Science.gov

Sample records for 3d interaction position

  1. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  2. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  3. Investigating the interaction between positions and signals of height-channel loudspeakers in reproducing immersive 3d sound

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Antonios

    Since transmission capacities have significantly increased over the past few years, researchers are now able to transmit a larger amount of data, namely multichannel audio content, in the consumer applications. What has not been investigated in a systematic way yet is how to deliver the multichannel content. Specifically, researchers' attention is focused on the quest of a standardized immersive reproduction format that incorporates height loudspeakers coupled with the new high-resolution and three-dimensional (3D) media content for a comprehensive 3D experience. To better understand and utilize the immersive audio reproduction, this research focused on the (1) interaction between the positioning of height loudspeakers and the signals fed to the loudspeakers, (2) investigation of the perceptual characteristics associated with the height ambiences, and (3) the influence of inverse filtering on perceived sound quality for the realistic 3D sound reproduction. The experiment utilized the existence of two layers of loudspeakers: horizontal layer following the ITU-R BS.775 five-channel loudspeaker configuration and height layer locating a total of twelve loudspeakers at the azimuth of +/-30°, +/-50°, +/-70°, +/-90°, +/-110° and +/-130° and elevation of 30°. Eight configurations were formed, each of which selected four height-loudspeakers from twelve. In the subjective evaluation, listeners compared, ranked and described the eight randomly presented configurations of 4-channel height ambiences. The stimuli for the experiment were four nine-channel (5 channels for the horizontal and 4 for the height loudspeakers) multichannel music. Moreover, an approach of Finite Impulse Response (FIR) inverse filtering was attempted, in order to remove the particular room's acoustic influence. Another set of trained professionals was informally asked to use descriptors to characterize the newly presented multichannel music with height ambiences rendered with inverse filtering. The

  4. Glnemo2: Interactive Visualization 3D Program

    NASA Astrophysics Data System (ADS)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  5. Techniques for interactive 3-D scientific visualization

    SciTech Connect

    Glinert, E.P. . Dept. of Computer Science); Blattner, M.M. Hospital and Tumor Inst., Houston, TX . Dept. of Biomathematics California Univ., Davis, CA . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Becker, B.G. . Dept. of Applied Science Lawrence Livermore National La

    1990-09-24

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  6. Crack interaction with 3-D dislocation loops

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    CRACKS in a solid often interact with other crystal defects such as dislocation loops. The interaction effects are of 3-D character yet their analytical treatment has been mostly limited to the 2-D regime due to mathematical complications. This paper shows that distribution of the stress intensity factors along a crack front due to arbitrary dislocation loops may be expressed as simple line integrals along the loop contours. The method of analysis is based on the 3-D Bueckner-Rice weight function theory for elastic crack analysis. Our results have significantly simplified the calculations for 3-D dislocation loops produced in the plastic processes at the crack front due to highly concentrated crack tip stress fields. Examples for crack-tip 3-D loops and 2-D straight dislocations emerging from the crack tip are given to demonstrate applications of the derived formulae. The results are consistent with some previous analytical solutions existing in the literature. As further applications we also analyse straight dislocations that are parallel or perpendicular to the crack plane but are not parallel to the crack front.

  7. Volume rendering for interactive 3D segmentation

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Derz, Claus

    1997-05-01

    Combined emission/absorption and reflection/transmission volume rendering is able to display poorly segmented structures from 3D medical image sequences. Visual cues such as shading and color let the user distinguish structures in the 3D display that are incompletely extracted by threshold segmentation. In order to be truly helpful, analyzed information needs to be quantified and transferred back into the data. We extend our previously presented scheme for such display be establishing a communication between visual analysis and the display process. The main tool is a selective 3D picking device. For being useful on a rather rough segmentation, the device itself and the display offer facilities for object selection. Selective intersection planes let the user discard information prior to choosing a tissue of interest. Subsequently, a picking is carried out on the 2D display by casting a ray into the volume. The picking device is made pre-selective using already existing segmentation information. Thus, objects can be picked that are visible behind semi-transparent surfaces of other structures. Information generated by a later connected- component analysis can then be integrated into the data. Data examination is continued on an improved display letting the user actively participate in the analysis process. Results of this display-and-interaction scheme proved to be very effective. The viewer's ability to extract relevant information form a complex scene is combined with the computer's ability to quantify this information. The approach introduces 3D computer graphics methods into user- guided image analysis creating an analysis-synthesis cycle for interactive 3D segmentation.

  8. Java 3D Interactive Visualization for Astrophysics

    NASA Astrophysics Data System (ADS)

    Chae, K.; Edirisinghe, D.; Lingerfelt, E. J.; Guidry, M. W.

    2003-05-01

    We are developing a series of interactive 3D visualization tools that employ the Java 3D API. We have applied this approach initially to a simple 3-dimensional galaxy collision model (restricted 3-body approximation), with quite satisfactory results. Running either as an applet under Web browser control, or as a Java standalone application, this program permits real-time zooming, panning, and 3-dimensional rotation of the galaxy collision simulation under user mouse and keyboard control. We shall also discuss applications of this technology to 3-dimensional visualization for other problems of astrophysical interest such as neutron star mergers and the time evolution of element/energy production networks in X-ray bursts. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  9. 3D positioning germanium detectors for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne; Amrose, Susan; Boggs, Steven E.; Lin, Robert P.; Amman, Mark S.; Burks, Morgan T.; Hull, Ethan L.; Luke, Paul N.; Madden, Norman W.

    2003-01-01

    We have developed germanium detector technologies for use in the Nuclear Compton Telescope (NCT) - a balloon-borne soft γ-ray (0.2-10 MeV) telescope to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is an array of twelve large volume cross strip germanium detectors, designed to provide 3-D positions for each photon interaction with ~1mm resolution while maintaining the high spectral resolution of germanium. Here we discuss the detailed performance of our prototype 19x19 strip detector, including laboratory tests, calibrations, and numerical simulations. In addition to the x and y positions provided by the orthogonal strips, the interaction depth (z-position) in the detector is measured using the relative timing of the anode and cathode charge collection signals. We describe laboratory calibrations of the depth discrimination using collimated sources with different characteristic energies, and compare the measurements to detailed Monte Carlo simulations and charge collection routines tracing electron-hole pairs from the interaction site to the electrodes. We have also investigated the effects of charge sharing and loss between electrodes, and present these in comparison to charge collection simulations. Detailed analysis of strip-to-strip uniformity in both efficiency and spectral resolution are also presented.

  10. 3D Models of Stellar Interactions

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.

    2014-04-01

    Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.

  11. Interactive 3d Landscapes on Line

    NASA Astrophysics Data System (ADS)

    Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.

    2011-09-01

    The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  12. Close interactions of 3-D vortex tubes

    NASA Technical Reports Server (NTRS)

    Melander, Mogens V.

    1989-01-01

    The motivation for studying close vortex interactions is briefly discussed in the light of turbulence and coherent structures. Particular attention is given to the interaction known as reconnection. Two reconnection mechanisms are discussed. One is annihilation of vorticity by cross-diffusion, the other is an inviscid head-tail formation. At intermediate Reynolds numbers both mechanisms are operating.

  13. A 3D interactive optical manipulation platform

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Rodrigo, Peter J.; Nielson, Ivan P.

    2005-12-01

    Three-dimensional light structures can be created by modulating the spatial phase and polarization properties of the laser light. A particularly promising technique is the Generalized Phase Contrast (GPC) method invented and patented at Riso National Laboratory. Based on the combination of programmable spatial light modulator devices and an advanced graphical user-interface the GPC method enables real-time, interactive and arbitrary control over the dynamics and geometry of synthesized light patterns. Recent experiments have shown that GPC-driven micro-manipulation provides a unique technology platform for fully user-guided assembly of a plurality of particles in a plane, control of particle stacking along the beam axis, manipulation of multiple hollow beads, and the organization of living cells into three-dimensional colloidal structures. These demonstrations illustrate that GPC-driven micro-manipulation can be utilized not only for the improved synthesis of functional microstructures but also for non-contact and parallel actuation crucial for sophisticated opto- and micro-fluidic based lab-on-a-chip systems.

  14. Interactive initialization of 2D/3D rigid registration

    SciTech Connect

    Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the

  15. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. PMID:26689764

  16. Inertial Pocket Navigation System: Unaided 3D Positioning

    PubMed Central

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  17. Inertial Pocket Navigation System: Unaided 3D Positioning.

    PubMed

    Diaz, Estefania Munoz

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  18. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  19. Hardware-accelerated autostereogram rendering for interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Petz, Christoph; Goldluecke, Bastian; Magnor, Marcus

    2003-05-01

    Single Image Random Dot Stereograms (SIRDS) are an attractive way of depicting three-dimensional objects using conventional display technology. Once trained in decoupling the eyes' convergence and focusing, autostereograms of this kind are able to convey the three-dimensional impression of a scene. We present in this work an algorithm that generates SIRDS at interactive frame rates on a conventional PC. The presented system allows rotating a 3D geometry model and observing the object from arbitrary positions in real-time. Subjective tests show that the perception of a moving or rotating 3D scene presents no problem: The gaze remains focused onto the object. In contrast to conventional SIRDS algorithms, we render multiple pixels in a single step using a texture-based approach, exploiting the parallel-processing architecture of modern graphics hardware. A vertex program determines the parallax for each vertex of the geometry model, and the graphics hardware's texture unit is used to render the dot pattern. No data has to be transferred between main memory and the graphics card for generating the autostereograms, leaving CPU capacity available for other tasks. Frame rates of 25 fps are attained at a resolution of 1024x512 pixels on a standard PC using a consumer-grade nVidia GeForce4 graphics card, demonstrating the real-time capability of the system.

  20. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  1. S3D: An interactive surface grid generation tool

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1992-01-01

    S3D, an interactive software tool for surface grid generation, is described. S3D provides the means with which a geometry definition based either on a discretized curve set or a rectangular set can be quickly processed towards the generation of a surface grid for computational fluid dynamics (CFD) applications. This is made possible as a result of implementing commonly encountered surface gridding tasks in an environment with a highly efficient and user friendly graphical interface. Some of the more advanced features of S3D include surface-surface intersections, optimized surface domain decomposition and recomposition, and automated propagation of edge distributions to surrounding grids.

  2. NASA VERVE: Interactive 3D Visualization Within Eclipse

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar; Allan, Mark B.

    2014-01-01

    At NASA, we develop myriad Eclipse RCP applications to provide situational awareness for remote systems. The Intelligent Robotics Group at NASA Ames Research Center has developed VERVE - a high-performance, robot user interface that provides scientists, robot operators, and mission planners with powerful, interactive 3D displays of remote environments.VERVE includes a 3D Eclipse view with an embedded Java Ardor3D scenario, including SWT and mouse controls which interact with the Ardor3D camera and objects in the scene. VERVE also includes Eclipse views for exploring and editing objects in the Ardor3D scene graph, and a HUD (Heads Up Display) framework allows Growl-style notifications and other textual information to be overlayed onto the 3D scene. We use VERVE to listen to telemetry from robots and display the robots and associated scientific data along the terrain they are exploring; VERVE can be used for any interactive 3D display of data.VERVE is now open source. VERVE derives from the prior Viz system, which was developed for Mars Polar Lander (2001) and used for the Mars Exploration Rover (2003) and the Phoenix Lander (2008). It has been used for ongoing research with IRG's K10 and KRex rovers in various locations. VERVE was used on the International Space Station during two experiments in 2013 - Surface Telerobotics, in which astronauts controlled robots on Earth from the ISS, and SPHERES, where astronauts control a free flying robot on board the ISS.We will show in detail how to code with VERVE, how to interact between SWT controls to the Ardor3D scenario, and share example code.

  3. Design of a 3D Navigation Technique Supporting VR Interaction

    NASA Astrophysics Data System (ADS)

    Boudoin, Pierre; Otmane, Samir; Mallem, Malik

    2008-06-01

    Multimodality is a powerful paradigm to increase the realness and the easiness of the interaction in Virtual Environments (VEs). In particular, the search for new metaphors and techniques for 3D interaction adapted to the navigation task is an important stage for the realization of future 3D interaction systems that support multimodality, in order to increase efficiency and usability. In this paper we propose a new multimodal 3D interaction model called Fly Over. This model is especially devoted to the navigation task. We present a qualitative comparison between Fly Over and a classical navigation technique called gaze-directed steering. The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient navigation technique.

  4. READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

    SciTech Connect

    DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P.; HE, Z.; HERMAN, C.; ZHANG, F.

    2007-10-27

    We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.

  5. Interactive 3D visualisation of ECMWF ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Grams, Christian M.; Schäfler, Andreas; Westermann, Rüdiger

    2013-04-01

    We investigate the feasibility of interactive 3D visualisation of ensemble weather predictions in a way suited for weather forecasting during aircraft-based atmospheric field campaigns. The study builds upon our previous work on web-based, 2D visualisation of numerical weather prediction data for the purpose of research flight planning (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). Now we explore how interactive 3D visualisation of ensemble forecasts can be used to quickly identify atmospheric features relevant to a flight and to assess their uncertainty. We use data from the European Centre for Medium Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) and present techniques to interactively visualise the forecasts on a commodity desktop PC with a state-of-the-art graphics card. Major objectives of this study are: (1) help the user transition from the ``familiar'' 2D views (horizontal maps and vertical cross-sections) to 3D visualisation by putting interactive 2D views into a 3D context and enriching them with 3D elements, at the same time (2) maintain a high degree of quantitativeness in the visualisation to facilitate easy interpretation; (3) exploitation of the Graphics Processing Unit (GPU) for maximum interactivity; (4) investigation of how visualisation can be performed directly from datasets on ECMWF hybrid model levels; (5) development of a basic forecasting tool that provides synchronized navigation through forecast base and lead times, as well as through the ensemble dimension and (6) interactive computation and visualisation of ensemble-based quantities. A prototype of our tool was used for weather forecasting during the aircraft-based T-NAWDEX-Falcon field campaign, which took place in October 2012 at the German Aerospace Centre's (DLR) Oberpfaffenhofen base. We reconstruct the forecast of a warm conveyor belt situation that occurred during the campaign and discuss challenges and opportunities posed by employing three

  6. 3D RNA and Functional Interactions from Evolutionary Couplings.

    PubMed

    Weinreb, Caleb; Riesselman, Adam J; Ingraham, John B; Gross, Torsten; Sander, Chris; Marks, Debora S

    2016-05-01

    Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces the research on the structure and functional interactions of these RNA gene sequences. We mine the evolutionary sequence record to derive precise information about the function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions-e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by increasing sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444

  7. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education. PMID:27350455

  8. Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.

  9. Ideal Positions: 3D Sonography, Medical Visuality, Popular Culture.

    PubMed

    Seiber, Tim

    2016-03-01

    As digital technologies are integrated into medical environments, they continue to transform the experience of contemporary health care. Importantly, medicine is increasingly visual. In the history of sonography, visibility has played an important role in accessing fetal bodies for diagnostic and entertainment purposes. With the advent of three-dimensional (3D) rendering, sonography presents the fetus visually as already a child. The aesthetics of this process and the resulting imagery, made possible in digital networks, discloses important changes in the relationship between technology and biology, reproductive health and political debates, and biotechnology and culture. PMID:26164291

  10. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    NASA Astrophysics Data System (ADS)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  11. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  12. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in Rats

    PubMed Central

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  13. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    PubMed

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  14. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  15. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

    PubMed Central

    Jun, Sangmi; Zhao, Gongpu; Ning, Jiying; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2013-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state1. However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging2, due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-13-7, the resolution afforded by live-cell microscopy is limited (~ 200 nm). Our work was aimed at developing a correlation method that permits direct visualization of early events of HIV-1 infection by combining live-cell fluorescent light microscopy, cryo-fluorescent microscopy, and cryoET. In this manner, live-cell and cryo-fluorescent signals can be used to accurately guide the sampling in cryoET. Furthermore, structural information obtained from cryoET can be complemented with the dynamic functional data gained through live-cell imaging of fluorescent labeled target. In this video article, we provide detailed methods and protocols for structural investigation of HIV-1 and host-cell interactions using 3D correlative high-speed live-cell imaging and high-resolution cryoET structural analysis. HeLa cells infected with HIV-1 particles were characterized first by confocal live-cell microscopy, and the region containing the same viral particle was then analyzed by cryo-electron tomography for 3D structural details. The correlation between two sets of imaging data, optical imaging and electron imaging, was achieved using a home-built cryo-fluorescence light microscopy stage. The approach detailed here will be valuable, not only for study of virus-host cell interactions, but also for broader applications in cell biology, such as cell signaling, membrane receptor trafficking, and many other dynamic cellular processes. PMID:23852318

  16. 3D Inhabited Virtual Worlds: Interactivity and Interaction between Avatars, Autonomous Agents, and Users.

    ERIC Educational Resources Information Center

    Jensen, Jens F.

    This paper addresses some of the central questions currently related to 3-Dimensional Inhabited Virtual Worlds (3D-IVWs), their virtual interactions, and communication, drawing from the theory and methodology of sociology, interaction analysis, interpersonal communication, semiotics, cultural studies, and media studies. First, 3D-IVWs--seen as a…

  17. Beam tests of a 3-D position sensitive scintillation detector

    SciTech Connect

    Labanti, C.; Hall, C.J.; Agrinier, B.; Byard, K.; Dean, A.J.; Goldwurm, A.; Harding, J.S.

    1989-02-01

    An array of 30 position sensitive scintillator bars has been tested in a gamma-ray beam from I.N.S.T.N. Van de Graff facility at the Centre d'Etudes Nucleaires, Saclay, France. The gamma-ray energies ranged from 6 MeV to 17 MeV. The bars are similar to those proposed for use in the GRASP gamma-ray telescope satellite imaging plane. They are manufactured from CsI(T1) covered with a highly reflective diffusive wrapping, and are read out using large area PIN photodiodes. Each bar measures 15.0 cm by 1.3 cm by 1.3 cm. The beam test unit was comprised of 30 bars stacked in a 5 by 6 array. The photodiodes were optically coupled to the end face of each bar and were connected to a processing chain comprised of a low noise preamplifier, a high gain shaping amplifier, and a digitisation and data collection system. Several experiments were performed with the unit to assess the spectral response, position resolution, and background rejection capabilities of the complete detector. The test procedure is explained and some results are presented.

  18. Interactive photogrammetric system for mapping 3D objects

    NASA Astrophysics Data System (ADS)

    Knopp, Dave E.

    1990-08-01

    A new system, FOTO-G, has been developed for 3D photogrammetric applications. It is a production-oriented software system designed to work with highly unconventional photogrammetric image configurations which result when photographing 3D objects. A demonstration with imagery from an actual 3D-mapping project is reported.

  19. Interactive 3D visualization speeds well, reservoir planning

    SciTech Connect

    Petzet, G.A.

    1997-11-24

    Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinite reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.

  20. Quantifying cellular interaction dynamics in 3-D fluorescence microscopy data

    PubMed Central

    Klauschen, Frederick; Ishii, Masaru; Qi, Hai; Bajénoff, Marc; Egen, Jackson G.; Germain, Ronald N.; Meier-Schellersheim, Martin

    2012-01-01

    The wealth of information available from advanced fluorescence imaging techniques used to analyze biological processes with high spatial and temporal resolution calls for high-throughput image analysis methods. Here, we describe a fully automated approach to analyzing cellular interaction behavior in 3-D fluorescence microscopy images. As example application we present the analysis of drug-induced and S1P1-knock-out-related changes in bone-osteoclast interactions. Moreover, we apply our approach to images showing the spatial association of dendritic cells with the fibroblastic reticular cell network within lymph nodes and to microscopy data about T-B lymphocyte synapse formation. Such analyses that yield important information about the molecular mechanisms determining cellular interaction behavior would be very difficult to perform with approaches that rely on manual/semi-automated analyses. This protocol integrates adaptive threshold segmentation, object detection, adaptive color channel merging and neighborhood analysis and permits rapid, standardized, quantitative analysis and comparison of the relevant features in large data sets. PMID:19696749

  1. Compact camera for 3D position registration of cancer in radiation treatment

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Hiratsuka, Shun; Kamakura, Yoshihisa; Nakamura, Katsumasa; Yoshizawa, Toru

    2014-11-01

    Radiation treatments have been attracted many interests as one of revolutionary cancer therapies. Today, it is possible to treat cancers without any surgical operations. In the fields of the radiation treatments, it is important to regist the 3D position of the cancer inside the body precisely and instantaneously. To achieve 3D position registrations, we aim at developing a compact camera for 3D measurements. In this trial, we have developed a high-speed pattern projector based on the spatiotemporal conversion technique. In experiments, we show some experimental results for the 3D registrations.

  2. The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data.

    PubMed

    Amini, Fereshteh; Rufiange, Sebastien; Hossain, Zahid; Ventura, Quentin; Irani, Pourang; McGuffin, Michael J

    2015-01-01

    GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects over time as they move through two-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to understand correlations between space and time. Software such as GeoTime can display such data with a three-dimensional visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out the effects of various basic interactions and find that the 2D view relies significantly on "scrubbing" the timeline, whereas the 3D view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-temporal data, particularly with respect to interactivity. PMID:26357026

  3. 3D implicit PIC simulations of solar wind - moon interactions

    NASA Astrophysics Data System (ADS)

    Deca, J.; Markidis, S.; Divin, A.; Lapenta, G.; Vapirev, A.

