NASA Astrophysics Data System (ADS)
Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers
2013-06-01
Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses
Evaluation of 3D Inverse Code Using Rotor 67 as Test Case
NASA Technical Reports Server (NTRS)
Dang, T.
1998-01-01
A design modification of Rotor 67 is carried out with a full 3D inverse method. The blade camber surface is modified to produce a prescribed pressure loading distribution, with the blade tangential thickness distribution and the blade stacking line at midchord kept the same as the original Rotor 67 design. Because of the inviscid-flow assumption used in the current version of the method, Rotor 67 geometry is modified for use at a design point different from the original design value. A parametric study with the prescribed pressure loading distribution yields the following results. In the subsonic section, smooth pressure loading shapes generally produce blades with well-behaved blade surface pressure distributions. In the supersonic section, the study shows that the strength and position of the passage shock correlate with the characteristics of the blade pressure loading shape. In general, "smooth" prescribed blade pressure loading distributions generate blade designs with reverse cambers which have the effect of weakening the passage shock.
3-D inversion of magnetotelluric Phase Tensor
NASA Astrophysics Data System (ADS)
Patro, Prasanta; Uyeshima, Makoto
2010-05-01
Three-dimensional (3-D) inversion of the magnetotelluric (MT) has become a routine practice among the MT community due to progress of algorithms for 3-D inverse problems (e.g. Mackie and Madden, 1993; Siripunvaraporn et al., 2005). While availability of such 3-D inversion codes have increased the resolving power of the MT data and improved the interpretation, on the other hand, still the galvanic effects poses difficulties in interpretation of resistivity structure obtained from the MT data. In order to tackle the galvanic distortion of MT data, Caldwell et al., (2004) introduced the concept of phase tensor. They demonstrated how the regional phase information can be retrieved from the observed impedance tensor without any assumptions for structural dimension, where both the near surface inhomogeneity and the regional conductivity structures can be 3-D. We made an attempt to modify a 3-D inversion code (Siripunvaraporn et al., 2005) to directly invert the phase tensor elements. We present here the main modification done in the sensitivity calculation and then show a few synthetic studies and its application to the real data. The synthetic model study suggests that the prior model (m_0) setting is important in retrieving the true model. This is because estimation of correct induction scale length lacks in the phase tensor inversion process. Comparison between results from conventional impedance inversion and new phase tensor inversion suggests that, in spite of presence of the galvanic distortion (due to near surface checkerboard anomalies in our case), the new inverion algorithm retrieves the regional conductivitity structure reliably. We applied the new inversion to the real data from the Indian sub continent and compared with the results from conventional impedance inversion.
Anisotropy effects on 3D waveform inversion
NASA Astrophysics Data System (ADS)
Stekl, I.; Warner, M.; Umpleby, A.
2010-12-01
In the recent years 3D waveform inversion has become achievable procedure for seismic data processing. A number of datasets has been inverted and presented (Warner el al 2008, Ben Hadj at all, Sirgue et all 2010) using isotropic 3D waveform inversion. However the question arises will the results be affected by isotropic assumption. Full-wavefield inversion techniques seek to match field data, wiggle-for-wiggle, to synthetic data generated by a high-resolution model of the sub-surface. In this endeavour, correctly matching the travel times of the principal arrivals is a necessary minimal requirement. In many, perhaps most, long-offset and wide-azimuth datasets, it is necessary to introduce some form of p-wave velocity anisotropy to match the travel times successfully. If this anisotropy is not also incorporated into the wavefield inversion, then results from the inversion will necessarily be compromised. We have incorporated anisotropy into our 3D wavefield tomography codes, characterised as spatially varying transverse isotropy with a tilted axis of symmetry - TTI anisotropy. This enhancement approximately doubles both the run time and the memory requirements of the code. We show that neglect of anisotropy can lead to significant artefacts in the recovered velocity models. We will present inversion results of inverting anisotropic 3D dataset by assuming isotropic earth and compare them with anisotropic inversion result. As a test case Marmousi model extended to 3D with no velocity variation in third direction and with added spatially varying anisotropy is used. Acquisition geometry is assumed as OBC with sources and receivers everywhere at the surface. We attempted inversion using both 2D and full 3D acquisition for this dataset. Results show that if no anisotropy is taken into account although image looks plausible most features are miss positioned in depth and space, even for relatively low anisotropy, which leads to incorrect result. This may lead to
High resolution 3D nonlinear integrated inversion
NASA Astrophysics Data System (ADS)
Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen
2009-06-01
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
3D Electromagnetic inversion using conjugate gradients
Newman, G.A.; Alumbaugh, D.L.
1997-06-01
In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.
3D Inverse problem: Seawater intrusions
NASA Astrophysics Data System (ADS)
Steklova, K.; Haber, E.
2013-12-01
Modeling of seawater intrusions (SWI) is challenging as it involves solving the governing equations for variable density flow, multiple time scales and varying boundary conditions. Due to the nonlinearity of the equations and the large aquifer domains, 3D computations are a costly process, particularly when solving the inverse SWI problem. In addition the heads and concentration measurements are difficult to obtain due to mixing, saline wedge location is sensitive to aquifer topography, and there is general uncertainty in initial and boundary conditions and parameters. Some of these complications can be overcome by using indirect geophysical data next to standard groundwater measurements, however, the inverse problem is usually simplified, e.g. by zonation for the parameters based on geological information, steady state substitution of the unknown initial conditions, decoupling the equations or reducing the amount of unknown parameters by covariance analysis. In our work we present a discretization of the flow and solute mass balance equations for variable groundwater (GW) flow. A finite difference scheme is to solve pressure equation and a Semi - Lagrangian method for solute transport equation. In this way we are able to choose an arbitrarily large time step without losing stability up to an accuracy requirement coming from the coupled character of the variable density flow equations. We derive analytical sensitivities of the GW model for parameters related to the porous media properties and also the initial solute distribution. Analytically derived sensitivities reduce the computational cost of inverse problem, but also give insight for maximizing information in collected data. If the geophysical data are available it also enables simultaneous calibration in a coupled hydrogeophysical framework. The 3D inverse problem was tested on artificial time dependent data for pressure and solute content coming from a GW forward model and/or geophysical forward model. Two
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
NASA Astrophysics Data System (ADS)
Hsu, Kung-Chuan; Brun, Todd
Transversal circuits are important components of fault-tolerant quantum computation. Several classes of quantum error-correcting codes are known to have transversal implementations of any logical Clifford operation. However, to achieve universal quantum computation, it would be helpful to have high-performance error-correcting codes that have a transversal implementation of some logical non-Clifford operation. The 3-D color codes are a class of topological codes that permit transversal implementation of the logical π / 8 -gate. The decoding problem of a 3-D color code can be understood as a graph-matching problem on a three-dimensional lattice. Whether this class of codes will be useful in terms of performance is still an open question. We investigate the decoding problem of 3-D color codes and analyze the performance of some possible decoders.
The novel high-performance 3-D MT inverse solver
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey
2016-04-01
We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.
NASA Astrophysics Data System (ADS)
Nielsen, O. F.; Ploug, C.; Mendoza, J. A.; Martínez, K.
2009-05-01
The need for increaseding accuracy and reduced ambiguities in the inversion results has resulted in focus on the development of more advanced inversion methods of geophysical data. Over the past few years more advanced inversion techniques have been developed to improve the results. Real 3D-inversion is time consuming and therefore often not the best solution in a cost-efficient perspective. This has motivated the development of 3D constrained inversions, where 1D-models are constrained in 3D, also known as a Spatial Constrained Inversion (SCI). Moreover, inversion of several different data types in one inversion has been developed, known as Mutually Constrained Inversion (MCI). In this paper a presentation of a Spatial Mutually Constrained Inversion method (SMCI) is given. This method allows 1D-inversion applied to different geophysical datasets and geological information constrained in 3D. Application of two or more types of geophysical methods in the inversion has proved to reduce the equivalence problem and to increase the resolution in the inversion results. The use of geological information from borehole data or digital geological models can be integrated in the inversion. In the SMCI, a 1D inversion code is used to model soundings that are constrained in three dimensions according to their relative position in space. This solution enhances the accuracy of the inversion and produces distinct layers thicknesses and resistivities. It is very efficient in the mapping of a layered geology but still also capable of mapping layer discontinuities that are, in many cases, related to fracturing and faulting or due to valley fills. Geological information may be included in the inversion directly or used only to form a starting model for the individual soundings in the inversion. In order to show the effectiveness of the method, examples are presented from both synthetic data and real data. The examples include DC-soundings as well as land-based and airborne TEM
FARGO3D: Hydrodynamics/magnetohydrodynamics code
NASA Astrophysics Data System (ADS)
Benítez Llambay, Pablo; Masset, Frédéric
2015-09-01
A successor of FARGO (ascl:1102.017), FARGO3D is a versatile HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks. FARGO3D offers Cartesian, cylindrical or spherical geometry; 1-, 2- or 3-dimensional calculations; and orbital advection (aka FARGO) for HD and MHD calculations. As in FARGO, a simple Runge-Kutta N-body solver may be used to describe the orbital evolution of embedded point-like objects. There is no need to know CUDA; users can develop new functions in C and have them translated to CUDA automatically to run on GPUs.
Computational 3-D inversion for seismic exploration
Gavrilov, E.M.; Forslund, D.W.; Fehler, M.C.
1997-10-01
This is the final report of a four-month, Laboratory Directed Research and Development (LDRD) project carried out at the Los Alamos National Laboratory (LANL). There is a great need for a new and effective technology with a wide scope of industrial applications to investigate media internal properties of which can be explored only from the backscattered data. The project was dedicated to the development of a three-dimensional computational inversion tool for seismic exploration. The new computational concept of the inversion algorithm was suggested. The goal of the project was to prove the concept and the practical validity of the algorithm for petroleum exploration.
Multirate 3-D subband coding of video.
Taubman, D; Zakhor, A
1994-01-01
We propose a full color video compression strategy, based on 3-D subband coding with camera pan compensation, to generate a single embedded bit stream supporting multiple decoder display formats and a wide, finely gradated range of bit rates. An experimental implementation of our algorithm produces a single bit stream, from which suitable subsets are extracted to be compatible with many decoder frame sizes and frame rates and to satisfy transmission bandwidth constraints ranging from several tens of kilobits per second to several megabits per second. Reconstructed video quality from any of these bit stream subsets is often found to exceed that obtained from an MPEG-1 implementation, operated with equivalent bit rate constraints, in both perceptual quality and mean squared error. In addition, when restricted to 2-D, the algorithm produces some of the best results available in still image compression. PMID:18291953
3D Multigroup Sn Neutron Transport Code
Energy Science and Technology Software Center (ESTSC)
2001-02-14
ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less
3D Multigroup Sn Neutron Transport Code
McGee, John; Wareing, Todd; Pautz, Shawn
2001-02-14
ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forward and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.
3D Elastic Seismic Wave Propagation Code
Energy Science and Technology Software Center (ESTSC)
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
3D stochastic geophysical inversion for contact surface geometry
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo
2015-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple
Comparing multiple 3D magnetotelluric inversions of the same dataset
NASA Astrophysics Data System (ADS)
Walter, C.; Jones, A. G.
2013-12-01
The Taupo Volcanic Zone (TVZ) hosts the majority of the geothermal systems in New Zealand and is a valuable source for power generation and tourism. It is important for the sustainable exploitation of this area to fully understand the processes and structures in the TVZ. As part of the 'Hotter and Deeper' project of the Foundation for Research, Science and Technology (FRST), a dataset of 200 broadband magnetotelluric (MT) stations has been collected in the TVZ of New Zealand in 2009 and 2010. Combined with a smaller dataset from Reporoa, a total of 230 stations are available for 3D inversion to image the deeper structures of the TVZ. For the study presented in this paper, multiple 3D inversions of this dataset using different control parameters have been undertaken to study the influence of the choice of parameters on the inversion result. The parameters that have been varied include; the type of responses used in the inversion, the use of topography and bathymetry, and varying vertical grid spacings. All inversions commenced with a uniform half-space so that there was no preconceived structures to begin with. The results show that the main structures in the model are robust in that they are independent of the choice of parameters and become introduced in every inversion. The only differences are in the shape and exact location of the structures, which vary between the models. Furthermore, different ways to get a measure for the differences between models have been explored.
3D magnetotelluric inversion with full distortion matrix
NASA Astrophysics Data System (ADS)
Gribenko, A. V.; Zhdanov, M. S.
2014-12-01
Distortion of regional electric fields by local structures represent one of the major problems facing three-dimensional magnetotelluric (MT) interpretation. Effect of 3D local inhomogenities on MT data can be described by a real 2x2 distortion matrix. In this project we develop a method of simultaneous inversion of the full MT impedance data for 3D conductivity distribution and for the distortion matrix. Tikhonov regularization is employed to solve the resulting inverse problem. Integral equations method is used to compute MT responses. Minimization of the cost functional is achieved via conjugate gradient method. The inversion algorithm is tested on the synthetic data from Dublin Secret Model II (DSM 2) for which multiple inversion solutions are available for comparison. Inclusion of the distortion matrix provides faster convergence and allows coarser discretization of the near-surface while achievingsimilar or better data fits as inversion for the conductivity only with finely discretized shallow regions. As a field data example we chose a subset of the EarthScope MT dataset covering Great Basin and adjacent areas of the Western United States. Great Basin data inversion identified several prominent conductive zones which correlate well with areas of tectonic and geothermal activity.
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
Image appraisal for 2D and 3D electromagnetic inversion
Alumbaugh, D.L.; Newman, G.A.
1998-04-01
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and model covariance matrices can be directly calculated. The columns of the model resolution matrix are shown to yield empirical estimates of the horizontal and vertical resolution throughout the imaging region. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how the estimated data noise maps into parameter error. When the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion), an iterative method can be applied to statistically estimate the model covariance matrix, as well as a regularization covariance matrix. The latter estimates the error in the inverted results caused by small variations in the regularization parameter. A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on a synthetic cross well EM data set.
Computational and methodological developments towards 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.
2010-12-01
Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion
Inverse Tomo-Lithography for Making Microscopic 3D Parts
NASA Technical Reports Server (NTRS)
White, Victor; Wiberg, Dean
2003-01-01
According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.
3D inversion of lunar gravity data and preliminary results
NASA Astrophysics Data System (ADS)
Liang, Q.; Chen, C.; Li, Y.
2010-12-01
Gravity anomaly tells how the subsurface density varies or where the mass concentrations are located at. Inversion of gravity data gives a way to directly recover the density distributions. It has been demonstrated that the inversion is capable of retrieving density structures in resources exploration on the Earth. With increasing interests in interior structures of the Moon, scientists have obtained its gravity field with improved resolution on the lunar far side. We may thus utilize the inverse method to recover the lunar density structures beneath mascon basins or the density inhomogeneities in the crust and mantle. However, if considering the spherical gravity data in global scale, there are limitations in the previous inversion because the methods were based on the Cartesian coordinates system. In order to solve the problems, we developed a new 3D inverse method with three aspects involved: 1) A new model objective function adaptive to spherical coordinate system was established in the light of the Backus-Gilbert model appraisal theory. 2) A depth weighting function in inversion was also developed to approximately compensate for the kernel’s natural decay in potential field. And, 3) Non-uniqueness was suppressed by using model constraints and Tikhonov regularization tool. With the above developments and techniques, our method can quantitatively interpret the spherical gravity data. We firstly performed the inversion of synthetic data and confirmed that the locations of anomaly bodies were well defined, and then applied this method to the Bouguer gravity anomaly of the Moon which has been previously calculated based on the Chang'E-1 topography data and the SELENE gravity field model. Results showed that, on the one hand, the positive density anomalies beneath the mascon basins concentrated at the depth of 20-50km. Their residual densities are larger than 0.3g/cm^3 close to the density difference between lunar mantle and crust. Density structures along radial
Solution accelerators for large scale 3D electromagnetic inverse problems
Newman, Gregory A.; Boggs, Paul T.
2004-04-05
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.
MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE
NASA Technical Reports Server (NTRS)
Shaeffer, J. F.
1994-01-01
MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and
Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes
Langenbuch, S.; Austregesilo, H.; Velkov, K.
1997-07-01
The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.
NASA Astrophysics Data System (ADS)
Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-07-01
As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.
NASA Astrophysics Data System (ADS)
Usui, Yoshiya
2015-08-01
A 3-D magnetotelluric (MT) inversion code using unstructured tetrahedral elements has been developed in order to correct the topographic effect by directly incorporating it into computational grids. The electromagnetic field and response functions get distorted at the observation sites of MT surveys because of the undulating surface topography, and without correcting this distortion, the subsurface structure can be misinterpreted. Of the two methods proposed to correct the topographic effect, the method incorporating topography explicitly in the inversion is applicable to a wider range of surveys. For forward problems, it has been shown that the finite element method using unstructured tetrahedral elements is useful for the incorporation of topography. Therefore, this paper shows the applicability of unstructured tetrahedral elements in MT inversion using the newly developed code. The inversion code is capable of using the impedance tensor, the vertical magnetic transfer function (VMTF), and the phase tensor as observational data, and it estimates the subsurface resistivity values and the distortion tensor of each observation site. The forward part of the code was verified using two test models, one incorporating topographic effect and one without, and the verifications showed that the results were almost the same as those of previous works. The developed inversion code was then applied to synthetic data from a MT survey, and was verified as being able to recover the resistivity structure as well as other inversion codes. Finally, to confirm its applicability to the data affected by topography, inversion was performed using the synthetic data of the model that included two overlapping mountains. In each of the cases using the impedance tensor, the VMTF and the phase tensor, by including the topography in the mesh, the subsurface resistivity was determined more proficiently than in the case using the flat-surface mesh. Although the locations of the anomalies were
3D Laplace-domain full waveform inversion using a single GPU card
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Ha, Wansoo; Jun, Hyunggu; Min, Dong-Joo; Shin, Changsoo
2014-06-01
The Laplace-domain full waveform inversion is an efficient long-wavelength velocity estimation method for seismic datasets lacking low-frequency components. However, to invert a 3D velocity model, a large cluster of CPU cores have commonly been required to overcome the extremely long computing time caused by a large impedance matrix and a number of source positions. In this study, a workstation with a single GPU card (NVIDIA GTX 580) is successfully used for the 3D Laplace-domain full waveform inversion rather than a large cluster of CPU cores. To exploit a GPU for our inversion algorithm, the routine for the iterative matrix solver is ported to the CUDA programming language for forward and backward modeling parts with minimized modification of the remaining parts, which were originally written in Fortran 90. Using a uniformly structured grid set, nonzero values in the sparse impedance matrix can be arranged according to certain rules, which efficiently parallelize the preconditioned conjugate gradient method for a number of threads contained in the GPU card. We perform a numerical experiment to verify the accuracy of a floating point operation performed by a GPU to calculate the Laplace-domain wavefield. We also measure the efficiencies of the original CPU and modified GPU programs using a cluster of CPU cores and a workstation with a GPU card, respectively. Through the analysis, the parallelized inversion code for a GPU achieves the speedup of 14.7-24.6x compared to a CPU-based serial code depending on the degrees of freedom of the impedance matrix. Finally, the practicality of the proposed algorithm is examined by inverting a 3D long-wavelength velocity model using wide azimuth real datasets in 3.7 days.
