. This seems to be the predominant thinking behind muchTemperature Profiles in Hamiltonian Heat Conduction Jean-Pierre Eckmann1,2 and Lai-Sang Young3 1D

Young, Lai-Sang

352

. This law describes phenomenologically that the heat current is proportional to the temperature gradient) harmonic oscillator model shows [2] that there is no well-defined temperature gradient, the thermal. The detailed ato- mistic theories of heat conduction appeared only much later. For heat conduction in gas

Li, Baowen

353

A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities

NASA Astrophysics Data System (ADS)

We introduce a multidimensional peridynamic formulation for transient heat-transfer. The model does not contain spatial derivatives and uses instead an integral over a region around a material point. By construction, the formulation converges to the classical heat transfer equations in the limit of the horizon (the nonlocal region around a point) going to zero. The new model, however, is suitable for modeling, for example, heat flow in bodies with evolving discontinuities such as growing insulated cracks. We introduce the peridynamic heat flux which exists even at sharp corners or when the isotherms are not smooth surfaces. The peridynamic heat flux coincides with the classical one in simple cases and, in general, it converges to it in the limit of the peridynamic horizon going to zero. We solve test problems and compare results with analytical solutions of the classical model or with other numerical solutions. Convergence to the classical solutions is seen in the limit of the horizon going to zero. We then solve the problem of transient heat flow in a plate in which insulated cracks grow and intersect thus changing the heat flow patterns. We also model heat transfer in a fiber-reinforced composite and observe transient but steep thermal gradients at the interfaces between the highly conductive fibers and the low conductivity matrix. Such thermal gradients can lead to delamination cracks in composites from thermal fatigue. The formulation may be used to, for example, evaluate effective thermal conductivities in bodies with an evolving distribution of insulating or permeable, possibly intersecting, cracks of arbitrary shapes.

Bobaru, Florin; Duangpanya, Monchai

2012-04-01

354

Transport of heat in caloric vestibular stimulation. Conduction, convection or radiation?

Experiments in temporal bone specimens were carried out under strictly controlled conditions: temperature (37 degrees C) and humidity kept constant; standardized irrigation of the external ear canal by an automated system (in 15 s, 50 ml of water, 11 degrees C above temperature of specimen), thermistor probes of 0.2 mm diameter placed in different parts of the specimens. In the intact temporal bone such an irrigation causes a rise in temperature with a gradient from the external ear canal across the bony bridge to the lateral semicircular canal as expected with heat conduction. After removal of the bony bridge, which is the main route for heat conduction, the rise in temperature in the lateral semicircular canal is greater and faster than in the intact specimen. This effect again is drastically reduced by placing a reflecting shield between tympanic membrane and labyrinth. In the intact middle ear inserting a reflecting shield or filling the cavity with gel also reduces the heat transfer to the labyrinth, although the bony routes for heat conduction are left untouched. The experiments prove that radiation plays an important part in heat transfer in caloric stimulation. PMID:2068898

Feldmann, H; Hüttenbrink, K B; Delank, K W

1991-01-01

355

Enhancement and reduction of one-dimensional heat conduction with correlated mass disorder

NASA Astrophysics Data System (ADS)

Short-range order in strongly disordered structures plays an important role in their heat conduction property. Using numerical and analytical methods, we show that short-range spatial correlation (with a correlation length of ?m) in the mass distribution of the one-dimensional (1D) alloylike random binary lattice leads to a dramatic enhancement of the high-frequency phonon transmittance but also increases the low-frequency phonon opacity. High-frequency semiextended states are formed while low-frequency modes become more localized. This results in ballistic heat conduction at finite lengths but also paradoxically higher thermal resistance that scales as ?{?m} in the L ?? limit. We identify an emergent crossover length (Lc) below which the onset of thermal transparency appears. The crossover length is linearly dependent on but is two orders of magnitude larger than ?m. Our results suggest that the phonon transmittance spectrum and heat conduction in a disordered 1D lattice can be controlled via statistical clustering of the constituent component atoms into domains. They also imply that the detection of ballistic heat conduction in disordered 1D structures may be a signature of the intrinsic mass correlation at a much smaller length scale.

Ong, Zhun-Yong; Zhang, Gang

2014-10-01

356

The form of Abstract Molecular dynamics simulations of diffusive-ballistic heat conduction

The form of Abstract Molecular dynamics simulations of diffusive-ballistic heat conduction carbon bonds and quasi-one-dimensional confinement of phonons. As a consequence, the ballistic phonon, phonon transport exhibits complex diffusive-ballistic feature, which gives rise to unique steady

Maruyama, Shigeo

357

SUMMARY The identification and quantification of conductive and convective components in the heat transfer of a sedimentary basin is demonstrated for the Rheingraben. Three different methods of varying complexity as well as three independent data sets are employed: (1) energy budget considerations based on hydraulically perturbed thermal data from shallow boreholes (<500m), (2) 1-D vertical Peclet number analysis of thermal

C. Clauser; H. Villinger

1990-01-01

358

size. For example, a 1 cm copper sphere centered in a cube with a solid material of TC as water, or 10 mixtures if exposed to "over-all unidirectional" boundary conditions. This approach has been used to model conductivity, unidirectional heat transfer, heterogeneous mixtures, nanofluids, cubic model, Maxwell model 1

Kostic, Milivoje M.