    2012-04-01

    We present three-dimensional Particle-in-Cell simulations of an unmagnetized insulating Moon-sized body immersed in the solar wind. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, 2009]. Multiscale kinetic physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind - body interaction studies. Particles are injected at the inflow side of the computational domain and absorbed at all others. A bow shock is not formed upstream of the body, but the obstacle generates faint dispersive waves propagating parallel to the magnetic field lines, in agreement with numerical simulations done in MHD approach. Polarization electric field is generated in the wake. In addition, plasma flows filling the wake tend to excite streaming instabilities, which lead to bipolar signatures in the parallel electric field. Our future work includes updating the physical model to include photoionization and re-emission at the object's surface.

  4. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  5. Improvement of integral 3D image quality by compensating for lens position errors

    NASA Astrophysics Data System (ADS)

    Okui, Makoto; Arai, Jun; Kobayashi, Masaki; Okano, Fumio

    2004-05-01

    Integral photography (IP) or integral imaging is a way to create natural-looking three-dimensional (3-D) images with full parallax. Integral three-dimensional television (integral 3-D TV) uses a method that electronically presents 3-D images in real time based on this IP method. The key component is a lens array comprising many micro-lenses for shooting and displaying. We have developed a prototype device with about 18,000 lenses using a super-high-definition camera with 2,000 scanning lines. Positional errors of these high-precision lenses as well as the camera's lenses will cause distortions in the elemental image, which directly affect the quality of the 3-D image and the viewing area. We have devised a way to compensate for such geometrical position errors and used it for the integral 3-D TV prototype, resulting in an improvement in both viewing zone and picture quality.

  6. 3D position determination in monolithic crystals coupled to SiPMs for PET.

    PubMed

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F; Solaz, Carles; Llosá, Gabriela

    2016-05-21

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a [Formula: see text] mm(3) LYSO crystal coupled to an [Formula: see text]-pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal. PMID:27119737

  7. 3D position determination in monolithic crystals coupled to SiPMs for PET

    NASA Astrophysics Data System (ADS)

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F.; Solaz, Carles; Llosá, Gabriela

    2016-05-01

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a 12× 12× 10 mm3 LYSO crystal coupled to an 8× 8 -pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal.

  8. Computationally efficient storage of 3D particle intensity and position data for use in 3D PIV and 3D PTV

    NASA Astrophysics Data System (ADS)

    Atkinson, C.; Buchmann, N. A.; Soria, J.

    2013-11-01

    Three-dimensional (3D) volumetric velocity measurement techniques, such as tomographic or holographic particle image velocimetry (PIV), rely upon the computationally intensive formation, storage and localized interrogation of multiple 3D particle intensity fields. Calculation of a single velocity field typically requires the extraction of particle intensities into tens of thousands of 3D sub-volumes or discrete particle clusters, the processing of which can significantly affect the performance of 3D cross-correlation based PIV and 3D particle tracking velocimetry (PTV). In this paper, a series of popular and customized volumetric data formats are presented and investigated using synthetic particle volumes and experimental data arising from tomographic PIV measurements of a turbulent boundary layer. Results show that the use of a sub-grid ordered non-zero intensity format with a sub-grid size of 16 × 16 × 16 points provides the best performance for cross-correlation based PIV analysis, while a particle clustered non-zero intensity format provides the best format for PTV applications. In practical tomographic PIV measurements the sub-grid ordered non-zero intensity format offered a 29% improvement in reconstruction times, while providing a 93% reduction in volume data requirements and a 28% overall improvement in cross-correlation based velocity analysis and validation times.

  9. 3D-CANVENT: An interactive mine ventilation simulator

    SciTech Connect

    Hardcastle, S.G.

    1995-12-31

    3D-CANVENT is a software package that integrates advanced computer aided design (ACAD) true 3D graphics with a mine ventilation simulator. The package runs as a Windows{trademark} application to access its printer drivers environment and does not need third party CAD software. It is composed of two primary modules: DMVENT and MINEDESIGNER. DMVENT is a traditional Fortran coded Hardy-Cross iterative ventilation network solver written in 1980 with thermodynamic capabilities. This module is relatively unchanged with the traditional data input options for branch type, specified or calculated resistances, fixed flows, and fixed or variable pressure fans. MINEDESIGNER is the graphics engine that optimizes the ventilation design process. It performs the front-end transformation of input data entered in the graphical interface into the correct format for the solver. At the back-end it reconverts the historically standard tabular data output from the solver into an easily viewed graphical format. ACAD features of MINEDESIGNER are used to generate a 3D wire-frame node and branch network of the mine`s ventilation system. The network can be displayed in up to 4 views orientated to XYZ planes or a 3D view. AU the views have zoom, pan, slice and rotate options. The graphical interface efficiently permits data entry and editing via a mouse with pick-and-point item selection. Branches can be found or added with {open_quotes}search{close_quotes} and {open_quotes}join{close_quotes} options. Visual interpretation is enhanced by the 16 colour options for branches and numerous graphical attributes. Network locations are readily identified by alpha-numeric names for branches, junctions and fans, and also the logical numbering of junctions. The program is also readily expandable for pollutant simulation and control/monitoring applications.

  10. 3D surface imaging of the human female torso in upright to supine positions.

    PubMed

    Reece, Gregory P; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K; Weston, June; Fingeret, Michelle C; Lane, Chris; Duncan, Kelly; Markey, Mia K

    2015-04-01

    Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman's torso as she is tilted from 0 to 90°. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from five subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than 1% for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the five subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table-3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles. PMID:25703742

  11. 3D Surface Imaging of the Human Female Torso in Upright to Supine Positions

    PubMed Central

    Reece, Gregory P.; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K.; Weston, June; Fingeret, Michelle C.; Lane, Chris; Duncan, Kelly; Markey, Mia K.

    2015-01-01

    Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman’s torso as she is tilted from 0 to 90 degrees. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from 5 subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than one percent for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the 5 subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table - 3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles. PMID:25703742

  12. Whole versus Part Presentations of the Interactive 3D Graphics Learning Objects

    ERIC Educational Resources Information Center

    Azmy, Nabil Gad; Ismaeel, Dina Ahmed

    2010-01-01

    The purpose of this study is to present an analysis of how the structure and design of the Interactive 3D Graphics Learning Objects can be effective and efficient in terms of Performance, Time on task, and Learning Efficiency. The study explored two treatments, namely whole versus Part Presentations of the Interactive 3D Graphics Learning Objects,…

  13. 3D measurement of the position of gold particles via evanescent digital holographic particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Satake, Shin-ichi; Unno, Noriyuki; Nakata, Shuichiro; Taniguchi, Jun

    2016-08-01

    A new technique based on digital holography and evanescent waves was developed for 3D measurements of the position of gold nanoparticles in water. In this technique, an intensity profile is taken from a holographic image of a gold particle. To detect the position of the gold particle with high accuracy, its holographic image is recorded on a nanosized step made of MEXFLON, which has a refractive index close to that of water, and the position of the particle is reconstructed by means of digital holography. The height of the nanosized step was measured by using a profilometer and the digitally reconstructed height of the glass substrate had good agreement with the measured value. Furthermore, this method can be used to accurately track the 3D position of a gold particle in water.

  14. Visualizing the process of interaction in a 3D environment

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Krishnan, Kajoli; Mullick, Rakesh

    2007-03-01

    As the imaging modalities used in medicine transition to increasingly three-dimensional data the question of how best to interact with and analyze this data becomes ever more pressing. Immersive virtual reality systems seem to hold promise in tackling this, but how individuals learn and interact in these environments is not fully understood. Here we will attempt to show some methods in which user interaction in a virtual reality environment can be visualized and how this can allow us to gain greater insight into the process of interaction/learning in these systems. Also explored is the possibility of using this method to improve understanding and management of ergonomic issues within an interface.

  15. 3D positional tracking of ellipsoidal particles in a microtube flow using holographic microscopy

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeok Jun; Seo, Kyung Won; Lee, Sang Joon

    2014-11-01

    Understanding of micro-scale flow phenomena is getting large attention under advances in micro-scale measurement technologies. Especially, the dynamics of particles suspended in a fluid is essential in both scientific and industrial fields. Moreover, most particles handled in research and industrial fields have non-spherical shapes rather than a simple spherical shape. Under various flow conditions, these non-spherical particles exhibit unique dynamic behaviors. To analyze these dynamic behaviors in a fluid flow, 3D positional information of the particles should be measured accurately. In this study, digital holographic microscopy (DHM) is employed to measure the 3D positional information of non-spherical particles, which are fabricated by stretching spherical polystyrene particles. 3D motions of those particles are obtained by interpreting the holograms captured from particles. Ellipsoidal particles with known size and shape are observed to verify the performance of the DHM technique. In addition, 3D positions of particles in a microtube flow are traced. This DHM technique exhibits promising potential in the analysis of dynamic behaviors of non-spherical particles suspended in micro-scale fluid flows.

  16. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  17. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-01-01

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme. PMID:21970578

  18. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views. PMID:27166019

  19. Interaction model for 3D cutting in maxillofacial surgery planning

    NASA Astrophysics Data System (ADS)

    Neumann, Patrick; Siebert, Dirk; Schulz, Armin; Faulkner, Gabriele; Krauss, Manfred; Tolxdorff, Thomas

    1999-05-01

    Our main research work is the realization of a completely computer-based maxillofacial surgery planning system. An important step toward this goal is the availability of virtual tools for the surgeon to interactively define bone segments from skull and jaw bones. The easy-to-handle user interface employs visual and force-feedback devices to define subvolumes of a patient's volume dataset. The defined subvolumes together with their spatial arrangements lead to an operation plan. We have evaluated modern low-cost, force- feedback devices with regard to their ability to emulate the surgeon's working procedure.

  20. Virtual 3D interactive system with embedded multiwavelength optical sensor array and sequential devices

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Zhen; Huang, Yi-Pai; Hu, Kuo-Jui

    2012-06-01

    We proposed a virtual 3D-touch system by bare finger, which can detect the 3-axis (x, y, z) information of finger. This system has multi-wavelength optical sensor array embedded on the backplane of TFT panel and sequentail devices on the border of TFT panel. We had developed reflecting mode which can be worked by bare finger for the 3D interaction. A 4-inch mobile 3D-LCD with this proposed system was successfully been demonstrated already.

  1. An Interactive, 3D Fault Editor for VR Environments

    NASA Astrophysics Data System (ADS)

    van Aalsburg, J.; Yikilmaz, M. B.; Kreylos, O.; Kellogg, L. H.; Rundle, J. B.

    2008-12-01

    Digitial Fault Models (DFM) play a vital role in the study of earthquake dynamics, fault-earthquake interactions, and seismicity. DFMs serve as input for finite-element method (FEM) or other earthquake simulations such as Virtual California. Generally, digital fault models are generated by importing a digitized and georeferenced (2D) fault map and/or a hillshade image of the study area into a geographical information system (GIS) application, where individual fault lines are traced by the user. Data assimilation and creation of a DFM, or updating an existing DFM based on new observations, is a tedious and time-consuming process. In order to facilitate the creation process, we are developing an immersive virtual reality (VR) application to visualize and edit fault models. This program is designed to run in immersive environments such as a CAVE (walk-in VR environment), but also works in a wide range of other environments, including desktop systems and GeoWalls. It is being developed at the UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES, http://www.keckcaves.org). Our program allows users to create new models or modify existing ones; for instance by repositioning individual fault-segments, by changing the dip angle, or by modifying (or assigning) the value of a property associated with a particular fault segment (i.e. slip rate). With the addition of high resolution Digital Elevation Models (DEM) , georeferenced active tectonic fault maps and earthquake hypocenters, the user can accurately add new segments to an existing model or create a fault model entirely from scratch. Interactively created or modified models can be written to XML files at any time; from there the data may easily be converted into various formats required by the analysis software or simulation. We believe that the ease of interaction provided by VR technology is ideally suited to the problem of creating and editing digital fault models. Our software provides

  2. A topological framework for interactive queries on 3D models in the Web.

    PubMed

    Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236

  3. A Topological Framework for Interactive Queries on 3D Models in the Web

    PubMed Central

    Figueiredo, Mauro; Rodrigues, José I.; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236

  4. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  5. 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo

    PubMed Central

    Long, Brian; Li, Lu; Knoblich, Ulf; Zeng, Hongkui; Peng, Hanchuan

    2015-01-01

    We report a method to facilitate single cell, image-guided experiments including in vivo electrophysiology and electroporation. Our method combines 3D image data acquisition, visualization and on-line image analysis with precise control of physical probes such as electrophysiology microelectrodes in brain tissue in vivo. Adaptive pipette positioning provides a platform for future advances in automated, single cell in vivo experiments. PMID:26689553

  6. 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo.

    PubMed

    Long, Brian; Li, Lu; Knoblich, Ulf; Zeng, Hongkui; Peng, Hanchuan

    2015-01-01

    We report a method to facilitate single cell, image-guided experiments including in vivo electrophysiology and electroporation. Our method combines 3D image data acquisition, visualization and on-line image analysis with precise control of physical probes such as electrophysiology microelectrodes in brain tissue in vivo. Adaptive pipette positioning provides a platform for future advances in automated, single cell in vivo experiments. PMID:26689553

  7. Dynamic WIFI-Based Indoor Positioning in 3D Virtual World

    NASA Astrophysics Data System (ADS)

    Chan, S.; Sohn, G.; Wang, L.; Lee, W.

    2013-11-01

    A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the system's capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected through pre-determined communication protocols.

  8. GMOL: An Interactive Tool for 3D Genome Structure Visualization.

    PubMed

    Nowotny, Jackson; Wells, Avery; Oluwadare, Oluwatosin; Xu, Lingfei; Cao, Renzhi; Trieu, Tuan; He, Chenfeng; Cheng, Jianlin

    2016-01-01

    It has been shown that genome spatial structures largely affect both genome activity and DNA function. Knowing this, many researchers are currently attempting to accurately model genome structures. Despite these increased efforts there still exists a shortage of tools dedicated to visualizing the genome. Creating a tool that can accurately visualize the genome can aid researchers by highlighting structural relationships that may not be obvious when examining the sequence information alone. Here we present a desktop application, known as GMOL, designed to effectively visualize genome structures so that researchers may better analyze genomic data. GMOL was developed based upon our multi-scale approach that allows a user to scale between six separate levels within the genome. With GMOL, a user can choose any unit at any scale and scale it up or down to visualize its structure and retrieve corresponding genome sequences. Users can also interactively manipulate and measure the whole genome structure and extract static images and machine-readable data files in PDB format from the multi-scale structure. By using GMOL researchers will be able to better understand and analyze genome structure models and the impact their structural relations have on genome activity and DNA function. PMID:26868282

  9. A new multimodal interactive way of subjective scoring of 3D video quality of experience

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Lee, Kwanghyun; Lee, Sanghoon; Bovik, Alan C.

    2014-03-01

    People that watch today's 3D visual programs, such as 3D cinema, 3D TV and 3D games, experience wide and dynamically varying ranges of 3D visual immersion and 3D quality of experience (QoE). It is necessary to be able to deploy reliable methodologies that measure each viewers subjective experience. We propose a new methodology that we call Multimodal Interactive Continuous Scoring of Quality (MICSQ). MICSQ is composed of a device interaction process between the 3D display and a separate device (PC, tablet, etc.) used as an assessment tool, and a human interaction process between the subject(s) and the device. The scoring process is multimodal, using aural and tactile cues to help engage and focus the subject(s) on their tasks. Moreover, the wireless device interaction process makes it possible for multiple subjects to assess 3D QoE simultaneously in a large space such as a movie theater, and at di®erent visual angles and distances.

  10. Use of Colour and Interactive Animation in Learning 3D Vectors

    ERIC Educational Resources Information Center

    Iskander, Wejdan; Curtis, Sharon

    2005-01-01

    This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…

  11. Real-time rendering method and performance evaluation of composable 3D lenses for interactive VR.

    PubMed

    Borst, Christoph W; Tiesel, Jan-Phillip; Best, Christopher M

    2010-01-01

    We present and evaluate a new approach for real-time rendering of composable 3D lenses for polygonal scenes. Such lenses, usually called "volumetric lenses," are an extension of 2D Magic Lenses to 3D volumes in which effects are applied to scene elements. Although the composition of 2D lenses is well known, 3D composition was long considered infeasible due to both geometric and semantic complexity. Nonetheless, for a scene with multiple interactive 3D lenses, the problem of intersecting lenses must be considered. Intersecting 3D lenses in meaningful ways supports new interfaces such as hierarchical 3D windows, 3D lenses for managing and composing visualization options, or interactive shader development by direct manipulation of lenses providing component effects. Our 3D volumetric lens approach differs from other approaches and is one of the first to address efficient composition of multiple lenses. It is well-suited to head-tracked VR environments because it requires no view-dependent generation of major data structures, allowing caching and reuse of full or partial results. A Composite Shader Factory module composes shader programs for rendering composite visual styles and geometry of intersection regions. Geometry is handled by Boolean combinations of region tests in fragment shaders, which allows both convex and nonconvex CSG volumes for lens shape. Efficiency is further addressed by a Region Analyzer module and by broad-phase culling. Finally, we consider the handling of order effects for composed 3D lenses. PMID:20224135

  12. Research on gaze-based interaction to 3D display system

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Moo; Jeon, Kyeong-Won; Kim, Sung-Kyu

    2006-10-01

    There have been reported several researches on gaze tracking techniques using monocular camera or stereo camera. The most popular used gaze estimation techniques are based on PCCR (Pupil Center & Cornea Reflection). These techniques are for gaze tracking for 2D screen or images. In this paper, we address the gaze-based 3D interaction to stereo image for 3D virtual space. To the best of our knowledge, our paper first addresses the 3D gaze interaction techniques to 3D display system. Our research goal is the estimation of both of gaze direction and gaze depth. Until now, the most researches are focused on only gaze direction for the application to 2D display system. It should be noted that both of gaze direction and gaze depth should be estimated for the gaze-based interaction in 3D virtual space. In this paper, we address the gaze-based 3D interaction techniques with glassless stereo display. The estimation of gaze direction and gaze depth from both eyes is a new important research topic for gaze-based 3D interaction. We present our approach for the estimation of gaze direction and gaze depth and show experimentation results.

  13. A virtual interface for interactions with 3D models of the human body.

    PubMed

    De Paolis, Lucio T; Pulimeno, Marco; Aloisio, Giovanni

    2009-01-01

    The developed system is the first prototype of a virtual interface designed to avoid contact with the computer so that the surgeon is able to visualize 3D models of the patient's organs more effectively during surgical procedure or to use this in the pre-operative planning. The doctor will be able to rotate, to translate and to zoom in on 3D models of the patient's organs simply by moving his finger in free space; in addition, it is possible to choose to visualize all of the organs or only some of them. All of the interactions with the models happen in real-time using the virtual interface which appears as a touch-screen suspended in free space in a position chosen by the user when the application is started up. Finger movements are detected by means of an optical tracking system and are used to simulate touch with the interface and to interact by pressing the buttons present on the virtual screen. PMID:19377116

  14. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  15. Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking

    NASA Astrophysics Data System (ADS)

    Lindgren, Erik

    2014-12-01

    This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.

  16. Simultaneous, accurate measurement of the 3D position and orientation of single molecules

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.

    2012-01-01

    Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). PMID:23129640

  17. A 3D interactive multi-object segmentation tool using local robust statistics driven active contours.

    PubMed

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2012-08-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: first, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction-this not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we provide

  18. 3D positional control of magnetic levitation system using adaptive control: improvement of positioning control in horizontal plane

    NASA Astrophysics Data System (ADS)

    Nishino, Toshimasa; Fujitani, Yasuhiro; Kato, Norihiko; Tsuda, Naoaki; Nomura, Yoshihiko; Matsui, Hirokazu

    2012-01-01

    The objective of this paper is to establish a technique that levitates and conveys a hand, a kind of micro-robot, by applying magnetic forces: the hand is assumed to have a function of holding and detaching the objects. The equipment to be used in our experiments consists of four pole-pieces of electromagnets, and is expected to work as a 4DOF drive unit within some restricted range of 3D space: the three DOF are corresponding to 3D positional control and the remaining one DOF, rotational oscillation damping control. Having used the same equipment, Khamesee et al. had manipulated the impressed voltages on the four electric magnetics by a PID controller by the use of the feedback signal of the hand's 3D position, the controlled variable. However, in this system, there were some problems remaining: in the horizontal direction, when translating the hand out of restricted region, positional control performance was suddenly degraded. The authors propose a method to apply an adaptive control to the horizontal directional control. It is expected that the technique to be presented in this paper contributes not only to the improvement of the response characteristic but also to widening the applicable range in the horizontal directional control.