Recent update of the RPLUS2D/3D codes
NASA Technical Reports Server (NTRS)
Tsai, Y.-L. Peter
1991-01-01
The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.
RELAP5-3D code validation for RBMK phenomena
Fisher, J.E.
1999-09-01
The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.
RELAP5-3D Code Validation for RBMK Phenomena
Fisher, James Ebberly
1999-09-01
The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.
3 D gravity inversion based on SL0 norm
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Xu, Xuechun; Zheng, Changqing
2015-04-01
The inversion of three-dimensional geophysical properties (density, magnetic susceptibility, electrical resistivity) has occupies very important position in geophysical interpretation for geophysical interpreters, combining with the corresponding geological data, it will produce a very good solution to solve the corresponding geological problems, especially, in the separate abnormal body of ore bodies .the method would have produce much more good results. There are mainly three kinds of mainstream geophysical inversion methods in the now geophysical inversion method : 1. The minimum model method, 2. the most gentle model method, 3. The smoothest model. The main solution is the optimal solution by solving mixed set equations to solve the corresponding inverse problem, the main difference of the three methods is the differences of the weighting function mode, and in essence, it is to find the best solution based on regularization principle, finally, the reaction of the convergence are obtained. The methods are based on the minimum volume, such as compression inversion and focusing inversion. The two methods also can get much more clearer and sharper boundaries. This abstract choose of the inversion method is based on the theory of minimum volume method. The selection of weighted function can effectively reduce the inversion of the number of iterations and accelerate the rate of inversion. it can conform to the requirements of the current large-scale airborne gravity. Without reducing the quality of the inversion, at the same time, it can accelerate the rate of inversion. The inversion can get the sharp boundary, spatial location, and density attributes of the abnormal body. it needs the quality of the computer performance and geophysical data. Therefore it requests to reduce the random and random noise as far as possible. According to a lot of model tests, It proves that the choice of the weighting function can get very good inversion result. In the inversion
VISRAD, 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor
2015-11-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
Beam Optics Analysis - An Advanced 3D Trajectory Code
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-03
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
Beam Optics Analysis — An Advanced 3D Trajectory Code
NASA Astrophysics Data System (ADS)
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-01
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
Streamlining of the RELAP5-3D Code
Mesina, George L; Hykes, Joshua; Guillen, Donna Post
2007-11-01
RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The
Towards a 3D Space Radiation Transport Code
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.
2002-01-01
High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.
2009-12-01
The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.
Axisymmetric Implementation for 3D-Based DSMC Codes
NASA Technical Reports Server (NTRS)
Stewart, Benedicte; Lumpkin, F. E.; LeBeau, G. J.
2011-01-01
The primary objective in developing NASA s DSMC Analysis Code (DAC) was to provide a high fidelity modeling tool for 3D rarefied flows such as vacuum plume impingement and hypersonic re-entry flows [1]. The initial implementation has been expanded over time to offer other capabilities including a novel axisymmetric implementation. Because of the inherently 3D nature of DAC, this axisymmetric implementation uses a 3D Cartesian domain and 3D surfaces. Molecules are moved in all three dimensions but their movements are limited by physical walls to a small wedge centered on the plane of symmetry (Figure 1). Unfortunately, far from the axis of symmetry, the cell size in the direction perpendicular to the plane of symmetry (the Z-direction) may become large compared to the flow mean free path. This frequently results in inaccuracies in these regions of the domain. A new axisymmetric implementation is presented which aims to solve this issue by using Bird s approach for the molecular movement while preserving the 3D nature of the DAC software [2]. First, the computational domain is similar to that previously used such that a wedge must still be used to define the inflow surface and solid walls within the domain. As before molecules are created inside the inflow wedge triangles but they are now rotated back to the symmetry plane. During the move step, molecules are moved in 3D but instead of interacting with the wedge walls, the molecules are rotated back to the plane of symmetry at the end of the move step. This new implementation was tested for multiple flows over axisymmetric shapes, including a sphere, a cone, a double cone and a hollow cylinder. Comparisons to previous DSMC solutions and experiments, when available, are made.
Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs
NASA Astrophysics Data System (ADS)
Čuma, Martin; Zhdanov, Michael S.
2014-01-01
We have recently introduced a massively parallel regularized 3D inversion of potential fields data. This program takes as an input gravity or magnetic vector, tensor and Total Magnetic Intensity (TMI) measurements and produces 3D volume of density, susceptibility, or three dimensional magnetization vector, the latest also including magnetic remanence information. The code uses combined MPI and OpenMP approach that maps well onto current multiprocessor multicore clusters and exhibits nearly linear strong and weak parallel scaling. It has been used to invert regional to continental size data sets with up to billion cells of the 3D Earth's volume on large clusters for interpretation of large airborne gravity and magnetics surveys. In this paper we explain the features that made this massive parallelization feasible and extend the code to add GPU support in the form of the OpenACC directives. This implementation resulted in up to a 22x speedup as compared to the scalar multithreaded implementation on a 12 core Intel CPU based computer node. Furthermore, we also introduce a mixed single-double precision approach, which allows us to perform most of the calculation at a single floating point number precision while keeping the result as precise as if the double precision had been used. This approach provides an additional 40% speedup on the GPUs, as compared to the pure double precision implementation. It also has about half of the memory footprint of the fully double precision version.
3D Finite Element Trajectory Code with Adaptive Meshing
NASA Astrophysics Data System (ADS)
Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien
2004-11-01
Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.
3D stochastic inversion and joint inversion of potential fields for multi scale parameters
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman
In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel
Depth-controlled 3D TV image coding
NASA Astrophysics Data System (ADS)
Chiari, Armando; Ciciani, Bruno; Romero, Milton; Rossi, Ricardo
1998-04-01
Conventional 3D-TV codecs processing one down-compatible (either left, or right) channel may optionally include the extraction of the disparity field associated with the stereo-pairs to support the coding of the complementary channel. A two-fold improvement over such approaches is proposed in this paper by exploiting 3D features retained in the stereo-pairs to reduce the redundancies in both channels, and according to their visual sensitiveness. Through an a-priori disparity field analysis, our coding scheme separates a region of interest from the foreground/background in the volume space reproduced in order to code them selectively based on their visual relevance. Such a region of interest is here identified as the one which is focused by the shooting device. By suitably scaling the DCT coefficient n such a way that precision is reduced for the image blocks lying on less relevant areas, our approach aims at reducing the signal energy in the background/foreground patterns, while retaining finer details on the more relevant image portions. From an implementation point of view, it is worth noticing that the system proposed keeps its surplus processing power on the encoder side only. Simulation results show such improvements as a better image quality for a given transmission bit rate, or a graceful quality degradation of the reconstructed images with decreasing data-rates.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1992-01-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Code portability and data management considerations in the SAS3D LMFBR accident-analysis code
Dunn, F.E.
1981-01-01
The SAS3D code was produced from a predecessor in order to reduce or eliminate interrelated problems in the areas of code portability, the large size of the code, inflexibility in the use of memory and the size of cases that can be run, code maintenance, and running speed. Many conventional solutions, such as variable dimensioning, disk storage, virtual memory, and existing code-maintenance utilities were not feasible or did not help in this case. A new data management scheme was developed, coding standards and procedures were adopted, special machine-dependent routines were written, and a portable source code processing code was written. The resulting code is quite portable, quite flexible in the use of memory and the size of cases that can be run, much easier to maintain, and faster running. SAS3D is still a large, long running code that only runs well if sufficient main memory is available.
3D inversion of airborne electromagnetic data using a moving footprint
NASA Astrophysics Data System (ADS)
Cox, Leif H.; Wilson, Glenn A.; Zhdanov, Michael S.
2010-12-01
It is often argued that 3D inversion of entire airborne electromagnetic (AEM) surveys is impractical, and that 1D methods provide the only viable option for quantitative interpretation. However, real geological formations are 3D by nature and 3D inversion is required to produce accurate images of the subsurface. To that end, we show that it is practical to invert entire AEM surveys to 3D conductivity models with hundreds of thousands if not millions of elements. The key to solving a 3D AEM inversion problem is the application of a moving footprint approach. We have exploited the fact that the area of the footprint of an AEM system is significantly smaller than the area of an AEM survey, and developed a robust 3D inversion method that uses a moving footprint. Our implementation is based on the 3D integral equation method for computing data and sensitivities, and uses the re-weighted regularised conjugate gradient method for minimising the objective functional. We demonstrate our methodology with the 3D inversion of AEM data acquired for salinity mapping over the Bookpurnong Irrigation District in South Australia. We have inverted 146 line km of RESOLVE data for a 3D conductivity model with ~310000 elements in 45min using just five processors of a multi-processor workstation.
New 3D parallel SGILD modeling and inversion
Xie, G.; Li, J.; Majer, E.
1998-09-01
In this paper, a new parallel modeling and inversion algorithm using a Stochastic Global Integral and Local Differential equation (SGILD) is presented. The authors derived new acoustic integral equations and differential equation for statistical moments of the parameters and field. The new statistical moments integral equation on the boundary and local differential equations in domain will be used together to obtain mean wave field and its moments in the modeling. The new moments global Jacobian volume integral equation and the local Jacobian differential equations in domain will be used together to update the mean parameters and their moments in the inversion. A new parallel multiple hierarchy substructure direct algorithm or direct-iteration hybrid algorithm will be used to solve the sparse matrices and one smaller full matrix from domain to the boundary, in parallel. The SGILD modeling and imaging algorithm has many advantages over the conventional imaging approaches. The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and flow modeling and inversion, and are important for the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysical exploration.
FARGO3D: A New GPU-oriented MHD Code
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Masset, Frédéric S.
2016-03-01
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.
FDFD: A 3D Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography
NASA Astrophysics Data System (ADS)
Champagne, Nathan J.; Berryman, James G.; Buettner, H. Michael
2001-07-01
A new 3D code for electromagnetic induction tomography with intended applications to environmental imaging problems has been developed. The approach consists of calculating the fields within a volume using an implicit finite-difference frequency-domain formulation. The volume is terminated by an anisotropic perfectly matched layer region that simulates an infinite domain by absorbing outgoing waves. Extensive validation of this code has been done using analytical and semianalytical results from other codes, and some of those results are presented in this paper. The new code is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint field method of data inversion, developed in parallel for solving the fully nonlinear inverse problem for electrical conductivity imaging (e.g., for mapping underground conducting plumes), uses this code to provide solvers for both forward and adjoint fields. Results obtained from this inversion method for high-contrast media are encouraging and provide a significant improvement over those obtained from linearized inversion methods.
Direct inversion of digital 3D Fraunhofer holography maps.
Podorov, Sergei G; Förster, Eckhart
2016-01-20
Differential Fourier holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [Opt. Express15, 9954 (2007)], DFH was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional images. In this paper, we demonstrate numerically the possibility to apply DFH also for investigation of unknown three-dimensional objects. The first simulation is made for a double-spiral structure plus a line as a reference object. PMID:26835947
The CONV-3D code for DNS CFD calculation
NASA Astrophysics Data System (ADS)
Chudanov, Vladimir; ALCF ThermHydraX Team
2014-03-01
The CONV-3D code for DNS CFD calculation of thermal and hydrodynamics on Fast Reactor with use of supercomputers is developed. This code is highly effective in a scalability at the high performance computers such as ``Chebyshev'', ``Lomonosov'' (Moscow State University, Russia), Blue Gene/Q(ALCF MIRA, ANL). The scalability is reached up to 106 processors. The code was validated on a series of the well known tests in a wide range of Rayleigh (106-1016) and Reynolds (103-105. Such code was validated on the blind tests OECD/NEA of the turbulent intermixing in horizontal subchannels of the fuel assembly at normal pressure and temperature (Matis-H), of the flows in T-junction and the report IBRAE/ANL was published. The good coincidence of numerical predictions with experimental data was reached, that specifies applicability of the developed approach for a prediction of thermal and hydrodynamics in a boundary layer at small Prandtl that is characteristic of the liquid metal reactors. Project Name: ThermHydraX. Project Title: U.S.-Russia Collaboration on Cross-Verification and Validation in Thermal Hydraulics.
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out
RHALE: A 3-D MMALE code for unstructured grids
Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.
1993-08-01
This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.
Code System to Simulate 3D Tracer Dispersion in Atmosphere.
Energy Science and Technology Software Center (ESTSC)
2002-01-25
Version 00 SHREDI is a shielding code system which executes removal-diffusion computations for bi-dimensional shields in r-z or x-y geometries. It may also deal with monodimensional problems (infinitely high cylinders or slabs). MESYST can simulate 3D tracer dispersion in the atmosphere. Three programs are part of this system: CRE_TOPO prepares the terrain data for MESYST. NOABL calculates three-dimensional free divergence windfields over complex terrain. PAS computes tracer concentrations and depositions on a given domain. Themore » purpose of this work is to develop a reliable simulation tool for pollutant atmospheric dispersion, which gives a realistic approach and allows one to compute the pollutant concentrations over complex terrains with good accuracy. The factional brownian model, which furnishes more accurate concentration values, is introduced to calculate pollutant atmospheric dispersion. The model was validated on SIESTA international experiments.« less
Levander, Alan R.
2004-12-01
Under ER63662, 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface, we have completed a number of subprojects associated with the Hill Air Force Base (HAFB) high resolution 3-D reflection/tomography dataset.
3D, 9-C anisotropic seismic modeling and inversion
NASA Astrophysics Data System (ADS)
Rusmanugroho, Herurisa
The most complete representation of an elastic medium consists of an elastic tensor with 21 independent moduli. All 21 can be estimated from compressional and shear wave polarization and slowness vectors corresponding to wide apertures of polar and azimuth angles. In isotropic media, when seismic source and receiver components have the same orientation (such as XX and YY), the reflection amplitude contours align approximately perpendicular to the particle motions. The mixed components (such as XY and YX) have amplitude patterns that are in symmetrical pairs of either the same, or of opposite, polarity on either side of the diagonal of the 9-C response matrix. In anisotropic media, amplitude variations with azimuth show the same basic patterns and symmetries as for isotropic, but with a superimposed tendency for alignment parallel to the strike of the vertical cracks. Solutions for elastic tensor elements from synthetic slowness and polarization data calculated directly from the Christoffel equation are more sensitive to the polar angle aperture than to the azimuth aperture. Nine-component synthetic elastic vertical seismic profile data for a model with triclinic symmetry calculated by finite-differencing allows estimation of the elastic 21 tensor elements in the vicinity of a three-component borehole receiver. Wide polar angle and azimuth apertures are needed for accurately estimating the elastic tensor elements. The tensor elements become less independent as the data apertures decrease. Results obtained by extracting slowness and polarization data from the corresponding synthetic seismograms show similar results. The inversion algorithm has produced good results from field vertical seismic profile data set from the Weyburn Field in Southern Saskatchewan in Canada. Synthetic nine-component seismograms calculated from the extracted tensor are able to explain most of the significant features in the field data. The inverted stiffness elastic tensor shows orthorhombic
Reduced Scan Time 3D FLAIR using Modulated Inversion and Repetition Time
Gai, Neville D.; Butman, John A.
2014-01-01
Purpose To design and evaluate a new reduced scan time 3D FLuid Attenuated Inversion Recovery (FLAIR) sequence. Materials and Methods The 3D FLAIR sequence was modified so that the repetition time was modulated in a predetermined smooth fashion (3D mFLAIR). Inversion times were adjusted accordingly to maintain CSF suppression. Simulations were performed to determine SNR for gray matter (GM), white matter (WM) and CSF. Fourteen volunteers were imaged using the modified and product sequence. SNR measurements were performed in GM, WM and CSF. Mean value and the 95% confidence interval ([CI]) were assessed. Scan time for the 3D FLAIR and 3D mFLAIR sequences was measured. Results There was no statistically significant difference in the SNR measured in GM (P value = 0.5; mean SNR = 42.8 [CI]: 38.2-45.5 vs 42.2 [CI]: 38.3-46.1 for 3D FLAIR and 3D mFLAIR, respectively) and WM (P value = 0.25; mean SNR = 32.1 [CI]: 30.3-33.8 vs 32.9 [CI]: 31.1-34.7). Scan time reduction greater than 30% was achieved for the given parameter set with the 3D mFLAIR sequence. Conclusion Scan time for 3D FLAIR can be effectively reduced by modulating repetition and inversion time in a predetermined fashion while maintaining the SNR and CNR of a constant TR sequence. PMID:24979311
NASA Astrophysics Data System (ADS)
Fadel, I.; van der Meijde, M.; Kerle, N.
2013-12-01
Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.
A research of 3D gravity inversion based on the recovery of sparse underdetermined linear equations
NASA Astrophysics Data System (ADS)
Zhaohai, M.