359

Using the finite element method for solving heat conductivity problems for cooled gas-turbine blades

A finite element procedure for solving stationary and nonstationary heat conductivity problems for bodies of arbitrary shape has been developed and implemented in computer software. The usefulness of the procedure is demonstrated by using it to calculate the stationary temperature field of a gas-turbine blade with longitudinal cooling ducts. The results are then compared with results obtained by integral and

A. S. Sakharov; A. L. Kozak; S. M. Chornyi; B. D. Bileka; S. M. Chepaskina

1985-01-01

360

INSTABILITIES ASSOCIATED WITH HEAT CONDUCTION IN THE SOLAR WIND AND THEIR CONSEQUENCES

Associated with the large heat conduction in the solar wind is a skewing of the ion and electron distribution functions. It is shown that this collisional skewing of the electron distribution function can linearly excite collisionless ion-acoustic, electrostatic ion cyclotron, magnetoacoustic, and ion cyclotron waves in the steady-state solar wind even though the net equilibrium current parallel to B is

D. W. Forslund

1970-01-01

361

LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES

We are concerned with local existence and uniqueness of solutions for a general model of viscous and heat-conductive gases with low regularity assumptions on the initial data (the velocity and the temperature may be discontinuous). Local well-posedness is showed to hold in spaces which are critical with respect to the scaling of the equations, provided that the initial density is

Raphaël Danchin

2001-01-01

362

A boundary element approach is used to solve inverse heat conduction problems in multidimensional and nonlinear situations. In stationary and transient cases, discretized boundary integral equations are expressed and, to obtain satisfying results, are associated with regularization procedures over space and time (transient case). The efficiency of the method, which depends on the accuracy of the measurements, is explored through

R. Pasquetti; C. Le Niliot

1991-01-01

363

The Spontaneous Magnetic Field Generation and Suppression of Heat Conduction in Clusters of Galaxies

We show that magnetic fields are spontaneously generated in the plasmas which have the temperature inhomogeneity and the heat conduction is spontaneously suppressed. This is based on the microscopic plasma instability that the anisotropic velocity distribution induced by the temperature gradient derives the low frequency growing transverse magnetic waves. We have shown that the physical mechanism for this growth is

Nobuhiro Okabe; Makoto Hattori

2004-01-01

364

Collisional Joule dissipation in the ionosphere of Venus: The importance of electron heat conduction

The ionosphere of an unmagnetized planet, such as Venus, is characterized by rel- atively high Pedersen conductivity in comparison to the terrestrial ionosphere because of the weak magnetic field. Collisional Joule dissipation of plasma waves might therefore be an important source of heat within the Venus ionosphere. However, any assessment of the importance of colli- sional Joule dissipation must take

R. J. Strangeway

1996-01-01

365

Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements

This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity

Wenhua Yu; David M. France; Jules L. Routbort

2008-01-01

366

Piston problem with allowance for finite rate of exothermic reactions and nonlinear heat conduction

One-dimensional nonstationary flows of a combustible mixture of gases are considered with allowance for nonlinear heat conduction. The possible existence of similarity solutions is studied, and conditions are found under which such solutions do exist. The results are given of a numerical calculation of the similarity problems of a piston and self-sustaining thermal wave.

A. S. Leibenzon

1979-01-01

367

Fuzzy finite element analysis of heat conduction problems with uncertain parameters

In this article we have used four different global optimisation algorithms for interval finite element analysis of (non)linear heat conduction problems: (i) sequential quadratic programming (SQP), (ii) a scatter search method (SSm), (iii) the vertex algorithm, and (iv) the response surface method (RSM). Their performance was compared based on a thermal sterilisation problem and a food freezing problem. The vertex

Bart M. Nicolaï; Jose A. Egea; Nico Scheerlinck; Julio R. Banga; Ashim K. Datta

2011-01-01

368

Spatial statistics models for stochastic inverse problems in heat conduction Jingbo Wanga

Spatial statistics models for stochastic inverse problems in heat conduction Jingbo Wanga due to the ill-posed nature of such problems. However, there is a rich statistical information) are computed in probabilistic spaces. A Bayesian statistical inference approach is presented here

Zabaras, Nicholas J.

369

TOPAZ - a finite element heat conduction code for analyzing 2-D solids

TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.

Shapiro, A.B.

1984-03-01

370

Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea

measurements have been widely available for the Arctic Ocean [Vowinkel and Orvig, 1970; Radionov et al., 1997; Colony et al., 1998; Warren et al., 1999], but textural descriptions and thermal conductivity of the Beaufort Sea. These were made during project SHEBA (Surface HEat Budget of the Arctic Ocean) [Perovich et

Sturm, Matthew

371

Heat conduction in systems with Kolmogorov-Arnold-Moser phase space structure

NASA Astrophysics Data System (ADS)

We study heat conduction in a billiard channel formed by two sinusoidal walls and the diffusion of particles in the corresponding channel of infinite length; the latter system has an infinite horizon, i.e., a particle can travel an arbitrary distance without colliding with the rippled walls. For small ripple amplitudes, the dynamics of the heat carriers is regular and analytical results for the temperature profile and heat flux are obtained using an effective potential. The study also proposes a formula for the temperature profile that is valid for any ripple amplitude. When the dynamics is regular, ballistic conductance and ballistic diffusion are present. The Poincaré plots of the associated dynamical system (the infinitely long channel) exhibit the generic transition to chaos as ripple amplitude is increased. When no Kolmogorov-Arnold-Moser (KAM) curves are present to forbid the connection of all chaotic regions, the mean square displacement grows asymptotically with time t as tln(t).

Herrera-González, I. F.; Pérez-Aguilar, H. I.; Mendoza-Suárez, A.; Tututi, E. S.

2012-09-01

372

Equilibrium molecular dynamics combined with the Green-Kubo formula can be used to calculate the thermal conductivity of materials such as germanium and carbon. The foundation of this calculation is extracting the heat current from the results and implementing it into the Green-Kubo formula. This work considers all formulations from the literature that calculate the heat current for the Tersoff potential, the interatomic potential most applicable to semiconductor materials. The formulations for the heat current are described, and results for germanium and carbon are presented. The formulations are compared with respect to how well they capture the physics of the Tersoff potential and how well the calculated value of the thermal conductivity reflects the experimentally measured value. PMID:20232951

Guajardo-Cuéllar, Alejandro; Go, David B; Sen, Mihir

2010-03-14

373

NASA Technical Reports Server (NTRS)

The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

Tamma, Kumar K.; Railkar, Sudhir B.

1988-01-01

374

Heat conduction in a turbulent magnetic field, with application to solar-wind electrons.