  19. Hartree-Fock values of energies, interaction constants, and atomic properties for excited states with 3 d N4 s0 and 3 d n4 s2 configurations of the negative ions, neutral atoms, and first four positive ions of the transition elements

    NASA Astrophysics Data System (ADS)

    Snyder, C. D.; Jastram, J. D.; Hitt, N. P.; Woffod, J.; Rice, K. C.

    2012-12-01

    Global climate-change models predict warmer stream temperatures, but there have been few studies that document such effects on stream communities. In Shenandoah National Park, Virginia, long-term temperature records indicate that stream temperatures show an increasing trend over the last 20 years and especially over the last 10 years. Stream temperatures have increased apparently due to atmospheric warming (i.e., stream temperatures are strongly correlated with regional air temperature patterns). Across 14 monitored stream sites, the median increase in maximum annual water temperature was 0.32oC per year for the 10-yr period between 2000 and 2009, and all 14 sites had positive trend slopes. Moreover, in contrast to water-chemistry trends, temperature trends showed no spatial structure and were consistent throughout the park. The observed warming is consistent with global warming projections, but other factors, including the North Atlantic Oscillation and forest defoliation due to gypsy moth (Lepidoptera: Lymantriidae), also may have contributed to warming trends. We summarized benthic macroinvertebrate community composition and structure from samples collected at 24 stream sites over the last 20 years and evaluated temporal patterns in the context of observed temperature trends. We found that a substantial amount of temporal variation in both taxonomic composition and community structure could be explained by temperature trends, even after accounting for water-chemistry changes. We observed significant declines in community diversity as well as a decline in the abundance of several stonefly (Plecoptera) taxa, a cold-water-dependent taxonomic group. We hypothesize that temperature-induced changes in the diversity and composition of macroinvertebrate communities could cascade to other faunal groups and other parts of the watershed. For instance, reduced abundances of stoneflies, an important component of the shredder functional group, may lead to reduced export of

  20. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  1. 3D position estimation using an artificial neural network for a continuous scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, W.; Cheng, X.; Li, D.

    2013-03-01

    Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an ‘8 + 8’ simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction.

  2. Three-Dimensional Reconstructions Come to Life – Interactive 3D PDF Animations in Functional Morphology

    PubMed Central

    van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander

    2014-01-01

    Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366

  3. Three-dimensional reconstructions come to life--interactive 3D PDF animations in functional morphology.

    PubMed

    van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander

    2014-01-01

    Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366

  4. Codeless GPS systems for positioning of offshore platforms and 3D seismic surveys

    NASA Astrophysics Data System (ADS)

    MacDoran, P. F.; Miller, R. B.; Buennagel, L. A.; Fliegel, H. F.; Tanida, L.

    The Satellite Emission Range Inferred Earth Surveying (SERIES) method was originally intended for subdecimeter accuracy measurements of the crust of the earth in search of tell-tale patterns which could be exploited for research into earthquake prediction. The present paper is concerned with a specific application of the SERIES technology, taking into account high accuracy positioning related to exploration for oil and gas reserves in the offshore environment. One of the most advanced methods of exploration for hydrocarbon resources is known as 3D seismic surveying. Morgan (1983) has discussed this method, giving attention to the possible benefits of using the Global Positioning System (GPS). The present paper presents the SERIES-GPS method. It is shown that wide civil use of the Navstar is possible to levels of accuracy well beyond the Precise Positioning Service (PPS). Such a use is feasible without the DOD for Navstar codes and orbits.

  5. GIANT: pattern analysis of molecular interactions in 3D structures of protein–small ligand complexes

    PubMed Central

    2014-01-01

    Background Interpretation of binding modes of protein–small ligand complexes from 3D structure data is essential for understanding selective ligand recognition by proteins. It is often performed by visual inspection and sometimes largely depends on a priori knowledge about typical interactions such as hydrogen bonds and π-π stacking. Because it can introduce some biases due to scientists’ subjective perspectives, more objective viewpoints considering a wide range of interactions are required. Description In this paper, we present a web server for analyzing protein–small ligand interactions on the basis of patterns of atomic contacts, or “interaction patterns” obtained from the statistical analyses of 3D structures of protein–ligand complexes in our previous study. This server can guide visual inspection by providing information about interaction patterns for each atomic contact in 3D structures. Users can visually investigate what atomic contacts in user-specified 3D structures of protein–small ligand complexes are statistically overrepresented. This server consists of two main components: “Complex Analyzer”, and “Pattern Viewer”. The former provides a 3D structure viewer with annotations of interacting amino acid residues, ligand atoms, and interacting pairs of these. In the annotations of interacting pairs, assignment to an interaction pattern of each contact and statistical preferences of the patterns are presented. The “Pattern Viewer” provides details of each interaction pattern. Users can see visual representations of probability density functions of interactions, and a list of protein–ligand complexes showing similar interactions. Conclusions Users can interactively analyze protein–small ligand binding modes with statistically determined interaction patterns rather than relying on a priori knowledge of the users, by using our new web server named GIANT that is freely available at http://giant.hgc.jp/. PMID:24423161

  6. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  7. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  8. Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules

    SciTech Connect

    Hafeman, Dean G.; Harkins, James B.; WitkowskiII, Charles E.; Lewis, Nathan S.; Brown, Gilbert M; Warmack, Robert J Bruce; Thundat, Thomas George

    2006-01-01

    We demonstrate the formation of charged molecular packets and their transport within optically created electrical force-field traps in a pH-buffered electrolyte. We call this process photoelectrophoretic localization and transport (PELT). The electrolyte is in contact with a photoconductive semiconductor electrode and a counterelectrode that are connected through an external circuit. A light beam directed to coordinates on the photoconductive electrode surface produces a photocurrent within the circuit and electrolyte. Within the electrolyte, the photocurrent creates localized force-field traps centered at the illuminated coordinates. Charged molecules, including polypeptides and proteins, electrophoretically accumulate into the traps and subsequently can be transported in the electrolyte by moving the traps over the photoconductive electrode in response to movement of the light beam. The molecules in a single trap can be divided into aliquots, and the aliquots can be directed along multiple routes simultaneously by using multiple light beams. This photoelectrophoretic transport of charged molecules by PELT resembles the electrostatic transport of electrons within force-field wells of solid-state charge-coupled devices. The molecules, however, travel in a liquid electrolyte rather than a solid. Furthermore, we have used PELT to position amphoteric biomolecules in three dimensions. A 3D pH gradient was created in an electrolyte medium by controlling the illumination position on a photoconductive anode where protons were generated electrolytically. Photoelectrophoretic transport of amphoteric molecules through the pH gradient resulted in accumulation of the molecules at their apparent 3D isoelectric coordinates in the medium.

  9. Web-Based 3D and Haptic Interactive Environments for e-Learning, Simulation, and Training

    NASA Astrophysics Data System (ADS)

    Hamza-Lup, Felix G.; Sopin, Ivan

    Knowledge creation occurs in the process of social interaction. As our service-based society is evolving into a knowledge-based society, there is an acute need for more effective collaboration and knowledge-sharing systems to be used by geographically scattered people. We present the use of 3D components and standards, such as Web3D, in combination with the haptic paradigm, for e-Learning and simulation.

  10. Enhancing surface interactions with colon cancer cells on a transferrin-conjugated 3D nanostructured substrate.

    PubMed

    Banerjee, Shashwat S; Paul, Debjani; Bhansali, Sujit G; Aher, Naval D; Jalota-Badhwar, Archana; Khandare, Jayant

    2012-06-11

    A transferrin-conjugated PEG-Fe(3) O(4) nanostructured matrix is developed to explore cellular responses in terms of enhanced cell adhesion, specific interactions between ligands in the matrix and molecular receptors on the cell membrane, comparison of cell shapes on 2D and 3D surfaces, and effect of polymer architecture on cell adhesion. Integration of such advanced synthetic nanomaterials into a functionalized 3D matrix to control cell behavior on surfaces will have implications in nanomedicine. PMID:22434693

  11. Application and Evaluation of Interactive 3D PDF for Presenting and Sharing Planning Results for Liver Surgery in Clinical Routine

    PubMed Central

    Newe, Axel; Becker, Linda; Schenk, Andrea

    2014-01-01

    Background & Objectives The Portable Document Format (PDF) is the de-facto standard for the exchange of electronic documents. It is platform-independent, suitable for the exchange of medical data, and allows for the embedding of three-dimensional (3D) surface mesh models. In this article, we present the first clinical routine application of interactive 3D surface mesh models which have been integrated into PDF files for the presentation and the exchange of Computer Assisted Surgery Planning (CASP) results in liver surgery. We aimed to prove the feasibility of applying 3D PDF in medical reporting and investigated the user experience with this new technology. Methods We developed an interactive 3D PDF report document format and implemented a software tool to create these reports automatically. After more than 1000 liver CASP cases that have been reported in clinical routine using our 3D PDF report, an international user survey was carried out online to evaluate the user experience. Results Our solution enables the user to interactively explore the anatomical configuration and to have different analyses and various resection proposals displayed within a 3D PDF document covering only a single page that acts more like a software application than like a typical PDF file (“PDF App”). The new 3D PDF report offers many advantages over the previous solutions. According to the results of the online survey, the users have assessed the pragmatic quality (functionality, usability, perspicuity, efficiency) as well as the hedonic quality (attractiveness, novelty) very positively. Conclusion The usage of 3D PDF for reporting and sharing CASP results is feasible and well accepted by the target audience. Using interactive PDF with embedded 3D models is an enabler for presenting and exchanging complex medical information in an easy and platform-independent way. Medical staff as well as patients can benefit from the possibilities provided by 3D PDF. Our results open the door for a

  12. Direct in vitro comparison of six 3D positive contrast methods for susceptibility marker imaging

    PubMed Central

    Vonken, Evert-jan P. A.; Schär, Michael; Yu, Jing; Bakker, Chris J. G.; Stuber, Matthias

    2012-01-01

    Purpose To compare different techniques for positive contrast imaging of susceptibility markers with MRI for 3D visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. Materials and methods Six different positive contrast techniques are investigated for their ability to image at 3T a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. Results The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided and strengths and weaknesses of the different approaches are discussed. Conclusion The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data is now available. PMID:23281151

  13. 3D versus 2D domain wall interaction in ideal and rough nanowires

    NASA Astrophysics Data System (ADS)

    Pivano, A.; Dolocan, Voicu O.

    2015-11-01

    The interaction between transverse magnetic domain walls (TDWs) in planar (2D) and cylindrical (3D) nanowires is examined using micromagnetic simulations. We show that in perfect and surface deformed wires the free TDWs behave differently, as the 3D TDWs combine into metastable states with average lifetimes of 300 ns depending on roughness, while the 2D TDWs do not due to 2D shape anisotropy. When the 2D and 3D TDWs are pinned at artificial constrictions, they behave similarly as they interact mainly through the dipolar field. This magnetostatic interaction is well described by the point charge model with multipole expansion. In surface deformed wires with artificial constrictions, the interaction becomes more complex as the depinning field decreases and dynamical pinning can lead to local resonances. This can strongly influence the control of TDWs in DW-based devices.

  14. Imaging knee position using MRI, RSA/CT and 3D digitisation.

    PubMed

    McPherson, A; Kärrholm, J; Pinskerova, V; Sosna, A; Martelli, S

    2005-02-01

    The purpose of this study was to compare 3 methods of imaging knee position. Three fresh cadaver knees were imaged at 6 flexion angles between 0 degrees and 120 degrees by MRI, a combination of RSA and CT and 3D digitisation (in two knees). Virtual models of all 42 positions were created using suitable computer software. Each virtual model was aligned to a newly defined anatomically based Cartesian coordinate system. The angular rotations around the 3 coordinate system axes were calculated directly from the aligned virtual models using rigid body kinematics and found to be equally accurate for the 3 methods. The 3 rotations in each knee could be depicted using anatomy-based diagrams for all 3 methods. We conclude that the 3 methods of data acquisition are equally and adequately accurate in vitro. MRI may be the most useful in vivo. PMID:15598452

  15. 3D hydrodynamic interactions lead to divergences in 2D diffusion.

    PubMed

    Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin

    2015-05-20

    We investigate the influence of 3D hydrodynamic interactions on confined colloidal suspensions, where only the colloids are restricted to one or two dimensions. In the absence of static interactions among the colloids, i.e., an ideal gas of colloidal particles with a finite hydrodynamic radius, we find a divergent collective diffusion coefficient. The origin of the divergence is traced back to the dimensional mismatch of 3D hydrodynamic interactions and the colloidal particles moving only in 1D or 2D. Our results from theory are confirmed by Stokesian dynamics simulations and supported by light scattering observational data for particles at a fluid interface. PMID:25923320

  16. 3D hydrodynamic interactions lead to divergences in 2D diffusion

    NASA Astrophysics Data System (ADS)

    Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin

    2015-05-01

    We investigate the influence of 3D hydrodynamic interactions on confined colloidal suspensions, where only the colloids are restricted to one or two dimensions. In the absence of static interactions among the colloids, i.e., an ideal gas of colloidal particles with a finite hydrodynamic radius, we find a divergent collective diffusion coefficient. The origin of the divergence is traced back to the dimensional mismatch of 3D hydrodynamic interactions and the colloidal particles moving only in 1D or 2D. Our results from theory are confirmed by Stokesian dynamics simulations and supported by light scattering observational data for particles at a fluid interface.

  17. Landslide/reservoir interaction: 3D numerical modelling of the Vajont rockslide and generated water wave

    NASA Astrophysics Data System (ADS)

    Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.

    2012-04-01

    Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto

  18. Building on realism and magic for designing 3D interaction techniques.

    PubMed

    Kulik, A

    2009-01-01

    Imagination-based interaction can complement reality-based interaction in the design of 3D user interfaces. This hybrid approach could lead to interface design guidelines that promote higher-level consistency, and thus usability, for a large range of diverse interfaces. PMID:24806776

  19. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  20. Real-time sensing of mouth 3-D position and orientation

    NASA Astrophysics Data System (ADS)

    Burdea, Grigore C.; Dunn, Stanley M.; Mallik, Matsumita; Jun, Heesung

    1990-07-01

    A key problem in using digital subtraction radiography in dentistry is the ability to reposition the X-ray source and patient so as to reproduce an identical imaging geometry. In this paper we describe an approach to solving this problem based on real time sensing of the 3-D position and orientation of the patient's mouth. The research described here is part of a program which has a long term goal to develop an automated digital subtraction radiography system. This will allow the patient and X-ray source to be accurately repositioned without the mechanical fixtures that are presently used to preserve the imaging geometry. If we can measure the position and orientation of the mouth, then the desired position of the source can be computed as the product of the transformation matrices describing the desired imaging geometry and the position vector of the targeted tooth. Position and orientation of the mouth is measured by a real time sensing device using low-frequency magnetic field technology. We first present the problem of repositioning the patient and source and then outline our analytic solution. Then we describe an experimental setup to measure the accuracy, reproducibility and resolution of the sensor and present results of preliminary experiments.

  1. Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing

    PubMed Central

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-01-01

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing. PMID:24956301

  2. Interactive and Stereoscopic Hybrid 3D Viewer of Radar Data with Gesture Recognition

    NASA Astrophysics Data System (ADS)

    Goenetxea, Jon; Moreno, Aitor; Unzueta, Luis; Galdós, Andoni; Segura, Álvaro

    This work presents an interactive and stereoscopic 3D viewer of weather information coming from a Doppler radar. The hybrid system shows a GIS model of the regional zone where the radar is located and the corresponding reconstructed 3D volume weather data. To enhance the immersiveness of the navigation, stereoscopic visualization has been added to the viewer, using a polarized glasses based system. The user can interact with the 3D virtual world using a Nintendo Wiimote for navigating through it and a Nintendo Wii Nunchuk for giving commands by means of hand gestures. We also present a dynamic gesture recognition procedure that measures the temporal advance of the performed gesture postures. Experimental results show how dynamic gestures are effectively recognized so that a more natural interaction and immersive navigation in the virtual world is achieved.

  3. Web Based Interactive Anaglyph Stereo Visualization of 3D Model of Geoscience Data

    NASA Astrophysics Data System (ADS)

    Han, J.

    2014-12-01

    The objectives of this study were to create interactive online tool for generating and viewing the anaglyph 3D stereo image on a Web browser via Internet. To achieve this, we designed and developed the prototype system. Three-dimensional visualization is well known and becoming popular in recent years to understand the target object and the related physical phenomena. Geoscience data have the complex data model, which combines large extents with rich small scale visual details. So, the real-time visualization of 3D geoscience data model on the Internet is a challenging work. In this paper, we show the result of creating which can be viewed in 3D anaglyph of geoscience data in any web browser which supports WebGL. We developed an anaglyph image viewing prototype system, and some representative results are displayed by anaglyph 3D stereo image generated in red-cyan colour from pairs of air-photo/digital elevation model and geological map/digital elevation model respectively. The best viewing is achieved by using suitable 3D red-cyan glasses, although alternatively red-blue or red-green spectacles can be also used. The middle mouse wheel can be used to zoom in/out the anaglyph image on a Web browser. Application of anaglyph 3D stereo image is a very important and easy way to understand the underground geologic system and active tectonic geomorphology. The integrated strata with fine three-dimensional topography and geologic map data can help to characterise the mineral potential area and the active tectonic abnormal characteristics. To conclude, it can be stated that anaglyph 3D stereo image provides a simple and feasible method to improve the relief effect of geoscience data such as geomorphology and geology. We believe that with further development, the anaglyph 3D stereo imaging system could as a complement to 3D geologic modeling, constitute a useful tool for better understanding of the underground geology and the active tectonic

  4. Interactive Cosmetic Makeup of a 3D Point-Based Face Model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Sik; Choi, Soo-Mi

    We present an interactive system for cosmetic makeup of a point-based face model acquired by 3D scanners. We first enhance the texture of a face model in 3D space using low-pass Gaussian filtering, median filtering, and histogram equalization. The user is provided with a stereoscopic display and haptic feedback, and can perform simulated makeup tasks including the application of foundation, color makeup, and lip gloss. Fast rendering is achieved by processing surfels using the GPU, and we use a BSP tree data structure and a dynamic local refinement of the facial surface to provide interactive haptics. We have implemented a prototype system and evaluated its performance.

  5. Representing 3D virtual objects: interaction between visuo-spatial ability and type of exploration.

    PubMed

    Meijer, Frank; van den Broek, Egon L

    2010-03-17

    We investigated individual differences in interactively exploring 3D virtual objects. 36 participants explored 24 simple and 24 difficult objects (composed of respectively three and five Biederman geons) actively, passively, or not at all. Both their 3D mental representation of the objects and visuo-spatial ability was assessed. Results show that, regardless of the object's complexity, people with a low VSA benefit from active exploration of objects, where people with a middle or high VSA do not. These findings extend and refine earlier research on interactively learning visuo-spatial information and underline the importance to take individual differences into account. PMID:20116394

  6. Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules

    PubMed Central

    Hafeman, Dean G.; Harkins, James B.; Witkowski, Charles E.; Lewis, Nathan S.; Warmack, Robert J.; Brown, Gilbert M.; Thundat, Thomas

    2006-01-01

    We demonstrate the formation of charged molecular packets and their transport within optically created electrical force-field traps in a pH-buffered electrolyte. We call this process photoelectrophoretic localization and transport (PELT). The electrolyte is in contact with a photoconductive semiconductor electrode and a counterelectrode that are connected through an external circuit. A light beam directed to coordinates on the photoconductive electrode surface produces a photocurrent within the circuit and electrolyte. Within the electrolyte, the photocurrent creates localized force-field traps centered at the illuminated coordinates. Charged molecules, including polypeptides and proteins, electrophoretically accumulate into the traps and subsequently can be transported in the electrolyte by moving the traps over the photoconductive electrode in response to movement of the light beam. The molecules in a single trap can be divided into aliquots, and the aliquots can be directed along multiple routes simultaneously by using multiple light beams. This photoelectrophoretic transport of charged molecules by PELT resembles the electrostatic transport of electrons within force-field wells of solid-state charge-coupled devices. The molecules, however, travel in a liquid electrolyte rather than a solid. Furthermore, we have used PELT to position amphoteric biomolecules in three dimensions. A 3D pH gradient was created in an electrolyte medium by controlling the illumination position on a photoconductive anode where protons were generated electrolytically. Photoelectrophoretic transport of amphoteric molecules through the pH gradient resulted in accumulation of the molecules at their apparent 3D isoelectric coordinates in the medium. PMID:16618926

  7. Interplay of 3 d-5 d interactions in high-TC osmium-based double perovskites

    NASA Astrophysics Data System (ADS)

    Taylor, A. E.; Calder, S.; Morrow, R.; Woodward, P. M.; Yan, J. Q.; Winn, B.; Lumsden, M. D.; Christianson, A. D.