2014-12-01
Because of the properties of gravity data, it is made difficult to solve the problem of multiple solutions. There are two main types of 3D gravity inversion methods：One of two methods is based on the improvement of the instability of the sensitive matrix, solving the problem of multiple solutions and instability in 3D gravity inversion. Another is to join weight function into the 3D gravity inversion iteration. Through constant iteration, it can renewal density values and weight function to achieve the purpose to solve the multiple solutions and instability of the 3D gravity data inversion. Thanks to the sparse nature of the solutions of 3D gravity data inversions, we can transform it into a sparse equation. Then, through solving the sparse equations, we can get perfect 3D gravity inversion results. The main principle is based on zero norm of sparse matrix solution of the equation. Zero norm is mainly to solve the nonzero solution of the sparse matrix. However, the method of this article adopted is same as the principle of zero norm. But the method is the opposite of zero norm to obtain zero value solution. Through the form of a Gaussian fitting solution of the zero norm, we can find the solution by using regularization principle. Moreover, this method has been proved that it had a certain resistance to random noise in the mathematics, and it was more suitable than zero norm for the solution of the geophysical data. 3D gravity which is adopted in this article can well identify abnormal body density distribution characteristics, and it can also recognize the space position of abnormal distribution very well. We can take advantage of the density of the upper and lower limit penalty function to make each rectangular residual density within a reasonable range. Finally, this 3D gravity inversion is applied to a variety of combination model test, such as a single straight three-dimensional model, the adjacent straight three-dimensional model and Y three
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those
3-D Inversion of MT Data for Imaging Deformation Fronts in NW Poland
NASA Astrophysics Data System (ADS)
Ślęzak, Katarzyna; Jóźwiak, Waldemar; Nowożyński, Krzysztof; Brasse, Heinrich
2016-07-01
The Pomerania region (northwest part of Poland) occupies a significant position, where the largest European tectonic boundary is situated. This is the area of the contact between the East European Craton (EEC) and the Paleozoic Platform (PP) and it is known as the Trans-European Suture Zone (TESZ). The TESZ was formed during Paleozoic time as a consequence of the collision of several crustal units and it extends from the Black Sea in the southeast to the British Isles in the northwest. It is a region of key importance for our understanding of the tectonic history of Europe. Previous magnetotelluric (MT) results, based on 2-D inverse modeling, show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian EEC, transitional zone (TESZ), and the younger PP. The presence of a significant conductor at mid and lower crustal depths was also shown. Thus, the main aim of the research presented here was to obtain detailed, 3-D images of electrical conductivity in the crust and upper mantle and its regional distribution below the TESZ in the northwest part of Poland. To accomplish this task we applied the latest 3-D inversion codes, which allowed us to get more realistic model geometries. Additionally, to confirm and complement the study, the Horizontal Magnetic Tensor (HMT) analysis was realized. This method gives us an opportunity to efficiently locate the position of well-conducting structures. As a result we obtain a clearer, three-dimensional model of conductivity distribution, where highly conductive rock complexes appear which we tentatively connected to deformation fronts.
3-D Inversion of MT Data for Imaging Deformation Fronts in NW Poland
NASA Astrophysics Data System (ADS)
Ślęzak, Katarzyna; Jóźwiak, Waldemar; Nowożyński, Krzysztof; Brasse, Heinrich
2016-04-01
The Pomerania region (northwest part of Poland) occupies a significant position, where the largest European tectonic boundary is situated. This is the area of the contact between the East European Craton (EEC) and the Paleozoic Platform (PP) and it is known as the Trans-European Suture Zone (TESZ). The TESZ was formed during Paleozoic time as a consequence of the collision of several crustal units and it extends from the Black Sea in the southeast to the British Isles in the northwest. It is a region of key importance for our understanding of the tectonic history of Europe. Previous magnetotelluric (MT) results, based on 2-D inverse modeling, show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian EEC, transitional zone (TESZ), and the younger PP. The presence of a significant conductor at mid and lower crustal depths was also shown. Thus, the main aim of the research presented here was to obtain detailed, 3-D images of electrical conductivity in the crust and upper mantle and its regional distribution below the TESZ in the northwest part of Poland. To accomplish this task we applied the latest 3-D inversion codes, which allowed us to get more realistic model geometries. Additionally, to confirm and complement the study, the Horizontal Magnetic Tensor (HMT) analysis was realized. This method gives us an opportunity to efficiently locate the position of well-conducting structures. As a result we obtain a clearer, three-dimensional model of conductivity distribution, where highly conductive rock complexes appear which we tentatively connected to deformation fronts.
Current status of the WHAMS-3D code
Belytschko, T.; Kennedy, J.M.
1987-03-01
The program WHAMS-3D is an explicit time integration program which can be used for frames, shells, plates and continua in three dimensions. Both material nonlinearities due to elasto-plastic behavior and geometric nonlinearities due to large displacements can be treated. The program has been developed to serve as a test-bed for research into methods for nonlinear structural dynamics, but it can also be used for production calculations. The program is quite compact, so it can be coupled with other codes. The program employs a finite element format, so that is possesses considerable versatility in modeling complex shapes and boundary conditions. The element library consists of the following: quadrilateral and triangular plate-shell elements, a beam element, a spring element and a hexahedral continuum element. In addition, a rigid linkage is included which permits the efficient modeling of very stiff portions of a structure, such as the bottom ring of a core barrel. In a rigid linkage, the motion of a master node defines the motion of all slave nodes linked to the master node. This option is also useful for eccentrically connected elements where the modlines of the connected elements do not coincide, as for example, in stiffeners. Time integration is performed by the central difference method. The mass matrix is diagonal (lumped), so no equations need be solved. Different time steps can be used in different parts of the mesh.
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.
2015-10-01
We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallares, V.; Ranero, C. R.
2012-12-01
We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
NASA Astrophysics Data System (ADS)
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.
2015-11-01
With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow.
López-Caballero, Miguel; Burguete, Javier
2013-03-22
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers. PMID:25166809
Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Shin, Changsoo; Calandra, Henri
2016-06-01
Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.
Development of direct-inverse 3-D methods for applied aerodynamic design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1988-01-01
Several inverse methods have been compared and initial results indicate that differences in results are primarily due to coordinate systems and fuselage representations and not to design procedures. Further, results from a direct-inverse method that includes 3-D wing boundary layer effects, wake curvature, and wake displacement are presented. These results show that boundary layer displacements must be included in the design process for accurate results.
3D stochastic inversion of potential field data using structural geologic constraints
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman; Schetselaar, Ernst; Bellefleur, Gilles; Marcotte, Denis
2014-12-01
We introduce a new method to include structural orientation constraints into potential field inversion using a stochastic framework. The method considers known geological interfaces and planar orientation data such as stratification estimated from seismic surveys or drill hole information. Integrating prior geological information into inversion methods can effectively reduce ambiguity and improve inversion results. The presented approach uses cokriging prediction with derivatives. The method is applied to two synthetic models to demonstrate its suitability for 3D inversion of potential field data. The method is also applied to the inversion of gravity data collected over the Lalor volcanogenic massive sulfide deposit at Snow Lake, Central Manitoba, Canada. The results show that using a structurally-constrained inversion leads to a better-resolved solution.
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
Langenbuch, S.; Velkov, K.; Lizorkin, M.
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)
2000-01-01
An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.
3D electromagnetic modelling of a TTI medium and TTI effects in inversion
NASA Astrophysics Data System (ADS)
Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien
2016-04-01
We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.
A Magnetic Diagnostic Code for 3D Fusion Equilibria
Samuel Aaron Lazerson
2012-07-27
A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).
A Magnetic Diagnostic Code for 3D Fusion Equilibria
Samuel A. Lazerson, S. Sakakibara and Y. Suzuki
2013-03-12
A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.
Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor
Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie
2015-01-01
Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714
Preparation for a 3D Electromagnetic inversion-Application to GREATEM data
NASA Astrophysics Data System (ADS)
Abd allah, S.; Mogi, T.; Kim, H.; Fomenko, E.
2013-12-01
Previous studies conducted by the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) have shown that, this system is a promising method for modelling 3D resistivity structures in coastal areas. To expand the application of the GREATEM system in the future for studying hazardous wastes, sea water incursion and hydrocarbon exploration, a 3D-resistivity modelling that considers large lateral resistivity variations is required in case of large resistivity contrasts between land and sea in surveys of coastal areas where 1D resistivity model that assumes a horizontally layered structure might be inaccurate. In this abstract we present the preparation for developing a consistent three dimensional electromagnetic inversion algorithm to calculate the EM response over arbitrary 3D conductivity structure using GREATEM system. In forward modelling the second order partial differential equations for scalar and vector potential are discretized on a staggered-grid using the finite difference method (Fomenko and Mogi, 2002, Mogi et al., 2011). In the inversion method the 3D model discretized into a large number of rectangular cells of constant conductivity and the final solution is obtained by minimizing a global objective function composed of the model objective function and data misfit. To deal with a huge number of grids and wide range of frequencies in air borne data sets, a method for approximating sensitivities is introduced for the efficient 3-D inversion. Approximate sensitivities are derived by replacing adjoint secondary electric fields with those computed in the previous iteration. These sensitivities can reduce the computation time, without significant loss of accuracy when constructing a full sensitivity matrix for 3-D inversion, based on the Gauss-Newton method (N. Han et al., 2008). Now, we tested the algorithm in the frequency domain electromagnetic response of synthetic model considering a 3D conductor. Frequency-domain computation is executed
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.
2015-12-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian
2016-09-01
We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.
Video coding and transmission standards for 3D television — a survey
NASA Astrophysics Data System (ADS)
Buchowicz, A.
2013-03-01
The emerging 3D television systems require effective techniques for transmission and storage of data representing a 3-D scene. The 3-D scene representations based on multiple video sequences or multiple views plus depth maps are especially important since they can be processed with existing video technologies. The review of the video coding and transmission techniques is presented in this paper.
3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
Duindam, Vincent; Xu, Jijie; Alterovitz, Ron; Sastry, Shankar; Goldberg, Ken
2010-01-01
Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles. PMID:21359051
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallarès, V.; Ranero, C. R.
2012-04-01
We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also
NASA Astrophysics Data System (ADS)
Bell, R. E.; Morgan, J. V.; Warner, M.
2013-12-01
Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
Large-scale 3D inversion of frequency domain controlled-source electromagnetic data
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P.; Oldenburg, D. W.
2005-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain EM sounding technique. The CSAMT source is a grounded horizontal electric dipole approximately one to two kilometers in length. This dipole source generates both inductive and galvanic currents so that the observed electric field arises due to both the static the vector potentials. At low frequencies, the behavior of the fields is similar to that observed in a geometric sounding such as a direct current experiment. At higher frequencies, the inductive character of the source modifies the behavior of the fields so that the experiment becomes more like a frequency sounding. Higher frequency data are useful for imaging near-surface features and lower frequency data are sensitive to deeper structure. Inversion of controlled source EM data provides a means to image the subsurface electrical conductivity structure. We consider a 3D CSAMT data set acquired over a known geothermal resource area in Western Idaho. The data are amplitudes and phases of the electric and magnetic fields acquired at 25 frequencies. The conductivity contrast between the geothermal fluid conduits and the resistive host material allows us to relate the inverted conductivity image to the distribution of fluid flow pathways in the geothermal system. Our 1D CSAMT inversion of the 3D data set indicates regions of conductive fluid pathways in the subsurface. Our next step is to invert these data using the full Maxwell's equations in 3D. Inversion of a single frequency data set at 2 Hz using the 3D frequency domain inversion algorithm (Haber et. al, 2004) shows regions of fluid circulation indicated by zones of higher conductivity. Comparing the images from different single frequency inversions allows us to identify persistent features in the conductivity image that adequately satisfy the data. With the aid of synthetic modeling we are investigating what frequencies? and what geometries? are appropriate to better resolve
3D Structured Grid Generation Codes for Turbomachinery
NASA Technical Reports Server (NTRS)
Loellbach, James; Tsung, Fu-Lin
1999-01-01
This report describes the research tasks during the past year. The research was mainly in the area of computational grid generation in support of CFD analyses of turbomachinery components. In addition to the grid generation work, a numerical simulation was obtained for the flow through a centrifugal gas compressor using an unstructured Navier-Stokes solver. Other tasks involved many different turbomachinery component analyses. These analyses were performed for NASA projects or for industrial applications. The work includes both centrifugal and axial machines, single and multiple blade rows, and steady and unsteady analyses. Over the past five years, a set of structured grid generation codes were developed that allow grids to be obtained fairly quickly for the large majority of configurations we encounter. These codes do not comprise a generalized grid generation package; they are noninteractive codes specifically designed for turbomachinery blade row geometries. But because of this limited scope, the codes are small, fast, and portable, and they can be run in the batch mode on small workstations. During the past year, these programs were used to generate computational grids were modified for a wide variety of configurations. In particular, the codes or wrote supplementary codes to improve our grid generation capabilities for multiple blade row configurations. This involves generating separate grids for each blade row, and then making them match and overlap by a few grid points at their common interface so that fluid properties are communicated across the interface. Unsteady rotor/stator analyses were performed for an axial turbine, a centrifugal compressor, and a centrifugal pump. Steady-state single-blade-row analyses were made for a study of blade sweep in transonic compressors. There was also cooperation on the application of an unstructured Navier-Stokes solver for turbomachinery flow simulations. In particular, the unstructured solver was used to analyze the
MOM3D method of moments code theory manual
NASA Astrophysics Data System (ADS)
Shaeffer, John F.
1992-03-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
3D unstructured-mesh radiation transport codes
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
Kılıç, Emre Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
The interpretation of magnetic anomalies by 3D inversion: A case study from Central Iran
NASA Astrophysics Data System (ADS)
Tavakoli, M.; Nejati Kalateh, A.; Ghomi, S.
2016-03-01
The thick sedimentary units in Central Iran contain structures that form oil traps and are underlain by a basaltic layer which is amenable for study using its magnetic susceptibility. The study and modeling of such sedimentary structures provide valuable exploratory information. In this study, we locate and interpret an underground magnetic susceptibility interface using 3D non-linear inverse modeling of magnetic data to make a better judgment in the context of hydrocarbon existence. The 3D structure is reconstructed by making it equal to a number of side by side rectangular hexahedrons or prisms and calculating their thicknesses such that the bottoms of the prisms are corresponding to the magnetic susceptibility interface. By one of the most important mathematical tool in computational science, Taylor series, the non-linear problem changes to a linear problem near to initial model. In many inverse problems, we often need to invert large size matrices. To find the inverse of these matrices we use Singular Value Decomposition (SVD) method. The algorithm by an iterative method comparing model response with actual data will modify the initial guess of model parameters. The efficiency of the method and subprograms, programmed in MATLAB, has been shown by inverse modeling of free noise and noise-contaminated synthetic data. Finally, we inverted magnetic field data from Garmsar area in Central Iran which the results were acceptable.
NASA Astrophysics Data System (ADS)
Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas
2016-04-01
We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.
3D inversion of land-based CSEM data from the Ketzin CO2 storage formation
NASA Astrophysics Data System (ADS)
Grayver, Alexander; Streich, Rita; Ritter, Oliver
2013-04-01
We present 3D inversion of land controlled-source electromagnetic (CSEM) data collected across the CO2 storage test site at Ketzin, Germany. The CSEM data were generated by injecting currents into the earth at eight locations using a newly developed transmitter equipped with three grounded electrodes. Electric and magnetic field responses were recorded by 39 receivers along a line approximately perpendicular to the main geological trend. The survey aimed at imaging large-scale resistivity structure beyond the near-well region monitored by higher-resolution electrical techniques. Infrastructure present in the survey area, such as pipelines with impressed-current cathodic protection systems, power lines, and wind power plants cause strong noise in the data. The noise is effectively suppressed by adopting statistically robust processing techniques known from passive magnetotellurics. A newly developed Gauss-Newton type parallel distributed inversion scheme, which is based on a direct forward solver and explicitly calculates the full sensitivity matrix, is applied to recover subsurface conductivity images. As 3D inversion is demanding on computer time and memory, we run inversions on parallel distributed machines. We achieve good scalability by distributing computations and memory uniformly among the processes involved. We carry out cumulative sensitivity and resolution analyses for the sparse CSEM acquisition geometry. These studies indicate reasonable spatial coverage along the main survey line. Synthetic studies calculated for the real survey layout and representative conductivity models indicate that the magnetic field components are practically insensitive to resistive structures, whereas the electric field components resolve resistors and conductors similarly well. Because the magnetic field contributes little subsurface information, we concentrate on inverting the electric field, which is also more computer-efficient than inverting all components. We test
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.
NASA Astrophysics Data System (ADS)
Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung
2016-04-01
Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.
Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient
NASA Astrophysics Data System (ADS)
Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie
2016-03-01
Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Earthquake source tensor inversion with the gCAP method and 3D Green's functions
NASA Astrophysics Data System (ADS)
Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.
2013-12-01
We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.
3D visualization for the MARS14 Code
Rzepecki, Jaroslaw P.; Kostin, Mikhail A; Mokhov, Nikolai V.
2003-01-23
A new three-dimensional visualization engine has been developed for the MARS14 code system. It is based on the OPENINVENTOR graphics library and integrated with the MARS built-in two-dimensional Graphical-User Interface, MARS-GUI-SLICE. The integrated package allows thorough checking of complex geometry systems and their fragments, materials, magnetic fields, particle tracks along with a visualization of calculated 2-D histograms. The algorithms and their optimization are described for two geometry classes along with examples in accelerator and detector applications.
Development of direct-inverse 3-D method for applied aerodynamic design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1987-01-01
The primary tasks performed were the continued development of inverse design procedures for the TAWFIVE code, the development of corresponding relofting and trailing edge closure procedures, and the testing of the methods for a variety of cases. The period from July 1, 1986 through December 31, 1986 is covered.
Joint earthquake source inversions using seismo-geodesy and 3-D earth models
NASA Astrophysics Data System (ADS)
Weston, J.; Ferreira, A. M. G.; Funning, G. J.