NASA Technical Reports Server (NTRS)

Consideration of random, long-wavelength fluctuations in a turbulent magnetic field, showing that they can appreciably decrease the heat conductivity of a plasma along the magnetic field. In simple cases of interest, the reduction along the average field is approximately by the factor (cos delta theta) squared, where delta theta is the angle of the local magnetic field relative to the average field. Application to solar-wind electrons indicates that this reduction in heat conductivity due to observed fluctuations in the interplanetary magnetic field may be of the order of a factor of 2. This may help to explain recent measurements which indicate a rather low electron heat flux in the solar wind.

Hollweg, J. V.; Jokipii, J. R.

1972-01-01

375

A theoretical study of heat exchange during the cooling of a rotating cylinder by an im- pinging jet is carried out. The temperature eld is bidimensional - the longitudinal heat conduction being neglected - and is obtained by solving the heat equation using Laplace and Fourier transforms. In order to assess the external heat ux condition, an inverse method using

F. VOLLE; M. LEBOUCHE; M. GRADECK; D. MAILLET

376

The coupling of mass and heat fluxes is responsible for the Soret effect in fluid mixtures containing particles of dissimilar mass and/or size. We investigate using equilibrium and non-equilibrium molecular dynamics simulations the relevance of these coupling effects in determining the thermal transport in fluids consisting of binary mixtures where the individual components feature significant mass, 1?:?8, or size, 1?:?3, asymmetries. We quantify the thermal transport by using both boundary driven molecular dynamics simulations (NEMD) and the equilibrium Green-Kubo (GK) approach and investigate the impact of different heat flux definitions, relevant in kinetic theory and experiments, in the quantification of the thermal conductivity. We find that the thermal conductivities obtained from the different definitions agree within numerical accuracy, suggesting that the Soret coefficient does not lead to significant changes in the thermal conduction, even for the large asymmetries considered here, which lead to significant Soret coefficients (?10(-2) K(-1)). The asymmetry in size and mass introduces large differences in the specific enthalpy of the individual components that must be carefully considered to compute accurate thermal conductivities using the GK approach. Neglecting the enthalpic contributions, results in large overestimations of the thermal conductivity, typically between 20% and 50%. Further, we quantify the time dependent behavior of the internal energy and mass flux correlation functions and propose a microscopic mechanism for the heat transport in these asymmetric mixtures. PMID:24818599

Armstrong, Jeff; Bresme, Fernando

2014-06-28

377

Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

Naya, Daniel E.; Spangenberg, Lucia; Naya, Hugo; Bozinovic, Francisco

2013-01-01

378

NASA Astrophysics Data System (ADS)

Nanofluids, the fluid suspensions of nonmaterials, have shown many interesting properties and the unique features offer unprecedented potential for many applications. Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first noted, about a decade ago, though much debate and inconsistency have been reported. Insufficient understanding of the formulation, mechanism of nanofluids further limits their applications [1-34]. Inconsistent data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers [35-43] have noted an enhancement in the critical heat flux during nanofluid boiling. Some researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux augmentation. In the review, the future developments of these technologies are discussed. In order to be able to put the nanofluid heat transfer technologies into practice, fundamental of these studies are greatly needed to comprehend the physical mechanisms.

Kshirsagar, Jagdeep M.; Shrivastava, Ramakant

2014-08-01

379

Lenticular Sheet 3-D Pictures And 3-D Projections

NASA Astrophysics Data System (ADS)

The concept of lenticular sheet 3-D pictures dates from the beginning of this century. This method is responsible of commercial 3-D post-cards and 3-D photographic portraits. New applications are presented in this paper. They concern two domains where direct holographic 3-D reconstructions are impossible. These applications are the 3-D reconstruction of electron microscope pictures and the 3-D projection on a lenticular screen.

Marraud, A.; Bonnet, M.; Rambourg, A.

1980-06-01

380

Heat conductivities of insulation mats based on water glass bonded non-textile hemp or flax fibres

Heat insulation mats based on water glass bonded non-textile flax and hemp fibres were fabricated via a pilot plant, and their heat conductivities investigated. Under the influence of various factors like moisture content, water sorption and diffusion processes, fibre characteristics and heat radiation as well as thickness and apparent density, heat conductivities in the range of 0.0392–0.0484 W\\/mK for flax fibre

B. Grohe

2004-01-01

381

Most people, even among technical draftsmen, designers and computer graphics programmers, find it very difficult to visualize 3D shapes well enough to reason about them. We demonstrate the problem and take participants through a series of exercises whereby they can begin to acquire this important practical skill. \\

Bob Parslow; Geoff Wyvill

2008-01-01

382

This paper presents a new technique, called aura 3D textures, for generating solid textures based on input examples. Our method is fully automatic and requires no user interactions in the process. Given an input texture sample, our method first creates its aura matrix representations and then generates a solid texture by sampling the aura matrices of the input sample constrained

Xuejie Qin; Yee-hong Yang

2007-01-01

383

We describe a concept for a metrology system that can simultaneously determine the Cartesian coordinates of thousands of targets and has no moving parts. The system is called the MSTAR3D system and is based on two color interferometry where the conventional photodiode has been replaced with an extremely fast focal plane array. It permits the measurement of the three-dimensional position

Carl Christian Liebe; Serge Dubovitsky; Robert Peters

2007-01-01

384

This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

Van, B.T.; Pajon, J.L.; Joseph, P. (Inst. Francais du Petrole (FR))

1991-11-01

385

Technologies related to identity recognition have found widespread application in the last years; among these, face recognition is one of the most promising and probably the most studied. The main goal of this work is to verify if it is possible to obtain a reliable identification of people, starting from a reconstructed 3D model of the face images. We describe

Mosad Abdelwahab; Abd El-hamid; H. El-bakry; M. A. El-dosuky

2014-01-01

386

NASA Astrophysics Data System (ADS)

A novel method is proposed for the simultaneous calculation of thermal conductivity ? and specific heat capacity C. The new method is a combination of two established techniques. One is the photopyroelectric method for thermal diffusivity ? and the other is the front-heat front-detection photothermoreflectance method for thermal effusivity b. After ?, b, and density ? measurements, C and ? are easily calculated as C = b ? -1/2 ? -1 and ? = ? 1/2 b. Test measurements on a commercial Si single-crystal wafer were performed to demonstrate that the method is sufficiently accurate.