    2015-03-01

    In 3d-5d systems the strongly magnetic 3d orbitals and extended 5d orbitals with enhanced spin-orbit coupling lead to a range of high TC magnetic states and novel behavior not present in systems consisting solely of 3d or 5d ions. The two distinct octahedral sites in double perovskites A2 BB 'O6 allow an ordered 3d-5d structure to form, providing a variety of systems to be investigated. Unravelling the interactions controlling these systems, however, is an open challenge. The highest known TC in such a system, 725K, is found in insulator Sr2CrOsO6. This questions the theory for high-TCs in systems such as TC=400K Sr2FeReO6 which relies on half-metallic behavior. To unravel the nature of the interactions in 3d-5d systems, we have studied the series of compounds Sr2 X OsO6. We have utilized elastic and inelastic neutron scattering to probe the spin states in the systems, and therefore test predictions that the magnetic interactions are controlled by a frustrated AFM Heisenberg model. By studying the series, we are able to relate changes in the spin wave spectrum to dramatic changes in the magnetic order from TN = 95 K antiferromagnetism to TC = 725 K ferrimagnetism.

  8. 3D Imaging for hand gesture recognition: Exploring the software-hardware interaction of current technologies

    NASA Astrophysics Data System (ADS)

    Periverzov, Frol; Ilieş, Horea T.

    2012-09-01

    Interaction with 3D information is one of the fundamental and most familiar tasks in virtually all areas of engineering and science. Several recent technological advances pave the way for developing hand gesture recognition capabilities available to all, which will lead to more intuitive and efficient 3D user interfaces (3DUI). These developments can unlock new levels of expression and productivity in all activities concerned with the creation and manipulation of virtual 3D shapes and, specifically, in engineering design. Building fully automated systems for tracking and interpreting hand gestures requires robust and efficient 3D imaging techniques as well as potent shape classifiers. We survey and explore current and emerging 3D imaging technologies, and focus, in particular, on those that can be used to build interfaces between the users' hands and the machine. The purpose of this paper is to categorize and highlight the relevant differences between these existing 3D imaging approaches in terms of the nature of the information provided, output data format, as well as the specific conditions under which these approaches yield reliable data. Furthermore we explore the impact of each of these approaches on the computational cost and reliability of the required image processing algorithms. Finally we highlight the main challenges and opportunities in developing natural user interfaces based on hand gestures, and conclude with some promising directions for future research. [Figure not available: see fulltext.

  9. Subjective evaluation of user experience in interactive 3D visualization in a medical context

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Sjöström, Mårten; Olsson, Roger; Persson, Anders; Ericson, Thomas; Rudling, Johan; Norén, Bengt

    2012-02-01

    New display technologies enable the usage of 3D-visualization in a medical context. Even though user performance seems to be enhanced with respect to 2D thanks to the addition of recreated depth cues, human factors, and more particularly visual comfort and visual fatigue can still be a bridle to the widespread use of these systems. This study aimed at evaluating and comparing two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of quality of experience (QoE), in the context of interactive medical visualization. An adapted methodology was designed in order to subjectively evaluate the experience of users. 14 medical doctors and 15 medical students took part in the experiment. After solving different tasks using the 3D reconstruction of a phantom object, they were asked to judge their quality of the experience, according to specific features. They were also asked to give their opinion about the influence of 3D-systems on their work conditions. Results suggest that medical doctors are opened to 3D-visualization techniques and are confident concerning their beneficial influence on their work. However, visual comfort and visual fatigue are still an issue of 3D-displays. Results obtained with the multi-view display suggest that the use of continuous horizontal parallax might be the future response to these current limitations.

  10. Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization

    NASA Astrophysics Data System (ADS)

    Johnston, Semay; Renambot, Luc; Sauter, Daniel

    2013-03-01

    Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.

  11. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Qian Chen

    2008-08-18

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  12. Role of Interaction in Enhancing the Epistemic Utility of 3D Mathematical Visualizations

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2010-01-01

    Many epistemic activities, such as spatial reasoning, sense-making, problem solving, and learning, are information-based. In the context of epistemic activities involving mathematical information, learners often use interactive 3D mathematical visualizations (MVs). However, performing such activities is not always easy. Although it is generally…

  13. Novel 3D Approach to Flare Modeling via Interactive IDL Widget Tools

    NASA Astrophysics Data System (ADS)

    Nita, G. M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A.; Kontar, E. P.

    2011-12-01

    Currently, and soon-to-be, available sophisticated 3D models of particle acceleration and transport in solar flares require a new level of user-friendly visualization and analysis tools allowing quick and easy adjustment of the model parameters and computation of realistic radiation patterns (images, spectra, polarization, etc). We report the current state of the art of these tools in development, already proved to be highly efficient for the direct flare modeling. We present an interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved radio and X-ray spectra. The object-based architecture of this application provides full interaction with imported 3D magnetic field models (e.g., from an extrapolation) that may be embedded in a global coronal model. Various tools provided allow users to explore the magnetic connectivity of the model by generating magnetic field lines originating in user-specified volume positions. Such lines may serve as reference lines for creating magnetic flux tubes, which are further populated with user-defined analytical thermal/non thermal particle distribution models. By default, the application integrates IDL callable DLL and Shared libraries containing fast GS emission codes developed in FORTRAN and C++ and soft and hard X-ray codes developed in IDL. However, the interactive interface allows interchanging these default libraries with any user-defined IDL or external callable codes designed to solve the radiation transfer equation in the same or other wavelength ranges of interest. To illustrate the tool capacity and generality, we present a step-by-step real-time computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data obtained by NORH and RHESSI instruments. We discuss further anticipated developments of the tools needed to accommodate

  14. 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Jilun; Leng, Xuanye; Xiao, Yao; Hu, Chengguo; Fu, Lei

    2015-07-01

    Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing.Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity

  15. Effect of 3D fractal dimension on contact area and asperity interactions in elastoplastic contact

    NASA Astrophysics Data System (ADS)

    Jourani, Abdeljalil

    2016-05-01

    Few models are devoted to investigate the effect of 3D fractal dimension Ds on contact area and asperity interactions. These models used statistical approaches or two-dimensional deterministic simulations without considering the asperity interactions and elastic-plastic transition regime. In this study, a complete 3D deterministic model is adopted to simulate the contact between fractal surfaces which are generated using a modified two-variable Weierstrass-Mandelbrot function. This model incorporates the asperity interactions and considers the different deformation modes of surface asperities which range from entirely elastic through elastic-plastic to entirely plastic contact. The simulations reveal that the elastoplastic model is more appropriate to calculate the contact area ratio and pressure field. It is also shown that the influence of the asperity interactions cannot be neglected, especially at lower fractal dimension Ds and higher load.

  16. 3D combinational curves for accuracy and performance analysis of positive biometrics identification

    NASA Astrophysics Data System (ADS)

    Du, Yingzi; Chang, Chein-I.

    2008-06-01

    The receiver operating characteristic (ROC) curve has been widely used as an evaluation criterion to measure the accuracy of biometrics system. Unfortunately, such an ROC curve provides no indication of the optimum threshold and cost function. In this paper, two kinds of 3D combinational curves are proposed: the 3D combinational accuracy curve and the 3D combinational performance curve. The 3D combinational accuracy curve gives a balanced view of the relationships among FAR (false alarm rate), FRR (false rejection rate), threshold t, and Cost. Six 2D curves can be derived from the 3D combinational accuracy curve: the conventional 2D ROC curve, 2D curve of (FRR, t), 2D curve of (FAR, t), 2D curve of (FRR, Cost), 2D curve of (FAR, Cost), and 2D curve of ( t, Cost). The 3D combinational performance curve can be derived from the 3D combinational accuracy curve which can give a balanced view among Security, Convenience, threshold t, and Cost. The advantages of using the proposed 3D combinational curves are demonstrated by iris recognition systems where the experimental results show that the proposed 3D combinational curves can provide more comprehensive information of the system accuracy and performance.

  17. GM3D: interactive three-dimensional gravity and magnetic modeling program (GM3D. REV1 user's guide)

    SciTech Connect

    Maurer, J.; Atwood, J.W.

    1980-10-01

    GM3D has been developed for computering the gravity or magnetic anomaly due to a three-dimensional body, and for plotting the resulting contour map. A complex body may be constructed from several right-rectilinear vertical-sided prisms. The program allows the input and editing of the prism data which are then used to calculate the anomaly map for plotting. Plotting is done on either a Tekronix 4014 graphics terminal, a Statos electrostatic plotter, or a CalComp pen plotter. A terminal plot is also available which can be printed on any terminal and on a line printer. The program is written in FORTRAN IV code and operates on a PRIME 400 computer system. Adaptation of the program to other systems is relatively straightforward.

  18. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  19. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    PubMed

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls. PMID:27046584

  20. An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

    2014-05-01

    In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are

  1. Self-Discovery of Structural Geology Concepts using Interactive 3D Visualization

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Saunders, J.

    2010-12-01

    Mastering structural geology concepts that depend on understanding three-dimensional (3D) geometries and imagining relationships among unseen subsurface structures are fundamental skills for geologists. Traditionally these skills are developed first, through use of 2D drawings of 3D structures that can be difficult to decipher or 3D physical block models that show only a limited set of relationships on the surfaces of the blocks, followed by application and testing of concepts in field settings. We hypothesize that this learning process can be improved by providing repeated opportunities to evaluate and explore synthetic 3D structures using interactive 3D visualization software. We present laboratory modules designed for undergraduate structural geology curriculum using a self-discovery approach to teach concepts such as: the Rule of V’s, structure separation versus fault slip, and the more general dependence of structural exposure on surface topography. The laboratory modules are structured to allow students to discover and articulate each concept from observations of synthetic data both on traditional maps and using the volume visualization software 3DVisualizer. Modules lead students through exploration of data (e.g., a dipping layered structure exposed in ridge-valley topography or obliquely offset across a fault) by allowing them to interactively view (rotate, pan, zoom) the exposure of structures on topographic surfaces and to toggle on/off the full 3D structure as a transparent colored volume. This tool allows student to easily visually understand the relationships between, for example a dipping structure and its exposure on valley walls, as well as how the structure extends beneath the surface. Using this method gives students more opportunities to build a mental library of previously-seen relationships from which to draw-on when applying concepts in the field setting. These laboratory modules, the data and software are freely available from KeckCAVES.

  2. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  3. LATIS3D: The Goal Standard for Laser-Tissue-Interaction Modeling

    NASA Astrophysics Data System (ADS)

    London, R. A.; Makarewicz, A. M.; Kim, B. M.; Gentile, N. A.; Yang, T. Y. B.

    2000-03-01

    The goal of this LDRD project has been to create LATIS3D-the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications. The purpose of this project was to develop and apply a computer program for laser-tissue interaction modeling to aid in the development of new instruments and procedures in laser medicine.

  4. CFL3D Contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2010-01-01

    This paper documents the CFL3D contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop, held in Orlando, Florida in January 2010. CFL3D is a Reynolds-averaged Navier-Stokes code. Four shock boundary layer interaction cases are computed using a one-equation turbulence model widely used for other aerodynamic problems of interest. Two of the cases have experimental data available at the workshop, and two of the cases do not. The effect of grid, flux scheme, and thin-layer approximation are investigated. Comparisons are made to the available experimental data. All four cases exhibit strong three-dimensional behavior in and near the interaction regions, resulting from influences of the tunnel side-walls.

  5. Interactive initialization for 2D/3D intra-operative registration using the Microsoft Kinect

    NASA Astrophysics Data System (ADS)

    Gong, Ren Hui; Güler, Özgur; Yaniv, Ziv

    2013-03-01

    All 2D/3D anatomy based rigid registration algorithms are iterative, requiring an initial estimate of the 3D data pose. Current initialization methods have limited applicability in the operating room setting, due to the constraints imposed by this environment or due to insufficient accuracy. In this work we use the Microsoft Kinect device to allow the surgeon to interactively initialize the registration process. A Kinect sensor is used to simulate the mouse-based operations in a conventional manual initialization approach, obviating the need for physical contact with an input device. Different gestures from both arms are detected from the sensor in order to set or switch the required working contexts. 3D hand motion provides the six degree-of-freedom controls for manipulating the pre-operative data in the 3D space. We evaluated our method for both X-ray/CT and X-ray/MR initialization using three publicly available reference data sets. Results show that, with initial target registration errors of 117:7 +/- 28:9 mm a user is able to achieve final errors of 5:9 +/- 2:6 mm within 158 +/- 65 sec using the Kinect-based approach, compared to 4:8+/-2:0 mm and 88+/-60 sec when using the mouse for interaction. Based on these results we conclude that this method is sufficiently accurate for initialization of X-ray/CT and X-ray/MR registration in the OR.

  6. Interactive 3D medical data cutting using closed curve with arbitrary shape.

    PubMed

    Ning, Hai; Yang, Rongqian; Ma, Amin; Wu, Xiaoming

    2015-03-01

    Interactive 3D cutting is widely used as a flexible manual segmentation tool to extract medical data on regions of interest. A novel method for clipping 3D medical data is proposed to reveal the interior of volumetric data. The 3D cutting method retains or clips away selected voxels projected inside an arbitrary-shaped closed curve which is clipping geometry constructed by interactive tool to make cutting operation more flexible. Transformation between the world and screen coordinate frames is studied to project voxels of medical data onto the screen frame and avoid computing intersection of clipping geometry and volumetric data in 3D space. For facilitating the decision on whether the voxels should be retained, voxels through coordinate transformation are all projected onto a binary mask image on screen frame which the closed curve is also projected onto to conveniently obtain the voxels of intersection. The paper pays special attention to optimization algorithm of cutting process. The optimization algorithm that mixes octree with quad-tree decomposition is introduced to reduce computation complexity, save computation time, and match real time. The paper presents results obtained from raw and segmented medical volume datasets and the process time of cutting operation. PMID:25456145

  7. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks.

    PubMed

    Simão, Daniel; Terrasso, Ana P; Teixeira, Ana P; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M

    2016-01-01

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889

  8. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  9. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  10. Stereoscopic 3D Visual Discomfort Prediction: A Dynamic Accommodation and Vergence Interaction Model.

    PubMed

    Oh, Heeseok; Lee, Sanghoon; Bovik, Alan Conrad

    2016-02-01

    The human visual system perceives 3D depth following sensing via its binocular optical system, a series of massively parallel processing units, and a feedback system that controls the mechanical dynamics of eye movements and the crystalline lens. The process of accommodation (focusing of the crystalline lens) and binocular vergence is controlled simultaneously and symbiotically via cross-coupled communication between the two critical depth computation modalities. The output responses of these two subsystems, which are induced by oculomotor control, are used in the computation of a clear and stable cyclopean 3D image from the input stimuli. These subsystems operate in smooth synchronicity when one is viewing the natural world; however, conflicting responses can occur when viewing stereoscopic 3D (S3D) content on fixed displays, causing physiological discomfort. If such occurrences could be predicted, then they might also be avoided (by modifying the acquisition process) or ameliorated (by changing the relative scene depth). Toward this end, we have developed a dynamic accommodation and vergence interaction (DAVI) model that successfully predicts visual discomfort on S3D images. The DAVI model is based on the phasic and reflex responses of the fast fusional vergence mechanism. Quantitative models of accommodation and vergence mismatches are used to conduct visual discomfort prediction. Other 3D perceptual elements are included in the proposed method, including sharpness limits imposed by the depth of focus and fusion limits implied by Panum's fusional area. The DAVI predictor is created by training a support vector machine on features derived from the proposed model and on recorded subjective assessment results. The experimental results are shown to produce accurate predictions of experienced visual discomfort. PMID:26672036

  11. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    SciTech Connect

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-02-29

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  12. Planet-Disk Interaction on the GPU: The FARGO3D code

    NASA Astrophysics Data System (ADS)

    Masset, F. S.; Benítez-Llambay, P.

    2015-10-01

    We present the new code FARGO3D. It is a finite difference code that solves the equations of hydrodynamics or magnetohydrodynamics on a Cartesian, cylindrical or spherical mesh. It features orbital advection, conserves mass and (angular) momentum to machine accuracy. Special emphasis is put on the description of planet disk tidal interactions. It is parallelized with MPI, and it can run indistinctly on CPUs or GPUs, without the need to program in a GPU oriented language.

  13. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants

    NASA Astrophysics Data System (ADS)

    Rieger, Elisabeth; Dupret-Bories, Agnès; Salou, Laetitia; Metz-Boutigue, Marie-Helene; Layrolle, Pierre; Debry, Christian; Lavalle, Philippe; Engin Vrana, Nihal

    2015-05-01

    Porous titanium implants are widely employed in the orthopaedics field to ensure good bone fixation. Recently, the use of porous titanium implants has also been investigated in artificial larynx development in a clinical setting. Such uses necessitate a better understanding of the interaction of soft tissues with porous titanium structures. Moreover, surface treatments of titanium have been generally evaluated in planar structures, while the porous titanium implants have complex 3 dimensional (3D) architectures. In this study, the determining factors for soft tissue integration of 3D porous titanium implants were investigated as a function of surface treatments via quantification of the interaction of serum proteins and cells with single titanium microbeads (300-500 μm in diameter). Samples were either acid etched or nanostructured by anodization. When the samples are used in 3D configuration (porous titanium discs of 2 mm thickness) in vivo (in subcutis of rats for 2 weeks), a better integration was observed for both anodized and acid etched samples compared to the non-treated implants. If the implants were also pre-treated with rat serum before implantation, the integration was further facilitated. In order to understand the underlying reasons for this effect, human fibroblast cell culture tests under several conditions (directly on beads, beads in suspension, beads encapsulated in gelatin hydrogels) were conducted to mimic the different interactions of cells with Ti implants in vivo. Physical characterization showed that surface treatments increased hydrophilicity, protein adsorption and roughness. Surface treatments also resulted in improved adsorption of serum albumin which in turn facilitated the adsorption of other proteins such as apolipoprotein as quantified by protein sequencing. The cellular response to the beads showed considerable difference with respect to the cell culture configuration. When the titanium microbeads were entrapped in cell

  14. Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Kato, T.; Nakamori, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Yamamoto, K.

    2013-12-01

    The release of radioactive isotopes (mainly 137Cs, 134Cs and 131I) from the crippled Fukushima Daiichi Nuclear Plant remains a serious problem in Japan. To help identify radiation hotspots and ensure effective decontamination operation, we are developing a novel Compton camera weighting only 1 kg and measuring just ∼10 cm2 in size. Despite its compactness, the camera realizes a wide 180° field of vision with a sensitivity about 50 times superior to other cameras being tested in Fukushima. We expect that a hotspot producing a 5 μSv/h dose at a distance of 3 m can be imaged every 10 s, with angular resolution better than 10° (FWHM). The 3D position-sensitive scintillators and thin monolithic MPPC arrays are the key technologies developed here. By measuring the pulse-height ratio of MPPC-arrays coupled at both ends of a Ce:GAGG scintillator block, the depth of interaction (DOI) is obtained for incident gamma rays as well as the usual 2D positions, with accuracy better than 2 mm. By using two identical 10 mm cubic Ce:GAGG scintillators as a scatterer and an absorber, we confirmed that the 3D configuration works well as a high-resolution gamma camera, and also works as spectrometer achieving typical energy resolution of 9.8% (FWHM) for 662 keV gamma rays. We present the current status of the prototype camera (weighting 1.5 kg and measuring 8.5×14×16 cm3 in size) being fabricated by Hamamatsu Photonics K.K. Although the camera still operates in non-DOI mode, angular resolution as high as 14° (FWHM) was achieved with an integration time of 30 s for the assumed hotspot described above.

  15. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  16. 3D modeling of ultrasonic wave interaction with disbonds and weak bonds

    NASA Astrophysics Data System (ADS)

    Leckey, C.; Hinders, M.

    2012-05-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  17. Evaluation of quality of experience in interactive 3D visualization: methodology and results

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Sjöström, Mårten; Olsson, Roger; Persson, Anders; Ericson, Thomas

    2012-03-01

    Human factors are of high importance in 3D visualization, but subjective evaluation of 3D displays is not easy because of a high variability among users. This study aimed to evaluate and compare two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of user performance and quality of experience (QoE), in the context of interactive visualization. An adapted methodology has been designed in order to focus on 3D differences and to reduce the influence of all other factors. Thirty-six subjects took part in an experiment during which they were asked to judge the quality of their experience, according to specific features. Results showed that a scene understanding and precision was significantly better on the multi-view display. Concerning the quality of experience, visual comfort was judged significantly better on the multi-view display and visual fatigue was reported by 52% of the subjects on the stereoscopic display. This study has permitted to identify some factors influencing QoE such as prior experience and stereopsis threshold.

  18. 3D interactive model of lumbar spinal structures of anesthetic interest.