2014-08-01
A joint earthquake source inversion technique is presented that uses InSAR and long-period teleseismic data, and, for the first time, takes 3-D Earth structure into account when modelling seismic surface and body waves. Ten average source parameters (Moment, latitude, longitude, depth, strike, dip, rake, length, width and slip) are estimated; hence, the technique is potentially useful for rapid source inversions of moderate magnitude earthquakes using multiple data sets. Unwrapped interferograms and long-period seismic data are jointly inverted for the location, fault geometry and seismic moment, using a hybrid downhill Powell-Monte Carlo algorithm. While the InSAR data are modelled assuming a rectangular dislocation in a homogeneous half-space, seismic data are modelled using the spectral element method for a 3-D earth model. The effect of noise and lateral heterogeneity on the inversions is investigated by carrying out realistic synthetic tests for various earthquakes with different faulting mechanisms and magnitude (Mw 6.0-6.6). Synthetic tests highlight the improvement in the constraint of fault geometry (strike, dip and rake) and moment when InSAR and seismic data are combined. Tests comparing the effect of using a 1-D or 3-D earth model show that long-period surface waves are more sensitive than long-period body waves to the change in earth model. Incorrect source parameters, particularly incorrect fault dip angles, can compensate for systematic errors in the assumed Earth structure, leading to an acceptable data fit despite large discrepancies in source parameters. Three real earthquakes are also investigated: Eureka Valley, California (1993 May 17, Mw 6.0), Aiquile, Bolivia (1998 February 22, Mw 6.6) and Zarand, Iran (2005 May 22, Mw 6.5). These events are located in different tectonic environments and show large discrepancies between InSAR and seismically determined source models. Despite the 40-50 km discrepancies in location between previous geodetic and
Electrical conductivity of the Iapetus Suture Zone Scotland, revisited with 3D inversion
NASA Astrophysics Data System (ADS)
Weckmann, U.; Toelg, D.; Ritter, O.
2012-12-01
The electrical conductivity structure of the crust beneath the Southern Uplands of Scotland has been investigated with electromagnetic and magneto-variational studies since the early 1970ies. The Southern Uplands formed in Ordovician and Silurian times as an accretionary prism on the Laurentian margin of the Iapetus Ocean as overthrusted wedges of sediments bounded by thrust faults. A pronounced zone of high electrical conductivity extending in northeast to southwest direction for at least 150 km was a common feature of many of these studies. The anomaly follows major structural trends of the Caledonian orogeny, such as the Southern Uplands Fault, the Orlock Bridge Fault and the Moniave Shear Zone. Graphite enrichment at mid-crustal levels trapped during the closure of the Iapetus Ocean or in detachment zones was discussed as possible causes for the high conductivity. In 1997, a high resolution MT experiment was conducted in southwestern Scotland across the most prominent faults. The station distribution, with an average spacing of 1-2km, concentrated on three parallel NW-SE profiles perpendicular to the tectonic structures and a strike parallel profile. Strike and dimensionality analyses indicated three-dimensional subsurface structures which also became evident in phases exceeding 90°. Nevertheless, 2D inversion of a sub-set of data revealed good spatial correlation of conductive zones and surface expressions of known faults. The 2D inversion results supported a mid-crustal detachment zone. However, some of the smaller profiles as well as the strike parallel profile could not be interpreted adequately with a 2D approach. Since 3D inversion algorithms are now available, we present a re-interpretation of the MT data set. We reprocessed the time series to improve estimates of the full impedance tensor for subsequent 3D inversion. 3D inversion reproduces the main features found along the published profiles. However, significant deviation from a 2D subsurface can be
NASA Astrophysics Data System (ADS)
Wilson, G. A.; Cuma, M.; Zhdanov, M. S.; Gribenko, A.; Black, N.
2010-12-01
Three-dimensional (3D) inversion is required for defining 3D geoelectric structures associated with hydrocarbon (HC) deposits from marine controlled-source electromagnetic (CSEM) data. In 3D inversion, regularization is introduced to ensure uniqueness and stability in the inverse model. However, a common misconception is that regularization implies smoothing of the inverse model when in fact regularization and the stabilizing functionals are used to select the class of model from which an inverse solution is sought. Smooth stabilizers represent just one inverse model class from which the minimum norm or first or second derivatives of the 3D resistivity distribution are minimized. Smooth stabilizers have limited physical basis in geological interpretation aimed at exploration for HC reservoirs. Focusing stabilizers on the other hand make it possible to recover subsurface models with sharp resistivity contrasts which are typical for HC reservoirs. Using a synthetic example of the stacked anticlinal structures and reservoir units of the Shtokman gas field in the Barents Sea, we demonstrate that focusing stabilizers not only recover more geologically meaningful models than smooth stabilizers, but they provide better convergence for iterative inversion. This makes it practical to run multiple inversion scenarios based on the suite of a priori models, different data combinations, and various other parameters so as to build confidence in the recovered 3D resistivity model and to discriminate any artifacts that may arise from the interpretation of a single 3D inversion result.
Current loop coalescence studied by 3-D electromagnetic particle code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Sakai, Jun-Ichi; Koide, Shinji; Buneman, O.; Neubert, T.
1993-01-01
Solar flare plasma data from the Yohkoh satellite is analyzed. The interactions of current loops were observed in the active regions on the Sun. This observation pointed out the importance of the idea that the solar flare is generated by the coalescence of current loops. The three dimensional electromagnetic particle simulations are to help in understanding the global interaction between two current loops including the evolution of the twist of loops due to instabilities. Associated rapid dynamics of current loop coalescence such as reconnection, shock waves and associated kinetic processes such as energy transfer, acceleration of particles, and electromagnetic emissions are to be studied by the code to complement analytical theories and magnetohydrodynamic simulations of the current loop coalescence. The simulation results show the strong interactions between two current loops, beam and whistler instabilities, and associated parallel and perpendicular particle heating.
Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)
Nichols, A L
2010-12-15
As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum value available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be
The NYU inverse swept wing code
NASA Technical Reports Server (NTRS)
Bauer, F.; Garabedian, P.; Mcfadden, G.
1983-01-01
An inverse swept wing code is described that is based on the widely used transonic flow program FLO22. The new code incorporates a free boundary algorithm permitting the pressure distribution to be prescribed over a portion of the wing surface. A special routine is included to calculate the wave drag, which can be minimized in its dependence on the pressure distribution. An alternate formulation of the boundary condition at infinity was introduced to enhance the speed and accuracy of the code. A FORTRAN listing of the code and a listing of a sample run are presented. There is also a user's manual as well as glossaries of input and output parameters.
NASA Astrophysics Data System (ADS)
Tchikaya, Euloge Budet; Chouteau, Michel; Keating, Pierre; Shamsipour, Pejman
2016-02-01
We present an inversion tool for airborne gravity gradient data that yields a 3D density model using stochastic methods i.e. cokriging and conditional simulation. This method uses geostatistical properties of the measured gravity gradient to estimate a 3D density model whose gravity response fits the measured gravity gradient anomaly. Linearity between gravity gradient data and density allows estimation of the model (density) covariance using observed data, i.e. we adjust iteratively the density covariance matrix by fitting experimental and theoretical gravity gradient covariance matrices. Inversion can be constrained by including densities known at some locations. In addition we can explore various reasonable solutions that honour both the estimated density covariance model and the gravity gradient data using geostatistical simulation. The proposed method is first tested with two synthetic datasets generated from a sharp-boundary model and a smooth stochastic model respectively. The results show the method to be capable of retrieving models compatible with the true models; it also allows the integration of complex a priori information. The technique is then applied to gravity gradient survey data collected for the Geological Survey of Canada in the area of McFaulds Lake (Ontario, Canada) using the Falcon airborne gravity system. Unconstrained inversion returns a density model that is geologically plausible and the computed response exactly fits the observed gravity gradient anomaly.
3D Direct Simulation Monte Carlo Code Which Solves for Geometrics
Energy Science and Technology Software Center (ESTSC)
1998-01-13
Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.
PEGASUS. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics
Bartel, T.J.
1998-12-01
Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.
Wall-touching kink mode calculations with the M3D code
Breslau, J. A. Bhattacharjee, A.
2015-06-15
This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.
Wall-touching kink mode calculations with the M3D code
NASA Astrophysics Data System (ADS)
Breslau, J. A.; Bhattacharjee, A.
2015-06-01
This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the "Hiro" currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.
NASA Astrophysics Data System (ADS)
Muench, Thomas; Koch, Manfred; Schlittenhardt, Jörg
2010-05-01
There is now ample evidence from both refraction seismic studies, done already a quarter century ago and from more recent local earthquake traveltime analysis of some of the authors above that large sections of the upper mantle underneath Europe and Germany, in particular, are anisotropic. Employing a modified version of the method of simultaneous inversion for structure and hypocenters (SSH) of the first author, including a priori known upper mantle anisotropy, the investigations of Song et al. [2001] and Song et al. [2004] by means of a 1D time-term analysis and a full 2D Pn anisotropic inversion of regional traveltime data are extended here to a full 3D SSH-inversion underneath Germany. Regional traveltimes from local events occurring between 1975 - 2003 are used which, after application of several selection criteria, results in ~1300 events with a total of ~30000 P- and S-phases for the SSH inversion. Because many of the recorded events appear to suffer from relatively poor hypocentral depth locations a full SSH analysis becomes an intricate undertaking. To alleviate the problem the SSH procedure is carried out in several incremental steps of increasing complexity. First of all improved vertically inhomogeneous velocity (1D) models are derived assuming an isotropic as well as an anisotropic upper mantle. In addition of a slightly better model fit for the anisotropic than for the isotropic model, the latter gives also a somewhat lower Pn-velocity of ~7.90 km/s, compared with ~8.0 km/s for the former. This indicates that inclusion of upper mantle anisotropy into the model is required to obtain physically reasonable Pn-velocities. The results for the P-velocity in the lower crustal layer of the model are less clear, as there appears to be some trade-off in the velocity of that layer and that of the upper mantle. During the course of this part of the study the 3D models have been increasingly refined, starting with a lateral discretization into 15 x 15 blocs
EM modeling for GPIR using 3D FDTD modeling codes
Nelson, S.D.
1994-10-01
An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
An inverse wing design method was developed around an existing transonic wing analysis code. The original analysis code, TAWFIVE, has as its core the numerical potential flow solver, FLO30, developed by Jameson and Caughey. Features of the analysis code include a finite-volume formulation; wing and fuselage fitted, curvilinear grid mesh; and a viscous boundary layer correction that also accounts for viscous wake thickness and curvature. The development of the inverse methods as an extension of previous methods existing for design in Cartesian coordinates is presented. Results are shown for inviscid wing design cases in super-critical flow regimes. The test cases selected also demonstrate the versatility of the design method in designing an entire wing or discontinuous sections of a wing.
Workflow strategies and application to large-scale 3-D full-waveform inversion
NASA Astrophysics Data System (ADS)
Schiemenz, A.; Igel, H.
2012-04-01
We present results of 3-D full-waveform inversion (FWI) utilizing a Python-driven workflow which incorporates the SPECFEM3D solver, a time-domain spectral element method, and the Obpsy software, a toolbox for computational seismology. We examine source encoding strategies, where multiple seismic sources are simultaneously excited, reducing in the number of required simulations per FWI iteration. Applications to synthetic case studies are presented which demonstrate a sensitivity of source encoding to source-receiver offset and number of encoded supershots. We detail workflow methodologies suitable for large-scale (i.e. many sources and receivers) FWI applications, as encountered in exploration geophysics problems in the marine environment.
3D Effects in the Formation of Zonal Jets Through Inverse Cascade
NASA Astrophysics Data System (ADS)
Sayanagi, Kunio M.; Showman, A. P.
2006-09-01
The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non-divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.
3D Effects in the Formation of Zonal Jets Through Inverse Cascade
NASA Astrophysics Data System (ADS)
Sayanagi, K. M.; Showman, A. P.
2006-12-01
The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non- divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.
Quantum self-correction in the 3D cubic code model.
Bravyi, Sergey; Haah, Jeongwan
2013-11-15
A big open question in the quantum information theory concerns the feasibility of a self-correcting quantum memory. A quantum state recorded in such memory can be stored reliably for a macroscopic time without need for active error correction, if the memory is in contact with a cold enough thermal bath. Here we report analytic and numerical evidence for self-correcting behavior in the quantum spin lattice model known as the 3D cubic code. We prove that its memory time is at least L(cβ), where L is the lattice size, β is the inverse temperature of the bath, and c>0 is a constant coefficient. However, this bound applies only if the lattice size L does not exceed a critical value which grows exponentially with β. In that sense, the model can be called a partially self-correcting memory. We also report a Monte Carlo simulation indicating that our analytic bounds on the memory time are tight up to constant coefficients. To model the readout step we introduce a new decoding algorithm, which can be implemented efficiently for any topological stabilizer code. A longer version of this work can be found in Bravyi and Haah, arXiv:1112.3252. PMID:24289671
Quantum Self-Correction in the 3D Cubic Code Model
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Haah, Jeongwan
2013-11-01
A big open question in the quantum information theory concerns the feasibility of a self-correcting quantum memory. A quantum state recorded in such memory can be stored reliably for a macroscopic time without need for active error correction, if the memory is in contact with a cold enough thermal bath. Here we report analytic and numerical evidence for self-correcting behavior in the quantum spin lattice model known as the 3D cubic code. We prove that its memory time is at least Lcβ, where L is the lattice size, β is the inverse temperature of the bath, and c>0 is a constant coefficient. However, this bound applies only if the lattice size L does not exceed a critical value which grows exponentially with β. In that sense, the model can be called a partially self-correcting memory. We also report a Monte Carlo simulation indicating that our analytic bounds on the memory time are tight up to constant coefficients. To model the readout step we introduce a new decoding algorithm, which can be implemented efficiently for any topological stabilizer code. A longer version of this work can be found in Bravyi and Haah, arXiv:1112.3252.
3-D density models within an ellipsoidal-Earth from inversion of geoid anomalies
NASA Astrophysics Data System (ADS)
Chaves, C. M.; Ussami, N.
2013-12-01
Modeling density perturbations is very important to understand geodynamic processes which occur within the Earth's mantle. Commonly, the Earth's density is predicted by converting a velocity model into a density model using either a constant scaling factor or a relationship provided by mineral physics. Nonetheless, several factors such as temperature, composition and melting can affect the wave propagation speed so that a seismically converted density model may not retrieve the actual density distribution. This limitation may hamper the modeling the geodynamic processes. Due to advances in satellite-derived gravity data acquisition (e.g. GRACE, GOCE), the gravity field is now obtained with an unprecedented accuracy and resolution allowing us to estimate more uniformly the 3-D density distribution for the whole Earth. Here we present a computational algorithm to invert geoid anomalies in order to estimate density variations in the mantle. Using an ellipsoidal-Earth approximation, the model space is represented by a set of tesseroids. From a synthetic geoid anomaly caused by a plume tail ascending through the mantle with Gaussian noise added, the inversion code is capable to recover with good accuracy the density contrast and the body geometry when compared to the synthetic model. This algorithm was also tested in a natural case study, where geoid anomalies from the Yellowstone Province (YP) were inverted. The estimated density model (EDM) has a predominantly negative density contrast (~ -50 kg/m3) relative to the surrounding upper mantle and extends to the depth of 1000 km. The EDM exhibits an anti-correlation of up to -0.7 with one of the most recent S-velocity model for the western United States. The predicted dynamic topography from the EDM explains almost 80 % of the observed dynamic topography in the YP. From our results, we conclude that a joint-interpretation of density anomalies derived from geoid and velocity perturbations from seismic tomography models
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution
NASA Astrophysics Data System (ADS)
Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-06-01
We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Gribenko, A.; Wilson, G. A.
2012-12-01
Geophysical monitoring of reservoir fluids and rock properties is relevant to oil and gas production, carbon sequestration, and enhanced geothermal systems. Different geophysical fields provide information about different physical properties of the earth. Multiple geophysical surveys spanning gravity, magnetic, electromagnetic, seismic, and thermal methods are often interpreted to infer geology from models of different physical properties. In many cases, the various geophysical data are complimentary, making it natural to consider a formal mathematical framework for their joint inversion to a shared earth model. We introduce a new approach to the 3D joint inversion of multiple geophysical datasets using Gramian spaces of model parameters and Gramian constraints, computed as determinants of the corresponding Gram matrices of the multimodal model parameters and/or their attributes. The basic underlying idea of this approach is that the Gramian provides a measure of correlation between the model parameters. By imposing an additional requirement of the minimum of the Gramian, we arrive at the solution of the joint multimodal inverse problem with the enhanced correlation between the different model parameters and/or their attributes. We demonstrate that this new approach is a generalized technique that can be applied to the simultaneous joint inversion of any number and combination of geophysical datasets. Our approach includes as special cases those extant methods based on correlations and/or structural constraints of different physical properties. We illustrate this approach by a model study of reservoir monitoring using different geophysical data.
Standards-based approaches to 3D and multiview video coding
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.
2009-08-01
The extension of video applications to enable 3D perception, which typically is considered to include a stereo viewing experience, is emerging as a mass market phenomenon, as is evident from the recent prevalence of 3D major cinema title releases. For high quality 3D video to become a commonplace user experience beyond limited cinema distribution, adoption of an interoperable coded 3D digital video format will be needed. Stereo-view video can also be studied as a special case of the more general technologies of multiview and "free-viewpoint" video systems. The history of standardization work on this topic is actually richer than people may typically realize. The ISO/IEC Moving Picture Experts Group (MPEG), in particular, has been developing interoperability standards to specify various such coding schemes since the advent of digital video as we know it. More recently, the ITU-T Visual Coding Experts Group (VCEG) has been involved as well in the Joint Video Team (JVT) work on development of 3D features for H.264/14496-10 Advanced Video Coding, including Multiview Video Coding (MVC) extensions. This paper surveys the prior, ongoing, and anticipated future standardization efforts on this subject to provide an overview and historical perspective on feasible approaches to 3D and multiview video coding.