Okamoto, Yoichi; Okada, Ryo; Nemoto, Takashi; Ohta, Hiromichi; Takiguchi, Hiroaki

2012-07-01

387

The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.

Ritchie, R. H.; Sakakura, A. Y.

1956-01-01

388

In temperature measurement of non-isothermal fluid flows by a contact-type temperature sensor, heat conduction along the sensor body can cause significant measurement error which is called "heat-conduction error." The conventional formula for estimating the heat-conduction error was derived under the condition that the fluid temperature to be measured is uniform. Thus, if we apply the conventional formula to a thermal field with temperature gradient, the heat-conduction error will be underestimated. In the present study, we have newly introduced a universal physical model of a temperature-measurement system to estimate accurately the heat-conduction error even if a temperature gradient exists in non-isothermal fluid flows. Accordingly, we have been able to successfully derive a widely applicable estimation and/or evaluation formula of the heat-conduction error. Then, we have verified experimentally the effectiveness of the proposed formula using the two non-isothermal fields-a wake flow formed behind a heated cylinder and a candle flame-whose fluid-dynamical characteristics should be quite different. As a result, it is confirmed that the proposed formula can represent accurately the experimental behaviors of the heat-conduction error which cannot be explained appropriately by the existing formula. In addition, we have analyzed theoretically the effects of the heat-conduction error on the fluctuating temperature measurement of a non-isothermal unsteady fluid flow to derive the frequency response of the temperature sensor to be used. The analysis result shows that the heat-conduction error in temperature-fluctuation measurement appears only in a low-frequency range. Therefore, if the power-spectrum distribution of temperature fluctuations to be measured is sufficiently away from the low-frequency range, the heat-conduction error has virtually no effect on the temperature-fluctuation measurements even by the temperature sensor accompanying the heat-conduction error in the mean-temperature measurements. PMID:23635222

Khine, Soe Minn; Houra, Tomoya; Tagawa, Masato

2013-04-01

389

Hot rolling is a problem involving large deformations during the process of turning an ingot into a thin sheet. As a result of the large deformations inherent in the process, significant amounts of energy are put into the ingot mechanically, most of which results in heat generation. Therefore, in order to predict the results of rolling both the mechanical and the thermal factors must accurately represent the real conditions. The factors which must be properly tuned include interface friction, mass scaling to decrease computation times, heat transfer at the interface, convective heat transfer from the ingot, and convective heat transfer from the roll. Since these parameters are generally not measurable the correct values must be derived by tuning the parameters so that solutions match some other measurable result. The interface friction will be tuned using an ALE3D input deck which has been set up to output the torque applied to the roll during the pass. The friction coefficient will be adjusted so that the computed torque matches the measured value. The various heat transfer coefficients are dependent on each other, and are tuned based on measured roll surface temperatures, ingot exit temperatures, and the energy input through the mechanical deformation of the ingot. The heat transfer coefficient at the interface has been found to be approximately 1.25 x 10{sup 5} W/m{sup 2}K, based on estimates of how much heat can be taken from the roll surface by coolant and matching a roll surface temperature. The convection coefficient on the ingot surface has been assumed to be 100 W/m{sup 2}K, on the high end for convection to air. However, this convection coefficient is low enough that the ingot should cool uniformly through its thickness as it would with a lower convection coefficient. Also necessary in accurate modeling is a good description of material behavior. In order to aid the development of an accurate material model an ALE3D input deck which simulates compression tests with temperature gradients has been developed. The model output engineering stress-strain curves which can be compared to the experimentally collected data. Also, comparisons of the deformed shapes can be made. The model has been tuned using MTS parameters for AA 5182 and will be ready for use when parameters for AA 2024 are experimentally developed. Currently, more work is needed to properly tune all the model parameters. A parameterized three dimensional geometry and mesh has been created so that once the parameters are tuned the transition to three dimensional simulations should be quick.

Riordan, T

2006-07-27

390

Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

NASA Technical Reports Server (NTRS)

The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

1995-01-01

391

The polymer matrix composite through-thickness thermal conductivity is particularly important in applications such as composite space borne electronics enclosures where the heat dissipation is entirely dependent on thermal conduction to a heat sink. The spreading of heat at the composite surface and subsequent localized conduction in the through-thickness direction down to high thermal conductivity fiber may be the key to designing a lightweight, thermally efficient enclosure. A finite element model was constructed of a composite with heat applied to a central area. The laminate consisted of a hybrid of high thermal conductivity pitch fiber/epoxy (K1100/ERL 1939-3) on the outside surfaces interlaminated with low thermal conductivity carbon fabric/epoxy (HMF-322D/7714AC) in a [{+-}10{degree}, (45{degree}), {+-}10{degree}, ({ovr 45}{degree})]{sub s} configuration. Three configurations were modeled: (A) a heat source in the middle, (B) Cu plating under the central heat source and (C) Cu plating under the heat source with a centrally located hole that was also Cu plated. The model with Cu on the surface under the heat source had a maximum surface temperature 35% lower than the model with no Cu to spread the heat. The model with a central Cu plated hole had a maximum surface temperature 58% lower than that with no Cu plating on the surface. Therefore, the surface Cu plating with Cu plated hole spreads the heat and increases the through-thickness thermal conductivity.

Roberts, J.C.; Luesse, M.H.; Magee, T.C. [Johns Hopkins University, Baltimore, MD (United States)

1994-12-31

392

This study aims to assess for a Stirling engine the influence of the overall heat transfer coefficient variation on the optimum state and on the optimum distribution of the heat transfer surface conductance or area among the machine heat exchangers. The analysis is based on a Stirling machine optimization method, previously elaborated, which is now applied to a cycle with

M. Costea; M. Feidt

1998-01-01

393

An improved local radial point interpolation method for transient heat conduction analysis

NASA Astrophysics Data System (ADS)

The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.

Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang

2013-06-01

394

Calculating heat conduction transfer function through multi-layer slab using model reduction method

Heat conduction transfer function (CTF) method is suitable to deal with the transient heat-conduction through multi-layer slabs encountered in engineering practice frequently. To determine the CTF efficiently, a model reduction approach combining Routh and Pade approximations is developed. Firstly, the transfer function in frequency domain is expanded in the form of power series with infinite terms. Secondly, the Routh approximation is used to determine the denominator coefficients of the reduced CTF. Thirdly, the numerator coefficients of the reduced CFT are evaluated by the Pade approximation. Finally, a direct way from the reduced CTF in frequency domain to that in z-domain is presented. Case study demonstrates that high precision can be obtained by the reduced model in fairly low order.

Zhang, C.; Ding, G.; Li, H.; Chen, Z.

1999-07-01

395

NASA Technical Reports Server (NTRS)

The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

Winget, J. M.; Hughes, T. J. R.

1985-01-01

396

Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

NASA Astrophysics Data System (ADS)

The specific heat and thermal conductivity of an insulating ferrimagnet Y3Fe5O12 (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat Cm shows a characteristic T1.5-dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 10^{-4}\\ \\text{eV} . The ferromagnetic magnon thermal conductivity \\kappa_m does not show the characteristic T2-dependence below 0.8 K. To fit the \\kappa_m data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results provide a complete picture of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.

Pan, B. Y.; Guan, T. Y.; Hong, X. C.; Zhou, S. Y.; Qiu, X.; Zhang, H.; Li, S. Y.

2013-08-01

397

Two-Gradient Convection in a Vertical Slot with Maxwell-Cattaneo Heat Conduction

We study the effect of the Maxwell-Cattaneo law of heat conduction (MCHC) on the 1D flow in a vertical slot subject to both vertical and horizontal temperature gradients. The gravitational acceleration is allowed to oscillate, which provides an opportunity to investigate the quantitative contribution of thermal inertia as epitomized by MCHC. The addition of the time derivative in MCHC increases the order of the system. We use a spectral expansion with Rayleigh's beam functions as the basis set, which is especially suited to fourth order boundary value problems (BVP). We show that the time derivative (relaxation of the thermal flux) has a dissipative nature and leads to the appearance of purely real negative eigenvalues. Yet it also increases the absolute value of the imaginary part and decreases the absolute value of the real part of the complex eigenvalues. Thus, the system has a somewhat more oscillatory behavior than the one based on Fourier's heat conduction law (FHC)

Papanicolaou, N. C. [Department of Computer Science, University of Nicosia, P.O. Box 24005, 1700 Nicosia (Cyprus); Christov, C. I. [Department of Mathematics, University of Louisiana at Lafayette, LA 70504-1010 (United States); Jordan, P. M. [Entropy Reversal Consultants (L.L.C), P. O. Box 691, Abita Springs, LA 70420 (United States); Code 7181, Naval Research Lab., Stennis Space Ctr., MS 39529 (United States)

2009-10-29

398

Analysis and solution of the ill-posed inverse heat conduction problem

The inverse conduction problem arises when experimental measurements are taken in the interior of a body, and it is desired to calculate temperature and heat flux values on the surface. The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. A special solution procedure is developed for the one-dimensional case which replaces the heat conduction equation with an approximating hyperbolic equation. If viewed from a new perspective, where the roles of the spatial and time variables are interchanged, then an initial value problem for the damped wave equation is obtained. Since this formulation is well-posed, both analytic and numerical solution procedures are readily available. Sample calculations confirm that this approach produces consistent, reliable results for both linear and nonlinear problems.

Weber, C.F.

1981-01-01

399

Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains.

We consider and compare four Hamiltonian formulations of thermostated mechanics, three of them kinetic, and the other one configurational. Though all four approaches "work" at equilibrium, their application to many-body nonequilibrium simulations can fail to provide a proper flow of heat. All the Hamiltonian formulations considered here are applied to the same prototypical two-temperature "phi4" model of a heat-conducting chain. This model incorporates nearest-neighbor Hooke's-Law interactions plus a quartic tethering potential. Physically correct results, obtained with the isokinetic Gaussian and Nose-Hoover thermostats, are compared with two other Hamiltonian results. The latter results, based on constrained Hamiltonian thermostats, fail to model correctly the flow of heat. PMID:17477595

Hoover, Wm G; Hoover, Carol G

2007-04-28

400

NASA Technical Reports Server (NTRS)

An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.

Murio, Diego A.

1991-01-01

401

CTS-type variable conductance heat pipes for SEP FM/PPU

NASA Technical Reports Server (NTRS)

The development effort for, and the fabrication and testing of, six CTS-type variable conductance heat pipes is described. The heat pipes are constructed of stainless steel, use methanol as a working fluid, and a nitrogen/helium mixture as the control gas. The wicking structure consists of interior wall grooves, a metal-felt diametral slab wick, and two wire-mesh arteries. The heat pipes are used to cool two Functional Model/Power Processing Units in a Solar Electric Propulsion prototype BIMOD thruster subsystem assembly. The Power Processing Units convert the electric power from a spacecraft solar array system to the voltages required to operate the electric thrusters which are part of the BIMOD assembly.

Antoniuk, D.; Luedke, E. E.

1978-01-01

402

NSDL National Science Digital Library

How much liquid can that glass hold? What are the dimensions of that package that's heading off to a friend overseas? Answers to both of those questions (and many more) can be found in this lovely interactive feature on 3D shapes created by experts at the Annenberg Media group. Visitors to this site will learn about three-dimensional geometric shapes by examining a number of objects through a number of interactive exercises and games. The materials are divided into four sections, which include "3D Shapes", "Surface Area & Volume", and "Platonic Solids". The "Platonic Solids" area is quite a bit of fun, as visitors will get the opportunity to print out foldable shapes such as a tetrahedron. A short fifteen question quiz that tests the materials covered by these various activities rounds out the site.