    PubMed

    Prats-Galino, Alberto; Reina, Miguel A; Mavar Haramija, Marija; Puigdellivol-Sánchez, Anna; Juanes Méndez, Juan A; De Andrés, José A

    2015-03-01

    A 3D model of lumbar structures of anesthetic interest was reconstructed from human magnetic resonance (MR) images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The MR images were analyzed using a specific 3D software platform for biomedical data. Models generated from manually delimited volumes of interest and selected MR images were exported to Virtual Reality Modeling Language format and were presented in a PDF document containing JavaScript-based functions. The 3D file and the corresponding instructions and license files can be downloaded freely at http://diposit.ub.edu/dspace/handle/2445/44844?locale=en. The 3D PDF interactive file includes reconstructions of the L3-L5 vertebrae, intervertebral disks, ligaments, epidural and foraminal fat, dural sac and nerve root cuffs, sensory and motor nerve roots of the cauda equina, and anesthetic approaches (epidural medial, spinal paramedial, and selective nerve root paths); it also includes a predefined sequential educational presentation. Zoom, 360° rotation, selective visualization, and transparency graduation of each structure and clipping functions are available. Familiarization requires no specialized informatics knowledge. The ease with which the document can be used could make it valuable for anatomical and anesthetic teaching and demonstration of patient information. PMID:25352014

  19. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  20. Measurement and calibration of static distortion of position data from 3D trackers

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    1992-01-01

    Three-dimensional trackers are becoming increasingly important as user inputs in interactive computer systems. These trackers output the three-dimensional position, and often the orientation, of a sensor in space. The three-dimensional tracking is often, however, highly distorted and inaccurate. The purpose of this paper is to discuss methods for the measurement and characterization of the static distortion of the position data. When the distortion is constant, various methods can be used to calibrate the data from the tracker to increase accuracy. Several preliminary methods are discussed in this paper, including polynomial and weighted lookup methods. The measurement and calibration methods are applied to the Polhemus electromagnetic tracking system, but are applicable to tracking systems based on other technologies.

  1. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  2. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter.

    PubMed

    Santoro, Francesca; Dasgupta, Sabyasachi; Schnitker, Jan; Auth, Thorsten; Neumann, Elmar; Panaitov, Gregory; Gompper, Gerhard; Offenhäusser, Andreas

    2014-07-22

    An in-depth understanding of the interface between cells and nanostructures is one of the key challenges for coupling electrically excitable cells and electronic devices. Recently, various 3D nanostructures have been introduced to stimulate and record electrical signals emanating from inside of the cell. Even though such approaches are highly sensitive and scalable, it remains an open question how cells couple to 3D structures, in particular how the engulfment-like processes of nanostructures work. Here, we present a profound study of the cell interface with two widely used nanostructure types, cylindrical pillars with and without a cap. While basic functionality was shown for these approaches before, a systematic investigation linking experimental data with membrane properties was not presented so far. The combination of electron microscopy investigations with a theoretical membrane deformation model allows us to predict the optimal shape and dimensions of 3D nanostructures for cell-chip coupling. PMID:24963873

  3. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  4. Techniques for Assessing 3-D Cell-Matrix Mechanical Interactions In Vitro and In Vivo

    PubMed Central

    Miron-Mendoza, Miguel; Koppaka, Vindhya; Zhou, Chengxin; Petroll, W. Matthew

    2013-01-01

    Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals. PMID:23819988

  5. Interactive 3D Visualization of Humboldt Bay Bridge Earthquake Simulation With High Definition Stereo Output

    NASA Astrophysics Data System (ADS)

    Ang, P. B.; Nayak, A.; Yan, J.; Elgamal, A.

    2006-12-01

    This visualization project involves the study of the Humboldt Bay Middle Channel Bridge, a Pacific Earthquake Engineering Research (PEER) testbed site, subjected to an earthquake simulated by the Department of Structural Engineering, UCSD. The numerical simulation and data generation was carried out using the OpenSees finite element analysis platform, and GiD was employed for the mesh generation in preprocessing. In collaboration with the Scripps Visualization Center, the data was transformed into a virtual 3D world that a viewer could rotate around, zoom into, pan about, step through each timestep or examine in true stereo. The data consists of the static mesh of the bridge-foundation-ground elements, material indices for each type of element, the displacement amount of each element nodes over time, and the shear stress levels for each ground element over time. The Coin3D C++ Open Inventor API was used to parse the data and to render the bridge system in full 3D at 1130 individual time steps to show how the bridge structure and the surrounding soil elements interact during the full course of an earthquake. The results can be viewed interactively while using the program, saved as images and processed into animated movies, in resolutions as high as High Definition (1920x1080), or in stereo modes such as red-blue anaglyph.

  6. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo.

    PubMed

    Miron-Mendoza, Miguel; Koppaka, Vindhya; Zhou, Chengxin; Petroll, W Matthew

    2013-10-01

    Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals. PMID:23819988

  7. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  8. PROTEOME-3D: an interactive bioinformatics tool for large-scale data exploration and knowledge discovery.

    PubMed

    Lundgren, Deborah H; Eng, Jimmy; Wright, Michael E; Han, David K

    2003-11-01

    Comprehensive understanding of biological systems requires efficient and systematic assimilation of high-throughput datasets in the context of the existing knowledge base. A major limitation in the field of proteomics is the lack of an appropriate software platform that can synthesize a large number of experimental datasets in the context of the existing knowledge base. Here, we describe a software platform, termed PROTEOME-3D, that utilizes three essential features for systematic analysis of proteomics data: creation of a scalable, queryable, customized database for identified proteins from published literature; graphical tools for displaying proteome landscapes and trends from multiple large-scale experiments; and interactive data analysis that facilitates identification of crucial networks and pathways. Thus, PROTEOME-3D offers a standardized platform to analyze high-throughput experimental datasets for the identification of crucial players in co-regulated pathways and cellular processes. PMID:12960178

  9. PROTEOME-3D: An Interactive Bioinformatics Tool for Large-Scale Data Exploration and Knowledge Discovery*

    PubMed Central

    Lundgren, Deborah H.; Eng, Jimmy; Wright, Michael E.; Han, David K.

    2006-01-01

    Comprehensive understanding of biological systems requires efficient and systematic assimilation of high-throughput datasets in the context of the existing knowledge base. A major limitation in the field of proteomics is the lack of an appropriate software platform that can synthesize a large number of experimental datasets in the context of the existing knowledge base. Here, we describe a software platform, termed PROTEOME-3D, that utilizes three essential features for systematic analysis of proteomics data: creation of a scalable, queryable, customized database for identified proteins from published literature; graphical tools for displaying proteome landscapes and trends from multiple large-scale experiments; and interactive data analysis that facilitates identification of crucial networks and pathways. Thus, PROTEOME-3D offers a standardized platform to analyze high-throughput experimental datasets for the identification of crucial players in co-regulated pathways and cellular processes. PMID:12960178

  10. Interaction and behaviour imaging: a novel method to measure mother-infant interaction using video 3D reconstruction.

    PubMed

    Leclère, C; Avril, M; Viaux-Savelon, S; Bodeau, N; Achard, C; Missonnier, S; Keren, M; Feldman, R; Chetouani, M; Cohen, D

    2016-01-01

    Studying early interaction is essential for understanding development and psychopathology. Automatic computational methods offer the possibility to analyse social signals and behaviours of several partners simultaneously and dynamically. Here, 20 dyads of mothers and their 13-36-month-old infants were videotaped during mother-infant interaction including 10 extremely high-risk and 10 low-risk dyads using two-dimensional (2D) and three-dimensional (3D) sensors. From 2D+3D data and 3D space reconstruction, we extracted individual parameters (quantity of movement and motion activity ratio for each partner) and dyadic parameters related to the dynamics of partners heads distance (contribution to heads distance), to the focus of mutual engagement (percentage of time spent face to face or oriented to the task) and to the dynamics of motion activity (synchrony ratio, overlap ratio, pause ratio). Features are compared with blind global rating of the interaction using the coding interactive behavior (CIB). We found that individual and dyadic parameters of 2D+3D motion features perfectly correlates with rated CIB maternal and dyadic composite scores. Support Vector Machine classification using all 2D-3D motion features classified 100% of the dyads in their group meaning that motion behaviours are sufficient to distinguish high-risk from low-risk dyads. The proposed method may present a promising, low-cost methodology that can uniquely use artificial technology to detect meaningful features of human interactions and may have several implications for studying dyadic behaviours in psychiatry. Combining both global rating scales and computerized methods may enable a continuum of time scale from a summary of entire interactions to second-by-second dynamics. PMID:27219342

  11. Triplet superconductivity in 3D Dirac semi-metal due to exchange interaction.

    PubMed

    Rosenstein, Baruch; Shapiro, B Ya; Li, Dingping; Shapiro, I

    2015-01-21

    Conventional phonon-electron interaction induces either triplet or one of two (degenerate) singlet pairing states in time reversal and inversion invariant 3D Dirac semi-metal. Investigation of the order parameters and energies of these states at zero temperature in a wide range of values of chemical potential μ, the effective electron-electron coupling constant λ and Debye energy TD demonstrates that when the exchange interaction is neglected the singlet always prevails, however, in significant portions of the (μ, λ, TD) parameter space the energy difference is very small. This means that interactions that are small, but discriminate between the spin singlet and the spin triplet, are important in order to determine the nature of the superconducting order there. The best candidate for such an interaction in the materials under consideration is the exchange (the Stoner term) characterized by constant λex. We show that at values of λex, much smaller than ones creating Stoner instability to ferromagnetism λex ∼ 1, the triplet pairing becomes energetically favored over the singlet ones. The 3D quantum critical point at μ = 0 is considered in detail. This can be realized experimentally in optically trapped cold atom systems. PMID:25501668

  12. Triplet superconductivity in 3D Dirac semi-metal due to exchange interaction

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Shapiro, B. Ya; Li, Dingping; Shapiro, I.

    2015-01-01

    Conventional phonon-electron interaction induces either triplet or one of two (degenerate) singlet pairing states in time reversal and inversion invariant 3D Dirac semi-metal. Investigation of the order parameters and energies of these states at zero temperature in a wide range of values of chemical potential μ, the effective electron-electron coupling constant λ and Debye energy TD demonstrates that when the exchange interaction is neglected the singlet always prevails, however, in significant portions of the (μ, λ, TD) parameter space the energy difference is very small. This means that interactions that are small, but discriminate between the spin singlet and the spin triplet, are important in order to determine the nature of the superconducting order there. The best candidate for such an interaction in the materials under consideration is the exchange (the Stoner term) characterized by constant λex. We show that at values of λex, much smaller than ones creating Stoner instability to ferromagnetism λex ˜ 1, the triplet pairing becomes energetically favored over the singlet ones. The 3D quantum critical point at μ = 0 is considered in detail. This can be realized experimentally in optically trapped cold atom systems.

  13. Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario

    2013-04-01

    In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.

  14. Interplay between 3d-3d and 3d-4f interactions at the origin of the magnetic ordering in the Ba2LnFeO5 oxides

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Hardy, Vincent; Caignaert, Vincent; Raveau, Bernard

    2015-12-01

    A new family of oxides in which 3d-3d and 3d-4f interactions are of comparable strength has been synthesized and characterized both from structural and physical viewpoints. These compounds of formulation Ba2LnFeO5 (Ln  =  Sm, Eu, Gd, Dy, Ho, Er, Yb) are isotypic to the perovskite derivative Ba2YFeO5. They exhibit an original structure consisting of isolated FeO4 tetrahedra linked via LnO6 (or YO6) octahedra. Magnetic and calorimetric measurements show that all these compounds exhibit a unique, antiferromagnetic transition involving both the 3d and 4f ions. The antiferromagnetic properties of the Ln  =  Y phase (non-magnetic Y3+) and of the Ln  =  Eu (non-magnetic ground state multiplet of Eu3+) are ascribed to super-super exchange Fe-O-O-Fe interactions, leading to the lowest T N (5.5 K for Y and 4.6 K for Eu). The introduction of a magnetic lanthanide, i.e. Ln  =  Sm, Gd, Dy, Ho, Er, Yb, in the octahedral sites, leads to larger T N values (up to 9.8 K for Ln  =  Yb). It is found that several mechanisms must be taken into account to explain the complex evolution of the magnetic properties along the Ba2LnFeO5 series. In particular, the super-exchange Ln-O-Fe, as well as the on-site Ln3+ magnetocrystalline anisotropy, are suggested to play crucial roles. This Ba2LnFeO5 series offers a rare opportunity to investigate experimentally a situation where the 3d-3d and 3d-4f interactions co-operate on an equal footing to trigger a unique long-range magnetic ordering in insulating oxides.

  15. Open source 3D visualization and interaction dedicated to hydrological models

    NASA Astrophysics Data System (ADS)

    Richard, Julien; Giangola-Murzyn, Agathe; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2014-05-01

    Climate change and surface urbanization strongly modify the hydrological cycle in urban areas, increasing the consequences of extreme events such as floods or draughts. These issues lead to the development of the Multi-Hydro model at the Ecole des Ponts ParisTech (A. Giangola-Murzyn et al., 2012). This fully distributed model allows to compute the hydrological response of urban and peri-urban areas. Unfortunately such models are seldom user friendly. Indeed generating the inputs before launching a new simulation is usually a tricky tasks, and understanding and interpreting the outputs remains specialist tasks not accessible to the wider public. The MH-AssimTool was developed to overcome these issues. To enable an easier and improved understanding of the model outputs, we decided to convert the raw output data (grids file in ascii format) to a 3D display. Some commercial paying models provide a 3D visualization. Because of the cost of their licenses, this kind of tools may not be accessible to the most concerned stakeholders. So, we are developing a new tool based on C++ for the computation, Qt for the graphic user interface, QGIS for the geographical side and OpenGL for the 3D display. All these languages and libraries are open source and multi-platform. We will discuss some preprocessing issues for the data conversion from 2.5D to 3D. Indeed, the GIS data, is considered as a 2.5D (e.i. 2D polygon + one height) and the its transform to 3D display implies a lot of algorithms. For example,to visualize in 3D one building, it is needed to have for each point the coordinates and the elevation according to the topography. Furthermore one have to create new points to represent the walls. Finally the interactions between the model and stakeholders through this new interface and how this helps converting a research tool into a an efficient operational decision tool will be discussed. This ongoing research on the improvement of the visualization methods is supported by the

  16. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life.

    PubMed

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  17. 3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.

    2010-01-01

    We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.

  18. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  19. Formalizing the potential of stereoscopic 3D user experience in interactive entertainment

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2015-03-01

    The use of stereoscopic 3D vision affects how interactive entertainment has to be developed as well as how it is experienced by the audience. The large amount of possibly impacting factors and variety as well as a certain subtlety of measured effects on user experience make it difficult to grasp the overall potential of using S3D vision. In a comprehensive approach, we (a) present a development framework which summarizes possible variables in display technology, content creation and human factors, and (b) list a scheme of S3D user experience effects concerning initial fascination, emotions, performance, and behavior as well as negative feelings of discomfort and complexity. As a major contribution we propose a qualitative formalization which derives dependencies between development factors and user effects. The argumentation is based on several previously published user studies. We further show how to apply this formula to identify possible opportunities and threats in content creation as well as how to pursue future steps for a possible quantification.

  20. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life

    PubMed Central

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  1. A brain-computer interface method combined with eye tracking for 3D interaction.

    PubMed

    Lee, Eui Chul; Woo, Jin Cheol; Kim, Jong Hwa; Whang, Mincheol; Park, Kang Ryoung

    2010-07-15

    With the recent increase in the number of three-dimensional (3D) applications, the need for interfaces to these applications has increased. Although the eye tracking method has been widely used as an interaction interface for hand-disabled persons, this approach cannot be used for depth directional navigation. To solve this problem, we propose a new brain computer interface (BCI) method in which the BCI and eye tracking are combined to analyze depth navigation, including selection and two-dimensional (2D) gaze direction, respectively. The proposed method is novel in the following five ways compared to previous works. First, a device to measure both the gaze direction and an electroencephalogram (EEG) pattern is proposed with the sensors needed to measure the EEG attached to a head-mounted eye tracking device. Second, the reliability of the BCI interface is verified by demonstrating that there is no difference between the real and the imaginary movements for the same work in terms of the EEG power spectrum. Third, depth control for the 3D interaction interface is implemented by an imaginary arm reaching movement. Fourth, a selection method is implemented by an imaginary hand grabbing movement. Finally, for the independent operation of gazing and the BCI, a mode selection method is proposed that measures a user's concentration by analyzing the pupil accommodation speed, which is not affected by the operation of gazing and the BCI. According to experimental results, we confirmed the feasibility of the proposed 3D interaction method using eye tracking and a BCI. PMID:20580646

  2. Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes.

    PubMed

    Li, Xiao-Lei; Min, Fan-Yong; Wang, Chao; Lin, Shuang-Yan; Liu, Zhiliang; Tang, Jinkui

    2015-05-01

    The synthesis, structural characterization, and magnetic properties of four related heterometallic complexes with formulas [Dy(III)2Co(II)(C7H5O2)8]·6H2O (1), [Dy(III)2Ni(II)(C7H5O2)8]·(C7H6O2)2 (2), Tb(III)2Co(II)(C7H5O2)8 (3), and Dy(III)2Cd(II)(C7H5O2)8 (4) were reported. Each of complexes has a perfectly linear arrangement of the metal ions with two terminal Ln(III) (Ln(III) = Dy(III), Tb(III)) ions and one central M(II) (M(II) = Co(II), Ni(II), Cd(II)) ion. It was found that 1-3 displayed obvious magnetic interactions between the spin carriers according to the direct current (dc) susceptibility measurements. Alternating current (ac) magnetic susceptibility measurements indicate that complexes 1-4 all exhibit single-molecule magnet (SMM) behavior, while the replacement of the diamagnetic Cd(II) by paramagnetic ions leads to a significant slowing of the relaxation thanks to the magnetic interactions between 3d and 4f ions, resulting in higher relaxation barrier for complexes 1 and 2. Moreover, both Dy2Co and Dy2Ni compounds exhibit dual relaxation pathways that may originate from the single ion behavior of individual Dy(III) ions and the coupling between Dy(III) and Co(II)/Ni(II) ions, respectively, which can be taken as the feature of 3d-4f SMMs. The Ueff for 1 of 127 K is a relatively high value among the reported 3d-4f SMMs. The results demonstrate that the magnetic coupling between 3d and 4f ions is crucial to optimize SMM parameters. The synthetic approach illustrated in this work represents an efficient route to design nd-4f based SMMs via incorporating suitable paramagnetic 3d and even 4d and 5d ions into the d-f system. PMID:25906391

  3. Imaging SPR combined with stereoscopic 3D tracking to study barnacle cyprid-surface interactions

    NASA Astrophysics Data System (ADS)

    Maleshlijski, S.; Sendra, G. H.; Aldred, N.; Clare, A. S.; Liedberg, B.; Grunze, M.; Ederth, T.; Rosenhahn, A.

    2016-01-01

    Barnacle larvae (cyprids) explore surfaces to identify suitable settlement sites. This process is selective, and cyprids respond to numerous surface cues. To better understand the settlement process, it is desirable to simultaneously monitor both the surface exploration behavior and any close interactions with the surface. Stereoscopic 3D tracking of the cyprids provides quantitative access to surface exploration and pre-settlement rituals. Imaging surface plasmon resonance (SPR) reveals any interactions with the surfaces, such as surface inspection during bipedal walking and deposition of temporary adhesives. We report on a combination of both techniques to bring together information on swimming behavior in the vicinity of the interface and physical interactions of the cyprid with the surface. The technical requirements are described, and we applied the setup to cyprids of Balanus amphitrite. Initial data shows the applicability of the combined instrument to correlate exploration and touchdown events on surfaces with different chemical termination.

  4. Interactive Visualization of 3-D Mantle Convection Extended Through AJAX Applications

    NASA Astrophysics Data System (ADS)

    McLane, J. C.; Czech, W.; Yuen, D.; Greensky, J.; Knox, M. R.

    2008-12-01

    We have designed a new software system for real-time interactive visualization of results taken directly from large-scale simulations of 3-D mantle convection and other large-scale simulations. This approach allows for intense visualization sessions for a couple of hours as opposed to storing massive amounts of data in a storage system. Our data sets consist of 3-D data for volume rendering with over 10 million unknowns at each timestep. Large scale visualization on a display wall holding around 13 million pixels has already been accomplished with extension to hand-held devices, such as the OQO and Nokia N800 and recently the iPHONE. We are developing web-based software in Java to extend the use of this system across long distances. The software is aimed at creating an interactive and functional application capable of running on multiple browsers by taking advantage of two AJAX-enabled web frameworks: Echo2 and Google Web Toolkit. The software runs in two modes allowing for a user to control an interactive session or observe a session controlled by another user. Modular build of the system allows for components to be swapped out for new components so that other forms of visualization could be accommodated such as Molecular Dynamics in mineral physics or 2-D data sets from lithospheric regional models.

  5. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars. PMID:26357128

  6. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  7. Interaction of coherent confined optical modes in neighboring 3D cylindrical ZnO microcavities

    SciTech Connect

    Gruzintsev, A. N. Volkov, V. T.; Knyazev, M. A.; Yakimov, E. E.

    2006-11-15

    Luminescent properties of pairs of neighboring variously spaced 3D cylindrical ZnO microcavities 1.8 {mu}m in diameter, produced by electron-beam lithography and reactive ion etching, are studied. Narrow luminescence peaks in the ZnO exciton spectral region, related to single-mode lasing, were observed. The energy of exchange interaction of coupled modes of two microcavities was calculated as a function of the intercavity distance. Broadening of the line of stimulated UV luminescence associated with coupled photonic modes of two microcavities was observed as the intercavity distance decreased.