2013-01-01
Background Cardiovascular-MR (CMR) is the gold standard for quantifying myocardial infarction using late gadolinium enhancement (LGE) technique. Both 2D- and 3D-LGE-sequences are used in clinical practise and in clinical and experimental studies for infarct quantification. Therefore the aim of this study was to investigate if image acquisitions with 2D- and 3D-LGE show the same infarct size in patients and ex vivo. Methods Twenty-six patients with previous myocardial infarction who underwent a CMR scan were included. Images were acquired 10-20 minutes after an injection of 0.2 mmol/kg gadolinium-based contrast agent. Two LGE-sequences, 3D-inversion recovery (IR) and 2D-phase-sensitive (PS) IR, were used in all patients to quantify infarction size. Furthermore, six pigs with reperfused infarction in the left anterior descending artery (40 minutes occlusion and 4 hours of reperfusion) were scanned with 2D- and 3D-LGE ex vivo. A high resolution T1-sequence was used as reference for the infarct quantification ex vivo. Spearman’s rank-order correlation, Wilcoxon matched pairs test and bias according to Bland-Altman was used for comparison of infarct size with different LGE-sequences. Results There was no significant difference between the 2D- and 3D-LGE sequence in left ventricular mass (LVM) (2D: 115 ± 25 g; 3D: 117 ± 24 g: p = 0.35). Infarct size in vivo using 2D- and 3D-LGE showed high correlation and low bias for both LGE-sequences both in absolute volume of infarct (r = 0.97, bias 0.47 ± 2.1 ml) and infarct size as part of LVM (r = 0.94, bias 0.16 ± 2.0%). The 2D- and 3D-LGE-sequences ex vivo correlated well (r = 0.93, bias 0.67 ± 2.4%) for infarct size as part of the LVM. The IR LGE-sequences overestimated infarct size as part of the LVM ex vivo compared to the high resolution T1-sequence (bias 6.7 ± 3.0%, 7.3 ± 2.7% for 2D-PSIR and 3D-IR respectively, p < 0.05 for both). Conclusions Infarct quantification with
3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.
2012-12-01
In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward
NASA Astrophysics Data System (ADS)
Windhari, Ayuty; Handayani, Gunawan
2015-04-01
The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-07-01
In this paper we study 3D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body (GMB/GZB) including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter full waveform inversion for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parameterization can be related to the counterparts using P- and S- velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high performance computing resources and the field data are available.
3-D field computation: The near-triumph of commerical codes
Turner, L.R.
1995-07-01
In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.
NASA Astrophysics Data System (ADS)
Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.
2011-12-01
Southeast Asia as a special region in the world which is seismically active and is surrounded by active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. Seismic anisotropic tomography can shade light on the complex crust and upper mantle dynamics of this region, which is the subject of much debate. In this study, we applied full waveform time domain tomography to image 3D isotropic and anisotropic upper mantle shear velocity structure of Southeast Asia. Three component waveforms of teleseismic and far regional events (15 degree ≤ Δ≤ 165 degree) with magnitude ranges from Mw6.0 to Mw7.0 are collected from 91 permanent and 438 temporary broadband seismic stations in SE Asia. Wavepackets of both fundamental and overtone modes, filtered between 60 and 400 sec, are selected automatically according to the similarity between data and synthetic waveforms (Panning & Romanowicz, 2006). Wavepackets corresponding to event-station paths that sample the region considered are weighted according to path redundancy and signal to noise ratio. Higher modes and fundamental mode wavepackets are weighted separately in order to enhance the contribution of higher modes which are more sensitive to deeper structure compared to the fundamental mode. Synthetic waveforms and broadband sensitivity kernels are computed using normal mode asymptotic coupling theory (NACT, Li & Romanowicz, 1995). As a starting model, we consider a global anisotropic upper mantle shear velocity model based on waveform inversion using the Spectral Element Method (Lekic & Romanowicz, 2011), updated for more realistic crustal thickness (French et al., 2011) as our starting model, we correct waveforms for the effects of 3D structure outside of the region, and invert them for perturbations in the 3D structure of the target region only. We start with waveform inversion down to 60sec and after several iterations, we include shorter period
Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium
NASA Astrophysics Data System (ADS)
Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration
2015-11-01
The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
3D video coding: an overview of present and upcoming standards
NASA Astrophysics Data System (ADS)
Merkle, Philipp; Müller, Karsten; Wiegand, Thomas
2010-07-01
An overview of existing and upcoming 3D video coding standards is given. Various different 3D video formats are available, each with individual pros and cons. The 3D video formats can be separated into two classes: video-only formats (such as stereo and multiview video) and depth-enhanced formats (such as video plus depth and multiview video plus depth). Since all these formats exist of at least two video sequences and possibly additional depth data, efficient compression is essential for the success of 3D video applications and technologies. For the video-only formats the H.264 family of coding standards already provides efficient and widely established compression algorithms: H.264/AVC simulcast, H.264/AVC stereo SEI message, and H.264/MVC. For the depth-enhanced formats standardized coding algorithms are currently being developed. New and specially adapted coding approaches are necessary, as the depth or disparity information included in these formats has significantly different characteristics than video and is not displayed directly, but used for rendering. Motivated by evolving market needs, MPEG has started an activity to develop a generic 3D video standard within the 3DVC ad-hoc group. Key features of the standard are efficient and flexible compression of depth-enhanced 3D video representations and decoupling of content creation and display requirements.
Data-driven inversion of 3D GPR data for layered media
NASA Astrophysics Data System (ADS)
Slob, E. C.
2013-12-01
The number of GPR applications is large and still increasing. In several applications fixed-offset measurements can be sufficient and many dedicated imaging and inversion methods have been developed. Because there is insufficient amounts of data, these are necessarily model-driven schemes. For problems where quantitative information is needed, usually it is better to record multi-offset and possibly multicomponent data. Even for this data inversion is usually model-driven. This means the inverse problem is formulated as an iterative forward modeling problem and is solved by minimizing the amplitude difference between modeled and measured data. The model is modified such that data computed from the model fits the measured data. The information in the measured data itself is not used, except as a measure of the model data fit. For multi-offset multicomponent data a data-driven scheme is here developed to perform full waveform inversion of 3D ground-penetrating radar reflection data acquired on the surface of a layered medium. For data-driven models to work well, the data has to be properly sampled. The advantage is that no model information is necessary to carry out the inversion. The inversion is carried out in three steps. First the data is decomposed into up- and downgoing wave modes. In a layered earth the two modes are separable and are treated separately. This step provides the reflection response of the layered medium. For 3D waves in a layered medium this requires knowledge of the horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. The second step consists of wave field synthesis, where the reflection response is used to construct a focusing wave field that can focus in a virtual receiver position at any depth level. At this stage of the process the depth level is only known in terms of one-way travel time. This is the intercept time in the slowness domain obtained directly from the data. A virtual
INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates
NASA Technical Reports Server (NTRS)
Rogers, S. E.; Kwak, D.; Chang, J. L. C.
1987-01-01
The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.
The 3D inversion of airborne gamma-ray spectrometric data
NASA Astrophysics Data System (ADS)
Minty, Brian; Brodie, Ross
2016-07-01
We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data after the conventional processing of these data assuming a flat-earth model.
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.
NASA Astrophysics Data System (ADS)
Bignardi, S.; Mantovani, A.; Abu Zeid, N.
2016-08-01
OpenHVSR is a computer program developed in the Matlab environment, designed for the simultaneous modeling and inversion of large Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) datasets in order to construct 2D/3D subsurface models (topography included). The program is designed to provide a high level of interactive experience to the user and still to be of intuitive use. It implements several effective and established tools already present in the code ModelHVSR by Herak (2008), and many novel features such as: -confidence evaluation on lateral heterogeneity -evaluation of frequency dependent single parameter impact on the misfit function -relaxation of Vp/Vs bounds to allow for water table inclusion -a new cost function formulation which include a slope dependent term for fast matching of peaks, which greatly enhances convergence in case of low quality HVSR curves inversion -capability for the user of editing the subsurface model at any time during the inversion and capability to test the changes before acceptance. In what follows, we shall present many features of the program and we shall show its capabilities on both simulated and real data. We aim to supply a powerful tool to the scientific and professional community capable of handling large sets of HSVR curves, to retrieve the most from their microtremor data within a reduced amount of time and allowing the experienced scientist the necessary flexibility to integrate into the model their own geological knowledge of the sites under investigation. This is especially desirable now that microtremor testing has become routinely used. After testing the code over different datasets, both simulated and real, we finally decided to make it available in an open source format. The program is available by contacting the authors.
Depth-based coding of MVD data for 3D video extension of H.264/AVC
NASA Astrophysics Data System (ADS)
Rusanovskyy, Dmytro; Hannuksela, Miska M.; Su, Wenyi
2013-06-01
This paper describes a novel approach of using depth information for advanced coding of associated video data in Multiview Video plus Depth (MVD)-based 3D video systems. As a possible implementation of this conception, we describe two coding tools that have been developed for H.264/AVC based 3D Video Codec as response to Moving Picture Experts Group (MPEG) Call for Proposals (CfP). These tools are Depth-based Motion Vector Prediction (DMVP) and Backward View Synthesis Prediction (BVSP). Simulation results conducted under JCT-3V/MPEG 3DV Common Test Conditions show, that proposed in this paper tools reduce bit rate of coded video data by 15% of average delta bit rate reduction, which results in 13% of bit rate savings on total for the MVD data over the state-of-the-art MVC+D coding. Moreover, presented in this paper conception of depth-based coding of video has been further developed by MPEG 3DV and JCT-3V and this work resulted in even higher compression efficiency, bringing about 20% of delta bit rate reduction on total for coded MVD data over the reference MVC+D coding. Considering significant gains, proposed in this paper coding approach can be beneficial for development of new 3D video coding standards. [Figure not available: see fulltext.
Review on applications of 3D inverse design method for pump
NASA Astrophysics Data System (ADS)
Yin, Junlian; Wang, Dezhong
2014-05-01
The 3D inverse design method, which methodology is far superior to the conventional design method that based on geometrical description, is gradually applied in pump blade design. However, no complete description about the method is outlined. Also, there are no general rules available to set the two important input parameters, blade loading distribution and stacking condition. In this sense, the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized. And also, several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed. The results indicates that, for centrifugal pump and mixed pump or turbine, the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade, whereas in the aft part, the ratio is decreased to satisfy the same wrap angle for hub and shroud. And the choice of blade loading type depends on the balancing of efficiency and cavitation. If the cavitation is more weighted, the better choice is aft-loaded, otherwise, the fore-loaded or mid-loaded is preferable to improve the efficiency. The stacking condition, which is an auxiliary to suppress the secondary flow, can have great effect on the jet-wake outflow and the operation range for pump. Ultimately, how to link the design method to modern optimization techniques is illustrated. With the know-how design methodology and the know-how systematic optimization approach, the application of optimization design is promising for engineering. This paper summarizes the 3D inverse design method systematically.
3D elastic full waveform inversion: case study from a land seismic survey
NASA Astrophysics Data System (ADS)
Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon
2016-04-01
Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.
NASA Astrophysics Data System (ADS)
Borrero, J. M.; Lites, B. W.; Lagg, A.; Rezaei, R.; Rempel, M.
2014-12-01
Milne-Eddington (M-E) inversion codes for the radiative transfer equation are the most widely used tools to infer the magnetic field from observations of the polarization signals in photospheric and chromospheric spectral lines. Unfortunately, a comprehensive comparison between the different M-E codes available to the solar physics community is still missing, and so is a physical interpretation of their inferences. In this contribution we offer a comparison between three of those codes (VFISV, ASP/HAO, and HeLIx+). These codes are used to invert synthetic Stokes profiles that were previously obtained from realistic non-grey three-dimensional magnetohydrodynamical (3D MHD) simulations. The results of the inversion are compared with each other and with those from the MHD simulations. In the first case, the M-E codes retrieve values for the magnetic field strength, inclination and line-of-sight velocity that agree with each other within σB ≤ 35 (Gauss), σγ ≤ 1.2°, and σv ≤ 10 m s-1, respectively. Additionally, M-E inversion codes agree with the numerical simulations, when compared at a fixed optical depth, within σB ≤ 130 (Gauss), σγ ≤ 5°, and σv ≤ 320 m s-1. Finally, we show that employing generalized response functions to determine the height at which M-E codes measure physical parameters is more meaningful than comparing at a fixed geometrical height or optical depth. In this case the differences between M-E inferences and the 3D MHD simulations decrease to σB ≤ 90 (Gauss), σγ ≤ 3°, and σv ≤ 90 m s-1.
NASA Astrophysics Data System (ADS)
Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.
2009-04-01
Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Ertekin, Can
2015-04-01
Concern about sedimentary basins is generally related to their genetic and economic significance. Analysis of sedimentary basins requires the acquisition of data through outcrop studies and subsurface investigations that encompass drilling and geophysics. These data are commonly analysed by computer-assisted techniques. One of these methods is based on analysing gravity anomalies to compute the depth of sedimentary basin-basement rock interface. Sedimentary basins produce negative gravity anomalies, because they have mostly lower densities than that of the surrounding basement rocks. Density variations in a sedimentary fill increase rapidly at shallower depths then gradually reach the density of surrounding basement rocks due to the geostatic pressure i.e. compaction. The decrease of the density contrast can be easily estimated by a quadratic function. Hence, if the densities are chosen properly and the regional background is removed correctly, the topographical relief of the sedimentary basin-basement rock interface might be estimated by the inversion of the gravity data using an exponential density-depth relation. Three dimensional forward modelling procedure can be carried out by introducing a Cartesian coordinate system, and placing vertical prisms just below observation points on the grid plane. Depth to the basement, namely depths to the bottom of the vertical prisms are adjusted in an iterative manner by minimizing the differences between measured and calculated residual gravity anomalies. In this study, we present a MATLAB-based inversion code for the interpretation of sedimentary basins by approximating the topographical relief of sedimentary basin-basement rock interfaces. For a given gridded residual gravity anomaly map, the procedure estimates the bottom depths of vertical prisms by considering some published formulas and assumptions. The utility of the developed inversion code was successfully tested on theoretically produced gridded gravity data set
User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics
McMaster, W H
1982-05-07
The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.
3D maps of the local ISM from inversion of individual color excess measurements
NASA Astrophysics Data System (ADS)
Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.
2014-01-01
Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends
3D-marine tCSEM inversion using model reduction in the Rational Krylov subspace
NASA Astrophysics Data System (ADS)
Sommer, M.; Jegen, M. D.
2014-12-01
Computationally, the most expensive part of a 3D time domain CSEM inversion is the computation of the Jacobian matrix in every Gauss-Newton step. An other problem is its size for large data sets. We use a model reduction method (Zaslavsky et al, 2013), that compresses the Jacobian by projecting it with a Rational Krylov Subspace (RKS). It also reduces the runtime drastically, compared to the most common adjoint approach and was implemented on GPU.It depends on an analytic derivation of the implicit Anzatz function, which solves Maxwell's diffusion equation in the Eigenspace giving a Jacobian dependent on the Eigenpairs and its derivatives of the forward problem. The Eigenpairs are approximated by Ritz-pairs in the Rational Krylov subspace. Determination of the derivived Ritz-pairs is the most time consuming and was fully GPU-optimized. Furthermore, the amount of inversion cells is reduced by using Octree meshes. The gridding allows for the incorporation of complicated survey geometries, as they are encountered in marine CSEM datasets.As a first result, the Jacobian computation is, even on a Desktop, faster than the most common adjoint approach on a super computer for realistic data sets. We will present careful benchmarking and accuracy tests of the new method and show how it can be applied to a real marine scenario.
KOALA: 3-D shape of asteroids from multi-data inversion
NASA Astrophysics Data System (ADS)
Carry, B.; Kaasalainen, M.; Merline, W. J.; Drummond, J. D.; Durech, J.; Berthier, J.; Conrad, A.
2011-10-01
We describe our on-going observing program to determine the physical properties of asteroids from groundbased facilities. We combine disk-resolved images from adaptive optics, optical lightcurves, and stellar occultations to put tighter constraints on the spin, 3-D shape, and size of asteroids. We will discuss the relevance of the determination of physical properties to help understand the asteroid population (e.g., density, composition, and non-gravitational forces). We will then briefly describe our multi-data inversion algorithm KOALA (Carry et al. 2010a, Kaasalainen 2011, see also Kaasalainen et al., same meeting), which allows the determination of certain physical properties of an asteroid from the combination of different techniques of observation. A comparison of results obtained with KOALA on asteroid (21) Lutetia, prior to the ESA Rosetta flyby, with the high spatial resolution images returned from that flyby, will then be presented, showing the high accuracy of KOALA inversion. Finally, we will describe our current development of the algorithm, and focus on examples of other asteroids currently being studied with KOALA.
Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices
NASA Astrophysics Data System (ADS)
Wang, Jianguo; Chen, Zaigao; Wang, Yue; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Hongguang; Qiao, Hailiang; Fu, Meiyan; Yuan, Yuan
2010-07-01
This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.
Joint inversion of 3D crustal structure with ambient noise and earthquake body wave travel time
NASA Astrophysics Data System (ADS)
Li, Z.; Ni, S.; Chong, J.; Wang, X.
2012-12-01
Surface wave tomography based on the noise correlation function of seismic ambient noise has been widely used in studies of crustal and mantle structure . However, the periods of surface wave dispersions in the ambient noise tomography are typically less than 40 s, which limits its resolution on the lower crust. Travel times of earthquake body waves, such as Sg and SmS, could provide additional constraints to the crustal structure, especially to the lower crust due to the ray paths of SmS traveling through the lower crust twice. Here, we proposed a joint inversion method for 3D crustal structure with ambient noise and earthquake body wave travel time data, with the goal of providing better constraints and resolutions on the whole crust. We constructed the linear equations for joint inversion of crustal S velocity structure with the surface wave dispersion and body wave travel time data, and solved the equations with LSQR algorithm. Different weighting and damping factors, together with smoothing constraints, are adopted for surface wave dispersion and body wave travel time data to fit both dataset simultaneously. Synthetics experiments showed that the joint inversion could resolve the crust structure better than sole tomography of ambient noise or body wave travel time. We conducted the joint inversion around the Yangtze block in the eastern China. Rayleigh wave dispersions are extracted from the seismic ambient noise tomography by Zheng et al (2011) in this area. The body waves (e.g., Sg, SmS, Sn) are coherent to be identified and their travel times are measured with accuracy from high quality waveforms of some recent local earthquakes in this area. In order to minimize the travel time uncertainties, the focal depth and epicenter of these local earthquakes were resolved by depth phases and temporary aftershock observations. The result from joint inversion suggests that the crustal velocity structure, especially the lower crust, was well improved, which not only
NASA Astrophysics Data System (ADS)
Spicer, B.; Morris, B.; Ugalde, H.