403

Through field studies in large commercial buildings and reviews of building plans, we investigated the effective leakage areas (ELAs), air-leakage rates, and conduction heat gains of duct systems. Different methods for measuring air-leakage rates were also compared. ELAs of supply ducts ranged from 0.4 to 2.0 cm2 per square meter of floor area served, and from 1.0 to 4.8 cm2

William J. Fisk; Woody Delp; Rick Diamond; Darryl Dickerhoff; Ronnen Levinson; Mark Modera; Matty Nematollahi; Duo Wang

2000-01-01

404

Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite

R. Gorthala; K. T. Harris; J. A. Roux; T. A. Mccarty

1994-01-01

405

On heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas

NASA Technical Reports Server (NTRS)

A generalized expression for the steady-state heat flux in multicomponent, moderately non-Maxwellian spherically symmetric plasmas is presented and discussed. The work was motivated by the inability of the simple, Fourier-type formula for the thermal conductivity to explain the observed correlations in the solar wind. The results hold for situations not far from local thermodynamic equilibrium. The generalized expression includes not only correlations that have been observed but also correlations not sought for previously.

Cuperman, S.; Dryer, M.

1985-01-01

406

Analysis of heat conduction in deep penetration welding with a time-modulated laser beam

The heat conduction model of a cylinder-type source in laser keyhole welding is extended to a time-modulated laser beam with a prescribed energy flux density instead of a prescribed temperature at the wall of the cylinder. A new non-dimensional parameter Omega = omega r02\\/ kappa ( omega denotes the frequency of the time-modulated laser beam, r0 the focus radius and

G. Simon; U. Gratzke; J. Kroos

1993-01-01

407

In the field of architecture, tangible virtual reality interfaces allow architects to design and construct large complex structures in a three-dimensional space, and interact with the 3D models using the most natural means of computer human interaction: the two-handed system. The main goal of this project is to design and create an interactive, tangible, virtual reality interface for constructing various

Yuan Xie; Peter Schröder; Steven Schkolne

408

NSDL National Science Digital Library

This collection of 3D flyover movies depicts geologically interesting localities in the Southwest United States. The selection includes well-known landmarks such as Meteor Crater, Monument Valley, Hopi Buttes, and others. They are available in a number of different formats and file sizes. The movies, the data files used to make them, and the software to view them are all available for free download. There is also a link to a tutorial on how to make Fledermaus scenes and movies.

Simkin, Marvin

2005-01-01

409

We are interested in providing animators with a general-purpose tool allowing them to create animations using straight-ahead actions as well as pose-to-pose techniques. Our approach seeks to bring the expressiveness of real-time motion capture systems into a general-purpose multi-track system running on a graphics workstation. We emphasize the use of high-bandwidth interaction with 3D objects together with specific data reduction

Jean-francis Balaguer; Enrico Gobbetti

1995-01-01

410

A direct approach to finding unknown boundary conditions in steady heat conduction

NASA Technical Reports Server (NTRS)

The capability of the boundary element method (BEM) in determining thermal boundary conditions on surfaces of a conducting solid where such quantities are unknown was demonstrated. The method uses a non-iterative direct approach in solving what is usually called the inverse heat conduction problem (IHCP). Given any over-specified thermal boundary conditions such as a combination of temperature and heat flux on a surface where such data is readily available, the algorithm computes the temperature field within the object and any unknown thermal boundary conditions on surfaces where thermal boundary values are unavailable. A two-dimensional, steady-state BEM program was developed and was tested on several simple geometries where the analytic solution was known. Results obtained with the BEM were in excellent agreement with the analytic values. The algorithm is highly flexible in treating complex geometries, mixed thermal boundary conditions, and temperature-dependent material properties and is presently being extended to three-dimensional and unsteady heat conduction problems. The accuracy and reliability of this technique was very good but tended to deteriorate when the known surface conditions were only slightly over-specified and far from the inaccessible surface.

Martin, Thomas J.; Dulikravich, George S.

1993-01-01

411

Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula

NASA Technical Reports Server (NTRS)

Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.

Cole, K. D.; Hoegy, W. R.

1998-01-01

412

The effect of heat conduction on the realization of the primary standard for sound pressure

NASA Astrophysics Data System (ADS)

Pressure reciprocity calibration of microphones provides the basis for primary measurement standards for sound pressure in air. At low frequencies, reciprocity calibration requires that a heat conduction correction be employed to account for energy transfer to and from the bounding surfaces of the close-coupled microphone arrangement. The standard governing reciprocity calibration, IEC 61094-2?:?2009, provides two models for the heat conduction correction: the Low Frequency Solution, and the Broadband Solution. Analysis has revealed significant and unexplained differences in behaviour between the models at very low frequencies, leading to inconsistency in calibration results, which has been quantified. Additionally, both heat conduction solutions given in IEC 61094-2 are simplifications that strictly apply only above their respective lower limiting frequencies. An international comparison on microphone calibration is currently underway that includes measurements below the lower limiting frequencies of the models. In this paper, the origin and nature of the Broadband simplifications have been identified, and estimates of the error given. A flaw in the Broadband theory is identified and its effect quantified. Simplification error for the Low Frequency solution is evaluated, and the full spectrum solution is given. This paper urges caution in the application of the models at low frequency and provides data useful for assessing the contribution to the measurement uncertainty.

Jackett, Richard J.

2014-10-01

413

Combining 3D printing and printable electronics

A platform that enables the integration of conductive traces and printed three dimensional mechanical structures has been developed. We discuss the development of the platform and address issues that arise when combining 3D printing and printable electronics. We demonstrate a rapid prototyped three dimensional conductive trace and propose future applications for the platform.

John Sarik; Alex Butler; James Scott; Steve Hodges; Nicolas Villar

414

We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

Zhijie Xu

2012-07-01

415

Heat, chloride, and specific conductance as ground water tracers near streams

Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

Cox, M. H.; Su, G. W.; Constantz, J.