  8. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  9. Orbital and anisotropy effects on the itinerant exchange interaction in 3D Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Ulloa, Sergio; Mastrogiuseppe, Diego; Sandler, Nancy

    Dirac semimetals are new materials that can be considered analogues of graphene in three dimensions. Their band structure exhibits robust Dirac points that are protected by crystalline symmetry, and strong spin-orbit interaction. These unusual properties suggest that magnetic impurities may reveal exotic behavior with potential technological importance. In metallic hosts, magnetic impurities interact through the electron gas via the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction that depends strongly on the band structure of the material. We report on the RKKY interaction in 3D Dirac semimetals, such as Na3Bi and Cd3As2. We discuss asymptotic expressions for the interaction corresponding to settings with magnetic impurities at different distances and relative angle with respect to high symmetry directions on the lattice. We show that the Fermi velocity anisotropy produces a strong renormalization of the magnitude of the interaction, and a correction to the frequency of oscillation in real space. Hybridization of the impurities to different conduction electron orbitals results in interesting anisotropic interactions which can generate spiral spin structures in doped samples

  10. Interactive Motion Planning for Steerable Needles in 3D Environments with Obstacles

    PubMed Central

    Patil, Sachin; Alterovitz, Ron

    2011-01-01

    Bevel-tip steerable needles for minimally invasive medical procedures can be used to reach clinical targets that are behind sensitive or impenetrable areas and are inaccessible to straight, rigid needles. We present a fast algorithm that can compute motion plans for steerable needles to reach targets in complex, 3D environments with obstacles at interactive rates. The fast computation makes this method suitable for online control of the steerable needle based on 3D imaging feedback and allows physicians to interactively edit the planning environment in real-time by adding obstacle definitions as they are discovered or become relevant. We achieve this fast performance by using a Rapidly Exploring Random Tree (RRT) combined with a reachability-guided sampling heuristic to alleviate the sensitivity of the RRT planner to the choice of the distance metric. We also relax the constraint of constant-curvature needle trajectories by relying on duty-cycling to realize bounded-curvature needle trajectories. These characteristics enable us to achieve orders of magnitude speed-up compared to previous approaches; we compute steerable needle motion plans in under 1 second for challenging environments containing complex, polyhedral obstacles and narrow passages. PMID:22294214

  11. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  12. 3D Modeling of the Massive Binary Wind Interaction Region in Eta Carinae

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, T.; Owocki, S.; Okazaki, A.; Russell, C.

    2009-01-01

    We present recent work on the theoretical modeling of low excitation ([Fe II]) and high excitation ([Fe III]) wind lines observed in Eta Carinae using the HST/STIS. The spatially resolved structures seen in these lines are interpreted as the time-averaged, outer extensions of the wind from the primary star and the wind-wind interaction region of the massive binary system. For most of the orbit, the wind-wind interface can be approximated as a cone with a half-opening angle of 65° whose axis of rotation is aligned with the major axis of the binary orbit and appears to lie in the plane of the Homunculus disk. However, because the orbit is highly elliptical, this approximation breaks down at periastron and so full 3D Smoothed Particle Hydrodynamics (SPH) simulations become necessary. By analyzing the results of these 3D SPH simulations of the binary interactions and comparing them to the spectra obtained with the HST/STIS we place further constraints on the orientation of the binary orbit, and hope to eventually determine how/where UV light is escaping in the system, to search for any direct signatures of the companion star, and to ultimately establish a mass ratio for the system.

  13. Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas.

    PubMed

    de Boer, Bouke A; van den Berg, Gert; de Boer, Piet A J; Moorman, Antoon F M; Ruijter, Jan M

    2012-08-15

    Analysis of experiments aimed at understanding the genetic mechanisms of differentiation and growth of the heart, calls for detailed insights into cardiac growth and proliferation rate of myocytes and their precursors. Such insights in mouse heart development are currently lacking. We quantitatively assessed the 3D patterns of proliferation in the forming mouse heart and in the adjacent splanchnic mesoderm, from the onset of heart formation till the developed heart at late gestation. These results are presented in an interactive portable document format (Suppl. PDF) to facilitate communication and understanding. We show that the mouse splanchnic mesoderm is highly proliferative, and that the proliferation rate drops upon recruitment of cells into the cardiac lineage. Concomitantly, the proliferation rate locally increases at the sites of chamber formation, generating a regionalized proliferation pattern. Quantitative analysis shows a gradual decrease in proliferation rate of the ventricular walls with progression of development, and a base-to-top decline in proliferation rate in the trabecules. Our data offers clear insights into the growth and morphogenesis of the mouse heart and shows that in early development the phases of tube formation and chamber formation overlap. The resulting interactive quantitative 3D atlas of cardiac growth and morphogenesis provides a resource for interpretation of mechanistic studies. PMID:22617458

  14. Quantum Criticality of Topological Phase Transitions in 3D Interacting Electronic Systems

    NASA Astrophysics Data System (ADS)

    Moon, Eun Gook; Yang, Bohm-Jung; Isobe, Hiroki; Nagaosa, Naoto

    2014-03-01

    We investigate the quantum criticality of topological phase transitions in three dimensional (3D) interacting electronic systems lacking either the time-reversal symmetry or the inversion symmetry. The minimal model, Weyl fermions with anisotropic dispersion relation, is suggested as the quantum critical theory based on the zerochirality condition. The interplay between the fermions and the long range Coulomb interaction is investigated by the standard renormalization group (RG) approach. We find that the quantum fluctuations of the anisotropic Weyl fermions induce the anisotropic partial screening of the Coulomb interaction, which eventually makes the Coulomb interaction irrelevant. It is in sharp contrast to the quantum criticality of conventional semi-metallic phases such as graphene where physical quantities receive logarithmic corrections from the marginal Coulomb interaction. Thus, the critical point is described by the non-interacting fermion theory allowing the complete theoretical understanding of the problem. The renormalized Coulomb potential shows the anisotropic power law. Its physical consequence is further illustrated by the screening problem of a charged impurity due to anisotropic Weyl fermions.

  15. RKKY interaction in P-N junction based on surface states of 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhui; Yang, Wen; Chang, Kai

    The RKKY interaction mediated by conduction electrons supplies a mechanism to realize the long-range coupling of localized spins which is desired for the spin devices. Here, we examine the controllability of RKKY interaction in P-N junction (PNJ) based on surface states of 3D topological insulator (3DTI). In this study, through quantum way but not usual classical analogy to light propagation, the intuitive picture for electron waves across the interface of PNJ is obtained, e.g., Klein tunneling, negative refraction and focusing. Moreover, we perform the numerical calculations for all kinds of RKKY interaction including the Heisenberg, Ising, and Dzyaloshinskii-Moriya terms. We find the focusing of surface states leads to the local augmentation of RKKY interaction. Most importantly, a dimension transition occurs, i.e., the decay rate of RKKY interaction from the deserved 1/R 2 to 1/ R . In addition, the quadratic gate-dependence of RKKY interaction is also beneficial to the application of 3DTI PNJ in the fields of spintronics and quantum computation. This work was supported by the MOST (Grant No. 2015CB921503, and No. 2014CB848700) and NSFC (Grant No. 11434010, No. 11274036, No. 11322542, and No. 11504018).

  16. 3-D Hybrid Simulation of Interaction Between Solar Wind Discontinuity and Magnetosphere

    NASA Astrophysics Data System (ADS)

    Pang, Y.; Lin, Y.; Deng, X.; Wang, X.

    2008-12-01

    Previous simulations and observations indicate that interaction of interplanetary directional tangential discontinuities (TD), across which only the direction of magnetic field changes,with the bow shock may initiate magnetic reconnection as the TD is transmitted into the magnetosheath. We employ a 3-D electromagnetic, hybrid simulation to study such interaction between the TD and the bow shock-magnetosheath-magnetopause system, while the hybrid model treats the ions kinetically via particle-in-cell methods and the electrons as a massless fluid. We present results corresponding to different orientations of the initial IMF, TDs with various thicknesses ranging from 10 to 30 ion skin depths, and polarizations of magnetic field and senses of field rotation across the TD. Our results indicate that the reconnection rate and structure can be influenced by the width and the structure of the TD. The kinetic structure and evolution of FTEs produced by the magnetosheath reconnection, as they propagate to the magnetopause, will be studied.

  17. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  18. Jupiter Magnetotail Interaction with a Variable Solar Wind: A 3D MHD Simulation

    NASA Astrophysics Data System (ADS)

    Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.

    2015-12-01

    Jupiter's magnetosphere is the largest object within the heliosphere. Voyager 2 detected its influence at Saturn's orbit, 4.3 AU away. It takes considerable time, therefore, for the solar wind to propagate such lengths down the tail. This propagation time is much greater than typical periods between changes in direction of the interplanetary magnetic field (IMF). We expect these variable magnetic fields to create a jumbled structure in Jupiter's magnetotail, resulting in magnetic reconnection and other magnetic processes. We simulate the global interaction of the solar wind with Jupiter's magnetosphere using a 3D magnetohydrodynamics (MHD) code. Delamere & Bagenal (2010) argue that the interaction is largely viscous, so we simulate the jovian magnetosphere as a region where the momentum equation has an added loss term. We also use in situ data gathered by the Ulysses spacecraft near Jupiter's orbit for solar wind input. Here, we report on the simulated dynamics in Jupiter's tail region.

  19. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    SciTech Connect

    Antonova, T.; Thomas, H. M.; Morfill, G. E.; Annaratone, B. M.

    2008-09-07

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm{sup 3}) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  20. Color and size interactions in a real 3D object similarity task.

    PubMed

    Ling, Yazhu; Hurlbert, Anya

    2004-08-31

    In the natural world, objects are characterized by a variety of attributes, including color and shape. The contributions of these two attributes to object recognition are typically studied independently of each other, yet they are likely to interact in natural tasks. Here we examine whether color and size (a component of shape) interact in a real three-dimensional (3D) object similarity task, using solid domelike objects whose distinct apparent surface colors are independently controlled via spatially restricted illumination from a data projector hidden to the observer. The novel experimental setup preserves natural cues to 3D shape from shading, binocular disparity, motion parallax, and surface texture cues, while also providing the flexibility and ease of computer control. Observers performed three distinct tasks: two unimodal discrimination tasks, and an object similarity task. Depending on the task, the observer was instructed to select the indicated alternative object which was "bigger than," "the same color as," or "most similar to" the designated reference object, all of which varied in both size and color between trials. For both unimodal discrimination tasks, discrimination thresholds for the tested attribute (e.g., color) were increased by differences in the secondary attribute (e.g., size), although this effect was more robust in the color task. For the unimodal size-discrimination task, the strongest effects of the secondary attribute (color) occurred as a perceptual bias, which we call the "saturation-size effect": Objects with more saturated colors appear larger than objects with less saturated colors. In the object similarity task, discrimination thresholds for color or size differences were significantly larger than in the unimodal discrimination tasks. We conclude that color and size interact in determining object similarity, and are effectively analyzed on a coarser scale, due to noise in the similarity estimates of the individual attributes

  1. 3D geological model developed to analyse the aquifer - sewer network interaction in Bucharest city

    NASA Astrophysics Data System (ADS)

    Serpescu, I.; Radu, E.; Gogu, R. G.; Priceputu, A.; Boukhemacha, M. A.; Bica, I.; Gaitanaru, D.

    2012-04-01

    Due to the fact that several important Bucharest city sewer segments drain the groundwater and provide high input flow-rates for the existing waste-water treatment plant, their rehabilitation is necessary. A hydrogeological model, currently under development, will permit to compute the groundwater-sewer network interaction allowing the simulation of distinct design solutions to prevent city disturbances. For groundwater modelling the geological model represents the fundament of understanding the aquifers system behaviour. In this respect a 3D accurate and detailed geological model, covering a region of about 75 km2 has been developed to identify its contact with the major collecting sewer conduit. The shallow aquifer stratum of quaternary formations called Colentina is made of gravels and sands. This unconfined aquifer can be found mainly in the Bucharest city region at depths up to 20 m. A clayey-marl layer is located between Colentina and a lower confined aquifer called Mostistea. This second one is located at depths between 25 m and 70 m and is made of fine and medium sands with gravel intercalations. It overlays on a very thick sequence (40 m to 150 m) of marl and clay layers with slim sandy intercalations. The geological model has been developed on the basis of a large number of geological and geotechnical boreholes. A set of 400 boreholes with depths between 5m to 200 m showing a detailed geological and lithological description stored in a geospatial database have been used. The geological analysis has been performed using a software platform that integrates the spatial database and a set of tools and methodologies developed in a GIS environment with the aim of facilitating the development of 3D geological models for sedimentary media. Taking into account the first 50 m in depth, 25 geological profiles have been interpreted on the basis of chronostratigraphycal, lithological, and sedimentological criteria to delineate the geological formations and assess

  2. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  3. Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail

    2014-05-01

    The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points

  4. Skin-friction measurements in a 3-D, supersonic shock-wave/boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Wideman, Jeffrey Kenneth

    An experimental study has been conducted in a three-dimensional, supersonic shockwave/boundary-layer interaction (3-D SW/BLI) with the intent of providing accurate experimental data for turbulence modeling and computational fluid dynamics (CFD) code validation. The experiment was performed in the High Reynolds Channel 1 (HRCI) wind tunnel at NASA Ames Research Center. The test was conducted at a Mach number of M(sub infinity) = 2.89 and at a Reynolds number of Re = 15 x 106/m. The model consisted of a sting-supported cylinder aligned with the tunnel axis and a 20 deg half-angle conical flare offset 1.27 cm from the cylinder centerline. The generated shock system was verified to be steady by schlieren visualization. The highlight of the study was the acquisition of 3-D skin-friction data by a laser interferometric skin friction (LISF) meter. Surface pressure measurements were obtained in 15 deg intervals around the cylinder and flare. Additional measurements included surface oil flow and laser light sheet illumination which were used to document the flow topology. Skin-friction measurements are proving to be a very challenging test of a CFD code predictive capability. However, at the present time there is a very limited amount of accurate skin-friction data in complex flows such as in 3-D SW/BLI. The LISF technique is advantageous as compared to other skin-friction measurement techniques for application in complex flows like the present since it is non-intrusive and is capable of performing measurements in flows with large shear and pressure gradients where the reliability of other techniques is questionable. Thus, the prevent skin-friction data will prove valuable to turbulence modeling and CFD code validation efforts.

  5. Development of 3D interactive visual objects using the Scripps Institution of Oceanography's Visualization Center

    NASA Astrophysics Data System (ADS)

    Kilb, D.; Reif, C.; Peach, C.; Keen, C. S.; Smith, B.; Mellors, R. J.

    2003-12-01

    Within the last year scientists and educators at the Scripps Institution of Oceanography (SIO), the Birch Aquarium at Scripps and San Diego State University have collaborated with education specialists to develop 3D interactive graphic teaching modules for use in the classroom and in teacher workshops at the SIO Visualization center (http://siovizcenter.ucsd.edu). The unique aspect of the SIO Visualization center is that the center is designed around a 120 degree curved Panoram floor-to-ceiling screen (8'6" by 28'4") that immerses viewers in a virtual environment. The center is powered by an SGI 3400 Onyx computer that is more powerful, by an order of magnitude in both speed and memory, than typical base systems currently used for education and outreach presentations. This technology allows us to display multiple 3D data layers (e.g., seismicity, high resolution topography, seismic reflectivity, draped interferometric synthetic aperture radar (InSAR) images, etc.) simultaneously, render them in 3D stereo, and take a virtual flight through the data as dictated on the spot by the user. This system can also render snapshots, images and movies that are too big for other systems, and then export smaller size end-products to more commonly used computer systems. Since early 2002, we have explored various ways to provide informal education and outreach focusing on current research presented directly by the researchers doing the work. The Center currently provides a centerpiece for instruction on southern California seismology for K-12 students and teachers for various Scripps education endeavors. Future plans are in place to use the Visualization Center at Scripps for extended K-12 and college educational programs. In particular, we will be identifying K-12 curriculum needs, assisting with teacher education, developing assessments of our programs and products, producing web-accessible teaching modules and facilitating the development of appropriate teaching tools to be

  6. Fold interaction and wavelength selection in 3D models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.

    2014-09-01

    Many fold-and-thrust belts are dominated by folding and exhibit a fairly regular fold-spacing. Yet, in map-view, the aspect ratio of doubly-plunging anticlines varies considerably from very elongated, and sometimes slightly curved, cylindrical folds to nearly circular, dome-like structures. In addition, the fold spacing often varies significantly around an average value. So far, it remains unclear whether these features are consistent with a folding instability. Therefore, we here study the dynamics of multilayer detachment folding, process by which shortening can be accommodated in thin-skinned fold-and-thrust belts. We start by analysing the physics of this process by using both a semi-analytical thick plate theory and numerical simulations. Results show that several different folding modes occur, about half of which are affected by gravity and have a wavelength that depends on the background deformation rate. Non-dimensional expressions are derived that predict the dominant wavelength and growth rate of each of these folding modes and mechanical phase diagrams are presented that illustrate the applicability of each of the modes. Next, we perform 3D simulations and compare the results with those of 2D models and analytical theory. Both 2D and 3D numerical simulations have wavelengths that are in good agreement with the analytical predictions. In the high-resolution 3D simulations the lateral growth of folds is studied, in particular with respect to fold segment interactions and evolution of fold width-length aspect ratio. The numerical simulations show a number of similarities with the Fars region of the Zagros fold-and-thrust belt including a large range of fold aspect ratio and a normally distributed fold wavelength around a dominant one.

  7. The development of laser-plasma interaction program LAP3D on thousands of processors

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin; Guo, Hong

    2015-08-01

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  8. The development of laser-plasma interaction program LAP3D on thousands of processors

    SciTech Connect

    Hu, Xiaoyan Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin Guo, Hong

    2015-08-15

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  9. Development of the Pulmonary Vein and the Systemic Venous Sinus: An Interactive 3D Overview

    PubMed Central

    van den Berg, Gert; Moorman, Antoon F. M.

    2011-01-01

    Knowledge of the normal formation of the heart is crucial for the understanding of cardiac pathologies and congenital malformations. The understanding of early cardiac development, however, is complicated because it is inseparably associated with other developmental processes such as embryonic folding, formation of the coelomic cavity, and vascular development. Because of this, it is necessary to integrate morphological and experimental analyses. Morphological insights, however, are limited by the difficulty in communication of complex 3D-processes. Most controversies, in consequence, result from differences in interpretation, rather than observation. An example of such a continuing debate is the development of the pulmonary vein and the systemic venous sinus, or “sinus venosus”. To facilitate understanding, we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm. We discuss our model with respect to normal formation of the heart, congenital cardiac malformations, and the phylogeny of the venous tributaries. PMID:21779373

  10. First-principles calculations of the interaction between hydrogen and 3d alloying atom in nickel

    NASA Astrophysics Data System (ADS)

    Liu, Wenguan; Qian, Yuan; Zhang, Dongxun; Liu, Wei; Han, Han

    2015-10-01

    Knowledge of the behavior of hydrogen (H) in Ni-based alloy is essential for the prediction of Tritium behavior in Molten Salt Reactor. First-principles calculations were performed to investigate the interaction between H and 3d transition metal (TM) alloying atom in Ni-based alloy. H prefers the octahedral interstitial site to the tetrahedral interstitial site energetically. Most of the 3d TM elements (except Zn) attract H. The attraction to H in the Ni-TM-H system can be mainly attributed to the differences in electronegativity. With the large electronegativity, H and Ni gain electrons from the other TM elements, resulting in the enhanced Ni-H bonds which are the source of the attraction to H in the Ni-TM-H system. The obviously covalent-like Cr-H and Co-H bindings are also beneficial to the attraction to H. On the other hand, the repulsion to H in the Ni-Zn-H system is due to the stable electronic configuration of Zn. We mainly utilize the results calculated in 32-atom supercell which corresponds to the case of a relatively high concentration of hydrogen. Our results are in good agreement with the experimental ones.

  11. 3D Global Magnetohydrodynamic Simulations of the Solar Wind/Earth's Magnetosphere Interaction

    NASA Astrophysics Data System (ADS)

    Yalim, M. S.; Poedts, S.

    2014-09-01

    In this paper, we present results of real-time 3D global magnetohydrodynamic (MHD) simulations of the solar wind interaction with the Earth's magnetosphere using time-varying data from the NASA Advanced Composition Explorer (ACE) satellite during a few big magnetic storm events of the previous and current solar cycles, namely the 06 April 2000, 20 November 2003 and 05 April 2010 storms. We introduce a numerical magnetic storm index and compare the geo-effectiveness of these events in terms of this storm index which is a measure for the resulting global perturbation of the Earth's magnetic field. Steady simulations show that the upstream solar wind plasma parameters enter the low-β switch-on regime for some time intervals during a magnetic storm causing a complex dimpled bow shock structure. We also investigate the traces of such bow shock structures during time-dependent simulations of the events. We utilize a 3D, implicit, parallel, unstructured grid, compressible finite volume ideal MHD solver with an anisotropic grid adaptation technique for the computer simulations.

  12. MEVA - An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices

    PubMed Central

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data

  13. Assessment of accuracy and precision of 3D reconstruction of unicompartmental knee arthroplasty in upright position using biplanar radiography.