2011-09-01
Hosted within the Pacquet Harbour Group (PHG) on the Baie Verte Peninsula of north-central Newfoundland, the Rambler rhyolite is a 487 Ma unit of felsic tuffs, flows and subvolcanic intrusive rocks. The PHG has been affected by multiple phases of deformation with the youngest D4 deformation event producing broad northeast plunging upright cross folds in the Rambler rhyolite. Fold culminations on the upper bounding surface of the rhyolite host Cu +/- Au volcanogenic massive sulfide deposits (e.g. Rambler and Ming mines). Geophysical inversions of recently acquired high resolution gravity and magnetic data have been implemented to determine the extent of the fold axis (dome) at depth. To direct the outcome of the inversion process towards a more geologically reasonable solution this study outlines a procedure which permits the inclusion of known geological and geophysical constraints into the input (reference) model for inversion using the MAG3D and GRAV3D algorithms provided by the University of British Columbia Geophysical Inversion Facility. Reference model constraints included surficial geological contacts as defined by aeromagnetic data, and subsurface distribution of physical property variations from a series of drill-hole logs. The output (computed) model images the surface of the rhyolite dome as dipping roughly 40° to the northeast as a series of voxels with density values ranging from 2.71 to 2.75 g/cm3. While previously published ore deposit models parallel this structure in the near surface, results from these inversions suggest deeper exploration may be favorable. Magnetic inversion modeling has not provided any insight into dome morphology however it outlines the distribution of gabbroic dykes surrounding the dome.
Centroid Moment Tensor Inversion in a 3D heterogeneous Earth: Application to the Australasian region
NASA Astrophysics Data System (ADS)
Hejrani, B.; Tkalcic, H.; Fichtner, A.
2015-12-01
radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet. Sci. Lett. 290, 270-280. Hingee, M., Tkalčić, H., Fichtner A., Sambridge, M., 2011. Moment tensor inversion using a 3-D structural model: Applications for the Australian region, Geophys. J. Int., 184(2), 949-964.
Impact of packet losses in scalable 3D holoscopic video coding
NASA Astrophysics Data System (ADS)
Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.
2014-05-01
Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.
NASA Astrophysics Data System (ADS)
Wang, Gongwen; Zhu, Yanyan; Zhang, Shouting; Yan, Changhai; Song, Yaowu; Ma, Zhenbo; Hong, Dongming; Chen, Tianzhen
2012-05-01
Three-dimensional (3D) geological modeling is an important method for understanding geological structures and exploring for mineral deposits. The Luanchuan super-large molybdenum polymetallic ore region has a complex geological setting and multiple metallogenic types. 3D geological modeling is implemented by combining geological knowledge with gravitational and magnetic data inversion in the study area. The 3D geological modeling methodology and the results are summarized as follows. (1) Based on the geological setting and the deposits/occurrences, the aim was to constrain and determine the main geological objects in 3D space to construct geological and metallogenic models. (2) Based on geological observations and rock physical measurements to derive qualitative information about geological objects at depths using gravitational and magnetic data inversion, 2.5D forward modeling was used to identify shallow/subsurface geological objects, and the 3D probability method of potential field inversion was used for coarse constraining of geological objects at depths. (3) A combination of geological information with gravitational and magnetic data inversion information was used to determine the space-time genesis of metallogenic objects in potential mineral targets (i.e., Late Jurassic granite intrusions, ore-forming strata, and ore mineralization favorable faults). (4)A 3D model of the study area (17.7 km × 12.0 km × 2.5 km) is associated with the surface and subsurface geological data, which has geophysical information that is beneficial for identifying and evaluating potential prospecting zones.
Multitasking the INS3D-LU code on the Cray Y-MP
NASA Technical Reports Server (NTRS)
Fatoohi, Rod; Yoon, Seokkwan
1991-01-01
This paper presents the results of multitasking the INS3D-LU code on eight processors. The code is a full Navier-Stokes solver for incompressible fluid in three dimensional generalized coordinates using a lower-upper symmetric-Gauss-Seidel implicit scheme. This code has been fully vectorized on oblique planes of sweep and parallelized using autotasking with some directives and minor modifications. The timing results for five grid sizes are presented and analyzed. The code has achieved a processing rate of over one Gflops.
RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors
Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael
2003-04-01
The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.
NASA Astrophysics Data System (ADS)
Kim, B.; Byun, J.; Seol, S. J.; Jeong, S.; Chung, Y.; Kwon, T.
2015-12-01
For many decades, gas hydrates have been received great attention as a potential source of natural gas. Therefore, the detailed information of structures of buried gas hydrates and their concentrations are prerequisite for the production for the gas hydrate as a reliable source of alternate energy. Recently, for this reason, a lot of gas hydrate assessment methods have been proposed by many researchers. However, it is still necessary to establish as new method for the further improvement of the accuracy of the 3D gas hydrate distribution. In this study, we present a 3D joint inversion method that provides superior quantitative information of gas hydrate distributions using 3D seismic data obtained by ocean-bottom cable (OBC) and marine controlled-source electromagnetic (CSEM) data. To verify our inversion method, we first built the general 3D gas hydrate model containing vertical methane-flow pathways. With the described model, we generated synthetic 3D OBC data and marine CSEM data using finite element modeling algorithms, respectively. In the joint inversion process, to obtain the high-resolution volumetric P-wave velocity structure, we applied the 3D full waveform inversion algorithm to the acquired OBC data. After that, the obtained P-wave velocity model is used as the structure constraint to compute cross-gradients with the updated resistivity model in the EM inversion process. Finally, petrophysical relations were applied to estimate volumetric gas hydrate concentrations. The proposed joint inversion process makes possible to obtain more precise quantitative gas hydrate assessment than inversion processes using only seismic or EM data. This technique can be helpful for accurate decision-making in gas hydrate development as well as in their production monitoring.
High-resolution imaging and inversion of 3D GPR data for layered media
NASA Astrophysics Data System (ADS)
Slob, Evert
2013-04-01
Ground penetrating radar is increasingly being used to provide quantitative information of layered structures. For application in civil engineering these can be roads, highway pavements, airport runways, bridges, tunnels, or buildings. Monitoring is important for the management and safety of these structures. Standard imaging uses a modeled wavefield extrapolator to image the data and the quality of the image depends heavily on the quality of the modeled extrapolator. Usually, data inversion is implemented by minimizing a cost function involving the measured data and the modeled data. The model is modified such that data computed from the model fits to the measured data. The data itself is not used, except as a measure of the model data fit. A recently developed alternative method is to use results from inverse scattering theory to first construct an image while all multiple reflections are simultaneously eliminated from the data. This image can be constructed from surface reflection data if the data allows separating the subsurface reflection response from the down going emitted field. For 3D waves in a layered medium this requires knowledge of all horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. In layered media the plane wave decomposition allows computing the image for each angle of incidence separately as a function of image time that is equal to the one-way intercept time. Once the image is constructed for all available angles of incidence a simple matrix inversion leads to the desired electric permittivity and magnetic permeability values in each layer. Finally these values provide interval velocities that can be used to convert image time to depth and the inverse problem is solved. The theory requires infinite bandwidth frequency domain data, which is equivalent to measuring the true impulse response. This is not possible in practice and numerical results show that data with finite bandwidths can be
Description of a parallel, 3D, finite element, hydrodynamics-diffusion code
Milovich, J L; Prasad, M K; Shestakov, A I
1999-04-11
We describe a parallel, 3D, unstructured grid finite element, hydrodynamic diffusion code for inertial confinement fusion (ICF) applications and the ancillary software used to run it. The code system is divided into two entities, a controller and a stand-alone physics code. The code system may reside on different computers; the controller on the user's workstation and the physics code on a supercomputer. The physics code is composed of separate hydrodynamic, equation-of-state, laser energy deposition, heat conduction, and radiation transport packages and is parallelized for distributed memory architectures. For parallelization, a SPMD model is adopted; the domain is decomposed into a disjoint collection of subdomains, one per processing element (PE). The PEs communicate using MPI. The code is used to simulate the hydrodynamic implosion of a spherical bubble.
Planet-Disk Interaction on the GPU: The FARGO3D code
NASA Astrophysics Data System (ADS)
Masset, F. S.; Benítez-Llambay, P.
2015-10-01
We present the new code FARGO3D. It is a finite difference code that solves the equations of hydrodynamics or magnetohydrodynamics on a Cartesian, cylindrical or spherical mesh. It features orbital advection, conserves mass and (angular) momentum to machine accuracy. Special emphasis is put on the description of planet disk tidal interactions. It is parallelized with MPI, and it can run indistinctly on CPUs or GPUs, without the need to program in a GPU oriented language.
Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Ameri, Ali
2005-01-01
This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.
3D Neutron Transport PWR Full-core Calculation with RMC code
NASA Astrophysics Data System (ADS)
Qiu, Yishu; She, Ding; Fan, Xiao; Wang, Kan; Li, Zeguang; Liang, Jingang; Leroyer, Hadrien
2014-06-01
Nowadays, there are more and more interests in the use of Monte Carlo codes to calculate the detailed power density distributions in full-core reactors. With the Inspur TS1000 HPC Server of Tsinghua University, several calculations have been done based on the EDF 3D Neutron Transport PWR Full-core benchmark through large-scale parallelism. To investigate and compare the results of the deterministic method and Monte Carlo method, EDF R&D and Department of Engineering Physics of Tsinghua University are having a collaboration to make code to code verification. So in this paper, two codes are used. One is the code COCAGNE developed by the EDF R&D, a deterministic core code, and the other is the Monte Carlo code RMC developed by Department of Engineering Physics in Tsinghua University. First, the full-core model is described and a 26-group calculation was performed by these two codes using the same 26-group cross-section library provided by EDF R&D. Then the parallel and tally performance of RMC is discussed. RMC employs a novel algorithm which can cut down most of the communications. It can be seen clearly that the speedup ratio almost linearly increases with the nodes. Furthermore the cell-mapping method applied by RMC consumes little time to tally even millions of cells. The results of the codes COCAGNE and RMC are compared in three ways. The results of these two codes agree well with each other. It can be concluded that both COCAGNE and RMC are able to provide 3D-transport solutions associated with detailed power density distributions calculation in PWR full-core reactors. Finally, to investigate how many histories are needed to obtain a given standard deviation for a full 3D solution, the non-symmetrized condensed 2-group fluxes of RMC are discussed.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Potapczuk, Mark G.
1993-01-01
A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by
NASA Astrophysics Data System (ADS)
Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.
2013-12-01
The overarching objectives of the second phase of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structures of the Atlas Mountains, and (ii) to test the hypotheses for explaining the observation of a 'missing' mantle root inferred from surface heat flow, gravity and geoid anomalies, elevation and seismic data modeling (i.e. Zeyen et al., 2005; Teixell et al., 2005; Fullea et al., 2010). We present the results from three-dimensional (3-D) MT inversion of data from two MT profiles employing the parallel version of Modular system for Electromagnetic inversion (ModEM; Egbert & Kelbert, 2012) code. For the profile in eastern Morocco, passing through Midelt, a distinct conductivity difference between the Middle-High Atlas (conductive) and Anti Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approximately 55 km). In all inverse solutions, the crust and the upper mantle show a resistive signature (750 Ωm - 1,000 Ωm) beneath the Anti Atlas to a depth of 100 km, which is the part of stable West African Craton. Our results are at variance with the proposed thin lithosphere beneath the Middle-High Atlas as we see no evidence for a shallow asthenosphere. Our second profile lies in western Morocco traversing through Marrakech. For the first time, the electrical resistivity distribution in the crust and in the upper mantle of Western High Atlas has been studied. Our 3-D resistivity model shows that conductive (1-20 Ωm) western High Atlas is confined by two resistive basins (>1,000 Ωm), Souss basin to the south and Houz basin to the north. At the southern boundary of the western High Atlas
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
A new 3-D integral code for computation of accelerator magnets
Turner, L.R.; Kettunen, L.
1991-01-01
For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.
RELAP5-3D Code Includes Athena Features and Models
Richard A. Riemke; Cliff B. Davis; Richard R. Schultz
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.
RELAP5-3D Code Includes ATHENA Features and Models
Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF{sub 6}, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)
Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators
NASA Astrophysics Data System (ADS)
Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.
2015-11-01
The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.
ATHENA 3D: A finite element code for ultrasonic wave propagation
NASA Astrophysics Data System (ADS)
Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.
2014-04-01
The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
NASA Astrophysics Data System (ADS)
Dong, H.; Kun, Z.; Zhang, L.
2015-12-01
This magnetotelluric (MT) system contains static shift correction and 3D inversion. The correction method is based on the data study on 3D forward modeling and field test. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with zero-cost, and avoids the additional field work and indoor processing with good results shown in Figure 1a-e. Figure 1a shows a normal model (I) without any local heterogeneity. Figure 1b shows a static-shifted model (II) with two local heterogeneous bodies (10 and 1000 ohm.m). Figure 1c is the inversion result (A) for the synthetic data generated from model I. Figure 1d is the inversion result (B) for the static-shifted data generated from model II. Figure 1e is the inversion result (C) for the static-shifted data from model II, but with static shift correction. The results show that the correction method is useful. The 3D inversion algorithm is improved base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the frequency based parallel structure, improved the computational efficiency, reduced the memory of computer, added the topographic and marine factors, and added the constraints of geology and geophysics. So the 3D inversion could even work in PAD with high efficiency and accuracy. The application example of theoretical assessment in oil and gas exploration is shown in Figure 1f-i. The synthetic geophysical model consists of five layers (from top to downwards): shale, limestone, gas, oil, groundwater and limestone overlying a basement rock. Figure 1f-g show the 3D model and central profile. Figure 1h shows the centrel section of 3D inversion, the resultsd show a high degree of reduction in difference on the synthetic model. Figure 1i shows the seismic waveform reflects the
Ui, Atsushi; Miyaji, Takamasa
2004-10-15
The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-01-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477
NASA Astrophysics Data System (ADS)
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-12-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed.
Equation-of-State Test Suite for the DYNA3D Code
Benjamin, Russell D.
2015-11-05
This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
Object-adaptive depth compensated inter prediction for depth video coding in 3D video system
NASA Astrophysics Data System (ADS)
Kang, Min-Koo; Lee, Jaejoon; Lim, Ilsoon; Ho, Yo-Sung
2011-01-01
Nowadays, the 3D video system using the MVD (multi-view video plus depth) data format is being actively studied. The system has many advantages with respect to virtual view synthesis such as an auto-stereoscopic functionality, but compression of huge input data remains a problem. Therefore, efficient 3D data compression is extremely important in the system, and problems of low temporal consistency and viewpoint correlation should be resolved for efficient depth video coding. In this paper, we propose an object-adaptive depth compensated inter prediction method to resolve the problems where object-adaptive mean-depth difference between a current block, to be coded, and a reference block are compensated during inter prediction. In addition, unique properties of depth video are exploited to reduce side information required for signaling decoder to conduct the same process. To evaluate the coding performance, we have implemented the proposed method into MVC (multiview video coding) reference software, JMVC 8.2. Experimental results have demonstrated that our proposed method is especially efficient for depth videos estimated by DERS (depth estimation reference software) discussed in the MPEG 3DV coding group. The coding gain was up to 11.69% bit-saving, and it was even increased when we evaluated it on synthesized views of virtual viewpoints.
NASA Astrophysics Data System (ADS)
Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis
2012-04-01
Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.
NASA Astrophysics Data System (ADS)
Prutkin, Ilya; Vajda, Peter; Jentzsch, Gerhard
2016-04-01
wavelengths for the Thuringian Basin have shown, that if we explain negative anomalies with topography of near-surface layers, the obtained solution is not supported by boreholes data. Upper part of a geological section is usually well studied, therefore, it is not always possible, to shift sources upward, because it can contradict to available geological information. For each local anomaly, its interpretation includes several steps. We subtract the model of the regional field (2D harmonic function). Then, we approximate the residuals with 3D line segments, it provides reliable estimates for mass and center of mass coordinates. For the Kolarovo anomaly of 25 mGal, residuals by approximation have RMS = 0.57 mGal. Here we find very few parameters (14 for two segments) according to several thousand observations, which is quite stable. Finally, we transform a chosen set of line segments into a restricted object or a contact surface with the same field (in the situation where a solution of the inverse problem is unique). We have obtained a model for intermediate wavelengths in the Thuringian Basin, which includes three restricted bodies (granitic intrusions) and a density interface with topography below them.
Wall touching kink mode calculations with the M3D code
NASA Astrophysics Data System (ADS)
Breslau, J. A.
2014-10-01
In recent years there have been a number of results published concerning the transient vessel currents and forces occurring during a tokamak VDE, as predicted by simulations with the nonlinear MHD code M3D. The nature of the simulations is such that these currents and forces occur at the boundary of the computational domain, making the proper choice of boundary conditions critical to the reliability of the results. The M3D boundary condition includes the prescription that the normal component of the velocity vanish at the wall. It has been argued that this prescription invalidates the calculations because it would seem to rule out the possibility of advection of plasma surface currents into the wall. This claim has been tested by applying M3D to an idealized case - a kink-unstable plasma column - in order to abstract the essential physics from the complications involved in the attempt to model real devices. While comparison of the results is complicated by effects arising from the higher dimensionality and complexity of M3D, we have verified that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the ``Hiro'' currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.
NASA Astrophysics Data System (ADS)
Green, A.; Gribenko, A.; Cuma, M.; Zhdanov, M. S.