2007-01-01

416

Reliability challenges in 3D IC packaging technology

At the moment, a major paradigm change, from 2D IC to 3D IC, is occurring in microelectronic industry. Joule heating is serious in 3D IC, and vertical interconnect is the critical element to be developed. Also reliability concerns will be extremely important. For example, in order to remove heat, a temperature gradient must exist in the packaging. If we assume

K. N. Tu

2011-01-01

417

The Green's function for three-dimensional transient heat conduction (diffusion equation) for functionally graded materials (FGMs) is derived. The thermal conductivity and heat capacitance both vary exponentially in one coordinate. In the process of solving this diffusion problem numerically, a Laplace transform (LT) approach is used to eliminate the dependence on time. The fundamental solution in Laplace space is derived and

Alok Sutradhar; Glaucio H. Paulino; L. J. Gray

2002-01-01

418

Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

NASA Astrophysics Data System (ADS)

A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.

Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.

1994-01-01

419

Review and comparison of nanofluid thermal conductivity and heat transfer enhancements.

This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity and convective heat transfer of nanofluids relative to conventional heat transfer fluids, and assessments were made as to the state-of-the-art of verified parametric trends and magnitudes. Pertinent parameters of particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity were considered individually, and experimental results from multiple research groups were used together when assessing results. To this end, published research results from many studies were recast using a common parameter to facilitate comparisons of data among research groups and to identify thermal property and heat transfer trends. The current state of knowledge is presented as well as areas where the data are presently inconclusive or conflicting. Heat transfer enhancement for available nanofluids is shown to be in the 15-40% range, with a few situations resulting in orders of magnitude enhancement.

Yu, W.; France, D. M.; Routbort, J. L.; Choi, S. U.S.; Energy Systems; Univ. of Illinois at Chicago; Korea Inst. of Energy Research

2008-05-01

420

The psychology of the 3D experience

NASA Astrophysics Data System (ADS)

With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

Janicke, Sophie H.; Ellis, Andrew

2013-03-01

421

NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems

NASA Technical Reports Server (NTRS)

In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.

Tarau, Calin; Anderson, William G.; Walker, Kara

2008-01-01

422

Documentation and verification of STRES3D, Version 4.0; Yucca Mountain Site Characterization Project

STRES3D is a thermomechanical analysis code for predicting transient temperatures, stresses and displacements in an infinite and semi-infinite, conducting, homogeneous, elastic medium. The heat generated at the sources can be constant or decay exponentially with time. Superposition is used to integrate the effect of heat sources distributed in space and time to simulate the thermomechanical effect of placement of heat generating nuclear waste canisters in an underground repository. Heat sources can be defined by point, lines or plates with numerical integration of the kernal point source solution used to develop the line and plate sources. STRES3D is programmed using FORTRAN77 and is suitable for use on micro or larger computer systems.

Asgian, M.I.; St. John, C.M.; Hardy, M.P.; Goodrich, R.R. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)] [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

1991-12-01

423

NASA Technical Reports Server (NTRS)

Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

1992-01-01

424

NSDL National Science Digital Library

Developed by Barbara Kaskosz of the University of Rhode Island and Doug Ensley of Shippensburg University, this resource from The Mathematical Association of America's Digital Classroom Resources collection will prove quite valuable for educators and anyone with an interest in computer graphics or geometry. Through this resource, visitors will learn how to draw and rotate 3D objects via a series of short tutorials. Along the way, users will learn about the mathematics behind manipulating cubes, the geometry involved with the manipulation of cubes, and they will also get a chance to work on their own structures. Overall, it's a fine resource and it offers insights for students in several different disciplines

425

NASA Astrophysics Data System (ADS)

This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

Fung, Y. C.

1995-05-01

426

Surface roughness and three-dimensional heat conduction in thermophysical models

NASA Astrophysics Data System (ADS)

A thermophysical model is presented that considers surface roughness, cast shadows, multiple or single scattering of radiation, visual and thermal infrared self heating, as well as heat conduction in one or three dimensions. The code is suitable for calculating infrared spectral energy distributions for spatially resolved or unresolved minor Solar System bodies without significant atmospheres or sublimation, such as the Moon, Mercury, asteroids, irregular satellites or inactive regions on comet nuclei. It is here used to explore the effects of surface roughness on spatial scales small enough for heat conduction to erase lateral temperature gradients. Analytically derived corrections to one-dimensional models that reproduce the results of three-dimensional modeling are presented. We find that the temperature of terrains with such small-scale roughness is identical to that of smooth surfaces for certain types of topographies and non-scattering material. However, systematic differences between smooth and rough terrains are found for scattering materials, or topographies with prominent positive relief. Contrary to common beliefs, the roughness on small spatial scales may therefore affect the thermal emission of Solar System bodies.

Davidsson, Björn J. R.; Rickman, Hans

2014-11-01

427

Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between -20??C and 17??C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4??C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

Waite, W. F.; Stern, L. A.; Kirby, S. H.; Winters, W. J.; Mason, D. H.

2007-01-01

428

Deicing heating layers are frequently used in covers of large radio-frequency (RF) equipment, such as radar, to remove ice that could damage the structures or make them unstable. Typically, the deicers are made using a metal framework and inorganic insulator; commercial resistive heating materials are often nontransparent to RF waves. The preparation of a sub-skin-depth thin film, whose thickness is very small relative to the RF skin (or penetration) depth, is the key to minimizing the RF absorption. The skin depth of typical metals is on the order of a micrometer at the gigahertz frequency range. As a result, it is very difficult for conventional conductive materials (such as metals) to form large-area sub-skin-depth films. In this report, we disclose a new deicing heating layer composite made using graphene nanoribbons (GNRs). We demonstrate that the GNR film is thin enough to permit RF transmission. This metal-free, ultralight, robust, and scalable graphene-based RF-transparent conductive coating could significantly reduce the size and cost of deicing coatings for RF equipment covers. This is important in many aviation and marine applications. This is a demonstration of the efficacy and applicability of GNRs to afford performances unattainable by conventional materials. PMID:24328320

Volman, Vladimir; Zhu, Yu; Raji, Abdul-Rahman O; Genorio, Bostjan; Lu, Wei; Xiang, Changsheng; Kittrell, Carter; Tour, James M