    PubMed

    Tsai, Tsung-Yuan; Dimitriou, Dimitris; Hosseini, Ali; Liow, Ming Han Lincoln; Torriani, Martin; Li, Guoan; Kwon, Young-Min

    2016-07-01

    This study aimed to evaluate the precision and accuracy of 3D reconstruction of UKA component position, contact location and lower limb alignment in standing position using biplanar radiograph. Two human specimens with 4 medial UKAs were implanted with beads for radiostereometric analysis (RSA). The specimens were frozen in standing position and CT-scanned to obtain relative positions between the beads, bones and UKA components. The specimens were then imaged using biplanar radiograph (EOS). The positions of the femur, tibia, UKA components and UKA contact locations were obtained using RSA- and EOS-based techniques. Intraclass correlation coefficient (ICC) was calculated for inter-observer reliability of the EOS technique. The average (standard deviation) of the differences between two techniques in translations and rotations were less than 0.18 (0.29) mm and 0.39° (0.66°) for UKA components. The root-mean-square-errors (RMSE) of contact location along the anterior/posterior and medial/lateral directions were 0.84mm and 0.30mm. The RMSEs of the knee rotations were less than 1.70°. The ICCs for the EOS-based segmental orientations between two raters were larger than 0.98. The results suggest the EOS-based 3D reconstruction technique can precisely determine component position, contact location and lower limb alignment for UKA patients in weight-bearing standing position. PMID:27117422

  14. Using Interactive 3D PDF for Exploring Complex Biomedical Data: Experiences and Solutions.

    PubMed

    Newe, Axel; Becker, Linda

    2016-01-01

    The Portable Document Format (PDF) is the most commonly used file format for the exchange of electronic documents. A lesser-known feature of PDF is the possibility to embed three-dimensional models and to display these models interactively with a qualified reader. This technology is well suited to present, to explore and to communicate complex biomedical data. This applies in particular for data which would suffer from a loss of information if it was reduced to a static two-dimensional projection. In this article, we present applications of 3D PDF for selected scholarly and clinical use cases in the biomedical domain. Furthermore, we present a sophisticated tool for the generation of respective PDF documents. PMID:27577484

  15. Exchange Interaction Makes Superconductivity in 3D Dirac Semi-metal Triplet

    NASA Astrophysics Data System (ADS)

    Rosenstein, B.; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.

    2015-04-01

    Conventional electron-phonon coupling induces either odd (triplet) or even (singlet) pairing states in a time reversal and inversion invariant Dirac semi-metal. In a certain range of the chemical potential and parameters characterizing the pairing attraction (effective electron-electron coupling constant and the Debye energy ) the energy of the singlet although always lower, prevails by a very slim margin over the triplet. This means that interactions that are small but discriminate between the spin singlet and the spin triplet determine the nature of the superconducting order there. It is shown that in materials close enough to the Dirac point ( ) a moderate exchange constant (below Stoner instability to ferromagnetism) stabilizes the odd pairing superconducting state. The 3D quantum critical point at of transition to the triplet superconductivity governs the physics of the superconductor.

  16. 3D Joint Speaker Position and Orientation Tracking with Particle Filters

    PubMed Central

    Segura, Carlos; Hernando, Javier

    2014-01-01

    This paper addresses the problem of three-dimensional speaker orientation estimation in a smart-room environment equipped with microphone arrays. A Bayesian approach is proposed to jointly track the location and orientation of an active speaker. The main motivation is that the knowledge of the speaker orientation may yield an increased localization performance and vice versa. Assuming that the sound produced by the speaker is originated from his mouth, the center of the head is deduced based on the estimated head orientation. Moreover, the elevation angle of the head of the speaker can be partly inferred from the fast vertical movements of the computed mouth location. In order to test the performance of the proposed algorithm, a new multimodal dataset has been recorded for this purpose, where the corresponding 3D orientation angles are acquired by an inertial measurement unit (IMU) provided by accelerometers, magnetometers and gyroscopes in the three-axes. The proposed joint algorithm outperforms a two-step approach in terms of localization and orientation angle precision assessing the superiority of the joint approach. PMID:24481230

  17. 3D joint speaker position and orientation tracking with particle filters.

    PubMed

    Segura, Carlos; Hernando, Javier

    2014-01-01

    This paper addresses the problem of three-dimensional speaker orientation estimation in a smart-room environment equipped with microphone arrays. A Bayesian approach is proposed to jointly track the location and orientation of an active speaker. The main motivation is that the knowledge of the speaker orientation may yield an increased localization performance and vice versa. Assuming that the sound produced by the speaker is originated from his mouth, the center of the head is deduced based on the estimated head orientation. Moreover, the elevation angle of the head of the speaker can be partly inferred from the fast vertical movements of the computed mouth location. In order to test the performance of the proposed algorithm, a new multimodal dataset has been recorded for this purpose, where the corresponding 3D orientation angles are acquired by an inertial measurement unit (IMU) provided by accelerometers, magnetometers and gyroscopes in the three-axes. The proposed joint algorithm outperforms a two-step approach in terms of localization and orientation angle precision assessing the superiority of the joint approach. PMID:24481230

  18. A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele

    PubMed Central

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.

    2015-01-01

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  19. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. PMID:20022133

  20. A 3D character animation engine for multimodal interaction on mobile devices

    NASA Astrophysics Data System (ADS)

    Sandali, Enrico; Lavagetto, Fabio; Pisano, Paolo

    2005-03-01

    Talking virtual characters are graphical simulations of real or imaginary persons that enable natural and pleasant multimodal interaction with the user, by means of voice, eye gaze, facial expression and gestures. This paper presents an implementation of a 3D virtual character animation and rendering engine, compliant with the MPEG-4 standard, running on Symbian-based SmartPhones. Real-time animation of virtual characters on mobile devices represents a challenging task, since many limitations must be taken into account with respect to processing power, graphics capabilities, disk space and execution memory size. The proposed optimization techniques allow to overcome these issues, guaranteeing a smooth and synchronous animation of facial expressions and lip movements on mobile phones such as Sony-Ericsson's P800 and Nokia's 6600. The animation engine is specifically targeted to the development of new "Over The Air" services, based on embodied conversational agents, with applications in entertainment (interactive story tellers), navigation aid (virtual guides to web sites and mobile services), news casting (virtual newscasters) and education (interactive virtual teachers).

  1. Cell interaction study method using novel 3D silica nanoneedle gradient arrays

    PubMed Central

    Rajput, Deepak; Crowder, Spencer; Hofmeister, Lucas; Costa, Lino; Sung, Hak-Joon; Hofmeister, William

    2012-01-01

    Understanding cellular interactions with culture substrate features is important to advance cell biology and regenerative medicine. When surface topographical features are considerably larger in vertical dimension and are spaced at least one cell dimension apart, the features act as 3D physical barriers that can guide cell adhesion, thereby altering cell behavior. In the present study, we investigated competitive interactions of cells with neighboring cells and matrix using a novel nanoneedle gradient array. A gradient array of nanoholes was patterned at the surface of fused silica by single-pulse femtosecond laser machining. A negative replica of the pattern was extracted by nanoimprinting with a thin film of polymer. Silica was deposited on top of the polymer replica to form silica nanoneedles. NIH 3T3 fibroblasts were cultured on silica nanoneedles and their behavior was studied and compared with those cultured on a flat silica surface. The presence of silica nanoneedles was found to enhance the adhesion of fibroblasts while maintaining cell viability. The anisotropy in the arrangement of silica nanoneedles was found to affect the morphology and spreading of fibroblasts. Additionally, variations in nanoneedle spacing regulated cell-matrix and cell-cell interactions, effectively preventing cell aggregation in areas of tightly-packed nanoneedles. This proof-of-concept study provides a reproducible means for controlling competitive cell adhesion events and offers a novel system whose properties can be manipulated to intimately control cell behavior. PMID:23006558

  2. CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds.

    PubMed

    Yu, Lingyun; Efstathiou, Konstantinos; Isenberg, Petra; Isenberg, Tobias

    2016-01-01

    We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive target selection has been particularly challenging when the data subsets of interest were implicitly defined in the form of complicated structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be fine-tuned after the selection interaction has been completed. Together, they provide an effective and efficient tool set for the fast exploratory analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were strongly favored by our participants for intuitiveness and efficiency. PMID:26390474

  3. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  4. Code verification for unsteady 3-D fluid-solid interaction problems

    NASA Astrophysics Data System (ADS)

    Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique

    2015-12-01

    This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.

  5. Interactive Visualization and Monitoring of Large-Scale 3-D Mantle Convection Runs

    NASA Astrophysics Data System (ADS)

    Damon, M.; Yuen, D.; Kameyama, M.; Knox, M.; Porter, D.; Sevre, E. O.; Woodward, P.

    2007-12-01

    With the imminent arrival of petascale computing in the United States by 2011, new strategies for visualizing and monitoring high-resolution numerical simulations on massively parallel computers are needed to overcome the extreme data and resource requirements. We have employed a visualization system consisting of 14 powerful Dell workstations, each with a multi-terabyte disk, connected via a high-speed network with a bandwidth on the order of a few gigabits per second to a locally situated massively parallel system with approximately 2,000 processing elements. This system has been constructed at the Laboratory of Computational Sciences and Engineering at the University of Minnesota. Near real-time interactive analysis of 3-D mantle convection using around 10 million grid points has been carried out using a client-server application capable of streaming gigabytes of simulated data to a remote Powerwall with 13 million pixels. Concurrently, we have constructed a web-portal that allows a user to monitor the same run at home or in a hotel room, using a laptop. In our case, interactive computing takes on the meaning of performing such runs for a limited duration of time, say 1 to 2 hours. This calls for a balance between grid resolution and the number of processing elements required to provide the level of interactivity needed to achieve one to a few frames per second. Our mode of operation represents a new paradigm in numerical modeling that supports a trend toward both real-time visualization and monitoring of high-resolution models and a consequent reduction in storage of raw output data, since the interactive periods are by definition short. Using this interactive strategy periodically we can facilitate long heroic runs extending over a few days.

  6. Atomic identification of fluorescent Q-dots on tau-positive fibrils in 3D-reconstructed pick bodies.

    PubMed

    Uematsu, Miho; Adachi, Eijiro; Nakamura, Ayako; Tsuchiya, Kuniaki; Uchihara, Toshiki

    2012-04-01

    Pick body disease, characterized by the presence of Pick bodies, is distinguished from neurofibrillary tangles in Alzheimer disease on the basis of their smooth, spherical shape. Quantum dots (QDs) are nanometer-scale, water-soluble fluorophores that are detectable both as a fluorescent signal by light microscopy and as electron-dense particles under electron microscopy. In this study, tau-positive Pick bodies were immunofluorescently labeled with QD nanocrystals composed of cadmium selenide for three-dimensional (3D) reconstruction and subsequently subjected to electron microscopic observation to identify QD immunolabeling on the same Pick body for comparison in detail. The identity of the QD nanocrystals, which label the tau-positive fibrils, was confirmed by the presence of both cadmium and selenium on these nanocrystals, demonstrated as parallel peaks corresponding to these atoms on energy-dispersive X-ray spot analysis under super-resolution scanning transmission electron microscopy. This confirmation of the specificity of the QD labeling through both its fluorescence and energy-dispersive X-ray spectra reinforces the reliability of the labeling. In addition, this exact comparison of the same structure by electron microscopy and 3D light microscopy demonstrates how its ultrastructural details are related to its surrounding structures on a 3D basis, providing further insights into how molecules woven into specific pathological ultrastructures are at work in situ. PMID:22322305

  7. Effects of Electrode Position on Spatiotemporal Auditory Nerve Fiber Responses: A 3D Computational Model Study

    PubMed Central

    2015-01-01

    A cochlear implant (CI) is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF) response to either a single pulse or low- (250 pulses/s) and high-rate (5,000 pulses/s) pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance. PMID:25755675

  8. Effects of electrode position on spatiotemporal auditory nerve fiber responses: a 3D computational model study.

    PubMed

    Kang, Soojin; Chwodhury, Tanmoy; Moon, Il Joon; Hong, Sung Hwa; Yang, Hyejin; Won, Jong Ho; Woo, Jihwan

    2015-01-01

    A cochlear implant (CI) is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF) response to either a single pulse or low- (250 pulses/s) and high-rate (5,000 pulses/s) pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance. PMID:25755675

  9. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

    PubMed

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-10

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  10. Global Structure of Idealized Stream Interaction Regions Using 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Hughes, W. J.; Merkin, V. G.

    2014-12-01

    The global structure of the heliosphere during solar cycles (SC) 23 and 24 differed significantly in many ways, for example in terms of global magnetic field strength, velocity structure and the observed properties of Stream Interaction Region (SIR) and associated shocks. The differences considered in this study focus primarily on the effects of the three-dimensional (3D) structure of SIRs. During the minimum of SC 24, equatorial coronal holes were prevalent as sources of low-latitude high-speed solar wind. In contrast, the canonical depiction of SC 23's minimum wind configuration is of a band of slow wind undulating about the heliographic equator. Using the heliospheric adaptation of the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) model (LFM-helio), we have run simulations for two idealized global solar wind conditions. The first simulation approximates the classical tilted dipole, with fast solar wind at high latitudes and a band of slow wind tilted with respect to the heliographic equator, and the second consists of global slow solar wind with equatorial circular sources of high-speed streams. The evolution of the SIRs from 0.1 AU to 2.0 AU is characterized using the amplitude and location of the maximum compressions of the plasma and the magnetic field as well as the largest deflection of solar wind flow. The relation between plasma and magnetic field compressions differs between the two cases considered. The SIRs produced by the equatorial coronal holes have similar maximum densities to those of the tilted dipole case, but the magnetic field magnitude is larger and the plasma is hotter. This suggests that evolution depends on the 3D structure of the SIR and its effects on the competitive roles of the growth of the structure, driven by compression from dynamic pressure, and and relaxation from the plasma flow and magnetic field deflections occurring in the region. Magnetic field threading SIRs and tracing plasma parcels are examined.

  11. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  12. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    PubMed

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient. PMID:23827333

  13. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    PubMed Central

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  14. 3D kinetic simulations of the global interaction between the solar wind and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Maneva, Yana; Deca, Jan; Lapenta, Giovanni

    2015-04-01

    We performed three dimensional simulations of the interaction between the solar wind and the magnetosphere, using the self-consistent fully kinetic code iPic3D. The main objective of our simulations is to link the global interaction phenomena to the local turbulence and reconnection processes in the magnetosphere. Other numerical approaches have been used before to study this problem, including MHD, hybrid and Vlasov codes. However, only particle-in-cell codes offer the possibility to study the kinetic effects of the diffusion regions of the Earth environment that drive the energy transfer from the solar wind to the magnetosphere. Previous attempts to perform such kinds of simulations were limited to unphysical thermal velocities of the ion and electron species, small simulation boxes or cell sizes that do not capture the local kinetic effects at the magnetopause. Using the implicit moment Particle-in-Cell approach we performed simulations that can capture these small scale effects and, at the same time, allow to study large scale phenomena such as the bow shock and the development of the magnetotail. We expect that these results will be used to maximize the impact of future space missions, such as THOR, MMS and BepiColombo, by improving our understanding of the planetary environment, from the conditions observed in the solar wind to the turbulence and reconnection processes downstream of the bow shock.

  15. The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data

    NASA Astrophysics Data System (ADS)

    Kriegel, H.; Simon, S.; Müller, J.; Motschmann, U.; Saur, J.; Glassmeier, K.-H.; Dougherty, M. K.

    2009-12-01

    We study the interaction of Saturn's small, icy moon Enceladus and its plume with the corotating magnetospheric plasma by means of a 3D hybrid simulation model, which treats the ions as individual particles and the electrons as a massless, charge-neutralizing fluid. We analyze systematically how Enceladus' internal conductivity and plasma absorption at the surface as well as charge exchange and pick-up in the plume contribute to the overall structure of the interaction region. Furthermore, we provide a comparison of our simulation results to data obtained by the Cassini magnetometer instrument. The major findings of this study are: (1) the magnetic field diffuses through the solid body of Enceladus almost unaffected, whereas plasma absorption gives rise to a symmetric depletion wake downstream of the moon; (2) due to the small gyroradii of the newly generated plume ions, the pick-up tail possesses a 2D structure; (3) the magnetic field lines drape around the plume, which triggers an Alfvén wing system that dominates the structure of Enceladus' plasma environment. Inside the plume itself, a magnetic cavity is formed; (4) besides the reproduction of the key features of the observed magnetic field signatures, evidence for variability in the locations of the active jets and in the total gas content of the plume are shown.

  16. Competitive interaction of monovalent cations with DNA from 3D-RISM.

    PubMed

    Giambaşu, George M; Gebala, Magdalena K; Panteva, Maria T; Luchko, Tyler; Case, David A; York, Darrin M

    2015-09-30

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site model (3D-RISM) to reproduce preferential interaction parameters determined from ion counting (IC) experiments for mixed alkali chlorides and dsDNA. Calculations agree well with experiment with slight deviations for salt concentrations >200 mM and capture the observed trend where the extent of cation accumulation around the DNA varies inversely with its ionic size. Ion distributions indicate that the smaller, more competitive cations accumulate to a greater extent near the phosphoryl groups, penetrating deeper into the grooves. In accord with experiment, calculated IC profiles do not vary with sequence, although the predicted ion distributions in the grooves are sequence and ion size dependent. Calculations on other nucleic acid conformations predict that the variation in linear charge density has a minor effect on the extent of cation competition. PMID:26304542

  17. 3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; Mancini, M.

    2016-03-01

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  18. Competitive interaction of monovalent cations with DNA from 3D-RISM

    PubMed Central

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site model (3D-RISM) to reproduce preferential interaction parameters determined from ion counting (IC) experiments for mixed alkali chlorides and dsDNA. Calculations agree well with experiment with slight deviations for salt concentrations >200 mM and capture the observed trend where the extent of cation accumulation around the DNA varies inversely with its ionic size. Ion distributions indicate that the smaller, more competitive cations accumulate to a greater extent near the phosphoryl groups, penetrating deeper into the grooves. In accord with experiment, calculated IC profiles do not vary with sequence, although the predicted ion distributions in the grooves are sequence and ion size dependent. Calculations on other nucleic acid conformations predict that the variation in linear charge density has a minor effect on the extent of cation competition. PMID:26304542

  19. Earthscape, a Multi-Purpose Interactive 3d Globe Viewer for Hybrid Data Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Sarthou, A.; Mas, S.; Jacquin, M.; Moreno, N.; Salamon, A.

    2015-08-01

    The hybrid visualization and interaction tool EarthScape is presented here. The software is able to display simultaneously LiDAR point clouds, draped videos with moving footprint, volume scientific data (using volume rendering, isosurface and slice plane), raster data such as still satellite images, vector data and 3D models such as buildings or vehicles. The application runs on touch screen devices such as tablets. The software is based on open source libraries, such as OpenSceneGraph, osgEarth and OpenCV, and shader programming is used to implement volume rendering of scientific data. The next goal of EarthScape is to perform data analysis using ENVI Services Engine, a cloud data analysis solution. EarthScape is also designed to be a client of Jagwire which provides multisource geo-referenced video fluxes. When all these components will be included, EarthScape will be a multi-purpose platform that will provide at the same time data analysis, hybrid visualization and complex interactions. The software is available on demand for free at france@exelisvis.com.

  20. Toward virtual anatomy: a stereoscopic 3-D interactive multimedia computer program for cranial osteology.

    PubMed

    Trelease, R B

    1996-01-01

    Advances in computer visualization and user interface technologies have enabled development of "virtual reality" programs that allow users to perceive and to interact with objects in artificial three-dimensional environments. Such technologies were used to create an image database and program for studying the human skull, a specimen that has become increasingly expensive and scarce. Stereoscopic image pairs of a museum-quality skull were digitized from multiple views. For each view, the stereo pairs were interlaced into a single, field-sequential stereoscopic picture using an image processing program. The resulting interlaced image files are organized in an interactive multimedia program. At run-time, gray-scale 3-D images are displayed on a large-screen computer monitor and observed through liquid-crystal shutter goggles. Users can then control the program and change views with a mouse and cursor to point-and-click on screen-level control words ("buttons"). For each view of the skull, an ID control button can be used to overlay pointers and captions for important structures. Pointing and clicking on "hidden buttons" overlying certain structures triggers digitized audio spoken word descriptions or mini lectures. PMID:8793223

  1. 3D Loops Evolutions (Twists And Expansions) And Magnetic Fields Interactions Studied With SOHO/EIT

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, Fabrice

    1999-10-01

    I will present some results from my PHD/Thesis. With SOHO/EIT, 3D Technics such as stereovision and "vision by shape" were developped to study coronal structures evolution. To discribe loops morphology, we adapted with M. Aschwanden a torus fit which include twist evolution. On a quick magnetic flux emergence (August 5th 1997), the twist were decreasing while the loop expand. During a long time evolution (July - August 1996), flaring activities were well correlated with sudden decrease in the twist. These 2 results correspond to the evolution expected with the Parker's formula (1977). Magnetic field lines interactions were also analyzed. From multi-wavelengths observations, we had studied some morphological and topological changes which can be interpreted as interactions between open and closed field lines (ie between Coronal Holes and Active Region Loops). Then, relationship between CME/Flares formation and our different instabilities studied were analyzed in the aim to find, in the futur, good criteria concerning space weather.