2008-12-01
In this paper we apply 3D inversion to MT data collected in Oregon as a part of the EarthScope project. We use the integral equation method as a forward modeling engine. Quasi-analytical approximation with a variable background (QAVB) method of Frechet derivative calculation is applied. This technique allows us to simplify the inversion algorithm and to use just one forward modeling on every iteration step. The receiver footprint approach considerably reduces the computational resources needed to invert the large volumes of data covering vast areas. The data set, which was used in the inversion, was obtained through the Incorporated Research Institutions for Seismology (IRIS). The long-period MT data was collected in Eastern Oregon in 2006. The inverted electrical conductivity distribution agrees reasonably well with geological features of the region as well as with 3D MT inversion results obtained by other researchers. The geoelectrical model of the Oregon deep interior produced by 3D inversion indicates several lithospheres' electrical conductivity anomalies, including a linear zone marked by low-high conductivity transition along the Klamath Blue Mountain Lineament associated with a linear trend of gravity minima. High electrical conductivity values occur in the upper crust under the accreted terrains in the Blue Mountains region.
Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.
Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C
2004-01-01
Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %. PMID:15625058
Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code
Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I
1998-12-28
An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices. PMID:24263010
The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses
NASA Astrophysics Data System (ADS)
Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart
2012-01-01
This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.
NASA Astrophysics Data System (ADS)
Barnoud, Anne; Bouligand, Claire; Coutant, Olivier
2015-04-01
We linearly invert magnetic data for 3D magnetization distribution using a Bayesian methodology with a grid discretization of the space. The Bayesian approach introduces covariance matrices to regularize the ill-posed problem and overcome the non-uniqueness of the solution (Tarantola & Valette, 1982). The use of spatial covariance matrices and grid discretization leads to smooth and compact models. The algorithm provides 3D magnetization models along with resolution parameters extracted from the resolution matrix. The direct computation of the magnetic field includes the surface topography and assumes a linear relationship between rock magnetization and the magnetic field they produce. The methodology is applied to aeromagnetic data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles (Le Borgne & Le Mouël 1976, Le Mouël et al., 1979). Low magnetizations (a few A/m) allow linear inversion that takes into account polarity inversions of the geomagnetic field that occurred across the volcanic history of the island. Inverted magnetizations are consistent with paleomagnetic measurements on surface samples (Carlut et al., 2000 ; Samper et al., 2007). The resulting 3D model is validated against a 2D inversion performed in the Fourier domain (Parker & Huestis, 1974; Bouligand et al., 2014). The 3D distribution of magnetization helps identifying the different volcanic edifices that build the island both at the surface and up to 3 km depth.
3D inversion of full gravity gradient tensor data using SL0 sparse recovery
NASA Astrophysics Data System (ADS)
Meng, Zhaohai
2016-04-01
We present a new method dedicated to the interpretation of full gravity gradient tensor data, based on SL0 sparse recovery inversion. The SL0 sparse recovery method aims to find out the minimum value of the objective function to fit the data function and to solve the non-zero solution to the objective function. Based on continuous iteration, we can easily obtain the final global minimum (namely the property and space attribute of the inversion target). We consider which type of tensor data combination produces the best inversion results based on the inversion results of different full gravity gradient tensor data combinations (separate tensor data and combined tensor data). We compare the recovered models obtained by inverting the different combinations of different gravity gradient tensor components to understand how different component combinations contribute to the resolution of the recovered model. Based on the comparison between the SL0 sparse recovery inversion results and the smoothest and focusing inversion results of the full gravity gradient tensor data, we show that SL0 sparse recovery inversion can obtain more stable and efficient inversion results with relatively sharp edge information, and that this method can also produce a stable solution of the inverse problem for complex geological structures. This new method to resolve very large full gravity gradient tensor datasets has the considerable advantage of being highly efficient; the full gravity gradient tensor inversion requires very little time. This new method is very effective in explaining the full gravity tensor which is very sensitive to small changes in local anomaly. The numerical simulation and inversion results of the compositional model indicates that including multiple components for inversion increases the resolution of the recovered density model and improves the structure delineation. We apply our inversion method to invert the gravity gradient tensor survey data from the Vinton salt
User Guide for the R5EXEC Coupling Interface in the RELAP5-3D Code
Forsmann, J. Hope; Weaver, Walter L.
2015-04-01
This report describes the R5EXEC coupling interface in the RELAP5-3D computer code from the users perspective. The information in the report is intended for users who want to couple RELAP5-3D to other thermal-hydraulic, neutron kinetics, or control system simulation codes.
Development of a GPU-Accelerated 3-D Full-Wave Code for Reflectometry Simulations
NASA Astrophysics Data System (ADS)
Reuther, K. S.; Kubota, S.; Feibush, E.; Johnson, I.
2013-10-01
1-D and 2-D full-wave codes used as synthetic diagnostics in microwave reflectometry are standard tools for understanding electron density fluctuations in fusion plasmas. The accuracy of the code depends on how well the wave properties along the ignored dimensions can be pre-specified or neglected. In a toroidal magnetic geometry, such assumptions are never strictly correct and ray tracing has shown that beam propagation is inherently a 3-D problem. Previously, we reported on the application of GPGPU's (General-Purpose computing on Graphics Processing Units) to a 2-D FDTD (Finite-Difference Time-Domain) code ported to utilize the parallel processing capabilities of the NVIDIA C870 and C1060. Here, we report on the development of a FDTD code for 3-D problems. Initial tests will use NVIDIA's M2070 GPU and concentrate on the launching and propagation of Gaussian beams in free space. If available, results using a plasma target will also be presented. Performance will be compared with previous generations of GPGPU cards as well as with NVIDIA's newest K20C GPU. Finally, the possibility of utilizing multiple GPGPU cards in a cluster environment or in a single node will also be discussed. Supported by U.S. DoE Grants DE-FG02-99-ER54527 and DE-AC02-09CH11466 and the DoE National Undergraduate Fusion Fellowship.
Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces
NASA Astrophysics Data System (ADS)
Lyapustin, Alexei; Wang, Yujie
2005-12-01
The code SHARM-3D, developed for fast and accurate simulations of the monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance, is described. The atmosphere is assumed to be laterally uniform across the image and to consist of two layers with aerosols contained in the bottom layer. The SHARM-3D code performs simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in one run. The numerical efficiency of the current version of code is close to its potential limit and is achieved by means of two innovations. The first is the development of a comprehensive precomputed lookup table of the three-dimensional atmospheric optical transfer function for various atmospheric conditions. The second is the use of a linear kernel model of the land surface bidirectional reflectance factor (BRF) in our algorithm that has led to a fully parameterized solution in terms of the surface BRF parameters. The code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima-Tanaka BRF model of wind-roughened water surface with a Lambertian offset, which is designed to model approximately the reflectance of suspended matter and of a shallow lake or river bottom.
A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0
STRICKLAND, JAMES H.; HOMICZ, GREGORY F.; PORTER, VICKI L.; GOSSLER, ALBERT A.
2002-07-01
This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A.; Zadoks, R.I.
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
NASA Astrophysics Data System (ADS)
Koch, Stephan; Kuvshinov, Alexey
2015-03-01
We present the first inversion of geomagnetic Sq data in a framework of 3-D conductivity models. This problem has been considered as immensely difficult due to the complex spatial structure of the Sq source which, in addition, varies with season and solar activity. Recently, we developed a 3-D electromagnetic (EM) inversion solution that allows one to work in a consistent manner with data that originates from sources, irrespective of their spatial complexity. In this paper, we apply our 3-D EM inversion scheme to Sq data collected during the Australian Wide Array of Geomagnetic Stations project. Within this project, three components of the geomagnetic field were recorded between 1989 November and 1990 December with the use of 53 portable vector magnetometers. The instruments were distributed over the Australian mainland with an average spacing of 275 km between sites. Inverting this unique-in a sense of its spatial regularity, density and long operational time-data set, we recovered the 3-D conductivity distribution beneath Australia at upper mantle depths (100-520 km). This depth range was justified in the paper from resolution studies using checkerboard tests. In addition, we performed extensive modelling to estimate quantitatively the influence of various factors on Sq signals, namely from hypothetical anomalies, inaccuracy in the source, ocean, and model discretization. As expected, the ocean (coastal) effect appeared to be the largest so that it has to be accounted for during 3-D inversion as accurately as possible. Our 3-D inversions-of data from either single or multiple days-revealed a strong offshore conductor near the south-east coast of Australia, which persists at all considered depths. Varying in details, this anomaly is remarkably robust irrespective of the considered day(s). We compared our results to those obtained from a different inversion scheme and an independent induction data set, and observed encouraging similarity. Combination of the two
A 3d particle simulation code for heavy ion fusion accelerator studies
Friedman, A.; Bangerter, R.O.; Callahan, D.A.; Grote, D.P.; Langdon, A.B. ); Haber, I. )
1990-06-08
We describe WARP, a new particle-in-cell code being developed and optimized for ion beam studies in true geometry. We seek to model transport around bends, axial compression with strong focusing, multiple beamlet interaction, and other inherently 3d processes that affect emittance growth. Constraints imposed by memory and running time are severe. Thus, we employ only two 3d field arrays ({rho} and {phi}), and difference {phi} directly on each particle to get E, rather than interpolating E from three meshes; use of a single 3d array is feasible. A new method for PIC simulation of bent beams follows the beam particles in a family of rotated laboratory frames, thus straightening'' the bends. We are also incorporating an envelope calculation, an (r, z) model, and 1d (axial) model within WARP. The BASIS development and run-time system is used, providing a powerful interactive environment in which the user has access to all variables in the code database. 10 refs., 3 figs.
The future of 3D and video coding in mobile and the internet
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2013-09-01
The current Internet success has already changed our social and economic world and is still continuing to revolutionize the information exchange. The exponential increase of amount and types of data that is currently exchanged on the Internet represents significant challenge for the design of future architectures and solutions. This paper reviews the current status and trends in the design of solutions and research activities in the future Internet from point of view of managing the growth of bandwidth requirements and complexity of the multimedia that is being created and shared. Outlines the challenges that are present before the video coding and approaches to the design of standardized media formats and protocols while considering the expected convergence of multimedia formats and exchange interfaces. The rapid growth of connected mobile devices adds to the current and the future challenges in combination with the expected, in near future, arrival of multitude of connected devices. The new Internet technologies connecting the Internet of Things with wireless visual sensor networks and 3D virtual worlds requires conceptually new approaches of media content handling from acquisition to presentation in the 3D Media Internet. Accounting for the entire transmission system properties and enabling adaptation in real-time to context and content throughout the media proceeding path will be paramount in enabling the new media architectures as well as the new applications and services. The common video coding formats will need to be conceptually redesigned to allow for the implementation of the necessary 3D Media Internet features.
Spacecraft charging analysis with the implicit particle-in-cell code iPic3D
Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.
2013-10-15
We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.
GPU-accelerated 3D neutron diffusion code based on finite difference method
Xu, Q.; Yu, G.; Wang, K.
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
Jia, Jia; Liu, Juan; Jin, Guofan; Wang, Yongtian
2014-09-20
Occlusion culling is an important process that produces correct depth cues for observers in holographic displays, whereas current methods suffer from occlusion errors or high computational loads. We propose a fast and effective method for occlusion culling based on multiple light-point sampling planes and an inverse orthographic projection technique. Multiple light-point sampling planes are employed to remove the hidden surfaces for each direction of the view of the three-dimensional (3D) scene by forward orthographic projection, and the inverse orthographic projection technique is used to determine the effective sampling points of the 3D scene. A numerical simulation and an optical experiment are performed. The results show that this approach can realize accurate occlusion effects, smooth motion parallax, and continuous depth using low angular sampling without any extra computation costs. PMID:25322109
Validation of CATHARE 3D Code Against UPTF TRAM C3 Transients
NASA Astrophysics Data System (ADS)
Glantz, Tony; Freitas, Roberto
Within the nuclear reactor safety analysis, one of the events that could potentially lead to a re-criticality accident in case of a Small Break Loss of Coolant Accident (SBLOCA) in a Pressurized Water Reactor (PWR) is a boron dilution scenario followed by a coolant mixing transient. Some UPTF experiments can be interpreted as generic boron dilution experiments. In fact, the UPTF experiments were originally designed to conduct separate effects studies focused on multi-dimensional thermal hydraulic phenomena. However, in the case of experimental program TRAM, some studies are realized on the boron mixing: tests C3. Some of these tests have been used for the validation and assessment of the 3D module of CATHARE code. Results are very satisfying; CATHARE 3D code is able to reproduce correctly the main features of the UPTF TRAM C3 tests, the temperature mixing in the cold leg, the formation of a strong stratification in the upper downcomer, the perfect mixing temperature in the lower downcomer and the strong stratification in the lower plenum. These results are also compared with the CFX5 and TRIO-U codes results on these tests.
NASA Astrophysics Data System (ADS)
Chen, P.; Lee, E.; Jordan, T. H.; Maechling, P. J.
2009-12-01
Accurate and rapid CMT inversion is important for seismic hazard analysis. We have developed an algorithm for very rapid CMT inversions in a 3D Earth structure model and applied it on small to medium-sized earthquakes recorded by the Southern California Seismic Network (SCSN). Our CMT inversion algorithm is an integral component of the scattering-integral (SI) method for full-3D waveform tomography (F3DT). In the SI method for F3DT, the sensitivity (Fréchet) kernels are constructed through the temporal convolution between the earthquake wavefield (EWF) and the receiver Green tensor (RGT), which is the wavefield generated by 3 orthogonal unit impulsive body forces acting at the receiver location. The RGTs are also the partial derivatives of the waveform with respect to the moment tensors. In this study, our RGTs are computed in a 3D seismic structure model for Southern California (CVM4SI1) using the finite-difference method, which allows us to account for 3D path effects in our source inversion. We used three component broadband waveforms below 0.2 Hz. An automated waveform-picking algorithm based on continuous wavelet transform is applied on observed waveforms to pick P, S and surface waves. A multi-scale grid-searching algorithm is then applied on the picked waveforms to find the optimal strike, dip and rake values that minimize the amplitude misfit and maximize the correlation coefficient. In general, our CMT solutions agree with solutions inverted using other methods and provide better fit to the observed waveforms.
NASA Astrophysics Data System (ADS)
Mu, D.; Lee, E.; Chen, P.; Jordan, T. H.; Maechling, P. J.
2010-12-01
Accurate and rapid CMT inversion is important for seismic hazard analysis. We have developed an algorithm for very rapid CMT inversions in a 3D Earth structure model and applied it on small to medium-sized earthquakes recorded by the Southern California Seismic Network (SCSN). Our CMT inversion algorithm is an integral component of the scattering-integral (SI) method for full-3D waveform tomography (F3DT). In the SI method for F3DT, the sensitivity (Fréchet) kernels are constructed through the temporal convolution between the earthquake wavefield (EWF) from the source and the receiver Green tensor (RGT) from the receiver. In this study, our RGTs were computed in a 3D seismic structure model for Southern California (CVM4SI1) using the finite-difference method, which allows us to account for 3D path effects in our source inversion. By storing the RGTs, synthetic seismograms for any source in our modeling volume could be generated rapidly by applying the reciprocity principle. An automated waveform-picking algorithm based on continuous wavelet transform is applied on observed waveforms to pick P, S and surface waves. A grid-searching algorithm is then applied on the picked waveforms to find an optimal focal mechanism that minimizes the amplitude misfit and maximize the weighted correlation coefficient. The grid-search result is then used as the initial solution in a gradient-based optimization algorithm that minimizes the L2 norm of the generalized seismological data functionals (GSDF), which quantifies waveform differences between observed and synthetic seismograms using frequencies-dependent phase-delay and amplitude anomalies. In general, our CMT solutions agree with solutions inverted using other methods and provide better fit to the observed waveforms.
Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code
Minkoff, S.E.
1999-12-01
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code
MINKOFF,SUSAN E.
1999-12-09
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
An easy implementation of displacement calculations in 3D discrete dislocation dynamics codes
NASA Astrophysics Data System (ADS)
Fivel, Marc; Depres, Christophe
2014-10-01
Barnett's coordinate-free expression of the displacement field of a triangular loop in an isotropic media is revisited in a view to be implemented in 3D discrete dislocation dynamics codes. A general meshing procedure solving the problems of non-planar loops is presented. The method is user-friendly and can be used in numerical simulations since it gives the contribution of each dislocation segment to the global displacement field without defining the connectivity of closed loops. Easy to implement in parallel calculations, this method is successfully applied to large-scale simulations.
3D and 4D Simulations of the Dynamics of the Radiation Belts using VERB code
NASA Astrophysics Data System (ADS)
Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Orlova, Ksenia
2015-04-01
Modeling and understanding of ring current and higher energy radiation belts has been a grand challenge since the beginning of the space age. In this study we show long term simulations with a 3D VERB code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. We show that while lower energy radial transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show there exists an intermediate range of energies for electrons for which both processes work simultaneously.
Automated design of coupled RF cavities using 2-D and 3-D codes
Smith, Peter; Christiansen, D. W.; Greninger, P. T.; Spalek, G.
2001-01-01
Coupled RF cavities in the Accelerator Production of Tritium Project have been designed using a procedure in which a 2-D code (CCT) searches for a design that meets frequency and coupling requirements, while a 3-D code (HFSS) is used to obtain empirical factors used by CCT to characterize the coupling slot between cavities. Using assumed values of the empirical factors, CCT runs the Superfish code iteratively to solve for a trial cavity design that has a specified frequency and coupling. The frequency shifts and the coupling constant k of the slot are modeled in CCT using a perturbation theory, the results of which are adjusted using the empirical factors. Given a trial design, HFSS is run using periodic boundary conditions to obtain a mode spectrum. The mode spectrum is processed using the DISPER code to obtain values of the coupling and the frequencies with slots. These results are used to calculate a new set of empirical factors, which are fed back into CCT for another design iteration. Cold models have been fabricated and tested to validate the codes, and results will be presented.
3-D localization of gamma ray sources with coded apertures for medical applications
NASA Astrophysics Data System (ADS)
Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. P.
2015-09-01
Several small gamma cameras for radioguided surgery using CdTe or CdZnTe have parallel or pinhole collimators. Coded aperture imaging is a well-known method for gamma ray source directional identification, applied in astrophysics mainly. The increase in efficiency due to the substitution of the collimators by the coded masks renders the method attractive for gamma probes used in radioguided surgery. We have constructed and operationally verified a setup consisting of two CdTe gamma cameras with Modified Uniform Redundant Array (MURA) coded aperture masks of rank 7 and 19 and a video camera. The 3-D position of point-like radioactive sources is estimated via triangulation using decoded images acquired by the gamma cameras. We have also developed code for both fast and detailed simulations and we have verified the agreement between experimental results and simulations. In this paper we present a simulation study for the spatial localization of two point sources using coded aperture masks with rank 7 and 19.
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Jardin, Stephen C.; Igochine, Valentin; Guenter, Sibylle; Hoelzl, Matthias; ASDEX Upgrade Team
2014-10-01
We study sawtooth reconnection in ASDEX Upgrade tokamak plasmas by means of 3D non-linear two-fluid MHD simulations in toroidal geometry using the high-order finite element code M3D-C1. Parameters and equilibrium of the simulations are based on typical sawtoothing ASDEX Upgrade discharges. The simulation results are compared to features of the experimental observations such as the sawtooth crash time and frequency, the evolution of the safety factor profile and the 3D evolution of the temperature. 2D ECE imaging measurements during sawtooth crashes in ASDEX Upgrade indicate that the heat is transported out of the core through a narrow poloidally localized region. We investigate if incomplete sawtooth reconnection can be seen in the simulations which is suggested by soft X-ray tomography measurements in ASDEX Upgrade showing that an (m = 1, n = 1) perturbation is typically observed to survive the sawtooth crash and approximately maintain its radial position.
Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX
Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.
2012-05-09
The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which are a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.
Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX
Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.
2012-05-09
The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less
NICOLE: NLTE Stokes Synthesis/Inversion Code
NASA Astrophysics Data System (ADS)
Socas-Navarro, H.
2015-08-01
NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observes spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.
A 3D multi-block structured version of the KIVA 2 code
NASA Astrophysics Data System (ADS)
Habachi, C.; Torres, A.
A numerical procedure is developed in the KIVA 2 code for calculating flows in complex geometries. Those geometries consist of an arbitrary number of 3D secondary domains which are connected with any angle to a main region. In this procedure, the governing equations are discretized on a system of partial overlapping structured grids. Calculations are performed in the different meshes of the computation domain which are linked by a fully conservative algorithm. By this numerical technique, calculations in those geometries are possible with a reasonable number of inactive cells involved by a structured code like KIVA 2. This algorithm was validated on an 1D analytical case and a 2D experimental case. It was then used for modeling an industrial problem, a two stroke engine with ports and moving boundaries.
Newly-Developed 3D GRMHD Code and its Application to Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers
NASA Astrophysics Data System (ADS)
Zhang, Yi; Yan, Jianguo; Li, Fei; Chen, Chao; Mei, Bao; Jin, Shuanggen; Dohm, James H.
2015-04-01
In this paper, we present a method for incorporating prior geological information into potential field data inversion problem. As opposed to the traditional inverse algorithm, our proposed method takes full advantage of prior geological information as a constraint and thus obtains a new objective function for inversion by adding Lagrangian multipliers and slack variables to the traditional inversion method. These additional parameters can be easily solved during iterations. We used both synthetic and observed data sets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts depth and density anomalies more efficiently and accurately than the traditional inversion method that does not include prior geological constraints. Then using observed gravity data in the Three Gorges area and geological constraint information, we obtained the density distribution of the upper and middle crust in this area thus revealing its geological structure. These results confirm the proposed method's validity and indicate its potential application for magnetism data inversion and exploration of geological structures.
3D thermo-chemical-mechanical simulation of power ramps with ALCYONE fuel code
NASA Astrophysics Data System (ADS)
Baurens, B.; Sercombe, J.; Riglet-Martial, C.; Desgranges, L.; Trotignon, L.; Maugis, P.
2014-09-01
This paper presents the coupling of the fuel performance code ALCYONE with the thermochemical code ANGE and its application to Iodine-Stress Corrosion Cracking (I-SCC). The coupling is illustrated by a 3D simulation of a power ramp. The release of chemically active gases (CsI(g), Tex(1
3-D model-based frame interpolation for distributed video coding of static scenes.
Maitre, Matthieu; Guillemot, Christine; Morin, Luce
2007-05-01
This paper addresses the problem of side information extraction for distributed coding of videos captured by a camera moving in a 3-D static environment. Examples of targeted applications are augmented reality, remote-controlled robots operating in hazardous environments, or remote exploration by drones. It explores the benefits of the structure-from-motion paradigm for distributed coding of this type of video content. Two interpolation methods constrained by the scene geometry, based either on block matching along epipolar lines or on 3-D mesh fitting, are first developed. These techniques are based on a robust algorithm for sub-pel matching of feature points, which leads to semi-dense correspondences between key frames. However, their rate-distortion (RD) performances are limited by misalignments between the side information and the actual Wyner-Ziv (WZ) frames due to the assumption of linear motion between key frames. To cope with this problem, two feature point tracking techniques are introduced, which recover the camera parameters of the WZ frames. A first technique, in which the frames remain encoded separately, performs tracking at the decoder and leads to significant RD performance gains. A second technique further improves the RD performances by allowing a limited tracking at the encoder. As an additional benefit, statistics on tracks allow the encoder to adapt the key frame frequency to the video motion content. PMID:17491456
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
Quantitative analysis of accuracy of seismic wave-propagation codes in 3D random scattering media
NASA Astrophysics Data System (ADS)
Galis, Martin; Imperatori, Walter; Mai, P. Martin
2013-04-01
Several recent verification studies (e.g. Day et al., 2001; Bielak et al., 2010, Chaljub et al., 2010) have demonstrated the importance of assessing the accuracy of available numerical tools at low frequency in presence of large-scale features (basins, topography, etc.). The fast progress in high-performance computing, including efficient optimization of numerical codes on petascale supercomputers, has permitted the simulation of 3D seismic wave propagation at frequencies of engineering interest (up to 10Hz) in highly heterogeneous media (e.g. Hartzell et al, 2010; Imperatori and Mai, 2013). However, high frequency numerical simulations involving random scattering media, characterized by small-scale heterogeneities, are much more challenging for most numerical methods, and their verification may therefore be even more crucial than in the low-frequency case. Our goal is to quantitatively compare the accuracy and the behavior of three different numerical codes for seismic wave propagation in 3D random scattering media at high frequency. We deploy a point source with omega-squared spectrum, and focus on the near-source region, being of great interest in strong motion seismology. We use two codes based on finite-difference method (FD1 and FD2) and one code based on support-operator method (SO). Both FD1 and FD2 are 4-th order staggered-grid finite-difference codes (for FD1 see Olsen et al., 2009; for FD2 see Moczo et al., 2007). The FD1 and FD2 codes are characterized by slightly different medium representations, since FD1 uses point values of material parameters in each FD-cell, while FD2 uses the effective material parameters at each grid-point (Moczo et al., 2002). SO is 2-nd order support-operator method (Ely et al., 2008). We considered models with random velocity perturbations described by van Karman correlation function with different correlation lengths and different standard deviations. Our results show significant variability in both phase and amplitude as
NASA Astrophysics Data System (ADS)
Inogamov, Nail A.; Zhakhovsky, Vasily V.
2016-02-01
There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.
NASA Astrophysics Data System (ADS)
Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Gunawan, Hendra; Deroussi, Sébastien
2016-04-01
We use a Bayesian formalism combined with a grid node discretization for the linear inversion of gravimetric data in terms of 3-D density distribution. The forward modelling and the inversion method are derived from seismological inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian formulation introduces covariance matrices on model parameters to regularize the ill-posed problem and reduce the non-uniqueness of the solution. This formalism favours smooth solutions and allows us to specify a spatial correlation length and to perform inversions at multiple scales. We also extract resolution parameters from the resolution matrix to discuss how well our density models are resolved. This method is applied to the inversion of data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles. A series of synthetic tests are performed to investigate advantages and limitations of the methodology in this context. This study results in the first 3-D density models of the island of Basse-Terre for which we identify: (i) a southward decrease of densities parallel to the migration of volcanic activity within the island, (ii) three dense anomalies beneath Petite Plaine Valley, Beaugendre Valley and the Grande-Découverte-Carmichaël-Soufrière Complex that may reflect the trace of former major volcanic feeding systems, (iii) shallow low-density anomalies in the southern part of Basse-Terre, especially around La Soufrière active volcano, Piton de Bouillante edifice and along the western coast, reflecting the presence of hydrothermal systems and fractured and altered rocks.
3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design
Gelinas, R.J.; Doss, S.K.; Nelson, R.G.
1994-07-20
This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.
Development and preliminary verification of the 3D core neutronic code: COCO
Lu, H.; Mo, K.; Li, W.; Bai, N.; Li, J.
2012-07-01
As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code, the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)
Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect
Energy Science and Technology Software Center (ESTSC)
2001-10-24
NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
NASA Astrophysics Data System (ADS)
Wang, Y.; Forsyth, D. W.; Savage, B.
2010-12-01
In our previous surface wave study in Gulf of California area, we developed a moderate-resolution 3D shear velocity model by employing two-plane wave field representation array technique and 2D finite frequency kernels based on Born’s approximation. Using both amplitude and phase information of 22-111s teleseismic Rayleigh wave, we were able to constrain a lateral resolution on the order of 100 km in the upper 160 km depth. In order to enhance resolution beneath the highly heterogeneous Gulf region, we carry on further study using Spectral element method (SEM) for forward wave propagation simulation and adjoint method for tomographic inversion. The code we are using is SPECFEM3D_GLOBE by Komatitsch and Tromp et al. To enhance the resolution in the Gulf, we will minimize the waveform difference between the regional earthquake seismograms, recorded by NARS-Baja seismic array and stations in southern California, and synthetic seismograms simulated by SEM, to iteratively update the current model based on an adjoint inversion. Taking our current 3D moderate-resolution model as starting point and a recently developed crustal structure of Gulf region should help to reduce the number of iterations. There are two reasons that resolution should be enhanced compared to surface wave tomography: first, regional events contain more high frequency signals than teleseismic events; second, SEM is a full waveform synthesis method avoiding many of the usual approximations in tomographic studies. Improved tomographic images of 3D velocity heterogeneities in the upper mantle of Gulf of California will help to identify compositional and temperature variations, leading to a better understanding of mantle dynamics in the region.
2D and 3D separate and joint inversion of airborne ZTEM and ground AMT data: Synthetic model studies
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang
2014-05-01
The ZTEM (Z-axis Tipper Electromagnetic) method measures naturally occurring audio-frequency magnetic fields and obtains the tipper function that defines the relationship among the three components of the magnetic field. Since the anomalous tipper responses are caused by the presence of lateral resistivity variations, the ZTEM survey is most suited for detecting and delineating conductive bodies extending to considerable depths, such as graphitic dykes encountered in the exploration of unconformity type uranium deposit. Our simulations shows that inversion of ZTEM data can detect reasonably well multiple conductive dykes placed 1 km apart. One important issue regarding ZTEM inversion is the effect of the initial model, because homogeneous half-space and (1D) layered structures produce no responses. For the 2D model with multiple conductive dykes, the inversion results were useful for locating the dykes even when the initial model was not close to the true background resistivity. For general 3D structures, however, the resolution of the conductive bodies can be reduced considerably depending on the initial model. This is because the tipper magnitudes from 3D conductors are smaller due to boundary charges than the 2D responses. To alleviate this disadvantage of ZTEM surveys, we combined ZTEM and audio-frequency magnetotelluric (AMT) data. Inversion of sparse AMT data was shown to be effective in providing a good initial model for ZTEM inversion. Moreover, simultaneously inverting both data sets led to better results than the sequential approach by enabling to identify structural features that were difficult to resolve from the individual data sets.
NASA Astrophysics Data System (ADS)
Timur, Emre
2016-04-01
There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.
A modified initial in-situ Stress Inversion Method based on FLAC3D with an engineering application
NASA Astrophysics Data System (ADS)
Li, Yong; Guo, Yunhua; Zhu, Weishen; Li, Shucai; Zhou, Hao
2015-12-01
To improve the accuracy of an initial in-situ stress field determined by inversion, we describe a modi fied initial in-situ stress inversion method that uses partial least-squares regression based on FLAC3D. First, each stress component is regressed to improve the fitting accuracy of locally abnormal stress regions, and then the relationship between element stress and unbalanced node force is analyzed according to the computational principles of FLAC3D. The initial in-situ stresses obtained from these regression calculations are added to a numerical model, and the unbalanced node forces are recalculated. An external force equal to the recalculated unbalanced node force is then exerted on the node in the direction opposing the original unbalanced node force to satisfy the equilibrium condition. For the in-situ stresses of elements that do not satisfy the strength conditions, they are modi fied by assuming the average stress is constant and reducing the partial stress to satisfy the equilibrium and strength conditions, which also resolves the unreasonable distribution of the boundary nodal forces and results in good regression estimates. A three-dimensional hypersurface spline interpolation method is developed to calculate the in-situ stress tensor at arbitrary coordinates. Finally, we apply this method to an underground engineering project, and the results are shown to agree well with those obtained from field monitoring. Therefore, it is concluded that this modified in-situ stress inversion method could effectively improve the fitting accuracy of locally abnormal stress regions.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2014-12-01
An application of the 3D elastic full-waveform inversion (FWI) to wide-aperture seismic data obtained for a complex geological setting is presented. Imaging is implemented in the Fourier domain, exploiting damped wave fields. The modeling part is solved with a finite-difference method. The non-linear conjugate gradient method is used for the inverse problem solution. The nonlinearity of FWI leads to the presence of local and multiple minima in the least-squares error functional especially for large offset problems. That leads to the shutdown of the inverse problem convergence and uncertainty in the solution. An accurate starting velocity model can avoid this problem, but in many cases may not be available. Hence other strategies are necessary to address the problem. We propose a robust inversion process for an arbitrary starting velocity model, which allows avoiding local minima and obtaining acceptable images of the deep seated structures defined by large offset data. We proceed from the assumption that decreasing data offset reduces local minima problems but decreases the depth of the recovered image. So, the inversion process is realized sequentially from small to large offsets, allowing recovery of geological structures over the entire depth range of interest from the near surface to deeper depths sensed only by large aperture offsets. Increasing of data offset is first performed at the lowest frequency and then proceeding with treatment of all data offsets from low to high frequencies. A reverse loop is also implemented in the laddering of frequencies, where after the inversion at high frequencies and all offsets we return to the lower frequencies data to continue the IP. Returning to lower frequency data provides helping to ameliorate multiple minima encountered in the inversion. The inversion then concludes by sweeping over higher frequency data, at all offsets. We demonstrate our strategies for treating wide aperture offset data on the Marmousi model, using
NASA Astrophysics Data System (ADS)
Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.
2013-09-01
Holoscopic imaging, also known as integral imaging, has been recently attracting the attention of the research community, as a promising glassless 3D technology due to its ability to create a more realistic depth illusion than the current stereoscopic or multiview solutions. However, in order to gradually introduce this technology into the consumer market and to efficiently deliver 3D holoscopic content to end-users, backward compatibility with legacy displays is essential. Consequently, to enable 3D holoscopic content to be delivered and presented on legacy displays, a display scalable 3D holoscopic coding approach is required. Hence, this paper presents a display scalable architecture for 3D holoscopic video coding with a three-layer approach, where each layer represents a different level of display scalability: Layer 0 - a single 2D view; Layer 1 - 3D stereo or multiview; and Layer 2 - the full 3D holoscopic content. In this context, a prediction method is proposed, which combines inter-layer prediction, aiming to exploit the existing redundancy between the multiview and the 3D holoscopic layers, with self-similarity compensated prediction (previously proposed by the authors for non-scalable 3D holoscopic video coding), aiming to exploit the spatial redundancy inherent to the 3D holoscopic enhancement layer. Experimental results show that the proposed combined prediction can improve significantly the rate-distortion performance of scalable 3D holoscopic video coding with respect to the authors' previously proposed solutions, where only inter-layer or only self-similarity prediction is used.
Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Turkel, Eli
2007-01-01
Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.
Code verification for unsteady 3-D fluid-solid interaction problems
NASA Astrophysics Data System (ADS)
Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique
2015-12-01
This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.
A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photoinjectors
Qiang, Ji; Lidia, S.; Ryne, R.D.; Limborg, C.; /SLAC
2006-02-13
In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.
A 3d Parallel Beam Dynamics Code for Modeling High BrightnessBeams in Photoinjectors
Qiang, J.; Lidia, S.; Ryne, R.; Limborg, C.
2005-05-16
In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.
Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Farassat, F.
1998-01-01
In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.
Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling
NASA Astrophysics Data System (ADS)
Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad
2015-10-01
Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.
GATOR: A 3-D time-dependent simulation code for helix TWTs
Zaidman, E.G.; Freund, H.P.
1996-12-31
A 3D nonlinear analysis of helix TWTs is presented. The analysis and simulation code is based upon a spectral decomposition using the vacuum sheath helix modes. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. The effect of dielectric liners on the vacuum sheath helix dispersion is included in the analysis. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found.
Gray coded trapezoidal fringes for 3-D surface-shape measurement
NASA Astrophysics Data System (ADS)
Pérez, Oscar G.; Flores, Jorge L.; García-Torales, G.; Muñoz-G, J. A.; Soto, Horacio; Balderas, Sandra E.
2014-09-01
We propose a two-step trapezoidal-pattern phase-shifting method for 3-D surface-shape measurements. Shape measurements by trapezoidal phase-shifting methods require high-quality trapezoidal patterns. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations, we propose a method for synthesizing trapezoidal intensity fringes as a way to solve the problems caused by projector/camera gamma nonlinearity. The fringe generation technique consists of projecting and acquiring a temporal sequence of strictly binary color patterns (Gray code), whose (adequately weighted) average leads to trapezoidal fringe patterns with the required number of bits, which allows a reliable three-dimensional profile reconstruction using phase-shifting methods. Validation experiments are presented.