2014-01-01

429

The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) ZrO2–8 wt.%Y2O3 thermal barrier coatings was determined by a steady-state laser heat flux technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long-term test conditions. The thermal conductivity increase due to micro-pore sintering and the

Dongming Zhu; Robert A. Miller; Ben A. Nagaraj; Robert W. Bruce

2001-01-01

430

3D Computer Vision and Video Computing 3D Vision3D Vision

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

Zhu, Zhigang

431

3D Computer Vision and Video Computing 3D Vision3D Vision

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

Zhu, Zhigang

432

X3D-edit authoring for extensible 3D (X3D) graphics

A primary benefit of the Extensible 3D (X3D) Graphics Specification is the use of the Extensible Markup Language (XML) to encode 3D scenes compatibly with the next-generation Web. XML-based languages provide a wide variety of new capabilities for authoring, processing and validating graphics scenes. X3D-Edit is an authoring tool for X3D scenes developed using IBM's Xeena, an XML-based tool-building application.

Donald P. Brutzman

2003-01-01

433

This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

2009-01-01

434

Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

NASA Astrophysics Data System (ADS)

In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid-fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

Izadi, M.; Shahmardan, M. M.; Norouzi, M.; Rashidi, A. M.; Behzadmehr, A.

2014-09-01

435

An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

NASA Technical Reports Server (NTRS)

For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

Williams, S. D.; Curry, D. M.

1977-01-01

436

The gravitational heat conduction and the hierarchical structure in solar interior

With the assumption of local Tsallis equilibrium, the newly defined gravitational temperature is calculated in the solar interior, whose distribution curve can be divided into three parts, the solar core region, radiation region and convection region, in excellent agreement with the solar hierarchical structure. By generalizing the Fourier law, one new mechanism of heat conduction, based on the gradient of the gravitational temperature, is introduced into the astrophysical system. This mechanism is related to the self-gravity of such self-gravitating system whose characteristic scale is large enough. It perhaps plays an important role in the astrophysical system which, in the solar interior, leads to the heat accumulation at the bottom of the convection layer and then motivates the convection motion.

Zheng Yahui; Du Jiulin

2014-03-07

437

The gravitational heat conduction and the hierarchical structure in solar interior

With the assumption of local Tsallis equilibrium, the newly defined gravitational temperature is calculated in the solar interior, whose distribution curve can be divided into three parts, the solar core region, radiation region and convection region, in excellent agreement with the solar hierarchical structure. By generalizing the Fourier law, one new mechanism of heat conduction, based on the gradient of the gravitational temperature, is introduced into the astrophysical system. This mechanism is related to the self-gravity of such self-gravitating system whose characteristic scale is large enough. It perhaps plays an important role in the astrophysical system which, in the solar interior, leads to the heat accumulation at the bottom of the convection layer and then motivates the convection motion.

Yahui, Zheng

2014-01-01

438

The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

2013-01-01

439

The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

2013-06-12

440

NASA Technical Reports Server (NTRS)

Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

2005-01-01

441

BEAMS3D Neutral Beam Injection Model

NASA Astrophysics Data System (ADS)

With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

McMillan, Matthew; Lazerson, Samuel A.

2014-09-01

442

Exploring in 3D: Make your own 3D glasses

NSDL National Science Digital Library

In this lesson, learners will construct their own 3-D glasses in order to use them on 3-D images, such as images of the Sun from the STEREO spacecraft. This activity requires special materials, such as red and blue acetate paper and can be used with an accompanying activity, titled Create Your Own 3-D Images.

443

Wavelets in the domain decomposition method for transient heat conduction equation

NASA Astrophysics Data System (ADS)

We solve the transient heat conduction equation in an L- shaped region using domain decomposition and boundary integrals. The iterations need to be carried out only on the interfaces between the subdomains unlike finite difference or finite element methods where the iterations are to be performed in the entire domain. Numerically, the problem reduces to the multiplication of dense matrices by vectors of boundary or initial values. The DAUB4 wavelet transform is used to compress the matrices which leads to computational advantage without loss of accuracy. This procedure, capable of parallel implementation, is an extension of the work of Zarantonello and Elton for Laplace equation in overlapping circular discs.

Avudainayagam, A.; Vani, C.

1999-10-01

444

Heat conductivity from molecular chaos hypothesis in locally confined billiard systems.

We study the transport properties of a large class of locally confined Hamiltonian systems, in which neighboring particles interact through hard-core elastic collisions. When these collisions become rare and the systems large, we derive a Boltzmann-like equation for the evolution of the probability densities. We solve this equation in the linear regime and compute the heat conductivity from a Green-Kubo formula. The validity of our approach is demonstrated by comparing our predictions with the results of numerical simulations performed on a new class of high-dimensional defocusing chaotic billiards. PMID:19113325

Gilbert, Thomas; Lefevere, Raphaël

2008-11-14

445

Effects of friction and heat conduction on sound propagation in ducts

NASA Technical Reports Server (NTRS)

A theoretical formulation of the propagation of sound in a viscous and heat conducting medium is presented. The problem is reduced to the determination of two scalar potentials related to pressure and entropy fluctuations respectively, and a vector potential related to vorticity fluctuations. The particular case of a two-dimensional duct of constant width is thoroughly investigated in the low, high, and very high frequency ranges. It is shown that three distinct families of modes may propagate along the duct axis, namely, pressure, entropy, and vorticity dominated modes. Perturbation methods are used to study the variations of attenuation rates, phase velocities, and mode shapes, as a function of frequency and duct width.

Huerre, P.; Karamcheti, K.

1975-01-01

446

Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

NASA Technical Reports Server (NTRS)

To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

Padovan, Joe; Krishna, Lala

1986-01-01

447

Mathematical equations for heat conduction in the fins of air-cooled engines

NASA Technical Reports Server (NTRS)

The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.

Harper, R R; Brown, W B

1923-01-01

448

Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

Cable, William; Romanovsky, Vladimir

449

Coupled heat conduction and thermal stress formulation using explicit integration. [LMFBR

The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of th