  2. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    PubMed

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  3. Full circle: 3D femoral mapping demonstrates age-related changes that influence femoral implant positioning.

    PubMed

    Tucker, Damien; Surup, Timm; Petersik, Andreas; Kelly, Michael

    2016-02-01

    The geometry of the femur is important in the final position of an intramedullary implant; we hypothesised that the femoral geometry changes with age and this may predispose the elderly to anterior mal-positioning of these implants. We used CT DICOM data of 919 intact left femora and specialist software that allowed us to defined landmarks for measurement reference - such as the linea aspera - on a template bone that could be mapped automatically to the entire database. We found that older (>80 years) cortical bone is up to 1.5 mm thinner anteriorly and 2 mm thinner posteriorly than younger (<40 years) bone but the rate of change of posterior to anterior cortex thickness is greater in the older bone. We also found the isthmus in the elderly to be more distal and less substantial than in the younger bone. This study has demonstrated femoral geometry changes with age that may explain our perception that the elderly are at increased risk for anterior mal-positioning of intramedullary implants. PMID:26686594

  4. Tctex-1, a Novel Interaction Partner of Rab3D, Is Required for Osteoclastic Bone Resorption ▿

    PubMed Central

    Pavlos, Nathan J.; Cheng, Tak Sum; Qin, An; Ng, Pei Ying; Feng, Hao-Tian; Ang, Estabelle S. M.; Carrello, Amerigo; Sung, Ching-Hwa; Jahn, Reinhard; Zheng, Ming-Hao; Xu, Jiake

    2011-01-01

    Vesicular transport along microtubules must be strictly regulated to sustain the unique structural and functional polarization of bone-resorbing osteoclasts. However, the molecular mechanisms bridging these vesicle-microtubule interactions remain largely obscure. Rab3D, a member of the Rab3 subfamily (Rab3A/B/C/D) of small exocytotic GTPases, represents a core component of the osteoclastic vesicle transport machinery. Here, we identify a new Rab3D-interacting partner, Tctex-1, a light chain of the cytoplasmic dynein microtubule motor complex, by a yeast two-hybrid screen. We demonstrate that Tctex-1 binds specifically to Rab3D in a GTP-dependent manner and co-occupies Rab3D-bearing vesicles in bone-resorbing osteoclasts. Furthermore, we provide evidence that Tctex-1 and Rab3D intimately associate with the dynein motor complex and microtubules in osteoclasts. Finally, targeted disruption of Tctex-1 by RNA interference significantly impairs bone resorption capacity and mislocalizes Rab3D vesicles in osteoclasts, attesting to the notion that components of the Rab3D-trafficking pathway contribute to the maintenance of osteoclastic resorptive function. PMID:21262767

  5. Prediction of 3D internal organ position from skin surface motion: results from electromagnetic tracking studies

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Tang, Jonathan; Zhang, Hui J.; Varghese, Emmanuel; Cleary, Kevin R.

    2005-04-01

    An effective treatment method for organs that move with respiration (such as the lungs, pancreas, and liver) is a major goal of radiation medicine. In order to treat such tumors, we need (1) real-time knowledge of the current location of the tumor, and (2) the ability to adapt the radiation delivery system to follow this constantly changing location. In this study, we used electromagnetic tracking in a swine model to address the first challenge, and to determine if movement of a marker attached to the skin could accurately predict movement of an internal marker embedded in an organ. Under approved animal research protocols, an electromagnetically tracked needle was inserted into a swine liver and an electromagnetically tracked guidewire was taped to the abdominal skin of the animal. The Aurora (Northern Digital Inc., Waterloo, Canada) electromagnetic tracking system was then used to monitor the position of both of these sensors every 40 msec. Position readouts from the sensors were then tested to see if any of the movements showed correlation. The strongest correlations were observed between external anterior-posterior motion and internal inferior-superior motion, with many other axes exhibiting only weak correlation. We also used these data to build a predictive model of internal motion by taking segments from the data and using them to derive a general functional relationship between the internal needle and the external guidewire. For the axis with the strongest correlation, this model enabled us to predict internal organ motion to within 1 mm.

  6. Saturn's magnetosphere interaction with Titan for T5 encounter: 3D hybrid modeling. First results

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.

    2011-12-01

    Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of low-frequency waves and formation of the particle velocity distribution function (e.g. ring/shell-like distributions, etc.) The kinetic approach is important for estimating collision processes; e.g., charge exchange. In this report we discuss results of 3D hybrid modeling of the interaction between Saturn's magnetosphere and Titan's atmosphere/ionosphere. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) and the Cassini Ion, and Neutral Mass Spectrometer (INMS) measurements during the T5 flyby through Titan's ram-side and polar ionosphere [1,2]. Magnetic field data was used from the MAG instrument [3]. In our model the background ions (O+, H+), all pickup ions, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization (in the dayside ionosphere), electron-impact ionization, and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also incorporated into the generalized Ohm's law. We also take into account collisions between ions and neutrals. In our hybrid simulations we use Chamberlain profiles for the exosphere's components. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the modeling results with a single-fluid multi-species 3D MHD model [4], which included complex chemistry but does not produce finite gyroradius and kinetic effects. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton, J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York), pp. 393-455. [2] Agren, K., et al., On magnetosphere electron impact ionization and dynamics in Titan's ram-side and polar ionosphere -- a Cassini case study, Ann

  7. Stoichiometry of lipid interactions with transmembrane proteins--Deduced from the 3D structures.

    PubMed

    Páli, Tibor; Bashtovyy, Denys; Marsh, Derek

    2006-05-01

    The stoichiometry of the first shell of lipids interacting with a transmembrane protein is defined operationally by the population of spin-labeled lipid chains whose motion is restricted directly by the protein. Interaction stoichiometries have been determined experimentally for a wide range of alpha-helical integral membrane proteins by using spin-label ESR spectroscopy. Here, we determine the spatially defined number of first-shell lipids at the hydrophobic perimeter of integral membrane proteins whose 3D structure has been determined by X-ray crystallography and lipid-protein interactions characterized by spin-labeling. Molecular modeling is used to build a single shell of lipids surrounding transmembrane structures derived from the PDB. Constrained energy optimization of the protein-lipid assemblies is performed by molecular mechanics. For relatively small proteins (up to 7-12 transmembrane helices), the geometrical first shell corresponds to that defined experimentally by perturbation of the lipid-chain dynamics. For larger, multi-subunit alpha-helical proteins, the lipids perturbed directly by the protein may either exceed or be less in number than those that can be accommodated at the intramembranous perimeter. In these latter cases, the motionally restricted spin-labeled lipids can be augmented by intercalation, or can correspond to a specific subpopulation at the protein interface, respectively. For monomeric beta-barrel proteins, the geometrical lipid stoichiometry corresponds to that determined from lipid mobility for a 22-stranded barrel, but fewer lipids are motionally restricted than can be accommodated around an eight-stranded barrel. Deviations from the geometrical first shell, in the beta-barrel case, are for the smaller protein with a highly curved barrel. PMID:16641489

  8. A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie

    2016-07-01

    We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu)

  9. A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie

    2016-07-01

    We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu).

  10. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways.

    PubMed

    Zhang, Yachao; Yang, Yang; Jiang, Hong

    2013-12-12

    The 3d-4f exchange interaction plays an important role in many lanthanide based molecular magnetic materials such as single-molecule magnets and magnetic refrigerants. In this work, we study the 3d-4f magnetic exchange interactions in a series of Cu(II)-Gd(III) (3d(9)-4f(7)) dinuclear complexes based on the numerical atomic basis-norm-conserving pseudopotential method and density functional theory plus the Hubbard U correction approach (DFT+U). We obtain improved description of the 4f electrons by including the semicore 5s5p states in the valence part of the Gd-pseudopotential. The Hubbard U correction is employed to treat the strongly correlated Cu-3d and Gd-4f electrons, which significantly improve the agreement of the predicted exchange constants, J, with experiment, indicating the importance of accurate description of the local Coulomb correlation. The high efficiency of the DFT+U approach enables us to perform calculations with molecular crystals, which in general improve the agreement between theory and experiment, achieving a mean absolute error smaller than 2 cm(-1). In addition, through analyzing the physical effects of U, we identify two magnetic exchange pathways. One is ferromagnetic and involves an interaction between the Cu-3d, O-2p (bridge ligand), and the majority-spin Gd-5d orbitals. The other one is antiferromagnetic and involves Cu-3d, O-2p, and the empty minority-spin Gd-4f orbitals, which is suppressed by the planar Cu-O-O-Gd structure. This study demonstrates the accuracy of the DFT+U method for evaluating the 3d-4f exchange interactions, provides a better understanding of the exchange mechanism in the Cu(II)-Gd(III) complexes, and paves the way for exploiting the magnetic properties of the 3d-4f compounds containing lanthanides other than Gd. PMID:24274078

  11. Ferromagnetic interactions between transition-metal impurities in topological and 3D Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    The magnitude of ferromagnetic coupling driven by inter-band (Bloembergen-Rowland - BR) and intra-band (Ruderman-Kittel-Kasuya-Yoshida - RKKY) spin polarization is evaluated within kp theory for topological semimetals Hg1-xMnxTe and Hg1-xMnxSe as well as for 3D Dirac semimetal (Cd1-xMnx)3As2. In these systems Mn2+ ions do not introduce any carriers. Since, however, both conduction and valence bands are built from anion p-type wave functions, hybridization of Mn d levels with neighboring anion p states leads to spin-dependent p - d coupling of both electrons and holes to localized Mn spins, resulting in sizable inter-band spin polarization and, thus in large BR interactions. We demonstrate that this ferromagnetic coupling, together with antiferromagnetic superexchange, elucidate a specific dependence of spin-glass freezing temperature on x, determined experimentally for these systems. Furthermore, by employing a multi-orbital tight-binding method, we find that superexchange becomes ferromagnetic when Mn is replaced by Cr or V. Since Cr should act as an isoelectronic impurity in HgTe, this opens a road for realization of ferromagnetic topological insulators based on (Hg,Cr)Te.

  12. Using a Quest in a 3D Virtual Environment for Student Interaction and Vocabulary Acquisition in Foreign Language Learning

    ERIC Educational Resources Information Center

    Kastoudi, Denise

    2011-01-01

    The gaming and interactional nature of the virtual environment of Second Life offers opportunities for language learning beyond the traditional pedagogy. This study case examined the potential of 3D virtual quest games to enhance vocabulary acquisition through interaction, negotiation of meaning and noticing. Four adult students of English at…

  13. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds.

    PubMed

    Kador, Karl E; Grogan, Shawn P; Dorthé, Erik W; Venugopalan, Praseeda; Malek, Monisha F; Goldberg, Jeffrey L; D'lima, Darryl D

    2016-02-01

    Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies. PMID:26729061

  14. MGLab3D: An interactive environment for iterative solvers for elliptic PDEs in two and three dimensions

    SciTech Connect

    Bordner, J.; Saied, F.

    1996-12-31

    GLab3D is an enhancement of an interactive environment (MGLab) for experimenting with iterative solvers and multigrid algorithms. It is implemented in MATLAB. The new version has built-in 3D elliptic pde`s and several iterative methods and preconditioners that were not available in the original version. A sparse direct solver option has also been included. The multigrid solvers have also been extended to 3D. The discretization and pde domains are restricted to standard finite differences on the unit square/cube. The power of this software studies in the fact that no programming is needed to solve, for example, the convection-diffusion equation in 3D with TFQMR and a customized V-cycle preconditioner, for a variety of problem sizes and mesh Reynolds, numbers. In addition to the graphical user interface, some sample drivers are included to show how experiments can be composed using the underlying suite of problems and solvers.

  15. Writing Position Vectors in 3-d Space: A Student Difficulty With Spherical Unit Vectors in Intermediate E&M

    NASA Astrophysics Data System (ADS)

    Hinrichs, Brant E.

    2010-10-01

    An intermediate E&M course (i.e. based on Griffiths [1]) involves the extensive integration of vector calculus concepts and notation with abstract physics concepts like field and potential. We hope that students take what they have learned in their math courses and apply it to help represent and make sense of the physics. To assess how well students are able to do this integration and application I have developed several simple concept tests on position and unit vectors in non-Cartesian coordinate systems as they are used in intermediate E&M. In this paper I describe one of these concept tests and present results that show both undergraduate physics majors and physics graduate students have difficulty using spherical unit vectors to write position vectors in 3-d space.

  16. A Software System for Filling Complex Holes in 3D Meshes by Flexible Interacting Particles

    NASA Astrophysics Data System (ADS)

    Yamazaki, Daisuke; Savchenko, Vladimir

    3D meshes generated by acquisition devices such as laser range scanners often contain holes due to occlusion, etc. In practice, these holes are extremely geometrically and topologically complex. We propose a heuristic hole filling technique using particle systems to fill complex holes with arbitrary topology in 3D meshes. Our approach includes the following steps: hole identification, base surface creation, particle distribution, triangulation, and mesh refinement. We demonstrate the functionality of the proposed surface retouching system on synthetic and real data.

  17. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  18. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  19. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  20. Electrostatic Contributions Drive the Interaction Between Staphylococcus aureus Protein Efb-C and its Complement Target C3d

    SciTech Connect

    Haspel, N.; Ricklin, D.; Geisbrecht, B.V.; Kavraki, L.E.; Lambris, J.D.

    2008-11-13

    The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.

  1. Electrostatic contributions drive the interaction between Staphylococcus aureus protein Efb-C and its complement target C3d

    PubMed Central

    Haspel, Nurit; Ricklin, Daniel; Geisbrecht, Brian V.; Kavraki, Lydia E.; Lambris, John D.

    2008-01-01

    The C3–inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties. PMID:18687868

  2. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications

    NASA Astrophysics Data System (ADS)

    Lallemand, Serge; Font, Yvonne; Bijwaard, Harmen; Kao, Honn

    2001-07-01

    Recent tomographic results are used to trace the South China Sea and Philippine Sea subducting slabs, south and northeast of Taiwan along the Manila and Ryukyu trenches, respectively. In particular, the 3-D plates interaction beneath Taiwan is discussed based on a close-up view of the tomographic sections together with earthquake hypocenters distribution. Our study indicates that: (1) the east-dipping South China Sea slab can be followed to the north, up to the latitude of Hualien, (2) the Eurasian plate subducts beneath most part of the Taiwan island down to the 670 km-depth discontinuity, (3) the north-dipping Philippine Sea slab can be followed slightly west of the longitude of Hualien. Both plates thus interact beneath northern Taiwan where the arc-continent collision is paroxysmal. (4) Slab detachment is envisaged at the northern edge of the subducted Eurasian plate beneath the Coastal Range of Taiwan, which may facilitate the northwestward motion of the Philippine Sea plate with respect to Eurasia. Slabs geometries obtained from tomographic sections allow us to reconstruct the Late Neogene plate kinematics and dynamics in this region. Our main conclusions are: (1) The size of the original South China Sea was about twice its present size. (2) The subducted part of the West Philippine Basin i.e. the largest oceanic basin of the Philippine Sea Plate, extends only 400 km north of the Ryukyu Trench. (3) Slab detachment might have occurred 3-5 my ago beneath the central and northern Ryukyu Arc along a weak zone that is aligned with the Gagua Ridge: an ancient plate boundary. (4) The Ryukyu Trench has propagated westward from 126°E of longitude (southeast of Miyako Island) to the locus of the present arc-continent collision, along a major lithospheric tear that cut through the continent-ocean boundary first, and then through the continental lithosphere. As a consequence, the southern Ryukyu margin developed progressively from east to west as a subduction zone

  3. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data.

    PubMed

    Besseling, T H; Hermes, M; Kuijk, A; de Nijs, B; Deng, T-S; Dijkstra, M; Imhof, A; van Blaaderen, A

    2015-05-20

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level. PMID:25922931

  4. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data

    NASA Astrophysics Data System (ADS)

    Besseling, T. H.; Hermes, M.; Kuijk, A.; de Nijs, B.; Deng, T.-S.; Dijkstra, M.; Imhof, A.; van Blaaderen, A.

    2015-05-01

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.

  5. Exploring single-molecule interactions through 3D optical trapping and tracking: From thermal noise to protein refolding

    NASA Astrophysics Data System (ADS)

    Wong, Wesley Philip

    The focus of this thesis is the development and application of a novel technique for investigating the structure and dynamics of weak interactions between and within single-molecules. This approach is designed to explore unusual features in bi-directional transitions near equilibrium. The basic idea is to infer molecular events by observing changes in the three-dimensional Brownian fluctuations of a functionalized microsphere held weakly near a reactive substrate. Experimentally, I have developed a unique optical tweezers system that combines an interference technique for accurate 3D tracking (˜1 nm vertically, and ˜2-3 nm laterally) with a continuous autofocus system which stabilizes the trap height to within 1-2 mn over hours. A number of different physical and biological systems were investigated with this instrument. Data interpretation was assisted by a multi-scale Brownian Dynamics simulation that I have developed. I have explored the 3D signatures of different molecular tethers, distinguishing between single and multiple attachments, as well as between stiff and soft linkages. As well, I have developed a technique for measuring the force-dependent compliance of molecular tethers from thermal noise fluctuations and demonstrated this with a short ssDNA oligomer. Another practical approach that I have developed for extracting information from fluctuation measurements is Inverse Brownian Dynamics, which yields the underlying potential of mean force and position dependent diffusion coefficient from the Brownian motion of a particle. I have also developed a new force calibration method that takes into account video motion blur, and that uses this information to measure bead dynamics. Perhaps most significantly, I have trade the first direct observations of the refolding of spectrin repeats under mechanical force, and investigated the force-dependent kinetics of this transition.

  6. Moment coupling in the interaction of atoms and their ions with a 3d-electron shell

    SciTech Connect

    Kosarim, A. V.; Smirnov, B. M.; Capitelli, M.; Laricchiuta, A.

    2011-09-15

    The moment coupling of an interacting ion and an atom with a 3d-electron shell is analyzed for the ground state of identical atoms and ions where resonant charge exchange proceeds with transition of a 4s-electron. The interaction of the ion charge with the atom quadrupole moment is important for this system along with the exchange interactions and spin-orbit interactions inside an isolated atom and an ion. The quadrupole moment for 3d-atoms in the ground states is evaluated. The hierarchy of interactions in a molecular ion is analyzed depending on ion-atom distances and is compared with the standard Hund scheme. The resonant charge exchange proceeds effectively at separations corresponding to an intermediate case between cases 'a' and 'c' of the Hund coupling scheme.

  7. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  8. A PC-based high-quality and interactive virtual endoscopy navigating system using 3D texture based volume rendering.

    PubMed

    Hwang, Jin-Woo; Lee, Jong-Min; Kim, In-Young; Song, In-Ho; Lee, Yong-Hee; Kim, SunI

    2003-05-01

    As an alternative method to optical endoscopy, visual quality and interactivity are crucial for virtual endoscopy. One solution is to use the 3D texture map based volume rendering method that offers high rendering speed without reducing visual quality. However, it is difficult to apply the method to virtual endoscopy. First, 3D texture mapping requires a high-end graphic workstation. Second, texture memory limits reduce the frame-rate. Third, lack of shading reduces visual quality significantly. As 3D texture mapping has become available on personal computers recently, we developed an interactive navigation system using 3D texture mapping on a personal computer. We divided the volume data into small cubes and tested whether the cubes had meaningful data. Only the cubes that passed the test were loaded into the texture memory and rendered. With the amount of data to be rendered minimized, rendering speed increased remarkably. We also improved visual quality by implementing full Phong shading based on the iso-surface shading method without sacrificing interactivity. With the developed navigation system, 256 x 256 x 256 sized brain MRA data was interactively explored with good image quality. PMID:12725966

  9. Jovian's plasma torus interaction with Europa: 3D hybrid kinetic simulation

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.

    2009-12-01

    surface of the moon. References [1] Cassidy, T.A., R.E. Johnson, M.A. McGrath, M.C. Wong, J.F. Cooper, The spatial morphology of Europa's near-surface O2 atmosphere, Icarus, 191, 755-764, 2007. [2] Shematovich, V.I., R.E. Johnson, J.F. Cooper, M.C. Wong, Surface-bounded atmosphere of Europa, Icarus, 173, 480-498, 2005. [3] Lipatov, A.S. and M.R. Combi, Effects of kinetic processes in shaping Io's global plasma environment: A 3D hybrid model, Icarus, 180, 412-427, 2006. [4] Kabin, K., et al., On Europa's magnetospheric interaction: A MHD simulation of the E4 Flyby, JGR, 104, 19983-19992, 1999. [5] Paterson, W.R. et al., Galileo plasma observations at Europa: Ion energy spectra and moments, JGR, 104, 22779-22791, 1999.

  10. Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.

    2015-12-01

    The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming